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Chaotic systems are highly sensitive to a small perturbation and are ubiquitous throughout the biolog-
ical sciences, the physical sciences, and even the social sciences. Taking this as the underlying principle,
we construct an operational notion for quantum chaos. Namely, we demand that the future state of a many-
body isolated quantum system is sensitive to past multitime operations on a small subpart of that system.
By “sensitive,” we mean that the resultant states from two different perturbations cannot easily be trans-
formed into each other. That is, the pertinent quantity is the complexity of the effect of the perturbation
within the final state. From this intuitive metric, which we call the butterfly-flutter fidelity, we use the
language of multitime quantum processes to identify a series of operational conditions on chaos; in par-
ticular, the scaling of the spatiotemporal entanglement. Our criteria already contain the routine notions, as
well as the well-known diagnostics for quantum chaos. This includes the Peres-Loschmidt echo, dynam-
ical entropy, tripartite mutual information, and local-operator entanglement. We hence present a unified
framework for these existing diagnostics within a single structure. We also go on to quantify how sev-
eral mechanisms, such as evolution generated from random circuits, lead to quantum chaos. Our work
paves the way to systematically study many-body dynamical phenomena such as many-body localization,
measurement-induced phase transitions, and Floquet dynamics.
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I. INTRODUCTION

Chaos as a principle is rather direct; a butterfly flut-
ters its wings, which leads to an effect much bigger than
itself. In other words, when something small leads to a very
big effect. This effect arises in a vast array of fields, from
economics and ecology to meteorology and astronomy,
spanning disciplines and spatiotemporal scales.

Chaos at the microscale, on the other hand, is an excep-
tion. Quantum chaos is not well understood and lacks a
universally accepted classification. There is a vast web of,
often inconsistent, quantum chaos diagnostics in the lit-
erature [1], which leads to a muddy picture of what this
concept actually means. In contrast, classically, chaos is
a relatively complete framework. If one perturbs the ini-
tial conditions of a chaotic dynamical system, they see an
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exponential deviation of trajectories in phase space, quan-
tified by a Lyapunov exponent. Trying to naively extend
this to quantum Hilbert space immediately falls short of
a meaningful notion of chaos, as the unitarity of isolated
quantum dynamics leads to a preservation of fidelity with
time. How then, can there possibly be nonlinear effects
resulting from the linearity of Schrödinger’s equation? We
will see that the structure of entanglement holds the key to
this conundrum.

Yet, much effort has been made to understand quantum
chaos primarily as the cause of classical chaos [2–5], to
identify the properties that an underlying quantum system
requires in order to exhibit chaos in its semiclassical limit.
An example of this is the empirical connection between
random matrix theory and the Hamiltonians of classically
chaotic systems [2]. Recently, with experimental access
to complex many-body quantum systems with no mean-
ingful classical limit, and given progress in related prob-
lems such as the black-hole information paradox [6,7] and
the quantum foundations of statistical mechanics [8–10],
quantum chaos as a research program has seen renewed
interest across a range of research communities. In this
context, a complete structure of quantum chaos, indepen-
dent of any classical limit, is highly desirable but remains
absent.
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In this work, we approach quantum chaos from an oper-
ational, and theory agnostic, principle: chaos is a deter-
ministic phenomenon, where the future state has a strong
sensitivity to a local perturbation in the past. For quantum
processes, the key ingredient will turn out to be spatiotem-
poral entanglement. To get there, we first identify the
underlying definition of chaos as a starting point and build
a quantum butterfly-flutter process from this fundamen-
tal principle. With this, we construct a genuinely quantum
measure for chaos, based solely on this statement, which
we term the butterfly-flutter fidelity. This relies on the intu-
ition that it is the complexity induced by a perturbation
in the resultant future pure state, rather than just orthogo-
nality, that dictates a chaotic effect. We adapt this principle
into the theory of quantum processes and exploit their mul-
titime structures. Namely, we use a tool from quantum
information theory—process-state duality—to determine a
hierarchy of necessary conditions on meaningful notions of
chaos in many-body systems. These conditions culminate
into the novel strong metric of the butterfly-flutter fidelity.

Figure 1 breaks up the problem of quantum chaos into
three broad components, laying out a review of the land-
scape of this multidisciplinary field and contextualizing
our results. Figure 1(a) represents the mechanisms by
which quantum chaos arises. Our contribution, depicted in
Fig. 1(b), is to identify a strong, operational criterion for
quantum chaos through sensitivity in a future state, to the
spatiotemporal quantum entanglement of the correspond-
ing process. We propose that this intuitive metric bridges
the gap between the mechanisms in Fig. 1(a) and the sig-
natures for chaos depicted in Fig. 1(c). We provide explicit
connections between several elements of these panels in
this work, the details of which we outline below.

Specifically, affirming the validity of our approach,
we show that our criterion is stronger than and encom-
passes existing dynamical signatures of chaos. We show
this explicitly for the Peres-Loschmidt echo, dynamical
entropy, tripartite mutual information, and local-operator
entanglement [20]. That is, we identify the underlying
structure leading to characteristic chaotic behavior of each
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FIG. 1. A schematic of the causes, structure, and effects of quantum chaos. (a) The internal mechanisms of chaos are the intrinsic
properties of the dynamics that lead to chaotic effects: e.g., properties of the Hamiltonian such as (i) level-spacing statistics and (ii) the
eigenstate thermalization hypothesis (ETH), or properties of the quantum circuit describing the dynamics such as (iii) whether it forms
a unitary design. (b) In this work, we will identify general quantum butterfly flutter protocol and from this argue that chaos reduces to a
hierarchy of conditions on the process describing the dynamics, including the volume-law spatiotemporal-entanglement structure. This
principle forms the stepping stone between causal mechanisms of chaos and observable diagnostics of chaos. We remark that we only
conjecture that level-spacing statistics and ETH [see (a)(i) and (a)(ii)] lead to quantum chaos as formalized in this paper and that these
relationships form an interesting open question. (c) Operational diagnostics for quantum chaos. Some popular probes include (i) The
Peres-Loschmidt echo, also known as fidelity decay or the Loschmidt echo, which is the measure of the deviation between states, for
evolution under a perturbed compared to an unperturbed Hamiltonian [11,12]; (ii) The dynamical entropy, which quantifies how much
information one gains asymptotically from repeatably measuring a subpart of a quantum system [3,13–15]; and (iii) local-operator
entanglement, which measures the complexity of the state representation of a time-evolved Heisenberg operator [16–18]. Another
example that we analyze in this work (not shown) is the tripartite mutual information, which measures the entanglement properties of
a state representation of a local input space of a channel together with a bipartition of the output space [19].
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of these popular chaos diagnostics. We offer a clear hier-
archy of conditions of a chaotic effect, due to a “butter-
fly flutter,” unifying a range of (apparently) inconsistent
diagnostics.

Next, we show that there are several known mechanisms
for quantum processes that lead to quantum chaos. In par-
ticular, we show that both Haar-random unitary dynamics
and random circuit dynamics—which lead to approximate
t-design states—are highly likely to generate processes
that satisfy our operational criterion for quantum chaos.
Our results also open up the possibility of systematically
studying other internal mechanisms thought to generate
quantum chaos, e.g., Wigner-Dyson statistics [2] or the
eigenstate thermalization hypothesis (ETH) [21–23].

Finally, our approach is different from previous works
that have usually relied on averages over Haar and/or
thermal ensembles to draw connections between some pre-
vious signatures for quantum chaos [24–26]. We work
solely within a deterministic pure-state setting, identifying
a series of conditions that stem from a sensitivity to past
local operations, without any need to average over oper-
ators or dynamics. Moreover, other metrics for quantum
chaos also start from the notion of a kind of a butter-
fly effect, such as the out-of-time-order correlator (OTOC)
[27]. However, our sense of this intuitive idea is different
and does not necessarily suffer the same shortfalls as, e.g.,
the OTOC, which decays quickly even for some integrable
systems [28–30].

A. Summary of main result

We first give an informal explanation of the main inno-
vation of this work. We use a simplified formalism and
setup in order to convey the main ideas, with a more
detailed exposition to be given later.

Consider an isolated quantum system where a sequence
of k unitaries Axi are applied on a local subspace S, such
that the global system is defined on the Hilbert space
HS ⊗ HE . Later, we will call this sequence a butterfly flut-
ter and allow it to consist of an arbitrary sequence of rank-1
instruments (Definition 1). The outgoing state after this
protocol is

|ϒR|�x〉 = Axk Uk · · · Ax2U2Ax1U1 |ψSE〉 , (1)

where Ui represents global unitary evolution, either Flo-
quet or according to a Hamiltonian for time ti, and where
Axi ≡ (Axi)S ⊗ 1E . The other choices of notation will
become apparent in the following sections.

Now, we similarly introduce a strictly different set of k
unitaries, labeled by the list �y. We take these unitaries to
be orthogonal to the first choice, in the Hilbert-Schmidt
sense such that tr[A†

xiAyi] = 0 for all i ∈ [1, k]. Note that we
impose no such constraint on operations for different times,
Axi compared to Axj with i �= j . We later loosen this con-
dition such that these can be, collectively, approximately

orthogonal operations. The outgoing state is defined anal-
ogously to Eq. (1), with the same global dynamics Ui and
subsystem decomposition HS ⊗ HE but different unitary
“perturbations.” We can then ask: how much do these two
resultant states, |ϒR|�x〉 and |ϒR|�y〉, differ?

This question is a direct translation to quantum mechan-
ics of the principle of chaos as a sensitivity perturbation.
The task is to define exactly what we mean by this sen-
sitivity. As already discussed, fidelity is preserved under
unitary evolution. Further, as we discuss in Sec. III A and
Appendix E, the fidelity cannot be the full story: most
dynamics, irrespective of integrability, will lead to a small
fidelity |〈ϒR|�x|ϒR|�y〉|2. We will show that this orthogonality
translates into an entropic condition on the underlying pro-
cess for this perturbation protocol, namely, that a genuinely
chaotic system should necessarily have a volumetrically
scaling spatiotemporal entanglement.

We instead strengthen this by defining a new metric to
compare these states, which we call the butterfly-flutter
fidelity (Definition 2). This compares how different the two
final states are in a complexity sense, and measures the
fidelity after what we call a correction unitary V:

ζ := sup
V∈R

(|〈ϒR|�x|V|ϒR|�y〉|2
)

. (2)

This quantity is depicted graphically in Fig. 4(a). Here,
R is a restricted set of unitaries on HS ⊗ HE , which
for now can be considered to be the set of simple (low-
depth) circuits. Intuitively, this measure in Eq. (2) deter-
mines whether or not the orthogonality between ϒR|�x
and ϒR|�y is complex. That is, is the sensitivity stemming
from past perturbations (local unitaries) easily correctable?
Based on our operational criteria for quantum chaos, we
argue that the dynamics are chaotic if this not easily cor-
rectable—when ζ ≈ 0 for an appropriately defined set of
corrections R and for any choice of butterfly flutters. This
notion of chaos then allows us to identify a connection
with entanglement properties of the underlying process
describing the “butterfly flutter” protocol.

For example, one could choose two butterfly flutters
as a sequence of k Pauli X gates on a single qubit of a
many-body system at k times and the other to be a series
of identity maps (do nothing). With free global evolution
occurring between each gate, the butterfly-flutter fidelity in
Eq. (2) would then indicate that the dynamics is chaotic if
the fidelity between the final states is small, ζ ≈ 0, even
after trying to align the two final states using any small-
depth local circuit V. This quantity is the main focus of
this work.

The rest of the paper is structured as follows. In Sec. II,
we review the tools that we require to characterize quan-
tum chaos and the butterfly-flutter fidelity. This predomi-
nantly includes the theory of multitime quantum process
[31–33], which allows us to describe all possible pertur-
bations and resultant effects within a single quantum state.
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Then, in Sec. III, we present a set of increasingly strong
necessary conditions on a dynamical process for which
ζ ≈ 0 in Eq. (2). These conditions are all motivated from
the principle of chaos as a sensitivity to perturbation and
start with a minimal sense of what a large effect could be,
stemming from a past local perturbation. This main-results
section then culminates in the butterfly-flutter fidelity, as
the strongest condition in this hierarchy. We conclude this
section by comparing the butterfly-flutter fidelity to the
classical ideas of chaos and detailing how one could, in
principle, measure it in experiment.

In Sec. IV, we support the proposed conditions by show-
ing how a range of previous dynamical signatures of chaos
agree with them, as depicted in Fig. 1. We summarize
these connections in Fig. 2, which serves as a summary
of this work and the related work of Ref. [30]. Finally, in
Sec. V, we discuss mechanisms of chaos that lead to the
operational effects that we propose. In particular, we prove
that random dynamics—both fully Haar random and those
generated by unitary designs—typically lead to chaos.

II. TOOLS: MULTITIME QUANTUM PROCESSES
AND SPATIOTEMPORAL ENTANGLEMENT

Many of the results of this work rely on the application
of ideas from entanglement theory to multitime quantum
processes, in order to interpret the overarching problem of
chaos in isolated many-body systems. We here give only an
overview of the relevant facets of this topic and refer the
reader to Appendix A for more information and to Refs.
[33,34] for a more complete introduction to the process-
tensor framework.

Consider a finite-dimensional quantum system. A quan-
tum process is a quantum dynamical system under the
effect of multitime interventions on some accessible local
space HS. These interventions are described by instru-
ments, which are trace nonincreasing quantum maps. The
dynamics between interventions can then be dilated to a
system and environment HS ⊗ HE , such that the total iso-
lated state on HS ⊗ HE evolves unitarily on this extended
space. A k-step process tensor is the mathematical descrip-
tion of a such a process, encoding all possible spatiotem-
poral correlations in a single object—analogous to how a
density matrix encodes single-time measurements.

