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We present a scheme for universal topological quantum computation based on Clifford-complete braid-
ing and fusion of symmetry defects in the 3-fermion anyon theory, supplemented with magic state
injection. We formulate a fault-tolerant measurement-based realization of this computational scheme on
the lattice using ground states of the Walker-Wang model for the 3-fermion anyon theory with sym-
metry defects. The Walker-Wang measurement-based topological quantum computation paradigm that
we introduce provides a general construction of computational resource states with thermally stable
symmetry-protected topological order. We also demonstrate how symmetry defects of the 3-fermion anyon
theory can be realized in a two-dimensional subsystem code due to Bombín—making contact with an
alternative implementation of the 3-fermion defect-computation scheme via code deformations.
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I. INTRODUCTION

Topological quantum computation (TQC) is currently
the most promising approach to scalable fault-tolerant
quantum computation. In recent years, the focus has been
on TQC with Kitaev’s toric code [1], due to its high
threshold to noise [2,3] and amenability to planar archi-
tectures with nearest-neighbor interactions. To encode
and manipulate quantum information in the toric code,
a variety of techniques drawn from condensed-matter
contexts have been utilized. In particular, some of the
efficient approaches for TQC with the toric code rely
on creating and manipulating gapped boundaries, sym-
metry defects, and anyons of the underlying topological
phase of matter [4–23]. Many of these approaches were
discovered within the framework of measurement-based
quantum computation (MBQC), which provides a nat-
ural space-time perspective to understand fault-tolerant
quantum computations, as well as a deep connection to
many-body physics through the computational phases of
matter paradigm [24,25]. Within the framework of MBQC,
there have been many developments since the topological
cluster-state scheme based on the toric code [4–6], includ-
ing foliated schemes [26], nonfoliated schemes [27,28],
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schemes based on two-dimensional (2D) stabilizer codes
[29,30], approaches to implement higher-dimensional
codes, and protocols in 2D architectures [31], as well as the
related construction of fusion-based quantum computation
[32,33]. Despite great advances, the overheads for
universal fault-tolerant quantum computation remain a
formidable challenge. It is therefore important to ana-
lyze the potential of TQC in a broad range of topological
phases of matter and attempt to find new computational
substrates that require fewer quantum resources to execute
fault-tolerant quantum computation.

In this work, we present an approach to TQC for more
general anyon theories based on the Walker-Wang mod-
els [34]. This provides a rich class of spin-lattice models
in three dimensions (3D), the boundaries of which can
naturally be used to topologically encode quantum infor-
mation. The 2D boundary phases of Walker-Wang models
accommodate a richer set of possibilities than stand-alone
2D topological phases realized by commuting-projector
codes [35,36]. The Walker-Wang construction prescribes
a Hamiltonian for a given input (degenerate) anyon the-
ory, the ground states of which can be interpreted as a
superposition over all valid world lines of the underlying
anyons. Focusing on a particular instance of the Walker-
Wang model [36] based on the 3-fermion anyon theory
(3F theory) [37–40], we show that the associated ground
states can be utilized for fault-tolerant MBQC [4–6,29,41–
43] via a scheme based on the braiding and fusion of lattice
defects constructed from the symmetries of the underlying
anyon theory. The resource states required for the com-
putation can be prepared with a Clifford circuit acting
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on a 2D grid with only nearest-neighbor interactions and
thus the architectural requirements for this approach are
qualitatively similar to that of the widely pursued surface-
code schemes. The Walker-Wang MBQC paradigm that
we introduce provides a general framework for finding
fault-tolerant resource states for universal computation.
For example, we show that the well-known topological
cluster-state scheme for MBQC of Ref. [4] is produced
when the toric code anyon theory is used as input to
the Walker-Wang construction. Therefore, our approach
provides a generalization of the topological cluster-state
scheme (which is based on the toric code anyon theory)
to general Abelian anyon models.

The 3F theory is an interesting and nontrivial example
of the power of this framework. Owing to the rich set of
symmetries of the 3F theory, we find a universal scheme
for TQC where all Clifford gates can be fault-tolerantly
implemented and magic states can be noisily prepared
and distilled [44]. In particular, the full Clifford group in
this scheme can be obtained by braiding symmetry-twist
defects. This is in contrast to the 2D toric code, where only
a subgroup of Clifford operators can be achieved by braid-
ing symmetry-twist defects (when using qubit encodings
with fixed charge parity). We remark that this improved
computational capability is derived from the symmetries
of the anyon theory (S3 for the 3F theory and Z2 for the
toric code), as both the toric code and 3F anyon theories
consist of four anyons.

The 3F Walker-Wang model—and consequently the
TQC scheme that is based on it—is intrinsically 3D, as
there is no commuting-projector (e.g., stabilizer) code in
two dimensions that realizes the 3F anyon theory [36,45].
As such, this TQC scheme is outside the paradigm of
operations on a 2D stabilizer code and provides an impor-
tant stepping stone toward understanding what is pos-
sible in general higher-dimensional topological phases.
We remark, however, that it remains possible to embed
our scheme into an extended nonchiral anyon theory that
can be implemented in a 2D stabilizer model (such as
the color code). We emphasize that the 3F theory is just
one compelling example and we expect further interesting
examples to exist.

Further connecting to the paradigm of computational
phases of matter, we ground our computational frame-
work in the context of symmetry-protected topological
(SPT) phases of matter. In particular, we explore the
relationship between the fault-tolerance properties of our
MBQC scheme and the underlying 1-form symmetry-
protected topological order of the Walker-Wang resource
state. While the 3D topological cluster state (of Ref. [4])
has the same Z

2
2 1-form symmetries as the 3F Walker-

Wang ground state, they belong to distinct SPT phases.
These examples provide steps toward a more general
understanding of fault-tolerant, computationally universal
phases of matter [24,25,46–58].

Finally, we find another setting for the implementation
of our computation scheme by demonstrating how sym-
metry defects can be introduced into the 2D subsystem
color code of Bombín [39,59,60], which supports a 3F
1-form symmetry and has been argued to support a 3F
anyon phase. By demonstrating how the symmetries of the
emergent anyons are represented by lattice symmetries, we
make contact with an alternative formulation of the 3F
TQC scheme based on deformation of a subsystem code
in (2+1)D [60]—this may be of practical advantage for 2D
architectures where two-body measurements are preferred.
Our construction of symmetry defects in this subsystem
code may be of independent interest. By taking a cer-
tain limit of this model, our computational scheme embeds
into a subtheory of the anyons and defects supported by
Bombín’s color code [12,39,61–63].

A. Organization

In Sec. II, we review the 3F anyon theory and its sym-
metries. In Sec. III, we present an abstract TQC scheme
based on the symmetries of the 3F theory. We show how to
encode in symmetry defects and how to perform a full set
of Clifford gates along with state preparation by braiding
and fusing them. In Sec. IV, we review the 3F Walker-
Wang model and then show how the symmetry defects
and TQC scheme can be realized in the 3F Walker-Wang
Hamiltonian. In Sec. V, we show that the 3F Walker-
Wang model and associated symmetry defects can be used
as a resource for fault-tolerant measurement-based quan-
tum computation. We begin by reviewing MBQC based on
the 3D topological cluster state [4] and recasting it in the
Walker-Wang MBQC paradigm. We present the architec-
tural requirements for the 3F TQC scheme, which are qual-
itatively similar to those of currently pursued approaches.
We also discuss the two models in the context of 1-form
SPT phases. In Sec. VI we show how the defects can be
implemented in a 2D subsystem code, offering an alterna-
tive computation scheme based on code deformation. We
conclude with a discussion and outlook in Sec. VII.

II. 3-FERMION ANYON THEORY
PRELIMINARIES

In this section, we review the 3F anyon theory, its sym-
metries, and the associated symmetry domain wall and
twist defects. We describe the fusion rules of the twists,
including which anyons can condense on the twist defects.
The 3F model (also known as the SO(8)1 theory) and its
symmetries have been studied in Refs. [37,38,64]. Closely
related anomalous 1-form symmetry sectors, which do not
necessarily correspond to anyons in a gapped phase, have
also been studied in a subsystem code due to Bombín
[39,59,60].
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A. Anyon theory

The 3F anyon theory describes superselection sectors
{1,ψr,ψg,ψb} with Z2 × Z2 fusion rules

ψα × ψα = 1, ψr × ψg = ψb, (1)

where α = r,g,b, and modular matrices

S =

⎛
⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞
⎟⎠ , T =

⎛
⎜⎝

1
−1

−1
−1

⎞
⎟⎠ .

(2)

The above S matrix matches the one for the anyonic exci-
tations in the toric code but the topological spins in the
T matrix differ, as ψr, ψg, and ψb are all fermions. These
modular matrices suffice to specify the gauge-invariant
braiding data of the theory [65], while the F symbols are
trivial.

This anyon theory is chiral in the sense that it is not con-
sistent with a gapped boundary to vacuum [66,67]. Using
the well-known relation

1
D

∑
a∈C

d2
aθa = e2π ic−/8, (3)

where da is the quantum dimension and θa = Taa is the
topological spin of anyon a, D2 = ∑

a d2
a defines the total

quantum dimension and c− is the chiral central charge.
In the 3F theory, da = 1 for all anyons, as they are
Abelian—hence D = 2—and we also have that θa = −1
for all anyons besides the vacuum. Hence we find that the
chiral central charge must take the value c− = 4 mod 8.

B. Symmetry-enrichment

The 3F theory has an S3 group of global symmetries cor-
responding to arbitrary permutations of the three fermion
species, all of which leave the gauge-invariant data of the
theory invariant. We denote the group action on the three
fermion types, r, g, and b, using cycle notation:

S3 ∼= {(), (rg), (gb), (rb), (rgb), (rbg)}, (4)

with the usual composition, e.g., (rg) · (gb) = (rgb). The
action on the anyons is then given by g · 1 = 1, g ·
ψc = ψg·c.

Restricting the action of a global symmetry to a subre-
gion creates codimension-1 invertible domain walls [20].
These codimension-1 invertible domain walls are labeled
by the nontrivial group elements. The codimension-2 topo-
logical symmetry-twist defects that can appear at the open
end of a terminated domain wall are labeled by their eigen-
values under the string operators for any fermions that are

fixed by the action of the corresponding group element.
Hence there are two distinct symmetry defects of quan-
tum dimension

√
2 for each 2-cycle permutation, which

we label T ±
(rg), T ±

(gb), and T ±
(rb), and there is only a single

symmetry defect of quantum dimension 2 for each of the
3-cycles, which we label T(rgb) and T(rbg), where we have
utilized the fact that the total quantum dimension of each
symmetry defect sector matches the trivial sector, consist-
ing of only the anyons, and that the T ±

(cc′) defects are related
by fusing in either of the fermions ψc and ψc′ that are
permuted by the action of the domain wall.

The twist-defect sectors of the full symmetry-enriched
theory are then given by

CS3 = {1,ψr,ψg,ψb} ⊕ {T +
(rg),T −

(rg)}⊕
{T +
(gb),T −

(gb)} ⊕ {T +
(rb),T −

(rb)} ⊕ {T(rgb)} ⊕ {T(rbg)} (5)

and the additional fusion rules for the defects are

T ±
(cc′)×T ±

(cc′) = 1 + ψc′′ , (6)

T ±
(cc′)×T ∓

(cc′) = ψc′ + ψc′′ , (7)

T(rgb) × T(rbg) = 1 + ψr + ψg + ψb, (8)

for c �= c′ �= c′′ �= c and

T ±
(cc′)×T(rgb)i = T +

(cc′)·(rgb)i+T −
(cc′)·(rgb)i , (9)

T(rgb)i × T(rgb)i = 2T(rgb)−i (10)

for i = ±1 and the related rules given by cycling the legs
around a fusion vertex.

These fusion rules imply which anyon types Cg can
condense on the Tg defects (the ± superscript makes no
difference) as follows:

C(cc′) = {1,ψc′′ }, (11)

C(cc′c′′) = {1,ψr,ψg,ψb}, (12)

where c �= c′ �= c′′ �= c.
We remark that the fusion algebra of each non-Abelian

T ±
(cc′) twist defect with itself is equivalent to that of an Ising

anyon or Majorana zero mode, reminiscent of the elec-
tromagnetic duality twist defect in the toric code [8]. A
full description of the G-crossed braided-fusion category
[20] describing this symmetry-enriched defect theory is
not needed for the purposes of this paper, as all relevant
processes can be calculated using techniques from the sta-
bilizer formalism. This theory has been studied previously;
it is known to be anomaly free and, in particular, the theory
that results from gauging the full symmetry group has been
calculated [20,38,68].

We remark that in the following sections, for any 2-cycle
g ∈ S3, we define Tg (i.e., without a superscript) to be equal
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to T +
g . In particular, we do not make explicit use of T −

g to
encode logical information (although the presence of such
defects may arise due to physical errors).

III. 3F DEFECT-COMPUTATION SCHEME

In this section, we demonstrate how to encode and pro-
cess logical information using symmetry defects of the 3F
theory. Our scheme is applicable to any spin-lattice model
that supports 3F topological order (possibly as a subthe-
ory). Here, we describe the scheme at the abstract level of
an anyon theory with symmetry defects, with the micro-
scopic details abstracted away. In the following sections,
we demonstrate how to realize our scheme via MBQC
using a Walker-Wang model and in the 2D subsystem color
code of Bombín [39,60].

