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Entanglement Transitions in Unitary Circuit Games
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Repeated projective measurements in unitary circuits can lead to an entanglement phase transition as the
measurement rate is tuned. In this work, we consider a different setting in which the projective measure-
ments are replaced by dynamically chosen unitary gates that minimize the entanglement. This can be seen
as a one-dimensional unitary circuit game in which two players get to place unitary gates on randomly
assigned bonds at different rates: the “entangler” applies a random local unitary gate with the aim of gen-
erating extensive (volume-law) entanglement. The “disentangler,” based on limited knowledge about the
state, chooses a unitary gate to reduce the entanglement entropy on the assigned bond with the goal of
limiting to only finite (area-law) entanglement. In order to elucidate the resulting entanglement dynamics,
we consider three different scenarios: (i) a classical discrete height model, (ii) a Clifford circuit, and (iii)
a general U(4) unitary circuit. We find that both the classical and Clifford circuit models exhibit phase
transitions as a function of the rate that the disentangler places a gate, which have similar properties that
can be understood through a connection to the stochastic Fredkin chain. In contrast, the entangler always
wins when using Haar random unitary gates and we observe extensive, volume-law entanglement for all
nonzero rates of entangling.
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I. INTRODUCTION

Quantum many-body systems out of equilibrium repre-
sent a challenging frontier and have been shown to exhibit
extremely rich phenomena. These include, for example,
a dynamical phase transition between ergodic and many-
body localized phases as a function of disorder strength
[1–6], quantum many-body scars [7–10], and discrete time
crystals that can occur in periodically driven systems
[11–17]. All the above examples occur in closed quantum
systems subject to unitary evolution.

A new perspective comes from the combination of uni-
tary evolution of a quantum many-body system with mea-
surements. In pioneering works [18–22], an entanglement
phase transition was identified in the dynamics of circuits
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of random unitary gates interleaved with local projective
measurements. This phase transition, which separates a
disentangling phase obeying an area law from an entan-
gling phase obeying a volume law, has been extensively
studied in recent years [23–42]. Successively, it has been
shown that additional phase transitions between different
symmetry broken and topological phases can occur within
the area-law phase [43–49].

In this paper, we consider a different setting in which
the projective measurements are replaced by unitary gates
that are dynamically chosen to disentangle the state. While
finding the disentangling unitary requires certain knowl-
edge about nonlocal properties of the state, the action of the
unitary gate itself is local. We can interpret our approach
as a (1 + 1)D circuit game of L sites in which two play-
ers get to place unitary gates on randomly assigned bonds
at different rates: at each updating step, a random bond of
the chain is chosen. With probability 1 − p the “entangler”
acts with a random unitary and otherwise, with probability
p , the “disentangler” acts by minimizing the entanglement
entropy on the given bond. Here we measure the entan-
glement entropy S = −TrρA ln ρA with the reduced density
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matrix ρA, where A includes all qubits left of the bond.
A time step is defined to be a set of L updating steps. A
possible realization of this model is depicted in Fig. 1(a).
This game has two simple limiting cases: for p = 0, only
the entangler gets to play, resulting in a random-unitary
circuit, which in turn leads to a volume-law state [50].
For p = 1, the entanglement will remain zero at all times
and thus yield an area-law state. Here we are interested
in the behavior of our model for intermediate values of
0 < p < 1. Having defined the rules of the unitary cir-
cuit game, several questions naturally emerge: is there a
phase transition between the volume and area-law entan-
glement at finite p? If so, what are its universal properties?
We provide answers to these questions in several different
variants of the game: in Sec. II, we start with a classical
surface growth model for which the competition between
entangling and disentangling gates is substituted by a com-
petition between increasing and decreasing the height of a
surface locally, as shown in Fig. 1(b). Second, in Sec. III
we investigate a Clifford circuit. In this case, finding the
optimal disentangler amounts to selecting from the discrete
set of two-qubit Clifford unitary gates. Finally, in Sec. IV,
we consider general continuously parameterized unitary
gates. The entangler chooses gates randomly from the Haar
distribution, whereas the disentangler now involves the
optimization of unitary gates on a given bond in order to
minimize the bipartite entanglement entropy.

(a)

(b) (c)

FIG. 1. (a) Illustration of the unitary circuit game: blue boxes
represent random unitary gates and red gates are unitary gates
chosen to disentangle the bond. (b) Classical version of the cir-
cuit game as a surface growth model, where entangling and
disentangling operations are substituted by adding or removing
blocks in a lattice. (c) Updating rules of the classical model:
the entangler (blue arrow) adds blocks and the disentangler (red
arrow) removes them, with the constraint that the difference of
heights between adjacent bonds is at most one and the height
cannot be negative.

II. CLASSICAL MODEL

In this section, we study a surface growth model in
(1 + 1)D that can be interpreted as a classical version of
the unitary circuit game. We start by introducing the update
rules defining the model. We then numerically study the
phase transition that occurs by tuning the disentangling
rate. Finally, we show that this model is closely related to
a stochastic Fredkin spin chain [51].

The study of entanglement growth in quantum random
circuits has gained significant attention in recent years. In
a seminal paper, Nahum et al. [50] showed that the growth
of entanglement under random unitary evolution can be
mapped to a classical surface growth model, in the limit of
infinitely large local Hilbert-space dimension. The dynam-
ics of this model has the same universal behavior as the
entanglement growth in other systems, such as chains of
qubits subject to random unitary evolution. Building on
this simplicity, we adopt this model as a starting point and
propose a straightforward disentangling rule, essentially
undoing the effects of the entangling operations (random
unitaries). This toy model will serve as a useful benchmark
for comparing and contrasting with other more complex
quantum models of the unitary circuit game.

For our classical surface growth model, a bond (block) is
chosen uniformly at random, and then either the entangler
or disentangler takes their go with probability 1 − p and
p , respectively. That is, p controls the disentangling rate.
When the entangler is selected, the evolution of the height
surface follows the dynamical rule:

Entangler (probability 1 − p) :

Sx(t +�t) = min{Sx−1(t), Sx+1(t)} + 1, (1)

where x is the bond index, t denotes the time, and �t =
1/L. When the disentangler is selected, the evolution
follows the dynamical rule:

Disentangler (probability p) :

Sx(t +�t) = max{Sx−1(t), Sx+1(t), 1} − 1, (2)

where the one in the argument of the max function is
added to preserve the Sx(t) ≥ 0 constraint for all times,
i.e., the height cannot be negative. We also impose the
constraint S0(t) = SL+1(t) = 0, resulting from the open
boundary conditions of the model.

The combination of the above rules then defines our
classical entangling-disentangling game, as depicted in
Fig. 1(b): at each updating step a random bond is chosen
and with probability p the bond is disentangled following
Eq. (2) or with probability 1 − p the bond is entangled
with Eq. (1). We can interpret this as a (1 + 1)D surface
growth-depletion model, where the height of each bond
corresponds to the entanglement entropy of that biparti-
tion. The only constraints are that the height cannot be
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negative and that the difference in height between two adja-
cent bonds can be at most one, which is the defining con-
dition of a certain class of surface growth models, known
as restricted solid-on-solid (RSOS) models [52–54]. The
dynamics of certain RSOS models with particle evapo-
ration, similar to our model but with periodic boundary
conditions, have been studied in the literature [55,56].