In this work, we will generally consider rank-1 instru-
ments, such as unitary matrices and projective measure-
ments (including the outgoing state). In this case, we are
able to write down the full pure state on HS ⊗ HE at the
end of this process,

|ψ ′
SE〉 = UkAxk Uk−1 . . .U1Ax1 |ψSE〉 , (3)

where we have rewritten this as the conditional state of
a subpart of process |ϒ〉, and we will explain exactly

Volume-law 
Spatiotemporal 
Entanglement (C2)

Small Butterfly 
Flutter-Fidelity    
(C3) 

Max. entanglement 
in B:R splitting (C1)

Linear growth of 
Local-Operator 
Entanglement

Exponentially 
decaying 
OTOC

Small Peres-
Loschmidt Echo

Nonzero Dynamical 
Entropy 

Maximally negative 
Tripartite Mutual 
Information

(a)

(e) (f)

(b)

(c)

(d)

FIG. 2. A summary of the results of this work, where directed
arrows mean implication. The shaded region with pink boxes
is the hierarchy of conditions on quantum chaos as a sen-
sitivity to perturbation proposed in this work, (C1)–(C3). (a)
The volume-law spatiotemporal entanglement of |ϒ〉 is strictly
stronger than maximum entanglement in the single bipartition
B : R. (b) A small butterfly-flutter fidelity (Definition 2) neces-
sarily implies the volume-law spatiotemporal entanglement of
|ϒ〉 (Proposition 2), with equivalence when the initial state is
area-law (Proposition 3). (c) The (Trotterized) Peres-Loschmidt
echo constitutes the particular case of an asymptotically many-
time weak unitary butterfly flutter (Sec. IV A), while an extensive
dynamical entropy is equivalent to an extensive entanglement
scaling in the splitting B : R (Proposition 1 and Sec. IV B). (d)
For a single-time butterfly flutter, volume-law spatiotemporal
entanglement directly implies a (near) maximally negative tri-
partite mutual information of the corresponding channel (Propo-
sition 6). (e) For a single-time butterfly flutter, if the butterfly-
flutter fidelity is small for any initial state, then for an operator
entanglement complexity measure, the local-operator entangle-
ment grows linearly with time (Theorem 2). (f) If the local-
operator entanglement grows linearly with time, then general
OTOCs necessarily decay exponentially [30].

what this means below. Axi can be arbitrary norm non-
increasing operators, with

∑
xi

A†
xiAxi = 1; i.e., anything

that maps pure states to (possibly subnormalized) pure
states. This includes, e.g., unitary operators or projective
measurements. We stress that Axi are considered to act
locally on HS, such that Axi ≡ A(S)xi

⊗ 1(E). As everything
is pure here, there is no need to consider superoperators
or density matrices and left multiplication by matrices is a
sufficient description (for the mixed-state extension of this,
see Appendix A). |ϒR|�x〉 could be a subnormalized pure
state if, e.g., the instruments are chosen to be a series of
projective measurements,

|ψ ′
SE〉 = √

p�x |ϒR|�x〉 . (4)

Here, Axi = |xi〉 〈xi|, p�x is the probability of observing this
outcome, and we have neglected the (unobservable) global
phase. We will usually consider the (normalized) condi-
tional state |ϒR|�x〉 when investigating chaotic effects, as we
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FIG. 3. The tensor-network diagram of the protocol producing
the Choi state of a pure process tensor through the generalized
Choi-Jamiołkowski isomorphism [31,36]. This means that input
indices are put on equal footing with output indices, through
appending a maximally entangled ancilla system |φ+〉 at each
time and inserting half of this state into the process. The final
output state of this protocol encodes all multitime spatiotempo-
ral correlations: a pure process tensor. A multitime expectation
value can then be computed in this representation by finding
the Hilbert-Schmidt inner product between this (normalized)
Choi state and the (supernormalized) Choi state of a multi-
time instrument. The system HS denotes the single-time space
where instruments act and the environment HE the dilated space
such that all dynamics are unitary. Here, the independent Hilbert
spaces are labeled such that (�)i ((�)o) is the input (output)
system space HS at time t�, showing that the final output |ϒ〉
corresponds to a (2k + 2)-body pure quantum state.

will be concerned with the resultant state rather than the
probability that it is produced.

Rather than choosing a particular instrument Axi for each
intervention, one can instead feed in half of a maximally
entangled state from an ancilla space, as shown in Fig. 3.
This results in the pure state |ϒ〉, encoding both any inter-
ventions on the multitime space in the past, which we
call HB, and the final pure state on the global isolated
system, on the space HR. This is the generalized Choi-
Jamiołkowski isomorphism (CJI) [31,32], shown in Fig. 3.
Alternatively to this ancilla-based construction, the pure
process tensor can be defined succinctly as

|ϒ〉 := |Uk〉 ∗ · · · ∗ |U1〉 ∗ |ψSE(t1)〉 , (5)

where ∗ is the link product, corresponding to composi-
tion of maps within the Choi representation [35], and is
essentially a matrix product on the HE space and a tensor
product on the HS space. A ket of a rank-1 instrument A
corresponds to the single-time Choi state

|A〉 := (A ⊗ 1) |φ+〉 , (6)

by the usual single-time CJI: channel-state duality [34].
Here, we have gathered the multitime Hilbert space

where the full multitime instruments act on a space with

the single label,

HB ≡ Hio
S(tk−1)

· · · ⊗ Hio
S(t1) ⊗ Hio

S(t0), (7)

called the “butterfly” space HB, where Hio
S(tj )

≡ Hi
S(tj )

⊗
Ho

S(tj )
. Hi represents the input space to the process, while

Ho represents the output. The “remainder” space HR—the
full final state on the system plus environment at the end
of the protocol, where the “butterfly” does not act—is

HR ≡ Ho
S(tk) ⊗ Ho

E(tk). (8)

All of these are clearly labeled in Fig. 3. It will become
apparent in Sec. III why we name these spaces as
such.

From Eq. (5), we can determine the outgoing (possibly
subnormalized) state in Eq. (4) from projections on this
state,

|ψ ′
SE〉 = 〈�x|ϒ〉 . (9)

For independent instruments at each intervention time, we
have that

|�x〉 := |xk〉 ⊗ · · · ⊗ |x1〉 , (10)

where each single-time state is constructed as in Eq. (6).
Alternatively, one could trace over the final state on HR
and the reduced state on HB, ϒB, is the process tensor [31–
33], as we describe in Appendix A.

The key point here is that through the CJI we have
reduced all possible correlations of a dynamical multitime
experiment to a single quantum state, |ϒ〉. This means
that all the machinery from many-body physics is avail-
able to describe multitime effects. A subtle difference from
the single-time case is that the normalization of these Choi
states do not exactly correspond to the normalization of
states and projections. Instruments are taken to be super-
normalized, while processes have unit normalization and
so constitute valid quantum states

〈ϒ |ϒ〉 = 1, and 〈�x|�x〉 ≤ d2k
S , (11)

where the inequality is saturated for deterministic instru-
ments: completely positive trace-preserving completely-
positive trace-preserving (CPTP) maps. This normaliza-
tion ensures that one gets well-defined probabilities in
Eq. (4).

Therefore, dynamical properties of a process such
as non-Markovianity [32,33,37–39], temporal correlation
function equilibration [40,41], whether its measurement
statistics can be described by a classical stochastic pro-
cess [42–44], multipartite entanglement in time [45], and
other many-time properties [46] can all be clearly defined
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in terms of properties of the quantum state |ϒ〉. However,
the spatiotemporal-entanglement structure of this multi-
time object is largely unexplored and we will show that this
has vast implications for understanding quantum chaotic
versus regular dynamics.

Any pure quantum state |ψ〉AB on HA ⊗ HB can be
decomposed across any bipartition A : B via the Schmidt
decomposition,

|ψ〉AB =
χ∑

i=1

λi |αi〉A |βi〉B , (12)

where 〈αi|αj 〉 = δij = 〈βi|βj 〉. χ is called the bond dimen-
sion or Schmidt rank, which dictates intuitively the extent
to which the subsystems are entangled with each other. The
bond dimension is equal to one if and only if the state is
separable across A : B.

Using the decomposition given in Eq. (12), one can
successively increase the size of the subsystem HA and
determine how the bond dimension scales. We will deal
with one-spatial-dimension systems when discussing spa-
tiotemporal entanglement in this work, as characteristic
entanglement scaling depends on the underlying geome-
try [47]. Our results should generalize in a straightforward
way to higher spatial dimensions. If χ is bounded by
min{dA, D} for a constant D < (dAdB)/2 for any HA with
dimension dA up to half the total Hilbert-space dimension,

this is called area-law scaling. In this case, for example, a
one-dimensional spin-chain state may be written efficiently
as a matrix product state (MPS) [47–50]. Despite being
introduced in order to efficiently simulate the ground state
of certain Hamiltonians, it was soon realized that a funda-
mental property of a state written as an MPS is revealed in
the scaling of the bond dimension [51]. On the other hand,
if the bond dimension scales (approximately) extensively
with the subsystem size, this is volume-law scaling. This
directly implies a characteristically scaling entanglement
entropy,

S(ρA) ∝ log(dA), (13)

where S(ρA) is the von Neumann entropy of the
reduced state ρA. Area-law can be defined formally as
a bounded entanglement with scaling subsystem size,
for all Rényi entropies [49]. Such scaling will syn-
onymously be called entanglement structure or entan-
glement scaling throughout this work. We will show
that this property within the pure process tensor |ϒ〉
is intrinsically linked to the chaoticity of a quantum
process.

We will now delve into our main result, interpret-
ing the dynamical meaning behind the spatiotemporal-
entanglement structure of quantum processes.

[CJI]

(a) (b)

FIG. 4. Two equivalent representations of the butterfly-flutter fidelity (see Definition 2). (a) The process representation of the
butterfly-flutter fidelity. Two orthogonal sequences of instruments, {Axi} and {Ayi}, act at k times on the system Hilbert space denoted
by HS , of a time-evolving state |ψSE〉. The final pure states on HR = HS ⊗ HE can be compared, with a simple correction unitary
V (partially) aligning the states, which enforces that the effect of the butterfly flutter is complex on the final states. This is Eq. (22)
in the text. (b) Using the CJI, as described in Sec. II and Fig. 3, the process corresponding to the butterfly protocol can be mapped
one to one to a quantum state |ϒ〉 ∈ HB ⊗ HR. Then, the butterfly-flutter fidelity given in Eq. (22) corresponds to projecting onto
the butterfly space HB with two orthogonal projections, 〈�x| and 〈�y|, and comparing the resulting conditional states on HR. This
allows us to interpret strong and complex effects due to the butterfly flutter in terms of the entanglement properties of |ϒ〉: a strong
effect from entanglement in the bipartition B : R (Proposition 1) and a complex effect from volume-law entanglement in the full state
(Proposition 3).
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III. MAIN RESULT: THE BUTTERFLY-FLUTTER
FIDELITY AND

SPATIOTEMPORAL-ENTANGLEMENT

In Sec. II, we have defined a pure process tensor |ϒ〉
that encodes an experiment where a local part HS of a
many-body quantum system is interacted with across k
times, together with the outgoing pure state on the space
HR. The multitime intervention, which we call a butter-
fly flutter and is defined explicitly in Definition 1, is taken
to act on the collective multitime “butterfly” space HB [see
Eq. (7)]. This formalism will allow us to identify necessary
conditions stemming from the principle of quantum chaos
as a sensitivity to perturbation, in terms of the properties
of the state |ϒ〉. Figure 4 offers a graphical representation
of the state-process duality that serves as a key tool of our
analysis.

We will now identify a series of conditions on the pro-
cess |ϒ〉, each stronger than the previous, such that if a
process satisfies (C3), then it also necessarily satisfies (C2)
and hence also (C1). We make an intuitive argument based
on chaos as a sensitivity to perturbation, to argue for each
condition. We will show in Sec. IV that they are each
related to previous signatures of chaos (see also Fig. 1).

(C1) (Perturbation orthogonalizes future state.) The
final state on R should be strongly sensitive to butterfly
flutters on B.

(C2) (Scrambling as volume-law entanglement.) But-
terfly flutters on B should affect a large portion of the final
state on R.

(C3) (Complexity of sensitivity.) Different butterfly flut-
ters on B should lead to different enough states on R, in a
complexity sense.

From each of these, we will identify the properties of |ϒ〉
to which these conditions lead. Of course, as written above,
these conditions are informal statements. We will spend the
rest of this section making this precise and restate this list
at the end in full technical detail.

A. Sensitivity to perturbation (C1)

Given a sequence of small interventions on a many-body
system, what is the minimal effect on the final pure state
such that it is sufficiently perturbed? As a minimal con-
dition, we argue that a perturbation should orthogonalize
this final state, in the usual sense of fidelity. We will show
that this leads to a simple entropic condition on the pure
process state |ϒ〉.

More technically, we first define explicitly what we
mean by a perturbation that probes chaos.

Definition 1.—A butterfly flutter is a multitime linear
map with some outcome label �x, defined by k rank-1
instruments {Ax1 , Ax2 , . . . , Axk }, which maps a k-time pure

process |ϒ〉 ∈ HB ⊗ HR to a normalized state,

〈�x|ϒ〉
√〈ϒ |�x〉 〈�x|ϒ〉 = |ϒR|�x〉 . (14)

Here, |�x〉 ∈ HB is the Choi state of the multitime instru-
ment that defines the butterfly flutter, as in Eq. (10), and
the (conditional) output state |ϒR|�x〉 is defined in Eq. (16).

Note that butterfly flutters are distinct from the multi-
time instruments discussed in Sec. II only in that we take
the normalized output from its action. This is important, as
we do not wish to consider the probability of a butterfly
to occur, only its effect. |ϒR|�x〉 is just the conditional pure
state on the global HS ⊗ HE space.

We can compare the two final conditional (pure) states
after two distinct butterfly flutter protocols labeled by �x and
�y:

D(|ϒR|�x〉 , |ϒR|�y〉). (15)

Here, D is some metric on pure quantum states, naturally
taken to be the fidelity, and the label �w = (w1, . . . , wk) ∈
{�x, �y} denotes instruments acting at k times, such that

|ϒR|�w〉 := Awk Uk · · · Aw2U2Aw1U1 |ψSE〉
√

〈ψSE| U†
1 · · · A†

wk Awk · · · U1 |ψSE〉
. (16)

This is a bipartite quantum state after a butterfly flutter pro-
tocol, which may include a sequence of measurements and
preparations on some local system labeled HS, recording
the outcomes as �w. Alternatively, Awi could be a unitary
on some subspace or any other quantum operation, which
could even be correlated across multiple times. Note that if
two butterflies only consist of unitary maps, then the nor-
malization in the denominator of Eq. (16) is simply equal
to one. In the interest of identifying the general form of
any quantum butterfly effect, we allow the perturbation to
be any pure multitime instrument.