Our computational scheme is based on implementing
a complete set of fault-tolerant Clifford operations using
topologically protected processes—which are naturally
fault-tolerant to local noise, provided that the twists remain
well separated—along with the preparation of noisy magic
states. By Clifford operations, we mean the full set of Clif-
ford gates (the unitaries that normalize the Pauli group),
along with single-qubit Pauli preparations and measure-
ments. The noisy magic states can be distilled to arbitrary
accuracy using a postselected Clifford circuit (provided
that the error rates are sufficiently small) [44]. We remark
that the schemes that we present are by no means optimal
and that given a compilation scheme and architecture, the
overheads are ripe for improvement.

The goal of this section is to prove Proposition 1—the
Clifford universality of 3F defect theory—which, along
with noisy magic state preparations, offers a universal
scheme for fault-tolerant quantum computation. We prove
this proposition by breaking an arbitrary space-time con-
figuration of domain walls and twists into smaller com-
ponents that directly implement individual Clifford opera-
tions that generate the Clifford group and allow for Pauli
preparations and measurements. We begin by introducing
defect encodings.

A. Encoding in symmetry defects

By nature of their ability to condense anyonic excita-
tions, symmetry defects are topological objects and infor-
mation can be encoded in them. To understand such
encodings, we consider a 2D plane upon which any-
onic charges—in our case, fermions in C—and symmetry
defects may reside. This setting is representative of the
behavior of anyons that arise as excitations on 2D topo-
logically ordered phases—in our case, the fermions appear
as excitations on the boundary of the 3D Walker-Wang
model as well as in the low-energy theory of a 2D sub-
system code Hamiltonian. Processes that involve moving,
braiding, and fusing of anyons can be realized on the lat-
tice by certain string operators. Such string operators can

also transfer anyonic charge to (and between) twist defects,
thereby changing their topological charge.

For a given configuration of twist defects {T (i)
gi

, | i ∈
{1, . . . , N }, gi ∈ S3}, we can encode a quantum state in
the joint fermionic charge of g-neutral subsets of them
I ⊆ {1, . . . , N }. By g neutral, we mean that the subset of
twist defects {T (i)

gi
| i ∈ I} must satisfy

∏
i∈I gi = 1. As

the subsets are g neutral, upon their fusion, we are left
with a fermionic charge c ∈ C. These possible postfusion
charge states give us a basis for our encoded state space
and the dimension of the logical state space depends on
the quantum dimension of the defects.

To be more concrete, we fix a twist configuration that
acts as the fundamental encoding unit, known as the g
encoding Eg, where 1 �= g ∈ S3. In the following, all twists
are of the +-type, where relevant. The encoding is defined
by two twist pairs Eg = {T (1)

g ,T (2)
g−1 ,T (3)

g−1 ,T (4)
g } for g ∈ S3

with vacuum total charge, as depicted in Fig. 2. The com-
putational basis is defined by the fusion space of T (1)

g and
T (2)
g−1 : when g is a 2-cycle, the two pairs encode a single

qubit and when g is a 3-cycle, the two pairs encode two
qubits. This degeneracy follows from the fusion space of
the twists,

T(rg) × T(rg) = 1 + ψb, (13)

T(rgb) × T(rbg) = 1 + ψr + ψg + ψb, (14)

along with the constraint that all four twists must fuse to
the vacuum containing no charge. For instance, when g =
(rg), the |0〉 state corresponds to the fusion outcome 1 ∈ C
and the |1〉 state corresponds to outcome ψb ∈ C.

We remark that the exact location of the domain wall
is not important in the encoding of Fig. 2; only their end
points matter, as the action in Fig. 1 is invariant under
deformations of the domain wall. To encode qubits, one
can choose any domain-wall configuration with the same
end points as the twist defects in Fig. 2.

The total fermionic charge of a subset of g-neutral
defects can be detected without fusing the twists together,
by instead braiding various fermionic charges around
them. Such a process can be represented by a string oper-
ator (also known as a Wilson loop) and this loop can be

Tg Tg−1

α g · α

FIG. 1. A fermion α ∈ C is transformed by the symme-
try group to g · α ∈ C under a counterclockwise braid with a
twist Tg .
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T (3)
g−1 T (4)

g

T (1)
g

T (2)
g−1

FIG. 2. The elementary twist-defect configuration for encod-
ing quantum information. One or two logical qubits are encoded
if g ∈ S3 is a 2-cycle (e.g., (rg)) or a 3-cycle (e.g., (rgb)),
respectively.

used to measure the charge within the defects. Similarly,
one can change the charge on each twist by condensing
fermions into them, which is also represented by a string
operator running between pairs of twists.

The string operators that represent Pauli logical opera-
tors X and Z acting on the encoded qubits are represented
in Fig. 3—they can be understood as transferring and mea-
suring fermionic charge between different defect pairs.
Such operators must anticommute based on the mutual
semionic braiding statistics of the fermions that they trans-
port (i.e., braiding one fermion around another introduces a
−1 phase). It is often convenient to utilize other represen-
tative logical operators. For instance, when g is a 2-cycle
(e.g., g = (rg)), one can use either the ψr or ψg loops to
measure the charge and hence define the logical Z operator.
This follows from the fact that an ψb Wilson loop enclos-
ing T (1)

(rg) and T (2)
(rg) acts as the logical identity and swaps ψr

and ψg loops upon fusion. In addition, logical X can be
represented as a loop operator as per Fig. 4.

More efficient encodings are possible. For instance, one
can encode N (2N ) logical qubits into (2N + 2) 2-cycle
(3-cycle) twists on the sphere, e.g., following Ref. [10].
Additionally, due to the rich symmetry-defect theory of

Z2
X2

(rg) (rg)

(rg) (rg)

X1

Z1

(rbg) (rgb)

(rgb) (rbg)

X1 X2

Z1

Z2

ψr
ψg
ψb

(a) (b)

FIG. 3. Representative fermionic string operators for logical
Pauli operators for a g encoding. (a) A single qubit is encoded
in four twists defined by (rg) ∈ S3. Note also in this case that
the orientation has been removed from the domain wall, as
(rg)−1 = (rg). Similar representative logical operators for twist
defects based on the other 2-cycles g ∈ S3 can be obtained by
suitably permuting the fermionic string-operator types. (b) Two
qubits are encoded in four twists defined by (rgb), (rbg) ∈ S3.

Z2

XXXX

FIG. 4. The equivalence between different representative
fermionic string operators for logical Pauli X operators for the
two-twist-pair encoding for g encodings—in this case, g = (rg).
They can be verified by the fusion rule for ψr × ψg = ψb, along
with the fact that T(rg) can condense ψb fermions.

3F, other encodings are possible, including a trijunction
encoding, which is outlined in Appendix D.

B. Gates by braiding defects

We now show how to achieve encoded operations
(gates, preparations, and measurements) on our defect-
qubits. In order to implement these operations, we braid
twists to achieve gates and fuse them to perform mea-
surements. To understand such processes, we describe the
locations of twists in (2+1) dimensions. In (2+1) dimen-
sions, the twists—which are codimension-2 objects—can
be thought of as world lines. The domain walls—which are
codimension-1 objects—can be thought of as world sheets.

Lemma 1.—Braiding the twists of a g encoding Eg with g
a 2-cycle generates the single-qubit Clifford group 〈H , S〉,
where H is the Hadamard and S is the phase gate.

Proof.—The proof is presented in Appendix A. �
We remark that in the case that g is a 3-cycle, each

Eg encodes two logical qubits. Braiding in this case
generates a subgroup of the Clifford group given by
〈H(1)H(2), S(1)S(2)〉, where the subscript indexes the two
logical qubits.

The previous lemma defines a generating set of single-
qubit braids. We present the space-time diagram for the
Hadamard- and S-gate braids in Fig. 5. Such diagrams can
be interpreted in terms of code deformations or in terms of
measurement-based quantum computation. In the former,
we depict the space-time location of twists and domain
walls during a code deformation, wherein twists trace out
(0+1)-dimensional world lines and domain walls trace out
(1+1)-dimensional world sheets. In the MBQC picture, we
similarly depict the location of twists and domain walls
that correspond to lattice defects within the resource state,
which is shown explicitly in Sec. IV. Similarly to the dis-
cussion in Sec. II, the exact locations of the domain-wall
world sheets are not important and only the locations of
the twist world lines matter—and they must remain well
separated in order for logical errors to be suppressed from
local noise processes.

For entangling gates we require encodings Eg and Eh
with either g �= h or at least one of g and h being a 3-cycle.
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(b)(a)

FIG. 5. One-qubit gates for the defect encoding E(rg). Time
moves upward. (a) The Hadamard gate cyclically permutes the
four twist defects. A domain-wall plane is inserted to return the
encoding to its standard form. (b) The S gate consists of the
exchange of T (3)

(rg) and T (4)
(rg) . The same gates work for a g encod-

ing, with g a 2-cycle—in this case, the orientation of the surface
does not matter and is not depicted.

Lemma 2.—Braiding of twists from two encodings, Eg
and Eh, generates entangling gates if and only if either g �=
h or at least one of g and h is a 3-cycle.

Proof.—See Appendix A. �
Similarly, we present the space-time diagram of the

controlled-Z (CZ) gate between two qubits encoded within
2-cycle encodings E(rg) and E(rb) in Fig. 6. If one wishes to
implement an entangling gate between two (rg)-encoded
qubits—such as a CZ gate—one can utilize an (rb)-encoded
ancilla to achieve this, as shown by the circuit in Fig. 28 in
Appendix B.

We remark that if one implements the same operation
as in Fig. 6 using two (rgb) encodings (which encode 4-
qubits), we obtain the operation cz1,4cz2,3, where qubits 1
and 2 belong to the left (rgb) encoding and qubits 3 and 4
belong to the right (rgb) encoding.

One can understand the action of these gates by track-
ing representative logical operators through space-time. If
the braid is implemented by code deformation, the logical

FIG. 6. A two-qubit CZ gate between pairs of qubits with g and
h encodings with 2-cycles g �= h ∈ S3, e.g., g = (rg) on the left
and h = (rb) on the right. Time moves upward. The domain walls
are colored according to the fermion that they leave invariant. In
Appendix B, we show how to generate entangling gates between
two (rg)-encoded qubits.

mapping can be understood by tracking representative
logical operators at each time slice through the space-
time braid. In the context of MBQC, the observables that
propagate logical operators through space-time are known
as correlation surfaces—they reveal correlations in the
resource state that determine the logical action on the post-
measured state (see, e.g., Ref. [6]). Correlation surfaces for
each operation are determined in Appendix A.

We remark that these operations can be described purely
in terms of the braid group acting on twists. This can
be useful for topological compilation, where one can find
more efficient representations of general Clifford opera-
tions. We define the braids that give rise to the Hadamard,
S gate, and CZ gate in Appendix B.

C. Completing a universal gate set

To complete the set of Clifford operations, we require
Pauli-basis measurements, which are obtained by fusing
twists together. To obtain a universal set of operations, we
show how to prepare noisy magic states, which can then
be distilled using Clifford operations—allowing for fault-
tolerant universality [44].

While the 3-cycle encodings can be used, we focus on
a universal scheme for quantum computation using (rg)-
encoded qubits for logical qubits and (rb)-encoded qubits
as ancillas to mediate entangling gates.

1. State preparation

We now show how to perform topologically protected
measurements in the X and Z basis, as well as preparations,
which can be considered time-reversed measurements (and
vice versa). To prepare a state in X or Z, we must nucle-
ate out the twists of Eg such that we know the definite
(fermionic) charge of T (1)

g × T (3)
g−1 and T (1)

g × T (2)
g−1 . These

basis preparations are depicted in Fig. 7. In the case that
g is a 3-cycle, both qubits are prepared in the same basis.
This completes the set of Clifford operations.

Proposition 1.—(Clifford universality of 3F defect the-
ory). For any 2-cycles g �= h ∈ S3, any Clifford operation
can be implemented on g, h-encoded qubits by braiding
and fusion of twists.

Proof.—An arbitrary Clifford operation is given by
either a Clifford unitary—which can be generated by
Hadamard, phase, and CZ gates—or by a single-qubit
Pauli preparation or measurement. All Clifford unitaries
can be implemented by Lemmas 1 and 2, and the circuit
identity of Fig. 28 in Appendix B. This, along with the
Pauli-X - and -Z-basis preparations and measurements, as
demonstrated in Appendix A completes the proof. �

To complete a universal set of gates, we consider the
preparation of noisy T states |T〉 = 1√

2
(|0〉 + e

iπ
4 |1〉). Such

states can be distilled using postselected Clifford circuits
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(b)(a)

FIG. 7. (a) The preparation of X eigenstates. (b) The prepara-
tion of Z eigenstates. We depict the operation for a (rg) encoding.
Time moves upward. To prepare either X or Z eigenstates, we
need to prepare pairs of twists in definite charge states. This can
be done by nucleating them out of vacuum so that we know
that they fuse to the identity anyon (i.e., no charge). To obtain
the respective measurements, we take the time-reverse diagram
(i.e., t → −t). This works identically for any g ∈ S3 and we note
that when g is a 3-cycle, both encoded qubits are prepared (or
measured) in the same basis.

and are sufficient to promote the Clifford gate set to univer-
sality [44]. To prepare noisy T states, we utilize a nontopo-
logical projection on the four twists in a g encoding that
are brought within a constant-width neighborhood. Here,
we consider g a 2-cycle for simplicity. The |T〉 state is the
+1 eigenstate of MT = (X + Y)/

√
2 and thus its prepara-

tion can be achieved by measuring the observable MT and
postselecting on the +1 outcome. To ensure that such oper-
ations can achieved in a local way, the four twists of the
g encoding must be brought within a small neighborhood
to perform the (noisy) measurement MT, after which they
can be separated. In the Walker-Wang resource states intro-
duced in Sec. IV, it is possible to bring the twists within a
constant separation such that MT is a constant-sized opera-
tor. (Note that we do not explore whether one can bring the
twists to within a distance of one lattice spacing, such that
the required logical action can be implemented with the
single-qubit measurement (X + Y)/

√
2, as is possible in

the surface-code case [69–72].) Topologically, the magic
state preparation is depicted in Fig. 8.

