
PRX QUANTUM 5, 010313 (2024)

Entanglement Phase Transition Due to Reciprocity Breaking without
Measurement or Postselection

Gideon Lee,1,* Tony Jin ,1 Yu-Xin Wang (王语馨) ,1 Alexander McDonald,2 and Aashish Clerk 1

1
Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
2
Institut Quantique and Département de Physique, Université de Sherbrooke, Sherbrooke, Québec

J1K 2R1, Canada

 (Received 6 September 2023; accepted 20 December 2023; published 31 January 2024)

Despite its fully unitary dynamics, the bosonic Kitaev chain (BKC) displays key hallmarks of
non-Hermitian physics, including nonreciprocal transport and the non-Hermitian skin effect. Here, we
demonstrate another remarkable phenomena: the existence of an entanglement phase transition (EPT) in
a variant of the BKC that occurs as a function of a Hamiltonian parameter g and which coincides with a
transition from a reciprocal to a nonreciprocal phase. As g is reduced below a critical value, the postquench
entanglement entropy of a subsystem of size l goes from a volume-law phase, where it scales as l, to a
supervolume-law phase, where it scales like lN , where N is the total system size. This EPT occurs for a
system undergoing purely unitary evolution and does not involve measurements, postselection, disorder,
or dissipation. We derive analytically the entanglement entropy out of and at the critical point for the cases
of l = 1 and l/N � 1.
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I. INTRODUCTION

Recent years have seen intense efforts focused on under-
standing entanglement dynamics in many-body quantum
systems with nonunitary evolution. It has been found that
for chaotic systems, measurements can trigger a novel
phase transition from an entangled phase to a disentan-
gled phase, a phenomenon dubbed a measurement-induced
phase transition (MiPT) [1–10]. While these models pro-
vide fertile ground for the development of rich theoretical
ideas at the intersection of statistical physics and quan-
tum information [11–17], direct experimental observation
of MiPTs can be extremely challenging, as this requires
access to the full conditioned evolution [18] (although note
that alternative strategies based on quantities other than
entanglement have been studied both theoretically [19–26]
and experimentally [21,27]).

While MiPT is typically studied in systems where entan-
glement must be averaged over different random trajec-
tories corresponding to distinct measurement outcomes,
recent work has shown that entanglement phase transi-
tions (EPTs) can also occur without any stochasticity,
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in systems evolving under a non-Hermitian Hamiltonian
[28–31]. There is a direct connection to MiPT, as non-
Hermitian dynamics are naturally interpreted as arising
from measurement dynamics where one postselects on
a specific set of null measurement outcomes. Of partic-
ular interest here are studies of EPT in non-Hermitian
models exhibiting nonreciprocity (e.g., directional systems
where hopping to the right is much stronger than to the
left). Kawabata et al. [29] have studied an EPT in such
a system (two coupled fermionic Hatano-Nelson [32,33]
chains) from volume-law to area-law entanglement scal-
ing. They have found that the transition coincides with
the transition between a reciprocal and a nonreciprocal
phase. The latter could be directly witnessed by the non-
Hermitian skin effect (NHSE), a phenomenon occurring in
the nonreciprocal phase where all modes localize under
open boundary conditions [32–41]. Despite this striking
correspondence, one could still view the EPT transition
here as being measurement driven, as the strength of non-
reciprocity is directly tied to the strength of a postselected
measurement.

Taking inspiration from these previous studies, in this
work we ask whether an EPT can occur without any
stochasticity and without any need for measurements
(postselected or not). Similar to Ref. [29], we consider
a translationally invariant model that exhibits a transi-
tion between reciprocal and nonreciprocal phases (with
the latter exhibiting the NHSE). In contrast to that work,
our model has a fully Hermitian Hamiltonian and unitary
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evolution and there is no need for any kind of measure-
ment, postselection or dissipation. Our setting is Hermitian
quadratic many-body bosonic Hamiltonians that do not
conserve the particle number. Such models can exhibit
nonreciprocity: despite being fully unitary, the dynamics
can nonetheless exhibit directionality at the level of the
equations of motion for quadratures [37,42–44]. Given that
such models can exhibit nonreciprocity transitions, can
they also exhibit entanglement transitions despite the lack
of any connection to measurements?

We find that the answer to this question is, surpris-
ingly, yes. Our main result is to present the first instance
of an EPT in a nondisordered bosonic system under purely
unitary dynamics. We stress that this EPT requires no post-
selection whatsoever. Furthermore, as this model contains
neither randomness nor measurements, one can unambigu-
ously attribute this EPT to reciprocity breaking. Our model
of interest is a variant of the the bosonic Kitaev chain
(BKC) model introduced in Ref. [37]. By tuning a Hamil-
tonian parameter g, the BKC undergoes a phase transition
from a phase where the dynamics of the q and p quadra-
tures are nonreciprocal to a phase where they are recip-
rocal. At long times after a quench, the reciprocal phase
is characterized by a volume law for the entanglement
entropy (EE) of a subsystem of size l, i.e., it scales linearly
with l. On the other hand, the nonreciprocal phase has even
stronger entanglement growth. It is characterized by what
we call a supervolume law: the EE of a subsystem of size
l scales as lN , where N is the total system size. Hence, if
take a symmetric bipartition, the EE grows as N 2. These
forms of behavior are in stark contrast with Ref. [29],
which has also tied entanglement and reciprocity transi-
tions but has found that nonreciprocity is detrimental to
entanglement generation, leading to area-law behavior (see
Sec. III). We also note that our results (for an unmeasured
system) are distinct from the behavior of explicitly moni-
tored quadratic bosonic systems, which do not exhibit an
EPT [45,46]. In addition to being of fundamental interest,
our setup is also attractive for experiments. The absence of
any requirement for measurements or postselection greatly
simplifies implementation, while the Hermitian bosonic
pairing terms that we require can be implemented in a vari-
ety of different platforms (they correspond to parametric
drives or parametric down-conversion).

The remainder of this paper is organized as follows.
In Sec. II, we recall the basic phenomenology of the
BKC in both nonreciprocal and reciprocal phases. In
Sec. III, we present a numerical demonstration of the EPT.
In Sec. IV, we study analytically, in depth, the special
minimal-bipartition case l = 1 and show that it already
captures the essential features of the EPT. In Sec. V, we
extend the l = 1 results to the l/N � 1 case by relying
on a local-thermalization hypothesis toward a generalized
Gibbs ensemble (GGE). Finally, in Sec. VI, we conclude
and discuss future directions.

II. MODEL

The BKC describes bosonic modes on a one-
dimensional (1D) lattice that are coupled by hopping and
pairing terms on each nearest-neighbor bond. The Hamil-
tonian is

Ĥ = 1
2

N−1∑

j =1

(
(g + iw)â†

j +1âj + i�â†
j +1â†

j + H.c.
)

, (1)

where N is the total number of sites, âj are bosonic
operators, [âi, â†

j ] = δij , and g, w, and � are real param-
eters of the model (see Fig. 1). We will call r̂ :=
(q̂1, p̂1, . . . , q̂N , p̂N )

T the vector of quadrature operators,
q̂j := (âj + â†

j )/
√

2, p̂j := i(â†
j − âj )/

√
2.

Since Ĥ is quadratic, Gaussian states remain Gaussian
under time evolution and are fully specified by their one-
point function 〈r̂〉 and their 2N × 2N covariance matrix
σij = 〈{r̂i − 〈r̂i〉, r̂j − 〈r̂j 〉}〉. In the rest of this paper, we
will fix the initial state to be vacuum, so that 〈r̂〉 = 0 at
all times. The equations of motion (EOMs) for σ close on
themselves and are given by

d
dt
σ = �hσ + σh�T, (2)

where h is the bosonic Bogoliubov–de Gennes (BdG)
2N × 2N matrix, defined through Ĥ = r̂Thr̂, and � is
the symplectic matrix � := ⊕N

j =1

(
0 1

−1 0

)
. Note that the

dynamics are completely linear in σ .
The qualitative properties of the BKC are best under-

stood by inspecting the Heisenberg EOMs of r̂:

d
dt

q̂j = w +�

2
q̂j −1 − w −�

2
q̂j +1 + g

2
(p̂j −1 + p̂j +1),

d
dt

p̂j = w −�

2
p̂j −1 − w +�

2
p̂j +1 − g

2
(q̂j −1 + q̂j +1).

(3)

For g = 0 (i.e., purely imaginary hopping), these EOMs
would describe independent nonreciprocal propagation of
the q and p quadratures, with each having opposite direc-
tionality. This mimics the physics of two independent
Hatano-Nelson chains [32,33].

