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Whether a given target state can be prepared by starting with a simple product state and acting with
a finite-depth quantum circuit is a key question in condensed matter physics and quantum information
science. It underpins classifications of topological phases, as well as the understanding of topologi-
cal quantum codes, and has obvious relevance for device implementations. Traditionally, this question
assumes that the quantum circuit is made up of unitary gates that are geometrically local. Inspired by the
advent of noisy intermediate-scale quantum devices, we reconsider this question with k-local gates, i.e.,
gates that act on no more than k degrees of freedom but are not restricted to be geometrically local. First,
we construct explicit finite-depth circuits of symmetric k-local gates that create symmetry-protected topo-
logical (SPT) states from an initial product state. Our construction applies to SPT states protected by global
symmetries or subsystem symmetries but not to those with higher-form symmetries, which we conjecture
remain nontrivial. Next, we show how to implement arbitrary translationally invariant quantum cellular
automata in any dimension using finite-depth circuits of k-local gates. These results imply that the topo-
logical classifications of SPT phases and quantum cellular automata both collapse to a single trivial phase
in the presence of k-local interactions. We furthermore argue that SPT phases are fragile to generic k-local
symmetric perturbations. We conclude by discussing the implications for other phases, such as fracton
phases, and surveying future directions. Our analysis opens a new experimentally motivated conceptual
direction examining the stability of phases and the feasibility of state preparation without the assumption
of geometric locality.
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I. INTRODUCTION

The exploration of topological phases of matter has
been a major theme of modern condensed matter physics
(for introductions, see Refs. [1,2]), with far-reaching impli-
cations for quantum information and quantum computation
(for introductions, see Refs. [3,4]). These phases of mat-
ter, when defined on lattices, have been classified with
use of the complexity of preparation of the associated
ground states using local quantum circuits (QCs) [5]; a
state that can be accessed by starting with a product state
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and acting with a finite-depth quantum circuit (FDQC) of
geometrically local gates can be said to be “easy” to pre-
pare, and one that cannot be is difficult to prepare. This
characterization is intimately related to the notion of topo-
logical stability, which states that topological phases are
robust to geometrically local perturbations [which should
be symmetry restricted in the case of symmetry-protected
topological (SPT) phases [6,7] ], since topological stabil-
ity implies that topologically nontrivial states cannot be
connected to trivial states by a (symmetric) FDQC [5,8].
Recently, the notion of FDQCs in relation to topological
phases has been extended in various directions, such as
allowing projective measurements [9–11], or by extension
to linear-depth quantum circuits [12–14], but still demand-
ing geometric locality. The geometric locality is, of course,
a very natural constraint to impose in traditional solid-state
settings. However, we are witnessing the rapid develop-
ment of experimental capabilities in the fields of quantum
simulation and noisy intermediate-scale quantum devices
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(for a recent review, see Ref. [15]), which have come to
provide a new context in which to explore topological
phases (see e.g., Refs. [16,17]). In this new setting, the geo-
metric locality is not necessarily guaranteed and there can
arise k-local interactions, i.e., interactions involving few
bodies (acting on no more than k degrees of freedom) but
not restricted to be geometrically local (see e.g., Refs. [18–
21]). Do the results on the difficulty of topological state
preparation survive in this new setting, and does the classi-
fication of topological phases of matter and the associated
notion of topological stability survive in a setting where
there can be k-local perturbations?

Another topological classification that may be affected
by k-local interactions is that of locality-preserving uni-
tary operators, also known as quantum cellular automata
(QCA) [22]. An FDQC is an obvious example of a QCA,
but there are also QCA that cannot be written as an FDQC,
such as the lattice translation operator. The topological
classification of phases of QCA arises from the question
of whether two QCA can be smoothly connected along
a locality-preserving path, with the topologically trivial
phase consisting of FDQCs as they can be connected to the
identity. In one and two dimensions, this classification is
given by an index theory that essentially shows that every
QCA can be decomposed as an FDQC and a translation
[23,24]. In three dimensions, the classification is incom-
plete as there appear to be QCA that are neither FDQCs nor
translations, but significant progress is being made [25–
27]. The classification of QCA also plays a role in the
classification of topological phases [25–29], particularly
Floquet phases [30–32].

In this work, we examine the fate of the “topological sta-
bility” of topological phases and QCA in the presence of
k-local perturbations by asking whether one can construct a
reference state or QCA in the putatively topological phase
using an FDQC made out of k-local (but not geometri-
cally local) gates. We show that SPT phases with global
or subsystem symmetries are not stable to k-local pertur-
bations by explicitly constructing FDQCs of symmetric
k-local gates that trivialize the fixed-point states by map-
ping them to symmetric product states. Since all states
within a given phase can be connected to the fixed-point
state by a symmetric FDQC [5], our circuits for fixed-point
states imply the existence of similar circuits that disentan-
gle any state in a given SPT phase. We also argue that
SPT order should be unstable to generic symmetric k-local
noise. Similarly, we show that every translationally invari-
ant QCA on a periodic lattice in any spatial dimension
can be realized as an FDQC of k-local gates that com-
mute with the same symmetries as the QCA. Therefore, all
QCA belong to the same trivial phase when k-local gates
are allowed. However, k-local perturbations do not trivial-
ize everything—indeed it is known that topological order
(such as the toric code model) is stable to k-local perturba-
tions [33]. More generally, it is known that code states of

quantum error correcting codes cannot be disentangled in
finite depth by k-local unitary gates [8,33] (see Appendix
D for a brief review of the proof). We argue that fracton
order and Floquet topological codes are also stable to k-
local perturbations, and we conjecture the same is true of
SPT order protected by higher-form symmetries.

While our main focus is on “in principle” topological
classifications in the absence of geometric locality, our
work also has practical implications. In particular, we note
that there has recently been a significant effort to prepare
and analyze topological phases in quantum simulators and
quantum computers [34–40]. In this context, our results
show that certain operations that require a circuit depth
that is linear in system size with local interactions can be
done in finite depth using k-local interactions, significantly
reducing the time required for implementation.

In summary, this paper introduces a new (experimen-
tally motivated) perspective on topological stability, show-
ing that certain topological classifications can collapse
in the presence of k-local interactions, and also opens
up a new route for the efficient preparation of certain
topological states on quantum devices.

The rest of this paper is organized as follows. In Sec. II
we provide a precise definition of k-local circuits. In
Sec. III we show that these circuits can trivialize arbitrary
SPTs protected by global or subsystem symmetries, but we
provide evidence that this is not possible for SPTs pro-
tected by higher-form symmetries. In Sec. IV we show
that these circuits can also trivialize arbitrary QCA. In
Sec. V A we present numerical evidence that such cir-
cuits can trivialize SPT states in monitored circuits. We
conclude in Sec. VI, where we also discuss the k-local
nontriviality of states with true topological order (includ-
ing fracton phases and Floquet topological codes) and the
implications of our results and some future directions. In
Appendix A, we discuss an alternative classification based
on finite-time k-local circuits, which are even more pow-
erful than the finite-depth k-local circuits discussed in the
main text.

II. DEFINITION OF k-LOCAL CIRCUITS

In this section, we lay out the definitions of the notions
of locality that we are concerned with throughout the
paper. The first and most common notion of locality is geo-
metric locality. Any lattice system has a natural notion of
distance between pairs of sites, which allows us to define a
geometrically local unitary gate as one that acts only on
sites that can be contained within a ball of some finite
radius. Here and throughout this paper, the word “finite”
means independent of system size, i.e., finite even in the
thermodynamic limit. Naturally, such a gate acts only on
a finite number of sites in the lattice. One can construct a
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circuit of geometrically local gates

U =
D∏

�=1

(
∏

i

u�,i

)
(1)

where each gate u�,i is geometrically local and the gates
within a given layer � have nonoverlapping support, such
that they can be applied in parallel. We call such a uni-
tary U a QC. When the number of layers D is finite, U is
called an FDQC. It is also interesting to define symmet-
ric QCs, which are circuits in which each gate individually
commutes with some symmetry operator.

We can extend the notion of the geometric locality to
k locality. A gate is called “k local” if it has support on
at most k sites. Thus, a k-local gate shares the few-body
property of a geometrically local gate while ignoring the
relative position and distance between spins. We define a
k-local quantum circuit, QCk, to be composed of k-local
gates u�,i, where k is finite, such that the gates are applied in
layers and in each layer they have nonoverlapping support.
When the number of layers is finite, we call the circuit a
finite-depth QCk (FDQCk).

Clearly, every QC is also a QCk, but in general, a QCk
is more powerful in the sense that writing a many-body
unitary operator as a QCk can sometimes be accomplished
with lower depth than is required to write it as a QC. As a
simple example, consider the unitary operator that gener-
ates the N -qubit Greenberger-Horne-Zeilinger (GHZ) state
from a product state. This can be implemented only with a
linear-depth QC due to the presence of long-range correla-
tions in the GHZ state [33]. However, it can be done with
a QCk having a depth that is logarithmic in N ; see Refs.
[41,42], for example. Similarly, the unitary that generates
the 2D toric code ground state, an example of topological
order, requires a linear-depth QC [8] but can be done in a
log-depth QCk [42,43]. Notably, neither of these unitaries
can be written as an FDQCk [33], so we say that the GHZ
and toric code states remain nontrivial in the k-local set-
ting. In contrast, the unitaries discussed in this paper will
primarily be circuits that require linear depth with use of a
(symmetric) QC, but can be performed in finite depth with
use of a (symmetric) QCk, so we say they become trivial
in the k-local setting.

III. k-LOCAL INSTABILITY OF SPTS

In this section, we ask whether SPT states can be pre-
pared by a symmetric FDQCk. In Secs. III A and III B we
consider global on-site symmetries. While it is known that
a linear-depth symmetric QC is needed to create an SPT
ground state [12] from a symmetric product state, we show
that a symmetric FDQCk is sufficient. We first give an
intuitive physical argument as to why this is the case by
studying the boundaries of SPT phases, and we then con-
struct an explicit finite-depth k-local symmetric circuit that

disentangles fixed-point SPT states. In Sec. III C, we show
that SPT phases protected by subsystem symmetries (SSPT
phases) can also become trivial in the k-local scenario.
Conversely, we argue in Sec. III D that SPT phases pro-
tected by higher-form symmetries remain nontrivial even
in the k-local scenario. In Appendix A, we give alternative
finite-time k-local constructions of SPT states that have
the advantage that all interactions are local except for one
special qubit that can interact with all other qubits.