Condition (C1) then means that

| 〈ϒR|�x|ϒR|�y〉 |2 ≈ 0, (17)

for any two orthogonal butterfly flutters |�x〉 and |�y〉. Our
construction of dynamical quantum chaos then reduces to
a static property of a process: given two nondeterministic
projections on some small subsystem, how do the left-
over states compare? (C1) states that for a chaotic process,
butterflies need to have a large effect as in Eq. (17).

We now ask what property of the many-time state |ϒ〉
leads to the behavior Eq. (17)? We summarize in Fig. 4 the
butterfly-flutter fidelity given in Eq. (22) in the equivalent
Choi and operator representations. We have done the con-
ceptual heavy lifting in the setup of this problem and so the
following result is rather direct.
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Proposition 1.—For any two orthogonal butterflies, one
obtains (approximately) orthogonal final states on HR if
and only if |ϒ〉 is (approximately) maximally entangled
across the bipartition B : R.

Proof for this and all further results in this section can
be found in Appendix B.

We note that the previous signature of dynamical
entropy turns out to be exactly the scaling of the entan-
glement of |ϒ〉 in B : R with times k and the fidelity
| 〈ϒR|�x|ϒR|�y〉 |2 is a Trotterized generalization of the Peres-
Loschmidt echo. We show this in Sec. IV with a
detailed exposition on the relation between our conditions
(C1)–(C3) and previous signatures (see also Fig. 1). Propo-
sition 1 then gives a novel connection between these two
previously well-studied metrics of chaos.

B. Scrambling as spatiotemporal entanglement (C2)

The condition in Sec. III A cannot be a complete
notion of quantum chaos. In fact, most systems will look
“chaotic” according to the prescription (C1). For example,
circuit dynamics consisting solely of SWAP gates, without
any interactions, leads exactly to Eq. (17) being satisfied.
In this case, the “orthogonality” of the butterflies is trans-
ferred to some large environment and a new pure state is
accessed on the butterfly space with each step. The orthog-
onalization resulting from a butterfly flutter resides entirely
in a small subspace of HR, yet could be misconstrued as a
strong global effect. We look at this example in more detail
in Appendix E and name such dynamics as a Lindblad-
Bernoulli shift [52]. As a further example, it can be shown
analytically that free fermions lead to a (maximal) linearly
growing dynamical entropy of a process [53], which by
Proposition 1 means that Eq. (17) is also true.

We therefore now introduce a notion of scrambling to
the entropic measure from Sec. III A. Instead of just spec-
ifying that the entanglement in the splitting B : R of the
purified process |ϒ〉 is volume-law with increasing k, we
extend this to incorporate that the effect of the butter-
fly flutter spreads nonlocally. We do this by including
a subpart of the butterfly space together with a subpart
of the final pure state when looking at an entanglement
bipartition of the process. In particular, (C2) means that

S(ϒB1R1) ∝ log(dB1dR1), (18)

where S here indicates von Neumann entropy, R1 and
R2 are a bipartition of the final state, HR =: HR1 ⊗ HR2 ,
and, similarly, HB =: HB1 ⊗ HB2 . We will generally con-
sider bipartitions R1 : R2 such that dBR1 < dR2 . Equation
(18) means that the entanglement of |ϒ〉 in the arbitrary
splitting B1R1 : B2R2 needs to be volume-law. Often, we
choose S(ϒBR1) to investigate the spatial scrambling of the
interventions from the entire space HB. In this case, spa-
tiotemporal entanglement of the process |ϒ〉 serves as a

multitime generalization of “strong scrambling” in terms
of the tripartite mutual information [19] (see Sec. IV C).

There are two subtle considerations to take into account
here. For one, explicitly defining a “volume-law” com-
pared to an “area-law” entanglement scaling requires spec-
ifying the underlying geometry. For the B : R entanglement
of (C1), there is a natural one-dimensional scaling through
increasing the number of times k on which HB is defined
(and suitably redefining |ϒ〉 in each case). When dis-
cussing spatiotemporal entanglement, we require a (vary-
ing) bipartition of the spatial part of the process on HR,
as well as the temporal part HB. For (C2), we therefore
restrict ourselves to systems of one spatial dimension but
note that one could likely generalize these results to higher
dimensions. In addition, if the dynamics are chosen to be
local, as is often the physically relevant situation, the space
HR1 should be chosen to be causally connected to the space
B, i.e., well within the Lieb Robinson “light cone” of the
past space HB [54,55]. This ensures that the operations on
HB may be possibly correlated with HR1 . This is immedi-
ately clear in circuit models of dynamics, where the light
cone is exact with a sharp cutoff [56,57]. Beyond this, it
would be interesting to investigate this further with precise
Lieb-Robinson bounds, along the lines of Ref. [58].

Equation (18) then means that rather than the butterfly
flutter only affecting some localized part of the final pure
state on R (as in the Lindblad-Bernoulli shift; see Appendix
E), leading to a high entanglement in the splitting B : R,
Eq. (18) means that its effect spreads globally. This is what
we call volume-law spatiotemporal entanglement. We will
further argue that this is the essence of quantum chaos: that
large effects from small past operations correspond exactly
to an extensive entropy scaling with increasing size of R1,
for a given B (and possible bipartition B1).

An example tensor network for computing this quan-
tity is given in Fig. 5, for a one-dimensional lattice sys-
tem. Here, λi represents the Schmidt coefficient across the
bipartition B : R, while the (yellow) circles represent bonds
within a MPS representation of the final spatial pure state
on R. A volume-law spatiotemporal entanglement then
means a maximum bond dimension across any of these
yellow circle bonds within R, when the B subsystem can
be connected to any of the components of R within this
tensor network (represented by grayed-out bonds).

But is this spatiotemporal entanglement detectable? If
one measures the final-state fidelity as in Eq. (17), such
that the butterfly flutters |�x〉 and |�y〉 include part of the final
state, R1, we will see that these butterfly flutters typically
distinguish between area-law and volume-law spatiotem-
poral entanglement in |ϒ〉. We will do this by choosing
random and unitary butterfly flutters on HB ⊗ HR1 and
determining the fidelity (22) for these.

In the following, Pa∼μ and Ea∼μ will mean, respectively,
the probability and expectation value of the sampling of a
random variable a over the measure μ. μ = H denotes the
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FIG. 5. A spatiotemporal tensor network of the process repre-
senting the butterfly protocol. Condition (C2) states that a chaotic
process will have maximal Schmidt rank across a decomposition
across any cut (represented by colored circles)—i.e., that this net-
work has a maximal bond dimension. These cuts are restricted to
be only within the light cone of the butterfly flutter in the final
state on HR. The grayed-out lines represent other possible bonds
in the choice of the space HR1 in Eq. (22), which should all per-
tain to a maximal bond dimension (volume-law) tensor network.
The tensors (blue squares) on the right-hand side have a local
dimension of dR1 and additionally should have maximal bond
dimension between them for a chaotic process.

Haar measure—the unique unitarily invariant measure on
Hilbert space. More details on randomness in Hilbert space
are given in Sec. V.

Theorem 1.—(Random Butterflies Are Likely to Detect
Spatiotemporal Entanglement) For a Haar-random choice
of orthogonal butterflies X = {|�x〉 , |�y〉} across the com-
bined space HB ⊗ HR1 for any choice of space HR1 , the
fidelity of the final state is likely to be sensitive to the
volume-law property of |ϒ〉. In particular, for δ > 0,

PX∼H

{| 〈ϒR2|�x|ϒR2|�y〉 |2 ≥ δ
}

�
tr[ϒ2

BR1
] − 1/(dBR1)

δ
,

(19)

where dBR1 = dBdR1 . This inequality is slightly approxi-
mated for large d2

BR1
, such that d2

BR1
± 1 ≈ d2

BR1
.

A proof for this can be found in Appendix B. This result
is also valid for sampling a random butterfly from a 2-
design rather than fully Haar random, which can be done
efficiently in practice.

This constitutes a concrete connection between the
fidelity between final states in Eq. (17) and spatiotempo-
ral entanglement of the pure process |ϒ〉. The key point
is that for volume-law entanglement of the process |ϒ〉,
the purity of the reduced state on HB ⊗ HR1 is inversely
proportional to the size of the subsystem,

tr[ϒ2
BR1

] ∼ O
(

1
dBR1

)
. (20)

For a Choi state that is truly volume-law—rather than just
maximally entangled across some specific splitting—this
is the case for any choice of HR1 up to causality consider-
ations. So for volume-law, the right-hand side of Eq. (B5)
is close to zero for almost any small δ > 0. Therefore, for
most random unitary butterflies, ζ in Eq. (22) will likely
be small for volume-law processes.

Note that framing chaos in terms of the entanglement
properties of |ϒ〉 is independent of the instrument, i.e., the
butterfly flutter represented by |�x〉. This allows for testing
of this principle against any previous or new heuristic of
quantum chaos. It also implies that the manifestation of
quantum chaos may be tested for strong or weak butter-
flies, and many-time or few-time, which turns out to be
a key distinction between the Peres-Loschmidt echo and
local-operator entanglement, as we show in Sec. IV.

One might now want to know if volume-law spatiotem-
porally entangled processes exist; if the condition (C2) is
too strong. In fact, from concentration-of-measure results,
it is known that most processes generated from Haar-
random dynamics are locally exponentially close to the
completely noisy process [59],

trR[|ϒ(H)〉 〈ϒ(H)|] ≈ 1

dB
, for dB � dR (21)

and polynomially close for dynamics sampled from an
ε-approximate t-design [60]. Such a process also has
volume-law spatiotemporal entanglement, as we prove in
Sec. V.

We now move to our final condition on quantum chaos.

C. Complexity of sensitivity to perturbation (C3)

We now introduce a final, strictly stronger, measure
of chaos, based on a notion of the complexity distance
between final states, after two distinct butterfly flutters.
This is not just a fidelity measure like the ones we have
considered so far but, rather, the fidelity after a restricted
correction.

Definition 2.—The butterfly-flutter fidelity takes values
between 0 ≤ ζ ≤ 1 and is defined as

ζ(ϒ) := sup
V∈R,〈�x|�y〉=0

(|〈ϒR|�x|V|ϒR|�y〉|2
)

. (22)

Here, V is a unitary operation on the full (spatial) Hilbert
space HR and is restricted to some low-complexity set
R ⊂ U(dR).

Note that often in Eq. (22) we will instead choose a par-
ticular pair of butterfly flutters |�x〉 and |�y〉 or otherwise
average over some set of them. This is order to perform
analytic calculations or to draw comparisons with other
quantities and the interpretation of a sensitivity to pertur-
bation holds true without an optimization over all possible
butterfly flutters satisfying 〈�x|�y〉 = 0.
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Intuitively, the butterfly-flutter fidelity measures how
difficult it is to convert one resultant state ϒR|�x to the other
ϒR|�y . In other words, it measures how easily correctable the
effect of a past butterfly flutter is. We leave open the exact
measure of the complexity with which the “correction”
unitary V is restricted. Possible choices include specifying
V to be: a constant-depth local circuit, independent of the
system size or time evolution in the process; a local cir-
cuit with depth proportional to the size of the system dR
but independent of the time of evolution; a unitary with an
appropriately defined restricted Nielsen complexity [61];
or an matrix product operator (MPO) of restricted (con-
stant) bond dimension. Of course, many of these measures
are related. It would be an interesting avenue of future
research to investigate this quantity in more detail and for
different models. For the rest of this work, we will gener-
ally take V such that it can be represented by an MPO with
a restricted bond dimension, part of the set RMPO. There-
fore, a process will be chaotic according to (C3) if it is not
possible to efficiently correct the effects of a past butter-
fly flutter. We note that the butterfly-flutter fidelity reduces
to simply the fidelity, as in (C1) and Eq. (17), when V is
restricted to the identity R = {1}.

We will now show that this is a strictly stronger con-
dition than volume-law spatiotemporal entanglement; that
(C3) =⇒ (C2).

Proposition 2.—If the butterfly-flutter fidelity given in
Eq. (22) is not, ζ ≈ 0, then the process |ϒ〉 has volume-law
spatiotemporal entanglement.

A proof for this can be found in Appendix B. The ques-
tion remains of just how strong the condition (C3) is. That
is, when is there volume-law spatiotemporal entanglement
in a process (C2) but the effects of a butterfly flutter are
easily correctable? In fact, the only case where (C2) and
(C3) are not equivalent is if the process has a volume-law
initial state.

Proposition 3.—If the butterfly-flutter fidelity given in
Eq. (22) is not small (nonchaotic), ζ ≈ 1, but the process
|ϒ〉 has volume-law spatiotemporal entanglement, the pro-
cess can be written in terms of simple dynamics with a
volume-law entangled initial state.

A proof for this can be found in Appendix B. What this
result means is that in the particular case where a pro-
cess is regular according to (C3) but chaotic according to
(C2), then all the volume-law entanglement is attributed to
the initial state. The dynamics part of the process can be
considered to have area-law entanglement.

In the setup we have suggested to classify chaos in
quantum systems, one interacts locally with a quantum
system across multiple times and examines the effect on
the final global pure state. In this situation, the above
result (Proposition 3) means that in terms of the entan-
glement properties of the corresponding process |ϒ〉, one
cannot distinguish between a process that first prepares
a volume-law spatial entanglement state from a process

that genuinely creates volume-law spatiotemporal entan-
glement from the dynamics. One way to interpret this is
that complex spatial entanglement in itself is chaotic. We
refer to this as quantum state chaos: for a volume-law
entangled state, performing an operation on a small part
of a large state instantaneously has a highly nonlocal and
strong effect on the remainder of the state.