We focus throughout in this work on the case w > �

[47]. In this regime, the model is always dynamically
stable for open boundary conditions (OBCs), while for
periodic boundary conditions (PBCs) the system has a
transition from stable to unstable as one goes from � < g
to g < �. The stability of this bosonic system for g = 0
can be conveniently understood in terms of amplification
[37]: starting from a wave packet in the q quadrature
localized on one edge, the wave packet will be ampli-
fied (damped) while propagating to the right (left) and
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FIG. 1. (a) The schematic of a one-dimensional (1D) BKC lattice, with Hermitian hopping of amplitude g + iw and pairing (two-
mode squeezing) of amplitude i� on each bond [see Eq. (1)]. (b) The schematic of a phase diagram depicting supervolume-law and
volume-law phases that arise as a function of g/� (with g,� < w). For g < �, the BKC exhibits the NHSE and has nonreciprocal
dynamics leading to supervolume-law entanglement scaling (see the text), whereas for g > �, the BKC is reciprocal and exhibits the
usual volume law of free systems. (c) The log-log plot of the long-time-averaged EE for a subsystem formed by the leftmost N/4
sites, divided by system size. The circles are values from numerical simulation, while the dashed lines are simply a guide to the eye.
Since the y axis is divided by N , a slope of 0 (greater than 0) indicates volume law (supervolume law). A clear transition is seen as g
is increased above �. We fix w = 1 and � = 0.25 and the values of g for the lines from blue to purple are 0, 0.2, 0.24, 0.245, 0.25,
0.255, and 0.26. (d) Scaling collapse of the long-time averaged EE for a subsystem of size N/4, with ν = 0.5 in Eq. (9).

vice versa for the p quadratures. For PBCs, this ampli-
fication is unbounded, thus making the system unstable.
In contrast, for OBCs, the amplification terminates at the
edges, so that all average moments of the q quadratures
are localized to the right and the p quadratures to the
left. Adding a coupling g mixes the quadratures together;
as they have opposite directionality at g = 0, this mix-
ing diminishes nonreciprocity. As g increases, this mixing
eventually prevents chiral amplification altogether, leading
to a sharp transition from a nonreciprocal phase for g < �

to a reciprocal phase for g > �.
Another manifestation of this transition can be seen

from the spectrum of the dynamical matrix i�h, which
exhibits the non-Hermitian skin effect (NHSE). This means
that in the nonreciprocal phase, g < �, for PBCs the spec-
trum of i�h winds around 0 in the complex plane, (i.e.,
the system is unstable), whereas the spectrum under OBCs
collapses onto the real line (i.e., the system is stable).
This is accompanied by the localization of all the OBC
eigenmodes to the edges [34,48]. Conversely, in the recip-
rocal phase g > �, the NHSE is absent—the spectrum is
always real, regardless of the boundary conditions. We
note that the spectral properties of i�h are in complete
analogy with the spectral properties of the non-Hermitian
BdG Hamiltonian presented in Ref. [29] where an EPT has
been studied in coupled fermionic Hatano-Nelson chains.
However, despite this similarity, we will show that the
phenomenology in our Hermitian bosonic model is dramat-
ically different. Given our interest in phenomena induced
by the NHSE, we will only consider OBCs in what follows.

As shown in Ref. [37], the BKC Hamiltonian Ĥ in
Eq. (1) can be mapped to a bosonic particle-conserving
tight-binding chain via local unitary squeezing (i.e.,
Bogoliubov) transformations. This effective local change
of basis can be compactly written as d̂j = e−iφj Ûj âj Û†

j ,
with the unitaries given by

Ûj =
{

Ŝj (r(j − j0))Ŝj (ir0), g < �,
Ŝj (ir0), g > �,

(4)

where Ŝj (ζ ) := e(1/2)(ζ â†2
j −H.c.) denotes the standard squeez-

ing transformation on the j th site and j0 is an arbitrarily
fixed “gauge” parameter.

The parameters are given by r0 = 1
2 tanh−1(g/�), r =

1
2 log (w +

√
�2 − g2)/(w −

√
�2 − g2), and φ = π/2

for the nonreciprocal case g < �, and r0 = 1
2 tanh−1(�/g)

and φ = arctan (w/
√

g2 −�2) for the reciprocal phase
g > �. After performing this transformation, the sys-
tem is mapped in both cases to a simple tight-binding
Hamiltonian

Ĥ =
√

w2 + g2 −�2
N−1∑

j =1

(d̂†
j d̂j +1 + H.c.). (5)

The eigenmodes of Ĥ are standing waves, which we
denote by b̂n such that Ĥ = ∑

n εnb̂†
nb̂n with εn :=

−2
√

w2 + g2 −�2 cos [πn/(N + 1)].
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A few important points are in order. First, note that as
one increases g across the nonreciprocity transition (i.e.,
from below � to above �), there is no signature of a
transition in the eigenvalue spectrum: the bandwidth of
our system always increases monotonically with g. Hence,
the nonreciprocity-to-reciprocity transition on which we
focus cannot be simply diagnosed by looking at the spec-
trum of the OBC system. Second, we stress that for both
g > � and g < �, our system has propagating quasipar-
ticles. In the nonreciprocal phase g < �, it is useful to
think of the position-dependent squeezing in Eq. (4) in
terms of a localization length ξ = a/r, where a is the lattice
spacing. However, the emergence of this effective local-
ization length does not impede quasiparticle propagation
(i.e., the group velocity remains finite). The localization
length diverges when w = � and the OBC system is unsta-
ble for any � ≥ w. While this is an interesting regime
in its own right, in this work we restrict our attention to
the stable regime � < w, as this is the only regime in
which there is steady-state entanglement. The asymptotic
time dependence of unstable quadratic bosonic systems
is characterized in Ref. [49]: for long times, the BKC
will exhibit unbounded logarithmic EE growth for w = �

and will exhibit linear EE growth for w > �. Finally,
we note that to compute the EE of a subsystem of size
A, one can work either with the âj or the d̂j opera-
tors, as they are related to one another by purely local
transformations.

III. ENTANGLEMENT PHASE TRANSITION

We now turn to the study of the entanglement scal-
ing across the different phases. In Ref. [29], it has been
argued that nonreciprocity is detrimental for entanglement
generation, as the quasiparticle pairs responsible for entan-
glement growth [50] propagate in the same direction, thus
preventing the generation of long-range correlations and
precluding any volume-law scaling of EE in the nonrecip-
rocal phase. Here, we show that the BKC, while presenting
the main features of a non-Hermitian nonreciprocal sys-
tem (e.g., the NHSE and nonreciprocal transport) deviates
dramatically from this expectation. While the reciprocal
phase indeed presents a volume law as expected, we will
show that the nonreciprocal phase, on the contrary, fulfills
a supervolume law as defined in Sec. I.

We consider the following setup. We fix the initial
state to be the physical vacuum (i.e., ∀j , âj |ψ〉 = 0) and
allow it to evolve under the BKC Hamiltonian for a long
time. Since the system is dynamically stable, the time-
averaged EE of a subsystem will eventually converge to
some steady-state value. For Gaussian states, the covari-
ance matrix σ fully determines the EE of any subsystem σ

[49,51,52]. The EE of a subsystem A of size l is obtained

from the relation

SA =
l∑

n=1

s(νn), (6)

where

s(x) := x + 1
2

ln
x + 1

2
− x − 1

2
ln

x − 1
2

(7)

and νn are the positive eigenvalues of i�σ |A, in which |A
means that we truncate the support of the matrix to A. Our
quantity of interest will be the long-time averaged quan-
tity SA, where we use the overline to denote time-averaged
quantities:

f (t) ≡ limT→∞
1
T

∫ T

0
f (t)dt. (8)

Before examining the EE, we look at the time-averaged
position-dependent particle density across the chain. We
observe that, as expected, the nonreciprocal phase has par-
ticles exponentially localized to the edges [Fig. 2(a)], while
the reciprocal phase does not. Thus, one may expect that, in
the reciprocal phase, taking a cut of the system from the left
and increasing its size will not lead to a significant increase
of the particle number and, consequently, no significant
increase in the EE. However, this is not the case. To illus-
trate this fact, we plot in Fig. 2(b) the so-called Page curve
[53], i.e., the EE of a subsystem of size l as a function of l
while keeping the total system size N fixed. One finds that
the reciprocal and nonreciprocal phases yield almost iden-
tically shaped curves. We conclude, perhaps surprisingly,
that the BKC does not show any area-law phase induced
by nonreciprocity.

To more fully understand the entanglement properties,
we can also consider the scaling of subsystem EE in a
slightly different manner. Instead of fixing the total sys-
tem size N and varying the subsystem size, we can fix
the subsystem size l to be a fraction of the total sys-
tem size, l = z × N , and then vary the total system size
while keeping z fixed. For concreteness, we take z = 1/4
in what follows. The results for this scenario are presented
in Fig. 3(a) for w = 1, � = 0.25, and a range of g close
to �. Usually, one does not have to worry about the total
system size as long as it is large enough; however, here,
we find drastically different phenomena. When scaling the
total system size, we immediately observe the emergence
of two phases—a “supervolume”-law phase, where the EE
scales as N 2, corresponding to the nonreciprocal phase
g < �, and a volume-law phase, where the EE scales as N ,
corresponding to the reciprocal phase g > �. The two are
separated by a logarithmic scaling N log N when g = �.