A. One-dimensional SPT phases with global
symmetries

We first consider 1D SPT phases. The characteristic
feature of 1D SPT order is the existence of zero-energy
edge modes that are protected by the bulk symmetry. On
periodic boundaries, the ground state is unique. But when
an edge is introduced, degenerate ground states that dif-
fer only in a region exponentially close to the boundary
will appear. This boundary degeneracy is robust in the
sense that no local, symmetric perturbation can split the
degeneracy. However, the degeneracy is not robust to k-
local interactions, as a symmetric interaction can be used
to couple the two edges in such a way as to split the degen-
eracy. This suggests that 1D SPT orders are not robust to
k-local symmetric interactions. However, there may still
be some nontrivial bulk properties that cannot be removed
by k-local interactions. We show that this is not the case
by explicitly constructing a symmetric FDQCk that maps
generic SPT fixed-point states to product states.

We can understand why such a circuit should exist using
a simple folding argument. Namely, consider a 1D SPT
ordered state |ψ〉 on a ring. Suppose that we “fold” the
ring, bringing the two opposite sides close to each other.
In the bulk of the folded system, it looks like we have
stacked the state with its spatially reversed self; see Fig. 1.
However, it is well known that SPT phases are invertible,
meaning that there exists a second state |ψ−1〉 such that
the joint system |ψ〉 ⊗ |ψ−1〉 is in a trivial SPT phase.
For this statement to make sense, it is important to spec-
ify how the symmetry acts on the joint system. If |ψ〉 has
symmetry G with an on-site representation U(g), then the
symmetry acts on the joint system “diagonally,” i.e., with
representation U(g)⊗ U(g) of G. If we instead considered
the symmetry group G × G represented by U(g)⊗ U(h)
with g not necessarily equal to h, then the stacked system
is still in a nontrivial phase with respect to this larger sym-
metry. In the folded system, the global symmetry indeed
acts in the same way across the whole ring, so the total
symmetry group is still only G.

It turns out that the spatial inverse of the SPT fixed-point
states is in fact the inverse state in the above sense [7],
so the bulk of the folded system looks like a trivial SPT
phase. Then there must be a symmetric finite-depth circuit
that disentangles the bulk to a product state. Looking at
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FIG. 1. Disentangling 1D SPT phases with k-local symmetric
gates. After the folding of a 1D chain with periodic boundary
conditions in half, the resulting system looks like a stack of the
chain and its spatial inverse in the bulk. This stack can be disen-
tangled with symmetric gates acting on the highlighted qubits,
which correspond to k-local gates in the original system. For
fixed-point SPT states, these gates are the Wi defined in Eq. (3);
one such gate is highlighted in red, where each line is a CZ gate.
Note that the adjacent vertical gates cancel each other pairwise
in the bulk.

this picture without folding, we see that the disentangling
circuit couples the two distant edges of the ring, therefore
requiring long-range k-local gates.

Let us explicitly construct such a circuit. We give only a
single example here, as the general case is covered by the
construction in Sec. IV. The example we consider is the
1D cluster state [44], which can be created from a product
state with use of a finite circuit in the following way:

|ψC〉 =
(

N∏

i=1

CZi,i+1

)
|+〉⊗N , (2)

where |+〉 = 1√
2
(|0〉 + |1〉) and CZ = I − 2|11〉〈11| is the

controlled-Z gate. Assuming N is even, |ψC〉 has a Z2 ×
Z2 symmetry generated by Xodd = ∏N/2

i=1 X2i+1 and Xeven =∏N/2
i=1 X2i.
Importantly, while the circuit of controlled-Z gates com-

mutes with this symmetry as a whole, the individual gates
do not. Since the 1D cluster state has nontrivial SPT
order [45], there does not exist a symmetric FDQC that
maps it to a product state [12,46]. However, mapping is
possible with use of a symmetric FDQCk. Consider the
gates

Wi = CZi,i+1CZi+1,N−iCZN−i,N−i+1CZN−i+1,i, (3)

which are depicted in Fig. 1. It is straightforward to check
that Wi commutes with the Z2 × Z2 symmetry. Further-
more, we have,

(N/2−1∏

i=1

Wi

)
|ψC〉 = |+〉⊗N , (4)

as shown in Fig. 1. Since the Wi all commute with each
other, and since the support of each Wi overlaps with the

support of finitely many others, they can be applied in
a finite number of layers such that this is a symmetric
FDQCk that trivializes the cluster state.

It is instructive to note that Wi is the operator that creates
a small four-site cluster state on a ring, which explains why
it is symmetric. The k-local disentangling circuit can there-
fore be interpreted as a “bubbling” procedure in which one
decomposes the N -site cluster state into a number of small
four-site cluster states and then disentangles each four-site
cluster state with a symmetric k-local gate.

B. Two-dimensional and higher-dimensional SPT
phases

The folding argument from the previous section carries
over equally well to SPT phases with global symmetries
in two dimensions and higher. We give only the 2D argu-
ment explicitly, as the generalization to higher dimensions
is straightforward. We again give a single example as the
general case (in all dimensions) is covered in Sec. IV.

As in one dimension, we can predict that 2D SPT phases
are trivial with k-local interactions by considering the
boundary. Consider the example of a topological insula-
tor, which has a gapless helical edge on the boundary of
a disk. With local symmetric interactions, the edge cannot
be gapped out without breaking the symmetry (although
see Refs. [47,48]). However, two opposite points on the
boundary have helical currents moving in opposite direc-
tions, which could backscatter off each other if coupled by
a k-local perturbation. Therefore, it is possible to introduce
a k-local symmetric term that couples opposite points and
gaps out the edge without breaking symmetry.

As before, we confirm this intuition by constructing
explicit symmetric FDQCk disentanglers. As our exam-
ple, we choose the 2D hypergraph state, first defined in
Ref. [49]. The state is defined on a triangular lattice with
one qubit per site. We choose boundary conditions of a
sphere for our demonstration, but a torus would work
equally well. The state is defined as follows:

|ψH 〉 =
⎛

⎝
∏

�
CCZ�

⎞

⎠ |+〉⊗N (5)

where the controlled-controlled-Z (CCZ) gate acts on the
three qubits around a triangle as CCZ = I − 2|111〉〈111|.
This state has SPT order protected by a Z2 × Z2 × Z2
symmetry [49]. This symmetry relies on the fact that the
lattice is three colorable, meaning that each site can be
assigned a color (red, blue, or green) such that neighbor-
ing sites have different colors; see Fig. 2. The symmetry
is then generated by the operators XR, XB, and XG, which
are tensor products of X on every red, blue, and green site,
respectively. This state is closely related to the Levin-Gu
state [50], which is an example of 2D SPT order with Z2
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FIG. 2. Disentangling 2D SPT phases with k-local symmetric
gates. We show a folded system with spherical boundary condi-
tions, which leads to a thin rectangular prism. A torus is obtained
by identification of the left and right faces. A subset of the lat-
tice coloring is shown. The rectangular prism geometry can be
decomposed into smaller rectangular prisms. The symmetric gate
Wp is defined by our acting with a CCZ gate on all 12 triangu-
lar faces of this prism. When Wp is applied to every prism, all
bulk gates that act on faces parallel to the z axis cancel between
neighboring prisms, leaving only gates on the surface of the large
rectangular prism.

symmetry [51]. As before, the circuit of CCZ gates is sym-
metric as a whole on closed boundary conditions, but the
individual gates are not symmetric.

By folding the 2D system, we get a state defined on
the surface of a thin rectangular prism. This rectangular
prism can be decomposed into a number of small rectangu-
lar prisms with triangular faces; see Fig. 2. We label these
prisms by p ∈ P. For each such prism p , we define a gate

Wp =
∏

�∈p

CCZ�, (6)

which is depicted in Fig. 2. As in the 1D case, this operator
can be interpreted as creating a small instance of |ψH 〉 on
a triangulation of a sphere, and it, therefore, respects the
Z2 × Z2 × Z2 symmetry. Applying this operator to every
prism, we have

⎛

⎝
∏

p∈P

Wp

⎞

⎠ |ψH 〉 = |+〉⊗N , (7)

so this is a symmetric FDQCk disentangler.

C. SPT phases with subsystem symmetries

We now turn to SPT phases protected by subsystem
symmetries. These are symmetries that act on rigid, lower-
dimensional submanifolds of the entire system, such as
straight lines across a 2D lattice [52–56]. These are similar
to 1D SPTs, in that they are characterized by an exten-
sive degeneracy on the edge [53,54]. Indeed, if a 2D SSPT

FIG. 3. Disentangling 2D SSPT phases with k-local symmetric
gates. The dashed lines are shown as a guide for the eye. A torus
is obtained by identification of the left and right opposite faces.
The gate Wc consists of CZ operations on every solid edge, with
qubits located at the small dots (not drawn in the upper figure).
The thick solid loop and dots indicate the support of one linelike
subsystem symmetry generator.

phase on a cylinder is treated like a quasi-1D system along
the cylinder’s length, then it behaves like a 1D SPT phase
with a subextensive number of symmetry generators [28].

The prototypical SSPT phase is represented by the 2D
cluster state [44]. This state consists of qubits on a 2D
square lattice and is defined as follows:

|ψ2DC〉 =
⎛

⎝
∏

〈ij 〉
CZi,j

⎞

⎠ |+〉⊗N , (8)

where the product is over all nearest neighbors in the
square lattice. The symmetries of this model form rigid
diagonal lines spanning the square lattice, defined as

Uc,± =
∏

x

X(x,c±x), (9)

where i = (x, y) is a coordinate on the 2D square lattice.
Similarly to the cases of global symmetry, one can use the
folding trick to create |ψ2DC〉 on a closed 2D manifold
using a symmetric FDQCk consisting of the symmetric
k-local gates Wc defined in Fig. 3.

For a diagonal line of symmetry to act the same on the
top and bottom layers of the fold as in Fig. 3—which is
necessary for the folding argument to work—we needed to
put |ψ2DC〉 on a 45◦-rotated square lattice. This results in
some triangular faces appearing on spherical boundaries
(which are absent on the torus). For general subsystem
symmetries, which can have more complex geometries
such as fractal geometries [55], we expect that a symmetric
FDQCk will be able to create SSPT states only on spatial
manifolds with nice enough geometry such that there are
distant regions in space where the symmetry mirrors itself.
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D. SPT phases with higher-form symmetries

In this section, we argue that in contrast to phases
protected by global and subsystem symmetries, phases
protected by higher-form symmetries are robust to k-local
symmetric interactions. In general, a q-form symmetry is
one that acts on closed codimension-q submanifolds of
space. In contrast to subsystem symmetries, these subman-
ifolds are not rigid and can be deformed freely. These
symmetries are local in the sense that they may have
support on only a finite number of sites. For example,
a one-form symmetry in three dimensions is generated
by objects acting on any closed 2D surface embedded
in the 3D space. A simple example of a state with SPT
order under higher-form symmetries is the 3D cluster state
defined in Ref. [57] (see also Ref. [58] for a more detailed
discussion of the SPT order), which is also an example of
the general Walker-Wang construction [59].