Our classical model was conceived through a direct
analogy between the entanglement entropy across a bond
and the height of a surface. Nonetheless, it is worth not-
ing that alternative methods exist for the development of
a classical counterpart to our unitary circuit game. For
instance, in Ref. [35], an analogy is made between the
spread of entanglement due to the random unitary evolu-
tion and the spread of information in a classical cellular
automaton. In this particular model, measurements are
purely local operations that prevent the spreading of infor-
mation, mirroring the function of the disentangler in our
unitary circuit game. This alternative framework exhibits a
phase transition between a chaotic and a frozen phase, with
a critical point with power-law spreading of correlations
belonging to the directed percolation universality class. As
we show below, our model presents a similar phase tran-
sition with power-law correlations at criticality, but in a
different universality class.

A. Numerical results

The limiting cases of this model can be easily under-
stood: for p = 0 the disentangler does not act and thus at
large times the system reaches a pyramid-shaped steady
state. The increase of height from a flat initial state is
described by Kardar-Parisi-Zhang (KPZ) universal scal-
ing [57], as derived in Ref. [50]. The limit p = 1 has a
flat steady state, with height 0 at every site. Below we
investigate the transition between these two limiting cases.

The classical model can be efficiently simulated numer-
ically, allowing us to reach large system sizes, up to L =
8192. For each value of the “disentangler” probability p
and system size L that we consider, we run 103 differ-
ent realizations of the circuit (except at the critical point
pc = 1/2, where we run 104 realizations). At each real-
ization, we evolve the system until the dynamical steady
state is reached, and then evolve for extra 105 time steps
in which we average over the quantities that we are inter-
ested in. Note that throughout this paper, all quantities are
understood to be averaged in the steady state of the system,
unless otherwise specified.

Figure 2(a) shows the half-chain height SL/2(p , L), as
a function of L for several disentangling probabilities p
across the phase transition. We identify three different
behaviors: for p < pc we find a volume-law phase, where
the height increases linearly with system size. Note that
in the thermodynamic limit, all the lines in this phase
converge to the line SL/2 = L/2. For p > pc we find an

(a)

(b)

(c)

FIG. 2. Numerical results for the classical model. (a) Half-
chain height as a function of system size L for different val-
ues of the disentangling probability p . (b) Spatial fluctuations
W(p , L) as a function of the disentangling probability p across
the phase transition for different system sizes L. The inset shows
W(p , L)/

√
L, that takes a positive value (independent of sys-

tem size) at the critical point and tends to zero otherwise. (c)
Time evolution, averaged over 104 realizations, of the half-chain
height normalized by the steady-state value as a function of t/L2

at criticality, pc = 1/2. The height increases as a power law with
exponent β = 1/4. The inset shows the time evolution of SL/2 at
p = 0.498 (in the volume-law phase) for several values of L. For
t < tc the evolution is critical (orange line), while for t > tc the
height increases linearly with t (red line).

area-law phase, where the average height converges to a
constant independent of system size. Finally, at the critical
point pc = 1/2 the height is proportional to the square root
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of system size. These numerical results strongly suggest a
phase transition between volume- and area-law phases.

To further characterize the different phases, we study
the averaged fluctuations around the average steady-state
height profile of the system using the quantity

W(p , L) =
(

1
L

L∑
x=1

(
Sx(p , L)− Sx(p , L)

)2
)1/2

, (3)

where the overline indicates the average of the quantity
in the steady state. The quantity Sx(p , L) is a stochas-
tic realization of the height profile in the steady state at
bond x, for disentangling probability p and systems size
L. In practice, we take t much greater than the relaxation
time to the steady state, and average over time. The spa-
tial fluctuations W(p , L) in the classical model are shown
in Fig. 2(b) as a function of p and L. In the volume-law
phase the relative fluctuations tend to zero as the system
size is increased, since only in a finite region around the
center of the system there will be height variations. In
the language of stochastic dynamics, this corresponds to
an inactive phase. In the area-law phase, fluctuations con-
verge to a constant value for sufficiently large system sizes,
indicating an active phase, where fluctuations are equal at
every point in the bulk of the system. At the critical point,
we have a strongly fluctuating phase, where fluctuations
increase with system size as

√
L, as shown in the inset of

Fig. 2(b).
Finally, we focus on the dynamics of the system and

its thermalization time in the critical point pc = 1/2. In
particular, we study how the steady state is reached by
starting from a flat state with zero height at all sites.
Figure 2(c) shows the evolution of the half-chain height
averaged over 104 trajectories, normalized by the steady-
state value. The increase of the half-chain height follows
a power law in time, SL/2(t; pc, L) ∝ tβ , with an expo-
nent β = 1/4, so that the equilibration time in this phase
is Teq ∝ Lz, with dynamic exponent z = 2. We observe
that the dynamics at the critical point is consistent with
Edwards-Wilkinson (EW) scaling [58], where the expo-
nent β = 1/4 is expected. Moreover, we find that the
dynamic exponent z = 0 in the area-law phase and z = 1 in
the volume-law phase, respectively. In the inset of Fig. 2(c)
we show the time evolution of the half-chain entanglement
entropy for a disentangling probability in the volume law
phase but close to criticality. We distinguish two regimes:
for t < tc, the evolution is the same as in the critical
point, i.e., approaching t1/4. Instead, for t > tc, the height
increases as (1/2 − p)t, linearly in time. The critical time
tc, where the evolution changes its behavior, is fixed by the
intersection of the two lines. When approaching the critical
point it diverges as a power law,

tc ∼ (pc − p)−4/3, (4)

with critical exponent 4/3. In Appendix A, we discuss
about the dynamics of the system previous to thermal-
ization in more detail, and numerically show that the
critical point is governed by the EW universality, while
the volume- and area-law phases follow the KPZ universal
scaling.

B. Comparison with Fredkin-chain results

The transition in our classical model can be understood
through a connection to the stochastic classical Fredkin
chain [51], a model originally proposed as an example
of a power-law violation of the area law in quantum spin
chains [59–62]. The stochastic Fredkin model is defined on
a chain of L sites and each site can be either empty or occu-
pied by a particle (zi = 0, 1). We focus on the case with L/2
particles, i.e.,

∑
i zi = L/2. This model can be interpreted

as a height model by defining the bond variable hn =∑n
i=1(2zi − 1), with the condition that hn > 0 for every

n. The evolution of the model follows a continuous-time
Markov-chain evolution, with a parameter c that captures
the rate at which transformations occur. In particular, the
evolution is described by the following updating rules:

1100
2(1−c)

↼−−−−−−−−⇁
2c

=̂0101
2(1−c)

↼−−−−−−−−⇁
2c

,

1101
1−c

↼−−−−−−−−⇁
c

=̂1101
1−c

↼−−−−−−−−⇁
c

,

0100
1−c

↼−−−−−−−−⇁
c

=̂0100
1−c

↼−−−−−−−−⇁
c

,

0101 �↼−−−−−−−−⇁ =̂1100 �↼−−−−−−−−⇁ .