From these considerations and following the fitting
procedure in, e.g., Ref. [2], we attempt the following
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FIG. 2. A comparison of the average-density and Page curves
for the reciprocal (with g = 0.3) and nonreciprocal (with
g = 0.24) phases, for w = 1,� = 0.25, N = 32. (a) The time-

averaged position-dependent particle number 〈â†
j âj 〉, in the recip-

rocal phase. (b) The same as (a) but in the nonreciprocal phase.
Note the difference in shape and the increase in scale in going
from (a) to (b). (c) The EE for a cut of size l, with the subsystem
being the left l sites of the chain in both the nonreciprocal and
reciprocal phases. The curves are normalized by their maximum
values. Despite the dramatic differences between (a) and (b), the
Page curves are hardly distinguishable.

finite-size scaling for the EE,

SN/4(g,�, N )− SN/4(�,�, N ) = Nf ((g2 −�2)N 1/ν),
(9)
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FIG. 3. (a) A log-log plot of the long-time-averaged EE for
the EE of the leftmost site 1. The fixed parameters are w = 1 and
� = 0.25. The values of g for the lines from blue to purple are 0,
0.2, 0.24, 0.245, 0.25, 0.255, and 0.26. The scatter plots indicate
values obtained from numerical simulation, whereas the solid
lines are the analytical prediction from Eqs. (16) and (22). We
observe good agreement between the two for all but the small-
est chain size. The upper dashed line indicates the Nr scaling in
the nonreciprocal phase and the lower dashed line indicates the
single-site EE at the critical point g = � that separates the two
phases. The two distinct scalings, with N in the nonreciprocal
phase, and saturating in the reciprocal phase, are readily appar-
ent. (b) The scaling collapse for the single-site EE with ν = 0.5
in Eq. (24). The black dashed line is the expansion near the crit-
ical point obtained from the analytical form of the entropy [see
Eqs. (18) and (23)].

and find that, fixing the critical exponent ν = 0.5, it yields
a good-quality collapse of the EE for different system sizes
onto the same curve [see Fig. 3(b)].

We thus have established a key result of our work:
despite the lack of measurements, postselection or disor-
der, our BKC model exhibits a clear entanglement phase
transition as a function of g, one that coincides with the
transition from a reciprocal to nonreciprocal phase.

IV. ANALYTICAL PROOF OF ENTANGLEMENT
PHASE TRANSITION FOR A MINIMAL

BIPARTITION

Computation of the postquench EE analytically, even for
free systems, is in general a formidable task [54–56]. In
this section, we provide analytical insight by studying the
EE for the simpler minimal-bipartition case, i.e., the case
where the subsystem A is composed of a single site. We
will see that a transition from a phase where the EE is O(N )
to a phase where the EE is O(1) already occurs for this case
when increasing g above �.

For a single site j , the instantaneous symplectic eigen-
value νt at time t is given by

ν2
t =

(
2〈d̂†

j d̂j 〉t + 1
)2

− 4|〈d̂j d̂j 〉t|2, (10)

where we recall that d̂ refers to the tight-binding basis
defined in Eq. (4). The associated EE is simply S1 = s(νt).
For now, we have not specified a particular site. Given the
strong spatial nonuniformity in the density in the nonrecip-
rocal phase [see Fig. 2(b)], one would naturally expect that
S1 would depend strongly on the choice of site, with large
values at the boundary and small values in the middle of
the chain. Surprisingly, this is not the case. Equation (4)
already highlights how this can be. It shows succinctly that
the entanglement is not simply determined by the average
photon number alone: one also needs to understand how
many of these photons are associated with purely local-
squeezing correlations and separate out this contribution.
As we will see, despite the average density being highly
inhomogeneous, S1 is largely independent of the position j
of the chosen site.

A. Nonreciprocal phase

In the nonreciprocal phase, we expect νt to be expo-
nentially large with N , so that S1 grows as N . When νt
is large, the EE takes a simple form: to leading order in
νt, S1 ≈ 1

2 ln ν2
t . We will compute the time-average of the

entropy, S1. In general, ln ν2
t �= ln ν2

t but it would be desir-
able to use the latter expression as it is much easier to
compute. To quantify the error resulting from this approx-
imation, we Taylor expand ln ν2

t with respect to ν2
t around
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ν2
t and take the average, obtain

ln ν2
t = ln ν2

t + (ν2
t − ν2

t )
2

2(ν2
t )

2
+ . . . (11)

We show in Appendix F that the second term is of order
O(1) because of cancellation of exponential-in-N contri-
butions to the numerator and denominator. Hence,

S1  1
2

ln ν2
t . (12)

Finally, to compute ν2
t , we will make use of the fact that

〈d̂†
j d̂j 〉2 − |〈d̂j d̂j 〉|2

=
(

〈d̂†
j d̂j 〉

2
−
∣∣∣〈d̂j d̂j 〉

∣∣∣
2
)
(1 + O(1/N )) , (13)

a property that we prove in Appendix F. Remarkably, the
neglect of fluctuations, implicit in this approximation, only
holds for this difference and not for each term individu-

ally. More explicitly, one finds that 〈d̂†
j d̂j 〉2 �= 〈d̂†

j d̂j 〉
2
, and

|〈d̂j d̂j 〉|2 �=
∣∣∣〈d̂j d̂j 〉

∣∣∣
2
. Our interpretation of this result is

that while individual sites are subject to (exponentially)
large temporal fluctuations in density, these fluctuations
are almost entirely due to fluctuations in the amount of
local pairing correlations. The contributions of these fluc-
tuations (density, local pairing) thus cancel each other to
leading order when calculating the symplectic eigenvalue
and, consequently, the EE. Hence, to compute ν2

t , one only
needs the average covariance σ . Taken together, all these
steps considerably simplify the task of computing the EE
and allow us to have quantitative results.

To compute σ , we will consider the continuum limit,
which we define as follows. Let a be the lattice spac-
ing: we consider the limit N → ∞, a → 0, while keeping
fixed the dimensionful quantities ξ := a/r (the localiza-
tion length), L := a(N + 1) (the system size), x := aj , and
p := πn/a(N + 1). We are free to fix the parameter x0 =
aj0. For the particular choice of x0 = L/2, the correlations
have a compact expression (see Appendix C):

〈d̂†
x d̂x〉 = cosh(2r0)

sinh(L/ξ)
2L/ξ

− 1
2

, (14)

〈d̂xd̂x〉 = (−1)
x
a

i
2

sinh(2r0). (15)

We see that the time-averaged local density and pairing
correlations in the squeezed frame are spatially uniform.
At first glance, this could seem surprising, as in this frame,
our initial condition (vacuum in the laboratory frame)

is extremely nonuniform in space, due to the position-
dependent squeezing transformation in Eq. (4). However,
the resulting uniformity of the time-averaged state can be
understood by the dynamics being equivalent to a simple
tight-binding chain. Indeed, for such a model, any spatial
product state will lead to an average homogeneous profile
in the continuum limit.

This in turn means that the EE in the minimal-bipartition
protocol will yield the same result, independent of our
choice of which site to single out. Heuristically, this
explains the discrepancy between Figs. 2(b) and 2(c):
while the average density in the laboratory frame is expo-
nentially localized toward the edges, this excess density
can largely be attributed to local squeezing, which does
not affect the entanglement properties, in line with our
interpretation of Eq. (13) (for further discussion about the
separation between local squeezing and thermal occupa-
tion, see Appendix E). Inserting [Eqs. (14) and (15)] in
Eq. (10) leads to

ν2
t ≈ 1 + cosh2 (2r0)

(
sinh2(L/ξ)
(L/ξ)2

− 1

)
. (16)

Away from the critical point, the large-L limit gives us that

S1 ≈ L/ξ . (17)

To obtain the scaling near the critical point, we consider
the limit L/ξ � 1 for which the localization length ξ is far
greater that the system size. This (see Appendix D) leads
to:

S1 ≈ ln N + 1
15
�2 − g2

w2 N 2. (18)

B. Reciprocal phase

In the reciprocal phase, the local correlations are given
in the continuum limit by

〈d̂†
x d̂x〉 = 1

2
(cosh (2r0)− 1) , (19)

〈d̂xd̂x〉 = (−1)x/a
sinh (2r0)

2
eiϕL − 1
ϕL

, (20)

where we have defined ϕ := 1/a(π − 2φ). We find that the
average density in the squeezed frame is both time inde-
pendent and spatially uniform. This is no surprise: in the
reciprocal phase, the transformation to go to the squeezed
frame [c.f. Eq. (4)] is uniform; hence our initial prequench
state is also uniform. Such a density profile will not evolve
under a tight-binding Hamiltonian. In contrast to this, the
time-averaged local-squeezing correlators above retain a
position dependence in their phase.
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Away from the transition, i.e., for ϕ finite, the local pair-
ing correlations tend to zero in the large-L limit. Thus the
EE is simply

S1 ≈ s

(
g√

g2 −�2

)
, (21)

where s(x) is defined in Eq. (7). Close to the transition,
the eigenvalue scales like N and we can apply the same
set of approximations as used in the reciprocal case. The
eigenvalue corresponding to [Eqs. (19) and (20)] is

ν2
t ≈ 1 + sinh2(2r0)

(
2 (1 − cos(ϕL))

(ϕL)2
− 1

)
. (22)

Close to the critical point, the limit ϕL � 1 leads to

S1 ≈ ln N + 1
15
�2 − g2

w2 N 2, (23)

which is consistent with the limit Eq. (18) from the nonre-
ciprocal phase.

