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Building on the development of momentum state lattices (MSLs) over the past decade, we introduce
a simple extension of this technique to higher dimensions. Based on the selective addressing of unique
Bragg resonances in matter-wave systems, MSLs have enabled the realization of tight-binding models
with tunable disorder, gauge fields, non-Hermiticity, and other features. Here, we examine and outline an
experimental approach to building scalable and tunable tight-binding models in two dimensions describing
the laser-driven dynamics of atoms in momentum space. Using numerical simulations, we highlight some
of the simplest models and types of phenomena this system is well suited to address, including flat-band
models with kinetic frustration and flux lattices supporting topological boundary states. Finally, we discuss
many of the direct extensions to this model, including the introduction of disorder and non-Hermiticity,
which will enable the exploration of new transport and localization phenomena in higher dimensions.
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I. INTRODUCTION

Atomic, molecular, and optical (AMO) systems are
naturally free from intrinsic disorder and admit a high
level of control and tunability. As such, a wide variety
of AMO platforms have been utilized for the engineer-
ing of synthetic quantum matter, utilized in particular
for the exploration of novel phenomena related to, e.g.,
condensed-matter physics. The natural synergy between
AMO systems and explorations of condensed-matter phe-
nomena range from the direct emulation of Hubbard model
physics based on atoms in optical lattices [1,2] to explo-
rations of topological band phenomena in a variety of
photonics experiments [3].

There have been continued efforts to expand the atomic
and photonic toolboxes to enable the engineering of dif-
ferent kinds of lattice models for quantum simulation
experiments. In this vein, techniques based on synthetic
dimensions [4]—where transport is explored not in real
space but rather in sets of internal states or other auxil-
iary degrees of freedom—have garnered attention as of late
for their ability to explore the physics of electronic matter
in large electromagnetic fields. This topic area, most often
associated with quantum Hall physics, gauge fields, and
topology, has been hard to study through traditional AMO

*bgadway@illinois.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

techniques, owing in part to the neutrality of atoms and
photons. In synthetic dimensions, complex hopping and
gauge fields are more natural to realize, because hopping
terms often involve the absorption or emission of a pho-
ton. Platforms that feature multiple synthetic dimensions
spanned by independent degrees of freedom are particu-
larly exciting, as they offer the ability to engineer gauge
fields fully in synthetic dimensions [5].

Here, we propose a general approach to creating two-
dimensional synthetic lattices formed from laser-coupled
atomic momentum states. This approach offers the abil-
ity to realize highly tunable tight-binding Hamiltonians
that can be used for the exploration of a range of phe-
nomena related to lattice transport. The local control of
nearly all terms in the engineered models lends itself nat-
urally to explorations of artificial gauge fields, disordered
and quasiperiodic lattices, kinetic frustration, and in par-
ticular phenomena arising from the confluence of these
ingredients as well as nonlinear atomic interactions.

This paper is organized as follows: In Sec. II, we review
the experimental approach to creating momentum state lat-
tices (MSLs) in one dimension based on state-preserving
Bragg transitions. In Sec. III, we discuss the extension of
this approach to higher dimensions, detailing a specific
protocol for engineering MSLs in two dimensions. We
discuss the lattice models that may be easily constructed
based on this protocol using only first-order Bragg tran-
sitions, using simulations to motivate specific examples
of exploring flat-band physics and topological spectra and
edge states. In Sec. IV, we discuss extensions based on
parameter variation, higher-order Bragg processes, atomic
interactions, and more. Finally, we conclude in Sec. V.
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II. MSLS IN 1D AND QUASI-1D

We begin by reviewing the atom-optics theory underly-
ing the engineering of MSLs in one dimension (1D), as
well as a discussion of extensions to quasi-1D systems
(i.e., ladderlike geometries). This will provide a basis for
the discussion of engineering MSLs in higher dimensions.

A. MSLs in 1D

We consider a generic system of two-level atoms of
mass M , having a single internal ground (excited) state
|g〉 (|e〉) with an energy �ωg(e) (and a ground-excited
energy separation �ωeg = �ωe − �ωg). These atoms and
their interaction with a driving electric laser field E,
neglecting spontaneous emission, are described in the
dipole approximation by the single-particle Hamiltonian

Ĥ = p̂2

2M
+ �ωg |g〉 〈g| + �ωe |e〉 〈e| − d · E, (1)

where p is the atomic free-particle momentum and d =
−|e|r is the atomic dipole operator, with r a vector point-
ing from the nucleus to the valence electron coordinate.
We now consider the electric field E, composed of two
contributions—a right-traveling field E+(r, t), given by

E+(r, t) = E+ cos(k+·r − ω+t + φ+) (2)

and a left-traveling field with a number of discrete fre-
quency components, given by

E−(r, t) =
∑

j

E−
j cos(k−

j ·r − ω−
j t + φ−

j ). (3)

We assume that the fields propagate along the ex axis and
that the fields are nearly monochromatic, such that k+ =
kex and k−

j � −kex for all j , where k = 2π/λ is the wave
vector of the lattice light of wavelength λ. For each fre-
quency component of the electric field, the resonant Rabi
couplings are�+ = − 〈e| d · E+ |g〉 /� and�−

j = −〈e| d ·
E−

j |g〉 /�. Without loss of generality, we may assume that
E+ = E+ẑ and E−

j = E−
j ẑ, i.e., that the strength of the two

fields does not vary over the region considered, and that
they have a common polarization along the z axis. Finally,
we restrict to the case that all of the applied frequencies are
detuned from the |g〉 ↔ |e〉 atomic resonance by a nearly
common large detuning� ≡ ωeg − ω+ � ωeg − ω−

j , such
that essentially no laser-driven dynamics occur at first
order.

Thus, with an experimental laser detuning � that is
much greater than all relevant Doppler shifts and res-
onant Rabi couplings, the excited state |e〉 will acquire
negligible population and can be effectively traced out.
The light-atom interactions can then be described by
the effective two-photon Bragg processes that change the

atomic momenta by ±�keff = ±2�kex while preserving
the ground internal state [6–8]. These momentum trans-
fers result from the virtual absorption of a photon from the
right-traveling field and stimulated emission into the left-
traveling field (and vice versa). Assuming all atoms begin
with essentially zero momentum, momentum changes in
discrete steps of ±�keff suggest a description in terms of a
basis of plane-wave momentum states labeled as |n〉 having
momentum pn = 2n�kex.