Note that these rules avoid the creation of states of the form
0011, which could lead to negative heights.

While this model looks similar to the model we have
introduced, there are a few key differences. First, in our
classical model, the rate at which the transformations hap-
pen is not fixed by a single parameter but instead depends
on the state of the system. For example, the probability of
the disentangler being able to disentangle (instead of doing
nothing) is proportional to the number of bonds at which it
is possible to reduce the height. Second, the Fredkin chain
dynamics are described by a continuous-time Markov pro-
cess, in contrast to the discrete dynamics of our model.
Third, the Fredkin model does not allow flat regions, i.e.,
neighboring sites with the same height. This is allowed in
our model, but they are only created at zero height. These
flat regions are irrelevant in the volume-law phase in the
thermodynamic limit.

While these differences lead to differing dynamics in the
two models, the steady states agree at the critical point
cc = pc = 1

2 . Indeed, the difference between continuous
and discrete time becomes irrelevant for the average prop-
erties of the steady state. Furthermore, we can understand
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the critical point as approached from the volume-law side
where flat regions are irrelevant, and the critical point
corresponds to an equilibrium between entangling and
disentangling operations.

The connection to the Fredkin chain is supported by our
numerical simulations. The numerically observed scaling
of the height with

√
L at the critical point agrees with ana-

lytical results for the Fredkin chain (given by an average of
Dyck paths). Additionally, the critical profile of our model
converges to the analytical result for the Fredkin chain,
which is given by [63]

Sx(L) = 4√
2π

√
x(L − x)

L
, (5)

(with an extra factor of 2 with respect to the equation in
Ref. [63], since there they consider jumps of 1/2 instead
of 1) as depicted in Fig. 3(a). From a finite-size scaling
analysis of the half-chain height normalized by the system
size, we obtain that the critical exponent for the correla-
tion length when approaching the critical point from the
volume-law phase is ν = 1, as shown in Fig. 3(c). This

(a) (b)

(c) (d)

FIG. 3. (a) Steady-state averaged profile at criticality, pc =
1/2, of the classical model for various system sizes, normal-
ized by

√
L. The dashed red line indicates the analytic result

for the Fredkin chain in the thermodynamic limit. (b) Steady-
state averaged profile at criticality, pc = 0.382, of the Clifford
model. (c) Finite-size scaling of the half-chain height normal-
ized by the system size L when approaching the critical point
from the volume-law phase. The critical exponent ν = 1 corre-
sponds to the analytic result in the stochastic Fredkin spin chain.
(d) Finite-size scaling of the half-chain entanglement entropy
in the Clifford model normalized by the system size L when
approaching the critical point from the volume-law phase, with
approximate critical exponent ν ≈ 1.0.

coincides with the analytical results for the Fredkin chain,
where the correlation length scales as [51]

ξ = ln
(

c
1 − c

)−1

∝ |c − 1/2|−1. (6)

III. CLIFFORD MODEL

As a first quantum model, we consider unitary circuits
that are restricted to Clifford gates [64]. While simulat-
ing general quantum circuits on classical computers is
a difficult task, Clifford circuits can be efficiently simu-
lated using stabilizer states [65–68]. Clifford circuits offer
a sufficiently broad set of operations to show interesting
behavior, while keeping the complexity polynomial with
system size. In fact, Clifford circuits have been the main
playground to study measurement-induced phase transi-
tions [18,19,21]. The group of Clifford unitaries acting in
two qubits is a finite group (containing 11 520 unitaries),
and therefore finding the optimal unitary to disentangle
a bond can be achieved by trying all unitaries until one
is able to maximally disentangle the given bond. More-
over, the entanglement entropy [69] in the stabilizer states
generated by Clifford circuits is always an integer in units
of log(2), and therefore the height picture of the classical
model translates to this case, changing the height by the
bipartite entanglement. However, the rules for entangling
and disentangling are more complicated in the Clifford case
as compared to the classical model.

In the Clifford model, we consider a chain of L spin-1/2
degrees of freedom (qubits) with open boundary condi-
tions. This chain is evolved as depicted in Fig. 1(a). The
entangling gates are drawn randomly and uniformly from
the discrete set of Clifford unitary gates, and the disentan-
gling gates are appropriately chosen Clifford unitary gates
that maximally reduce the entanglement on that bond. This
model has several key differences compared to the classi-
cal one. First, the entangler in this case is not necessarily
optimal. Since it applies only a random Clifford unitary,
there is a finite probability that it does not increase the
entanglement or even that it disentangles the bond. Second,
the disentangler is not always able to reduce the entangle-
ment as much as it is allowed by rule Eq. (2). However,
it is always fulfilled that the disentangler at least reduces
the entanglement to match that of the adjacent bonds, i.e.,
Sx(t + 1) ≤ max{Sx−1(t), Sx+1(t)}.

The disentangling step can be simplified by first looking
at the value of the entanglement entropy on adjacent bonds:
if Sx(t) < min{Sx−1(t), Sx+1(t)}, then that bond cannot be
further disentangled due to subadditivity. Otherwise, one
has to try unitaries in the Clifford group until one of them
is able to maximally disentangle the bond. As shown in
Appendix B, we find that it is sufficient to choose the dis-
entangling gate from a subset of 19 Clifford unitaries to
maximally disentangle any given bond of a stabilizer state.
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This minimal set of unitaries is not unique, however, the
phase transition that we describe in the following is not
affected by the choice, see Appendix C for a discussion
about different disentangling methods.

A. Numerical results

Since the numerical simulations of this model are more
demanding than the ones of the classical model, we are
limited to system sizes up to L = 256. The numerical
results show a phase transition between a volume-law
and an area-law phase located at pc ≈ 0.382, as shown in
Fig. 4(a). The reduction of pc with respect to the classical
model is, in part, caused by the entangler applying random
Clifford unitary gates that may not be optimally increasing
the entanglement or that could even reduce it. For p < pc,
the half-chain entanglement entropy asymptotically con-
verges to L/2, while for p > pc it converges to a constant
value. The behavior at the critical point is similar to the
classical case, scaling as

√
L, however, limitations in sys-

tem size and the large finite-size effects (also present in
the classical case) do not allow for a precise quantification
of the scaling exponent with the numerical data avail-
able. Note that this is in contrast to measurement-induced
phase transitions, where the critical point is characterized
by a logarithmic scaling of the entanglement entropy and a
conformal symmetry of the mutual information [21].

Figure 4(b) shows the behavior of the spatial fluctu-
ations as a function of the disentangler probability. The
behavior is very similar to the one found for the classi-
cal model. The divergence of the spatial fluctuations at the
critical point allows us to determine with better precision
the location of the critical point (inset). Lastly, we investi-
gate the time evolution of the entanglement entropy in the
critical point, as shown in Fig. 4(c). For sufficiently late
times, the behavior of the evolution appears to converge to
a power law with t, with an exponent close to 1/4 as was
the case in the classical model. Appendix A shows addi-
tional results for the dynamics of the system, where we find
that the critical point is governed by the EW universality
class—in agreement with the classical model. This behav-
ior differs from the critical point of measurement-induced
phase transitions, where entanglement entropy grows log-
arithmically with time and saturates in a time linear with
system size [21]. Moreover, we find the same dynamic
exponents of z = 2 in the critical phase, z = 1 in the
volume-law phase, and z = 0 in the area-law phase.