C. Numerical simulation and scaling collapse

Numerical simulations of the EE for a single site are
plotted in Figs. 3(a) and 3(b) alongside analytical esti-
mates. We observe that for large system size, the EE of
the nonreciprocal phase always goes to the L/ξ scaling,
whereas the EE for the reciprocal phase saturates. The
expressions Eqs. [(18) and (23)] suggest the following
scaling collapse:

S1(g,�, N )− S1(�,�, N ) = f ((g2 −�2)N 1/ν), (24)

with ν = 0.5, thus proving Eq. (9) for the minimal bipar-
tition. Note that not only the power laws are in agreement
with the numerics but also the nonuniversal 1/15 prefactor
of the second term of Eqs. [(18) and (23)] (see Fig. 3).

Before leaving this section, we wish to highlight a cru-
cial fact: entanglement in our system cannot simply be
predicted from the behavior of the average photon num-
ber. A naive argument would be that the average photon
number on each site of the postquench state determines its
effective Hilbert-space dimension Dj , which would then
(assuming thermalization) set its entropy. This line of rea-
soning would suggest that the entropy of a given site
should correspond to the entropy of a single bosonic mode
in a thermal state, i.e.,

S̄(j )1,th = s
(
〈â†

j âj 〉
)

∼ log 〈â†
j âj 〉 ∼ log Dj , (25)

where the first approximation holds for large particle num-
bers. If this reasoning were true, then in the nonreciprocal
phase, the entropy-versus-position curve should be peaked

1 8 16 24 32
Site j

0

5

10

15

20

EE

S
(j)
1 S

(j)
th

FIG. 4. The filled circles show the one-site EE S(j )1 as a func-
tion of position j in the nonreciprocal phase, for parameters
N = 32, w = 1, g = 0, and � = 0.25. Despite being in the skin-
effect phase, the entropy is almost completely uniform. The open

circles show S(j )th , the prediction for the single-site entropy based
using the average photon number alone, cf. Eq. (25). This pre-
diction deviates sharply from the true result. This highlights an
important caveat: simply using the average particle number as a
proxy for entanglement can be extremely misleading.

at the edges, reflecting the skin-effect-induced localization
of the particle-number density. As shown explicitly in
Fig. 4, this prediction is manifestly incorrect. The numerics
here match the analytical arguments presented above: the
true single-site entropy is almost independent of position
and shows no signature of localization. As such, simply
understanding how the average particle number depends
on the system parameters does not immediately let one
understand the entanglement properties. The discrepancy
between the particle number and the EE is further explored
in Appendix E.

V. GENERALIZED GIBBS ENSEMBLE

In this last section, we show how the previous results
can be extended to understand the EE of small subsys-
tems for size l satisfying l/N � 1. To do this, we make
a local-thermalization hypothesis that the subsystem will
be described by a generalized Gibbs ensemble (GGE)
state [57,58]. The GGE ansatz amounts to the assumption
that the expectation value of the local observables can be
extracted from

ρ̂GGE := 1
Z

e
∑

n βnb̂†
nb̂n+γnb̂†

n̄b̂†
n+γ ∗

n b̂nb̂n̄ , (26)

where we recall that the b̂n modes refer to the standing-
wave basis, Z is a normalization factor, {βn, γn, γ ∗

n } are
thermodynamic variables fixed by the initial condition, and
n̄ is defined by the relation εn̄ = −εn. Note the contribution
of the pairing terms b̂†

n̄b̂†
n and b̂nb̂n̄ that do not appear in Ĥ .

For free bosonic system, this is simply the time average of
ρ̂: ρ̂GGE = ρ̂.
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In a similar fashion, the GGE ansatz for entanglement is
that the EE of a subsystem A can be extracted from ρ̂GGE
[59], i.e., that one has

SGGE
A = l

N

N∑

n=1

s(νn
GGE), (27)

where νn
GGE are the positive eigenvalues associated with

σGGE�. Given the breaking of translational invariance in
the steady state, as exemplified by the strong inhomogene-
ity in the local occupation number as seen in Fig. 2(b), and
the fact that the GGE is agnostic about the cut chosen for
A, one may expect this approach to fail. On the other hand,
the fact that the local correlations are spatially uniform in
the tight-binding frame suggests that, for the purpose of
computing the EE, the GGE might be enough.

In the nonreciprocal phase, fixing our gauge parame-
ter to x0 = 0, the positive eigenvalue of Eq. (D2) in the
continuous limit is (for the derivation, see Appendix D)

νp =

√√√√√cosh2(2r0)

⎛

⎝
(

(pξ)2

1 + (pξ)2
sinh(L/ξ)

L/ξ

)2

− 1

⎞

⎠+ 1.

(28)

We see that the localization length ξ is the natural scale
separating the long- and short-wavelength physics. The
suppression of νp for pξ � 1 is a direct consequence
of low-momentum standing waves having small wave-
function amplitudes near the system boundary.

In the localized regime ξ → 0, the dominant contri-
bution in the above expression is sinh2(L/ξ). Since the
entanglement is proportional to the log, we have

s(νp) ≈ log νp ≈ L/ξ . (29)

We see that, because of the exponential scaling of the
νp with L, the contributions of the different modes to the
entanglement become independent of p .

Remarkably, a similar statement is true close to the
transition, where ξ → ∞. In this regime, the momentum
dependence in Eq. (28) cancels out and we are left with

νp ≈ cosh(2r0)

√(
sinh(L/ξ)

L/ξ

)2

− 1, (30)

which is again independent of p .
Similarly, in the reciprocal phase, we have

νp =
√√√√1 + sinh2 (2r0)

(
1 − 32p4 (1 − cos (ϕL))

(
ϕL
(
4p2 − ϕ2

))2

)
,

(31)

where we have defined ϕ := 1/a(π − 2φ). For finite ϕ,
this quantity becomes p independent in the large-L limit.

Close to the critical point, ϕ → 0, keeping ϕL finite, while
L → ∞ gives

νp ≈
√

1 + sinh2 (2r0)

(
1 − 2 (1 − cos (ϕL))

(ϕL)2

)
, (32)

which is also p independent. Thus, we see that in all
regimes of interest, for the purpose of computing entan-
glement, the momentum dependence drops out. This in
turn implies that the GGE and the minimal bipartition will
match in all the limits mentioned above and thus

SGGE
A = lS1. (33)

Interestingly, this means that for computing the EE, the
local-thermalization assumption yields accurate results,
despite the fact the system is both strongly inhomoge-
neous and subject to exponentially large fluctuations. Our
interpretation is that fluctuations in local quantities mainly
come from a variation in the squeezing strength, which
leaves the EE property unchanged.

VI. CONCLUSIONS

Our work demonstrates the existence of an entangle-
ment phase transition in a nondisordered bosonic system
undergoing purely unitary evolution. When varying the
hopping parameter g below a critical value �, the system
undergoes a transition from a reciprocal to a nonrecipro-
cal phase, accompanied by a transition from a volume law
to a supervolume law for the postquench EE of a subsys-
tem. While our system shares many common features with
non-Hermitian systems, it does not involve measurement
or postselection in any way. Our study suggests that the
breaking of reciprocity can be associated with entangle-
ment transitions even in settings where there is no compe-
tition between unitary dynamics and measurement-induced
nonunitary evolution.

It is interesting to contrast our results with the related
non-Hermitian fermionic model studied in Ref. [29],
involving two coupled Hatano-Nelson chains. As dis-
cussed, that model exhibits identical spectral properties
and NHSE as our system. In Ref. [29], an entanglement
transition has also been found coinciding with the break-
ing of reciprocity but, unlike us, the authors have found
that the entanglement generation is greatly suppressed in
the nonreciprocal phase (yielding only area-law behavior).
In contrast, our nonreciprocal phase exhibits marked direc-
tional transport but no area-law entanglement behavior
(and, in fact, enhances the entanglement scaling). This sug-
gests that the unidirectional quasiparticle picture proposed
in Ref. [29] is not applicable to generic entanglement
transitions associated with reciprocity breaking.

The stark differences between our results and those in
the model studied in Ref. [29] can be attributed to particle

010313-8



ENTANGLEMENT PHASE TRANSITION. . . PRX QUANTUM 5, 010313 (2024)

statistics. Our model is bosonic, whereas that in Ref. [29] is
fermionic. In our case, we show that nonreciprocity largely
manifests itself in the steady state as large amounts of
local-squeezing correlations (e.g., on-site pairing). Such
squeezing does not affect the entanglement properties and
has no analogue in fermionic systems. Another intuitive,
albeit crude, way to understand this difference is to note
that directional transport for fermions necessarily results in
a highly pure states for sites near the edges: once a site fills
up, it decouples from the rest of the system. Conversely,
there is no analogous mechanism by which transporting
bosons to sites on the edge could decouple them. Both of
these phenomena are due to the unbounded local Hilbert
space of a bosonic system. Finally, the supervolume law
that we identify is unique to bosonic systems, as it is sim-
ply impossible for the entanglement of fermionic systems
to grow superextensively, or any faster than the size of the
associated Hilbert space.