+e
iπ
4=

FIG. 8. The preparation of a nontopologically protected magic
state. Time moves upward. Four twists are brought into close
proximity such that a nontopological operation can be imple-
mented (depicted by the shaded neighborhood around all four
twists on the leftmost figure)—in this case, to prepare |T〉 =

1√
2
(|0〉 + e

iπ
4 |1〉). The precise nature of the nontopological pro-

jection depends on the lattice implementation. Topologically, the
projection can be understood as giving rise to a superposition of
a X and Z eigenstate preparations.

IV. WALKER-WANG REALIZATION OF 3F
COMPUTATIONAL RESOURCE STATES

In order to implement the computational schemes of
Sec. III, we develop a framework for MBQC based on
Walker-Wang resource states. In this section, we intro-
duce the 3F Walker-Wang model of Ref. [36], which
provides the resource state for our computation scheme.
We describe how the symmetries of the 3F anyon the-
ory can be lifted to a lattice representation, as symmetries
of the 3F Walker-Wang model, along with how to imple-
ment symmetry domain walls and twists based on them.
While we focus on the 3F anyon theory, the Walker-Wang
construction, along with our computation scheme, can be
applied for general anyon theories. Indeed, the most well-
known example of fault-tolerant MBQC—the topological
cluster-state model of Ref. [4]—is a special case of our
construction, which arises when the toric code anyon the-
ory is used as an input, as described in Sec. V A. We
expect that more exotic MBQC schemes can be found
using this paradigm. However, for general non-Abelian
anyon theories, efficiently accounting for the randomness
of measurement outcomes is an open problem.

A. Hilbert space and Hamiltonian

The Walker-Wang model [34] extends the string-net
model [73] to (3+1)D, defining a Hamiltonian for any
braided-anyon theory, including those with degenerate
braiding [66,67]. The degrees of freedom of the model
have a basis labeled by the anyon types of the input anyon
theory. The Hamiltonian is designed to energetically favor
a ground state that is the superposition of all valid anyon
world-line diagrams, weighted by their evaluation in the
anyon theory. For modular nondegenerate braided-anyon
theories, this model results in a bulk that has only topo-
logically trivial excitations [74]. A smooth boundary of
the model supports (2+1)D boundary states with topolog-
ical order corresponding to the input anyon theory. In this
work, our focus is on a particular instance of the Walker-
Wang model that is significantly simpler than the general
case. For this reason, we will not present further details
about the general construction here.

We utilize the simplified 3F Hamiltonian defined in
Ref. [36]. We begin by considering a cubic lattice L with
periodic boundary conditions. (For the 3F theory, we do
not need to trivalently resolve the cubic lattice as is done
for general Walker-Wang models.) The Hilbert space is
given by placing a pair of qubits on each 1-cell of the cubic
lattice L. We refer to each 1-cell as a site. We label a basis
for each site i as |x1x2〉i , x1, x2 ∈ Z2. Pauli operators acting
on the first (second) qubit of site i are labeled by σαi (ταi ),
where α ∈ {X , Y, Z}.

Following Ref. [36], the 3F Hamiltonian is defined in
terms of vertex and plaquette operators
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ŷ

ẑ
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FIG. 9. (a) The special edges Of and Uf for each plaquette orientation. The coordinate system is shown, with each edge of the
lattice being length 1. (b) An example of the Hamiltonian terms B(ψr)

f and B(ψg)
f .

H3F = −
∑
v∈V

(A(ψr)
v + A(ψg)

v )−
∑
f ∈F

(B(ψr)
f + B(ψg)

f ), (15)

where the sum is over all vertices V and plaquettes F of the
lattice and

A(ψr)
v =

∏
i∈δv

σ X
i , B(ψr)

f = σ X
Of
σ X

Uf
τX

Uf

∏
i∈∂f

σ Z
i , (16)

A(ψg)
v =

∏
i∈δv

τX
i , B(ψg)

f = σ X
Of
τX

Of
τX

Uf

∏
i∈∂f

τ Z
i . (17)

Therein, δv consists of all edges that contain v as a ver-
tex, ∂f consists of all edges belonging to the face f , and
Of and Uf are the unique edges determined by the pla-
quette f as per Fig. 9. We also define the terms A(ψb)

v =
A(ψr)
v A(ψg)

v and B(ψb)
f = B(ψr)

f B(ψg)
f and one may add them

to the Hamiltonian (with a negative sign) if desired. We
remark that not all terms are independent, e.g., taking prod-
ucts of plaquettes around a cube gives the product of a pair
of vertex terms.

On any closed manifold (i.e., without a boundary), the
ground state of H3F is unique [45]. In the Walker-Wang
description, the ground state of H3F can be viewed as a
weighted superposition over all valid anyonic world lines,
i.e., braided-anyon diagrams that can be created from the
vacuum via a sequence of local moves. In particular, for
each link, the basis of σ X

i and τX
i can be viewed as defin-

ing the presence or absence of fermionic ψr and ψg strings:
|++〉 denotes the vacuum (identity anyon), |−+〉 denotes
the presence of ψr, |+−〉 denotes the presence of ψg, and
|−−〉 denotes the presence of ψb. The A(ψr)

v and A(ψg)
v

terms generate a Z2 × Z2 1-form symmetry, ensuring valid
fusion rules at each vertex (i.e., Z2 × Z2 fermion conserva-
tion), while the B(ψr)

f and B(ψg)
f “fluctuation” terms ensure

that the ground space is a superposition over all valid
fermionic world-line configurations, with sign determined
by the fermion braiding rules. Namely, the unnormalized
ground state is

|ψ3F〉 =
∑
c∈D

φ(c) |c〉 , φ(c) = (−1)Lk(c)+Wr(c), (18)

where D is the set of all basis states corresponding to
closed anyon diagrams with valid fusion rules that can be
created from the vacuum and Lk(c) (Wr(c)) is the link-
ing number (the writhe number) of the ψr and ψg fermion
world lines [34].

B. Symmetry of the 3F Hamiltonian

Recall that the 3F theory has a symmetry S3 = Aut(C)
with action on anyons given by g · 1 = 1, g · ψi = ψg(i),
where g(i) denotes the usual S3 permutation action on i ∈
{r, g, b}. We now show that this symmetry can be lifted to
a symmetry of the 3F Walker-Wang model defined above.

The symmetry contains an on-site and non-on-site part.
Namely, write the symmetry S(g) of the 3F Hamiltonian as

S(g) = V(g)U(g) g ∈ S3, (19)

where U(g) is the on-site representation of S3 and V(g)
is a locality-preserving unitary (the deviation from on-
siteness), which takes the form of a partial translation
of qubits. If we write the basis for the 2-qubit space on
each 1-cell as |1〉 := |++〉, |ψr〉 := |−+〉, |ψg〉 := |+−〉,
|ψb〉 := |−−〉, then the on-site part of the symmetry acts
as a permutation of the three fermionic basis state on
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each site,

g · |ψk〉i = |ψg·k〉i , g ∈ S3, k ∈ {r, g, b}, (20)

while preserving the vacuum, i.e, g · |1〉i = |1〉i. This
action can be represented by a Clifford unitary on each site.

The unitary on-site representation U of S3 is defined by
U(g) = ⊗iui(g), where we have generators

ui(rg) = swapi1,i2 , (21)

ui(rgb) = swapi1,i2 · cnoti1,i2 , (22)

where cnot is the controlled-Not (CNOT) gate, and swap
exchanges the two qubits. The non-on-site part V of the
representation is generated by

V(rg) = Tτ (v) with v = (1, 1, 1), (23)

V(rgb) = I , (24)

where Tτ (v) is a partial-translation operator acting on
all τ qubits, shifting them in the v = (x, y, z) direction,
with coordinate basis defined in Fig. 9. Notationally, we
use only single parentheses when explicit group elements
appear as representation arguments, e.g., V((rg)) ≡ V(rg).

The partial-translation operator has a well-defined
action on operators as a translation of their support.
Namely, it can be defined factor-wise (with respect to the
tensor product) and extended by linearity. For Pauli oper-
ators ταu , σαu at coordinate u, we have Tτ (v) : ταu �→ ταu+v ,
σαu �→ σαu .

Proposition 2.—The unitary representation S of S3
defined by Eqs. (21)–(24) is a symmetry of the Hamilto-
nian H3F.

That ui is indeed a representation of S3 is verified in
Appendix E. We note that commutation of the symme-
try with the Hamiltonian is not strictly necessary here.
Since H3F is a stabilizer model, it is sufficient to prove
that the stabilizer group is preserved under the action of
S(g) ∀g ∈ S3. This can be verified by direct computation
and we provide the proof in Appendix F. We remark that
S(g) induces a permutation on the terms B(ψr)

f , B(ψg)
f , and

B(ψb)
f , given by S(g)B(fi)f S−1(g) = B

(fg·i)
f .

Thus only the 3-cycles have an on-site representation,
while the 2-cycles require a non-on-site partial transla-
tion. One can track the source of the non-on-siteness to the
particular choice of gauge for the input data to the Walker-
Wang construction—namely the R symbols—to obtain the
Hamiltonian H3F. One can equally construct a Hamilto-
nian using the transformed data corresponding to the action
of each symmetry element g ∈ S3, all of which belong to
the same phase and can be related by a locality-preserving
unitary. This additional locality-preserving unitary is the
origin of the non-on-site part of the symmetry. In general,
applying a global symmetry to an anyon theory results in a

transformation of the gauge-variant data [20]. The Walker-
Wang model based on these transformed data is in the
same topological phase as the original model, implying
the existence of a locality-preserving unitary to bring the
symmetry-transformed Hamiltonian back to the original
Hamiltonian. Combining the global symmetry transfor-
mation with this locality-preserving unitary promotes the
global symmetry of the input anyon theory to a locality-
preserving symmetry of the Walker-Wang Hamiltonian.
We remark that for the 3F theory, and more general anyon
theories, one can construct a (nonstabilizer) Hamiltonian
representative (using the symmetry-enriched anyon theory
data), where the symmetry is on site [79,80]—even for
anomalous symmetries [81].

1. Transforming the lattice

For the 3F Hamiltonian presented in Eq. (15), the
3-cycles (rgb), (rbg) ∈ S3 admit an on-site unitary repre-
sentation, while the 2-cycles require a non-on-site (but
nonetheless locality-preserving) unitary. By transforming
the lattice, we can express the symmetry action of the
2-cycles entirely as a translation. This simplifies the imple-
mentation of symmetry defects on the lattice. Namely,
consider the translation operator

T(t), t = 1
2
(1, 1, 1) (25)

that acts to translate all qubits in the t direction [where,
again, the (x, y, z) coordinates are defined in Fig. 9]. Con-
sider the translation Tτ (v) of all of the τ qubits such that
they are shifted to faces of the cubic lattice. On this new
lattice, where there are qubits on every face (τ qubits) and
every edge (σ qubits) and the 3F Hamiltonian consists of
a term for each vertex v, edge e, face f and volume q,

Ã(ψr)
v =

∏
e∈δv

σ X
e , B̃(ψr)

f = σ X
Of
σ X

Uf
τX

f

∏
e∈∂f

σ Z
e , (26)

Ã(ψg)
q =

∏
f ∈∂q

τX
f , B̃(ψg)

e = τX
Oe
τX

Ue
σ X

e

∏
f ∈δe

τ Z
f , (27)

where δe (δv) consists of all faces (edges) incident to the
edge e (vertex v), ∂f (∂q) consists of all edges (faces)
in the boundary of the face f (volume q), and Uf , Of ,
and Ue, Oe are edges and faces, respectively, depicted in
Fig. 10.

On this lattice, the symmetry S(rg) can be entirely
implemented by a lattice transformation:

S(rg) = T(w), w = 1
2
(±1, ±1, ±1), (28)

where it is understood that the ± sign for each direction
can be chosen independently. The symmetry induces the
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FIG. 10. The 3F Walker-Wang plaquette terms after transla-
tion of each of the τ qubits in the original lattice by 1

2 (1, 1, 1). σ
qubits live on edges, while τ qubits live on faces. The supports of
the terms B̃(ψr)

f and B̃(ψg)
e are shown at the top and bottom, respec-

tively. For a given face f , the edges Uf , Of are precisely those
depicted that are not in the boundary of the face. Similarly, for a
given edge e, the faces Ue and Oe are those depicted that are not
in the coboundary of the edge. The 1-form constraint terms Ã(ψr)

v

and Ã(ψg)
q are given by a product of Pauli-X operators on the star

of a vertex and the boundary of a cube, respectively.

correct permutation action on Hamiltonian terms: namely,
B̃(ψr)

f and B̃(ψg)
e plaquettes are permuted, as are the 1-form

generators Ã(ψr)
v and Ã(ψg)

q . We remark that there are other
choices of translation vector that realize the symmetry.
One can directly generate the lattice representations for the
other 2-cycle symmetries by composing S(rg) and S(rgb).