This also follows from the fact that a multipartite
quantum state is also a quantum channel, through
teleportation. This is a purely quantum effect and thus there
is no classical analogue to quantum state chaos. Volume-
law spatiotemporal entanglement is equivalent to chaos in
the sense of a strong nonlocal sensitivity to perturbations,
regardless of whether these perturbations occur simultane-
ously to the effect (state chaos) or in the past with the effect
stemming from dynamics [as measured by the butterfly-
flutter fidelity (C3)]. However, in the traditional dynamical
sense, the butterfly-flutter fidelity measures the chaotic-
ity of the dynamics and so can be seen as equivalent to
the quantum butterfly effect: the operationally meaningful
notion of quantum chaos.

D. Sensitivity to initial perturbations

The above operational understanding for quantum chaos
readily resolves a fundamental question. Namely, are quan-
tum chaotic systems sensitive to an initial perturbation?

The usual argument against a quantum sensitivity to
perturbation is that the distance (or fidelity) between two
initial states, ε = | 〈ψ |φ〉 |, is preserved with unitary time
evolution

| 〈ψ |U†
t Ut|φ〉 | = | 〈ψ |φ〉 | = ε. (23)

This precludes a straightforward notion of exponential (or
otherwise) deviation with respect to ε.

(C3) includes a rather direct and intuitive notion of
sensitivity to initial conditions. Consider a single-time but-
terfly flutter protocol, with perturbative operations, X and
Y, on initial state |ψ〉. Equation (22) then reduces to a
sensitivity of the resultant state after this initial operation:

ζ(ϒ) = sup
V∈R

(
|〈ψ |X †U†

t VUtY|ψ〉|2
)

. (24)

Here, we have assumed that the local perturbations X ≡
(XS ⊗ 1E) are unitary for simplicity and so the final states
are normalized. Instead of comparing the final-state fidelity
given an initially perturbed state as in Eq. (23), the single-
time flutter corresponds to how difficult it is to correct the
resultant state from a local perturbation. This notion of dif-
ficulty encompasses the complexity inherent to quantum
mechanics but admits the classical analogue of sensitivity
to perturbation.
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E. Determining the butterfly flutter protocol in the
laboratory

The quantum butterfly protocol in Eq. (22) is a fidelity
of final pure states, which apparently requires a backward-
in-time global evolution to compute. In this section, we
show that by appending a quantum ancilla space to the
protocol, one can compute ζ through only forward-in-time
evolution.

Consider the same setup as the butterfly flutter protocol
in Eq. (22), with appended qubit ancilla space HA, with
combined initial state

|ψSEA〉 = |ψ〉SE ⊗ |+〉A . (25)

Here, the subscripts S, E, and A denote system, envi-
ronment and ancilla Hilbert spaces respectively. Then,
for a butterfly flutter defined by the unitary instruments
Ax1 , Ax2 , . . . , Axk acting on HS, define an instrument at time
ti on the full HS ⊗ HE ⊗ HA space as

A′
i := 1E ⊗ (Axi ⊗ |0〉 〈0| + Ayi ⊗ |1〉 〈1|) . (26)

We also define an additional (controlled) instrument which
encodes the correction unitary V:

V′ := 1SE ⊗ |0〉 〈0| + V ⊗ |1〉 〈1| . (27)

Then, the final state of the reduced state of the ancilla qubit
at the end of the forward-in-time evolution of the butterfly
protocol is

ρ = trSE[V ′UkA′
k . . .U1A′

1(|ψSEA〉 〈ψSEA|)], (28)

where, as is standard throughout this work, calli-
graphic script letters correspond to superoperators, A′

i(·) ≡
A′

i(·)A′†
i , V ′(·) ≡ V′(·)V′†, and U ′

i (·) ≡ U′
i(·)U′†

i is global
unitary HS ⊗ HE evolution. This protocol is presented in
Fig. 6. Then it is easy to check that the squared off-diagonal
elements of the final state of the ancilla qubit give exactly
the butterfly-flutter fidelity of Eq. (22), for a given choice
of correction unitary V. Further, the off-diagonal elements
of a density matrix are easily measurable:

ζ = | 〈0| ρ |1〉 |2 = |1
2

〈σx + iσy〉 |2. (29)

This can be directly generalized to larger ancilla spaces, if
one wants to try a set of different butterfly flutters.

We will finish this section by making some remarks
about the limitations of a realistic experimental setup. In a
nonisolated situation where the initial state may be mixed
and where evolution may not be unitary, then Eq. (28) takes

FIG. 6. The forward-in-time protocol for measuring the
butterfly-flutter fidelity. Here, the pink controlled operations cor-
respond to the butterfly flutters |�x〉 for an ancilla qubit equal to
|0〉 〈0| and |�y〉 for an ancilla qubit equal to |1〉 〈1|. The (yellow)
global operation at the end (rightmost) is then similarly con-
trolled to be either the identity map or the correction unitary V
to be optimized over [see the discussion around Eq. (22)]. The
butterfly-flutter fidelity is then stored in the coherences of the
final state of the ancilla, ρ, while information of decoherence
effects is encoded in the diagonals.

the form

ρ = trSE[V ′A′
kLk−1 . . .A′

1L1(ρi)]. (30)

Here, ρi is some arbitrary initial state and Li represents
open quantum system evolution, which may include arbi-
trary decoherence effects (Li is generally a CPTP map). In
practice, Eqs. (28) and (30) require an identical protocol
from a (hypothetical) experimenter. In practice, one can-
not easily tell whether the scaling of the butterfly-flutter
fidelity is according to Eq. (30) or the perfectly isolated
Eq. (28). This is a problem faced with other measures
of the quantum case (such as the OTOC) and, indeed,
even classically it is difficult to discern between noise and
dynamical chaos.

In the butterfly-flutter fidelity protocol, one can check
the unitarity of the dynamics by checking the purity of
the final total state. This requires access to two copies
of the final state to perform a SWAP test. One alternative
to this setup is to perform the butterfly flutter protocol with
the correction unitary coming from the set of all possible
unitaries, R = U(dR) in Eq. (22). This means that the cor-
rection unitary V will align the resultant states ϒR|�x and
ϒR|�y to give ζ = 1 if the dynamics are unitary [following
Eq. (28)]. If the dynamics were not unitary [Eq. (30)], this
would not be possible and so in this case we have ζ < 1. Of
course, it is highly expensive and nontrivial to implement
an optimization over all possible unitaries in Eq. (22).

This protocol allows one to perform a forward-in-time
experiment to determine the butterfly-flutter fidelity. This
requires a perfect control over the system-environment
space (the R space), in order to implement the correction
unitary V, and a perfectly isolated ancilla space that is not
itself influenced by decoherence effects or other uncon-
trolled dynamics. However, the correction unitary itself
is, in principle, easy to implement by construction. The
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predominant difficulty is how exactly to perform the max-
imization over V ∈ R in Eq. (22). It would be interesting
to determine an efficient algorithm that could approximate
this optimization.

F. Summary and discussion

We now restate the hierarchy of conditions for quantum
chaos. For two butterfly flutters, with Choi states |�x〉 and
|�y〉, we call a process |ϒ〉 chaotic if:

(C1) (Perturbation orthogonalizes future state.) The
final state on R should be strongly sensitive to butterflies
on B:

| 〈ϒR|�x|ϒR|�y〉 |2 ≈ 0, (31)

or, equivalently (Proposition 1),

S(ϒB) ∼ log(dB). (32)

.
(C2) (Scrambling as volume-law entanglement.) But-

terflies on B should affect a large portion of the final state
on R:

S(ϒB1R1) ∼ log(dB1dR1), (33)

for appropriate choices of HR1 ⊂ HR and HB1 ⊆ HB.
(C3) (Complexity of sensitivity.) Different butterflies on

B should lead to different enough states on R, as measured
by the butterfly-flutter fidelity:

ζ(ϒ) = sup
V∈R,〈�x|�y〉=0

| 〈ϒR|�x| V |ϒR|�y〉 |2 ≈ 0 (34)

for some defined set of bounded-complexity unitaries R.

The operational criteria for quantum chaos impose several
restrictions on the spatiotemporal correlation content of a
process. (C1) and (C2) require that ϒ is volume entangled,
while (C3) further requires that the process itself must be
able to dynamically generate volume-law spatiotemporal
entanglement. Importantly, these criteria directly lead to a
universal operational metric for quantum chaos in Eq. (22),
which we have shown to be accessible in a laboratory
setting.

We have then used these ideas, especially (C3), to show
how quantum processes are also sensitive to initial con-
ditions, much like their classical counterparts. This opens
up the possibility of operationally defining quantum Lya-
punov exponents to further close the gap between the
theories of classical and quantum chaos. Finally, (C3) has
the same flavor as the complexity=volume conjecture due
to Susskind [62] (for the strengthened version of the same
conjecture, also see Ref. [63]). Namely, the operational

metric for quantum chaos is concerned with the complexity
of the correction unitary in Eq. (22). Our results there-
fore hint that quantum chaos may be key to understanding
this conjecture, fitting with the common belief that black
holes are maximally chaotic quantum systems [64,65]. On
the other hand, the tools presented in Ref. [63] are likely
applicable to the case of quantum chaos.

We show in Sec. IV D that the previous dynamical sig-
nature of the local-operator entanglement measures this
single-time sensitivity, optimizing over any initial state.
Further, it can be shown that OTOCs generically probe
this operator entanglement [30]. The hierarchy (C1)–(C3)
gives a robust understanding of why these previous diag-
nostics measure chaos, in terms of a future sensitivity to
past local operations.

IV. CONNECTION TO PREVIOUS SIGNATURES

Our construction so far has involved a first-principles
proposition of a series of conditions that mean chaos
as a sensitivity to perturbation in quantum systems. We
will now show how these conditions (C1)–(C3) compare
to previous dynamical signatures of chaos (see the dia-
gram of this connection in Fig. 1). The Peres-Loschmidt
echo corresponds to (C1) in the many-time limit and for
weak butterflies, while dynamical entropy is exactly the
entanglement scaling of |ϒ〉 in the splitting B : R and
so is in some sense equivalent to the Peres-Loschmidt
echo scaling according to Proposition 1. The tripartite
mutual information measures spatiotemporal entanglement
for a single-time butterfly and so (C2) can be seen as
a multitime generalization of this measure. Finally, the
local-operator space entanglement measures the required
entanglement complexity of the correction unitary V, such
that ζ(ϒ) = 1 for any initial state. For a summary of
these connections, see Fig. 2. In this section, we will
explain these diagnostics and show each of these connec-
tions in turn. Our first-principles construction is supported
by, and contains a range of, previous notions of quan-
tum chaos from recent years, all within a single intuitive
framework.

A. Peres-Loschmidt echo

The Peres-Loschmidt echo measures the sensitivity of
an isolated quantum system to a weak perturbation to the
dynamics [11,66]. It is equal to the deviation in fidelity
between the same initial states evolving unitarily according
to some Hamiltonian compared to a perturbed Hamilto-
nian,

| 〈ψt|ψε
t 〉 |2 = | 〈ψ |eiHte−it(H+εT)|ψ〉 |2. (35)

This equivalently measures the distance from the initial
state, when a state evolves forward in time, then evolves
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(a)

(b)

(c)

FIG. 7. The quantum process construction for the dynamical
signatures: (a) Peres-Loschmidt echo, (b) dynamical entropy, and
(c) tripartite mutual information. Note that the diagrams of (a)
and (c) are in the pure-state representation, such that the initial
state is a state vector (ket) and the boxes correspond to matrices
(Latin script), while (b) is in the superoperator representation,
such that the initial state is a vectorized density matrix, and the
boxes represent quantum channels in the Liouville superoperator
representation (calligraphic script). For further details, see Sec. II
and Ref. [34].

backward in time according to imperfect evolution. Expo-
nential decay with time is regarded heuristically to mean
quantum chaos. In practice [12,67], one often needs to dis-
cretize the dynamics in order to realize the perturbation
to the Hamiltonian, T. To do so, one can use the Trotter
approximation of the perturbed evolution,

e−it(H+εT) ≈ (eiHδteiεTδt)k,

=: (UδtWε)
k, (36)

where kδt = t, which is valid for large k and small δt. Then,
up to Trotter error [68], the Peres-Loschmidt echo corre-
sponds to the fidelity between two final states, given the
application of k identity channels, compared to k unitaries,
which are ε-close to the identity [see Fig. 7(a)]. From this,
we can already see that the Peres-Loschmidt echo falls into
the category of a fidelity between resultant states given two
past butterfly flutters as in (C1) [see Eq. (17)].

In addition to the Trotterization, the key difference
between our condition (C1) and the Peres-Loschmidt echo
is that instead of optimal butterflies, we specify the two
many-time butterfly flutters to be projections that are (kε)-
close. These two projections are, respectively, the Choi

states of a sequence of k weak unitaries and a sequence
of k identity maps, such that

| 〈�x|�y〉 | :=|〈W⊗k
ε |1⊗k〉|

=|〈Wε |1〉|k

=(1 − ε)kd2k
S , (37)

where we recall that dB = d2k. Then, for a typical volume-
law process, consisting of random dynamics as described
around Eq. (21) and further explored in Sec. V, under the
action of any two butterflies of appropriate size we have
that ϒB ∼ 1/dB, and so typically,

| 〈ϒR|�x|ϒR|�y〉 |2 ≈ |〈�x|1/dB|�y〉|2
〈�x|1/dB|�x〉〈�y|1/dB|�y〉

= (1 − ε)2kd2
B(1/d

2
B)

= (1 − ε)2k

≈ e−2kε , for small ε,

≈ 0, for large k. (38)

In the first line, we have used the Schmidt decomposition,
as in Fig. 4(b) and Eq. (B3). For an area-law Choi state, this
fidelity will be larger and will tend to scale as the leading-
order Schmidt coefficient.

For a given Trotter error, time evolution corresponds to
increasing k, for a constant δt and ε. Therefore, in Eq. (38),
we can see how exponential decay with time stems from
the property of entanglement structure of the Choi state
|ϒ〉. The choice of temporally local weak unitaries is key
to this exponential time decay with time.

