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We report an accurate and efficient classical simulation of a kicked Ising quantum system on the heavy
hexagon lattice. A simulation of this system was recently performed on a 127-qubit quantum processor
using noise-mitigation techniques to enhance accuracy [Y. Kim et al., Nature, 618, 500—5 (2023)]. Here we
show that, by adopting a tensor network approach that reflects the geometry of the lattice and is approx-
imately contracted using belief propagation, we can perform a classical simulation that is significantly
more accurate and precise than the results obtained from the quantum processor and many other classical
methods. We quantify the treelike correlations of the wave function in order to explain the accuracy of our
belief propagation-based approach. We also show how our method allows us to perform simulations of the
system to long times in the thermodynamic limit, corresponding to a quantum computer with an infinite
number of qubits. Our tensor network approach has broader applications for simulating the dynamics of

quantum systems with treelike correlations.
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I. MAIN

A. Introduction

Quantum computers are fundamentally noisy in nature
and incur errors with each operation. To remedy noise
and make the computer run as desired, one option could
be quantum error-correcting codes. In spite of significant
advances in quantum technologies over the last decade,
this type of error correction is currently out of reach.
As such, huge efforts have been devoted to finding out
whether current noisy quantum technologies could provide
a practical advantage over classical computers without
error correction. The emphasis here is on practicality, since
expectation values of local observables in large classes
of shallow quantum circuits can formally be computed in
polynomial time on a classical computer [1,2] and so can
the output distribution of a noisy random quantum circuit
[3]. The latter refutes the claim of violation of the extended
Church-Turing thesis in Ref. [4], and makes it exceedingly
unlikely any such violation can be achieved through noisy
quantum computation without error correction. Noise
can also have a similar effect as limiting entanglement,
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allowing noisy quantum computers to be simulated by
tensor network methods [5—7]. While such works put con-
straints on the power of noisy quantum devices, they also
show that it may be difficult to classically simulate them in
practice when the noise is sufficiently small. At the same
time, error-mitigation techniques have been proposed to
further improve the accuracy of noisy quantum devices by
classical postprocessing [8,9]. With these techniques one
can construct a better classical (biased) estimator for the
desired noiseless result by paying the overhead of having
to run several noisy quantum circuits.

The power of noise-mitigation techniques was recently
demonstrated in quantum simulations of the dynamics of
a two-dimensional (2D) transverse-field Ising model on a
127-qubit heavy hexagon lattice [10] (see Fig. 1). Expec-
tation values of a number of observables were extracted
after a few Floquet cycles using zero-noise extrapolation
techniques [8]. The experimental results were found to be
much more accurate than several classical tensor network
approaches applied to the same problem, even when the
tensor network methods utilized significant computational
resources.

In this work we adopt a tensor network approach
that respects the qubit connectivity of the heavy hex
lattice to simulate the dynamics of this kicked Ising
model on systems of various sizes. Our tensor network
ansatz is approximately contracted with belief propagation,
which works best when correlations in the system remain
“treelike.” By quantifying these correlations we
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FIG. 1.

Classi( al Tensor Network Ansatz

Left: structure of the Eagle quantum processor, which consists of a 6 x 3 heavy hexagon lattice with two additional qubits

(113 and 13) added to the bottom left and right corners of the lattice. Right: tensor network structure used for our simulations of
heavy hex lattices, with the network structure directly reflecting the lattice. On-site tensors I', are colored in blue and possess physical,
uncontracted, indices of dimension 2 (represented by their dangling legs) and virtual indices of dimension y (represented by the edges
of the network), which are shared with neighboring tensors. Positive, diagonal bond tensors A, live on the edges e between the site

tensors and are colored in gray.

explicitly show how this assumption becomes increasingly
valid as the lattice size increases. This allows our method
to achieve results, for the 127-qubit problem, to a much
higher degree of accuracy than previously reported classi-
cal results or the error-mitigated quantum computer. Even
at large circuit depths where there are no exact results to
benchmark against, we utilize extensive MPS calculations
and boundary MPS approaches to provide substantial evi-
dence that our results are still highly accurate and the corre-
lations are treelike. Finally, we conclude by showing how
our method can be used to accurately simulate the thermo-
dynamic limit of the problem to long times, and therefore
can simulate a high-depth quantum circuit involving an
infinite number of qubits. Our work demonstrates the effec-
tiveness of a belief propagation tensor network approach
for solving many-body dynamics problems. We anticipate
our chosen methodology will find success and serve as a
benchmark when applied to problems with locally treelike
correlations and limited entanglement.

B. Model and ansatz

Our focus here is on the dynamics of the Trotterized
kicked transverse-field Ising model given by the unitary

Uy =

l_[ exp (i%Zvar>

(v,v')

(]‘[ exp (—i%th)) , ()

where Z and X denote Pauli operators and (v, v’) indicates
that v and v’ are neighbors on the corresponding lattice.
The lattice we are concerned with is that of the “heavy
hex” lattice, which corresponds to a hexagonal lattice dec-
orated with additional qubits along the edges (see Fig. 1).
The dynamics of this model was recently simulated on the
IBM Eagle quantum processor [10], which corresponds
to a lattice of 6 x 3 heavy hexagons plus two additional
qubits.