It is also interesting to note that in contrast to other
studies of bosonic systems, we observe the existence of
an EPT despite the absence of measurements [45,60]
and nonlinearities (see, e.g., Ref. [61]). We also mention
that for fermionic systems, entanglement transitions have
been observed for free unitary disordered systems; these
have been directly tied to either Anderson or many-body
localization-delocalization transitions (see, e.g., Refs. [62–
64]). These disorder-driven EPTs are also distinct from the
phenomenon that we describe, as (apart from boundaries)
our system is fully translationally invariant.

While our focus in this work has been on postquench
EE, it is important to note that the reciprocity-breaking
transition in our model can also be characterized with
other quantities. This comprises the spectrally heralded
reciprocal-to-nonreciprocal transition already pointed out
in Ref. [37]. Another observable that shows clear sig-
natures of the transition is the scaling of the total par-
ticle number with N in the postquench state, a quantity
that is linear in ρ. Such signatures of the transition dif-
fer markedly from the phenomenology of standard MiPT,
where the transition can a priori only be characterized
using quantities nonlinear in ρ. We stress that the phase
transition in the non-Hermitian model of Ref. [29] could
also be characterized using a single observable, the total
current. Returning to our model, we stress that even though
the reciprocal and nonreciprocal phases differ strongly in
terms of their average density, this does not by itself let
one infer the existence of an EPT. In general, the particle
number can be made arbitrarily large by means of local-
squeezing transformations, something that would have no
impact on entanglement. The fact that the average density
and the entanglement properties can be extremely different
is demonstrated explicitly in Fig. 4 and Appendix E, where
we observe that the EE spatial structure is dramatically
different from that of the average particle number.

The EPT demonstrated in this work is experimentally
appealing for several reasons. First, since the model is a

nondisordered closed system, postselection is a complete
nonissue. Second, all the studied dynamics are Gaussian,
which for bosonic systems are generally considered much
more experimentally tractable. Finally, as we have shown
in Sec. IV, the entire EPT can be characterized by a single-
site covariance matrix. Hence, to detect and characterize
the EPT experimentally, one only needs to characterize the
correlations of a single site.

In this work, we have demonstrated and characterized
an EPT associated with a transition from nonreciprocity
to reciprocity in a particular model, namely, the BKC.
Future work could investigate the more general relation-
ship between nonreciprocity and entanglement—in par-
ticular, how many of the features of this EPT generalize
to other models and what one can say more generally
about the entanglement properties of nonreciprocal mod-
els. Finally, we note that while entanglement is a quantum
property, one could also investigate a classical version of
this model and ask whether the nonreciprocal-to-reciprocal
transition there is also heralded by a transition in correla-
tion measures besides entanglement.
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APPENDIX A: DETAILS ON THE NUMERICS

We are interested in the long-time-averaged entangle-
ment that results from the quench dynamics described in
the main text, and hence the quantity of interest is

St = lim
T→∞

1
T

∫ T

0
Stdt, (A1)

which is the EE for some subsystem of our 1D BKC lattice
for some fixed set of parameters. Without loss of general-
ity, we will fix w = 1 and � = 0.25, and vary g, N , where
� and g will be written in units of w. We will estimate
St by numerically calculating St for some discrete set of
times and then taking the mean. Since we want the EE in
the quasisteady state, we only need to perform this calcu-
lation up to some finite large T for which the estimate of
St converges to some desired accuracy. Since the evolution
of St is deterministic, we can set the accuracy to any level
we want.

In general, one might not expect to be able to sim-
ulate arbitrarily large times accurately for nonreciprocal
systems, due to the issue of numerical ill conditioning. For-
tunately, we can avoid this by performing the simulations
in the squeezing frame defined by Eq. (4), something that is
possible whenever g �= �. For g = �, the squeezing frame
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is not well defined. In that case, we have simply performed
the simulations in the laboratory frame and found it to be
stable for all chosen parameters in this work.

The following are additional important points about the
numerical approach used to calculate the EE:

(1) The values of the EE at initial small times t are in
general not representative of the quasisteady state
of interest. While they get averaged away at long
times, including these points slows down the con-
vergence of our calculation. We thus pick an initial
time Tmin at which St has approximately relaxed to
its quasisteady-state value and only use t ≥ Tmin to
calculate the needed average. In the tight-binding
frame, we can read off the group velocity as J and
hence we expect the system to relax with time scale
O(N/J ). For convenience, we pick Tmin = 10N/J ,
where 10 is a reasonably large prefactor.

(2) Next, we pick an initial set of times {T1, . . . , T1000}.
We do so by picking a uniformly spaced set of
times with T1 = Tmin, Tk+1 − Tk = δT. To aid con-
vergence, we want δT to be relatively large com-
pared to the time scale of oscillations in the qua-
sisteady state, which we generally expect to occur
on the time scale O(1/J ). Again, we pick 10 as
an arbitrary reasonably large prefactor and set δT =
10/J .

(3) We numerically calculate the values {ST1 , . . . , ST1000}
and estimate S̃t = 1

1000

∑
i Sti . We use ε̃ = s/

√
N ,

where s is the standard deviation of the set
{ST1 , . . . , ST1000}, to estimate the accuracy of S̃t.

(4) We want the relative error (compared to the mean)
to be small, so we pick an arbitrary harsh conver-
gence criterion ε̃/S̃t < 0.001. If this is satisfied, we
are done. Otherwise, we repeat the procedure for
another 500 time steps {T1001, . . . , T1500} selected in
the same way and check the convergence criterion,
repeating until it is satisfied.

Finally, we have numerically verified that this simulation
is insensitive to the exact values of each of the prefactors
stated above. For the convergence threshold ε̃/S̃t < 0.001
that we have picked, the error bars are not visible on the
plots and we have chosen to omit them. The simulations
in Figs. 1 and 3 are performed for g = 0, 0.2, 0.24, 0.245,
0.249, 0.25, 0.251, 0.255, and 0.26 and N = 16, 32, 48, 64,
96, and 128.

APPENDIX B: FULL TIME EVOLUTION AND
FLUCTUATIONS OF EE IN THE

NONRECIPROCAL PHASE

In this appendix, we numerically study the fluctuations
in the EE in the quasisteady state of the nonreciprocal

phase, in order to demonstrate that the mean EE is a mean-
ingful characterization of the quasisteady state. In other
words, fluctuations in the EE over time in the long-time
regime are sufficiently small or comparable to the mean
value. Surprisingly, this is true even though it is not the
case for any of the other quantities of interest, such as
νt, ν2

t , 〈d̂†d̂〉, where fluctuations can be significantly larger
than the mean value.

We expect fluctuations to be largest when the nonre-
ciprocity is maximum. In terms of the numerics provided
in the main text, this is when g = 0,� = 0.25, w = 1. Fig-
ures 5(a) and 5(c) plot the full time evolution of the EE
for N = 16, 32, 48, and 64 for the N/4 bipartition and the
minimal bipartition. We observe, at least visually, that the
EE does indeed reach a quasisteady state, with fluctuations
over time much smaller than the average value.

We can quantify the size of the fluctuations compared to
the mean value using the quantity

√
(St − St)2

St
, (B1)

where we calculate the time-averaged quantities using the
methods outlined in Appendix A. These quantities are plot-
ted in Figs. 5(b) and 5(d) for values of N up to N = 64
and g = 0, 0.2, 0.24, 0.245, and 0.249 and observe that the
above quantity generally decreases with N , giving a value
of approximately 10−2–10−1 across all N considered. We
comment that this property does not hold for other quan-
tities, such as νt or the particle density. Furthermore, note
that we do not require this quantity to go to zero—simply
that it is reasonably small enough that the time-averaged
EE provides a good description of the quasisteady state.

We comment briefly on the time dependence of the
EE (prior to saturation) in the supervolume-law phase.
In the volume-law phase, the EE simply grows linearly
before saturating and oscillating around its steady-state
value—this behavior is well understood in the quasipar-
ticle picture, where one assumes that the system starts out
with pairs of entangled quasiparticles the ballistic propa-
gation of which explains the entanglement growth up to
saturation [50].

Conversely, the time dependence of the EE in the
supervolume-law phase at short and intermediate times
displays features that are not immediately explained by
the traditional quasiparticle ansatz. We focus on the case
of the l = N/4 bipartition when w = 1, � = 0.25, and
g = 0, although the same features appear across all param-
eter values in the nonreciprocal phase. The short- and
intermediate-time growth is shown in Fig. 6. At short
times, the EE growth is in fact greater than linear, with
a dependence that is independent of the system size N but
depends on the parameters w, g, and �. For the param-
eters in Fig. 6, our numerics show that the EE grows as
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FIG. 5. (a) The full time evolution of the EE of the (N/4 : 3N/4) bipartition for a representative time period for w = 1, � = 0.25,
and = 0. We observe that visually, the long-time EE appears to oscillate around some mean value, with oscillations that are small
compared to the mean value. (b) The plot of the variance defined in Eq. (B1), calculated over the period of time required for the mean
value of the EE to converge according to the criterion outlined in Appendix A. (c) The same as (a) but for the minimal bipartition
(1 : N − 1). (d) The same as (b) but for the minimal bipartition (1|N − 1).

approximately t1.69 for short times. At intermediate times,
the temporal growth of EE starts to depend on the sys-
tem size and saturate (the branching between the different
curves in Fig. 6). Immediately after this branching, we find
that the EE starts to display concomitant oscillations. This
feature is also not present in predictions derived from a
quasiparticle ansatz. These features merit further study, as
they suggest that the quasiparticle ansatz needs to be sig-
nificantly modified to account for squeezing in bosonic
systems; we leave this to future work.