C. Construction of symmetry defects in stabilizer
models for locality-preserving symmetries

Here, we present a general construction for implement-
ing symmetry defects in 3D stabilizer models, whenever
the symmetry is given by a constant-depth circuit with a
potential (partial) translation. The prescription leverages
similar constructions of symmetry defects in 2D systems
[8,20,82]. The construction admits a direct generaliza-
tion to a wider class of locality-preserving symmetries,
such as those realized by quantum cellular automata [45],
and we expect that it extends to more general topologi-
cal commuting-projector models. In particular, we give a
prescription for implementing symmetry defects for the S3
symmetries of the 3F Walker-Wang model, with explicit
examples provided in Appendix G.

1. Codimension-1 domain walls

Let us begin by implementing g-domain walls in a sta-
bilizer Hamiltonian H with a symmetry S(g) represented
by a locality-preserving unitary. Consider, for simplicity,
an infinite lattice that is partitioned by a 2D surface D
into two connected halves L ∪ R (e.g., D may be a lat-
tice plane). Our goal is to create a codimension-1 domain
wall supported near D. We decompose the Hilbert space as

H = HL ⊗ HR, where HL and HR are the Hilbert spaces
for the two halves, which we refer to as the left and right
spaces. We require that the partition is such that there is a
natural restriction to one of the half spaces, which, with-
out loss of generality, we assume to be R. In particular, we
require the restriction SR(g) = S(g)|R of S(g) to HR to be
a well-defined map

SR(g) : HR → HR. (29)

For any constant-depth unitary circuit, there exists a well-
defined restriction that is unique up to a local unitary that
acts within a small neighborhood of D. In the presence
of translation symmetries, we additionally require that the
translation is injective on HR—i.e., we require that the
translation maps one half of the partition to itself. Such
transformations can be achieved if, e.g., D is a plane or
multiple half-planes that meet. For D a lattice plane, this
accommodates half-space translations orthogonal to D that
are injective but not surjective on HR.

With this restriction, the Hamiltonian with a g-domain
wall is given by conjugating the Hamiltonian H by the
restriction of the symmetry SR(g). We remark that the
defect Hamiltonian differs from H only near the plane
D. Namely, the restriction SR(g) preserves all Hamilto-
nian terms that are supported entirely within HR (as it is
a symmetry of H ), has no effect on the terms that are sup-
ported entirely within HL, but may have some nontrivial
action on terms supported on both HL and HR. The mod-
ified terms supported in the neighborhood of D realize the
g-domain wall. Such modified terms commute with each
other and the remainder of the Hamiltonian, since their
(anti)commutation relations upon restriction to either side
of D are preserved by SR(g).

We remark that when S(g) is a locality-preserving, but
not on-site, unitary, the Hilbert space near the domain wall
may be modified. In particular, for a symmetry involving
translation, the new Hilbert space may be a strict subset
of the old Hilbert space. That is, a subset of qubits in
HR near the domain wall D may be “deleted” (e.g., if the
translational symmetry is not parallel to the D plane).

2. Codimension-2 twist defects

We now consider domain walls that terminate in
codimension-2 twists. Consider a domain wall D that has
been terminated to create a boundary ∂D, which we assume
is a straight line (in this way, D no longer partitions the lat-
tice into two halves). Let the Hamiltonian be written H =∑

x∈I hx for some index set I and let d = maxx∈I {diam(hx)}
be the maximum diameter of any term, where diam(hx)

is the diameter of the smallest ball containing the sup-
port of hx in the natural lattice metric. Along the domain
wall D, we can modify the Hilbert space and Hamilto-
nian terms following the previous prescription, provided
that they commute with the bulk Hamiltonian. This works
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away from the boundary of the domain wall ∂D. Specifi-
cally, one can replace all terms hx with support intersecting
D by SR(g)hxS−1

R (g), where again SR(g) is the restriction to
one side of the domain wall, which is locally well defined
away from ∂D.

In general, this procedure will break down for terms sup-
ported within a distance d of ∂D, as the modified terms
may no longer commute with the neighboring bulk Hamil-
tonian terms and so are not added to the Hamiltonian. In
order to ensure that all local degeneracy has been lifted
in the neighborhood of ∂D, we must find a maximal set
of local Pauli terms that commute with the bulk Hamilto-
nian and domain-wall terms. By stabilizer cleaning [83],
there exist a generating set supported on the qubits within
a neighborhood of radius d of ∂D, which we label by
Nd(∂D). By Ref. [45, Theorem IV.11], this maximal set
of local terms admits a translationally invariant generating
set (by assumption, we have assumed that ∂S and thus the
surrounding Hamiltonian terms have a translational invari-
ance along one dimension). We use such a generating set
to define our terms along the twist.

3. Planes meeting at seams and corners

For the purposes of discretizing domain walls to imple-
ment gates from Sec. III on the lattice, we are required
to consider configurations of two- or three-domain-wall
planes that meet at one-dimensional (1D) seams and zero-
dimensional (0D) corners, along with twist-defect lines
that change directions at 0D corners. If the planes are
constructed using different symmetries S(g) or different
translations, then Hamiltonian terms in the neighborhood
of seams can be constructed in the same way as the twists
(utilizing Ref. [45, Theorem IV.11]). Hamiltonian terms
in the neighborhood of a corner where a twist changes
direction or where distinct domain-wall planes meet can
be again computed by finding a maximal set of mutu-
ally commuting terms that commute with the surrounding
Hamiltonian, which is a finite constant-sized problem (and
thus can be found by exhaustive search), as such these
features are contained within a ball of finite radius.

FIG. 11. An example of a domain-wall plane D for a symmetry
S(rg) ending in a twist (depicted in solid blue) traveling in the ŷ
direction. The new Hilbert space contains no qubits on any of the
shaded edges or faces, leaving a lattice dislocation.

D. Boundaries of H3F

Finally, we review the boundaries of the 3F Walker-
Wang model. On a manifold with a boundary, the Walker-
Wang model admits a canonical smooth boundary condi-
tion [34] that supports a topological phase described by
the input anyon theory—in this case, the 3F anyon theory,
as described in Ref. [36].

To be more precise, one may terminate the lattice with
smooth boundary conditions as depicted in Fig. 12. The
Hamiltonian terms for the boundary can be obtained by
truncating the usual bulk terms (see Fig. 12). The boundary
supports a topology-dependent ground-space degeneracy
of 22g for an orientable connected boundary with genus
g. We can view the ground space of the boundary as a
code with certain logical operators that form anticommut-
ing pairs. The logical operators come in two types. Let c
be a closed cycle on the boundary and then let

lψr
c =

∏
i∈c

σ Z
i

∏
j ∈cO

σ X
j , (30)

lψg
c =

∏
i∈c

τ Z
i

∏
j ∈cO

σ X
j τ

X
j , (31)

where cO is a set of links “over” the cycle c, depicted by
dashed lines in Fig. 12. Two operators, lψr

c and lψg
′c , anti-

commute if and only if c and c′ intersect an odd number
of times and two operators of the same type commute.
Representative logical operators can be found by choosing
nontrivial cycles c of the boundary.

As described in Ref. [36], the 3F anyons are supported
as excitations on the boundary. Such excitations corre-
spond to flipped boundary plaquettes B(ψr)

f and B(ψg)
f and

can be created at the end of string operators obtained
as truncated versions of the loop operators of Eqs. (30)
and (31). Further, symmetry defects from the bulk that
intersect the boundary give rise to defects on the 2D bound-
ary, behaving as described in Sec. III. Thus the boundary
of the 3F Walker-Wang model faithfully realizes the 3F
anyon theory and its symmetry defects. In Sec. V, we show
how to perform fault-tolerant MBQC with these states.

V. FAULT-TOLERANT MEASUREMENT-BASED
QUANTUM COMPUTATION WITH

WALKER-WANG RESOURCE STATES

Measurement-based quantum computation provides an
attractive route to implement the topological computation
scheme introduced in Sec. III. The computation proceeds
by implementing single-spin measurements on a suitably
prepared resource state—in this case, the ground state(s)
of the Walker-Wang model introduced in Sec. IV. In
this section, we introduce the general concepts required
to implement fault-tolerant MBQC with Walker-Wang
resource states, focusing on the example of the 3F anyon
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FIG. 12. The boundary of H3F. The blue-shaded region depicts vacuum (i.e., a region with no qubits) and the bulk of H3F lies above
the plane. (a) The stabilizers on the boundary: truncated versions of A(ψr)

v and B(ψr)
f shaded in red and of A(ψg)

v and B(ψg)
f shaded in

green. (b) The support of logical operators of Eqs. (30) and (31)—two cycles, c and c′, are depicted by solid red and green lines, while
the links belonging to cO and c′

O are depicted by dashed lines. For example, if we take periodic boundary conditions (such that the
boundary is a torus), then the two operators lψr

c and lψg
c′ form anticommuting pairs of logical operators.

theory. We begin by reviewing the cluster-state scheme
of Ref. [4] and then recast it in the Walker-Wang frame-
work, before presenting our construction for 3F MBQC.
We emphasize that the architectural and resource require-
ments for this 3F MBQC scheme are very similar to that
of the fault-tolerant MBQC scheme of Ref. [4]. In partic-
ular, the resource states can be prepared with a Clifford
circuit acting on qubits arranged on a 2D grid (with only
nearest-neighbor interactions).

A. Warm-up: Topological cluster-state MBQC in the
Walker-Wang framework

The simplest and most well-known example of fault-
tolerant MBQC is the topological cluster-state model from
Ref. [4]. As a warm-up for what is to come, we explain
how this model can be understood as a Walker-Wang
model based on the toric code anyon theory.

Up to some lattice simplifications (which we show
below), the topological cluster-state model [4] is pre-
scribed by the Walker-Wang construction using the toric
code anyon theory CTC = {1, e, m, ε} as the input. The toric
code anyon theory emerges as an abstract model for the
fundamental excitations of the toric code [1]. Toric code
anyons have the following Z2 × Z2 fusion rules:

e × m = ε, e × e = m × m = 1. (32)

The modular S matrix of the toric code anyons takes the
same form as that of 3F, given in Eq. (2), while the
T matrix is given by T = diag(1, 1, 1, −1). The Walker-
Wang construction can be used with this input to give a
Hamiltonian with plaquette terms as per Fig. 13(a) along
with the same vertex terms as Eqs. (16) and (17). To obtain
the more familiar stabilizers of the 3D topological clus-
ter state of Ref. [4]—depicted in Fig. 13(b)—we simply
translate all τ qubits by 1

2 (1, 1, 1), as in Eq. (25).
The Walker-Wang construction provides a useful insight

into topological quantum computation with the 3D cluster
state. In particular, the (unique on any closed manifold)

ground state of the toric code Walker-Wang model con-
sists of a superposition over closed anyon diagrams. We
interpret the basis states |++〉, |−+〉, |+−〉, and |−−〉 on
each link as hosting 1, e, m, and ε anyons, respectively.
The ground state is then

|ψTC〉 =
∑
c∈D

φ(c) |c〉 , φ(c) = (−1)Lk(c), (33)

where D is the set of all basis states corresponding to
closed anyon diagrams with valid fusion rules that can be

σZ

σZ

σZσZ

σZ

σZ

σZσZ
τXτXτX

τZ

τZ

τZτZ

τZ

τZ

τZτZ σXσXσX

τXτX

σZ

σZ

σZ σZ

σZ

σZ

σZ σZ
σXσX τZτZ

τZ

τZ

(b)

(a)

FIG. 13. (a) The Walker-Wang construction applied to the
toric code anyon theory CTC gives the plaquette terms depicted
above. Terms on different plaquettes can be obtained by translat-
ing and rotating according to the correct orientation, as depicted
by the blue and red legs. (b) The 3D cluster-state terms obtained
after all τ qubits have been translated by 1

2 (1, 1, 1). All terms are
rotationally symmetric on this lattice.

010315-12



3-FERMION TOPOLOGICAL QUANTUM COMPUTATION PRX QUANTUM 5, 010315 (2024)

created via local moves and Lk(c) is the linking number of
the e- and m-anyon world lines.

The computation on this state proceeds by mea-
suring all qubits in the local anyon basis (i.e.,
|++〉 , |−+〉 , |+−〉 , |−−〉), projecting it into a definite
anyon diagram that we call a history state. As each
measurement outcome is in general random, the history
state produced is also random. This leads to an outcome-
dependent Pauli operator that needs to be applied (or kept
track of) to ensure deterministic computation. This Pauli
operator is inferred from measurement outcomes of oper-
ators known as correlation surfaces for each gate [4,42],
which measure the anyon flux between different regions.
The computation is fault tolerant because of the presence
of the Z2 × Z2 1-form symmetry: errors manifest as viola-
tions of anyon conservation in the history state and can be
accounted for and corrected.

To implement logical gates, one can use a combination
of boundaries and symmetry defects to encode and drive
computation. The anyon theory enjoys a Z2 symmetry:
e ↔ m (which on the usual cluster-state lattice with qubits
on faces and edges can be realized by the same translation
operator as Eq. (28)). Twist defects corresponding to this
Z2 symmetry can be implemented in this lattice using the
prescription of Sec. IV C and can be braided and fused to
implement logical gates. (Another method for constructing
defects is given by Ref. [29]—although it is distinct from
the method proposed in Sec. IV C.). We remark that braid-
ing these defects is not Clifford complete. To make the
scheme Clifford complete, one can introduce boundaries,
of which there are two types (each boundary can condense
either e or m anyons) [4].