In order to simulate this system on a classical com-
puter, we adopt a tensor network approach that respects
the qubit connectivity of the heavy hex lattice (see Fig. 1).
We fix a maximum amount of entanglement in the system
by limiting the bond dimension x of the network: each
application of U(6;) will double the bond dimension of the
network and thus it is necessary to limit the bond dimen-
sion and perform truncations. We then evolve our tensor
network state (TNS) by application of the gates in U(6;)
under the belief propagation (BP) approximation [11-13];
referring to the resulting TNS as a BP-approximated TNS.
Unless otherwise stated, we also extract expectation val-
ues from the TNS using belief propagation. Explicit details
of our BP-based method are provided in Sec. II and in
Ref. [14]. The BP method is fully controlled on trees but
incurs a potentially small but uncontrolled approximation
when there are loops in the network; the error from this
approximation is, in general, smaller for larger loops (see
Sec. II for further discussion on this). Here, we demon-
strate that for a sufficiently large lattice, even at significant
circuit depths, the correlations in this model remain
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FIG. 2. Dynamics of the kicked Ising model on small heavy hex lattices of varying size. (a)-(c) Results from the BP-evolved TNS
for several bond dimensions and systems of one to three heavy hexes are compared to exact state vector solutions at 6, = /4. The
results labeled with x* are obtained by computing expectations values of the BP-evolved TNS using exact contraction, while the
results labeled with x are obtained by computing expectation values of the BP-evolved TNS using BP contraction. In both cases, the
states are evolved by applying gates using the BP approximation. Top plots show dynamics of the magnetization on the indicated (red
ring) site, bottom plots show the BP error estimate [based on the spectrum of the edge environment—see Fig. 7 and Eq. (12)] for the
x = 32 TNS along the indicated edge e versus the Trotter step. The dotted faded red line shows the relative error between the y = 32
TNS magnetization approximated by BP and the exact magnetization while the faded green line shows the relative error between the
x = 32 TNS magnetization approximated by BP and the magnetization obtained by contracting the same TNS exactly. Insets in the
bottom plots show the first 50 singular values of the edge environment after 15 Trotter steps. (d) BP error estimate approximated
using a boundary MPS contraction scheme (see Appendix C for details) of the TNS for n x m lattices of » rows and m columns
of heavy hexes. (Top) TNS with x = 12 and a boundary MPS contraction scheme with maximum MPS bond dimension D = 12
at 0, = /4. (Bottom) TNS with x = 8 and a boundary MPS contraction scheme with maximum MPS bond dimension D = § at

0, = 37/8.

“treelike” in the sense of the BP approximation giving very
accurate results. Let us present these results.

C. Results

We start by considering lattices with a small number of
heavy hexagons, where an exact state vector simulation
is possible and our method can be directly benchmarked
(see Fig. 2). Specifically, we compute the dynamics of the
on-site magnetization for 8, = w/2 and lattices consist-
ing of 1, 2, and 3 heavy hexagons, respectively. We also
compute the separability of the “edge environment” of the
BP-approximated TNS along a chosen edge (see Sec. IIE
for a definition). This environment corresponds to the con-
traction of the TNS down to the given edge and when it
is completely separable the belief propagation assumption
is exact. The separability thus gives us an estimate of the
error stemming from the BP approximation.

For short-circuit depths n < 6 our method gives per-
fect agreement with the exact simulation and the edge
environments are all completely separable because the
light cone of the circuit does not reach around the loops.
For larger circuit depths there is deviation between the
exact dynamics and the BP-approximated TNS dynamics.
This can be explicitly characterized by a decrease in the
separability of the edge environments, since the BP method

approximates the environments used to perform the gate
evolution as outer products of environments coming from
incoming edges of a region of the system. Our small lat-
tice simulations demonstrate something quite remarkable:
as the number of heavy hexagons increases, the BP approx-
imation at fixed y improves significantly and the edge
environment becomes highly separable even out to 20
Trotter steps. Moreover, in Fig. 2(d) we use boundary MPS
(see Appendix C for a description of the method) to show
that this increased separability persists with increasing
system sizes.

The accuracy of belief propagation does tend to improve
with increasing system size (for instance, belief propa-
gation on a finite ring directly gives the exact results
of the thermodynamic limit, independent of system size)
and may go some way towards explaining the increased
accuracy of the BP simulation as we increase the num-
ber of heavy hexes. Nonetheless, the heavy hex lattice
still has finite loops in the thermodynamic limit and
thus our results are indicative of something further: a
level of interference between the loops in the lattice as
we increase the system size. We note that Ising models
have been observed to display some slow thermaliza-
tion and confinement properties under a quantum quench
[15,16] and we believe a similar effect is occurring
here.
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FIG. 3. Comparison for classically verifiable systems of our BP-approximated tensor network state approach to simulating the

dynamics of the kicked transverse field Ising model on a heavy hex lattice versus the Eagle quantum processor and alternative tensor
network methods. Expectation values with respect to the state | (6;,5)) [i.e. following five Trotter steps of the dynamics of the
model—see Egs. (1) and (3)] are plotted, alongside exact results determined from light-cone simulations. (a) Average magnetization.
(b) Weight-10 observable. (c) Weight-17 observable. The bottom plots show errors defined as the absolute difference between the
simulation result and the exact result. For some data points the error from our TNS simulation is too small to fit on the scale of the
plot and so these points are not marked. Circled, annotated points denote, for a given 6, the memory required to store the state of
the system at the given bond dimension x and the walltime associated with performing the simulation and calculating the relevant

observable on a Macbook M1 Pro.

We now consider the 127-qubit heavy hexagon lattice,
which corresponds to that of the IBM Eagle processor
and we compare our method to the experimental quantum
simulation results first from Fig. 3 of Ref. [10]. Our results
on smaller system sizes will be useful in explaining the
accuracy of our results here. In Fig. 3 we overlay the quan-
tum simulation results with that of our BP-approximated
TNS dynamics shown as cross symbols. Here expecta-
tion values are measured after five Trotter steps and exact
results, based on brute-force light-cone simulation tech-
niques, are available to allow us to directly assess the
errors. The tensor network state (TNS) and gate-evolution
methods we use simulate the full 127-qubit system and
result in highly accurate expectation values. In Fig. 3(a)
we compute the expected value of the average single-site
magnetization and show that we can obtain an accuracy
[17] of approximately 10~'% with a simulation that runs
in less than 10 s on a laptop computer. Importantly, even
for Figs. 3(b) and 3(c), where we consider higher weight
observables, which could be more strongly affected by loop
correlations, we are still able to calculate these observ-
ables to a remarkable accuracy using our BP-approximated
TNS. Specifically, we obtain values of these higher weight
observables to orders of magnitude better accuracy than the
quantum processor with a simulation that takes less than 4
min (for these observables) to run on a laptop and a state
that takes up, at most, 0.3 GB of memory. The remark-
able accuracy we are able to achieve corroborates with our

earlier analysis of the error of the BP approximation as a
function of system size (see Fig. 2), where we found that
the BP error decreases as we increase the system size for
this model and lattice.