We have shown that the Peres-Loschmidt echo can be
characterized through weak many-time butterfly flutters
under the first condition (C1). It should be noted that this is
the weakest condition that we argue is necessary for quan-
tum chaos. In particular, the Peres-Loschmidt echo has no
extra ingredient of an correction unitary V acting on the
final states as in (C3). This distinction means that while the
Peres-Loschmidt echo probes a butterfly having a strong
effect, it does not probe the delocalization of this effect, i.e.,
the scrambling. This will be become apparent in Appendix
E, where we investigate an example of regular dynamics
that is apparently chaotic according to the Peres-Loschmidt
echo.

From Proposition 1, we see that the butterfly-flutter
fidelity for V = 1 is small if and only if the entangle-
ment S(ϒB) is extensive. We will now see that the quantum
dynamical entropy exactly measures this quantity asymp-
totically with the number of perturbations k, given a novel
connection to the Peres-Loschmidt echo.
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B. Dynamical entropy

The quantum dynamical entropy was originally intro-
duced as the quantum generalization of the Kolmogorov-
Sinai entropy, which quantifies the asymptotic gain of
information when a classical system is repeatably mea-
sured [3,13–15]. It measures the long-term unpredictability
of a dynamical system, with positivity indicating chaoticity
in the classical case. Quantum mechanically, measure-
ment necessarily perturbs a system and comes with its
own inherent unpredictability. One can account for the
entropy due to a measuring device compared to the pro-
cess itself [14] but a more elegant solution is to define this
quantity in a device-independent way [3,53,69]. Indeed,
classically, Kolmogorov Sinai entropy is the entropy rate
of a stochastic process, so the natural language of the
quantum version of this requires a description of quantum
stochastic processes [33,70]: precisely the process-tensor
formalism detailed in Sec. II.

Formally, dynamical entropy is defined as the asymp-
totic gain in information when additional (measurement)
steps are added to a quantum process,

SDy(ϒ) := lim
k→∞

1
k

S(ϒBk ), (39)

where ϒBk = trR[ϒ] is a marginal process on k time steps,
meaning a process with a given (unitary) dynamical map,
measured every δt seconds. We do not need to specify
what measurement, as the process tensor encodes any pos-
sible measurement protocol, fulfilling precisely the role of
a spatiotemporal density matrix (for details, see Sec. II).
For such an asymptotic quantity to be nonzero, this strictly
requires an infinite-dimensional environment. Poincaré
recurrence would render any finite isolated system to have
finite total entropy in the asymptotic limit. As we consider
unitary dynamics on an isolated finite-dimensional quan-
tum system, we will not take the asymptotic limit precisely.
Instead, we define the kth dynamical entropy,

S(k)Dy(ϒ) := 1
k

S(ϒBk ), (40)

where k is taken to be large but small enough such that
dB = d2k

S � dE ≈ dR. The expression in Eq. (40) is rep-
resented graphically in Fig. 7(b). From this definition and
Proposition 1, we can directly see that a nonzero S(k)Dy is suf-
ficient for volume-law entanglement of |ϒ〉. We note that
as the number of interventions k increases, the size of the
space HB scales exponentially [see Eq. (7)].

Proposition 4.—If the dynamical entropy is nonzero,
then the process |ϒ〉 is volume-law entangled in the split-
ting B : R for all times.

This is apparent from the definitions and a proof is
supplied in Appendix C.

This also approximately holds true if, instead, the k-
dynamical entropy is considered. What is important is that

the dynamical entropy generally exhibits distinct behavior
for area- versus volume-law temporally entangled pro-
cesses. This simple result shows how closely the construc-
tion of dynamical entropy agrees with the first condition
(C1) derived in this work, despite arriving at it from a
starkly different viewpoint—that of the quantum version
of the butterfly effect.

For example, the k-dynamical entropy of a typical pro-
cess, given in Eq. (21), is on average maximal:

S(k)Dy(ϒ
(H)) =

S( 1

d2k
S
)

k

= log(d2k
S )

k
= 2 log(dS). (41)

A more precise typicality bound can be found from
Theorem 3.

Moreover, one can see that summing over a full basis
of butterfly flutters gives a quantity proportional to this
entanglement.

Proposition 5.—Consider a full basis of local unitary
butterfly flutters, X = {Aw1 , Aw2 , . . . , Awk }dB , where the
number of operations at each time in the set is #wi = dS
(for an example construction of this, see Appendix D).
Then, the following relation holds:

S(2)(ϒB) = − log
( 1

d2
B

(
d2

B−dB∑

�x �=�y∈X
| 〈�x|ϒB |�y〉 |2 − dB

))
, (42)

where S(2)(ϒB) is the quantum 2-Rényi entropy.
This is proved in Appendix C. There is a large body of

literature arguing that under certain conditions, both the
Peres-Loschmidt echo [11,12,71,72] and OTOCs [73–75]
decay exponentially across some time regimes for chaotic
systems. Given the close ties between the butterfly-flutter
fidelity and other metrics that we describe in this work,
it is not unreasonable to speculate that the butterfly-flutter
fidelity exhibits similar behavior. Equation (C5) then forms
a relation between dynamical entropy and these conjec-
tured quantum Lyapunov exponents. This is suggestive of
a kind of quantum Pesin’s theorem, [76] although more
needs to be done to understand how and when the butterfly-
flutter fidelity produces an exponential decay and to refine
the notion of quantum dynamical entropy.

To our knowledge, the exact connection of dynamical
entropy to quantum chaos as a sensitivity to perturbation
has not yet been explored in the literature; it has only
been proposed as a generalization of the classical equiv-
alent, Kolmogorov-Sinai entropy. Here, we can essentially
derive dynamical entropy, starting from our principle (C1)
and connecting it to the Peres-Loschmidt echo and other
notions of chaos as a sensitivity to perturbation.

Due to the classical equivalences between Lyapunov
exponents and Kolmogorov Sinai entropy, one might be
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tempted to conflate quantum chaos with a nonzero dynam-
ical entropy. This, however, only accounts for the weakest
of the three conditions (C1)–(C3). Equivalently, it only
allows V in the butterfly-flutter fidelity of Eq. (22) to be
strictly equal to the identity. As we have already discussed
in Sec. III, this is an insufficient charaterization. For exam-
ple, free-fermion dynamics generally exhibit an extensive
dynamical entropy [53], as does dynamics consisting of
SWAP gates, as we detail in Appendix E (both valid up to
finite-dimension constraints). We therefore move onto the
more robust conditions of quantum chaos, based around
spatiotemporal entanglement (C2) and the butterfly-flutter
fidelity (C3).

C. Tripartite mutual information

Here, we will show that the spatiotemporal entangle-
ment (C2), in the single-time case, corresponds to the tri-
partite mutual information signature of chaos as introduced
in Ref. [19], sometimes termed “strong scrambling.”

The tripartite mutual information is a measure between
a subsystem of the input to a quantum channel and some
bipartition of the output. Considering a single-time butter-
fly flutter, as in Fig. 7(c), in our language this corresponds
to

I3(B : R1 : R2) := I(B : R1)+ I(B : R2)− I(B : R), (43)

recalling that HR = HR1 ⊗ HR2 , and where I(A : B) is the
quantum mutual information, defined as

I(A : B) := S(ρA)+ S(ρB)− S(ρAB). (44)

Note that this single-time butterfly flutter protocol process
corresponds exactly to the setup from Ref. [19] when the
initial state is separable across S : E. This is represented in
Fig. 7(c). When the tripartite information given in Eq. (43)
is near minimal, it is argued that the channel is strongly
scrambling. This quantity has been connected to an aver-
age of an infinite-temperature OTOC over a complete basis
of operators [19]; for a similar result, see also Propo-
sition 5. We can in fact show directly that volume-law
spatiotemporal entanglement implies strong scrambling.

Proposition 6.—If the single-intervention process |ϒ〉
is volume-law spatiotemporally entangled in the split-
ting BR1 : R2, then the corresponding channel is strongly
scrambling, i.e., I3(B : R1 : R2) ≈ −2 log(dB).

This is proved in Appendix C.
Given this connection, we can see that one could eas-

ily generalize the tripartite-mutual-information signature
of chaos to a many-time butterfly space rather than single-
time, together with some bipartition of the final pure state
on HR. This may offer new insight into the sensitivity of
many-body systems to multitime interventions.

We will now go on to discuss connections of the
butterfly-flutter fidelity, as in (C3), with previous signa-
tures.

D. Local-operator entanglement and OTOCs

Consider an initially local operator that evolves in time
according to the Heisenberg picture,

Xt = U†
t XUt. (45)

One can compute the Choi state of this object by acting it
on one half of a maximally entangled state on a doubled
space, using the CJI as described in Sec. II,

|Xt〉 =: Xt ⊗ 1 |φ+〉 . (46)

The entanglement of this object across some spatial bipar-
tition is known as the local-operator entanglement and its
scaling in time is considered to be a signature of chaos
[16–18]. In particular, if it scales linearly with time, then
the dynamics cannot be efficiently classically simulated
and linear scaling is conjectured to be characteristic of
nonintegrability [17,18,77–82].

Theorem 2.—Consider the butterfly-flutter fidelity given
in Eq. (22), choosing the set of correction unitaries without
volume-law entanglement, R = RMPO, and the single-
time butterfly flutters chosen to be the identity matrix 1

and local unitary X . Then, if for any initial state, ζ(ϒ) ≈ 1,
then also

S(|Xt〉) ∼ O(log(t)), (47)

characteristic of (interacting) integrable dynamics.
This is proved in Appendix C. By the contrapositive

statement of Theorem 2, we can see that if the local-
operator entanglement scales linearly, the butterfly-flutter
fidelity is small, i.e., chaotic according to our prescription
(C3).

The local-operator entanglement is intimately related to
the OTOC. In Ref. [30] it is shown the OTOC serves as
a probe of local-operator entanglement, with exponential
scaling of the OTOC being a strictly necessary condition
for linear (chaotic) growth of local-operator entangle-
ment. We suspect that there may be strong connections
between a multitime generalization of the OTOC [25], a
kind of multipoint-operator entanglement, and the volume-
law spatiotemporal-entanglement structure as in (C2). We
leave this for future work.

E. Discussion: Chaos and many-body phenomena

Throughout this section, we have shown how the
three conditions (C1)–(C3) encapsulate some of the most
common quantum chaos diagnostics studied in recent
years (summarized in Fig. 2). In contrast to these other
approaches, we have started with a highly intuitive prin-
ciple of chaos as a sensitivity to perturbation, without
appealing to classical limits (which may not be well
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defined in many quantum systems) or heuristic observa-
tions. This leads to a rather direct notion of which signa-
tures are stronger than others and a framework with which
to analyze the chaoticity of a system.

We now make a few comments about how our for-
malism compares to others often considered in many-
body physics. The setup for butterfly flutters, Definition 1,
strongly resembles that of Floquet systems [83]. A Floquet
Hamiltonian is a periodic time-dependent Hamiltonian,
such as that produced by introducing a periodic kick to an
otherwise time-independent Hamiltonian. If, in our con-
struction, we replace the (small) butterfly flutters with
strong global unitaries, they no longer function as a small
perturbation to the process. Instead, they may change the
qualitative behavior of the process, possibly creating chaos
or order. For example, the quantum rotor is clearly a reg-
ular system, whereas the quantum kicked rotor is chaotic
for strong enough kicks [84]. The key difference here is
that a system-wide strong unitary is not classified as a but-
terfly flutter (as in Definition 1), as it is neither weak nor
localized. Considering (C2), a strong global “perturbation”
can change the entanglement structure of a process. Like-
wise, a strong global butterfly acting on an already chaotic
process will likely lead to a similarly chaotic process.

However, this is not always the case. If a butterfly flutter
acts strongly and locally on the whole system plus environ-
ment, we expect that it can break the volume-law spread of
entanglement. In this case, according to the criteria (C2),
the corresponding process – with a global butterfly space
HB – would be trivially “non-chaotic” according to this
choice of entanglement-breaking butterfly flutter. Relat-
edly, it would be interesting to determine the entanglement
structure of systems exhibiting many-body localization
(MBL) [85,86], and measurement-induced phase transi-
tions [87,88]. MBL systems are known to be resistant to
perturbation, the opposite of chaotic according to the prin-
ciples underlying (C1)–(C3). While these two phenomena
have previously been considered surprising, the framework
presented here offers a novel path to systematically study-
ing the mechanisms behind them. Such topics would be
interesting to investigate in more detail in future work.

V. MECHANISMS FOR CHAOS

So far, in Sec. III, we have proposed a hierarchy of
conditions on quantum chaos, inspired by the principle
of chaos as a sensitivity to perturbation. This has culmi-
nated in the metric of the butterfly-flutter fidelity, closely
connected to the spatiotemporal entanglement of the cor-
responding process |ϒ〉. Then, in Sec. IV, we have shown
how this connects to and encompasses a range of exist-
ing dynamical signatures. Looking at the summary of this
work (see Fig. 1), we have yet to discuss the mechanisms

of chaos on the left of this figure; the underlying proper-
ties of the dynamics that lead to chaotic phenomena in a
quantum system.

We will now analyze two broad classes of dynamics
and show through these that randomness typically leads
to chaos. Consider dynamics that is globally random.
More formally, we independently sample unitary matri-
ces from the Haar probability measure Ui ∼ H between
each intervention in the butterfly flutter protocol given
in Eq. (16). H is the unique unitarily invariant measure,
meaning that if any ensemble {Ui} is distributed according
to the Haar measure, then so is {WUi} and {UiW} for any
unitary W. Considering such random unitaries allows one
to derive strong concentration-of-measure bounds. One
such famous example for quantum states says that small
subsystems of large random pure states are exponentially
likely to be maximally mixed [8]. Similarly, processes
sampled through Haar-random evolution between inven-
tions are highly likely to look like the completely noisy
process, given a large environment dimension [59,60] (see
Appendix F). By a completely noisy process, we mean that
any measurements result in equal weights, corresponding
to the identity matrix Choi state as in Eq. (21).