We first observe that the folding argument used for
global symmetries does not carry over to the case of
higher-form symmetries. This is because folding in this
case does not correspond to stacking in the usual sense.
Recall that stacking requires the symmetry to act in the
same way on the two layers. When we fold a system with
global symmetry, acting with the symmetry on the whole
system automatically has identical action on the two lay-
ers of the fold. However, this is not the case when we
fold a system with higher-form symmetry, since the sym-
metry generators, being local, can act independently on
either layer. Because of this, the bulk of the folded sys-
tem resembles two stacked SPT states, each with their own
independent symmetry, and such a system has nontrivial
SPT order.

Second, we observe that any k-local interaction that
commutes with a higher-form symmetry is also locally
symmetric, meaning the gates can be decomposed into a
sum of tensor products of geometrically local symmetric
unitaries. This is due to the simple fact that the higher-form
symmetry group itself contains operators that act nontriv-
ially only in local regions of space. This is very different
from the case of global symmetries, where a symmetric k-
local interaction can violate symmetry locally while still
preserving it globally. Because of this, the class of k-local
gates that we can use is severely restricted compared with
the case of global symmetry. Indeed, the FDQCks used
to disentangle the SPT states above commute only with
the symmetry globally as they contain operators such as
a long-range ZZ pair that can transfer symmetry charge
over long distances. In Sec. V, we argue that the fact that
symmetric k-local interactions can violate the symmetry in
local regions of space is crucial to their ability to destroy
SPT order. Accordingly, we expect that k-local gates that
preserve the symmetry locally, which is always the case for
higher-form symmetric gates, are not sufficient to destroy
SPT order.

Finally, examination of the boundary of a higher-form
SPT also suggests that it may be k-local nontrivial. Higher-
form SPTs in three dimensions, for example, can support
topologically ordered boundary theories such as a 2D toric
code appearing on the boundary of the 3D cluster state
[49,58,59]. However, unlike in the boundaries of systems
with global symmetry discussed above, k-local interac-
tions cannot trivialize this boundary theory because the
2D toric code, and any number of stacks of it, is k-local
nontrivial [33].

IV. UNIFIED CONSTRUCTION OF SYMMETRIC
k-LOCAL CIRCUITS FOR QCA

In this section, we show that locality-preserving unitary
operators, also known as QCA [22], can be implemented as
FDQCks. We give a generic construction of these FDQCks
that works in any spatial dimension d. We deal only with
translationally invariant QCA, but this condition can likely
be relaxed to a certain extent. We also assume the QCA
acts on a lattice with mirror symmetry in all d directions.

An FDQC is a trivial example of a QCA. However,
there are also QCA that cannot be expressed as an FDQC,
such as the 1D shift QCA QS, which acts on any oper-
ator Oi supported on site i by translating it by one site,
QSOiQ−1

S = Oi+1. When only local gates are used, imple-
mentation of this operation requires a QC whose depth
grows linearly with system size. In one and two dimen-
sions, it has been shown that all QCA are composed of
shifts and FDQCs [23,24]. In three dimensions, however,
there are believed to be QCA that are neither shifts nor cir-
cuits [25–27]. Our result constructs FDQCks for all QCA,
which, to the best of our knowledge, provides the first cir-
cuit representation of nontrivial 3D QCA. The existence
of these FDQCks implies that all QCA become trivial in
the k-local scenario, such that the topological classifica-
tion of QCA collapses to a single trivial phase when k-local
gates are allowed. Additionally, if the QCA commutes with
some global symmetry, it may not be possible to write it
as a symmetric FDQC, even if it is an FDQC. Nonethe-
less, the FDQCk we construct consists of symmetric gates
(in the case of global symmetries), so this result gives an
alternative demonstration of the triviality of SPT order by
applying our construction to the QCA that generate the
SPT states, such as those in Eqs. (2) and (5).

The main ideas which lead to this result are the fol-
lowing. Given a QCA Q acting in d spatial dimensions,
we start with the known fact that Q ⊗ Q−1 acting on two
copies of a system can be realized by an FDQC [22,60]. By
truncating this FDQC to a finite region of space, we obtain
a k-local circuit acting on a single conjoined system. On
one half of this system, the circuit acts like Q, while on the
other half, it acts like Q−1. We then show that Q−1 is equiv-
alent to the spatial inversion of Q in one direction, which
we denote as Q̄, up to a circuit of (d − 1)-dimensional
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(a) (b)

FIG. 4. (a) A pair of counterpropagating 1D QCA implement-
ing the SHIFT operation, where information flows in the directions
of the arrows, can be realized by a depth-2 k-local circuit of SWAP
gates, indicated by double-headed arrows, where all solid arrows
first act in parallel and then all dotted arrows act in parallel. (b)
Truncation of the circuit in (a) stitches the top and bottom lines
of qubits into a single ring acted on by the shift QCA.

QCA that can be applied in two parallel layers. The action
of Q on one half and Q̄ on the other half is nothing more
than Q applied to a periodic system. An inductive argu-
ment then concludes that Q can be implemented as an
FDQCk. This idea is demonstrated in Fig. 4 for the sim-
ple example of the shift QCA. In this case, the second
part of the argument is not needed as Q̄ is already equal
to Q−1. We work out three explicit examples of the general
construction, including the shift QCA, in Appendix B.

A. Construction from the 1D Margolus representation

Consider a QCA Q that acts on a Hilbert space H =
(Cd)⊗N . Now construct a doubled Hilbert space HA ⊗ HB
made of two copies of H. For every degree of freedom
i in H, we have two degrees of freedom [i]A and [i]B in
HA ⊗ HB. Let QA (QB) denote Q acting on HA (HB) and
write V = Q−1

B QA. Now write SAB = ∏
i Si, where Si is the

SWAP operation that exchanges sites [i]A and [i]B. For now,
we imagine that A and B are geometrically close such that
Si is a local operator. Then we have [22,60]

V = Q−1
B QA

= SABQ−1
A SABQA

=
(
∏

i

Si

)(
∏

i

Vi

)
, (10)

where

Vi = Q−1
A SiQA. (11)

Since Si is a local operator and Q is locality preserving,
Vi is a local operator. Since the Vi all commute with each
other for all i, the above formula can be parallelized into a
finite-depth circuit realizing V.

Now we imagine truncating the above circuit as follows:

VR =
(
∏

i∈R

Si

)(
∏

i∈R

Vi

)
, (12)

where R is some finite connected subset of sites. Far
outside the region R, VR will act as the identity. Deep
inside the region R, VR will act as QAQ−1

B . To understand
what happens near the boundaries of R, we use the so-
called Margolus representation of a QCA. We first describe
this for 1D systems and then show how to extend it to
higher-dimensional systems in the next section.

Take the physical space to be a 1D chain with sites
indexed by a single integer i. By blocking a finite num-
ber of sites, i.e., enlarging the unit cell, one can always
make Q have unit range, meaning that if Oi is an oper-
ator supported on a site i, then QOiQ−1 is supported at
most on sites i − 1, i, i + 1. Then, according to the results
in Ref. [61], the QCA can be written in the following
Margolus representation:

Q =
(
∏

i

v2i−1,2i

)(
∏

i

u2i,2i+1

)
, (13)

where u is a unitary operator mapping from the d2-
dimensional Hilbert space C

d ⊗ C
d to the �r-dimensional

Hilbert space C
� ⊗ C

r, where d is the dimension of a unit
cell and �r = d2. Similarly, v is a unitary operator mapping
from C

r ⊗ C
� to C

d ⊗ C
d. Graphically, we can represent

the right-hand side of this equation as follows (where the
solid, dashed, and dotted lines have dimensions d, �, and r,
respectively):

(14)

The arrows indicate the orientation of the unitaries u and
v and are expressed formally by the spatial ordering of
the Hilbert space labels on the left and the right. This
will become important when we invert this orientation,
as we define shortly. The standard form encompasses all
1D QCA, even the shift QCA, whose standard form is
described in Appendix B 1.

We emphasize that the �-dimensional and r-dimensional
Hilbert spaces are not physical, and are rather a technical
tool used to write the Margolus representation. Accord-
ingly, the operators u and v are not proper unitary gates,
since their input and output Hilbert spaces are not equiv-
alent. Rather, they are used as building blocks to define
proper unitary gates such as Q itself.

We now insert the standard form of Q into the definition
of VR, where we take R to be a segment of the 1D line
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R = [c, d]. Without loss of generality, suppose that c is odd
and d is even such that the length of R is even. We then
have

VR =
(

d∏

i=c

Si

)(
d∏

i=c

Vi

)

=
(

d∏

i=c

Si

)
Q−1

A

(
d∏

i=c

Si

)
QA

=
(

u−1
[c−1]A,[c]B

u−1
[d]B,[d+1]A

)

×

⎛

⎜⎝
d/2−1∏

i= c+1
2

u−1
[2i]B,[2i+1]B

⎞

⎟⎠

⎛

⎜⎝
d/2∏

i= c+1
2

v[2i−1]A,[2i]A

⎞

⎟⎠

×

⎛

⎜⎝
d/2∏

i= c+1
2

v−1
[2i−1]B,[2i]B

⎞

⎟⎠

⎛

⎜⎝
d/2∏

i= c−1
2

u[2i]A,[2i+1]A

⎞

⎟⎠ (15)

The second and third equalities above are depicted on
the left and middle of Fig. 5, respectively. As is clear
from Fig. 5, the u, u−1, v, v−1 operators can be par-
allelized into two layers of disjoint operators. Namely,
the u and v−1 operators can act in parallel in the first
layer, and the v and u−1 operators act in the second
layer. Furthermore, we see that the degrees of free-
dom within the range [c − 1, d + 1] have been stitched
into a single periodic 1D system, a ring of length L =
2(d − c + 1)+ 2 with spins in the subsystem A (B) form-
ing the “front” (“back”) of the ring that we denote as
R. Whenever we use the notation R, we imagine it as
representing a finite periodic array of sites that can be
ordered counterclockwise as [c]A, . . . , [d + 1]A, [d]B, [d −
1]B, . . . , [c]B, [c − 1]A.

The operator VR is not exactly Q acting on the finite peri-
odic system defined by R, which is depicted in the third
diagram in Fig. 5. Instead, VR realizes Q on the front of R
and Q̄−1 on the back of R, with the two operators being
blended near the edges. To fix this, we show that VR is
equivalent to Q up to composition with an FDQC. Given
any 1D QCA Q, we show that its inverse Q−1 is related to
its orientation-reversed self Q̄ by an FDQC. This is intu-
itively clear for 1D QCA such as the shift QCA: reversing
the direction of the shift is the same as inverting it. Gener-
ally, Q̄ will not equal Q−1, but they will differ only by an
FDQC in one dimension [62].