In what follows, we describe the topological MBQC
scheme based on the 3F theory.

B. 3-Fermion topological MBQC

We now describe how to implement our 3F topo-
logical quantum computation scheme using an MQBC
approach based on Walker-Wang resource states. A high-
level description of the computation scheme is depicted in
Fig. 14.

1. The 3F resource state

The resource state upon which measurements are per-
formed is given by the ground state of the Walker-Wang
Hamiltonian H3F, with defects as defined in Sec. IV, which
is a stabilizer model. This resource state can be understood
as a blueprint for the computation and we denote the stabi-
lizer group that defines it by R ≤ Pn (where Pn is the Pauli
group on n qubits). In particular, R is generated by all the
local terms of H3F and the resource state is a +1 eigenstate
of all elements of R.

It is instructive to think of one direction of the lat-
tice—say, the ŷ direction—as being simulated time. For

(c)(b)(a)

FIG. 14. Fault-tolerant MBQC using the 3F Walker-Wang
model. (a) Defects and twists can be discretized to live on 2-
chains of the lattice and their boundary. (b) Measurements in the
fermion basis in the blue region drive the computation. (c) The
postmeasured state is given by a fixed fermion world-line string
net. Any violations of the Z2 × Z2 conservation at each vertex
results from an error and is detected by the vertex operators, the
outcomes of which are inferred from the local measurements.

simplicity, we choose the global topology of the lattice to
be that of the 3-torus such that the Hamiltonian(s) contain
a unique ground state. Of course, one may consider bound-
aries that support a degenerate ground space (with 3F topo-
logical order and possible symmetry defects) as described
in Sec. IV D, which can be used as the input and output
encoded states for quantum computations. However, we
remark here that all computations may be performed in
the bulk (i.e., with periodic boundary conditions) with all
boundaries of interest being introduced by measurement.

In order to perform computations consisting of a set of
preparations, gates, and measurements, one prepares the
ground state of the 3F Walker-Wang Hamiltonian with
symmetry defects according to a discretized (on the cubic
lattice) version of the topological specification of each
gate in Sec. III, following the microscopic prescription
of Sec. IV, with gates concatenated in the natural way.
As the resource state is the ground state of a stabilizer
Hamiltonian, one can fault-tolerantly prepare it using a
constant-depth Clifford circuit (e.g., one may define Clif-
ford gadgets to measure each Hamiltonian term [84] and
then compose them together).

With regard to hardware implementations, prepara-
tion of the resource state can be performed in different
ways, depending on the hardware platform and primi-
tives. Despite being a 3D resource state, the computation
can be performed on a 2D architecture with only local
qubit connectivity. In particular, the entire resource state
need not be prepared all at once and can instead be pre-
pared and measured with only a 2D slab of the resource
state being active at any point in time (following, e.g.,
Ref. [6]). Thus the preparation and measurement circuit
can be mapped to a Clifford circuit acting on qubits on a 2D
layout with local qubit connections, which is possible in
many currently pursued architectures, e.g., photonic qubit
architectures, neutral atom architectures, and more [32,85–
91]. With access to flying qubits (such as photons), one
can prepare certain resource states in a quasi-1D fashion,
as in Refs. [92,93], and it may be interesting to consider
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this for more general Walker-Wang resource states to fur-
ther reduce the hardware requirements. It would also be
interesting to consider fusion-based versions [32] of this
approach.

2. Topological boundary states through measurement

Much like the traditional approaches to fault-tolerant
MBQC [4,29,94], we can understand the measurements
as propagating and deforming topologically encoded states
(or, in another sense, as encoded teleportation). To under-
stand this more precisely and develop intuition about how
the topological computation proceeds, we begin with an
example. Consider the ground state of the 3F Walker-
Wang model on the lattice L. We partition the lattice into
three segments L = A � C � B, as depicted in Fig. 15. To
begin with, we consider the case where all the sites in C are
measured in the fermion basis—i.e., in σ X

i and τX
i —and

where A and B are unmeasured.
First, we observe that the postmeasured state supports

two bulk 3F Walker-Wang ground states in A and B,
with 3F boundary states on the interface surfaces ∂A and
∂B. The boundary states are precisely those described in
Sec. IV D, as one can verify that the postmeasured state is
stabilized by the same truncated stabilizers of Fig. 12 up to
a sign. Even in the absence of errors, these boundary states
will in general host 3F anyons as excitations that live at the
end of strings of −1 measurement outcomes of σ X

i and τX
i .

A

C

B

C

FIG. 15. The preparation of 3F surface states on the bound-
aries of A and B by measuring all sites in C. The planes c(xy) and
c(zy) are depicted in red and green, respectively, with the cycles
∂c(xy) and ∂c(zy) on their boundary. The set of links c(xy)

O and c(zy)
O

are the set perpendicular to the surfaces, on the same side as the
dashed lines on ∂A. The set of links c(xy)

U and c(zy)
U are on the

opposite side.

These boundary states are maximally entangled. To
show this, we introduce the concept of correlation
surfaces, which are certain stabilizers of the resource state
that agree with the measurements in C and restrict to log-
ical operators on the boundaries ∂A and ∂B. Namely, we
define two planes in the x-y and z-y directions, c(xy) and
c(zy), as per Fig. 15, and define the operators

Sr(c(xy)) =
∏

i∈∂c(xy)

σ Z
i

∏

j ∈c(xy)
O

σ X
j

∏

k∈c(xy)
U

σ X
k τ

X
k , (34)

Sg(c(zy)) =
∏

i∈∂c(zy)

τ Z
i

∏

j ∈c(zy)
O

σ X
j τ

X
j

∏

k∈c(zy)
U

τX
k , (35)

where c(xy)
O (c(zy)

O ) and c(xy)
U (c(zy)

U ) denote the sets of edges
perpendicular to and on each side of c(xy) (c(zy)). Namely,
c(xy)

O (c(zy)
O ) is the set of edges over the surface c(xy) (c(zy)),

i.e., on the same side as the dashed edges in Fig. 15, while
c(xy)

O (c(zy)
O ) is the set of edges under the surface c(xy) (c(zy)),

i.e., on the opposite side of the dashed edges in Fig. 15.
The operators Sr(c(xy)) and Sg(c(zy)) are stabilizers for

the Walker-Wang ground state and we refer to them as cor-
relation surfaces: they are products of plaquette terms B(ψr)

f

and B(ψg)
f in the c(xy) and c(zy) planes, respectively. They

can be viewed as world sheets of the 3F boundary-state
logical operators (they are the analogues of the correla-
tion surfaces in topological cluster-state computation of
Ref. [94]). In particular, they restrict to logical operators
of the 3F boundary states on ∂A and ∂B and can be used
to infer the correlations between the postmeasured bound-
aries. Namely, we have that the postmeasured state is a +1
eigenstate of

±lψr
∂c(xy)∩A

⊗ lψr
∂c(xy)∩B

, (36)

±lψg

∂c(zy)∩A
⊗ lψg

∂c(zy)∩B
, (37)

where each factor is a logical operator for the boundary
code, as defined in Eqs. (30) and (31) and where the ±
signs are determined by the outcome of the measurements
along the correlation surface in C. These are the corre-
lations of a maximally entangled pair. Depending on the
topology of ∂A and ∂B, the boundary state may involve
multiple maximally entangled pairs (e.g., two pairs if the
boundary states are supported on torii). We remark that one
can construct equivalent, but more natural, correlation sur-
faces by multiplying with vertex stabilizers A(ψr)

v and A(ψg)
v

to obtain the bulk of the correlation surfaces for Sr(c(xy))

and Sg(c(zy)) in terms of a product of τX
i and σ X

i on one
side of the surface, respectively.

Importantly, if the region B was prepared in some
definite state and measured, the logical state would be
teleported to the qubits encoded on the surface at ∂A. Con-
ceptually, at any intermediate time during the computation,
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we may regard the state as being encoded in topological
degrees of freedom on a boundary normal to the direc-
tion of information flow. This picture holds more generally
when the information may be encoded in twists and where
the propagation of information is again tracked through
correlation surfaces that can be regarded as world sheets
of the logical operators.

3. Measurement patterns, 1-form symmetries, and
correlation surfaces

We now consider the general setting for fault-tolerant
MBQC with the Walker-Wang resource state. The com-
putation is then driven in time by applying single-qubit
measurements to a resource state describing the Walker-
Wang ground state with defects. Such measurements are
sequentially applied and the outcomes are processed to
determine Pauli corrections and logical measurement out-
comes, as well as any errors that may have occurred. We
label by M ⊆ Pn the group generated by the single-qubit
measurements. For the 3F Walker-Wang resource state, we
measure in the local fermion basis to project onto a definite
fermion world-line occupation state, giving

M = 〈σ X
i , τX

i | i ∈ L〉. (38)

We remark that for magic state preparation, as per
Sec. III C 1, the measurement pattern must in general be
modified in a manner that depends on the implementa-
tion. Additionally, the measurement pattern may be locally
modified in the vicinity of a twist defect, again depending
on the implementation. For the twist identified in the pre-
vious section, we require a chain of Pauli-Y measurements
on the qubits uniquely determined by the 1-form operators
of Fig. 34. The postmeasured state can be regarded as a
classical history state with definite fermion world lines.

Individual measurement outcomes are random and, in
general, measurements result in a random fermion world-
line occupation on each link of the lattice. However, there
are constraints in the absence of errors. Namely, at each
bulk vertex, the Z2 × Z2 fermion charge must be con-
served. This bulk conservation is measured by the oper-
ators A(ψr)

v and A(ψg)
v , which belong to both the resource

state and the measurement group, A(ψr)
v , A(ψg)

v ∈ R ∩ M.
The conservation law is modified near defects and domain
walls; so too are the corresponding operators from R ∩
M. Therefore, in the absence of errors, due to member-
ship in R, measurement of any operator from R ∩ M
would deterministically return +1, signifying the appro-
priate fermion conservation. Due to membership in M,
the outcome of these operators can be inferred during
computation as the measurement proceeds.

The vertex operators generate a symmetry group

S = 〈A(ψr)
v , A(ψg)

v | v ∈ L〉, (39)

where we assume that each vertex operator is suitably
modified near symmetry defects and domain walls. This
is known as a Z2 × Z2 1-form symmetry group because it
consists of operators supported on closed codimension-1
submanifolds of the lattice [95]. In terms of the Walker-
Wang model for the 3F theory, operators in S measure
the fermionic flux through each contractible region of the
lattice—which must be net neutral in the ground state.

Even in the absence of errors, the randomness of mea-
surement outcomes can result in fermionic world lines (in
the postmeasured state) that nontrivially connect distinct
twists. In particular, at each point in the computation, this
randomness results in a change in the charge on a twist
line and can be mapped to an outcome-dependent logical
Pauli operator that has been applied to the logical state.
This outcome-dependent Pauli operator is called the log-
ical Pauli frame and can be deduced by the outcomes of
the correlation surfaces (as we have seen in the example of
Sec. V B 2).

The correlation surfaces are obtained for each prepara-
tion, gate, and measurement. They are stabilizers of the
resource state that can be viewed as topologically nontriv-
ial 1-form operators that enclose (and measure) the flux
through a region and thus the charge on relevant sets of
defects in the history state. We define correlation surfaces
for each operation in Appendix A. Correlation surfaces are
not uniquely defined: multiplication by any 1-form opera-
tors s ∈ S produces another valid correlation surface that
is logically equivalent (i.e., will determine the same log-
ical Pauli frame). For a given operation, we label the set
of all correlation surfaces up to equivalence under S by
S . This equivalence allows us to map between different
representative logical operators as explained in Sec. III A.

4. Errors, fermion parity, and decoding

Errors may occur during resource-state preparation,
computation, and measurement. For simplicity, we focus
on Pauli errors acting on the resource state along with
measurement errors. This hardware-agnostic error model
allows us to understand the performance of the Walker-
Wang MBQC scheme in terms of its fundamental topolog-
ical properties, ignoring details of how the state is prepared
(which depend on the hardware-specific implementation).

We first note that σ Z
i , τ Z

i and σ Z
i τ

Z
i errors acting on the

resource state result in flipped σ X
i and τX

i measurement
outcomes. In the resource-state wave function, they can
be thought of as creating ψr, ψg, and ψb fermion string
segments, respectively. On the other hand, σ X

i , τX
i , and

σ X
i τ

X
i errors in the bulk are benign; they commute with

the measurements and thus do not affect the measure-
ment outcome (as is the case in topological cluster-state
computation [4,94]). In the Walker-Wang resource-state
wave function σ X

i , τX
i errors can be thought of as creat-

ing a small contractible ψr, ψg, or ψb fermion world-line
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s3

s1

s1

FIG. 16. Syndromes observed in Walker-Wang MBQC. The
lines are color coded according to the observed measure-
ment outcomes corresponding to the basis |1〉 := |++〉, |ψr〉 :=
|−+〉, |ψg〉 := |+−〉, |ψb〉 := |−−〉. Possible errors producing
the observed syndrome are displayed by dashed lines. Nontriv-
ial syndromes sv = (a, b) ∈ Z

2
2 on each vertex are observed due

to violations of the Z
2
2 charge flux on each vertex and can be

inferred from the measurement outcomes of (A(ψr)
v , A(ψg)

v ). For
example, s1 = (1, 0) and s3 = (1, 1) arises from ψr and ψb string
errors, as depicted.

loop, respectively, linking edge i [34,36]. Finally, measure-
ment errors (i.e., measurements that report the incorrect
outcome) are equivalent to Z-type physical errors that
occurred on the state before measurement.