APPENDIX C: AVERAGE CORRELATIONS

In this appendix, we derive explicitly the time-averaged
covariance σ both in the reciprocal and nonreciprocal
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FIG. 6. The plot of the time evolution of the SN/4, i.e., the
EE of the (N/4 : 3N/4) bipartition, for w = 1, � = 0.25, g =
0, and N = 16, 32, 48, and 64. (a) The short-time evolution.
We observe that the short-time evolution is independent of the
system size and strictly superlinear. (b) The intermediate-time
evolution. At intermediate times, the EE growth slows down
before eventually saturating. Immediately after branching out
from the short-time system-independent curve, the EE evolution
starts to show concomitant oscillations.

phases. In particular, we will show that in the squeezed
frame, σ is independent of the position in the lattice.

In both the reciprocal and nonreciprocal phases, the
Hamiltonian can be brought under the diagonal form
Ĥ = ∑

n εnb̂†
nb̂n with εn = −2

√
w2 + g2 −�2 cos [πn/

(N + 1)].
The time average for the correlations in the position

basis is particularly simple and can be written as the
selection rules

〈b̂†
mb̂n〉 = δm,n〈b̂†

nb̂n〉t=0, (C1)

〈b̂mb̂n〉 = δm,n̄〈b̂n̄b̂n〉t=0, (C2)

where we have introduced n̄ := N + 1 − n. Hence the
average state of the system is entirely determined by the
values of these correlations at t = 0.

1. Nonreciprocal phase

In the nonreciprocal phase, the eigenmodes are given by

b̂n =
√

2
N + 1

N∑

j =1

e−i π j
2 sin

(
π jn

N + 1

)(
(cosh (r(j − j0))

× cosh r0 + i sinh (r(j − j0)) sinh r0) âj

+ (i cosh (r(j − j0)) sinh r0

− sinh (r(j − j0)) cosh r0) â†
j

)
, (C3)

where j0 is an arbitrary “gauge factor,” tanh (2r0) =
g/�, and e2r = (w +

√
�2 − g2)/(w −

√
�2 − g2). The
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conserved correlations are fixed by the vacuum initial state

〈b̂†
nb̂n〉t=0 = v(n, r) cosh(2r0)− 1

2
, (C4)

〈b̂n̄b̂n〉t=0 = w(n, r) cosh(2r0)− i
2

sinh(2r0), (C5)

with

v(n, r) := 1
N + 1

∑

j

cosh (2r(j − j0)) sin2
(
πnj

N + 1

)
,

(C6)

w(n, r) := 1
N + 1

∑

j

sinh (2r(j − j0)) sin2
(
πnj

N + 1

)
.

(C7)

These expressions simplify in the continuous limit defined
as follows. Let a be the lattice spacing. We consider the
limit N → ∞, a → 0, while keeping fixed the dimen-
sionful quantities ξ := a/r, L := a(N + 1), x := aj , and
p := πn/a(N + 1). To simplify the expressions, we fix the
gauge parameter j0 = 0. This leads to

v(p , ζ ) = ξp2

2L
(
ξ−2 + p2

) sinh(2L/ξ)
2

, (C8)

w(p , ζ ) = ξp2

2L
(
ξ−2 + p2

) cosh (2L/ξ)− 1
2

. (C9)

a. Local correlations in the tight-binding basis

In this subsection, we derive the average local on-site
correlations in a given spatial frame. As discussed in the
main text, those are the quantities necessary to characterize
entanglement in the minimal-bipartition protocol. The spa-
tial frame where the correlations appear in their simplest
form is the tight-binding frame with operators {d̂†

j , d̂j }. The
correlations are related to the one in the diagonal basis by
a simple OBC Fourier transform:

〈d̂†
j d̂j 〉 = 2

N + 1

N∑

n=1

sin2
(
πnj

N + 1

)
〈b̂†

nb̂n〉, (C10)

〈d̂j d̂j 〉 = 2
N + 1

(−1)j +1
N∑

n=1

sin2
(
πnj

N + 1

)
〈b̂n̄b̂n〉.

(C11)

We will make use of the identity

2
N + 1

L∑

n=1

sin2
(
πnj

N + 1

)
sin2

(
πnl

N + 1

)
(C12)

= 1
2

+ 1
4
(
δj ,l + δj ,N+1−l

)
. (C13)

Inserting this identity in the previous relations leads to

〈d̂†
j d̂j 〉 = −1

2
+ 1

N + 1
cosh(2r0)

2

(
sinh(rN ) cosh(r(N + 1 − 2j0))

sinh(r)

+1
2
(cosh (2r(j − j0))+ cosh (2r(N + 1 − j − j0)))

)
, (C14)

where we recall that j0 is an arbitrary “gauge factor”. Once
again, this expression simplifies in the continuous limit:

〈d̂†
x d̂x〉 = cosh(2r0)

sinh(2(L − x0)/ξ)+ sinh(2x0/ξ)

4L/ξ
− 1

2
.

(C15)

Note that the j -dependent term is no longer here in the
continuous-limit description. Finally, we can fix the gauge
parameter x0 = L/2 to simplify these expressions:

〈d̂†
x d̂x〉 = cosh(2r0)

sinh(L/ξ)
2L/ξ

− 1
2

. (C16)

For the local pair-annihilation correlation, one obtains

〈d̂j d̂j 〉 = (−1)j +1

2

(
−i sinh(2r0)

1
N + 1

cosh(2r0)

(
sinh(rN ) sinh(r(N + 1 − 2j0))

sinh(r)

+ 1
2
(sinh (2r(j − j0))+ sinh (2r(N + 1 − j − j0)))

))
. (C17)
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Once again, taking the continuous limit and choosing
x0 = L/2, one obtains

〈d̂xd̂x〉 = (−1)
x
a

i
2

sinh(2r0). (C18)

We thus see that in the continuous limit defined above, the
norms of both correlations are independent of x in the tight-
binding frame. For the minimal bipartition, this means that
the value of the EE will be the same, up to finite-size
corrections, for all the sites.

2. Reciprocal phase

In the reciprocal phase, the eigenoperators are

b̂n =
√

2
N + 1

∑

j

sin
(
πnj

N + 1

)
e−iφj

×
(

cosh r0âj + i sinh r0â†
j

)
, (C19)

where tanh (2r0) = g/� and φ = arctan (w/
√

g2 −�2).
The conserved correlations in this case are given by

〈b̂†
nb̂n〉t=0 = 〈b̂†

nb̂n〉 = 1
2
(cosh (2r0)− 1) , (C20)

〈b̂n̄b̂n〉t=0 = 〈b̂n̄b̂n〉 = −i
sinh (2r0)

2
2

N + 1

×
N∑

j =1

sin2
(
πnj

N + 1

)
e−2i(φ− π

2 )j . (C21)

Performing the sum for 〈b̂n̄b̂n〉 in the continuous limit leads
to

〈b̂p̄ b̂p〉 = 1
L

sinh (2r0)
2p2

(
1 − eiϕL

)

ϕ
(
4p2 − ϕ2

) , (C22)

where we have defined p̄ := π/a − p and ϕ := 1/
a(π − 2φ).

a. Local correlations in the tight-binding basis

As for the nonreciprocal case, the local on-site correla-
tions take their simplest form in the tight-binding frame
with operators {d̂†

j , d̂j }. Performing the inverse Fourier
transform leads in this case to

〈d̂†
j d̂j 〉 = 1

2
(cosh (2r0)− 1) , (C23)

〈d̂j d̂j 〉 = i
(−1)j sinh (2r0)

2(N + 1)

(
eiθ j + eiθ(N+1−j )

2
− 1 − eiθN

1 − e−iθ

)
.

(C24)

Defining ϕ := θ/a, the last expression simplifies once
again in the continuous limit:

〈d̂xd̂x〉 = (−1)x/a
sinh (2r0)

2
eiϕL − 1
ϕL

. (C25)

APPENDIX D: COMPUTATION OF
ENTANGLEMENT ENTROPY

In this appendix, we compute the EE of a subsystem
of size l in the limit l/L � 1 using the GGE. We begin
by showing that, for our model, this is equivalent to the
minimal-bipartition approach, both in the reciprocal and
nonreciprocal phase.