To explicitly construct the circuit that maps Q̄ to Q−1,
we introduce the unitary w = v̄u, where v̄ is the spatial
reversal (opposite orientation) of v obtained by exchang-
ing the left and right input and output Hilbert spaces. That
is, vi,j = v̄j ,i. Graphically,

(16)

Note that w, unlike u and v, is a proper unitary gate that
maps C

d ⊗ C
d to itself. Observe that we have wu−1 = v̄

and v−1w̄ = ū, where w̄ is again the spatial reversal of w.
Then we have

(
∏

i

w2i,2i+1

)
Q−1

(
∏

i

w̄2i−1,2i

)
= Q̄. (17)

Since the w (w̄) gates on either side of Q−1 are non-
overlapping, they can be applied in parallel. Therefore,
Q−1 and Q̄ are related by composition with FDQCs. Using

FIG. 5. The truncated circuit VR, where the 1D QCA Q is expressed in standard form. The downwards-shifted (upwards-shifted)
vertical lines correspond to degrees of freedom in the subsystem A (B). The lighter-colored rectangles represent the inverses u−1 and
v−1 as indicated in the first diagram. An arrow between two lines indicates the SWAP operation Si between degrees of freedom in the
two subsystems. In the second diagram, most gates have canceled pairwise, leaving only those shown. The degrees of freedom acted
on by the remaining gates form the ring R. For visual clarity, the vertical lines have been shortened. The third diagram is equivalent to
the second diagram up to the symmetric FDQCs W1 and W2; see Eq. (18). Note that the strict equivalence up to symmetric FDQCs is in
one spatial dimension, d = 1. In higher dimensions (d > 1), we use the compactified picture such that the equivalence is up to a circuit
that is of finite depth along the noncompactified direction and, in general, a (d − 1)-dimensional QCA along the d − 1 compactified
directions; see the main text.
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this, we define the circuits acting on the “back” of R,

W1 = (
w[c−1]A,[c]Bw[d]B,[d+1]A

)
⎛

⎜⎝
d/2−1∏

i= c+1
2

w[2i]B,[2i+1]B

⎞

⎟⎠ ,

W2 =

⎛

⎜⎝
d/2∏

i= c+1
2

w̄[2i−1]B,[2i]B

⎞

⎟⎠ ,

(18)

such that

W1VRW2 = (
v̄[c−1]A,[c]B v̄[d]B,[d+1]A

)

×

⎛

⎜⎝
d/2−1∏

i= c+1
2

v̄[2i]B,[2i+1]B

⎞

⎟⎠

⎛

⎜⎝
d/2∏

i= c+1
2

v[2i−1]A,[2i]A

⎞

⎟⎠

×

⎛

⎜⎝
d/2∏

i= c+1
2

ū[2i−1]B,[2i]B

⎞

⎟⎠

⎛

⎜⎝
d/2∏

i= c−1
2

u[2i]A,[2i+1]A

⎞

⎟⎠ .

(19)

The operator W1VRW2 is shown in the third diagram in
Fig. 5, from which it is clear that W1VRW2 is nothing but
Q applied to R. According to the 1D ring topology of R,
VR is not geometrically local since it contains gates cou-
pling qubits on opposite sides of R. However, it is still k
local. Therefore, W1VRW2 is an FDQCk that realizes Q on
a finite ring, where Q is an arbitrary 1D QCA. The ele-
mentary gates that make up the FDQCk are Si, Vi, and w.
In Appendix B, we derive these gates and demonstrate the
general construction for several explicit examples.

B. Application to compactified higher-dimensional
systems

Having shown that all 1D QCA can be realized as an
FDQCk, we now move on to higher-dimensional QCA act-
ing on d-dimensional lattices. For simplicity, we assume
we have a simple hypercubic lattice structure, although
the construction should generalize to any translationally
invariant QCA on a lattice with mirror symmetries. We
also assume without loss of generality that the QCA
has a unit range in all d directions. It is known that a
local Margolus form is not possible for 2D and higher-
dimensional QCA [63]. However, we can still obtain the
desired results by applying the 1D Margolus representa-
tion, which was also used to understand the index theory
of higher-dimensional QCA [24]. To do this, we simply
compactify the d-dimensional QCA Q along all spatial
dimensions except for one to obtain a quasi-1D chain of
supersites i each containing a number of sites that is exten-
sive in the d − 1 compactified dimensions. Since Q has

a unit range, it will spread operators contained in super-
site i only to supersites i − 1, i, i + 1 such that Q can be
viewed as a 1D QCA of unit range acting on the compact-
ified system. Therefore, it may be written in the Maroglus
representation of Eq. (14), where each solid vertical line
now represents one supersite.

Application of the construction described above then
automatically gives an FDQCk on the supersites realizing
Q. However, we must be careful to confirm that the depth
of the k-local circuit and the value of k are both indepen-
dent of system size in the compactified dimensions. This
is clearly true of VR, whose definition in Eq. (12) is unaf-
fected by the compactification and hence it is still k local
and of finite depth. Note that while the definition of VR
depends on which dimensions we choose to compactify,
VR is unaffected by whether we actually compactify those
dimensions. What remains then is to check that the unitary
w used to define W1 and W2 can be realized as an FDQCk.
Note that W1 and W2consist of a parallel application of w.
Then, if w can be realized as an FDQCk, so can W1 and W2.
We show that this is the case by showing that w is in fact
a (d − 1)-dimensional QCA and then using an inductive
argument.

We now show that w is locality preserving as well as
transitionally invariant in the compactified dimensions,
i.e., it is a (d − 1)-dimensional QCA. Let O be a local
operator. Recall that w = v̄u. Let uOu−1 = ∑

k Ak ⊗ Bk,
where Ak and Bk are operators supported only on the �-
dimensional and r-dimensional Hilbert spaces that come
out of u, respectively. Using the Schmidt decomposition,
we can always choose Ak (Bk) to come from a linearly
independent set of operators acting on C

� (Cr). Let Ck =
v̄Akv̄−1 and Dk = v̄Bkv̄−1. Note that since v is a unitary
map and since Ak and Bk were linearly independent, Ck and
Dk are linearly independent as well. Then from linearity,
we have

wOw−1 =
∑

k

CkDk. (20)

As we show below, the locality-preserving property of the
original QCA Q ensures that each Ck and Dk in this sum is
localized around O (meaning that they all are contained in
a ball of finite radius centered at O), and thus w is locality
preserving.

Consider the action of Q on O. In the following calcu-
lation, we will be more explicit with site indices; we write
O2i,2i+1 to represent the two (super)site operators O acting
on (super)sites 2i and 2i + 1. Then

QO2i,2i+1Q−1

=
⎛

⎝
∏

j

v2j −1,2j

⎞

⎠
∑

k

Ak
2i ⊗ Bk

2i+1

⎛

⎝
∏

j

v−1
2j −1,2j

⎞

⎠
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=
∑

k

(
v2i−1,2iAk

2iv
−1
2i−1,2i

)⊗ (
v2i+1,2i+2Bk

2i+1v
−1
2i+1,2i+2

)

=
∑

k

C̄k
2i−1,2i ⊗ D̄k

2i+1,2i+2, (21)

In the first equation, we used the Margolus representation
of Q and conjugated O by the u operators. The bars appear-
ing on Ck and Dk again indicate spatial reversal since Ak

and Bk have been conjugated by v rather than v̄. As shown
in Appendix C, since QO2i,2i+1Q−1 is contained around O,
linear independence ensures that each C̄k and D̄k should be
contained around O. This, in turn, shows that wOw−1 in
Eq. (20) is also contained around O, and hence w is also
locality preserving in the d − 1 compactified dimensions.
A similar argument shows that w is translationally invari-
ant in the compactified directions if Q is (see Appendix
C for details). In other words, w is a (d − 1)-dimensional
QCA.

We finish the proof using an inductive argument. We
have already explicitly shown how to realize any 1D
QCA as an FDQCk. Now suppose we can realize any
d-dimensional QCA as an FDQCk. Then, given a (d + 1)-
dimensional QCA Q, we have shown how to prepare it
using the FDQCk VR and the unitary w. Since w is a d-
dimensional QCA, we can by assumption realize it, and
hence Q itself, as an FDQCk. We note that w is not an
FDQC in general, so this inductive step is necessary. For
example, if we consider the 2D QCA that shifts operators
diagonally, then w will be a 1D shift QCA, as demonstrated
in Appendix B 3.

C. Symmetric QCA and SPT phases

We now turn to the symmetry properties of the FDQCks
constructed in the previous section. Suppose Q is a sym-
metric QCA, meaning that it commutes with a global
symmetry U(g) = u(g)⊗N for g ∈ G (we discuss higher-
form symmetries at the end). Note that, in contrast to a
symmetric QC, where each gate in the circuit is individ-
ually symmetric, here we don’t necessarily have a way to
break Q into smaller pieces, so we require only that Q as
a whole is symmetric, [Q, U(g)] = 0. Let UA(g) (UB(g))
denote U(g) acting on the subsystem A (B) as defined in the
previous section. UA(g)UB(g) clearly commutes with the
SWAP operators Si, since it is a tensor product of the same
operator u(g) on every site. Given that QA is assumed to be
symmetric, Vi = QASiQ−1

A commutes with UA(g)UB(g) as
well, and thus all gates in the circuit VR defined in Eq. (12)
commute with UA(g)UB(g) for all g ∈ G. When we view
the sites acted on by VR as the ring R, UA(g)UB(g) is
just U(g) acting on all sites in the ring, so it is just the
global symmetry of the ring, which we denote as UR(g).
For c ≤ i ≤ d, Vi and Si have trivial support outside R, and
hence the fact that they commute with UA(g)UB(g) readily
shows that they also commute with UR(g). Next, it follows

from the results in Ref. [64] that w commutes with U(g) for
all g ∈ G; see Appendix C for details. Therefore, W1VRW2
is a symmetric FDQCk whose gates commute with UR(g)
for all g ∈ G.

This result has implications for SPT phases. Observe
that the FDQCks used to disentangle the SPT fixed-point
states in Sec. III generate the same unitary operators as
the nonsymmetric FDQCs used to define the states in the
first place, which we call “SPT entanglers.” That is, our
constructions did not just trivialize the fixed-point states,
they achieved the stronger task of expressing the SPT
entanglers themselves as symmetric FDQCks. This per-
spective allows us to apply our results on representing
QCA as symmetric FDQCks to SPT phases. For exam-
ple, fixed-point states for a large class of bosonic SPT
phases (the “in-cohomology” phases) with global symme-
try are given by the cocycle states defined in Ref. [7].
These states are, in turn, defined by FDQCs that com-
mute with the global symmetry, but they are not symmetric
circuits since the individual gates are not symmetric. Our
construction allows these circuits to be written as FDQCks
with symmetric gates. This shows that all in-cohomology
SPT phases are trivial in the k-local scenario. We demon-
strate this idea for the example of the 1D cluster state in
Appendix B 2.