Turning next to larger numbers of Trotter evolution
steps we show results in Fig. 4 for properties also com-
puted by the quantum processor. For the n = 6 Trotter-step
simulation [Fig. 4(a)], where a weight-17 observable is
measured, exact results are now available [18] and our
BP-approximated TNS results at x = 500 are within 10~
of these results for all values of 6, we plot. For n = 20
[Fig. 4(b)] exact data is currently unavailable and we
push to sufficiently large bond dimensions to perform an
extrapolation of the results from BP-approximated TNS
to infinite bond dimension; demonstrating the reliability
of a linear extrapolation in 1/ for select 6, in Fig. 4(c).
We capture the known exact values at the Clifford points
6, = 0 and 6, = 7 /2. Notably, for this circuit in the region
/8 < 6, < 3w /8 there have been discrepancies between
various classical methods and the quantum processor. In
Appendix A, we discuss the different classical simulation
methods further and show a comparison in Fig. 8 of the
various results [10,18-22].

Beyond the results we presented above giving evi-
dence for the separable nature of the edge environments
in this system, we present further evidence that the BP-
approximated TNS method is highly accurate throughout
the whole phase diagram in Figs. 4(d)—4(f). Specifically,
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FIG. 4. Comparison for deeper circuits of our BP-approximated tensor network state approach to simulating the dynamics of the
kicked transverse-field Ising model on the heavy hex lattice versus the Eagle quantum processor and alternative tensor network meth-
ods. Expectation values calculated following a number of Trotter steps of the dynamics of the model—see Eq. (1)—are plotted. (a)
Weight-17 stabilizer after six steps of evolution. Here exact data is now available [18] and our BP data for x = 500 is within 10~* of
the exact result for all ;. (b) Weight-1 observable after 20 steps. The shaded region shows the difference between our finite x = 500
bond-dimension data and the data extrapolated to infinite bond dimension, where we believe the true answer lies. (c) Top and bottom
plots show observables in (b) at 6, = 0.7 and 6, = 1.0, respectively, as a function of inverse bond dimension of the TNS. Red dashed
lines represent a least-squares fit of the form 4 + B/ x taken on the data, and we take 4 to be the predicted value of the observable in
the limit x — oo. Even in the limit x — oo there will generally be some deviation from the exact result due to the BP approximation
that we use for evolving the state and computing expectation values (see Sec. IT). Our analysis of the errors due to BP for this system,
however, suggest this deviation is likely to be very small. (d)—«f) Dynamics of (Zg,) using the BP-approximated TNS approach versus
a MPS approach (with bond dimension 2500) with light-cone depth reduction (orange) for 6, = 0.6,0.8, and 1.0, respectively. Results
from other methods at depth 20 are shown as black circles (Eagle processor [10]), blue circles (truncated Pauli strings [20,21]), purple
diamonds (TNO [18]) and orange pentagons (MPO [19]). Inset shows average gate error from the MPS approach (pink circles) and
absolute difference between the BP-approximated TNS and the MPS result (solid gray line).

we compute the dynamics at every Trotter step of (Zg,) for
several 6, and compare the BP-approximated TNS to our
own MPS calculations as an independent check. Our MPS
approach combines multiple nontrivial techniques: (i) uti-
lizing light-cone depth reduction to calculate (Zs;) at every
Trotter step, (ii) using a higher bond dimension than that in
Ref. [10], and (iii) implementing an improved site ordering
to lower the entanglement and gate error. We find that the
difference between the BP-approximated TNS and MPS is
directly correlated with the error from the MPS method and
that both methods agree closely when the error in the MPS
method is itself small. When the MPS error is small, one
can consider MPS to be exact as it makes no uncontrolled
approximations. The fact the BP-based method agrees with
the MPS method when MPS exhibits very small errors
suggest the BP error is also minimal. This is clearest for
0, = 0.6 in Fig. 4(d) where we are able to push our MPS
simulations to a bond dimension large enough for the aver-
age gate error to stay below 10~*. At all times for 6, = 0.6,
there is clear agreement between BP-approximated TNS

and MPS, yet disagreement at depth 20 versus the other
methods shown [18—22]. This agreement is only possible
if the state possesses treelike correlations and thus rein-
forces our earlier results on the general accuracy of the BP
approximation for the dynamics of this system on this lat-
tice. For larger 6, in particular the 6, = 1.0 results shown
in Fig. 4(f), the BP results agree with the new MPS results
until about step 10 where the MPS error starts to grow.
We can be confident that the discrepancy there is due to
the MPS method, not BP, because MPS is a controlled
method that self-reports a significant error for larger steps
and because the BP agrees with the result of approximately
0 at step 20, which is predicted by a range of classical
methods [18—22] due to the system being ergodic in this
regime.