The averaged profile in the steady state of the critical
point is shown in Fig. 3(b). The system sizes that can be
reached by the numerical simulations are not sufficiently
large to convincingly determine whether the profile is con-
verging to one of the Fredkin chain, given by Eq. (5).
However, we can see that even if the proportionality con-
stant is not the same, the profile has qualitatively the same
shape as the one in the classical case. Figure 3(d) shows the

(a)

(b)

(c)

FIG. 4. Numerical results for the Clifford model. (a) Half-
chain entanglement entropy SL/2(p , L) as a function of system
size L for different values of the disentangling probability p . (b)
Spatial fluctuations W(p , L) as a function of the disentangling
probability p across the phase transition for different system sizes
L. The inset shows W(p , L)/

√
L, which takes a positive value

(independent of system size) at the critical point. (c) Time evolu-
tion of the half-chain height as a function of time at criticality,
pc = 0.382, circuit averaged over 103 realizations. The height
increases as a power law with exponent β ≈ 1/4, with dynamic
exponent z = 2.

finite-size scaling collapse for the half-chain entanglement
entropy normalized by the system size. Based on the lim-
ited available data, we find that the critical exponent for the
correlation length when approaching the critical point from
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the volume law is ν ≈ 1. Thus the exponent appears to be
in agreement with the one found for the classical version
of the game.

IV. HAAR RANDOM MODEL

We now study the circuit model in the most general case,
where unitary gates are taken without restriction from the
unitary group U(4). While the minimization of the entan-
glement entropy in the Clifford case was straightforward by
choosing a unitary from a discrete set, the disentangling in
the Haar case is more challenging. In particular, we have to
find an optimal unitary in U(4) by tuning several continu-
ous parameters—for the case of two-site unitary gates, this
implies that the disentangler has to perform a minimization
with nine continuous parameters [70] of a function that is
likely to exhibit many local minima. There exist different
entanglement measures that quantify the amount of entan-
glement of a pure state and thus we have to choose one
in order to perform the entanglement minimization. Here,
we will focus on a bipartite von Neumann disentangler,
i.e., a disentangler that minimizes the bipartite entangle-
ment entropy S across the given bond [71]. In Appendix D,
we discuss how the disentangler performs when trying to
remove all the entanglement of a state generated by a depth
2L random circuit. We find that the disentangling time
increases exponentially with system size.

To simulate the system, we rely on the numerically exact
evolution of the full wave function of the system and are
thus limited to small system sizes, up to L = 16.

A. Numerical results

We first investigate the steady-state half-chain entan-
glement entropy divided by the system size, SL/2/L. This
quantity serves as an order parameter for the transition: in a
volume-law phase, this quantity converges to a finite value
in the thermodynamic limit, while in an area-law phase it
goes to zero. Figure 5(a) shows this order parameter versus
the disentangler probability p for the random Haar circuit
with the von Neumann disentangler. As the system size is
increased, the region in which the system reaches a maxi-
mally entangled state is enlarged, indicating that no phase
transition exists for any disentangler probability p < 1.
Therefore, in the thermodynamic limit any effort from the
disentangler is futile: even an infinitesimal rate of random
unitary gates is expected to eventually lead to a maximally
entangled state. This behavior is very different from the
one found in the competition between random unitary evo-
lution and measurements, where there is a phase transition
to an area-law phase for a sufficiently large, finite rate of
measurements. This relates to the highly nonlocal nature of
quantum measurements, in contrast with the local action of
our unitary disentangler.

Figure 5(b) shows the circuit averaged time evolu-
tion for fixed system size L = 12 and several different

(a)

(b)

(c)

FIG. 5. Numerical results for the Haar random model. (a)
Order parameter SL/2/L versus the disentangler probability for
increasing system size. (b) Time evolution of the half-chain
entanglement entropy for fixed system size L = 12 starting from
a product state and from a random Haar state, circuit averaged
over 50 realizations. (c) Time evolution for system size L = 16
and increasing disentangling probabilities. Circuit averaged over
500 realizations until reaching the steady state for short times,
and over ten realizations after that.

disentangling probabilities, starting from two different ini-
tial states: a product state and a Haar random state. We
find that the steady state reached from both possible ini-
tial states is the same for any disentangling probability.
Even though the disentangler cannot stabilize an area-law
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phase, it does have an effect in delaying the time required
to reach the equilibrium state. In Fig. 5(c) we fix system
size L = 16 and check the time evolution for increasing
disentangler probability p . The time required to achieve
the steady state, which is a maximally entangled state,
diverges as p → 1. In fact, we find that when approach-
ing p = 1, the equilibration time diverges faster than any
power law in 1/(1 − p) and instead is best described by an
exponential divergence.

We are now going to provide a heuristic argument for
the absence of an area law for p < 1, based on the creation
of complex multipartite entanglement structures that the
gate-based disentangler is unable to remove effectively. Let
us first consider a simplified model in which we prepare
a state by applying ne random gates to an initial prod-
uct state. Next, a disentangling circuit is applied until the
total entanglement is reduced below a certain threshold.
Figure 6 shows how the average number of disentangling
gates nd depends on ne. For ne 	 L, the unitaries applied
to the system almost never overlap, such that there is no
creation of any multipartite entanglement. In this case,
the disentangler just needs to find the entangled bonds,
and then the entanglement can be completely eliminated.
The average time needed to disentangle can be analyti-
cally calculated in this limit, and it is given by nd(ne) =
(L − 1)Hne , where Hne is the neth harmonic number, which
coincides with our numerical results (inset Fig. 6). Instead,
when ne � L the overlapping gates lead to the creation
of complex multipartite entanglement structures, making
the disentangling task much harder. For a fixed depth of
the entangling circuit, ne/L � 1, the depth of the disen-
tangling circuit required increases faster than linear with

FIG. 6. Average number of disentangling steps nd needed to
disentangle a state created by a circuit of ne randomly placed
two-qubit unitary. The condition used to consider the state dis-
entangled is that the sum of the bipartite entanglement at every
bond satisfies

∑
x Sx < 10−3L. The inset shows the collapse for

ne 	 L with nd(ne)/L = Hne , with Hn the nth harmonic number.

system size. In particular, as discussed in Appendix D, for
ne/L = 2L, the disentangling time grows exponentially in
L—a property that we conjecture to hold for any ne/L � 1.
In contrast, the circuit depth required by the entangler to
create a maximally entangled state grows linearly with sys-
tem size [50]. We note that a related setup has been studied
in the context of a Metropolis-like entanglement cooling
algorithm [72]. The efficiency of this cooling protocol to
remove the entanglement of the state has been related to
the complexity of the prepared state and its entanglement
spectrum statistics [72–76].