Our construction can be applied to some beyond-
cohomology SPT phases as well, although these are less
well understood at the Hamiltonian level. One example
of a beyond-cohomology SPT phase in four dimensions
with Z2 symmetry was given in Ref. [29], which also
constructed a Z2-symmetric SPT entangler. This entangler
is an FDQC, so our construction can be applied to get
a symmetric FDQCk. An interesting direction for further
work requires extending our results to consider antiunitary
symmetries, i.e., time reversal, which would allow us to
address the k-local triviality of the 3D beyond-cohomology
phase in Ref. [65].

Finally, we note that our approach immediately fails for
higher-form symmetries. This is because the gates in VR
commute only with UA(g)UB(g) and do not commute with
UA(g) or UB(g) individually. That is, the only symme-
try operators that commute with VR are those that act in
the same way on the front half and the back half of R.
However, the full higher-form symmetry group includes
operators that act differently on the two halves, as dis-
cussed in Sec. III D. So VR does not commute with the full
higher-form symmetry group.

V. STABILITY OF SPT PHASES UNDER GENERIC
k-LOCAL INTERACTIONS

In the previous section, we showed the existence of
symmetric FDQCks that trivialize SPT phases. However,
as these circuits are fine-tuned, this does not necessarily
imply that SPT phases are unstable to generic symmetric
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k-local interactions. Here we argue that this is the case,
meaning that generic symmetric k-local interactions will
destroy SPT order. We first consider specific instances
of interactions, and then we argue why the same results
should hold generically.

We focus on the case of 1D SPT phases, but we expect
that similar arguments will carry over to higher dimensions
as well. We take |ψC〉 [Eq. (2)] as the fixed-point state in a
nontrivial SPT phase and construct perturbed states |ψ〉 by
applying a short time-independent Hamiltonian time evo-
lution |ψ〉 = e−itH |ψC〉 for some H . We consider several
choices of H subjected to certain locality and symmetry
constraints. By taking t to be arbitrarily small, this gives a
perturbed state that is arbitrarily close to the unperturbed
state (in terms of fidelity per site). Therefore, we consider
this a model of the effect of weak k-local noise on an SPT
phase, which may or may not destroy the SPT order. This
is in contrast to our exact disentangling FDQCks obtained
in Sec. III, which require strong k-local interactions.

To diagnose the presence or absence of SPT order in
the resulting state, we use the string order parameter [66],
which can be defined as

S(a, b) = ZaYa+1

(
b−1∏

i=a+2

Xi

)
YbZb+1. (22)

In the nontrivial SPT phase containing |ψC〉, the string
order generically saturates to a nonzero value as its
length is increased, whereas it goes to zero exponen-
tially quickly in the trivial phase. In particular, we have
〈ψC|S(a, b)|ψC〉 = 1. To reduce the number of length
scales, we evaluate the string order parameter over half of
the system, i.e., S := S(0, N/2), and study its behavior as
a function of the system size N .

We first consider local, asymmetric noise, generated by
the Hamiltonian H (1) = −∑i Zi. Since Zi anticommutes
with some symmetry generators of |ψC〉, this is not a sym-
metric Hamiltonian. Therefore, we expect that the time-
evolved state will be in a trivial SPT phase and the string
order will decay exponentially to zero with increasing N .
The state after an evolution time t is

|ψ(1)〉 =
N∏

i=1

eitZi |ψC〉. (23)

We define the subset of sites I = {1, 2, . . . , N/2}, which
has the property that Zi anticommutes with S if i ∈ I
and commutes with S otherwise. Then we can straightfor-
wardly evaluate the string order in this perturbed state:

〈ψ(1)|S|ψ(1)〉 = 〈ψC|
(

N∏

i=1

e−itZi

)
S

(
N∏

i=1

eitZi

)
|ψC〉

= 〈ψC|
(
∏

i∈I
e−2itZi

)
S|ψC〉

= 〈ψC|
∏

i∈I
(cos 2t − i sin 2t Zi)|ψC〉

= γ N/2, (24)

where γ = cos 2t and we used the facts that S|ψC〉 = |ψC〉
and 〈ψC|∏i∈S Zi|ψC〉 = 0 for any nonempty index set S .
Since γ < 1 for any nonzero t << 1, we see that the string
order decays to zero exponentially quickly, indicating that
the state |ψ(1)〉 has trivial SPT order.

We repeat the same calculation for a symmetric,
local Hamiltonian. We choose the perturbation H (2) =
−∑i Zi−1Zi+1, which commutes with the Z2 × Z2 sym-
metry. The time-evolved state is

|ψ(2)〉 =
N∏

i=1

eitZi−1Zi+1 |ψC〉. (25)

The calculation of string order is largely the same. The
key difference is that the set of sites i for which Zi−1Zi+1
anticommutes with S is finite, containing only sites i =
0, 1, N/2, N/2 + 1. Therefore, we find that

〈ψ(2)|S|ψ(2)〉 = γ 4, (26)

so the string order is a nonzero constant independent of N ,
indicating that |ψ(2)

C 〉 has nontrivial SPT order, as expected.
Finally, we consider the case of k-local symmetric per-

turbations. On the basis of the disentangling circuits we
constructed in the previous sections, we expect that this
will trivialize the SPT order. We define a set A consist-
ing of random pairings of sites (i, j ) such that every site is
contained in exactly one pair, and i and j are either both
even or both odd. Then we consider the 2-local symmetric
perturbation H (3) = −∑(i,j )∈A ZiZj . We could also con-
sider the case where every qubit interacts pairwise with
every other qubit, but the calculation is greatly simplified
by assuming each qubit interacts only with one other qubit.
Note also that this Hamiltonian has constant energy den-
sity despite being long-range interacting. As before, we
consider the state

|ψ(3)〉 =
∏

(i,j )∈A
eitZiZj |ψC〉. (27)

We now split A into two subsets Ae and Ao such that
(i, j ) ∈ Ae if i and j are both in I or neither is, while
(i, j ) ∈ Ao if one of i and j is in I and the other is not.
Then ZiZj anticommutes with S if and only if (i, j ) ∈ Ao.
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(a) (b) (c)

FIG. 6. Typical components of the perturbed states for (a)
random, (b) symmetric k-local, and (c) symmetric local per-
turbations. Each red circle denotes the application of one Z
operator, and the dashed lines connecting two circles represent
symmetric pairs of Z operators. The shaded regions indicate the
region over which the string order is evaluated. In a typical
configuration, (c) will likely have an even number of Z oper-
ators in the shaded region, whereas (a) and (b) have no parity
bias.

Following the above calculations, we find

〈ψ(3)|S|ψ(3)〉 = γ |Ao|, (28)

where |Ao| is the number of pairs in Ao. Given a ran-
dom pairing of sites described by the set A, if we take
any site i ∈ I , its partner will be in I with probability
approximately 1/2 since I contains half of the lattice sites.
Therefore, we expect for typical pairings that |Ao| ≈ N/4
(as |A| = N/2), so the string order decays exponentially
with increasing N , indicating trivial SPT order.

The above analysis makes it clear why symmetric k-
local perturbations destroy SPT order. Consider the two
states |ψ(1)〉 and |ψ(3)〉. Each is a superposition over states
of the form ∝ ∏

i∈S Zi|ψC〉 for some index sets S . The
only significant difference between the two states is that in
the case of |ψ(3)〉, the global symmetry constraint requires∏

i∈S Zi to contain an even number of Z’s on both sub-
lattices. However, the string order parameter, which is
evaluated only over half of the lattice sites, does not see
this global constraint; there is a high probability for an
odd number of Z’s to be applied to the region where the
string order parameter acts; see Fig. 6. This anticommu-
tation of the perturbations with the string order parameter
leads to destructive interference, which causes it to decay.
In contrast, in |ψ(2)〉, the Z’s always appear in pairs sep-
arated by a short distance, such that only those pairs that
straddle the boundary of I will anticommute with S, which
gives only a finite correction to the string order; see Fig. 6.
In other words, the k-local symmetric perturbations allow
one to freely violate the symmetry in any local region,
and this is what leads to the breakdown of the SPT order.
Indeed, the value of the string order parameter within any
region in which the symmetry is violated necessarily goes
to zero [67]. From this reasoning, it is clear that any generic
k-local perturbation will similarly destroy SPT order.

On the other hand, if the k-local perturbation is locally
symmetric, meaning that the perturbation has a form such
as OiO′

j , where Oi and O′
j are symmetric local operators,

then this does not violate the symmetry locally, and we
expect the SPT order will be robust to such perturbations.
This symmetry restriction is the same as the symmetry
restriction for higher-form SPTs as discussed in Sec. III D.

A. Instability of SPT states in monitored random
circuits

We have argued that SPT order is unstable to generic
k-local symmetric perturbations but it is stable to k-local
perturbations that are locally symmetric. In this section,
we give further numerical evidence of these claims. We
consider monitored quantum circuits, which involve both
unitary gates and projective measurements that are ran-
domly applied to the state with some probability (for a
review, see Ref. [68]). In general, it has been observed that
these elements compete with each other, driving the late-
time state of the evolution to different regimes of behavior
depending on their relative frequency. In particular, certain
symmetric monitored random circuits have been studied
that can sustain SPT order within a certain range of the cir-
cuit parameters [69,70]. We study the implication of our
results for the stability of SPT order in this context and use
this to give further evidence on which k-local circuits can
and cannot trivialize SPT phases.

Consider arranging N qubits, initialized in the |+〉⊗N

state, on a 1D ring and applying the following quantum
process: at each step, with probability p a random two-
qubit unitary U is applied to the system or, with probability
1 − p a qubit i is chosen uniformly at random and gi ≡
Zi−1XiZi+1 is measured. The latter tends to drive the state
towards the 1D cluster state that satisfies gi|ψC〉 = |ψC〉,
while the former tends to drive it away. A time step is
defined to consist of N consecutive steps. In the follow-
ing, we consider four different ensembles of two-qubit
unitaries: (1) all two-qubit geometrically local Clifford uni-
taries, (2) two-qubit geometrically local Clifford unitaries
that respect the Z2 × Z2 symmetry generated by Xodd and
Xeven, (3) 2-local Clifford unitaries that respect the same
Z2 × Z2 symmetry, and (4) 2-local Clifford unitaries that
respect the Z

N
2 symmetry generated by Xi for i = 1, . . . , N ,

i.e., that are diagonal in the local X basis and are therefore
locally symmetric. In the case of geometrically local uni-
taries, a site i is chosen at random, and a two-qubit unitary,
chosen randomly from the appropriate ensemble, is applied
to qubits i and i + 1. As for 2-local unitaries, two different
sites i and j are chosen randomly and then a random uni-
tary from the appropriate ensemble is applied to them. We
are interested in the late-time states of this family of ran-
dom circuits, which we take to be the quantum state of the
circuit after T = N time steps.
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At p = 0, the circuit consists of only gi stabilizer mea-
surements. Therefore, the late-time state of any realization
of the random circuit would be an SPT state. The SPT
nature of this state can be probed by the non-local ana-
logue of the Edwards–Anderson glass-order parameter
[69,71,72]:

s = 2
N (N − 1)

∑

a<b

S(a, b)2, (29)

with S(a, b) being the SPT string order parameter defined
in Eq. (22). s = 1 for |ψC〉. As described earlier, SPT
states are characterized by s > 0, while for trivial states
or random states, s = 0 in the thermodynamic limit. We
are interested in s̄, which is s averaged over random circuit
realizations. We note that s is not an experimentally acces-
sible quantity, but it is certainly accessible in simulations,
which is sufficient for our present purposes.