D. Dynamics of the infinite heavy hex lattice

One of the powerful features of tensor network
methods is their ability to simulate infinite lattice models
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FIG. 5. Tensor network state for the infinite heavy hex lattice. The unit cell is a five-site tensor network. By adding in appropriate
periodic boundary conditions and simulating the kicked Ising model with the BP-approximated TNS method we recover results for
simulation of the infinite lattice with the BP-approximated TNS method. (Top right) Dynamics of (Zs;) for 6, = 0.9 simulated using
the BP-approximated TNS method at bond dimension x = 400. Crosses correspond to the dynamics of (Z3) on the periodic boundary
condition (PBC) unit cell (where site 3 is marked) with x = 400 corresponding to an infinite heavy hex lattice while the dashed line
corresponds to the dynamics of (Zg,) on the 127 qubit heavy hex lattice with x = 400. (Bottom right) Dynamics of the bipartite entan-
glement entropy density s [see Eq. (2) for the definition], calculated using the infinite BP-approximated TNS method and extrapolated
to infinite bond dimension. Different curves correspond to different values of 8y, ranging in steps of 0.1 from 0.1 to 0.9. The partition is
shown by the red dotted line on the infinite lattice. The shaded area shows the difference between the extrapolated result (dotted line)

and the finite y = 800 result. The inset shows an example extrapolation in 1/x for 6, = 0.8 after 40 Trotter steps.

as long as they possess some form of translational invari-
ance [23-25]. Here we present results on the dynamics of
the kicked transverse-field Ising model on an infinite heavy
hexagon lattice, corresponding to a quantum computer
with an infinite number of qubits. Again, we approximate
the dynamics and take expectation values using the BP
approximation. Given the evidence that we have presented
on the accuracy of the BP approximation for the finite case
of'this system, especially for larger system sizes, we expect
that these results are highly accurate.

For the infinite heavy hex lattice there is a five-site unit
cell, which can be tiled to produce the infinite lattice (see
Fig. 5). It can be shown that simulating a periodic system
on the unit cell using belief propagation corresponds to
simulating the infinite lattice under the belief-propagation
approximation, where the sites of the periodic system
constitute a unit cell of the infinite system [14]. This is
analogous to the standard approach to simulating infinite
systems with the simple update tensor network method
[26]. Therefore, we take the single unit cell, impose
periodic boundary conditions, and present results for the
belief-propagation approximated dynamics. Figure 5

illustrates this idea, showing the dynamics of the magne-
tization of the infinite system compared to the expected
magnetization of a representative site near the center of the
finite system. The extremely close agreement between the
magnetization of the infinite and finite heavy hex lattices
provides strong evidence that boundary effects are mini-
mal in the 127-qubit model and the results are already very
close to those of the thermodynamic limit.

In Fig. 5 we also show the time-dependence of the bipar-
tite entanglement entropy per edge s across a bipartition
of the infinite lattice. Our infinite BP-approximated TNS
method gives us an estimate of this quantity via the spec-
trum {A;} of the bond tensors along the edges separating
the partitions:

2

X
5= Mlog (), ®)

i=1

which requires summing over the spectrum of only one
of the bond tensors due to the fact that they are all
identical along the cut being made. We observe that the
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entanglement in the system shows a sharp linear growth at
short times before slowing down significantly and poten-
tially saturating over a large time scale. This long-lived
plateau is consistent with studies of the decay of the mag-
netization in a smaller system [22], which suggests that
the time-to-decay scales exponentially with the inverse of
0. This long-time slow growth means that we can accu-
rately simulate the infinite quantum processor up to large
circuit depths for smaller values of 6, < 7 /4. For larger
values of 6, the entanglement grows sufficiently quickly
that, with our current resources, we are unable to accu-
rately determine the entanglement entropy in the system
beyond approximately 25 Trotter steps.

E. State ansatz

Our ansatz for the wave function of the system is a ten-
sor network, which directly reflects the “heavy hex” qubit
connectivity of the processor (see Fig. 1). The physical
properties of a tensor network are invariant under a gauge
symmetry corresponding to the insertion of any invertible
matrix G, and its inverse Ge_1 on any contracted, internal
bond (or edge) e of the network. We take advantage of this
symmetry to keep the tensor network in the Vidal gauge
[26,27]. This gauge corresponds to the choice of positive,
diagonal bond tensors A, residing on the edges of the net-
work and the on-site tensors ', of the network obeying
certain isometric properties [see Egs. (5) and (6)]. These
isometric properties are important for maintaining accu-
racy during the evolution of the network. We use |y (6, 1))
to denote the TNS of the system after n > 1 applications of
U6y, i.e.,

|V (6h, m)) = (l_[ U(9h)) [ (0)) = U@ (0)), (3)

i=1

where | (0)) is the initial state of the system. We use
the same initial state as in Ref. [10]: [ (0)) = [11 ... 1).
The single-site X rotations in U(#;) can be applied
to | (0, n)) exactly and the two-site gates are applied
approximately using the simple update [26] procedure (see
Sec. 1), which involves truncating the internal indices of
the TNS to keep them less than or equal to a prescribed
maximum bond dimension x. Following a single Trotter
step, the tensor network is regauged using belief propa-
gation, a well-established statistical inference algorithm,
which can be formulated for tensor networks [12], which
we find improves the accuracy of the simple update proce-
dure [14,28]. Regauging before applying each gate with
a simple update would be most accurate and would be
equivalent to performing each gate application with envi-
ronments computed from the BP fixed point, however in
practice we find that is too computationally expensive.
Regauging after each Trotter step provides a good balance
between accuracy and speed. Belief propagation allows us

to rapidly determine the necessary transformation matrices
by performing message passing over the network repre-
senting (¥ (6, n)|¥ (65, n)). The use of belief propagation
as a method to efficiently “regauge” a tensor network was
recently formulated by some of the current authors in
Ref. [14] and is closely related to other known gauging
methods [28-31]. We emphasize that the results presented
here could have been achieved with those known gauging
methods.