Now, we can turn to the unitary circuit game, where the
gates that entangle and disentangle occur at a certain rate
throughout the time evolution. For a disentangling rate p
close to one, the entangler is initially not able to effectively
generate entanglement, since there is a high probability
that any random gate will be undone by a disentangling
gate before the entangler can place another. Nevertheless,
given enough time, there is a finite probability that the
entangler is able to create a region of length l with mul-
tipartite entanglement by overlapping gates. At this point,
the time required by the disentangler to remove such a
region scales proportional to exp(l). Whereas, the proba-
bility of the entangler to grow this region to length l + 1
in a maximally entangled manner scales ∝ l. Therefore,
given enough time, there is a finite probability that a highly
entangled region is created with a sufficient length that it
is more likely to grow than shrink. Such a region will then
proliferate and the system will eventually have extensive,
volume-law entanglement. In other words, in the thermo-
dynamic limit, the entangler will eventually always win for
any p < 1. Since the time required to randomly generate an
entangled region of length l is exponential in 1/(1 − p),
this argument also explains the exponential in 1/(1 − p)
relaxation time observed in Fig. 5(c).

V. DISCUSSION

Inspired by measurement-induced phase transitions, we
introduced a new playground for quantum random cir-
cuits in which disentangling measurements are replaced by
dynamically chosen unitary gates that minimize the entan-
glement utilizing limited knowledge about the state. We
investigated three different variants of the model: a classi-
cal surface growth model, a Clifford circuit, and a circuit
with generic U(4) gates. For the classical and Clifford
cases, we found a phase transition between a volume-
law and an area-law phase, with a critical point where
the entanglement entropy (or height, in the classical case)
increases as the square root of the system size. We could
gain a deeper understanding of the classical model by com-
paring it to a stochastic Fredkin spin chain. Regarding the
Clifford circuit, we found a qualitative behavior very simi-
lar to the classical one, with a phase transition separating a
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volume-law from an area-law phase. However, the numer-
ical limitations in system size did not allow us to determine
whether the transition belongs to the same universality
class with certainty. Notably, the behavior of this transition
differs significantly from the measurement-induced phase
transition observed in Clifford circuits. Specifically, the
critical point exhibits entanglement growth proportional
to the square root of the system size, in contrast to the
critical point with logarithmic entanglement observed in
measurement-induced transitions.

In the model with random Haar unitaries, we found a
qualitatively different behavior: we did not observe a phase
transition between volume law and area law for any finite
disentangler probability p < 1. Instead, we found that the
steady state is maximally entangled for any p < 1 as L →
∞. We provided a heuristic argument for this behavior
based on the inefficiency of the disentangler to remove
complex structures of multipartite entanglement. This is
something that does not occur in the context of measure-
ment transitions, where measurements are able to reduce
the entanglement irrespective of the complexity of the
state, and therefore an area-law phase is always observed.

The framework of the unitary circuit game opens many
exciting directions for future research in random circuits.
To begin with, going beyond the classical model, it is
unclear to which different universality classes the transi-
tions belong to. The phase transitions found in the classical
and Clifford models have shown to have very similar crit-
ical behavior. However, further investigations are required
to determine whether both transitions actually belong to
the same universality class. Another exciting avenue for
exploration is to consider different variations of the game,
either changing the rules or by restricting the gates to
different subsets of U(4)—which is expected to lead to dif-
ferent behavior. Additionally, our current work employs a
disentangler that minimizes the entanglement entropy on
a bond, but this strategy does not facilitate a transition in
the case with generic U(4) unitaries for any finite rate of
disentangling. It remains an open question whether opti-
mizing other quantities could allow for an efficient con-
trol of entanglement growth in the thermodynamic limit.
Lastly, the possibility of experimental measurement of
Rényi entanglement entropies [77–79] raises the exciting
prospect of implementing the entangling game on physical
hardware.

DATA AND MATERIALS AVAILABILITY

Raw data and simulation codes are available in Zenodo
upon reasonable request [80].
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APPENDIX A: UNIVERSAL DYNAMICS

In this paper, we have mainly focused on the averaged
steady-state properties of the different models considered.
In this Appendix, we are going to study the dynamics of the
models prior to thermalization, i.e., how the steady state is
reached. We will mainly focus on the classical model since
it allows for extensive numerical simulations. We will then
show that the Clifford model shows similar behavior up to
the system sizes that can be realized.

As discussed in Ref. [50], the entanglement entropy of
our unitary circuit game at p = 0 grows according to the
Kardar-Parisi-Zhang (KPZ) equation [57],

∂S(x, t)
∂t

= ν
∂2S
∂x2 − λ

2

(
∂S
∂x

)2

+ η(x, t)+ c, (A1)

where η(x, t) is an uncorrelated noise term and c gives
the linear growth behavior. The c term can be absorbed
into the height field by substituting S(x, t) → S(x, t)− ct,
thus contributing to the linear growth of entanglement
entropy. The ν is sometimes referred to as the surface ten-
sion since it contributes to the smoothing of the interface.
Finally, the nonlinear λ term describes the dependence of
the growth rate on the slope of the surface. For λ = 0,
Eq. (A1) reduces to the Edwards-Wilkinson (EW) equation
[58], which has different universal properties with respect
to KPZ.

In this section, we will look at three different exponents
that characterize the dynamics [54]: the growth exponent
β characterizing the size of the fluctuations in the inter-
face, the roughness exponent α characterizing the spatial
fluctuations, and the dynamic exponent zd that sets the rate
of growth of the correlation length ξ||, defined as the char-
acteristic distance of the spatial correlations. Note that zd
is not the same as the dynamic exponent z presented in the
main text, which characterizes the equilibration time of the
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height (or entanglement entropy). Instead, zd characterizes
the saturation time of the fluctuations. The way the expo-
nents relate to the dynamics is the following. The average
height increases linearly with a subleading correction,

Sx(t) = vEt + Btβ , (A2)

where the overline indicates an average over trajectories.
The fluctuations grow as

wx(t) ≡
(

Sx(t)2 − Sx(t)
2
)1/2

= Ctβ . (A3)

The ratio C/B is a universal quantity. The spatial correla-
tion length growths with time as ξ||(t) ∝ t1/z and the spatial
correlations fulfill

G(r) ≡
[
(Sx(t)− Sx+r(t))2

]1/2
= rαg

(
r/ξ||(t)

)
. (A4)

Note that the spatial correlations are only measured in the
“active” region of the profile, i.e., far away from the posi-
tions where the height has already saturated to a fixed
value. In practice, to determine the spatial fluctuations, we
fix x = L/2, since this is the point that takes longer to reach
the steady state.

The universal KPZ scaling behavior is given by the
exponents

KPZ: β = 1/3, α = 1/2, zd = 3/2. (A5)

Instead, the EW universality is characterized by

EW: β = 1/4, α = 1/2, zd = 2. (A6)

1. Dynamics of the classical model

We start considering the classical model at the critical
point pc = 1/2. As we have seen in Fig. 2(c), the velocity
at the critical point vanishes, and the height grows as t1/4,
consistent with EW scaling. Now, we look at other dynami-
cal properties of the system at criticality. Figure 7(a) shows
the evolution of the fluctuations with time in the half-chain.
The growth follows a power law with exponent β = 1/4.
Figure 7(b) shows the spatial correlations for fixed sys-
tem size L = 8192 at different time steps. As expected,
the spatial correlations follow a power law, with expo-
nent α = 1/2. The inset of the figure shows the collapse
obtained using the scaling form (A4) with dynamic expo-
nent zd = 2. All these results confirm that the dynamics of
the critical point are captured by the EW universality class.