However, strictly Haar-random evolution is not entirely
physical, with the full exponentially large Hilbert space not
practically accessible—a “convenient illusion” [89]. On
the other hand, quantum circuits with finite depth repre-
sent a far more reasonable model for realistic dynamics.
Moreover, one can simulate randomness up to the first t
moments using unitary design circuits. An ε-approximate
t-design can formally be defined such that

D (Eμtε

{
(U†)⊗s(X )U⊗s}− EH

{
(U†)⊗s(X )U⊗s}) ≤ ε,

for all s ≤ t, some appropriate metric D, and any observ-
able X ∈ H⊗s. In words, the s-fold channel of a t-design
needs to approximately agree with perfectly Haar-random
sampling. Such design circuits therefore simulate full uni-
tary randomness but are much more akin to real physical
models. For example, an ε-approximate 2-design can be
generated efficiently from two-qubit gates only in poly-
nomial time [90]. This is equivalent to a model of two
different two-body interactions occurring randomly in a
system [60].

We will now give concentration-of-measure bounds
both for unitary designs and for full Haar-random evolu-
tion. We will see that sampling from these random dynam-
ics is highly likely to produce a process with volume-law
spatiotemporal entanglement, as in (C2).

Theorem 3.—(Most Processes Are Chaotic) Consider a
pure process |ϒ〉 generated by random dynamics, either
entirely Haar random, denoted by H, or according to an ε-
approximate t-design, denoted by με−t. Then, for any R1 ⊂
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R such that dR1 ≈ dS, and for any δ > 0 and 0 < m < t/4,

PUi∼μ
{

log(dBR1)− S(2)(ϒBR1) ≥ Jμ(δ)
}

≤ Gμ(δ). (48)

where for a process generated from independent Haar-
random evolution,

JH(δ) = log(dBR1(B + δ)+ 1) ≈ dBR1

(
1
dR

+ δ

)
, and

GH(δ) = exp[−Cδ2] ≈ exp
[
− (k + 1)dR

8dB
δ2
]

,

(49)

while for that generated from an ε-approximate unitary
t-design,

Jμε−t(δ) = log(dBR1δ + 1) ≈ dBR1δ, and

Gμε−t(δ) = F(dB, dR, m, t, ε)
δm .

(50)

The exact definitions of B, C, and F are provided in Eqs.
(F3), (F8) and (F10), respectively. The approximations in
Eqs. (F2) and (F3) are valid for dR � dB � 1 and for
small δ.

The proof of this theorem builds on results from Refs.
[59,60] and can be found in Appendix F. The result given
in Eq. (F1) states that random dynamics are likely to lead to
a volume-law spatiotemporal entanglement, according to a
small butterfly flutter in comparison to the total isolated
system. In particular, for Haar-random dynamics, Eq. (F2)
indicates an exponentially small probability that a single
sampling deviates strongly from maximal entanglement in
the splitting BR1 : R2. Further, this result is valid for any
choice of HR1 , given that it is small enough in comparison
to the full system HR. This directly implies that ran-
dom dynamics typically have volume-law spatiotemporal
entanglement.

Note that the bounds given here are for the indepen-
dently sampled evolution between butterfly times but we
note that techniques in Ref. [59] can be used to prove sim-
ilar bounds for repeated dynamics, i.e., a single sample
of a unitary evolution matrix that describes all dynamics
between interventions.

Similarly, random circuits yield a related bound in terms
of how well they approximate a unitary design. In this case,
Eq. (F3) is a polynomially small bound and in practice it
can be optimized over the parameter m. The key point is
that both of these probability bounds are small for dE �
dBR1 .

While these concentration-of-measure bounds are for
the spatiotemporal entanglement of |ϒ〉, similar bounds
can also be proved for other dynamical signatures that
derive from this, such as those considered in Sec. IV.
For example, dynamical entropy is likely to be extensive

according to this result. This is immediate to see from
Theorem 3 by choosing HR1 to be empty. This therefore
means that repeated measurements of a process generated
from random evolution give almost maximal information.
That is, one typically only sees approximately maximally
noisy measurement results.

We have shown that Haar-random evolution, as well
as that generated by ε-approximate t-designs, constitute
mechanisms that are highly likely to produce chaos. This is
clearly not the only internal mechanism that causes chaotic
phenomena [cf. Fig. 1(a)]. The next step will be to under-
stand how a continuous quantum evolution, defined by
time-independent Hamiltonians, can lead to chaos.

For example, the so-called Wigner-Dyson level-spacing
distribution is often conflated with quantum chaos [2,5].
This is the empirical observation that if one computes the
distribution between next-neighbor energy levels, it fol-
lows a characteristic form when the semiclassical limit
of the Hamiltonian is chaotic. An interesting connection
may be found in entanglement spectra, which can be con-
nected to a sense of irreversibility of the dynamics [91].
Another example is the ETH, which proposes that certain
“physical” observables look thermal according to individ-
ual eigenstates of certain Hamiltonians. Often one calls
such Hamiltonians chaotic and the ETH leads to a deter-
ministic (pure-state) foundation of statistical mechanics
results.

It would be interesting to determine how (if) these
mechanisms lead to volume-law spatiotemporal entangle-
ment within a process, to prove that they are mechanisms
of chaos as in Fig. 1. Indeed, such a connection would
firmly cement quantum chaos as a foundational determin-
istic principle underlying statistical mechanics, in perfect
analogy with the classical case. Volume-law entangle-
ment of eigenstates is already a key feature of the strong
ETH. In addition, for a wide range of specific Hamiltonian
classes, Ref. [92] determines that volume-law entangle-
ment is highly typical. In this context, a key question will
be how (many-body) quantum scars play into this, i.e.,
when some eigenstates of an apparently chaotic Hamil-
tonian do not satisfy the ETH. Such eigenstates can have
different entanglement scaling [93,94].

Finally, the typicality bounds presented here have foun-
dational implications regarding the prevalence of Marko-
vianity in nature, which we now discuss in our concluding
remarks.

VI. CONCLUSIONS

Starting from a theory-independent notion of chaos as
the butterfly effect, in this work we have identified a
series of conditions on quantum chaos (Sec. III), with the
strongest being measured by the butterfly-flutter fidelity,
shown that these proposed conditions generalize and hence
unify a range of previous diagnostics (Sec. IV), and shown
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how a number of mechanisms lead to quantum chaos (Sec.
V). This framework is summarized in Fig. 1.

The results of Refs. [59,60] state that processes gen-
erated from random dynamics are highly likely to be
almost Markovian, for large enough systems. Paradoxi-
cally, Theorem 3 states that perturbations in such processes
have a strong impact in the environment. That is, most ran-
dom processes are chaotic. To make sense of this, note that
Markovianity is with respect to a restricted measurement
space, often taken to be small. Then, when a process is
highly chaotic, a butterfly impacts the future pure state in
such a strong and nonlocal way that for any small subsys-
tem it looks entirely noisy and hence Markovian on this
future measurement space. Given that, in nature, chaos is
the rule, not the exception, this helps to address the fun-
damental question of why Markovian phenomena are so
prevalent in nature [40,41,44,59,60]: chaotic processes on
large systems look Markovian with respect to interventions
on a much smaller subsystem. We anticipate that this may
be a key factor in understanding the emergence of thermal-
ization from underlying quantum theory; in particular, the
necessary loss of memory in the process of thermalization.
It would be interesting to investigate this further in a future
work.

This is related to Refs. [95,96], where it is shown
that states that are too entangled—i.e., most states in
the full Hilbert space—are not useful for measurement-
based quantum computation. For such states that are
too entangled, one can replace the local statistics with
“coin flipping”—purely classical stochasticity. It is, how-
ever, very difficult to produce large highly entangled
states. Usefulness is not necessarily proportional to the
resources required to create a state. Our results in Sec. V
are a spatiotemporal version of this. Most processes are
so chaotic that future measurements statistics constitute
purely classical noise. What is needed, then, to have com-
plex, quantum non-Markovian phenomena? We propose
that it is “between order and chaos” where these inter-
esting processes lie [97]. This would correspond to pro-
cesses with sub-volume-law (logarithmic) spatiotemporal-
entanglement scaling. This is intrinsically tied to criticality
in the spatial setting, and the multiscale entanglement
renormalization ansatz (MERA) tensor network [98]. Cur-
rent research explores a process-tensor ansatz, inspired by
MERA, structurally exhibiting long-range (polynomially
decaying) temporal correlations [99].

A relevant problem that we have not tackled in this
work is the question of how (if) classical chaos emerges
from quantum chaos in some limit. While, historically,
this has been the main motivation for understanding quan-
tum chaos [2,4,5], here we have developed a genuinely
quantum notion of chaos, of interest for the wide range
of phenomena and modern experiments in many-body
physics with no classical analogue. It is therefore an
open question how exactly to connect this to the classical

picture. Modern notions of the transition to classicality
may be integral to understanding this, such as quantum
Darwinism [100] or classical stochasticity arising from
quantum theory [42–44]. Related to this is Ref. [101],
where it is shown that circuits generated solely by Clifford
gates, or doped with only a few non-Clifford gates, are not
chaotic according to a generalized OTOC chaos signature.
It would be interesting to check what kind of entanglement
structure a (doped) Clifford circuit has, i.e., whether this
statement is consistent with the structure of chaos that we
have revealed in this work. This would have implications
regarding whether any chaotic quantum process, satisfying
the strongest condition (C3), can be simulated classically.

It is difficult to directly convert from classical to
quantum chaos, due to the linearity of isolated quantum
mechanics. The novelty of our approach is that it treats
chaos itself as a primitive concept, independent of whether
we adopt a classical or quantum formalism. Classically,
this reduces to a nonlinearity of the dynamics in phase
space. On the quantum side of things, we have shown
that the spatiotemporal-entanglement structure directly sat-
isfies this principle: perturb a small part of a system in
the past and see a complex nonlocal effect in the future.
From this realization, we have shown that previous diag-
nostics fit perfectly within this framework. Further, one
can systematically compare our framework with any other
quantum chaos diagnostic and use the new metrics to
tackle a wide range of relevant problems in the field of
many-body physics.
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APPENDIX A: THE PROCESS TENSOR

Here, we supplement the details of the background given
in Sec. II, in order to describe how the process tensor, a
familiar object in open quantum systems, can be derived
from the pure process tensor |ϒ〉. In summary, the process
tensor ϒB corresponds to the reduced generally mixed-
state description of the pure process |ϒ〉, when the final
state on the space HR is traced over at the end.

Measurement is necessarily invasive in quantum
mechanics. Therefore, to construct such a multitime
description, we need to represent quantum measurements
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in a way that includes the resultant state. Arbitrary inter-
ventions are defined by the action on HS by external
instruments, which mathematically are trace nonincreas-
ing, completely positive (CP) and time-independent maps,
A. If a instrument is also trace preserving (TP), then it is
deterministic; e.g., a unitary map or a complete measure-
ment [a positive operator-valued measure (POVM)]. If an
instrument is trace decreasing, then it is nondeterministic;
e.g., a particular measurement result. The trace of the out-
going state corresponds to the probability of this outcome
occurring out of a complete measurement described by the
set J = {Axi},

P(xj |J ) = tr[ρ ′] := tr[Axj (ρ)]. (A1)

Note that in this work, calligraphic font Latin letters are
generally used for such superoperators—i.e., a map of a
(density) operator—while standard-font uppercase Latin or
lowercase Greek letters are used for operators (matrices).

Similarly, for multiple consecutive interactions of a sin-
gle quantum system at different times, the (in general,
subnormalized) outgoing state is

ρ ′ = trE[UkAxkUk−1 . . .U1Ax1(ρ(t0))], (A2)

where Uj (σ ) := e−iH(tj −tj −1)σeiH(tj −tj −1) is the unitary
superoperator describing the evolution of the dilated sys-
tem environment (HS ⊗ HE) and the trace is the partial
trace over the environment (HE). For nondeterministic
instruments, the trace of this final state gives the proba-
bility of measuring a sequence of outcomes x1, x2, . . . , xk.

For rank-1 instruments as considered throughout this
work, Axi(·) = Axi(·)A†

xi , where Axi are defined as in
Eq. (3). That is, by rank-1 we mean that there is only a
single Kraus operator for the CP map.

From |ϒ〉 in Eq. (5), one can define the reduced state
only on the “butterfly space” of interventions B,

ϒB := trR[|ϒ〉 〈ϒ |]. (A3)

ϒB is called a process tensor [31–33] (also called a “quan-
tum comb” [35,102] or “process matrix” [37,103]), and
is used in, e.g., determining exact unambiguous multitime
properties of open quantum systems. For one, it admits a
multitime Born rule [102,104],

P(xk, . . . , x1|Jk, . . . ,J1) = tr[ρ ′] =: tr[ϒBAT
�x ], (A4)

where we have recalled the definition of the outgoing
reduced state ρ ′ in Eq. (A2) and defined the instrument ten-
sor AT

�x , equal to |�x〉 〈�x|, for time-local rank-1 instruments.
It is not relevant here to define AT

�x in full generality (for
more details, see, e.g., Ref. [33]).

Regarding normalization of the process tensor, and of
instruments, note that to get well-defined probabilities in

the generalized Born rule of Eq. (A4), we take the instru-
ments to be supernormalized and the process to be normal-
ized. For example, a sequence of unitary maps should give
unit probability for any process tensor ϒB. This is immedi-
ate to check for, e.g., the maximally noisy process, which
has a uniformly mixed reduced Choi state on HB,

tr[UT
kϒ

(H)
B ] = 1

d2k
S

tr[Uk] != 1. (A5)

This locally noisy process is relevant to this work: see the
discussion around Eq. (21) and see Sec. V.

APPENDIX B: PROOF OF RESULTS FROM
SEC. III

Here, we restate all of the formal results from Sec. III,
together with a proof for each.

Proposition 1.—For any two orthogonal butterflies, one
obtains (approximately) orthogonal final states on HR if
and only if |ϒ〉 is (approximately) maximally entangled
across the bipartition B : R.