F. Measuring expectation values

We measure single-site expectation values of the gauged
state |y (6,,n)) using a rank-one approximation for the
environments of local regions of the network (see Sec. II
for more details). Such a method is only guaranteed to
be exact in the limit of a tree network. Nonetheless, as
demonstrated by our results here, the large loop structure
of the heavy hexagon lattice and dynamics of the model
means that the network is locally treelike and therefore
amenable to such an approximation. In Ref. [10], specific
higher-weight observables were also measured to high-
light that nontrivial results can be obtained in the “regime
of strong entanglement”—such observables can be diffi-
cult to accurately measure for loopy tensor networks. We
can, however, exploit the Clifford properties of the cir-
cuit at 6, = /2 to transform the problem of measuring
higher-weight observables after n Trotter steps into one
of measuring a single-site observable after evolution by »
Trotter steps with the propagator U(6;,) and n Trotter steps
with the propagator (U(r /2)1. Specifically, the operator
U (n/2)Z; (U (x/ 2))Jr is always a single Pauli string and
its expectation with respect to | (6, 7)) can be obtained
by further evolving [y (6;,n)) with (U(71/2))Jr and then
measuring Z;. For instance,

T TN\ T
X132931Y030Z8.12.17.0830 = U° <E> Z13 (US <E>> , 4
meaning this observable can be calculated, with respect
to [ (6y,5)), by measuring (Z;3) with respect to the state

(U5 (71/2))T [Y (6, 5)). We can reach this state straight-
forwardly by performing a 10 (5 + 5) Trotter step tensor
network simulation. We use this “extended time evolu-
tion” method to measure all higher-weight observables
presented in Ref. [10] and note that this procedure is
entirely generic: any long Pauli string can be generated out
of a single Pauli by application of a Clifford circuit. Nat-
urally this extended time evolution further increases the
entanglement we must deal with as each application of
U (r/2) will double the bond dimension if no truncation
is performed. Thus an upper bound on the bond dimension
Xmax Needed to evolve the system by n Trotter steps and
the measure a string, which can be generated by »n’ appli-
cations of U (77/2) to a single-site Pauli operator is 2" .
Generically, longer strings will require larger values of »’.
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Figures 3 and 4 here, however, show that we can use values
of x < xmax and still get very accurate results.

We would also like to emphasize that these higher-
weight observables could be measured with other tensor
network methods. For instance, the planar nature of the
TNS on the heavy hex lattice means the boundary MPS
[32] method can be directly applied to the norm of the
state |1 (6y, n)) to measure a desired higher-weight observ-
able. We used the boundary MPS method in this paper
to approximately compute the edge environment and also
found extremely close agreement between BP and bound-
ary MPS when measuring single-site observables (see
Appendix C).

G. Conclusion

We have shown that a 127-qubit simulation of Flo-
quet dynamics of the kicked Ising model on a heavy
hexagon lattice, recently simulated on a quantum proces-
sor in Ref. [10], can be performed accurately and with
minimal computational resources with tensor networks.
Our work demonstrates the importance of adopting a ten-
sor network ansatz, which reflects the spatial connectivity
and entanglement structure of the system. The chosen gate
evolution method for this ansatz is based on contracting
the network under the belief propagation approximation.
The computational scaling is O(Lx?*) for a given Trot-
ter step evolution, where L is the number of qubits and
x 1s the bond dimension. Like the commonly used and
closely related simple update gate-evolution method, this
method directly assumes the lattice is locally treelike, in
other words, assuming that loops have a minimal effect
on the local properties of the network. We have presented
evidence that this assumption becomes increasingly valid
with increasing system size. This makes our gate-evolution
method highly accurate and reveals a striking loop-free
behavior to the dynamics of this kicked Ising model. We
leveraged this understanding of the model and our method
to perform accurate simulations of the long time dynamics
of the model on an infinitely large heavy hex lattice, corre-
sponding to a quantum processor with an infinite number
of qubits. Following an initial linear growth in entangle-
ment, we find a remarkable result that the entanglement of
the system appears to saturate over a large timescale.

Looking forward, we expect that the belief-propagation-
based method employed here will allow efficient, accurate
tensor network simulations of a range of dynamics prob-
lems and not just the one considered here. There are a
number of geometries—especially in dimensions higher
than two where more neighbors typically causes more
mean-field-like behavior [23]—where the effect of loops
is small and we anticipate our method will find success.
Moreover, while it is typically difficult to quantify the error
stemming from the BP approximation, here we have per-
formed a number of supplemental calculations (i.e. state

vector calculations for small lattices, matrix product state
simulations, and quantification of the BP error for increas-
ing system sizes) to ascertain the accuracy of our results
and we believe that such a methodology will be fruitful
when considering other systems with a BP-based method.

Another takeaway from our results is that there can
be many complementary routes toward classical simula-
tion of quantum many-body systems, especially for those
with physical structure such as separation of energy scales
or locality. In addition to well-known properties such as
low entanglement, shallow circuit depth, or low T-gate
count (in the case of nearly Clifford circuits), our work
highlights the importance of lattice topology as another
key property that can be exploited. We also emphasize
that tensor network methods are not limited to one- and
two-dimensional systems, and higher-dimensional, non-
planar systems can actually become more mean-field-like,
allowing tensor network approaches to again work well
[33,34].

Finally, we would like to comment that our work opens
up new directions in which highly flexible and compu-
tationally inexpensive tensor network approaches can be
used to benchmark new quantum processor designs and
can better delineate which many-body quantum systems
could become difficult for classical computing techniques.
The software we used is part of the forthcoming ITen-
sorNetworks.jl package [35] being developed at the Flat-
iron Institute (see Sec. I1 F), which enables rapid testing
and deployment of tensor network methods on arbitrary
graphs. This software is continually being developed with
the aim of tackling the type of simulation presented here.

II. METHODS
A. The Vidal gauge

Our tensor network ansatz for the state of the system
consists of both local tensors I', on the sites of the net-
work and bond tensors A., which live on the edges of
the network. The state is in the “Vidal” gauge, which is
characterized by a set of isometric constraints on certain
groupings of local tensors. Specifically, for every edge
e = (v, v;) connecting vertices v and a neighboring vertex
v;, if we group the following tensors:

©)
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they form an isometric tensor obeying

@ —
A (6)

where the right-hand side denotes the identity matrix and
we have used the set {v;, v,,... vy} to denote the d neigh-
bors of vertex v. Having the TNS obey this property is
important for maintaining accuracy when applying two-
site gates and when taking expectation values. Below we
detail the methods we use for performing these operations
and then describe how we use belief propagation to main-
tain the Vidal gauge during our simulations. We emphasize
that working in the Vidal gauge is not strictly necessary,
and one can perform all of the same operations (gate appli-
cation, computing expectation values, etc.) and get the
same results without transforming to the Vidal gauge by
just using message tensors found from performing belief
propagation on the TNS in an arbitrary gauge [14]. This
is why we opt to name our tensor network state as a “BP-
approximated TNS” and will discuss further in the sections
below.