We now turn to the dynamics in the volume-law phase.
As mentioned in the main text, the velocity at which the
height grows is given by vE = pc − p , which vanishes at
the critical point. Therefore, to see the action of the non-
linear term of Eq. (A1) in the growth of entanglement, we

(a)

(b)

FIG. 7. Dynamical properties of the classical model at the
critical point pc = 1/2. (a) Evolution of the half-chain height
fluctuations for increasing system size. Inset: scaling collapse of
the evolution. (b) Spatial correlations as a function of distance
r to the center of the chain for system size L = 8192 at differ-
ent time steps. Inset: scaling collapse given by Eq. (A4) with
EW exponents, α = 1/2 and zd = 2. Data averaged over 2 × 104

circuit realizations for L = 8192 and 105 realizations otherwise.

need to subtract the linear velocity term. Figure 8 shows
the dynamics of the system at the point with disentangling
probability p = 0.3. In Fig. 8(a) we show the subleading
increase of the height coming from the nonlinear term in
the KPZ equation, which for long enough times grows as
tβ , with β = 1/3. Similarly, in Fig. 8(b) we find that the
fluctuations grow as predicted by Eq. (A3), with the expo-
nent corresponding to the KPZ universality. We note that
in both these cases the KPZ behavior appears only for long
times, and this becomes more extreme as we approach the
critical point. This is caused by the crossover between EW
and KPZ behavior: as the critical point is approached, the
nonlinear term controlled by λ becomes smaller (λ tends
to 0 as p → 1/2), and the time scales at which it becomes
relevant increase. In particular, the crossover from EW to
KPZ behavior happens for times proportional to λ−φ , with
φ = 4 [55,56].

Figure 8(b) shows that the fluctuations wL/2 grow with
time as a power law until reaching a maximum and, at
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(a)

(b)

(c)

FIG. 8. Dynamical properties of the classical model at the
volume-law phase, for p = 0.3. (a) Subleading growth of the
half-chain height SL/2(t)− vEt with time for increasing system
size. At late times, the growth follows a power law with expo-
nent β = 1/3 (b) Evolution of the half-chain height fluctuations
for increasing system size. (c) Spatial correlations as a function
of distance r to the center of the chain for system size L = 32 768
at different time steps. Inset: scaling collapse given by Eq. (A4)
with KPZ exponents, α = 1/2 and zd = 3/2. Data averaged over
105 circuit realizations.

this point, they decrease fast to a fixed value independent
of system size. This phenomenon is caused by the open
boundary conditions of the system and the subadditivity
constraint, which impose a maximum height of L/2 in the

middle of the chain. Then, when the height becomes large
enough to reach the upper boundaries, the fluctuations are
reduced. With periodic boundary conditions, there is no
upper limit in height, and the fluctuations increase until
reaching wL/2 ∼ Lα in a time proportional to Lzd .

Finally, Fig. 8(c) shows the spatial correlations as a
function of the distance for several time steps. As predicted
by the KPZ scaling, the correlations follow a power law
with exponent α = 1/2. In the inset, we show a finite-size
scaling collapse following the ansatz Eq. (A4). The results
confirm the dynamic exponent zd = 3/2, characteristic of
KPZ behavior, in contrast with the behavior at the critical
point.

Within the area-law phase, the results are symmetric
with respect to the volume-law phase. However, to see the
KPZ universality in this phase, one needs to initialize the
system in the state with maximum height. Then, the results
are similar to those obtained in the volume-law phase, with

(a)

(b)

FIG. 9. Dynamical properties of the Clifford model at the crit-
ical point pc = 0.382. (a) Evolution of the half-chain height
fluctuations for increasing system size. Inset: scaling collapse of
the evolution. (b) Spatial correlations as a function of distance
r to the center of the chain for system size L = 256 at different
time steps. Inset: scaling collapse given by Eq. (A4) with EW
exponents, α = 1/2 and zd = 2. Data averaged over 104 circuit
realizations.
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a velocity vE = pc − p that is now negative. The fluc-
tuations in the steady state are limited by the boundary
condition Sx(t) ≥ 0, so fluctuations grow as the height is
reduced until they reach the lower boundary of the system,
showing a similar behavior as in Fig. 8(b).

2. Dynamics of the Clifford model

In the Clifford model, we obtain similar results as for
the classical one. In Fig. 9 we show the dynamical prop-
erties of the system at the critical point pc = 0.382. We
find equivalent results to those obtained in Fig. 7 for the
classical model. In particular, the fluctuations increase as
a power law with exponent β = 1/4 and the correlations
increase with distance with α = 1/2, as predicted by the
EW scaling.

Analyzing the results in the volume-law phase in the
Clifford model is more challenging due to the limitations in
system size and the long time scales at which the crossover
from EW to KPZ happens. Thus, we leave a detailed study
of the dynamics at such phases for future work.

APPENDIX B: MINIMAL SET OF
DISENTANGLING TWO-QUBIT CLIFFORD

UNITARIES

In this Appendix, we demonstrate that it is possible to
disentangle any bond within a stabilizer state using a Clif-
ford unitary selected from a minimal set of 19 two-qubit
unitaries. Our proof will take a constructive approach,
providing the explicit form of these unitaries. The orga-
nization of this Appendix is as follows. First, we will
provide a brief summary of the stabilizer formalism, which
is utilized for simulating Clifford circuits. We review the
concept of the clipped gauge, which is used to express the
system’s state in a manner that facilitates direct compu-
tation of entanglement entropies. Finally, we employ the
clipped gauge to identify all local entanglement structures
and determine the unitaries capable of disentangling them.

1. Review of the stabilizer formalism

A stabilizer state of L qubits is defined to be a quantum
state |ψ〉 for which there are L linearly independent and
mutually commuting Pauli string operators gi that leave the
state invariant, i.e., gi |ψ〉 = |ψ〉. Such operators are called
stabilizers. The group generated by these stabilizers and
matrix multiplication is known as the stabilizer group of
the state |ψ〉.

A Clifford unitary is a unitary that maps every Pauli
string into another Pauli string, therefore preserving stabi-
lizer states. It is a well-known fact that the Clifford group is
generated by the set of gates {CNOT, S, H}. The number of
Clifford gates is finite since there is a finite number of Pauli
strings. In particular, for two-qubit unitaries, it consists of
11 520 gates.

The Gottesmann-Knill theorem [65–68] ensures that any
circuit consisting of an initial stabilizer state evolved with
Clifford gates and Pauli measurements can be efficiently
simulated in a classical computer.