This discrete set of momentum modes forms an effec-
tive lattice in a so-called “synthetic dimension” [4], where
the momentum modes play the role of lattice sites and
the Bragg transitions lead to a kind of laser-assisted tun-
neling between sites. Ignoring spatial (trap) confinement
and atomic interactions, the atoms can be assumed to have
a purely quadratic dispersion, hence the mode-dependent
kinetic energy En = p2

n/2M = n24ER, where ER is the
one-photon recoil energy given by �2k2/2M . The full
Hamiltonian in this plane-wave basis is

H(t)=
∑

n

En |n〉 〈n| +χ(t) |n+1〉 〈n| +χ∗(t) |n〉 〈n+1| ,

(4)

where

χ(t) =
∑

j

��̃j eiφj e−i�ωj t. (5)

Here, χ(t) is the common, time-dependent off-diagonal
coupling term that leads to transitions, or “hopping,”
between the momentum orders. In terms of its spectral
composition, χ can be seen to host a comb of drive fre-
quencies �ωj = (ω+ − ω−

j ), which is effectively derived
from the spectral comb written onto the field E−. The indi-
vidual strengths and phases of these tones are given by
�̃j = �+�−

j /2� and φj = φ+ − φ−
j , respectively.

In the simplest scenario, each tone with index j of the
drive χ is associated with a unique first-order Bragg tran-
sition, e.g., |nj 〉 ↔ |nj + 1〉. This is enforced by having the
frequency of a given tone, ω+ − ω−

j , set to be equal or
nearly equal to a given two-photon Bragg resonance fre-
quency ω̃nj . Here, �ω̃n is the energy difference between
two neighboring momentum orders n and n + 1, relating to
the Doppler frequency shift of the transition |n〉 ↔ |n + 1〉.
The free particle dispersion is quadratic, and hence its
linear first derivative relates to the Doppler frequency shift

ω̃n ≡ pn · keff

M
+ �|keff|2

2M
= (2n + 1)4ER/� (6)

or alternatively, the energy difference between two neigh-
boring orders |n〉 and |n + 1〉 is

�ω̃n ≡ En+1 − En = (2n + 1)4ER. (7)
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Equations (6) and (7) define the two-photon Bragg reso-
nance condition for the transition |n〉 ↔ |n + 1〉.

Up to small two-photon detunings ζj , each frequency
drive tone is set to address one of the Bragg reso-
nances, i.e., ω+ − ω−

j = ω̃nj − ζj . Spectral engineering of
an effective time-independent MSL Hamiltonian, Heff, then
follows by composing the frequency tones of χ such that
they build up an MSL in a link-by-link fashion. Unique
spectral addressing is ensured by restricting all of the �̃j
and ζj terms of the driving field χ to be small compared
to the frequency spacing between first-order Bragg reso-
nances, 8ER/�. Following a transformation to the interac-
tion picture and a rotating-wave approximation, as well as
a reabsorption of the ζj terms onto the diagonal by a redef-
inition of the creation and annihilation operators, the full
Hamiltonian in Eq. (4) can be simply recast [9,10] by the
first-order effective MSL Hamiltonian

Heff/� =
∑

n

εnĉ†
nĉn +

∑

n

Jn(eiϕn ĉ†
n+1ĉn + h.c.). (8)

To first order, the spectral properties of χ can be directly
associated with the terms of Heff as ζj = εnj +1 − εnj , �̃j =
Jnj , and φj = ϕnj . To note, more refined descriptions can
be made by also accounting for higher-order corrections
[11], especially important when incorporating higher-order
Bragg transitions [11,12].

To summarize, starting from an initial state of coher-
ent matter waves at zero momentum, an arrangement of
applied interfering laser beams defines a Bravais lattice,
i.e., a set of states k connected by allowed �k transitions.
The quadratic nature of the free-particle dispersion, which
leads to Doppler shifts of the Bragg transitions, provides
a means to control individual Bragg transitions (having a
common �k but unique changes in energy) in a spectrally
resolved way. At first order in terms of Bragg transi-
tions, all terms of the relevant tight-binding Hamiltonian
are uniquely controllable. Importantly, the spectroscopic
identification of each term of Heff remains robust as one
extends to larger system sizes, as the first-order Bragg
resonances are uniformly spaced, such that no spectral
crowding ensues.

B. Previous extensions beyond 1D

Many transport phenomena depend on the dimen-
sionality of the system under consideration, and some
effects—such as the relevance of static complex hopping
phases to dynamics—are entirely absent in one dimension.
Thus, there have been previous proposals and attempts to
extend MSLs beyond one dimension.

In 1D MSLs, for a given momentum kick leading to
a change of atomic wave vector �k, the spectrum of
relevant Bragg resonances is unique and well spaced,
separated by 8ER/�. One path to engineering effectively
two-dimensional (2D) MSLs was undertaken in Ref. [13],

by using two sets of Bragg laser beams, having incom-
mensurate wavelengths but oriented along the same spatial
axis, to drive unique Bragg transitions that lead to incom-
mensurate changes to the atomic wave vector of �kA and
�kB. Atoms can “hop” between modes in an effectively
two-dimensional state space. In principle, all of the transi-
tions between sets of neighboring states in this 2D space
have a unique resonance frequency. This spectral unique-
ness is not robust in practice, however. As atoms move to
fill out the effective 2D set of states, they densely fill out
the physically 1D span of momentum states [14]. The rel-
evant Bragg spectrum thus becomes denser and denser as
the extent of the effective state space is scaled up, and this
approach is not suitable for realizing large-scale 2D MSLs.

An analogous approach to building 2D MSLs with
unique spectral control of all Bragg transitions was sug-
gested in Ref. [9], based on two sets of Bragg lasers aligned
along unique but nonorthogonal directions (ideally with a
relative angle θ such that cos(θ) is an irrational fraction).
This approach leads to a 2D MSL construction, which can
in principle allow for unique spectral control of all tran-
sitions, however, it is also plagued by spectral crowding
when scaled to larger system sizes.

Finally, the incorporation of multiple internal states has
been suggested or demonstrated for the exploration of non-
Abelian tight-binding models [9], introducing effective
non-Hermitian loss [15,16], and as a means of expand-
ing MSLs in an additional (internal) dimension [17]. In the
context of enabling 2D MSLs, the use of multiple internal
states has some unique and positive aspects, however, it
is ultimately limited in terms of the system sizes to which
it can scale (so far limited to ladderlike systems of two
internal states).