B. The simple update procedure

To apply two-site gates to the tensor network state we
adopt the simple update procedure [26]. The procedure is
depicted diagramatically in Fig. 6. For better efficiency, we
use the “reduced tensor” variant of simple update [36,37]
(not shown in Fig. 6). The simple update procedure can
be performed on a TNS in an arbitrary gauge by work-
ing with the fixed point message tensors found from belief
propagation on the TNS and updating the message tensor
on the edge where the gate is applied with the bond matrix
returned from the SVD procedure [14]. This is similar to
previous work in Ref. [12] where message tensors were
used for energy optimization.

C. Measuring expectation values within the Vidal
gauge

In order to measure a single-site observable (O,) on
site v of our TNS we absorb the neighboring bond ten-
sors onto the on-site tensor I", and contract the result with
its conjugate, inserting the single-site observable O, along
the physical index, which is being contracted over. For
the example of a site with three neighbors this can be
visualized as

()

(ii) (i)

(v) @
- oe@@@

FIG. 6. Steps to perform a “simple update” on the edge of a
TNS in the Vidal gauge. The example pictured is two neigh-
boring sites of degree 2 (site tensor I',) and 3 (site tensor I',,),
respectively. (i)<ii) The bond tensors, site tensors, and gate
are combined into a single composite tensor ®,,,. (ii)—(iii) A
SVD is performed on ®,,, and singular values of the resulting
bond tensor 1~\v,w can be discarded in order to truncate the bond.
(iii)~(iv) Resolutions of identity, using the original bond tensors,
are inserted on the exposed edges. (iv)«v) The inverse bond
tensors are absorbed, resulting in the updated local tensors I,
and T',,.

where we have defined the square of the bond tensors

:' (8)

Equation (7) approximates (O,) by treating the environ-
ment as a tensor product of environments coming from
each of the neighbors of v. If the tensors of the network
obey the Vidal gauge conditions [Egs. (5) and (6)], this
approximation is equivalent to computing the expectation
value in an arbitrary gauge by using the fixed-point mes-
sage tensors of belief propagation as approximations of
the environments [14,38]. For networks that are locally
treelike, this can provide very good approximations for
local observables. We find evidence that this approxima-
tion holds very well for the model and lattice studied in
this work. In the section below we detail how we use belief
propagation to maintain the Vidal gauge during our simu-
lations. This helps maintain accuracy in the simple update
procedure and when taking expectation values.

D. Belief propagation on a tensor network state

At the heart of our method for maintaining the gauge
properties of our tensor network state is belief propagation
(BP). BP is a well-established technique for approximating
the marginals of the probability distributions of graphical
models [39] and has recently gained interest in the context
of contracting tensor networks [11-13,31].

To perform belief propagation on a TNS |¢) in the Vidal
gauge we first absorb the square roots of the bond ten-
sors onto the I',, tensors. For instance, for the example of a
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tensor with three neighbors we define

«

We then form the closed network, which represents the
square norm (Y |yr) of |¢). This “norm” network consists
of the on-site tensors 7, = »  (T3)(T;")*, where the sum-
mation is over the external indices s, of the tensors 7, and
(T,)* (though in practice we keep the tensors separate for
efficiency).

We next define a series of “message tensors” over the
the norm network, with M, ,, denoting the message tensor
directed along the edge from 7, to its neighbor 7,,. The
indices of M,, ,, match the indices shared by tensors 7, and
7,,. Here, the direction of the edge is important and, gen-
erally, M, ,, # M,,,. A set of self-consistent equations is
defined for the message tensors:

Mv,v,'= 1_[ MV/’U 7.,
Jel2md\ i}

(10)

where the product runs over all d neighbors of v excluding
v; and multiplication of two tensors implies a contraction
over any common indices they share. This equation can be
expressed diagrammatically as

an

Initializing the message tensors, one can iterate these equa-
tions in an attempt to converge them. The converged
messages then form a rank-one approximation of the exact
environment for a given tensor 7,, and can be used to
approximate expectation values of the TNS. The procedure
for taking an expectation value in Eq. (7) using a state in
the Vidal gauge is equivalent to taking the same state in
an arbitrary gauge and approximating the environment sur-
rounding the site with the BP message tensors [14,38]. The
more treelike the network, the better the approximation.
Importantly, the BP message tensors can also be used
to directly define a gauge transformation, which, when
applied to a TNS, brings it into the Vidal gauge and guar-
antees the satisfaction of Egs. (5) and (6) along all edges of

the network. A detailed description of this method, includ-
ing extensive benchmarking and discussion of its relation
to other gauging methods, is given in Ref. [14].

In our simulations here we perform belief-propagation
gauging after every Trotter step. This is to maintain accu-
racy in these procedures. We should note that for shorter
depth circuits, such as those simulated in Fig. 3, gauging
after every Trotter step does not have a significant affect
on accuracy. The circuit here is not deep enough to signif-
icantly alter the isometric condition in Eq. (6) and affect
the simple update procedure. For longer depth circuits,
such as the one run in Fig. 4(b), gauging every Trotter
step is important and not performing gauging during the
simulation leads to a significant loss in accuracy.

We also always gauge the state before taking expecta-
tion values (which, as we have discussed, is equivalent to
computing the expectation values with fixed point BP mes-
sage tensors). Even for the shorter circuits in Fig. 3, not
performing gauging prior to taking an expectation value
can noticeably affect the accuracy of the result—unless the
bond dimension used is large enough for the simulation to
be exact and so the simple update procedure preserves the
gauge properties of the TNS.