Figure 7 shows s̄ as a function of p for each of the uni-
tary ensembles described above. Figure 7(a) corresponds
to the random circuit where the unitary gates are chosen
from the ensemble of local two-qubit Clifford gates with-
out our imposing any symmetry restriction. As expected,
the SPT structure in the late-time state vanishes for any
p > 0 as the symmetry is violated. On the other hand, if we
restrict the local unitary gates to respect the Z2 × Z2 sym-
metry, the SPT structure survives up to finite pc > 0, below
which s̄ saturates to a finite value, as shown in Fig. 7(b).
Interestingly, when the unitary gates are chosen from the
set of 2-local Clifford unitaries that respect the Z2 × Z2
symmetry, the SPT structure vanishes again for any p > 0,
as illustrated in Fig. 7(c). This is consistent with our find-
ings that SPT states can be trivialized by k-local symmetric
unitary gates. Lastly, Fig. 7(d) corresponds to the circuit
where the unitary gates are chosen from the highly con-
strained ensemble of 2-local Clifford unitaries that map Xi
to itself for all i, i.e., they are locally symmetric. Despite
the fact that this set includes long-range entangling gates,
we see that the SPT structure survives up to finite p > 0,
which is consistent with our intuition that k-local gates
that are locally symmetric are not much more powerful
in terms of disentangling the SPT structure than geomet-
rically local symmetric gates. In Appendix E we provide
further analysis of the numerical data shown in Fig. 7

VI. DISCUSSION

We have constructed explicit finite-depth circuits con-
sisting of (symmetric) k-local gates to create fixed-point
SPT states and to realize all QCA. The circuits imply that
the classification of SPT phases (with global or subsys-
tem symmetries) and the classification of QCA collapse
to a single trivial phase in the presence of k-local interac-
tions. This addresses worst-case stability—whether there
exists an FDQC of k-local gates that can trivialize a

(a) (b)

(c) (d)

FIG. 7. Averaged string order parameter s̄ versus p for mon-
itored random circuits where the unitary gates are chosen ran-
domly from (a) local two-qubit Clifford unitaries, (b) local
two-qubit Z2 × Z2 symmetric Clifford unitaries, (c) 2-local Z2 ×
Z2 symmetric Clifford unitaries, and (d) 2-local Z

N
2 symmetric

Clifford unitaries.

given state—and suffices to show that these phases (strictly
speaking) do not exist in the presence of k-local interac-
tions. We also addressed the case of typical case stability
by giving analytical and numerical evidence that SPT order
is also fragile in the presence of generic k-local symmetric
perturbations. We note that a key ingredient in our explicit
circuits was to “fold” the system in such a way that it
resembled a stack of the system with its inverted self. This
naturally assumes some sort of mirror symmetry is present
in the lattice. Therefore, it is natural to ask whether our
results can be applied to systems on more general lattices
and to what extent translational invariance can be relaxed.

We remark that SPT phases can be used as resources
for measurement-based quantum computation (MBQC);
see Ref. [73] for a review. That is, given a ground state
in a suitable SPT phase, one can perform measurements
on that ground state so as to simulate a quantum com-
putation. While the computational capability of a state
as a resource for MBQC is stable to local symmetric
perturbations, our results seem to imply that it may be
unstable to k-local symmetric perturbations in the case
of global or subsystem symmetries. Indeed, Raussendorf
et al. [52] explicitly identified a symmetric k-local inter-
action whose presence would invalidate the strategy that
was used to prove MBQC universality. In contrast, fault-
tolerant MBQC can be achieved with use of SPT phases
with higher-form symmetries [74], which appear to be
stable even under symmetric k-local interactions.

While we have focused on bosonic systems, we believe
that many of our arguments should apply to fermionic
systems as well. Indeed, our physical arguments for
the triviality of SPT phases based on their bound-
ary physics and invertibility should carry over mutatis
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mutandis. Specifically, the free fermion SPT phases (i.e.,
topological insulators and superconductors) are charac-
terized by nontrivial boundary states, which are mani-
festly rendered trivial if one can couple distinct bound-
aries together via k-local interactions. Meanwhile, Wanga
and Senthil [75] showed that the set of fermionic SPT
phases in three dimensions, protected by some combi-
nation of antiunitary symmetries and charge conserva-
tion, is exhausted by combinations of the free fermion
SPTs and bosonic SPTs—and bosonic SPTs we have con-
structively shown to be trivializable. This suggests that
these fermion SPTs should also be trivializable by k-
local interactions. Similarly, we expect that many, if not
all, fermionic QCA should become trivial in the k-local
setting [31,76]. However, the establishment of rigorous
results on fermionic SPTs and QCA is left to future
work.

In contrast to SPT states and QCA, intrinsic topological
order is known to be stable under finite-depth k-local cir-
cuits [33], meaning that a nontrivial topological phase will
not become trivial. However, this does not mean that the
classification of intrinsic topological phases will remain
unchanged. Indeed, in the k-local scenario, it is possi-
ble that the braiding of topological excitations becomes
ill-defined, so some topological phases that differ only
by braiding statistics may become the same phase. Also,
in symmetry-enriched topological phases, the topological
order is stable but the nontrivial symmetry fractionaliza-
tion pattern of the symmetry-enriched topological phase
may not be stable under k-local circuits. For instance, cer-
tain symmetry fractionalization patterns can be canceled
by stacking with SPT states [77]. Since we know that SPT
states can be prepared with finite-depth k-local circuits,
such symmetry fractionalization patterns are not stable to
finite-depth k-local circuits. A thorough investigation of
the stability of intrinsic topological order and symmetry
fractionalization is left for future work.

Another class of phases for which the action of k-local
circuits is interesting is fracton phases (for reviews, see
Refs. [78–80]). The defining property of fracton phases
is the restricted mobility of the excitations, which comes
about because the nontrivial excitations are not locally
creatable but instead arise at the “corners” of extended
operators. For instance, in the X-cube model [81] the frac-
tons arise at the corners of membrane operators. Since
these excitations cannot be created (or destroyed) by any
few-body operator, they cannot be moved by k-local per-
turbations (without creating additional excitations), and
thus the restricted mobility survives. Nonetheless, not all
properties of fracton phases are unchanged. For instance,
the geometric nature of entanglement can be modified
under k-local gates. To illustrate this, we specialize to
gapped fracton phases, which are characterized by non-
local entanglement with geometric rigidity [82–85]. We

expect that this nonlocal entanglement survives under k-
local gates, much like the corresponding entanglement
structure in phases with intrinsic topological order, but
(we argue) the geometric structure does not survive. For
instance, consider a stack of 2D toric codes. Each copy
of the 2D toric code has a topological order that is sta-
ble under k-local gates that couple degrees of freedom in
that copy alone. However, under a k-local circuit that cou-
ples different copies of toric codes, the foliation structure
of the stack can be lost and may no longer be recover-
able with use of a geometrically local FDQC; see Fig. 8(a).
This argument extends to foliated fracton codes (see, e.g.,
Ref. [86]). Under a geometrically local FDQC, a stack of
2D topological codes, which is said to form the foliations
of the fracton order, can be extracted. For extraction of
one layer of a 2D model alone, the “exfoliating” circuit
applies local disentangling operations on the boundary of
the fracton order. However, a k-local circuit can entangle
the extracted foliations back into the fracton order in a way
that it can no longer be disentanglable via an FDQC. In
this sense, the structure of the entanglement has changed
i.e., there is no exfoliation via a geometrically local FDQC.
We illustrate this for the example of the X-cube model in
Fig. 8(b). Similar considerations apply to the more gen-
eral notion of bifurcating entanglement renormalization
that has been explored for fracton orders [87,88] and SPT
states [89]. A detailed exploration of fracton phases under
k-local circuits is a promising topic for future work.

Our results have a bearing on the classification of chi-
ral Floquet phases of matter. The nontrivial nature of these
models is based on the fact that the effect of the Floquet
dynamics at the boundary of an open system cannot be
realized by an FDQC. The boundary dynamics of the mod-
els in Ref. [30] are given exactly by 1D bosonic QCA.
Hence, our results show that the boundaries are no longer
anomalous if k-local interactions are allowed, as 1D QCA
are all FDQCks. On the other hand, the radical Floquet
phases introduced in Ref. [32] have boundary dynamics
described by a shift of a Majorana fermion that has a frac-
tional index. As such an index is beyond bosonic QCA, and
the bulk model consists of bosonic degrees of freedom, it
is plausible that these phases remain robust to k-local inter-
actions unless ancillary fermionic degrees of freedom are
added.

Recently, Floquet codes have also been discussed in the
literature [90]. Such codes are defined by a series of instan-
taneous codes, each of which is an instance of intrinsic
topological order. Hence, it is natural to expect that such
codes are stable to k-local noise. It could also be interest-
ing to discuss symmetry-enriched Floquet codes, bearing
in mind the subtleties associated with defining symmetries
for Floquet unitaries [91]

Our work can also be extended by modifying the
definition of a locality-preserving unitary. One can weaken
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FDQC

(a)

FDQC

X-cube (L × L × L) X-cube [L × L × (L − 1)]

FDQC

X-cube (L × L × L) X-cube [L × L × (L − 1)]

(b)

FIG. 8. (a) Action of a k-local circuit on a stack of toric codes,
in general, leads to a model that is no longer a finite-depth local
quantum circuit equivalent to a stack. (b) Top: The X-cube model
is foliated, i.e., there exists a finite-depth local quantum circuit
under which an L × L × L X-cube model maps to an X-cube
model of dimensions L × L × (L − 1) and a layer of toric code.
Bottom: Action of a k-local circuit on the X-cube model, in
general, leads to a model that is no longer a finite-depth local
quantum circuit equivalent to a foliated model.

the constraint of locality preserving by allowing exponen-
tial tails in the definition of a local operator. We conjecture
that there exist k-local circuits also for such approximately
locality-preserving unitaries [92], as would be realized by
Hamiltonian time evolution. As a concrete application, we
expect that invertible chiral states (such as integer quan-
tum Hall states) can be trivialized by k-local Hamiltonians,
with use of constructions similar to the ones presented
herein, although since we expect that chiral phases can-
not be captured by zero-correlation-length models, there
may not be a nicely behaved truncation to k-local cir-
cuits. Investigations of approximately locality-preserving
unitaries would also connect to for example, the literature
on state preparation with long-range Hamiltonians [93].
Lastly, we can consider a k-locality-preserving unitary
(QCAk) that maps local operators to k-local operators act-
ing on at most k qubits. While we have shown that every
QCA is an FDQCk, this may not be true for QCAk.