III. MSLS IN TWO DIMENSIONS

The simplest approach to forming a two-dimensional
momentum state lattice is to simply use two sets of spa-
tially orthogonal and noninterfering Bragg lasers, creating
independent MSL-style control for transitions along two
orthogonal directions, e.g., �kx and �ky . Indeed, such an
approach would be in some sense very successful at cre-
ating scalable 2D MSLs. However, ignoring interactions,
the dynamics along the kx and ky directions would be
entirely separable, and this approach would be incapable
of exploring any truly two-dimensional phenomena asso-
ciated with, e.g., gauge fields, nonseparable disorder, and
genuinely 2D band structures. This follows from the fact
that a given �kx transition (from some initial value of kx
to kx +�kx) would have a Bragg resonance frequency that
is entirely independent of the ky coordinate, and likewise
for �ky transitions. We can contrast such a highly scal-
able but separable approach to those discussed in Sec. II B,
which preserved the complete and independent control of
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FIG. 1. Two-dimensional momentum state lattices. (a) The layout of laser beams in real space, aligned in a plane at 120◦ relative
to one another. (b) The frequency spectra of the beams 1, 2, and 3 as laid out in panel (a). Cross-interference between spectral tones
in beams 1 and 2 leads to Bragg transitions along the A direction denoted by the solid horizontal arrows, interference between beams
2 and 3 leads to transitions along the B direction denoted by the dashed arrows, and interference between beams 1 and 3 leads to
transitions along the C direction denoted by the dotted arrows. (c) The resulting set of momentum orders (black dots) connected via
Bragg transitions from an initial zero momentum state (blue circle) is partially depicted, filling out an effective triangular lattice.

all relevant Bragg transitions but were severely limited in
their scalability.

Here, we suggest that the optimal approach to build-
ing scalable and nonseparable 2D MSLs (at least based
on first-order Bragg transitions) can be found by consider-
ing a compromise between these two extremes. By giving
up complete control over all Bragg transitions and allow-
ing for resonance conditions (same �k and same �E) to
repeat at regular intervals, we describe how interesting 2D
tight-binding models can be engineered in a fully scalable
fashion using momentum state lattices.

In the following, we restrict our discussion to one
specific implementation of scalable 2D MSLs based on
interfering lasers arranged in a triangular geometry. How-
ever, in general, many different laser beam configurations
may be used to engineer different kinds of 2D MSLs,
with different features as well as restrictions. The general
considerations we discuss and the formalism we utilize
translate for different 2D MSL arrangements, as well as
for extensions to 3D MSLs.

A. Setup, states, and resonance conditions

Here, we consider the same system of two-level atoms
of mass M , having a single internal ground (excited)
state |g〉 (|e〉) with energy �ωg(e). These two-level atoms
and their interaction with a driving electric (laser) field
E, neglecting spontaneous emission, are described in the
dipole approximation by the single-particle Hamiltonian
given by Eq. (1).

However, we now consider the electric field E as being
based on a laser beam configuration as shown in Fig. 1(a).
In this layout, the electric field is made up of three co-
planar laser fields intersecting at relative angles of 120◦,
a common arrangement for forming triangular and hon-
eycomb lattices [18]. In this 2D MSL, each of the laser

fields—labeled as beams 1, 2, and 3—consists of one iso-
lated frequency component as well as a separate comb of
nearby-spaced frequency tones, as depicted in Fig. 1(b).
Colloquially, we will refer to the isolated components as
the “carriers” and the comblike neighboring tones as “side-
bands.” We particularly note that the physical implemen-
tation of this two-dimensional generalization of 1D MSL
driving [10] is essentially identical to the multifrequency
optical lattice recently realized for real-space control [19].
For the 2D MSL, as in the 1D MSL case, the spacing
between the components of the “sideband” portion will be
dictated by the spacing of relevant Bragg resonances, and
will again be on the scale of a few ER/�. As can be seen
from Fig. 1(b), the approximate frequencies of the carriers
and sideband tones for the three beams are coordinated in
such a way as to isolate three pairs of cross-beam inter-
ferences that give rise to momentum-changing two-photon
transitions, which we will describe in more detail shortly.
To note, we assume that the carriers (and sets of sidebands)
are mutually separated by a spacing δ 	 ER/� (in prac-
tice, at the δ/2π ∼ few MHz scale), such that the relevant
cross-beam interferences are restricted to those involving
intentionally near-coinciding tones (with other terms being
neglected by a rotating wave approximation).

For the laser beams labeled by σ ∈ {1, 2, 3}, each laser
field can be written as

Eσ (r, t) = Ec
σ cos

(
kc
σ · r − ωc

σ t + φc
σ

)

+
Nσ∑

j =1

Esb,j
σ cos

(
ksb,j
σ · r − ωsb,j

σ t + φsb,j
σ

)
, (9)

where the first term relates to the carrier frequency com-
ponent while the sum relates to the comb of sideband
tones.
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As in the 1D case, we assume for simplicity that these
three laser fields may be approximated as having a spatially
homogeneous amplitude over the region of interest and
that they have a common polarization along the z axis, i.e.,
Ec
σ = Ec

σ ẑ and Esb,j
σ = Esb,j

σ ẑ ∀ j . Assuming the electric
fields to be nearly monochromatic, we have

kc
1 � ksb,j

1 � k1 ≡ k

(√
3

2
ex − 1

2
ey

)
, (10)

kc
2 � ksb,j

2 � k2 ≡ k

(
−

√
3

2
ex − 1

2
ey

)
, (11)

kc
3 � ksb,j

3 � k3 ≡ key , (12)

where k = 2π/λ is the wave vector of the laser light having
wavelength λ.

Just like in the 1D case, the near-common single-photon
detuning of all the laser fields from atomic resonance (� �
ωeg − ωc

σ � ωeg − ω
sb,j
σ ∀ σ , j ) is assumed to be much

larger than all other relevant terms, including Doppler
shifts of magnitude |p|k/M and the resonant Rabi coupling
frequencies. This large single-photon detuning from reso-
nance makes direct population of the atomic excited state
|e〉 negligible. Thus, we may trace out the excited state
and effectively describe the system in terms of two-photon
Bragg processes that impart momentum to the atoms in the
x-y plane.

As described above, and motivated by the structure of
the laser spectra shown in Fig. 1(b), the interaction of the
atoms with the laser fields primarily results in three inde-
pendent sets of momentum-changing Bragg transitions,
which, respectively, stem from the pairwise interferences
of the three beams. We label these three unique processes
by � ∈ {A, B, C}, each relating to a unique momentum
change�p� = ��k�. These three discrete Bragg-induced
changes to the wave vector of the atoms are defined as

�kA = k1 − k2 =
√

3kex, (13)

�kB = k2 − k3 = −k

(√
3

2
ex + 3

2
ey

)
, (14)

�kC = k3 − k1 = k

(
−

√
3

2
ex + 3

2
ey

)
. (15)

The directions of these three classes of allowed Bragg
processes (±�k�) are also depicted in Fig. 1(b).