Proof.—Assume that |�x〉 and |y〉 are the Choi states of
two multitime butterflies, with 〈�x|�y〉 = 0. First, assume
that | 〈ϒR|�x|ϒR|�y〉 |2 = ε ≈ 0. Then,

| 〈ϒR|�x|ϒR|�y〉 |2 = | trR[〈�y|ϒBR〉 〈ϒBR|�x〉]|2 (B1)

= | 〈�y|ϒB|�x〉 |2 = ε, (B2)

given that |�x〉 and |�y〉 are projections on the butterfly space
alone. Given that |ϒ〉 is a pure state, here we have used its
Schmidt decomposition as in Eq. (12),

〈ϒ |�x〉〈�y|ϒ〉 =
∑

i

λi 〈ϒ(αi)
B | 〈ϒ(βi)

R | (|�x〉B〈�y|B)

×
∑

j

λ∗
j |ϒ(αj )

B 〉 |ϒ(βj )
R 〉

=
∑

i

|λi|2〈�y |ϒ(αi)
B 〉 〈ϒ(αi)

B | �x〉

= 〈�y|ϒB |�x〉 . (B3)

Now, if this is true for any orthogonal butterflies |x〉 and
|y〉, the only solution to Eq. (B2) is if ϒB ∝ 1 + ε�,
where� is traceless with bounded operator norm, such that
‖ε�‖ ≤ ε. In the other direction, if |ϒBR〉 is approximately
maximally entangled, then ϒB = 1 + ε� and so

| 〈�y|ϒB|�x〉 |2 = | 〈�y|1 + ε�|�x〉 |2 = O(ε2) ≈ 0. (B4)

�
Theorem 1.—(Random Butterflies Are Likely to Detect

Spatiotemporal Entanglement) For a Haar-random choice
of orthogonal butterflies X = {|�x〉 , |�y〉} across the com-
bined space HB ⊗ HR1 for any choice of space HR1 , the
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fidelity of the final state is likely to be sensitive to the
volume-law property of |ϒ〉. In particular, for δ > 0,

PX∼H

{| 〈ϒR2|�x|ϒR2|�y〉 |2 ≥ δ
}

�
tr[ϒ2

BR1
] − 1/(dBR1)

δ
,

(19)

where dBR1 = dBdR1 . This inequality is slightly approxi-
mated for large d2

BR1
, such that d2

BR1
± 1 ≈ d2

BR1
.

Proof.—From the Schmidt decomposition in the split-
ting BR1 : R2, the analogue of Eq. (B3), one can equiva-
lently write

|〈�y|ϒBR1 |�x〉|2 = | 〈ϒR2|�x|ϒR2|�y〉 |2. (B5)

We will then use the following result, which we prove
below using an application of Weingarten calculus. For
the Haar-random sampling of two orthogonal projections
{|�x〉 , |�y〉}, the expectation value is

EX∼H

{|〈�y|ϒBR1 |�x〉|2
} =

�x⊥�y
d2

BR1
(tr[ϒ2

BR1
] − 1/dBR1)

d2
BR1

− 1

≈ tr[ϒ2
BR1

] − 1/dBR1 , (B6)

where we take d2
BR1

− 1 ≈ d2
BR1

in the second line.
Two Haar-random orthogonal states {|�x〉 , |�y〉}H can be

generated from any other, e.g., computational, orthogonal
states {|0〉 , |1〉}, given a random unitary matrix U ∈ H, by
identifying |�x〉 = U |0〉 and |�y〉 = U |1〉. Define �(2)

H
(A) to

be the twofold average of the tensor A ∈ H ⊗ H. We may
use Weingarten calculus to compute it explicitly [25]:

�
(2)
H
(A) :=

∫
dUU ⊗ U(A)U†⊗U†

= 1
d2 − 1

(
1 tr[A] + S tr[SA] − 1

d
S tr[A] − 1

d
1 tr[SA]

)
,

(B7)

where S is the SWAP operation. By choosing A ≡ ϒBR1 ⊗
ϒBR1 , we can rewrite the left-hand side of Eq. (B6) as

LHS =
∫

dUH 〈�x|UϒBR1U†|�y〉 〈�y|UϒBR1U†|�x〉 |

= 〈�x| 〈�y|
(∫

dUHU⊗2(ϒBR1 ⊗ ϒBR1)U
†⊗2
)

|�y〉 |�x〉

= 〈�x| 〈�y|�(2)
H
(ϒBR1 ⊗ ϒBR1) |�y〉 |�x〉

= 〈�x| 〈�y|
( 1

d2
BR1

− 1

(
1 tr[ϒBR1 ⊗ϒBR1 ]

+ S tr[S(ϒBR1 ⊗ϒBR1)] − 1
dBR1

S tr[ϒBR1 ⊗ϒBR1 ]

− 1
dBR1

1 tr[S(ϒBR1 ⊗ϒBR1)]
)

|�y〉 |�x〉 . (B8)

For the first trace in this equation, we can directly evaluate

tr[ϒBR1 ⊗ ϒBR1 ] = tr[ϒBR1 ]2 = 1. (B9)

For the second trace,

tr[S(ϒBR1 ⊗ ϒBR1)] = tr(ϒ2
BR1
). (B10)

Then, by the orthogonality of the butterflies, 〈�x| 〈�y|1 |�y〉 |�x〉
= 0, while 〈�x| 〈�y|S |�y〉 |�x〉 = d2

BR1
, and so only the second

and third terms in the final line of Eq. (B8) survive. Using
this, we arrive at Eq. (B6).

We will now use this to prove Theorem 1. We can
directly apply Eq. (B6) to Markov’s inequality [105],

PX∼H

{
| 〈ϒR2|�x|ϒR2|�y〉|2 ≥ δ

}
= P

{|〈�y|ϒBR1 |�x〉|2 ≥ δ
}

≤ EX∼H

{|〈�y|ϒBR1 |�x〉|2
}

δ

≈ tr[ϒ2
BR1

] − 1/(dBR1)

δ
. (B11)

�
Proposition 2.—If the butterfly-flutter fidelity given in

Eq. (22) is small, ζ ≈ 0, then the process |ϒ〉 has volume-
law spatiotemporal entanglement.

Proof.—We will prove this via the contrapositive state-
ment. Assume that |ϒ〉 has area-law spatiotemporal entan-
glement. Then, the conditional states |ϒR|�x〉 and |ϒR|�y〉
can be represented efficiently by an MPS. Then, they can
be prepared from an auxiliary product state |ψ0〉 using
efficient unitaries V�x and V�y ,

|ϒR|�x〉 = V�x |ψ0〉 and |ϒR|�y〉 = V�y |ψ0〉 , (B12)

i.e., both V�x and V�y have an MPO representation with a
constant bond dimension. It directly follows that for V =
V†

�xV�y ∈ RMPO,

ζ(ϒ) = 1. (B13)

�
Proposition 3.—If the butterfly-flutter fidelity (22) is

not small (nonchaotic), ζ ≈ 1, but the process |ϒ〉 has
volume-law spatiotemporal entanglement, the process can
be written in terms of simple dynamics with a volume-law
entangled initial state.

Proof.—Consider that the butterfly-flutter fidelity is ζ ≈
1, for any two butterflies with Choi states |�xi〉 and |�xj 〉
from some basis of butterflies {|�xi〉}d2

B
i=1. This means that
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a simple (low-depth) unitary Vij in Eq. (22) approximately
“corrects” the final states,

| 〈ϒR|�xi | Vij |ϒR|�xj 〉 |2 ≈ 1, (B14)

where, as usual, we define a simple unitary as one with
an efficient MPO representation, such that it cannot cre-
ate volume-law entanglement from an area-law state. Now
assume that |ϒ〉 is volume-law spatiotemporally entan-
gled. In particular, this means that the final states |ϒR|�xi〉
and |ϒR|�xj 〉 are both volume-law entangled quantum states.
As ϒR|�xi and ϒR|�xj are connected via a simple circuit, we
can write each of them in terms of some intermediate
state

|ϒR|�xi〉 = Vi |R0〉 , (B15)

where Vi is a simple unitary but |R0〉 is volume-law

entangled. As this is true for any |�x〉 ∈ {|�xi〉}d2
B

i=1, this
means that the full purified process can be written
as

|ϒ〉 =
∑

m

λm(1B ⊗ Vm) |BmR0〉 (B16)

=
∑

m

λm(|Bm〉 〈Bm| ⊗ Vm) |B0R0〉 , (B17)

where, by gauge freedom, |B0R0〉 is the initial state of the
process [106]. However,

∑
m λm(|Bm〉 〈Bm| ⊗ Vm) is sim-

ple dynamics, in that it can be simulated efficiently with an
MPO. �

APPENDIX C: PROOFS FROM SEC. IV

Proposition 4.—If the dynamical entropy is nonzero,
then the process |ϒ〉 is volume-law entangled in the split-
ting B : R for all times.

Proof.—For a given bond dimension χ of a process
|ϒ〉, in the bipartition B : R, the entropy of a reduced
state is upper bounded by that of a uniform eigenvalue
distribution,

S(ϒB) ≤ −
χ∑

i=1

1
χ

log(
1
χ
) = log(χ). (C1)

Then, recalling the characteristic scaling of the bond
dimension for different entanglement classes (see Sec. II),
for large k, S(ϒ) is bounded by

SDy(ϒ
(vol)
B ) ≤ lim

k→∞
log(d2k

S )

k
= 2 log(dS) (C2)

for volume-law entanglement scaling. Otherwise, for area-
law and sub-volume-law, respectively,

S(ϒ(area)
B ) ≤ lim

k→∞
log(D)

k
= 0, and (C3)

S(ϒ(subvol)
B ) ≤ lim

k→∞
log(dlog(k)

S )

k
= 0, (C4)

where the second limit is computed via L’Hôpital’s rule.
Hence S(ϒB) can only be nonzero for a volume-law
entangled process. �

Proposition 5.—Consider a full basis of local unitary
butterfly flutters, X = {Aw1 , Aw2 , . . . , Awk }dB , where the
number of operations at each time in the set is #wi = dS
(for an example construction of this, see Appendix D).
Then, the following relation holds:

S(2)(ϒB) = − log

⎛

⎝ 1
d2

B

⎛

⎝
d2

B−dB∑

�x �=�y∈X
| 〈�x|ϒB |�y〉 |2 − dB

⎞

⎠

⎞

⎠ ,

(42)

where S(2)(ϒB) is the quantum 2-Rényi entropy.
Proof.—From the definition of the quantum 2-Rényi

entropy,

S(2)(ϒB) = − log
(

tr[ϒ2
B]
)

= − log
( 1

d2
B

d2
B∑

�x,�y
| 〈�x|ϒB |�y〉 |2

)
, (C5)

where we have taken into account the supernormalization
of instruments as in Eq. (11). Assuming that the butterfly
flutters are unitary, | 〈�x|ϒB |�y〉 |2 = 1, and so

S(2)(ϒB) = − log
( 1

d2
B

d2
B−dB∑

�x �=�y
| 〈�x|ϒB |�y〉 |2

−
dB∑

�x
| 〈�x|ϒB |�x〉 |2

)

= − log

⎛

⎝ 1
d2

B

⎛

⎝
d2

B−dB∑

�x �=�y
| 〈�x|ϒB |�y〉 |2 − dB

⎞

⎠

⎞

⎠

⎞

⎠ .

(C6)

�
Proposition 6.—If the single-intervention process |ϒ〉

is volume-law spatiotemporally entangled in the split-
ting BR1 : R2, then the corresponding channel is strongly
scrambling, i.e., I3(B : R1 : R2) ≈ −2 log(dB).

Proof.—Assuming that |ϒ〉 is volume-law entangled,
then S(ϒB) ≈ log(dB), S(ϒR1) ≈ dR1 , and, in particular,
I(B : R1) = I(B : R2) ≈ 0. Then, from the definition of
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quantum mutual information, we have that

I3(B : R1 : R2) = I(B : R1)+ I(B : R2)− I(B : R)

≈ −I(B : R)

= −S(ϒB)− S(ϒR)+ S(ϒBR)

≈ −2 log(dB), (C7)

where we have used that S(ϒBR) = 0, as it is an iso-
lated system, and that S(ϒB) = S(ϒR) = log(dB), given
that dB < dR and that, for unitary dynamics, information
is preserved for a single-step process. �

Theorem 2.—Consider the butterfly-flutter fidelity given
in Eq. (22), choosing the set of correction unitaries without
volume-law entanglement, R = RMPO, and the single-
time butterfly flutters chosen to be the identity matrix 1

and local unitary X . Then, if for any initial state, ζ(ϒ) ≈ 1,
then also

S(|Xt〉) ∼ O(log(t)), (47)

characteristic of (interacting) integrable dynamics.
Proof.—For the two butterfly flutters X and 1, the

butterfly-flutter fidelity in Eq. (22) is equal to

ζ(ϒ) := tr[VU |ψ〉 〈ψ | X †U†]. (C8)

If we enforce that ζ(ϒ) != 1 for any initial state, then this
means that

X †U†VU != 1, (C9)

which directly implies that the correction unitary is equal
to

V = UXU†=X−t.

Now, as we have assumed that V ∈ RMPO, this means that
as an efficient MPO, X−t has bond dimensions that scale
at most logarithmically, for any t. This also means that the
MPO representation of Xt has restricted bonds. Finally, this
equivalently implies that the Choi state of the operator has
a restricted bond dimension, for any t:

S(|Xt〉) ∼ O(log(t)). (C10)

�

APPENDIX D: CONSTRUCTION OF A LOCAL
BASIS OF MULTITIME UNITARY INSTRUMENTS

To construct a basis of unitary butterflies, one can carry
out the following procedure:

(1) Choose any orthonormal basis of unitary matrices

{σ (�)i }d2
S

i=1 for each time t�:

tr[σ (�)i σ
(�)
j ] = dSδij . (D1)

For example, this could be the generalized Pauli
matrices [107]. These are taken to act on the system
Hilbert space HS(t�).

(2) Using single-time CJI (see Sec. II and Fig. 3), map
these operators to states by having them act on half
of a maximally entangled state on the doubled space
HS(t�) ⊗ HS(t�)′ :

|x(�)i 〉 := (σ
(�)
i ⊗ 1) |φ+〉S(t�)S′(t�) . (D2)

The orthonormality condition in Eq. (D1) carries
over to this representation:

〈x(�)i |x(�)j 〉 = dSδij . (D3)

(3) Do this for every time to arrive at a full basis
for the butterfly space HB ≡ Ho

S(tk)
⊗ Hio

S(tk−1)
· · · ⊗

Hio
S(t2)

⊗ Hio
S(t1)

, together with some portion of the
final state, HR1 :

{|�x′
i〉}

d2
BR1

i

:=
{
|x(0)i0 〉 ⊗ |x(1)i1 〉 ⊗ · · · ⊗ |x(k)ik 〉

}dR1 ,dS ,...,dS

i0,i1,...,ik=1
.