In the postmeasured state, these errors manifest them-
selves as modifications to the classical history state.
Detectable errors are those that give rise to violations of
the Z2 × Z2 fermion conservation rule (that exists away
from the twists) and are thus revealed by −1 outcomes of
the 1-form symmetry operators s ∈ S . We consider exam-
ple configurations in Fig. 16. Nontrivial errors are those
that connect distinct twist world lines. Such errors result in
the incorrect inferred outcome of the correlation surfaces
in S and therefore an incorrect inference of the logical
Pauli frame—in other words, a logical Pauli error. Such
a process is depicted in Fig. 17. If errors arise by local pro-
cesses, then they can be reliably identified and accounted
for if twist world lines remain well separated.

It is possible to correct for violations of the A(ψr)
v and

A(ψg)
v sectors independently (although depending on the

noise model, it may be advantageous to correct them

FIG. 17. Undetectable errors in Walker-Wang MBQC,
depicted by dashed lines. The homologically trivial loops do not
result in a logical error. The central error depicted in blue that
extends between different twists results in a logical error.

jointly). In particular, we consider representing the out-
come of all vertex operators A(ψr)

v and A(ψg)
v by two binary

vectors v(ψr)
S ∈ Z

|V|
2 and v(ψg)

S ∈ Z
|V|
2 , where |V| is the num-

ber of vertices in the lattice. Then one can apply the
standard minimum weight pair matching algorithm that is
commonly used for topological error correction [2,4] to
v
(ψr)
S , and v(ψg)

S . The algorithm returns a matching of ver-
tices for each sector, ψr and ψg, which can be used to
deduce a path of measurement outcomes that need to be
flipped to restore local fermion parity (i.e., to ensure that
s ∈ S has a +1 outcome).

5. Threshold performance

Assuming a phenomenological error model of perfect
state preparation, memory, and only noisy measurements
with rate p , the bulk 3F Walker-Wang MBQC scheme has
a high threshold identical to that of the topological cluster-
state formulation [2,94] (assuming the same decoder).
In particular, under optimal decoding, the scheme has a
threshold for noisy measurements of p = 0.033 ± 0.001
[94,96]. This follows from the fact that the error model
and the bulk decoding problem are identical to those of
topological cluster-state computation [94].

To obtain more accurate estimates of threshold per-
formance in a realistic setting, one should consider a
hardware-motivated error model. For example, for a
circuit-level error model preparing the 3F Walker-Wang
resource state, one may expect a lower threshold than
that of the topological cluster-state scheme, owing to
the higher-weight stabilizers of the resource state and
each qubit being supported in more stabilizers. However,
designing the preparation circuits to limit the spread of
errors and tailoring the decoder based on this circuit may
mitigate this, or even lead to threshold improvements.
Further, for other platforms such as photonic fusion-
based quantum computation, the threshold may even
improve. We leave the study of threshold performance
under hardware-motivated models to future work.

C. 1-form symmetry-protected topological order and
Walker-Wang resource states

We remark that while both ground states of the 3F
and TC Walker-Wang models can be prepared by a quan-
tum cellular automaton, only the TC Walker-Wang model
ground state can be prepared from a constant-depth circuit
[45]. Indeed, the two phases belong to distinct nontrivial
SPT phases under Z

2
2 1-form symmetries. The topological

cluster-state model has been demonstrated to maintain its
nontrivial SPT order at nonzero temperature [51,97], as has
the 3F Walker-Wang models[98]. By the same arguments
as in Refs. [51,97], the 3F Walker-Wang model belongs to
a nontrivial SPT phase under 1-form symmetries, distinct
from the topological cluster-state model.
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More generally, the bulk of any Walker-Wang state aris-
ing from a modular anyon theory should be SPT ordered
under a 1-form symmetry (or appropriate generalization
thereof). One can diagnose the nontrivial SPT order under
1-form symmetries by looking at the anomalous action of
the symmetry on the boundary. This anomalous 1-form
symmetry boundary action corresponds to the string opera-
tors of a modular anyon theory. A gapped phase supporting
that anyon theory can be used to realize a gapped bound-
ary condition that fulfils the required anomaly matching
condition. This boundary theory can form a thermally sta-
ble self-correcting quantum memory when protected by the
1-form symmetries [97,98].

Thus the Walker-Wang paradigm provides a useful lens
to search for (thermally stable) SPT-ordered resource states
for MBQC. However, determining whether these compu-
tational schemes are stable to perturbations of the Walker-
Wang parent Hamiltonian for the resource state remains an
interesting open problem. For 1-form symmetry respect-
ing perturbations, at least, we expect the usefulness of the
resource state to persist, as the key relation between the 1-
form symmetry and the (possibly fattened) boundary string
operators remains. This potentially has important impli-
cations for the existence of fault-tolerant computationally
universal phases of matter [24,25,46–58].

VI. LATTICE DEFECTS IN A 3F TOPOLOGICAL
SUBSYSTEM CODE

In Refs. [39,59], a 2D topological subsystem code [99,
100] has been introduced that supports a stabilizer group
corresponding to a lattice realization of the string operators
for the 3F anyon theory. As the gauge generators do not
commute, they can be used to define a translation-invariant
Hamiltonian with tunable parameters that supports distinct
phases and phase transitions between them. The model
is defined on an inflated honeycomb lattice, where every
vertex is blown up into a triangle, with links labeled by
x, y, and z in a translation-invariant fashion according to
Figs. 18 and 19. This is reminiscent of Kitaev’s honey-
comb model [67], which can also be thought of as a 2D
topological subsystem code (that encodes no qubits) with a
stabilizer group corresponding to the string operators of an
emergent Z2 fermion. In this section, we review this con-
struction and show how to implement symmetry defects in
the model.

The 2D topological subsystem code of Refs. [39,59] is
defined on the lattice of Fig. 18, with one qubit per vertex.
There is one gauge generator per edge, given by

K〈ij 〉 =

⎧⎪⎨
⎪⎩

XiXj , if 〈ij 〉 is an x-link,
YiYj , if 〈ij 〉 is a y-link,
ZiZj , if 〈ij 〉 is a z-link

(40)

v

u

r

b

g

FIG. 18. The tricoloring of hexagonal plaquettes used to define
the generators of the anomalous Z2 × Z2 1-form symmetry.

(see Fig. 19). The Hamiltonian can be written in terms of
the gauge generators,

H = −Jx

∑
x-links

K〈ij 〉 − Jy

∑
y-links

K〈ij 〉 − Jz

∑
z-links

K〈ij 〉, (41)

where Jx, Jy , and Jz, are tunable coupling strengths.
The group of stabilizer operators that commute with all

the gauge generators, and are themselves products of gauge
generators, are generated by a Z2 × Z2 algebra on each
inflated plaquette. The plaquette algebra is generated by
WX

p , WZ
p , and WY

p on each plaquette, which satisfy

(WX
p )

2 = (WZ
p )

2 = 1, WX
p WZ

p = WZ
p WX

p = WY
p (42)

(see Fig. 20).

A. String operators

The above plaquette operators are, in fact, loops of a
Z2 × Z2 algebra of string operators on the boundary of the
plaquette. To define larger loops of the string operators, we
make use of a tricoloring of the hexagon plaquettes shown
in Fig. 18. On the boundary of a region R, given by a union
of inflated plaquettes on the inflated honeycomb lattice, we

y
z

x

z

y

z
x

z

y

z

x

z

x
y

x
y

x

y

z

z

z

z

zzzz

z

z

z

z

x
x x

y
y y

z
z z

(b)(a)

FIG. 19. (a) An inflated hexagon. (b) There are three different
types of x, y, and z links in the lattice, respectively.
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X
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Y
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Y

YY

Y

Z Z

Z

ZZ

Z

(b)(a)

FIG. 20. (a) The WX
p generator on the inflated hexagon. (b)

The WZ
p generator on the inflated hexagon. The WY

p generator is
given by their product.

have the following Z2 × Z2 string operators:

Wr
∂R =

∏
pr∈R

WZ
pr

∏
pg∈R

WX
pg

∏
pb∈R

WY
pb

, (43)

Wg
∂R =

∏
pr∈R

WY
pr

∏
pg∈R

WZ
pg

∏
pb∈R

WX
pb

, (44)

Wb
∂R =

∏
pr∈R

WX
pr

∏
pg∈R

WY
pg

∏
pb∈R

WZ
pb

, (45)

where pr, pg, and pb stand for red, green, and blue pla-
quettes, respectively. The string operators satisfy the same
algebra as the plaquette operators:

(Wr
∂R)

2 = (Wb
∂R)

2 = 1, Wr
∂RWb

∂R = Wb
∂RWr

∂R = Wg
∂R.
(46)

The loop operators on the boundary of a region R in
Eq. (43) suffice to define red string operators Wr

�r
on

arbitrary open paths �r on inflated edges between red pla-
quettes, and similarly for green and blue string operators
and plaquettes. The string operators are given by a prod-
uct of the elementary string segment operators shown in
Fig. 21 along the string. With the string-segment operators
shown, the excitations of the Wr

�r
operator can be thought

of as residing on the red plaquettes of the lattice, and sim-
ilarly for the green and blue plaquettes. We denote the
superselection sector of the excitation created at one end
of an open Wr

�r
operator by ψr, and similarly ψg and ψb

Z
Y

X X

Y

YY

Y

X

X

Y

Y

Y

Y

X

X

Y

Y

Y

FIG. 21. Segments of the string operators that form the anoma-
lous Z2 × Z2 1-form symmetry.

for green and blue string operators. The fusion and braid-
ing processes for these sectors, as defined by the string
operators, are described by the 3F theory introduced in
Sec. II.

The set of string operators W�r , W�g , and W�b commutes
with the Hamiltonian throughout the whole phase diagram,

[H , Wr
�r

] = [H , Wg
�g

] = [H , Wb
�b

] = 0, (47)

for closed loops �r, �g, and �b. This structure is formal-
ized as an anomalous Z2 × Z2 1-form symmetry, with the
anomaly capturing the nontrivial S and T matrices of the
3F theory associated with the string operators. We remark
that the Hamiltonian can support phases with larger anyon
theories that include the 3F theory as a subtheory (due to
the factorization of modular tensor categories [101], the
total anyon theory is equivalent to a stack of the 3F the-
ory with an additional anyon theory). In particular, in the
Jz � Jx, Jy > 0 limit, the Hamiltonian enters the phase of
the color-code stabilizer model [39]. The anyon theory of
this model is equivalent to two copies of the 3F theory [40]
(or, equivalently, two copies of the toric code anyon theory
[40,102]).

B. Symmetry defects

The symmetry group of the Hamiltonian is generated by
translations T(u) and T(v) along the lattice vectors u and
v shown in Fig. 18, plaquette-centered π

3 rotations com-
bined with the Clifford operator that implements Xv ↔ Yv
on all vertices v denoted Rp , and inflated vertex-centered
2π
3 rotations denoted Rv .

The 3F superselection sectors in the model exhibit
weak symmetry breaking [67] or symmetry-enrichment
[20] under the lattice symmetries, giving rise to an S3
action.

The π
3 rotation and Clifford operator Rp centered on a

red plaquette implements the (gb) symmetry action on the
superselection sectors. A domain wall attached to a discli-
nation defect with a π

3 angular deficit can be introduced
by cutting a wedge out of the lattice and regluing the
dangling edges as shown in Fig. 22. This leads to mixed
edges across the cut, formed by rejoining broken x and
y edges: the Hamiltonian terms on these edges are of the
form XvY′

v, where v is the vertex adjacent to the x portion
of the rejoined edge and v′ is the vertex adjacent to the
y portion of the rejoined edge. Assuming that the lattice
model lies in a gapped phase described by the 3F the-
ory, such a lattice symmetry defect supports a non-Abelian
twist defect T ±

(gb), where the ± is determined by the eigen-
value of the string operator W�r encircling the defect. This
twist defect is similar to a Majorana zero mode, as it has
quantum dimension

√
2 and fusion rules given in Sec. II.

A similar result holds with π
3 disclination defects centered

on green and blue plaquettes hosting T ±
(rb) and T ±

(rg) twist
defects, respectively.
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FIG. 22. A π
3 lattice disclination on a plaquette that hosts twist

defects of a Z2 symmetry generator.

The 2π
3 rotation operator Rv centered on an inflated ver-

tex, and also the translations T(u) and T(v), implement the
(rgb) symmetry action on the superselection sectors. Simi-
lar to above, a disclination defect with a 2π

3 angular deficit
can be introduced by cutting a wedge out of the lattice and
rejoining the dangling edges, following Fig. 23. We can
also introduce a dislocation defect as shown in Fig. 23.
Again assuming that the lattice model lies in the 3F phase,
such lattice symmetry defects support non-Abelian topo-
logical defects with quantum dimension 2, introduced as
T(rgb) in Sec. VII.

These lattice implementations of the twist defects can,
in principle, be used to realize the defect topological
quantum computation schemes introduced in Sec. III.
This is closely related to the lattice-defect-based code-
deformation scheme in Ref. [60], where similar defects in
the 2D gauge color code were shown to generate all Clif-
ford gates under braiding. To perform error correction, we
must define the order in which gauge generators are mea-
sured to extract a stabilizer syndrome. At each time step,
a subset of gauge generators are measured where each of
the gauge operators must have disjoint support, e.g., fol-
lowing Ref. [59]. In the presence of twists, one must take
extra care in defining a globally consistent schedule. A

(b)(a)

FIG. 23. (a) A 2π
3 lattice disclination on an inflated vertex that

hosts twist defects of the Z3 symmetry generator. (b) A lattice
dislocation on a plaquette that can also host twist defects of the
Z3 symmetry generator.

simple (possibly inefficient) approach can be obtained by
partitioning the schedule according to the gauge generators
along the defect and the bulk separately.