Assuming that we start with the atomic population at
zero momentum, this construction defines a set of possi-
ble momentum states labeled as |m, n〉 that may be pop-
ulated, having momenta km,n = (

√
3m +

√
3

2 n)ex + 3
2 ney .

The kinetic energies of these |m, n〉 states are given as

Em,n = 3ER(m2 + n2 + mn). (16)

Figure 1(c) shows the set of states that may be populated,
filling out a triangular grid in the kx − ky plane. To help
guide intuition about the types of lattice structures that
may be realizable, we color the transitions for the different
�k� directions according to the corresponding colors of
the tones from their generating sideband spectra (the line
styles solid, dashed, and dotted, respectively, relate to the
A, B, and C directions).

The full Hamiltonian of this system is given by

H(t) =
∑

m,n

Em,n |m, n〉 〈m, n| +
∑

�

H�
drive(t), (17)

where Em,n is the kinetic energy of the states forming the
momentum state lattice and

H�
drive(t) =

∑

m,n

χ�(t) |m +�m�, n +�n�〉 〈m, n| + h.c.

(18)

Following from Eqs. (13)–(15), the �-specific changes to
the lattice site indices that result from these Bragg tran-
sitions are {�mA,�nA} = {1, 0}, {�mB,�nB} = {0, −1},
and {�mC,�nC} = {−1, 1}.

Here, the driving terms χ�(t) are the nearest-neighbor
off-diagonal elements, which assume different composi-
tions for the three �k directions in this scheme. For
example, the χA spectrum arises from the interference of
sidebands of field 2 and the carrier of field 1 and is thus
largely defined by the sideband structure of laser beam 2.
Explicitly, we have

χ�(t) =
∑

j

��̃�j eiφ�j e−i�ω�j t. (19)

In terms of their spectral composition, the χ� each host a
comb of drive frequencies �ω�j , with �ωA

j = ωc
1 − ω

sb,j
2 ,

�ωB
j = ωc

2 − ω
sb,j
3 , and �ωC

j = ωc
3 − ω

sb,j
1 . The �̃�j and

φ�j terms relate to the individual strengths and phases
of these tones, similarly given in terms of the individual
single-photon Rabi rates and relative phases of the laser
field tones. For example, �̃A

j = �c
1�

sb,j
2 /2� and φA

j =
φc

1 − φ
sb,j
2 .

In the 1D MSL case, each state-to-state Bragg transition
had a completely unique resonance condition. This situa-
tion is entirely different in 2D. For a given �k, there is
a family of equivalent transitions—having both the same
�k and the same�E—that cannot be separately addressed
at first order. This results directly from the separability of
the (p2

x + p2
y )/2M kinetic energy landscape. For example,
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for the A transitions, where �kA = √
3kex, any transition

originating from the same kx value has the same resonance
frequency, independent of the starting ky .

Still, given the set of accessible |m, n〉 states described
above, a consideration of the Bragg resonance conditions
along the A, B, and C directions suggests a large amount
of spectroscopic control over 2D MSLs. As in 1D, we may
relate these two-photon Bragg resonance conditions to the
final-initial state energy difference for the different �k�
transitions, yielding the resonance conditions

�ω̃�m,n = Em+�m�,n+�n� − Em,n ≡ 3ER(ξ + 1). (20)

More explicitly, Eq. (20) defines the two-photon Bragg res-
onance conditions for the transitions |m, n〉 ↔ |m +�m�,
n +�n�〉. For the different � directions, A, B, and C, the
ξ term takes values of α = 2m + n, β = −2n − m, and
γ = m − n, respectively. Thus, the resonance conditions
along the � direction are not unique for all sets of {m, n},
but there are unique sets of resonances ω̃�ξ that identically
address all the |m, n〉 ↔ |m +�m�, n +�n�〉 transitions
for a given ξ value. For example, the transitions along A
from {m, n} = . . . , {1, −2}, {0, 0}, {−1, 2}, {−2, 4}, . . . are
all driven equally by addressing the ω̃A

α=0 resonance. To
note, this particular 2D MSL beam configuration gives
rise to a separation of 3ER/� between neighboring first-
order Bragg resonances, which is slightly reduced from the
8ER/� separation found in the case of 1D MSLs made from
counterpropagating beams.

As before, here we assume that for each of the χ�

drives each frequency tone j is associated with a unique
resonance condition ξj up to a small two-photon detun-
ing ζ�j = ω̃�ξj −�ω�j . Spectral engineering of an effective
time-independent 2D MSL Hamiltonian, Heff, follows by
composing frequency tones of the χ� drives such that they
build up the 2D MSL. Following a transformation to the
interaction picture and a rotating-wave approximation, as
well as a reabsorption of the ζj terms onto the diagonal
by a redefinition of the creation and annihilation operators,
the full Hamiltonian in Eq. (17) can be simply recast as a
first-order effective 2D MSL Hamiltonian

Heff/� =
∑

m,n

εm,nĉ†
m,nĉm,n

+
∑

�,m,n

J�m,n

(
eiϕ�m,n ĉ†

m+�m�,n+�n� ĉm,n + h.c.
)

.

(21)

Just as in 1D, the various terms of this Hamiltonian can
be directly related to those of the Bragg drives χ�. For
the example of the � = A transitions, �̃A

j = J A
mj ,nj

and
φA

j = ϕA
mj ,nj

, where the site indices relate to all transitions
satisfying 2mj + nj = αj (and similarly for the B and C
directions). For the potential terms, to achieve a uniquely

defined energy landscape and to avoid residual time depen-
dencies of the effective Hamiltonian [20,21], it is sepa-
rately required that ζ�j = εmj +�m�,nj +�n� − εmj ,nj for all
the � directions. This condition is specific to multiply
connected lattice graphs.

For visualization, Fig. 1(c) depicts the base triangular
lattice of |m, n〉 states that are accessible from an initial
condensate. Further, the figure indicates transitions belong-
ing to independent � directions and possessing unique
resonance frequencies, as identified, respectively, by the
line styles and line colors of the transitions connecting the
sites on the graph.