1. Equivalence between GGE ansatz and minimal
bipartition

Recall that in the GGE approach, the stationary entan-
glement of a subsystem A of size l is simply assumed to
be directly proportional to the total EE of the total system,
with the proportionality coefficient fixed by l,

SA = l
N

∑

n

s(νn), (D1)

where s(x) := [(x + 1)/2] ln [(x + 1)/2] − [(x − 1)/2] ln
[(x − 1)/2] and νn the positive eigenvalue associated with
the 2 × 2 block matrix

(
2〈b̂†

nb̂n〉 + 1 −2〈b̂n̄b̂n〉
2〈b̂n̄b̂n〉

∗
−2〈b̂†

nb̂n〉 − 1

)
. (D2)

a. Nonreciprocal phase

Recall the expressions for the correlations in the contin-
uous limit (recall that we fixed x0 = 0 in this case):

〈b̂†
p b̂p〉 = (pξ)2

2
(
1 + (pξ)2

) sinh(2L/ξ)
2L/ξ

cosh(2r0)− 1
2

,

(D3)

〈b̂p̄ b̂p〉 = (pξ)2

1 + (pξ)2
sinh2(L/ξ)

2L/ξ
cosh(2r0)− i

2
sinh(2r0)

(D4)

where π/L ≤ p ≤ π/a. The positive eigenvalue of
Eq. (D2) is

νp =

√√√√√cosh2(2r0)

⎛

⎝
(

ξp2

L
(
ξ−2 + p2

)
)2

sinh2(L/ξ)− 1

⎞

⎠ + 1.

(D5)
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Away from the critical point, ζ is finite. Taking the large-
system-size limit then leads to

νp ≈ ξp2

L
(
ξ−2 + p2

) cosh(2r0) sinh(L/ξ). (D6)

Importantly,

s(νp) ≈ ln νp ≈ L/ξ , (D7)

to leading order. Thus we see that to leading order in L, the
momentum dependence of the mode is irrelevant and all
modes give the same contribution.

Close to the transition, ξ → ∞, r0 → ∞. Taking the
limit L → ∞ while keeping L/ξ finite leads to

νp ≈ cosh(2r0)

√(
sinh(L/ξ)

L/ξ

)2

− 1. (D8)

We see again that the eigenvalue becomes independent of
the momentum.

Thus, we see that, “in the large-system-size limit” means
that, for the practical purpose of computing the EE away
and close to the critical point, we may ignore the momen-
tum dependence of the correlations. But since the diagonal
basis is related to the laboratory frame by an OBC Fourier
transform and two local-squeezing transformations that do
not affect the entanglement, this means that the contribu-
tion to the entanglement in the GGE framework of a single
mode is also the EE of a single spatial site. Thus the two
results are equivalent.

Since we expect the GGE to hold for small system
sizes l/N � 1, this extends our analytical results for the
entanglement in this limit.

We will now show that a similar statement holds in the
reciprocal phase.

b. Reciprocal phase

Recall the expressions for the correlations in the eigen-
basis:

〈b̂†
p b̂p〉 = 1

2
(cosh (2r0)− 1) , (D9)

〈b̂p̄ b̂p〉 = 1
L

sinh (2r0)
2p2

(
1 − eiϕL

)

ϕ
(
4p2 − ϕ2

) . (D10)

The corresponding eigenvalue νp is given by

νp =
√√√√1 + sinh2 2r0

(
1 − 32p4 (1 − cos (ϕL))

(
ϕL
(
4p2 − ϕ2

))2

)
.

(D11)

Away from the transition, ϕ is finite and, in the large-L
limit, 〈b̂p̄ b̂p〉 ≈ 0.

Close to the transition, ϕ → 0. Taking L → ∞ and
keeping ϕL finite leads to

〈b̂p̄ b̂p〉 ≈ sinh (2r0)

2

(
1 − eiϕL

)

ϕL
, (D12)

which is again independent of p . We thus obtain that the
GGE approach is equivalent to the minimal bipartition in
the reciprocal phase as well.

2. Entanglement entropy and critical scaling

a. Nonreciprocal phase

In the nonreciprocal phase, the expression for νn is given
by Eq. (D5).

Far from the critical point, we had s(νp) ≈ ln νp ≈ rN
and thus

SA = rlN , (D13)

which leads to the supervolume-law scaling.
To get the scaling near the critical point, we consider the

limit L/ξ � 1, which corresponds to a regime where the
localization length is much greater than the system size.
Expanding Eq. (D5) in powers of L/ξ leads to

νp ≈ N
�√
3w

(
1 + 1

15
(L/ξ)2

)
(D14)

and

SA ≈ l
(

ln N + 1
15
�2 − g2

w2 N 2
)

. (D15)

b. Reciprocal phase

The eigenvalue νp in the reciprocal phase is given by
Eq. (D11).

Away from the transition, in the large-N limit, we have
〈b̂p̄ b̂p〉 = 0, so the EE is simply

SA ≈ ls (cosh (2r0)) . (D16)

Close to the transition, in the continuous limit, and for
ϕL � 1, we obtain

νn ≈ �N√
3w

(
1 + 1

15
(L/ξ)2

)
, (D17)

which yields the same critical scaling as the nonreciprocal
phase:

SA ≈ l
(

ln N + 1
15
�2 − g2

w2 N 2
)

. (D18)
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FIG. 7. A comparison of the expected thermal entropy S(j )th

against the actual EE S(j )1 for a chain of size N = 32 in (a) the
nonreciprocal phase, with w = 1, g = 0, and � = 0.25 and (b)
the reciprocal phase, with w = 1, g = 0.3, and � = 0.25.

APPENDIX E: LOCAL-SQUEEZING PLUS
THERMAL-OCCUPATION ANSATZ

In this appendix, we show that simply considering the
particle number is insufficient to fully characterize the
spatial profile of entanglement.

Given only access to the density profile, what kind of
EE profile might one expect such a system to have? One
reasonable approach would be to think about the particle
number as a proxy for the size of the local Hilbert space
and, in general, we expect a larger local Hilbert space to
indicate that the site is more entangled with the rest of the
system. To make this concrete, suppose that a site j has
occupation 〈â†

j âj 〉. One can try to associate an entropy with
this density by assuming that when the system has thermal-
ized, the density matrix of the site j will be approximately
that of a thermal state, for which the EE is given by

S(j )th = (〈â†
j âj 〉 + 1) ln(〈â†

j âj 〉 + 1)− 〈â†
j âj 〉 ln〈â†

j âj 〉,
(E1)

and use this as an estimate for the actual EE S(j )1 . We com-
pare these two quantities by plotting their time-averaged
values against each other in both the reciprocal and non-
reciprocal phases (Fig. 7). In both cases, the true entan-
glement profile is flat up to finite-sized effects, whereas the
expected thermal entropy reflects localization in the nonre-
ciprocal case and periodic spatial oscillations in the recip-
rocal case. In both cases, the thermal entropy significantly
overestimates the true EE.

Another way to appreciate the relationship between the
particle number and entanglement is to explicitly extract
the local squeezing and temperature of the time-averaged
one-site density matrix. To do so, note that any diagonal
single-site covariance matrix σ can be decomposed into a
rotation followed by a squeezing operation on a thermal
state:

σ = R
(

ez 0
0 e−z

)(
e2β 0
0 e2β

)(
ez 0
0 e−z

)
RT, (E2)
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FIG. 8. A comparison of the local squeezing |zj | and local tem-
perature |βj | for a chain of size N = 32 in (a) the nonreciprocal
phase, with w = 1, g = 0, and � = 0.25 and (b) the reciprocal
phase, with w = 1, g = 0.3, and � = 0.25.

where R is some orthogonal matrix and e2β±2z are the
eigenvalues of σ . The symplectic eigenvalue is entirely
determined by β and the local-squeezing parameter z does
not affect the entanglement properties at all. The quantities
β and z can be easily obtained by diagonalizing σ .

In Fig. 8, we plot the values βj , zj extracted from the
time-averaged covariance matrix σj at site j . These quan-
tities display qualitatively similar features to the entropies
of the previous plot, with the temperature being analogous
to EE and the local squeezing displaying the same spatial
distribution as the particle number. Notably, this allows
us to make the more explicit statement that the spatial
nonuniformity arising from nonreciprocity can be entirely
characterized by local-squeezing operations, which do not
affect the entanglement properties.

APPENDIX F: TWO ENABLING CLAIMS IN THE
NONRECIPROCAL PHASE

1. The symplectic eigenvalue squared can be
approximated using two-point correlators

In the main text, we have assumed that in the nonrecip-
rocal phase,

ε4 := (〈d̂†d̂〉)2 − 〈d̂†d̂†〉〈d̂d̂〉
(
〈d̂†d̂〉

)2
−
(
〈d̂†d̂†〉

) (
〈d̂d̂〉

) − 1 ∼ O
(

1
N

)
.

(F1)

To show this rigorously requires a long and tedious calcu-
lation, which we will outline here. We will show this in
two limits: (1) deep in the nonreciprocal phase, where we
fix r and take N to be large, and (2) near the critical point,
where we fix N and take g → �−.

First, let us set up the problem and classify various con-
served quantities. For simplicity, we will pick d̂ to be the
operator on the first site of the chain, in the frame where
j0 = (N + 1)/2 (picking any other site does not materially
change the calculation, as we will see shortly). For brevity,
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we will denote

ts(x) := sin
(

πx
N + 1

)
.