We remark that symmetry defects in the stabilizer color
code have been explored previously in Refs. [12,62,63].
This presents an alternative route toward implementing the
defect-computation scheme of Sec. III. This is particularly
relevant as the 2D stabilizer color code [61] is obtained in
the limit Jz � Jx, Jy > 0.

VII. DISCUSSION AND CONCLUSIONS

We have presented a general approach to topological
quantum computation based on Walker-Wang resource
states and their symmetries. As a specific example, we
have introduced a universal fault-tolerant quantum com-
putational scheme based on symmetry defects of the
3F anyon theory and how it can be implemented with
measurement-based quantum computation on Walker-
Wang ground states. Under a phenomenological toy noise
model consisting of bit- or phase-flip errors and mea-
surement errors, the threshold of the 3F Walker-Wang
computation scheme is equal to that of the well-known
toric code (or, equivalently, the topological cluster-state
scheme) under the same noise model (for threshold esti-
mates, see, e.g., Refs. [2,5]). Further investigation under
more realistic noise models remains an open problem.

Our computation scheme based on the defects of the 3F
anyon theory provides a nontrivial example of the power
of the Walker-Wang approach, as the 3F anyon theory is
chiral and cannot be realized as the emergent anyon the-
ory of a 2D commuting-projector model (although it can
be embedded into one as a subtheory). We hope that this
example provides an intriguing step into topological quan-
tum computation using more general anyon schemes and
a launch point for the study of further nonstabilizer mod-
els. In particular, our framework generalizes directly to any
Abelian anyon theory with symmetry defects, leading to
a wide class of potential resource states for fault-tolerant
MBQC.

While we have not tried to optimize the overhead of our
gate schemes, the richer defect theory (in comparison with
toric code) may lead to more efficient implementations of,
e.g., magic state distillation. In addition to this, leveraging
the full G-crossed theory of the 3F anyon theory (stud-
ied in Ref. [38]) could lead to further improvements and
more efficient logic gates, arising from the possibility of
additional fusions and braiding processes. Determination
of the set of transversal (or locality-preserving) logic gates
admitted by the boundary states of the 3F Walker-Wang
model remains an open problem. We remark that an exten-
sion of the Walker-Wang model has recently been defined
that is capable of realizing an arbitrary symmetry-enriched
topological order on the boundary under a global on-site
symmetry action [81]. The full symmetry structure of an
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Abelian Walker-Wang model with global symmetry should
be captured by a 2-group [103]: we leave the investigation
of MBQC with 2-group SPTs to future work.

Further interesting open directions include the con-
struction of MBQC schemes using Walker-Wang resource
states based on more exotic non-Abelian anyon theories,
including those that are braiding universal, i.e., not requir-
ing nontopological magic state preparation and distillation.
Moving away from stabilizer resource states, it may be dif-
ficult to keep track of and control the randomness induced
by the local measurements. One way to address this con-
cern would be to consider adiabatic approaches to MBQC
[104,105] to circumvent some of these difficulties.

Another interesting direction is to investigate MBQC
schemes based on Walker-Wang resource states that are
both perturbatively and thermally stable. The 3F Walker-
Wang model can be shown to belong to a nontrivial SPT
phase under Z

2
2 1-form symmetries using the same argu-

ments as in Refs. [51,97]. More generally, the bulk of any
Walker-Wang state corresponding to a modular anyon the-
ory input should be a nontrivial SPT order under some 1-
form symmetry (or an appropriate generalization thereof).
The nontrivial nature of these 1-form SPT phases is man-
ifest through their anomalous symmetry action on the
boundary. This anomalous boundary action of the 1-form
symmetry corresponds to the string operators of a modular
anyon theory. A gapped phase supporting that anyon the-
ory can be used to realize a gapped boundary condition that
fulfils the required anomaly-matching condition. The topo-
logically ordered boundaries of these states should remain
thermally stable under the 1-form symmetries. Demon-
strating the stability (or otherwise) of these schemes away
from fixed-point models is an open problem: the compu-
tation scheme is based on symmetry principles alone and
(potentially fattened) string operators and defects that exist
throughout the topological phase should suffice to perform
topological quantum computation.

Finally, to complement the MBQC scheme, we have
suggested an alternative approach to TQC based on sym-
metry defects of the 3F anyon theory realized in the 2D
topological subsystem code due to Bombín supplemented
with code deformations to implement braiding, following
Ref. [60]. The two-body nature of the gauge generators
for the 2D subsystem code may be attractive for archi-
tectures with strong locality constraints or long two-qubit
gate times. Investigation into the error-correcting perfor-
mance of the 2D topological subsystem code remains an
important open problem in this direction.
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APPENDIX A: VERIFYING THE
DEFECT-COMPUTATION SCHEME

In this appendix, we prove Lemmas 1 and 2. Our proofs
are applicable when the defect-computation scheme is
implemented by code deformation [7] or by MBQC as
in Sec. V. We prove that the braids induce the correct
logical action by inferring their mapping on the Pauli log-
ical operators. In the case of Clifford operators, we can
uniquely identify a Clifford operation C by its action on
Pauli operators under conjugation,

C : P → CPC†, P ∈ Pn, (A1)

where Pn is the Pauli group on n qubits. Furthermore, it is
sufficient to determine its action on Pauli-X and -Z logical
operators. To prove that the twist braid or fusion induces
the correct logical action, we must prove that logical oper-
ators for the input are mapped according to Eq. (A1) at the
output of the channel. This is achieved by finding corre-
lation surfaces that can be thought of as world sheets of
logical operators, reducing to the correct logical operators
on the boundaries induced by measurement. Before con-
tinuing, we discuss how to understand the proofs in terms
of code deformation and MBQC.

a. Code deformation

In the case of code deformation, we take a codimension-
1 foliation of the 3D braiding diagrams of Sec. III to define
a sequence of codes, one for each time step. In other words,
each equal-time slice k of the defect braiding diagrams in
Sec. III represents a (subsystem-stabilizer) code Gk with a
given configuration of twist defects and domain walls. To
implement the braid, one sequentially measures the oper-
ators from G1,G2, . . . ,Gm, such that both G1 and Gm, with
G1 = Gm, are as per Fig. 2. Doing so, one builds up a his-
tory of measurement results that are used to decode. Up to
the Pauli corrections that depend on decoder output, we
can track the presence of a set of representative logical
operators {X (k)

i , Z
(k)
i }i for each time slice k. For each gate,

we illustrate how {X (1)
i , Z

(1)
i }i propagate through the code

deformation onto {CX
(m)
i C†, CZ

(m)
i C†}i. We refer to such a

collection of logical operators as a correlation surface, to
connect with the setting of MBQC.

b. Measurement-based quantum computation

The case of MBQC is similar to code deformation. The
tracking of how logical operators propagate through code
deformation is replaced by the notion of correlation sur-
faces in MBQC, as defined in Sec. V. In particular, the
correlation surfaces must agree with the measurement pat-
tern (i.e., their restriction to a single site must give the
measurement observable) and the measurement outcomes
along their support determine (along with the decoder
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(b)(a)

FIG. 24. Correlation surfaces for the Hadamard and phase gates. Time moves upward. (a) Correlation surfaces for X → Z and
Z → X in the Hadamard gate. (b) Correlation surfaces for X → Y and Z → Z in the phase gate.

output) the required Pauli correction. Up to this Pauli cor-
rection, they concretely represent how logical operators
are propagated through space-time as measurements are
implemented. Thus in MBQC, finding the correlation sur-
faces not only gives a proof that the gate has the correct
action but is required for its deterministic operation (i.e.,
to determine the logical Pauli frame).

The correlation surfaces are obtained for each prepara-
tion, gate, and measurement, and schematically depicted in
Figs. 24–26. They are stabilizers of the resource state that
can be viewed as topologically nontrivial 1-form opera-
tors that enclose (and measure) the charge on relevant sets
of defects in the history state. To obtain the correlation
surfaces for each operation, we discretize each surface S
of each gate in Figs. 24 and 25 by defining a suitable 1-
cocycle c (i.e., a set of edges dual to a 2-cycle in the dual
lattice). Such a 1-cocycle generally has some (co)boundary
on the input or output layers (these compose with the
correlation surfaces of subsequent gates). Each edge of the
correlation surface, i ∈ c, also carries a fermion label l(i)
from {ψr,ψg,ψb} according to the logical operator being
propagated, which can transform across a domain wall.

(b)(a)

FIG. 25. Correlation surfaces illustrating the action of the CZ
gate. Time moves upward. We see (a) Z2 �→ Z2 and (b) X 2 �→
X 2Z1. One can similarly confirm Z1 �→ Z1 and X 1 �→ X 1Z2
using directly analogous correlation surfaces. This action on the
four generating Pauli operators uniquely determines the CZ gate.

Then we define a correlation surface S by

S =
∏
i∈c

mi, where mi =

⎧⎪⎨
⎪⎩

τX
i , if l(i) = ψr,
σ X

i , if l(i) = ψg,
σ X

i τ
X
i , if l(i) = ψb.

(A2)

For example, in the figures that follow, we schematically
depict the correlation surface labels l(i) = ψr, l(i) = ψg
and l(i) = ψb by red, green and blue, respectively. For
magic state preparation, the operators mi must be modi-
fied near the preparation site, much like the measurement
group M.

Importantly, correlation surfaces are not unique. Recall,
for a given operation, that we label the set of all cor-
relation surfaces up to equivalence under S by S . In
particular, the correlation surfaces in Figs. 24–26 can be
viewed as maps between pairs of representative logical
operators. In general, one can construct multiple equivalent
correlation surfaces between any pair of equivalent logi-
cal operator representatives, such as those shown in Fig. 4.
In Figs. 24–26, we have chosen convenient representatives
for illustration purposes. In order to compose correlation
surfaces between consecutive channels, we choose a fixed
set of logical representatives for the input and output of
each channel.

FIG. 26. Correlation surfaces for the X and Z preparations.
Time travels upward. At the topmost time slice, the state is an
eigenstate of either logical X or Z. Logical measurements are
obtained by time reversing the diagrams.
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c. Proof of Lemma 1: The single-qubit gates

We now prove that the correct action is induced under
the H and S gates. First, we recall the action of these gates
under conjugation:

H : X �→ Z, (A3)

H : Z �→ X , (A4)

S : X �→ Y, (A5)

S : Z �→ Z. (A6)

To prove that the braids have the correct logical action,
we must find correlation surfaces that induce the correct
action on logical operators. We diagrammatically present
correlation surfaces that correctly propagate the respective
logical operators are propagated for each gate in Fig. 24.

d. Proof of Lemma 2: The entangling gates

We first show that in the simplest case, when we use g
and h encodings with g, h ∈ S3 distinct 2-cycles, we can
achieve the controlled-Z gate cz1,2. Recall that

cz1,2 : X1 �→ X1Z2, (A7)

cz1,2 : Z1 �→ Z1, (A8)

cz1,2 : X2 �→ X2Z1, (A9)

cz1,2 : Z2 �→ Z2. (A10)

Similarly to the single-qubit gates, we find correlation sur-
faces that propagate the logical operators according to
the above equations. We diagrammatically represent these
correlation surfaces in Fig. 25.

We remark that the figures are unchanged when at least
one of g and h is a 3-cycle. Finally, we remark that if g = h
are both 2-cycles, then such a braid results in the identity.
To see this, note that the fermion loop defining the logical
operator on the output of the first g encoding in Fig. 25
(right) can condense on the Tg twists and is invariant under
the domain wall and thus is precisely the identity logical
operator (in other words, it can be isotoped to the vacuum
configuration). Thus the fermionic loop operators defining
logical X are transparent to the twist defects and domain
walls and thus are unchanged under braiding.

e. Proof of Proposition 1: Clifford universality

To complete the proof of Proposition 1, we need only
show that the preparations and measurements work as
required. To see this, we show that eigenstates for either
logical operators X or Z can be prepared exactly. The
eigenvalue depends on the random measurement out-
comes. We show this diagrammatically in Fig. 26 for the
case of state preparations. To obtain measurements, we
time reverse the diagram. One can similarly find correla-
tion surfaces for the other g encodings.

1. Majorana mapping for a single 2-cycle symmetry
defect sector

We remark that for the theory of 3F with a Z2 ≤ S3 sym-
metry, generated by a single 2-cycle g, the twist defects can
be represented by Majorana fermion operators, following a
similar mapping for the toric code [8]. This provides a con-
cise description of the single-qubit gates from the previous
section and allows us to prove that entangling gates are
not possible with a single type of symmetry defect using
g encodings. We remark that this mapping does not hold
for the full S3 defect theory, demonstrating that it is richer
than the Ising defects in the toric code. The fact that all
Clifford gates are achievable through braiding with the full
3F defect theory is one of the key advantages that the richer
symmetry group of this anyon theory provides.

Following the surface-code prescription [8,10], we rep-
resent each twist T (i)

g by a Majorana operator γi. Such
operators satisfy

γj γk + γkγj = 2δkj , (A11)

where δjk is the Kronecker delta.
We can represent the logical operators for n qubits

encoded in the g encodings of Sec. III A in terms of
Majorana modes as

X i = γ1+4(i−1)γ3+4(i−1), (A12)

Zi = γ1+4(i−1)γ2+4(i−1), (A13)

Yi = γ1+4(i−1)γ4+4(i−1), (A14)

where the index on the Majorana operator labels the twist
position as per Fig. 27.