B. Example first-order Bragg lattices

Having established a protocol for engineering 2D MSLs
and having laid out the general conditions for controlling
the unique Bragg resonances, we now provide a few spe-
cific examples of different tight-binding models that may
be carved out from the triangular template of states. Start-
ing with this base triangular MSL when all transitions are
activated, several alternative tight-binding models may be
realized by simply turning off some of the resonant tones,
as we show in Fig. 2. To construct the honeycomb lattice,
for example, one should only address every third first-
order Bragg resonance along each of the � directions.
This honeycomb arrangement is displayed in Fig. 2(a).
To note, the choice of whether the various addressed ξ
resonances relate to {. . . , 0, 3, 6, . . .} or {. . . , 1, 4, 7, . . .},
e.g., simply results in a discrete shift of honeycomb lat-
tice sites relative to the physical set of k states. This fact
is of practical importance, e.g., determining whether or not
the zero-momentum condensate does or does not reside on
the lattice.

Figure 2(b) displays an effective square lattice, achieved
by addressing all available first-order Bragg tones along
two of the � directions labeled by A and B in Fig. 1(b).
One reason to highlight this simple lattice variant is that
it provides a convenient example of the ability to engineer
tunable gauge fields. The unique control over the various
tunneling terms of this square lattice, and in particular all
of the tunneling terms around the elementary plaquettes,
makes possible the construction of fully tunable and uni-
form Abelian gauge fields. Explicitly, to engineer uniform
gauge fields, one should coordinate the tunneling phases as
φA

j = −jφ, where φ is the desired flux value through each
plaquette. The flux values can furthermore be randomized
to study random flux models [22,23] in the square lattice.

Figures 2(c)–2(f) show a variety of lattices that host
dispersionless bands. In these lattices, kinetic frustration
is induced by destructive interference of various tunnel-
ing amplitudes, and interparticle interactions can easily
become the dominant energy scale of the system. There
have been several past realizations of flat-band optical lat-
tices for ultracold atoms [24,25], and their realization in
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(a) (c)(b)

(d) (e) (f)

FIG. 2. Spectral engineering of nontriangular lattices. (a)–(f) Illustration of several example lattices that can be engineered by
leaving off some resonant tones of the full triangular lattice. The appropriate removal of Bragg driving terms results in (a) honeycomb,
(b) square or Hofstadter, (c) dice, (d) kagomé, (e) Lieb, and (f) decorated honeycomb lattices. Lattices (c) through (f) host flat bands. In
the square lattice case of (b), specific arrangements of the hopping phases can result in a uniform flux piercing every lattice plaquette,
transforming the square lattice into the Hofstadter lattice.

MSLs should present similar as well as new opportuni-
ties for exploring the influence of interactions in flat-band
systems [26,27].

Figure 2(c) displays the dice lattice (or rhombille tiling),
which has not been realized by real-space optical lattice
techniques to date. As can be seen from the MSL links, the
dice lattice is constructed by leaving off every third avail-
able Bragg link along each of the � directions. Figure 2(d)
displays the kagomé lattice arrangement [25], which is the
dual of the dice lattice. The kagomé lattice can be engi-
neered by simply skipping every other available first-order
Bragg resonance along each of the � directions. The Lieb
lattice [24], as can be seen by inspection of Figs. 2(d)
and 2(e), is produced by using the same χA and χB spectra
as used for the kagomé lattice, but then simply applying no
χC tones. For all of these canonical flat-band models, the
control over state-preparation in MSLs allows for a direct
way to initialize atoms in flat bands and explore the influ-
ence of atomic interactions. We also note that the control of
2D MSLs allows for the continuous interpolation between
the kagomé and Lieb lattices, as well as the potential for
adding spin-orbit coupling terms to open up a gap between
the flat and dispersing bands [28].

In addition to the well-known three-band models that
possess kinetic frustration [Figs. 2(c)–2(e)], a larger vari-
ety of decorated flat-band models [29,30] are also possible
to construct by restricting certain MSL sites to have a

reduced coordination number, similar to the case of the
Lieb lattice. One such decorated lattice, the five-band
decorated honeycomb lattice, is depicted in Fig. 2(f).

Finally, we note that the aforementioned flux control
over lattices such as that shown in Fig. 2(b) extends to sev-
eral of the flat-band models. In particular, full control over
a homogeneous (or inhomogeneous) flux is possible for the
Lieb lattice. In contrast, the dice and kagomé lattices (as
well as the triangular lattice) are restricted in the possible
uniform flux arrangements they admit. For the kagomé lat-
tice, a flux arrangement (in staggered fashion) is possible
only through the triangular plaquettes in the lattice, while
for the dice lattice, flux values of 0, 2π/3, and 4π/3 are
possible. At first order, gauge field engineering is not at
all possible for the honeycomb and decorated honeycomb
lattice due to the parallel pairs of transitions.

C. Frozen dynamics in a flat-band lattice

One of the key new capabilities that would be enabled
by 2D MSLs is the achievement of flat-band tight-binding
models, i.e., multiply connected lattices that play host to
kinetic frustration. To note, in the context of MSLs, flat-
band phenomenology of the diamond lattice has recently
been explored in ladder systems based on 1D MSLs with
multiple internal states [17], complementing earlier work
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FIG. 3. Frozen dynamics in the Lieb lattice. (a) Band structure of the Lieb lattice tight-binding model. (b) Starting from the same
diamond density pattern (equal population amplitudes at the depicted A and C sublattice sites of a given plaquette), selective projection
onto either the flat band or dispersive bands can be achieved by controlling the relative phase structure of the wave function at the
various site positions. For an equal phase at the populated sites (φA = φC), dispersing bands are populated, whereas an alternating
phase structure (φA = φC + π ) projects solely on to the flat band. (c) Numerical simulations of the dynamics for a hopping rate
of J/2π = 202.7 Hz, starting from the four-site equal phase (orange) and alternating phase (blue) configurations. The dynamics of
the standard deviation (in units of the unit-valued lattice site spacing) reveal the difference between frozen flat-band dynamics and
population spreading for dispersing band projection.

with real-space lattices [24–27]. Extensions to 2D flat-
band models based on 2D MSLs would further open up
several unique explorations into the interplay of kinetic
frustration with atomic interactions, tunable disorder, and
non-Hermiticity.

As a concrete demonstration of the ability of 2D MSLs
to host this physics, in Fig. 3 we plot simulations of the
dynamics of initially localized atomic wave packets in
a flat-band Lieb lattice. The Lieb lattice possesses three
energy bands [shown in Fig. 3(a)], two dispersing and one
flat, originating from the unit-cell structure hosting three
sublattice sites [labeled A, B, and C in Fig. 3(b)].