The entanglement entropy of a stabilizer state in a region
A can be calculated by counting the number of stabiliz-
ers in the stabilizer group that are completely contained in
A, i.e., that act trivially in its complementary. Then, the
entanglement entropy is given by [81]

SA = nA − log2 |SA|, (B1)

where nA is the number of qubits contained in A and |SA|
is the size of the subgroup of stabilizers contained in A.

We observe that the set of stabilizers generating the sta-
bilizer group can be chosen in many different ways, since
the product of any two stabilizers is still a stabilizer. This is
referred to in the literature as gauge freedom [21]. A par-
ticularly useful gauge is known as the clipped gauge for
one-dimensional spin chains, first introduced in Ref. [50].
Define ρl(i) to be the number of stabilizers with the left
endpoint (i.e., the first site with a nontrivial content) in site
i, and equivalently for ρr(i) with right endpoints. Then, the
generating set of stabilizers can be always chosen in such
a way that the following properties are fulfilled:

(a) ρr(i)+ ρl(i) = 2 for every site i.
(b) If a site i has ρr(i) = 2 or ρl(i) = 2, then the two

stabilizers have a different Pauli operator in site i.

It is always possible to bring a stabilizer state to the clipped
gauge, for an algorithm see Ref. [21]. A state in the clipped
gauge can be diagrammatically represented in the follow-
ing way [43]: draw L points representing the sites. Then,
for each stabilizer, draw a line connecting the left end-
point to the right endpoint. For example, a stabilizer state
of eight qubits could have the following representation:

(B2)

Note that this representation does not uniquely represent a
stabilizer state. Nevertheless, it contains all the information
that we need about the entanglement entropy.

In the clipped gauge, the entanglement entropy of a
contiguous region A is particularly simple to calculate: it
is given by the number of generators with an endpoint
inside A and the other outside A. Therefore, the bipar-
tite entanglement entropy can be directly obtained from
the diagrammatic representation of the state by looking
at how many strings cross each bond. For example, the
entanglement profile in the example state Eq. (B2) would
be S(x) = (1, 1, 2, 1, 1, 1, 1). Using this representation of
stabilizer states, we observe that the entanglement can be
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reduced locally only by moving the endpoints of the stabi-
lizers within the qubits in which the unitary acts. In the
following section, we are going to identify all the local
entanglement structures that one can have in a given bond
and find a way to maximally disentangle each of them.

2. Locally disentangling a state

To disentangle a bond in a stabilizer state, one needs, in
principle, to find the optimal disentangling unitary among
the set of two-qubit Clifford unitaries. However, this set
contains many unitaries, and trying out all of them is a very
time-consuming task. Nevertheless, within stabilizer states
the allowed local structures of entanglement are limited. In
this section, we will explore all potential local entangle-
ment structures and the corresponding unitaries required
for disentangling them. We will find that a finite set of
19 two-qubit Clifford unitaries is enough to maximally
disentangle any possible bond.

The first step to finding the disentangling Clifford uni-
taries is to look at the possible local stabilizer structures,
this is, all possible configurations of stabilizer endpoints
in the clipped gauge in adjacent qubits. By counting in
how many ways one can add strings with two endpoints
in each site, we determine that there are 21 possible sta-
bilizer structures (note that each of them corresponds, at
the same time, to many local states). Only some of these
structures can be disentangled. For example, consider the
following two local stabilizer structures:

(B3)

In the first case, the stabilizers whose endpoints are modi-
fied by a local unitary do not cross the bond, and therefore
the entanglement entropy cannot be reduced locally. In the
second case, there is a stabilizer that crosses the bond.
However, there is no way to move the endpoints of the
stabilizers in such a way that there is less than one string
crossing it while keeping two endpoints per site. Therefore,
the configuration cannot be further disentangled with a
local unitary. All such configurations are said to be locally
minimal. There are 11 such configurations. The other 10
configurations are denoted locally entangled and can be, at
least in principle, locally disentangled.

Now, let us look at the locally entangled configurations
and construct the unitaries that disentangle them. We start
looking at the following configurations:

(B4)

A loop in a single site corresponds to having a stabilizer
completely contained in the site, meaning that the state is

invariant under the application of a Pauli operator P in that
site (maybe up to a sign). Applying a SWAP gate, which is
a Clifford unitary, will move the single-site stabilizer from
one site to the other. Note that, in the site with a single
stabilizer, the other two stabilizers might only have P or an
identity, since those stabilizers must commute with P. If
they have an identity, then after applying the SWAP gate the
stabilizer will automatically start or end in the other site.
If they have the same content as the single stabilizer, then
they can be multiplied by P (since the product of stabilizers
is a stabilizer) to create an identity in that site and reduce
it to the first case. Therefore, the SWAP operation takes the
state to be

(B5)

therefore reducing the entanglement by one unit across the
bond.

Now, let us consider the following symmetric local
entanglement structure:

g1

g2

g4

g3
(B6)

There are four stabilizers that are relevant in such a case,
and they have the following structure:

g1 = . . .A112,

g2 = . . .B1C2,

g3 = 11F2 . . . ,

g4 = E1D2 . . . ,

where the dots indicate that there is at least another site
with nontrivial content. All the endpoints must be a Pauli
matrix, while the rest (B and F) can be either a Pauli
matrix or the identity. We omit the tensor product in
between operators for clarity of notation. Since all stabi-
lizers must commute, we can observe several properties.
First, [A, E] = 0 and [C, F] = 0, which implies that A = E
and C = F . Therefore, we write

g1 = . . .A112,

g2 = . . .B1C2,

g3 = 11C2 . . . ,

g4 = A1D2 . . .

From the commutation of the strings, we also need that
[B1C2, A1D2] = 0. This means that either (a) [C, D] =
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[B, A] = 0 or (b) {C, D} = {B, A} = 0. The objective is
to find a unitary U such that UA112U† = Ã112 and
UB1C2U† = B̃112, with {Ã, B̃} = 0. Since unitaries cannot
change the commutation relations, we observe that case (a)
cannot be disentangled.

In case (b), we have that {A112, B1C2} = 0, so the objec-
tive form can be obtained. To do so, we define a unitary
that transforms the Pauli strings in the following way:

UA1U† = A1,

UB1U† = B1C2,

UC2U† = C2,

UD2U† = A1D2.

This transformation preserves all the commutation rela-
tions, so it is a valid unitary. Observe that the unitary is
completely fixed by choosing the Pauli matrices that are
invariant, A1 and C2. Each of them can take three values,
so in total there are nine such unitaries, which we denote
by Ud = {U1, . . . , U9}. These are all the unitaries required
to disentangle states of the form Eq. (B6).

Next, we consider the entangled structure

g2

g1

g3

g4

(B7)

which is the only one in which entanglement can be
reduced by two units. In this case, the relevant stabilizers
take the form

g1 = . . .A1B2,

g2 = . . .C1D2,

g3 = E1F2 . . . ,

g4 = G1H2 . . . .