In this frame, the initial values of the momentum correla-
tions are

〈b̂†
k b̂q〉0 = 2

N + 1

N∑

n=1

ts(kn)ts(qn)H(r, n, r0),

〈b̂kb̂q〉0 = 2
N + 1

N∑

n=1

ts(kn)ts(qn)G(r, n, r0)(−1)n,

(F2)

where we have defined the quantities

H(r, n, r0) := 1
2

cosh
(

2r
(

n − N + 1
2

))
cosh(2r0)− 1

2
,

G(r, n, r0) := −1
2

sinh
(

2r
(

n − N + 1
2

))
cosh(2r0)

+ i
2

sinh(2r0),

(F3)

associated with the initial real-space correlations in the
tight-binding frame [see Eq. (C4)]. This gives the full time
evolution of the four-point functions as

〈d̂†d̂〉2 =
(

2
N + 1

)2 N∑

k,q,k′,q′=1

ts(q)ts(q′)ts(k)ts(k′)〈b̂†
qb̂k〉0〈b̂†

q′ b̂k′ 〉0ei(εq+εq′−εk−εk′ )t,

|〈d̂d̂〉|2 =
(

2
N + 1

)2 N∑

k,q,k′,q′=1

ts(q)ts(q′)ts(k)ts(k′)〈b̂kb̂k′ 〉0〈b̂†
qb̂†

q′ 〉0ei(εq+εq′−εk−εk′ )t,

(F4)

where εk =
√

w2 + g2 −�2 cos [πk/(N + 1)].
To calculate the time average of the above quantities, we

first observe that we can classify the conserved quantities
into three sets, A, B, and C, defined by the conditions

A : q = k; q′ = k′,

B : q′ = N + 1 − q; k′ = N + 1 − k,

C : q = k′; q′ = k.

(F5)

Note that for generic N , we always have this set of con-
served quantities such that εq + εq′ − εk − εk′ = 0. For a
specific values of N , we can have other sets of conserved
quantities associated with special values of the cosine but
the effects of these do not scale with N , so we can ignore
them.

We define the sum over the conserved quantities in each
set by I r

A,B,C and I a
A,B,C for 〈d̂†d̂〉2

t and |〈d̂d̂〉t|2, respectively,
e.g.,

I r
A :=

(
2

N + 1

)2 N∑

k,q=1

ts(q)2ts(k)2〈b̂†
qb̂q〉0〈b̂†

k b̂k〉0, (F6)

and so forth. We note that these conserved quantities have
some degeneracy between them, i.e., the sets A, B, and C
have some overlap; e.g., A and B overlap when q = k =
N + 1 − k′ = N + 1 − q′. In the continuous limit, these

overlaps disappear. However, for any finite N , they are
responsible for the O(1/N ) correction observable in the
numerics.

Finally, we observe that

I r
A =

(
〈d̂†d̂〉t

)2
,

I a
B =

(
〈d̂d̂〉

) (
〈d̂†d̂†〉

)
= 0,

(F7)

and

I r
B = I r

C,

I a
A = I a

C.
(F8)

Hence, the time average of the four-point functions reduces
to

〈d̂†d̂〉2
t =

(
〈d̂†d̂〉t

)2
+ 2I r

B + O
(

1
N

(
〈d̂†d̂〉2

))
,

|〈d̂d̂〉|2 = 2I a
A + O

(
1
N

(
|〈d̂d̂〉|2

))
.

(F9)

With the problem set up, we can now do some computa-
tion.
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a. Large-N limit

First, note that in this case,
(
〈d̂†d̂〉t

)2
∼ O(e2Nr/N 2).

We simply need to show that the correction due to I r
B − I a

A

is negligible compared to
(
〈d̂†d̂〉t

)2
.

Generically, we might expect (and can show) that

I r
B, I a

A ∼ O
(
e2Nr/N 2

)
. This means that

(
〈d̂†d̂〉t

)2
would be

a pretty bad approximation for 〈d̂†d̂〉2
t . Fortunately for us,

it turns out that the differences will cancel in exactly the
right way to allow us to make the desired approximation.
First, let us write out the term in full:

I r
B − I a

A

=
(

2
N + 1

)4 N∑

k,q=1

ts(q)2ts(k)2
N∑

n,l=1

ts(qn)ts(ql)ts(kn)ts(kl)
(
H(r, l, r0)H(r, n, r0)− G(r, l, r0)G∗(r, n, r0)(−1)n+l)

=
(

2
N + 1

)2∑

n,l

A(n, l)A(n, l)
(
H(r, l, r0)H(r, n, r0)− G(r, l, r0)G∗(r, n, r0)(−1)n+l) , (F10)

where we have defined

A(n, l) = 2
N + 1

N∑

k=1

ts(k)2ts(kl)ts(kn), (F11)

which can be solved explicitly to obtain

A(n, l) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2 + 1

4δn,1 + 1
4δn,N , n = l,

− 1
4 , |n − l| = 2,

0, otherwise.

(F12)

To show that I r
B − I a

A is small, it suffices to pay attention
only to the sum over n = l. Note that the δn,1 and δn,N terms
and the sum over |n − l| = 2 lead to a correction on the
same order as the sum over n = l, as its contribution can
be bounded by the former sum. Furthermore, the same cal-
culation for sites other than the first site only change the
condition to |n − l| = 2k mod (N + 1), where k is the
site number. Finally, we have

I r
B − I a

A ∼
(

2
N + 1

)2 N∑

n=1

(
H(r, n, r0)

2 − |G(r, n, r0)|2
)

= 1
2

(
2

N + 1

)2 N∑

n=1

(1 − cosh(2r0)

cosh
(

2r
(

n − N + 1
2

)))

= 1
2

(
2

N + 1

)2 (
N − cosh(2r0)

sinh Nr
sinh r

)

∼ O
(

1
N 2 eNr

)
. (F13)

With that, we conclude that

〈d̂†d̂〉2 − |〈d̂d̂〉|2 =
(
〈d̂†d̂〉t

)2
−
(
〈d̂d̂〉

) (
〈d̂†d̂†〉

)

+ O
(

1
N

(
〈d̂†d̂〉2 − |〈d̂d̂〉|2

))

=
(

1 + O
(

1
N

))((
〈d̂†d̂〉t

)2

−
(
〈d̂d̂〉

) (
〈d̂†d̂†〉

))
. (F14)

b. Near critical point

Near the critical point, we need to check what happens
to I r

B − I a
A when g → �. To investigate this limit, we first

take r → 0 and then express r and r0 in terms of g, �, and
w. Again, we only need to check the n = l terms, with the
other terms giving corrections of the same order. In this
case, expanding in r and ignoring the parts that cancel with
some R terms, Eq. (F13) becomes

I r
B − I a

A ∼ 1
3

N cosh(2r0)r2 + O(r3)

 O
(
N (�2 − g2)/w2) , (F15)

which results in only a O(1/N ) correction to the calcula-
tion using the squares of two-point functions, which go as
N 2(�2 − g2)/w2.

We note that the calculation proceeds almost identically
on the reciprocal side of the critical point. For the recip-
rocal side, the term 〈d̂†d̂〉2 does not oscillate at all and so
does furnish any corrections to the symplectic eigenvalue,
whereas the corrections from squaring the |〈d̂d̂〉|2 terms
again goes as O(1/N ).
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FIG. 9. (a) A plot of the quantity ε4 defined in Eq. (F1) for
w = 1, � = 0.25, g = 0, 0.2, 0.245 and 0.249, and N = 48,
64, 80, 96, and 112. (b) A plot of 1/ε4 for the same parame-
ters. The behavior is observed to be very close to linear with N ,
demonstrating that, indeed, ε4 ∼ O(1/N ).

To support these conclusions, In Fig. 9(a), we plot the
numerically calculated values of ε4 for the leftmost site and
observe that it does indeed go away as N increases. We
omit the N = 16 and N = 32 points, as they do not fall
neatly into the large-N regime and we do not expect our
assumptions to hold. In Fig. 9(b), we plot the inverse of
the above quantity and observe that its behavior is indeed
roughly linear with N .

2. Moving averages into the log only results in a small
constant correction

Next, in the main text, we have also claimed that

ν4
t − (ν2

t )
2

(ν2
t )

2
∼ O(1). (F16)

This has allowed us to take ln ν2
t  ln ν2

t , since ln ν2
t ∼

O(N ). Now, ν2
t involves taking products of four two-point

functions—we will simply sketch the main ideas.
First, note that the denominator goes as O(e4Nr/N 4).

Now, for each selection rule arising from taking a product
of two-point functions, one can take the most naive bound
by simply taking absolute values of the summands and
bounding the sine terms by 1. In that case, one can show
that a product of four two-point functions goes at most as
the number of selection rules multiplied by O(e4Nr/N 4) as
well. Since the number of selection rules is independent of
N , we can consider it a constant. As such, all factors of N
in the numerator and denominator exactly cancel out.

In Fig. 10, we plot this quantity for the values of N and
g ≤ 0.25 studied in the main text and observe that, indeed,
the correction to ln ν2

t is exceedingly small compared to
ln ν2

t and approaches a constant for large N , as expected.
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FIG. 10. (a) A plot of the first correction to the estimate
ln ν2

t  ln ν2
t in the nonreciprocal phase, with w = 1, � = 0.25,

and g = 0, 0.2, 0.24, 0.245, and 0.249. We observe that it appears
to plateau as N increases, consistent with the assumptions in the
main text. (b) A plot of the first correction relative to the value
of ln ν2

t , with the same parameters as in (a). We observe that the
relative size of the correction appears to go to zero for large N .
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