E. Estimating the error of BP for general tensor
networks

In order to quantify the error that belief propagation
makes when approximating contractions of the network
we compute the x? x x? “edge environment” associated
with cutting the norm network along a given edge. The
edge environment has previously been used in other con-
texts, such as improving the performance of periodic MPS
methods [40] and fixing the gauge and performing trun-
cations of general tensor networks [41]. Here we use it to
define a measure of the error of belief propagation. Specifi-
cally, we choose an edge of the norm network of our tensor
network state and split the corresponding index (which is
formed from the product of the bra and ket indices of that
edge)—contracting the network down to a single matrix.
This process is pictured in Fig. 7 for an example network.

Belief propagation essentially corresponds to assuming
this edge environment is rank-one along every edge of
the network, i.e., that the spectrum of the positive diag-
onal matrix of singular values A is (A, Ao, h 2} =
{1,0,...,0}. We can thus estimate the error from belief
propagation along an edge ¢ as

(12)

where the quantity inside the square root is known as the
“index of separability” and is an established measure of the
separability of a matrix based on a singular value decom-
position [42]. Although the singular values are dependent
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on the gauge of the tensor network, we fix to the sym-
metric gauge [14] when calculating them for consistency.
This is the quantity we compute in Fig. 2 for the pictured
networks and given edges. We also include examples of
spectra, which correspond to a variety of separabilities in
the insets. The BP error measure defined in Eq. (12) is in
the same spirit as the “cycle entropy” defined in Ref. [41].
In general for this model, we find the choice of edge is
unimportant and does not qualitatively change the results
we observe.

It is worth making a further comment on the BP error
in Eq. (12). In general, computing it is very costly due
to the need to contract the full norm network, even if it
is contracted approximately. One can observe, however,
that generically the error will decrease exponentially in the
smallest loop size of the lattice. This is most straightfor-
wardly seen by considering a norm network, which is a
single translationally invariant periodic ring (loop) of size
/. Assuming the spectrum of the on-site transfer matrix
T is gapped then the BP error of the ring will scale as
O (exp(—cl)) for some constant ¢ related to the correlation
length. This scaling should be generic for a lattice with
smallest loop size [ and gapped loop correlations.

F. Computing resources and software packages

The code used to produce the numerical results in this
paper was written using the ITensorNetworks.jl pack-
age [35]—a general purpose and publicly available Julia
[43] package for manipulating (gauging, contracting, par-
titioning, evolving, etc.) tensor network states of arbitrary
geometry. It is built on top of ITensors.jl [44], which
provides the basic tensor operations. Code is available in
the current version of ITensorNetworks.jl for performing
belief propagation, gauging, and the simple update pro-
cedure on arbitrary tensor network states. An example
script is also included for specifically simulating the model
in this paper with our BP-approximated TNS approach.
All data was produced using a single node of Flatiron
Institute’s Rusty computing cluster. Timings and memory
usage quoted for Fig. 3, however, are based on the same
code being run on a Macbook M1 pro. The tensor network
diagrams in this paper were produced using the publicly
available package GraphTikz.jl [45], a general-purpose
Julia package for visualizing graphs, including tensor net-
works. Data for the 127-qubit simulations is currently
available at https://github.com/JoeyT1994/BP-TNS-Data.
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APPENDIX A: COMPARISON OF METHODS FOR
CALCULATING Z,,

Here we compare data for the expectation value of (Zs;)
after 20 Trotter steps from a range of classical meth-
ods and the quantum processor. The results are shown
in Fig. 8. We include results at x =200 and x = 500
from our BP-evolved TNS approach, as well as results
from an extrapolation in 1/x to x — oo. The shaded
region shows the difference between our finite x = 500
bond-dimension data and the data extrapolated to infi-
nite bond dimension, where we believe the true answer
lies. For smaller bond dimensions the BP-evolved TNS
method overshoots the true results in the region 7/4 <
On < 77 /16, an artifact which is resolved by extrapolating
in the bond dimension. Our extrapolated BP-evolved TNS
results are in close agreement with results obtained in Ref.
[21], which uses a combination of a BP-evolved TNS and
a BP-evolved tensor network operator (TNO) to perform
amixed Schrodinger and Heisenberg evolution. Moreover,
a method based on truncated Pauli strings [20,21], which
approximates the Heisenberg evolution of the system and
relies on a different type of approximation than tensor
network methods and BP, also shows close agreement
with our BP-evolved TNS approach and the aforemen-
tioned BP-evolved mixed TNS-TNO approach, although
it slightly overshoots the value of (Zg,) for 57 /32 < 6, <
77 /32—which can be observed in Fig. 4(d) where we have
numerically accurate results from MPS calculations.

Results in Fig. 8 are also shown for a matrix product
operator (MPO)-based method of simulating the Heisen-
berg evolution of the system [19]. This approach, how-
ever, undershoots the value in the region 47 /16 < 6), <
Sm /16—mapping the system to a 1D ansatz suffers from
the drawback of requiring much larger bond dimensions
than the more general tensor network-based approaches.
The limitations of methods based on 1D ansatzes for this
problem, like MPS and MPO, is especially clear when con-
sidering the MPS data originally reported in Ref. [10],
along with the MPS results reported in this work in
Fig. 4. We also include data from calculations based on
a tensor network operator (TNO) approach [18], extrapo-
lated to x — oo, which is evolved using a simple update
(SU)—which is closely related to BP [14,38]—and then
is contracted exactly to compute expectation values [46].
This method overshoots the true value of (Zg) in the
region /8 < 0, < 27 /8—which can be directly observed
in Fig. 4(d). Finally, we provide data from a smaller,
31-qubit system calculation done in Ref. [22].
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FIG. 7. Forming the edge environment from the norm network of a tensor network state. One of the edges e is split and all other
indices of the network are contracted over, reducing the cut network to a single matrix where a singular value decomposition can be
performed.