This basis is local in time.

APPENDIX E: THE LINDBLAD-BERNOULLI
SHIFT

Here, we consider a somewhat pathological example
that is not chaotic, yet looks so for many of the usual diag-
nostics. First proposed by Lindblad [3] as a quantum coun-
terpart to the Bernoulli-shift classical stochastic process,
the Lindblad-Bernoulli shift describes a discrete quantum
process that cyclically permutes an n-body HS ⊗ HE state,
together with some local unitary L on the HS state:

U(φ1 ⊗ φ2 ⊗ · · · ⊗ φn) = (Lφ2L†)⊗ · · · ⊗ φn ⊗ φ1.
(E1)

We take the total system size n to be large, compared to
the number of time steps k that we will consider, such that
states fed into the process are essentially “lost” to the envi-
ronment. Additionally, we take the total initial HS ⊗ HE
state to be in a product state, |ψ〉SE = φ1 ⊗ · · · ⊗ φn.

Intuitively, this system is highly regular. It simply cycles
through different states in a straightforward manner, with-
out any scrambling of local information. Any information
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put into the process on the system level will never return
from the large environment HE . Indeed, while this process
has a maximal B : R entanglement (C1), it is not volume-
law spatiotemporally entangled (C2) as the Choi state is a
product state, which we will now show.

For a single time step, the reduced map� is uncorrelated
with any other time step, where

�(ρ) := trE(Ui(|ψSE〉 〈ψSE|)). (E2)

Then, by the CJI, this channel acting on one half of a
maximally entangled state gives its Choi representation,

�i ⊗ 1
(|φ+〉 〈φ+|) = LφiL†⊗ 1

dS
. (E3)

Then, the total process Choi state, for k < n time steps, is

ϒ(LB) =
k⊗

i=1

(
LφiL†⊗ 1

dS

)
. (E4)

Looking at the Peres-Loschmidt echo for this example,

ζ ′(ϒ(LB),XLE)| = |〈W⊗k
ε |ϒ(LB)|1⊗k〉|2

=
k∏

i

|〈Wε |LφiL†⊗ 1

dS
|1〉|2

=
k∏

i

| 〈φ+| (W†
ε⊗1)(LφiL†⊗ 1

dS
) |φ+〉 |2

=
k∏

i

| tr[L†W†
εLφi]|2

≤
k∏

i

| tr[L†W†
εL] tr[φi]]|2

= | tr[Wε]|2k = (1 − ε)2kdB ≈ 0, (E5)

where |φ+〉 is the unnormalized d2
S-dimensional maximally

entangled state on the space Ho
S ⊗ Hi

S, which is equal to
the vectorized identity matrix. In the final line, we have
used that for positive operators, tr(XY) ≤ tr(X ) tr(Y), φi is
a density matrix and the weakness of the unitary perturba-
tion |〈Wε |1〉| = tr[Wε] = (1 − ε)dS. Recall that the prime
on ζ means that we neglect any correction unitary HR,
setting it to V = 1. From the smallness of Eq. (E5), we
see that ζ ′ for the Peres-Loschmidt echo misclassifies this
example as chaotic. It detects that the butterfly orthogo-
nalizes the entire final state on HR but not that this effect
scrambles throughout HR.

Adding a correction unitary V of consisting of a sin-
gle layer of k entirely local gates, the full butterfly-flutter
fidelity given by ζ in Eq. (22) will correctly detect the

Lindblad-Bernoulli shift as non-chaotic, with ζ = 1. This
is because V will act to align the part of the environment
where the perturbation effect resides. For simplicity, we
consider ζ , where the butterflies |�x〉 and |�y〉 correspond to
complete measurements and independent preparations at
each time step, inputting pure orthogonal states ψx

i or ψy
i

at time ti. An analogous computation to Eq. (E5) similarly
reveals the apparent chaoticity of the Lindblad-Bernoulli
shift according to ζ if the correction unitary is chosen to
trivially be the identity matrix. However, if we allow V to
be a unit-depth circuit, from Eq. (22) we arrive at

ζ(ϒ(LB)) = sup
V∈RMPO

(
|〈ϒ(LB)

R|�x |V|ϒ(LB)
R|�y 〉|2

)

= sup
V∈RMPO

(
|〈ψ ′

SE|�x|V|ψ ′
SE|�y〉|2

)

= sup
V∈RMPO

| 〈ψx
1 · · ·ψx

kφk+1 · · ·φn|

V |ψy
1 · · ·ψy

k φk+1 · · ·φn〉 |2 = 1, (E6)

where in the final line V is chosen in the supremum to
align the k orthogonal sites of the final state with local uni-
taries, rendering |ψx

i 〉 = |ψy
i 〉. This value being equal to

one is indicative of the regularity of the dynamical system
according to (C3). This example illustrates the advan-
tage of the complete quantum chaos diagnostic defined in
Eq. (22). If the effect of the butterfly flutter spreads in a
complex way in the final state, then no simple V will be
able to completely align the final states. This is what the
scrambling criterion (C2) distinguishes.

Much like the Peres-Loschmidt echo, dynamical entropy
cannot tell that the Lindblad-Bernoulli shift is regular.
From the Choi representation given in Eq. (E4), we arrive
immediately at a nonzero value,

S(k)Dy(ϒ
(LB)) =

kS(Vφi ⊗ 1
dS
)

k
= log(dS). (E7)

In fact, Lindblad originally introduced this as a simple
example of a chaotic process, given that it is unpredictable
under repeated measurements [3]. The stronger conditions
(C2)–(C3) show directly that he was mistaken and that this
dynamics is highly regular.

We note that in Ref. [108] an example similar to
the Lindblad-Bernoulli shift can be found, with dynam-
ics generated by Chebotarev-Gregoratti Hamiltonians.
These models would exhibit similar properties of apparent
chaoticity according to the Peres-Loschmidt echo but for
an infinite environment and valid for continuous time evo-
lution. We have examined the simpler Lindblad-Bernoulli
shift here as it is comparably instructive, and also to
remain within the paradigm of finite-dimensional isolated
quantum systems.
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APPENDIX F: TYPICAL QUANTUM PROCESSES
AND THEIR ENTANGLEMENT STRUCTURE

Here, we explain and utilize the main results from Refs.
[59,60], to prove concentration-of-measure bounds for typ-
ical processes. These results state that processes generated
from random evolution—be it fully Haar random or from
an ε-approximate t-design—are likely to look Markovian
when one only has access to repeated measurements on
a small subsystem compared to the full unitarily evolving
isolated system. In order to prove this result, Refs. [59,60]
argue that in processes generated from random evolution,
the Choi state is typically close to being maximally mixed
and therefore has little memory. For us, this means directly
that the purified process (as described in Sec. II) must be
volume-law entangled. The following result will therefore
follow rather directly from the proofs of Refs. [59,60].

Theorem 3.—(Most Processes Are Chaotic) Consider a
pure process |ϒ〉 generated by random dynamics, either
entirely Haar random, denoted by H, or according to an
ε-approximate t-design, denoted by με−t. Then, for any
R1 ⊂ R such that dR1 ≈ dS, and for any δ > 0 and 0 < m <

t/4,

PUi∼μ
{

log(dBR1)− S(2)(ϒBR1) ≥ Jμ(δ)
}

≤ Gμ(δ). (48)

where for a process generated from independent Haar-
random evolution,

JH(δ) = log(dBR1(B + δ)+ 1) ≈ dBR1(
1
dR

+ δ), and

GH(δ) = exp[−Cδ2] ≈ exp[− (k + 1)dR

8dB
δ2],

(49)

while for that generated from an ε-approximate unitary t-
design,

Jμε−t(δ) = log(dBR1δ + 1) ≈ dBR1δ, and

Gμε−t(δ) = F(dB, dR, m, t, ε)
δm .

(50)

The exact definitions of B, C, and F are provided in Eqs.
(F3), (F8) and (F10), respectively. The approximations in
Eqs. (49) and (50) are valid for dR � dB � 1 and for
small δ.

Proof.—We will utilize Levy’s lemma, which states that
for some probability measure σ , and function f (x) with
δ > 0,

Px∼σ {f (x) ≥ Eσ (f )+ δ} ≤ ασ (δ/L), (F1)

where L > 0 is the Lipschitz constant of f , which dictates
how slowly varying f is in the measure space σ . The func-
tion ασ is the concentration rate, which we require to be

vanishing in increasing δ to describe a concentration of
measure [8].

For our purposes, σ will either be the full Haar measure
H or an ε-approximate t-design με−t and f (x) will be the
deviation from maximum spatiotemporal entanglement,
log(dBR1)− S(2)(ϒBR1).

We first review and modify the results of Refs. [59,60],
from which we define a concentration-of-measure result
for Ui ∼ H and Ui ∼ με−t, respectively.

In both cases, we will arrive at the general form of the
concentration of measure,

PUi∼μ
{
‖ϒBR1 − 1

dBR1

‖2
2 ≥ J ′

μ(δ)
}

≤ Gμ(δ). (F2)

Theorem 3 will then follow from Eq. (F2), which we show
at the end. �

1. Process from Haar-random evolution

For dynamics generated by independent Haar-random
unitaries, given that dBR1 = d2k

S dR1 ≈ d2k+1
S < dE ≈ dR,

the Haar average of the left-hand side of the inequality
within the brackets of Eq. (F3) is

EH

(
‖ϒBR1 − 1BR1

dBR1

‖2
2

)
= EH(tr(ϒ2

BR1
))− 1

dBR1

= d2
E − 1

dE(dSE + 1)

(
d2

E − 1
d2

SE − 1

)k

+ 1
dE

− 1

d2k+1
S

=: B. (F3)

This is proved in Ref. [59, Appendix F]. Our setup is,
however, a slightly modified version of this, as our final
intervention is size dR1 rather than dS. In detail, as HR1 is
the final intervention space, one can modify the result in
Eq. (F3) by changing the factors A and B in Eq. (74) in
Ref. [59] to

A → dSEdR2(d
2
R2

+ d2
R1

− 2) and

B → dSEdR2(d
2
SE − 1),

(F4)

where we recall that HR2 is the complement to HR1 , such
that HR1 ⊗ HR2 = HR. Using this to simplify [59, Eq.
(74)], we arrive at a long messy expression. However, it
has same asymptotic behavior as Eq. (F3). More precisely,
we make the approximation that dR1 ≈ dS � dE—which is
valid for the assumption that dR1 � dR.

In particular, if dE � 1, such that dE − 1 ≈ dE , then in
both cases,

EH

(∥∥
∥∥ϒBR1 − 1BR1

dBR

∥∥∥∥

2

2

)

≈ 1
dE

. (F5)
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Now, the concentration rate is the exponential function

exp
(−δ2(k + 1)d

4L2

)
, (F6)

which is proved in Ref. [59, Appendixes]. Now, the Lip-
schitz constants can also be bounded by almost the same
quantity as in Ref. [59], despite here having f := ‖ρ −
1/d‖2

2 compared to (1/2)‖ρ − 1/d‖1. This is because we
can use that ‖X ‖2

2 ≤ ‖X ‖2 ≤ ‖X ‖1, where we also have
an additional factor of 2 in L, given the factor of 1/2 in the
definition of non-Markovianity, N , in [59]. We therefore
arrive at

P

{
‖ϒBR1 − 1

dBR1

‖2
2 > B + δ

}
≤ exp[−Cδ2] (F7)

for B defined in Eq. (F3) and

C := (k + 1)dEdS(dS − 1)2

8(dk+1
S − 1)2

= (k + 1)dEdS

8(dk
S + dk−1

S + · · · + 1)2
(F8)

defined from the above considerations. Again, we have
taken the approximation that dR1 ≈ dS.

2. Process from approximate unitary t-designs

If evolution is instead sampled from an ε-approximate
t-design, we can adapt the results from Ref. [60], which in
turn build on the deviation bounds for k-design results of
Ref. [109]. The concentration-of-measure bound takes the
form

F :=
⎧
⎨

⎩

⎡

⎣ 16m
(k + 1)dSE

(
dk+1

S − 1
dS − 1

)2
⎤

⎦

m

+ (B)m

+ ε

16mdt
SE

(

d4
Ed2(k+2)

S + 1
d2k+1

S

)}

, (F9)

for any 0 < m ≤ t/4, and δ > 0. m can be chosen to
optimize this bound and, overall, F is small for dE �
d2k+1

S = dBR1 , for a high t. See Ref. [60] for further details
and a proof for the above expression Eq. (F9). Here, we
have slightly modified that result, as our object of interest
is ‖ϒBR1 − 1/dBR1‖2

2 rather than a non-Markovianity mea-
sure. This means that we replace N⬩ → ‖ϒBR1 − 1/dBR1‖2

2

and δ → √
δ/2 and we do not have the d3(2k+1)

S factor on
the right-hand side of Ref. [60, Theorem 1]. In addition,
we have made the same approximation as that considered
above in Sec. F 1, in that we take dR1 ≈ dS, which is valid
for the asymptotic case where dE � dR1 .

Now, to complete the proof, we note that

‖ϒBR1 − 1

dBR1

‖2
2 ≥ J ′

μ(δ)

⇐⇒ tr(ϒ2
BR1
)− 1

dBR1

≥ J ′
μ(δ)

⇐⇒ S(2)(ϒBR1) ≤ − log
(dBR1J ′

μ(δ)

dBR1

+ 1
dBR1

)

⇐⇒ log(dBR1)− S(2)(ϒBR1) ≥ log(dBR1J ′
μ(δ)+ 1),

(F10)

where S(2) is the 2-Rényi entropy. Substituting this into the
probability brackets of Eq. (48), we arrive at Eq. (F1), with

Jμ(δ) := log(dBR1J ′
μ(δ)+ 1). (F11)
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