ACKNOWLEDGMENTS

We thank Daniel Bulmash, Tyler Ellison, Mike Her-
mele, and Dominic Williamson for discussions. We thank

Jeongwan Haah, Tyler Ellison, Drew Potter, and Carolyn
Zhang for their feedback on the manuscript. Work by
R.N. was supported by the U.S. Department of Energy,
Office of Science, Basic Energy Sciences under Award
No. DE-SC0021346. This work was begun during a visit
to the Aspen Center for Physics (D.T.S., A.D., and R.N.).
The Aspen Center for Physics is supported by the U.S.
National Science Foundation (Grant No. PHY-1607611).
A.D. and D.T.S. are supported by the Simons Foundation
through the Simons Collaboration on Ultra-Quantum Mat-
ter [Grants No. 651440 (D.T.S.) and No. 651438 (A.D.)].
A.D. is supported by the Institute for Quantum Informa-
tion and Matter, a National Science Foundation Physics
Frontiers Center (Grant No. PHY-1733907). A.D., A.L.,
and R.N. acknowledge the Quantum Many-Body Dynam-
ics and Noisy Intermediate-Scale Quantum Systems pro-
gram of the Kavli Institute for Theoretical Physics, where
part of the work was completed. The Kavli Institute for
Theoretical Physics is supported by the National Science
Foundation under Grant No. PHY-1748958. The authors
acknowledge the University of Maryland for the super-
computing resources made available for conducting the
research reported in this paper.

APPENDIX A: FINITE-TIME PROTOCOLS

In this appendix, we discuss k-local protocols that are
not strictly of finite depth but that can nonetheless be
generated in finite time by a k-local Hamiltonian. The
advantage of the circuits constructed here is that all interac-
tions are geometrically local, except for one special qubit,
which can interact with every other qubit. That is, we
add in a “one-to-all” interaction. While the special qubit
is involved in the circuit used to create the SPT state, at
the end of the circuit it remains decoupled from the rest
of the spins. This can be viewed as modeling the scenario
of a central spin problem, or a cavity QED setup in which
atoms in a cavity all couple to a cavity mode. As a trade-
off, these circuits are no longer of finite depth, but they can
nonetheless be implemented via the finite-time evolution
of a symmetric k-local Hamiltonian.

As a first example, we again consider the 1D cluster state
|ψC〉. Suppose we have an even number N of qubits on
a ring indexed as i = 1, . . . , N , plus an additional qubit
indexed by i = 0 which lives in the middle of the ring.
Suppose in addition that this qubit transforms under the
symmetry as an even qubit, so that Xeven = ∏N/2

i=0 X2i, and
consider the initial state |ψC〉 ⊗ |+〉0. Then the following
k-local gates are symmetric:

Vi = CZ0,2i−1CZ2i−1,2iCZ2i,2i+1CZ2i+1,0. (A1)
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FIG. 9. Left: One gate in the one-to-all circuit for preparing the
1D cluster state, where each solid line represents a CZ gate. Right:
One gate in the one-to-all circuit for the 2D hypergraph state
where each colored triangular face represents a CCZ gate. In both
cases, the product of all gates results in all unitaries involving the
special qubit canceling pairwise.

This gate is pictured in Fig. 9. Then we have

(N/2∏

i=1

Vi

)
|ψC〉 ⊗ |+〉0 = |+〉⊗N ⊗ |+〉0, (A2)

so this disentangles the cluster state. Although there is
intermediate entanglement between the central qubit and
the ring, in the end, the central qubit remains in a product
state. This circuit is not strictly of finite depth since every
gate acts on the central qubit 0, so if we require layers to
have nonoverlapping gates, it would require a linear num-
ber of layers. However, since all gates commute, they can
be applied in finite time.

The same procedure works for 2D SPT states. Consider
again the hypergraph state |ψH 〉 on a closed 2D surface.
We again add a special qubit 0, which we assume trans-
forms like a qubit on a green-colored site. Let G denote
the set of all green qubits on the 2D surface (not includ-
ing the special qubit). Then, for every g ∈ G, let gj for
j = 1, . . . , 6 denote the six qubits neighboring g, which
alternate between red and blue. Then define the k-local
symmetric gates,

Vg =
6∏

j =1

CCZg,gj ,gj +1 CCZ0,gj ,gj +1 . (A3)

The gate is pictured in Fig. 9. Then we have

⎛

⎝
∏

g∈G

Vg

⎞

⎠ |ψH 〉 ⊗ |+〉0 = |+〉⊗N ⊗ |+〉0. (A4)

This argument extends to all cocycle states in all dimen-
sions as before. In all cases, it is important that the special
qubit transforms in a certain way under the symmetry. If
the symmetry did not act on the special qubit, the k-local
gates we defined would not be symmetric.

This construction can be understood in terms of the path
integral representation of SPT order. By viewing the spatial
manifold on which the SPT state is defined as the bound-
ary of some space-time in one higher dimension, one can
construct the SPT state on the boundary using a product
of local symmetric gates in the bulk [7]. The circuits we
described are exactly of this form, where the bulk con-
sists of a single ancillary qubit that couples to all qubits on
the boundary. These same ideas have been used to define
quantum pumps that pump a d-dimensional SPT state from
a (d + 1)-dimensional bulk to the boundary. Such pumps
have been constructed for general SPT states [94–97] and
consist of symmetric gates in the bulk.

We remark that the notion of finite-time preparation is
likely too powerful when it comes to the classification of
phases. Indeed, any stabilizer state such as the GHZ state
and the toric code ground state is equivalent to a graph state
up to local unitaries [98]. A graph state is any state that can
be prepared from a product state of all |+〉 states with use
of CZ gates between pairs of qubits. Since all of these CZ
gates commute, the graph state can be prepared in finite
time with use of an Ising-type Hamiltonian. However, an
important caveat is that in the case of the graph states that
are equivalent to the GHZ and toric code states, there are
qubits that must interact with a number of other qubits that
is extensive in linear system size [42], which is somewhat
unphysical. For example, if we were to impose the physical
constraint that the total strength of interactions involving
any one qubit is finite in the thermodynamic limit, i.e., a
finite energy density, we must scale down the interaction
strength of each Ising term accordingly. This has the con-
sequence of requiring an interaction time that grows as the
linear system size, which is consistent with the linear cir-
cuit depth. Conversely, if we do not scale the interactions
down in this way, then we do not have a sensible thermody-
namic limit—the energy density diverges as we make the
system size large, indicating that our effective low-energy
description in terms of an Ising Hamiltonian ceases to be a
good approximation.

APPENDIX B: EXAMPLES OF k-LOCAL
CIRCUITS FOR QCA

In this appendix, we illustrate our general construction
of FDQCks for QCA with a number of examples.

1. One-dimensional shift QCA

The 1D shift QCA that translates all sites to the right by
one can be represented in the standard form with d = 2,
� = 1, and r = 4. The u and v operators are defined as

u =
∑

ij

|ij 〉(〈i| ⊗ 〈j |) (B1)
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and

v =
∑

ij

(|i〉 ⊗ |j 〉)〈ij |, (B2)

where u maps from a pair of 2D Hilbert spaces each
spanned by the states |0〉 and |1〉 into a 4D Hilbert space
spanned by |00〉, |01〉, |10〉, and |11〉, and similarly for v.
Graphically, we can draw these operators as follows:

. (B3)

One can see how these operators implement the shift QCA
by drawing the whole circuit:

(B4)

Following the lines, one can clearly see that every site is
translated to the right by one.

The spatial inversions of u and v are obtained by swap-
ping the left and right input and output Hilbert spaces,
giving ū = ∑

ij |ij 〉(〈j | ⊗ 〈i|) and v̄ = ∑
ij (|j 〉 ⊗ |i〉)〈ij |.

From this, we compute

w = v̄u =
∑

ij

(|j 〉 ⊗ |i〉)(〈i| ⊗ 〈j |) = SWAP (B5)

and w̄ = w. Next, note that the circuit VR defined in
Eq. (12) consists of two types of gate, the simple SWAP
gate Si and the gate Vi = Q−1

A SiQA, which in the present
case is also a SWAP gate.

Finally, we apply the gates Si, Vi, and w, which are
all SWAP gates, in the order described by Eq. (19). This
gives a depth-4 FDQCk composed of 2-local SWAP gates
realizing the shift QCA, as shown in Fig. 10. The result-
ing FDQCk is similar to that shown in Fig. 4, although
somewhat more complicated as a consequence of the more
general construction it comes from.

2. One-dimensional cluster state

As discussed in Sec. IV C, we can also apply our con-
struction to the FDQCs that create SPT fixed-point states.
We illustrate this for the simple example of the 1D clus-
ter state. The FDQC that constructs the 1D cluster state is
given in Eq. (2). Observe that this circuit commutes with
the Z2 × Z2 symmetry generated by Xodd and Xeven as a
whole, but the individual gates that compose the circuit
do not commute with the symmetry. Therefore, this is not
a symmetric FDQC. We can apply our general construc-
tion with Q = ∏

i CZi,i+1 to obtain a symmetric FDQCk that
implements the same operator.

FIG. 10. FDQCk for the 1D shift QCA resulting from the gen-
eral construction in Sec. IV. The lower (upper) row of sites
belongs to the system A (B). The SWAP gates are applied in
the order red, green, yellow, and blue, which have the com-
bined effect of shifting all sites by one counterclockwise. Notice
the similar trapezoidal arrangement of sites compared with the
general structure shown in Fig. 5.

The operators u and v are both equal to the CZ operator.
Note that the CZ gate is symmetric under spatial inversion.
Then we have w = I , and the FDQCk is simply given by
VR [Eq. (12)]. As before, VR is composed of SWAP gates Si
and the gates Vi. The latter is equal to the gate

(B6)

where the lower (upper) row of qubits belongs to the sys-
tem A (B), and the four CZ gates (red lines) act before
the SWAP gate (arrow). This particular product of CZ
gates commutes with the Z2 × Z2 symmetry, as do the
SWAP gates CZSi. It is straightforward to check that VR =
(
∏

i∈R Si)(
∏

i∈R Vi) is equal to the operator.

(B7)

which is exactly Q applied to a finite ring. Therefore, this
gives an alternative construction for a symmetric FDQCk
realizing the 1D cluster state that is similar to, but distinct
from, the circuit in Eq. (4).