We also would like to point out work in Ref. [47], and the original ordering from Ref. [10]. We find that our
which used a dissipative mean-field theory to simulate = own ordering results in slightly lower truncation errors
the 127-qubit system out to short-circuit depths (approx-  when simulating the 127-qubit kicked Ising model at fixed
imately five Trotter steps) and obtained relatively accurate ~ MPS bond dimension x. We break the two-site term in
results—although with some noticeable deviations from  the propagator U(6;) down into a product of, at most,
the true result, which can be computed to an accuracy  five commuting matrix product operators (MPOs) of bond
approximately 10~'* with our BP-evolved TNS method. dimension 2. The MPS is then evolved by successively

applying these MPOs and after each application trunca-

tion is performed of the state down to a maximum bond

APPENDIX B: MPS CALCULATIONS dimension x. The single-site gates are applied at the start

of each Trotter step exactly. If implementing all two-site

the unverifiable regime in Figs. 4(d)-4(f). We implemented ~ &ates our decomposition of U(6;) involves 5 MPOs. In
an ordering of the sites of the heavy hex lattice, which is ~ Practice, however, we employ light-cone depth reduction
distinct from that in Ref. [10]. Specifically, Fig. 9 shows (LCDR), which means that if there are ”/. Trotter steps left
the qubits of the Eagle processor numbered as 1 through ~ until we take a measurement on a specific site, we only
127, which then map directly to the sites 1 through 127  include two-site gates in the MPOs, which are within the
of the MPS we use. Two numberings are shown: our own ~ femaining light cone of the simulation. This means that for

We performed MPS calculations for benchmarking in

0 = (Zp)

Eagle Processor
MPS, x = 1024
isoTNS, x =12
TNS (BP), x = 200
—— TNS (BP), x =500
---- TNS (BP), x — o
Mixed TNS — TNO (BP)
Sparse Pauli Dynamics
MPO, x = 500
# 31 Qubit Sim.
¢ TNO (SU), x = o©

0 /8 /4 31/8 /2

FIG. 8. Comparison of various approaches to simulating the kicked transverse-field Ising model on the 127-qubit Eagle processor
geometry (Fig. 1). Approaches include a quantum processor (Eagle Processor [10]), MPS [10] and isoTNS [10] methods using
Schrédinger evolution, a TNS (BP) approach using Schrodinger evolution and evolved with BP (this work), a Mixed TNS-TNO (BP)
[21] approach using a combination of Schrédinger and Heisenberg evolution and evolved with BP, Sparse Pauli Dynamics [20,21], a
MPO [19] approach using Heisenberg evolution, a 31-qubit full state simulation (31 Qubit Sim. [22]), and a TNO (SU) [18] approach
using Heisenberg evolution and evolved with simple update, which is closely related to the BP approximation [14,38], and contracted
exactly to compute expectation values.
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Previous Ordering

Our Ordering

MPS Ansatz

PEPTIPIPPIPPPPIOe

FIG. 9.

(Top) Two possible mappings from the qubits of the Eagle processor to the sites of a MPS ansatz. The left diagram shows

the ordering used in Ref. [10] while the right diagram shows the ordering we use to obtain the results in Figs. 4(d)—4(f), which we find
leads to higher accuracy for a given MPS bond dimension. (Bottom) MPS ansatz with the site numbers corresponding to those in the

above orderings.

a given 0, in Fig. 4 we perform 20 separate simulations to
get the most accurate MPS results for the value of (Z;)
after each number of steps 7.

In order to approximate the error of this simulation we
calculate the sum of the singular values discarded during
the application of a single MPO, which we call ¢;, where
i refers to the MPO being applied. The total approximate
error during the »n Trotter-step simulation [and plotted in

the insets of Figs. 4(d)—4(f)] is then [5]

N
E=1-Y (-e¥,
i=1

where the sum runs over all N MPO MPS applications
(which may be less than 5n due to LCDR) during the sim-
ulation up to n Trotter steps. The error per gate that we

(B1)

FIG. 10. Approximating the edge environment of an edge e of a TNS on the heavy hex lattice of bond dimension y using a boundary
MPS-style scheme [50]. The contraction of the norm network is done by successively (top to bottom and bottom to top) approximating
the contraction of pairs of rows of the heavy hex lattice as MPSs of bond dimension D. The resulting contraction is then reduced to the

contraction of a pair of MPSs incident to the given row of the TNS.
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x=12, D=12, 0, =n/4

x=8, D=8, 6,=31/3
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FIG. 11.

300 10 20
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Dynamics of the single-site magnetization of the kicked Ising model on heavy hex lattices of varying sizes. The TNS is

evolved using the BP approximation and the magnetization is approximated with BP (solid lines) and boundary MPS (dashed lines)
with the relevant parameters displayed above the plot. The middle plots show the relative error between calculating the expectation
values with BP versus boundary MPS. Bottom plots show the BP error estimate based on Eq. (12) for an edge incident to the site where

the magnetization is calculated.

calculate is approximately the same as applying the gate
exactly and taking the overlap with the truncated state.

APPENDIX C: BOUNDARY MPS FOR THE HEAVY
HEX LATTICE

In order to approximate the error of BP using the sepa-
rability of the edge environment (see Sec. 1 E) for lattices
that are too large to contract exactly, for example, the larger
lattices in Fig. 2(d), we employ a method similar to bound-
ary MPS [32,48,49] but generalized to arbitrary network
structures [50] to approximately contract the norm network
down to a chosen edge to compute the edge environment.
Specifically, we approximate the contraction of two rows
of the heavy hex as an MPS of fixed bond dimension
D—with the external indices of the given region of the
TNS being mapped to the dangling indices of the MPS.
This allows us to approximate the successive contraction
of rows (from top to bottom and bottom to top) of the heavy
hex TNS as a sequence of MPS MPO contractions. This
process is depicted diagramatically in Fig. 10.

We also computed the difference between calculating the
magnetization of the BP-evolved TNS using the belief-
propagation method versus using boundary MPS for the
parameters considered in Fig. 2(d). We present the results
here in Fig. 11 and observe how close the values obtained
are—with the largest lattices showing differences between
the two methods, which are on the order of 10~*. The dif-
ference between the two methods generally decreases as
the system size is increased.
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