The large eigenstate degeneracy of the zero-energy flat
band makes it an ideal setting to explore interaction-driven
physics [32] and has motivated studies of mean-field inter-
actions on the dynamics of atoms in real-space Lieb lattices
[24]. In MSLs, the phase-sensitive control over the prop-
erties of an initialized atomic state provides the ability
to tunably initialize atoms either within the set of flat-
band states or within the dispersing bands. Figures 3(b)
and 3(c) indicate how this control may be wielded by
phase-controlled preparation of an initial state, and how
the dispersing dynamics of an equal phase initialized state
is sharply contrasted with the frozen dynamics of a stag-
gered phase flat-band state. To note, these initial states with
tunable phase profiles may be engineered using previously
demonstrated pulsed state transfer [13,33,34].

Specifically, in Fig. 3(c) we plot the numerically
calculated standard deviation σ of the site posi-
tion operator for dispersing and flat-band states. For
an evolving 2D MSL state |ψ(t)〉 = �m,ncm,n(t) |m, n〉,
we calculate σ = √

σ 2
m + σ 2

n , where σm is calculated
as the standard deviation along the m direction,√

〈ψ(t)| m2 |ψ(t)〉 − 〈ψ(t)| m |ψ(t)〉2 (and likewise for n).

The calculations are based on dynamics under the full
Hamiltonian, Eq. (17), which includes steplike dynamics
due to the Floquet nature of the driven MSL system. These
calculations assume Rabi rates of J/2π = 202.7 Hz for the
applied Bragg tones, and the stark contrast of the disper-
sive and flat-band states becomes evident on the few-ms
timescale.

D. Spectroscopy of the Lieb-Hofstadter lattice

In the previous section, we looked at the dynamics of the
Lieb lattice in the coordinate space of the synthetic lattice.
Note that in Fig. 3(c) the dynamics were frozen because
the initial state projected onto a flat band and not because
the system was initialized in a specific eigenstate of the
system. Since we started with atoms in a configuration that
was not an eigenstate of the system, the subsequent dynam-
ics were by nature out of equilibrium. To motivate the
study of eigenstate properties, here we discuss an energy-
resolved spectroscopic technique applicable to synthetic
dimensions experiments [35].

This is a local spectroscopic technique for synthetic
lattices of momentum states, analogous to spin injec-
tion spectroscopy experiments [36–38]. Recent works
have explored similar studies with energy-resolved spec-
troscopy of lattice bands in Rydberg-coupled synthetic
lattice [39], and non-Hermitian topological Hamiltonians
realized in momentum state lattices [11,16]. The essen-
tial idea is that an initially populated “probe” or spectator
lattice site can be coupled to sites of the lattice by a
weak link. Because of the nature of synthetic lattices, an
effective energy bias of the probe site relative to the zero-
energy point of the lattice system can be tuned with ease
(through the detuning of the probe-lattice transitions). This
control, along with measurements of the injection rate
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FIG. 4. Loss spectroscopy of flat and topological energy bands. (a) Tunneling microscopy of the Lieb lattice, monitoring population
loss from a weakly coupled probe site (blue, a spectator site) into the synthetic lattice. (b),(c) Probe loss spectra as a function of probe
bias E, resulting from the resonant weak tunneling of probe atoms into the available lattice eigenstates, shown for lattice flux values
of 2π/3 (top) and π/2 (bottom) per lattice plaquette. The dip features at E = 0 relate to the enhanced density of states in the flat band.
Features at higher and lower energy than the E = 0 dip relate to the topological Hofstadter bands [31]. 2q loss features can be observed
for flux values of 2π/q, relating to the emergent Hofstadter sub-bands. (d) The celebrated Hofstadter butterfly spectrum was obtained
from performing numerical simulations such as in (b) for various flux values through the lattice.

from the probe into the lattice system, provides access
to energy-resolved measurements of the synthetic lattice
energy spectrum.

We will discuss this spectroscopic technique on the Lieb
lattice, as it possesses “spectator sites” that are discon-
nected from the lattice. The presence of such spectator sites
makes the Lieb lattice a natural case study for a generalized
injection spectroscopy [16,35–39]. Since the eigenspec-
trum of the Lieb lattice is modified by the presence of flux
through the lattice, we study the eigenstates as a function
of the flux through the lattice.

We start with the atomic population at a spectator site,
as denoted by the blue lattice site in Fig. 4(a). The energy
of this spectator site relative to zero energy is given by E.
We connect this site to the site on the left, labeled A in
Fig. 4(a) with a weak tunneling strength of 0.1J , where J
is the tunneling strength for the lattice. We then observe
the population loss from the spectator site as a function of
different spectator site energies with respect to the lattice.

In this numerical experiment, the probe atoms do not
just tunnel in and populate site A, which is directly linked
to the spectator site, but rather tunnel into the resonant
eigenstates that overlap with the A site. The loss rate is
proportional to the overlap | 〈ψA| |ψi〉 |2, where |ψi〉 are the
eigenstates of the lattice. With the help of this scheme, we
can probe the energy bands of the Lieb-Hofstadter lattice.
More generally, from Fermi’s golden rule, the energy bias
E of the probe site sets the resonance condition to flow

into different lattice eigenstates, with enhanced loss found
at such a resonance.

For a particle hopping on a two-dimensional square lat-
tice in the presence of a magnetic field, the spectrum is the
celebrated Hofstadter butterfly [40]. In the Hofstadter but-
terfly, for a magnetic flux of (p/q)�0, where�0 is the flux
quantum, the spectrum splits into q bands. The spectrum
of a Lieb-Hofstadter lattice consists of two mirrored Hof-
stadter butterflies, separated by a flat band at E = 0 [31].
Therefore, if we perform a spectroscopic study on the Lieb
lattice, we expect to see 2q dips in the spectator site pop-
ulation for a magnetic flux of (p/q)�0, in addition to a
dominant dip corresponding to the flat band at E = 0.

In Figs. 4(b) and 4(c), we plot the population loss of the
spectator site in the Lieb lattice geometry for φ = 2π/3
and φ = π/2, respectively, over 4.5 tunneling times. For
both 2π/3 and π/2 flux values, we observe a sharp dip at
E = 0, indicating the presence of the flat band. The E = 0
feature persists at all values of �. As expected from the-
ory, we see three and four dips for 2π/3 and π/2 flux,
respectively, below and above E = 0. Figure 4(d) shows
the double Hofstadter spectrum for Lieb lattice, obtained
from stitching together multiple line cuts, such as the ones
shown in Figs. 4(b) and 4(c).