As before, we are going to consider two different cases.
When [A1B2, C1D2] = 0, the entanglement entropy can be
reduced only by one. This can be done by just applying
any unitary in Ud such that UA1B2U† = A1. Then, we will
get Ug3U† = Ẽ1F̃2 . . . and Ug4U† = G̃1H̃2 . . .. Since com-
mutation relations are preserved, they must commute with
Ug1U† = . . .A1, so [A, Ẽ] = [A, G̃] = 0. This can only
hold if Ẽ and G̃ are equal to A or to the identity. If one of
them is equal to the identity, then we are already in the sit-
uation of Eq. (B6). Otherwise, we have Ẽ = G̃, so we can
multiply the two stabilizers to get a stabilizer with an iden-
tity in site 1, going back to the clipped gauge and getting
the form of Eq. (B6).

If {A1B2, C1D2} = 0, then by construction [A, C] = 0
(since {B, D} = 0). This can happen only in two cases:

either when A = C or when one of the two is the iden-
tity. In both cases, applying a SWAP gate will reduce the
entanglement by at least 1, leaving the stabilizer structure
as the one in Eq. (B6), and this structure can be completely
disentangled with the unitaries Ud.

We have shown that with the set of 19 unitaries
{Ud, SWAP,Ud × SWAP} we can disentangle any locally
entangled bond of the forms Eqs. (B5)–(B7). There are
six other locally entangled structures. Four of them are the
following:

(B8)

All of these states have a stabilizer g1 = A1B2 that is
completely contained in the bond. Thus, disentangling the
state just consists of applying a unitary in Ud such that
UA1B2U† = A1 or UA1B2U† = B2.

Finally, the two remaining entanglement structures are

(B9)

These two can also be disentangled using the unitaries in
Ud, as one can check following a similar argument as for
the structure Eq. (B6). Therefore, the set of 19 unitaries
that we have found is enough to disentangle any possible
bond.

Observe that we have constructed only a possible set of
unitaries that can disentangle any given bond, but we could
consider many others. For example, applying one-qubit
rotations after the unitaries would not change the disen-
tangling power of the list, but would give a whole new set
of matrices.

APPENDIX C: COMPARISON OF CLIFFORD
DISENTANGLERS

As mentioned in the main text, the Clifford disentan-
gler has several options to maximally disentangle a bond
since different Clifford gates reduce the entanglement by
the same amount. Here, we compare different ways to
choose the disentangling and show that they are all equiv-
alent. This indicates that the average trajectory does not
depend on which disentangling unitary is selected as long
as it maximally disentangles the bond. We compare the
following methods. (i) Random sampling, which checks
the action of all Clifford unitaries in the given bond and
chooses randomly a gate among the ones that disentangle
it maximally. (ii) Reduced random sampling, which uses
a reduced set of 19 Clifford unitaries that are enough to
disentangle any possible bond and tries all of them out.
Then, it chooses a random gate among the optimal ones.
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FIG. 10. Comparison of the time evolution of the half-chain
entanglement entropy for different Clifford disentanglers and dif-
ferent values of the disentangler probability for system size L =
64. Circuit average with 102 realizations.

(iii) Ordered sampling, which uses the same subset of the
previous method, but the chosen unitary is the first that is
found to disentangle the bond maximally (so that not all
unitaries are necessarily tried out).

The time evolution of the half-chain entanglement
entropy for system size L = 64 is illustrated in Fig. 10,
where the three distinct sampling methods for different
disentangling probabilities are compared. Each line rep-
resents the average of 103 circuit realizations. Notably,
all three methods yield identical results for the evolution
of the entanglement entropy and the steady-state value.
Therefore, in our simulations, we use the ordered sampling
method to disentangle bonds, since it requires the least
number of tries to find the disentangling gate, allowing for
faster simulations.

APPENDIX D: DISENTANGLING MAXIMALLY
ENTANGLED STATES

The task of the von Neumann disentangler is to find the
optimal unitary in U(4) that reduces maximally the bipar-
tite entanglement on a given bond. This means that it has
to perform a minimization over nine continuous parame-
ters. Here, we investigate how effective the disentangler
is when trying to disentangle a maximally entangled state
of L qubits. To do so, we start with a product state and
we evolve the system with a random circuit of depth
2L, yielding a state with maximal entanglement. Then,
the disentangler starts acting by minimizing the entan-
glement entropy in random bonds until the half-chain
entanglement entropy is reduced below a certain thresh-
old. We note that our disentangling procedure is similar
to the Metropolis-like cooling algorithms introduced in
Refs. [72,73]. However, in that case, the disentangler acts
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FIG. 11. Time evolution of the half-chain entanglement
entropy for a disentangling circuit, with von Neumann disen-
tangler, starting with an L-qubit state generated by a depth 2L
random circuit. Circuit averaged over 102 realizations.

with a random unitary and accepts it only when the entan-
glement entropy is reduced, avoiding the minimization
step of our disentangler.

Figure 11 shows the averaged time evolution of the half-
chain entanglement entropy for the disentangling circuit.
The time it takes to disentangle grows exponentially with
system size. When looking at the behavior of the L = 16
line, we observe that the evolution gets stuck in the max-
imally entangled state for a long time before being able
to effectively reduce the entanglement. We attribute this
behavior to numerical instabilities, where the optimiza-
tion fails to find the global minimum of the entanglement
entropy. Furthermore, we remark that in contrast with the
entanglement cooling algorithm in Refs. [72,73], our dis-
entangler is able to disentangle the state given a sufficiently
long time.

APPENDIX E: DISENTANGLING STABILIZER
STATES

The absence of a phase transition in the Haar case is due
to the creation of complicated entanglement structures that
cannot be efficiently locally disentangled. Instead, entan-
glement in stabilizer states has a very simple structure, as
we have shown in Appendix B, and can be locally reduced
easily. In particular, as we are going to show next, any sta-
bilizer state can be locally disentangled using a circuit with
depth O(L).

To study the disentangling complexity of Clifford cir-
cuits, we are going to consider the following setup: start
with a product stabilizer state and evolve with a random
circuit with ne gates. Then, run a disentangling circuit until
entanglement is reduced to 0, and count how many two-
qubit gates were required, nd(ne). The numerical results are
shown in Fig. 12. We observe three different regimes. For
ne < L, there is a nonlinear regime in which reducing the
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FIG. 12. Average number of disentangling steps nd needed to
completely disentangle a state created by a circuit of ne randomly
placed two-qubit Clifford unitary. The inset shows the collapse
for nd/L2 vs ne/L2.

entanglement just consists of finding the entangled bonds
and applying the inverse Clifford unitary. For ne > L2, the
number of disentangling gates becomes independent of ne.
This is the regime where the state is maximally entan-
gled, and therefore adding more entangling gates does not
change the required depth of the disentangling circuit. In
such case, the number of gates required to completely dis-
entangle is nd ∝ L2, as shown in the inset of Fig. 12. In
the regime in between, L < ne < L2, the depth of the dis-
entangling circuit grows linearly with the depth of the
entangling circuit, with a system-size-independent slope.
These results contrast with the random Haar case shown
in Fig. 6, where for ne > L the depth of the disentangling
circuit becomes exponential with system size.

Note that, for ne < L, the number of disentangling steps
required is not the same as for generic circuits. This is
caused by the finite probability that a random Clifford
unitary does not entangle the system at all, which is not
possible for random Haar gates.
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