We remark that our choice to enforce trivial total charge
in the g encoding leads to the redundancy condition
γ1γ2γ3γ4 = I . A braid is represented by an element of the
braid group on 4n strands, σ ′ ∈ B4n. Importantly, up to a
sign, only the induced permutation of the braid matters
(i.e., we only care about S4n ∼= B4n/P4n, where P4n is the
pure braid group), as any pure braid leads only to a Pauli
operation.

γ3 γ4

γ1 γ2

FIG. 27. The index convention for a single logical qubit.
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Any braid σ ′ giving rise to a permutation σ ∈ S4n
induces the following logical action:

X i �→ γσ(1+4(i−1))γσ(3+4(i−1)), (A15)

Zi �→ γσ(1+4(i−1))γσ(2+4(i−1)), (A16)

where it is understood that σ(i) is the permutation σ

applied to the index i. We observe that braids preserve
the Majorana fermion operator weight and therefore can
only map single-qubit Pauli operators to single-qubit Pauli
operators—meaning they belong to the set of single-qubit
Clifford operators. Second, we have verified that all single-
qubit Cliffords can be realized. It is sufficient to verify this
on a single qubit. In particular, σH = (1342) generates the
H gate, and σS = (34) generates the S gate (both up to a
Pauli operator):

σH : X �→ γ3γ4 ∼ γ1γ2 = Z, (A17)

σH : Z �→ γ3γ1 ∼ γ1γ3 = X , (A18)

and

σS : X �→ γ1γ4 = Y, (A19)

σS : Z �→ γ1γ2 = Z. (A20)

APPENDIX B: TOPOLOGICAL COMPILATION

We can utilize encodings in T(rb) twists as ancillas to
mediate gates between logical qubits encoded in T(rg)
twists. The circuit in Fig. 28 implements a CZ gate between
two (rg)-encoded twists using an (rb)-encoded ancilla.

We now describe the Clifford unitaries of Sec. III B
in terms of elements of the braid group. Utilization of
the braid representation may allow one to topologically
compile to find more efficient representatives of general
elements of the multiqubit Clifford group. With the label-
ing from Fig. 2, the Hadamard and S gate are induced by

|+〉 H MX

FIG. 28. A circuit that implements CZ between the two qubits
on the top wires. The circuit is composed of operations that are
implementable via elementary gates outlined in the main text.
Here, MX is a Pauli-X measurement. In particular, this circuit
is designed to implement a CZ gate between two (rg)-encoded
qubits (top two wires) using an (rb)-encoded ancilla (bottom
wire).

(b)(a)

FIG. 29. Braid diagrams for (a) the H gate and (b) the S gate.
The strings denote the twists T(rg)—labeled 1–4—that must be
braided. From left to right, the twists are labeled T (1)

(rg) , T
(2)
(rg) , T

(3)
(rg) ,

and T (4)
(rg) , according to Fig. 2.

the following braids (using standard braid-group notation):

S : σ3, H : σ2σ3σ1, (B1)

as shown in Fig. 29. We remark that these are not the only
braids that give rise to the required gate.

We remark that if we only care about the single-qubit
Clifford gates up to Pauli operators, then we can quo-
tient by the pure braid group (i.e., braids that do not
permute the twists) as they only generate Pauli operations
on qubits encoded in Eg. Then, doing so, we can represent
the Hadamard and S gate up to Paulis with the following
permutations:

S : (34), H : (1342). (B2)

FIG. 30. Braid diagrams for the CZ gate. The strings denote
the twists T(rg), T(rb)—labeled 1–8—that must be braided. The
first four represent the first encoded qubit and the second four
represent the second encoded qubit. Note that from left to right,
the twists are arranged as T (1)

(rg) , T
(2)
(rg) , T

(3)
(rg) , T

(4)
(rg) , T

(1)
(rb) , T

(2)
(rb) , T

(3)
(rb) ,

and T (4)
(rb) , according to the twist labeling of Fig. 2.
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The CZ gate is also induced by a braid operation on eight
twists. In this case, the braid is a pure braid, meaning
that the permutation action is trivial. The braid element is
depicted in Fig. 30.

We remark that the relabeling of all crossings from
under to over leaves the gate invariant up to a Pauli.
This can be verified by inspection of the logical operators
from Eqs. (A12)–(A14) along with the anticommutation
relations of Eq. (A11).

APPENDIX C: EQUIVALENCE BETWEEN g
ENCODINGS

In this appendix, we show that the domain-wall loca-
tion is not important in the g encoding—only the location
of the symmetry defects (twists) matter. As a concrete
example, we consider mapping between the two config-
urations in Fig. 31(a). Recall that the symmetry action
applied to a region creates a domain wall on its bound-
ary. By applying a symmetry transformation to the convex
hull of the four twists in Fig. 31(a), we can map between
the seemingly distinct g encodings. This can be verified
explicitly in (2+1)D: applying a symmetry transformation
in the plane leads to the space-time domain-wall config-
uration of Fig. 31(b), which explicitly maps between the
two encodings. Note that for defects based on a 2-cycle,
the orientation does not matter. If, instead, one used a 3-
cycle, one would have to keep track of the orientation of
the domain-wall world sheet in Fig. 31(b).

APPENDIX D: TRIJUNCTION ENCODING

In this appendix, we briefly review another defect
encoding that may offer more efficient logic schemes. This

Tg−1 Tg

Tg Tg−1

Tg−1 Tg

Tg Tg−1(a)

(b)

FIG. 31. (a) Two equivalent representations of a g encoding.
The precise location of the domain walls does not matter, only
their endpoint. (b) The two encodings are isotopic up to a space-
like domain wall. The domain-wall configuration that achieves
this is depicted on the right, where for simplicity we have ignored
orientation.

T(gh)−1

Tg

Th

T(gh)−1

Tg

Th

X1

X2

Z1

Z2

(b)(a)

FIG. 32. A trijunction encoding. (a) A configuration of twist
defects defined by g, h ∈ S3. We must have either g �= h or g = h
and both g and h are 3-cycles in order to have a valid trijunc-
tion that encodes qubits: if we have exactly one of g and h a
3-cycle, then we encode one logical qubit; if both g, h = (rgb)
or (rgb)−1, then we encode two qubits. (b) Trijunction encod-
ing with g = h = (gh)−1 = (rgb). Depicted are a set of fermionic
Wilson loops that form a generating set of logical Pauli operators.

encoding is called the trijunction encoding and it utilizes
a pair of defect triples. Each defect triple is, as usual, g
neutral. The only way to achieve g neutrality with three
twists is if at least one of the defects is a 3-cycle defect.
We illustrate the encodings and their logical operators in
Fig. 32.

We remark that the trijunction-defect encoding can be
reduced to the standard g encodings of Sec. III A by fusing
one pair of defects from each trijunction. Nonetheless they
may offer more efficient braiding schemes due to the larger
possible set of braids.

APPENDIX E: PROOF THAT U IS A
REPRESENTATION OF S3

In this appendix, we verify Eqs. (21) and (22) to show
that U is a representation of S3. We need to verify Eq. (20)
along with g · |1〉i = |1〉i. Recall the local basis labeling
|1〉 := |++〉, |ψr〉 := |−+〉, |ψg〉 := |+−〉, |ψb〉 := |−−〉.
Reducing this to the generators S3 = 〈(rg), (rgb)〉, we need
only show that

ui(rgb) : |−+〉i �→ |+−〉i �→ |−−〉i �→ |−+〉i , (E1)

ui(rg) : |+−〉i ↔ |−+〉i . (E2)

One can directly compute that ui(rg) = swapi1,i2 , ui(rgb) =
swapi1,i2 · cnoti1,i2 does the job.

APPENDIX F: PROOF OF PROPOSITION 2

We now prove Proposition 2. We show that the ground
space of H3F is preserved by S(g), g ∈ S3 by showing that
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the (stabilizer) group generated by the terms in H3F is
invariant under S(rg) and S(rgb). Namely, let

R3F = 〈A(ψr)
v , A(ψg)

v , B(ψr)
f , B(ψg)

f | v ∈ V, f ∈ F〉. (F1)

First, consider S(rgb) = U(rgb). On each site i, we have

ui(rgb) : σ X
i → σ X

i τ
X
i , (F2)

ui(rgb) : σ Z
i → τ Z

i , (F3)

ui(rgb) : τX
i → σ X

i , (F4)

ui(rgb) : τ Z
i → σ Z

i τ
Z
i , (F5)

(F6)

from which one can verify that

U(rgb) : B(ψr)
f → B(ψg)

f → B(ψr)
f B(ψg)

f → B(ψr)
f , (F7)

U(rgb) : A(ψr)
v → A(ψr)

v A(ψg)
v → A(ψg)

v → A(ψr)
v , (F8)

from which it follows that S(rgb)R3FS(rgb)† = R3F.
We now consider S(rg) = V(rg)U(rg) with U(rg) =

⊗iswapi1,i2 and V(rg) = Tτ (1, 1, 1). On each site i, we have

ui(rg) : σαi ↔ ταi α ∈ {X , Y, Z} (F9)

Therefore, we have

U(rg) : A(ψr)
v ↔ A(ψg)

v , (F10)

U(rg) : B(ψr)
f → τX

Of
τX

Uf
σ X

Uf

∏
i∈∂f

τ Z
i ,

B(ψg)
f → τX

Of
σ X

Of
σ X

Uf

∏
i∈∂f

σ Z
i . (F11)

After translating all τ qubits in the (1, 1, 1) direction, we
see that in total

S(rg) : B(ψr)
f ↔ B(ψg)

f , (F12)

S(rg) : A(ψr)
v → A(ψg)

v′ , A(ψg)
v → A(ψr)

v , (F13)

where v′ is the vertex obtained by shifting v in the
(1, 1, 1) direction, from which it follows that S(rg)R3F
S(rg)† = R3F.

APPENDIX G: SYMMETRY DEFECTS IN H3F

Here, we compute 3F Hamiltonian terms along domain
walls and twists for the 2-cycle symmetry (rg) ∈ S3.
The domain walls and twists corresponding to 3-cycles
(rgb), (rbg) ∈ S3 are simple to construct, involving no
change to the Hilbert space or lattice due to the on-site
nature of their representation. The remaining symmetry
defects and twists can be constructed by direct analogy,
combining those of (rg) with those of (rgb).

1. 3F domain walls and twists for (rg) ∈ S3

For clarity, we consider the modified lattice with qubits
on faces and edges, the Hamiltonian terms of which are
given by Eqs. (26) and (27). Consider a domain wall D
given by a plane normal to the n = (1, 0, −1) direction
constructed using the translation symmetry S(rg) = T(w),
w = 1

2 (1, 1, −1) (both vectors have been chosen for visu-
alization purposes). The discretized version of the domain
wall on the lattice is visualized in Fig. 11. The modified
Hilbert space and Hamiltonian terms along the domain
wall are depicted in Fig. 33. We remark that there is a
layer of qubits missing on the domain wall itself, arising
from the restricted translation action away from (rather
than parallel to) the domain wall.

Now consider a domain wall D with boundary ∂D, e.g.,
along the ŷ = (0, 1, 0), direction. To find a set of local
terms to gap out the twist, we consider modifying the pla-
quette terms the supports of which intersect the twist line
to make them commute with the domain wall and bulk
terms. The modified 1-form terms are then determined by
constructing operators that commute with these modified
plaquette terms and all other terms in the Hamiltonian
(such that the product of modified and unmodified plaque-
tte terms around a 3- or 0-cell still matches the product of a
pair of modified and unmodified 1-form terms). Such mod-
ifications can be done locally, following the discussion in
Sec. IV C 2. In Fig. 34, we depict an example of a modified
version of the rightmost term from Fig. 33 along the twist.
We remark that the terms depicted in Fig. 34 alone do not
form a complete set to gap out the twist.

One can also define these defects on the original Walker-
Wang lattice, with two qubits per edge, by applying the
inverse transformation of Eq. (25).

τX

τZ

σX

σZ

FIG. 33. Example 3F Walker-Wang terms along the (rg) ∈ S3
domain wall depicted in Fig. 11. The terms are color coded
according to their support: blue-shaded faces denote the domain
wall D—upon which no qubits are supported; magenta-shaded
faces and edges denote the presence of τX and σ X , respectively;
yellow-shaded faces and edges denote the presence of τ Z and
σ Z , respectively. The top row of terms may be regarded as trans-
formed versions of the rightmost terms of Fig. 10 that intersect
the domain-wall plane, while the bottom row are the transformed
1-form terms Ã(ψr)

v and Ã(ψg)
q .
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τY

FIG. 34. Example 3F Walker-Wang terms along the (rg) ∈ S3
twist depicted in Fig. 11. The twist travels along the central ver-
tical edge, depicted by the dotted blue line. The left term can be
regarded as the transformed version of rightmost term of Fig. 33
along the twist (obtained by multiplying a plaquette by its image
under translation, each restricted to the qubits on the complement
of the defect). Similarly, the modified 1-form operators contain
τ Y to ensure correct commutation. Other terms can be obtained
by translating in the ŷ direction but we remark that these terms
alone do not form a complete set. The color coding is identi-
cal to that of Fig. 33, with the addition of τ Y being denoted by
checkered teal faces.
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