While this scheme measures the bulk spectra of the Lieb
lattice, in the next section we describe a method to probe
the edge states of 2D MSLs with a specific example of a
square Hofstadter lattice.
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FIG. 5. Topological boundary states in Hofstadter lattice. (a) A sketch showing the “knight-move” flux boundary implemented in
Hofstadter lattice. (b) Density plots of the population distribution after ta = 4.5 in units of �/J following initialization at the flux
boundary represented in (a). The top image relates to the case of φ = 2π/3, whereas the bottom plot relates to φ = 0 (and hence no
sharp flux boundary). (c) The anisotropy, σn/σm, of the density distribution following dynamics is plotted as a function of flux through
the lattice for various evolution times of 1.5, 3, 4.5, and 6 in units �/J. The spread is uniform for φ = 0,π while being anisotropic for
other flux values.

E. Topological boundary states

One key feature of MSLs in 1D is the ease of engineer-
ing hard-wall open boundary conditions (OBCs), simply
by truncating the applied drive spectrum at some cho-
sen Bragg resonance. Such OBCs allow, for example,
for the direct investigation of topological boundary states
[10,41–44]. In 2D MSLs, at least for our described three-
beam driving scheme, a similar approach to engineering
open boundary conditions leads to a rather meandering
edge to the resulting tight-binding model lattices. Thus, a
direct interface with “vacuum” is not straightforward to
implement at first order, challenging the observation of
topological edge modes in 2D. However, by an appropri-
ate arrangement of the hopping phases, 2D MSLs do allow
for the engineering of flux interfaces. We can have regions
in the lattice where the flux-per-plaquette of the lattice
sharply transitions between two different values.

Here, we explore signatures of topological boundary
states at the interface between regions of a Hofstadter
lattice hosting two different flux values. Namely, we inves-
tigate interfaces between lattices having flux values of
±φ, thus possessing equivalent band energies and gaps
but opposing topological band indexes. In simulations,
we probe the topological states appearing at such a flux
boundary through nonequilibrium dynamics following ini-
tialization near such a boundary in Fig. 5(a).

Figure 5(b) shows a snapshot of the dynamics after
ta = 4.5�/J in the case of a flux boundary (top, φ = 2π/3)
and a uniform flux (bottom, φ = 0). This time is cho-
sen such that the atomic population is negligible at the
edges of a 35 × 35 lattice, but long enough to see the
contrast between the cases of uniform flux and a flux
boundary. As one can see in Fig. 5(b), in the presence
of uniform flux through the lattice, the population spread

is isotropic. However, in the presence of a flux bound-
ary, that is, for φ = 2π/3 in Fig. 5(a), the dynamics are
anisotropic, and the population spreads favorably along the
flux boundary [Fig. 5(b)]. This anisotropy can be explained
by the presence of edge states that are gapped from the
bulk states for a ±2π/3 flux boundary, while no such
edge states are present for φ = 0. Since we initialized the
state with no explicit energy selection, the atoms populate
both clockwise and counterclockwise propagating edge
modes.

To further investigate the edge states in the Hofstadter
lattice, we plot the anisotropy as a function of flux at dif-
ferent times ta. Here the anisotropy is defined as the ratio
of the standard deviation along m and n directions and is
given by σn/σm, where σm is calculated as described in
Sec. III C. We see that for φ = 0 and π , the anisotropy
is identically equal to 1, with the distribution expanding
isotropically for all ta. In contrast, for other flux values that
relate to a nontrivial flux boundary, the anisotropy grows as
the time ta increases, and has several finer features appear-
ing at particular values of the flux (e.g., local anisotropy
minima at 2π/3, π/2, etc.).

F. Consideration of potential limitations

For completeness, we discuss some issues that may
quite naturally be considered as possible limitations to
the realization of 2D MSLs. First, we note that most
issues that might be considered as potential hindrances
for the realization of 2D MSLs (laser linewidth, sponta-
neous emission, finite temperature, laser profile inhomo-
geneities, etc.) would similarly have been obstacles for
the realization of 1D MSLs, which have been success-
fully explored in numerous experimental studies. Relative
laser-beam phase coherence, which one could imagine
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may be more challenging for a 2D beam arrangement, has
nonetheless been demonstrated to be perfectly adequate
without active phase stabilization in related real-space
lattice experiments [19].

As we discuss later on, atomic interactions play an
important role in distinguishing MSLs as one of the few
synthetic lattice platforms in which interparticle interac-
tions play an important role. However, inelastic scattering
(more specifically, elastic s-wave scattering to momen-
tum modes outside of the MSL subspace) does present
one source of decoherence and loss for MSL experiments.
These collisions will play essentially the same, rather
minor role for 2D MSL explorations as they have played
in past 1D MSL experiments. Such processes can be miti-
gated via the Feshbach control of atomic interactions, and
do not represent the major technical issue limiting the
coherence of MSL experiments.

In practice, the major issue that limits the effective
coherence timescales of MSL experiments is the fun-
damental fact that atomic momentum modes separate
spatially because they differ in their momenta. In typ-
ical experiments, this has limited coherence timescales
(wherein the different momentum orders maintain spatial
overlap) from roughly a few to roughly a dozen Bragg
“tunneling times.” This timescale can be increased by
working with more spatially extended atomic samples,
such as by box trapping, magnetic trapping, or simply
by optical trapping with weak harmonic confinement. In
extending to 2D MSLs, if one wishes to maintain coherent
dynamics over many Bragg tunneling times, one should
hope to work with relatively weak confinement along two
spatial trap axes. However, we do note that the number of
MSL sites that will be explored in such experiments will
be far larger than in 1D MSLs, by the nature of the sys-
tem being two dimensional. That is, while only up to 20 or
so momentum modes have been utilized in 1D MSLs, one
should easily expect that over 100 unique modes will be
coherently explored or populated in 2D MSL experiments
without any added effort.

IV. FURTHER EXTENSIONS

We have thus far only discussed the simplest possible
realizations of 2D MSLs, constructed solely from first-
order, two-photon Bragg transitions driven in a uniform
manner. Based on the body of work in 1D MSLs, it is nat-
ural to expect that some of the most interesting aspects of
2D MSLs will be enabled by capabilities that go beyond
this simple description. Additionally, we have ignored a
discussion of how atomic interactions enrich the dynam-
ics in MSL systems. We now briefly discuss relevant
extensions to the 2D MSL construction based on, e.g.,
spectroscopic control, higher-order Bragg transitions, and
atomic interactions.

A. Parameter variation

In the preceding section, we discussed how different lat-
tices may be realized by either addressing or not addressing
Bragg transitions according to specific patterns (cf. Fig. 2).
The spectroscopic control of MSLs allows for further vari-
ation of the properties—amplitude, phase, detuning—of
addressed transitions. Indeed, controlled variations of the
phases of Bragg tones are what allow for the engineer-
ing of artificial gauge fields, such as in the Hofstadter
model (and, e.g., the Lieb-Hofstadter model). We also
discussed how patterns of gauge fields, particularly flux
boundaries, can be engineered. Beyond this, controllably
random gauge fields [22,23] can be introduced by applying
random variations to the tunneling phases along multiple
Bragg axes.

Spatial parameter variation can also be introduced in
the amplitudes and detunings of the Bragg tones, which
enables control over hopping amplitudes and site-energy
potentials of the resulting MSLs. Such control would be
important, for example, in the study of localization physics
in pseudodisordered quasicrystals.

Finally, in addition to spatial variations of the Hamil-
tonian parameter values, time-dependent changes can also
be readily achieved. Already in 1D MSLs, this control has
been important for explorations of Floquet systems [45]
and the realization of time reflection [34], and many inter-
esting scientific directions will be made accessible by the
extension of this control to 2D MSLs.

B. Higher-order processes

In one-dimensional MSLs, higher-order Bragg pro-
cesses that act as beyond nearest-neighbor hopping terms
have played an important role in expanding the kinds of
lattices that can be engineered. Specifically, four-photon
(second-order Bragg) transitions enable the introduction of
multiply connected pathways in one-dimensional MSLs,
thus making possible the design of artificial gauge fields
[11,12]. In 2D MSLs, where the introduction of gauge
fields is realized naturally at first order (with respect to
the Bragg processes), higher-order Bragg terms can still
play a useful role. One simple example is by promoting the
honeycomb structure of Fig. 2(a) to a topological Haldane
lattice [46,47].

To achieve this extension from the honeycomb lattice to
a Haldane model requires that different (parallel) second-
order Bragg transitions that share the same net �k and
�E should be implemented with different complex hop-
ping phases. While this is forbidden for first-order Bragg
transitions, it can be accomplished at second order by using
distinct combinations of coordinated first-order processes
for each of the desired second-order links. Indeed, if the
individual elements of a given second-order Bragg process
relate to unique directions of momentum change, such as
a �kA and �kB, then their tandem four-photon transition
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(with a rate approximately �a�b/2�i, with �i their char-
acteristic detuning from a common intermediate state and
�a,b � �i their respective first-order Rabi rates) can be
uniquely associated with both the initial kx and ky values of
the atoms. In contrast to the case of first-order Bragg tran-
sitions, this allows for a unique control of all second-order
Bragg transitions in a way that is fully momentum selec-
tive. To note, while this in principle allows for the unique
design of essentially any tight-binding model (having sites
that reside on a given grid of k states), the implementa-
tion at second-order requires operation at greatly reduced
tunneling rates and is thus less robust than the first-order
implementation.

Finally, one particular second-order process worth high-
lighting is the introduction of local effective loss terms
[11,15,16,48], achieved by coupling momentum states to
either an auxiliary reservoir of momentum states or a dis-
tinct internal level that can be selectively removed by
resonant light [15]. The local control of such loss processes
has opened up MSL systems to the study of non-Hermitian
behaviors, such as the non-Hermitian skin effect [16],
and the extension to 2D MSLs promises to facilitate the
exploration of even richer non-Hermitian phenomena.

C. Interactions

In ultracold atomic systems, interactions between neu-
tral atoms in real space are effectively two-body contact
interactions. These contact interactions can be treated as
a δ-function-like interatomic potential for dilute gases
of atoms in the s-wave scattering regime, which trans-
lates to an infinite-ranged (uniform all-to-all) interaction
in momentum space. However, due to the quantum statis-
tics of identical bosons, the symmetrization requirement
leads to a mode-dependent interaction in momentum space
[49]. That is, when two identical bosons in distinct momen-
tum modes interact collisionally, there is an additional
exchange contribution, in addition to the momentum-
mode-independent direct interaction. This results in what
is effectively a local self-attraction (for positive scatter-
ing lengths) between atoms in the same momentum mode.
That is, atoms in a given momentum mode interact less
repulsively with atoms in the same mode than they do with
atoms in every other momentum mode.

Over the past decade, the exploration of interaction
effects in 1D MSLs has provided a means to explore
beyond-single-particle physics [33,50–54]. Looking for-
ward, it also provides a route towards direct interaction-
based squeezing of atomic momentum modes [50]. As in
1D, similar diagonal (configuration-preserving) interaction
terms should enrich the physics of 2D MSLs, in particu-
lar allowing for connections to the physics of mean-field
solitons as recently explored in photonic systems [55–59]

Two-dimensions MSLs also offer a qualitatively new
aspect of interactions as compared to 1D MSLs—the

relevance of state-changing four-wave mixing processes
that conserve both energy and momentum, which in the
language of MSLs relate to correlated tunneling (antitun-
neling) processes of atom pairs [60].

D. 3D MSLs

Finally, we briefly remark that our overall discussion
of the generalization of 1D MSL techniques to 2D MSLs
(expounding on just one particular implementation) can
be naturally extended to the generation of 3D MSLs,
based on a set of two-photon Bragg transitions that fill
out a discrete set of momentum states, characterized by
nearest-neighbor momentum-change vectors that have pro-
jections onto three orthogonal axes. Just as the extension
to 2D opens up the exploration of artificial gauge fields
and kinetic frustration, the subsequent extension to 3D
MSLs would open up new opportunities to explore, e.g.,
tailored Weyl materials, dimensionality-dependent local-
ization phenomena, and more. Short of a full extension
to an implementation in three physical momentum direc-
tions, the extension to layerlike geometries based on mul-
tiple internal states could be achieved, similar to recent
extensions of 1D MSLs [17].

V. CONCLUSION

In conclusion, we have proposed a straightforward path
to extending the control of synthetic momentum state
lattices to two dimensions and beyond. Such techniques
naturally give rise to models with controllable gauge
fields, kinetic frustration, and additional control capabil-
ities relevant to quantum simulation and the exploration
of topological and localization phenomena. As has been
the case in 1D MSLs, further extensions based on added
internal states, higher-order Bragg transitions, and other
added features promise to open up the realization of many
new exciting transport phenomena beyond what has been
explicitly discussed herein.
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