3. Two-dimensional diagonal-shift QCA

Here we show how our construction applies to higher-
dimensional QCA by considering the 2D diagonal-shift
QCA that translates all sites up and to the right by one site.
This example highlights the need for the inductive part of
the proof, where we decompose the QCA into products of
lower-dimensional QCA until an FDQCk is created.

We consider implementing the operation on a 2D torus
of size Lx × Ly . As described in Sec. IV B, we first com-
pactify the lattice along the y direction and write the QCA
in the standard form. This requires d = 2Ly , � = 1, and
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r = 22Ly . Then we have

u =
∑

�i,�j
|s(�i)�j 〉(〈�i| ⊗ 〈�j |) (B8)

and

v =
∑

�i,�j
(|�i〉 ⊗ |s(�j )〉)〈�i�j |, (B9)

where �i = (i1, . . . , iLy ) and s(�i) = (iLy , i1, . . . , iLy−1) is a
vertical translation of �i. The spatial inversions ū and v̄

are defined as in the case of the 1D shift QCA. We then
calculate

w =
∑

�i,�j
(|s(�j )〉 ⊗ |s(�i))〉)(〈�i| ⊗ 〈�j |)

= (SHIFTy ⊗ SHIFTy)
−−→
SWAP (B10)

where −−→
SWAP swaps the two columns indexed by �i and �j ,

and SHIFTy translates all sites in a column up by one. We
observe here that w is composed of lower-dimensional
QCA, and is not an FDQC itself. This illustrates the need
for the inductive part of the proof. We can express w as an
FDQCk as shown in Sec. B 1.

To obtain the complete FDQCk realizing the diagonal-
shift QCA, we combine VR, which is just a sequence of
two products of pairwise SWAP operations between sites,
with products of w and w̄ as described in Eq. (19).

APPENDIX C: PROPERTIES OF THE
OPERATOR w

The following lemma is used in Sec. IV to show that the
operator w is locality preserving.

Lemma 1.—Consider a system of qubits divided into
regions A and B = Ā. Let O be an operator acting on
the whole system. Using Schmidt decomposition, one can
always write O as

O =
M∑

k=1

Ak ⊗ Bk (C1)

such that Ak and Bk are operators acting on regions A and B,
respectively, and all Ak operators are linearly independent
and all Bk operators are also linearly independent. Assume
O acts trivially on a qubit j . Then, if O is written as above,
each Ak and each Bk should act trivially on qubit j as well.

Proof.—Without loss of generality, we assume j ∈ A,
from which it trivially follows that Bk operators act as the
identity on j . Let Pj be an arbitrary operator supported on

qubit j . Since O acts trivially on j , we have [O, Pj ] = 0
and thus

M∑

k=1

[Ak, Pj ] ⊗ Bk = 0. (C2)

Let |ψ〉 be an arbitrary state in the region A. If we multiply
both sides of the above equality by |ψ〉〈ψ | ⊗ IB and trace
over A, we get

M∑

k=1

〈ψ |[Ak, Pj ]|ψ〉Bk = 0. (C3)

Since Bk operators are linearly independent, we find that
〈ψ |[Ak, Pj ]|ψ〉 = 0 for all k. Since |ψ〉 was arbitrary, it fol-
lows that [Ak, Pj ] = 0. Finally, since Pj was arbitrary, we
conclude that Ak should act trivially on qubit j . �

In the following lemma, we show that the unitary w
defined in Sec. IV commutes with all global symmetries
of Q.

Lemma 2.—If [Q, S] = 0, where S = s⊗N , then
[w, S] = 0.

Proof.—Recall the Margolus representation of Q in
Eq. (13), which defines Q in terms of the matrices u and
v. If [Q, S] = 0, then S−1QS = Q, so u′ = u(s ⊗ s) and
v′ = (s−1 ⊗ s−1)v define the same QCA as u and v. Then,
by Theorem 3.10 in Ref. [64], there must exist unitaries x
and y such that u′ = (x ⊗ y)u and v′ = v(y−1 ⊗ x−1) [note
that Eq. (35b) in Ref. [64] implies the condition on v via
Eq. (29b) therein]. Defining w′ = v̄′u′, we have

w′ = v̄(x−1 ⊗ y−1)(x ⊗ y)u = v̄u ≡ w,

so
w′ ≡ (s−1 ⊗ s−1)w(s ⊗ s) = w,

which gives [w, S] = 0. �
Lastly, in the following lemma, we argue that if Q

is transitionally invariant in the compactified direction,
then w is also transitionally invariant in the compactified
direction.

Lemma 3.—If T is a translation along the compactified
directions, then for any operator O supported on supersites
2i and 2i + 1, we have wTOT†w† = TwOw†T†.

Proof.—Let O be an operator supported on supersites
2i and 2i + 1. Let uOu−1 = ∑

k Ak ⊗ Bk, where Ak (Bk)
are linearly independent operators supported on the l-
dimensional (r-dimensional) Hilbert space that comes out
of u. We also define Ck = vAkv−1 and Dk = vBkv−1.
On the other hand, let u(TOT†)u−1 = ∑

k Ãk ⊗ B̃k, where
Ãk (̃Bk) are linearly independent operators supported
on the l-dimensional (r-dimensional) Hilbert spaces. We
also define C̃k = vÃkv

−1 and D̃k = vB̃kv−1. Note that
QOQ−1 = ∑

k Ck ⊗ Dk, where Ck operators act on super-
sites 2i − 1 and 2i and Dk acts on supersites 2i + 1
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and 2i + 2. On the other hand, we have Q(TOT†)Q−1 =∑
k C̃k ⊗ D̃k. Since Q is translationally invariant, we have

∑

k

C̃k ⊗ D̃k =
∑

k

TCkT†⊗TDkT†. (C4)

When we act on TOT† with w we get,

w(TOT†)w†=
∑

k

C̃kD̃k = SWAP
[∑

k

C̃kD̃k
]
, swap, (C5)

where SWAP exchanges the two supersites on which w
acts. However, it follows from Eq. (C4) that

∑
k C̃kD̃k =∑

k TCkDkT†, which is easy to see graphically:

(C6)

where Trα,β means contracting the α and β indices. In
the first line, we have used the linearity of the trace to
move the sum over k inside the trace. To go to the sec-
ond line, we used Eq. (C4), and the third line follows
by our moving the sum outside the traces and contract-
ing the relevant indices. Lastly, since the SWAP operation
between supersites commutes with the translation T along

the compactified directions, we find that

w(TOT†)w† = SWAP T
[∑

k

CkDk
]
T SWAP

= T
[∑

k

CkDk
]
T

= T wOw† T†. (C7)

�

APPENDIX D: LIGHT CONE ARGUMENT FOR
k-LOCAL NONTRIVIALITY

In this appendix, we briefly review the proof for k-local
nontriviality of code states of quantum error correcting
codes. The argument is basically the same as the light cone
argument presented in Ref. [8], which was used to show
that topological states on manifolds of nonzero genus can-
not be prepared by constant-depth local unitaries but can be
prepared with the slight modification of replacing locality
with k locality.

Let |ψ1〉 and |ψ2〉 be two orthogonal code states of an
N -qubit quantum code. Furthermore, assume the corre-
sponding quantum error correcting code has distance d,
so for any operator that acts on fewer than d qubits we
have

〈ψ1|O|ψ1〉 = 〈ψ2|O|ψ2〉. (D1)

Let U be a k-local circuit that prepares |ψ1〉 in depth D,
starting from the trivial state |0〉⊗N :

|ψ1〉 = U |0〉⊗N . (D2)

In the following, we show that D ≥ logk(d). Assume that
is not true, meaning that D < logk(d). Let πj = |0〉〈0|j
denote the projection operator that projects the j th qubit
into the |0〉 state. Note that πj has support only on qubit j .
Since U is a k-local circuit of depth D, the operator Uπj U†

can have nontrivial support on at most kD qubits, which
is less than d [because of the assumption D < logk(d)].
Therefore, due to Eq. (D1) we have

〈ψ2|Uπj U†|ψ2 = 〈ψ1|Uπj U†|ψ1 = 1, (D3)

where we have used Eq. (D2) in the last step. Since j was
arbitrary, we should have U† |ψ2〉 = eiθ |0〉⊗N , for some
phase θ , or equivalently |ψ2〉 = eiθ |ψ1〉. But this contra-
dicts the assumption that |ψ1〉 and |ψ2〉 are orthogonal code
states; hence, D ≥ logk(d).

The above argument shows that the code states of quan-
tum error correcting codes with a nonzero number of
logical qubits, whose distance goes to infinity in the ther-
modynamic limit, are k-local nontrivial, meaning that they
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cannot be prepared by a k-local constant-depth unitary cir-
cuit. This includes, for example, the ground states of the
toric code on a torus. However, the argument above says
nothing about the complexity of preparing the ground state
of the topological Hamiltonians such as the toric code on a
sphere that has genus zero, because in this case the ground
state is unique (so there is no other orthogonal ground state
|ψ2〉). Similarly, the light cone argument does not work
for SPT states on closed manifolds since the ground state
of an SPT Hamiltonian on a closed manifold is unique.
While a more involved argument [33] shows that topologi-
cal states on zero-genus surfaces are still k-local nontrivial,
our result shows that SPT states in contrast are all k-local
trivial. It is worth noting that although SPT phases on
manifolds with open boundary conditions have degenerate
ground states, the light cone argument is still inapplica-
ble. This is because although Eq. (D1) holds for symmetric
local operators, it can be violated by symmetric but k-local
operators.

APPENDIX E: MORE DETAILS ON THE
NUMERICAL STUDY OF SPT ORDER IN

MONITORED RANDOM CIRCUITS

In this appendix, we provide additional details about
the transitions that were discussed in Sec. V A. The order
parameter that we used to probe the late-time states was
given as

s = 2
N (N − 1)

∑

a<b

S(a, b)2, (E1)

with S(a, b) denoting the string order parameter defined in
Eq. (22). A state in the SPT phase is characterized by a
finite nonzero value of S(a, b) for sufficiently far apart a
and b. In this case, the sum in Eq. (E1) is dominated by
sites a and b that are O(N ) far apart, and since there are
O(N 2) such (a, b) pairs, one expects that the parameter s
goes to some finite nonzero value in the thermodynamic
limit. On the other hand, for a trivial state, S(a, b) goes to
zero exponentially fast, so only the local terms with b − a
smaller than the correlation length contribute to the sum in
Eq. (E1), and since there are O(N ) such terms, one expects
s to drop as 1/N for large N and to go to 0 in the ther-
modynamic limit. This scaling can be seen in our setup
as expected. Figure 11 shows the order parameter s as a
function of N for fixed p = 0.1, with both axes scaling
logarithmically. Note that s vanishes as 1/N for large N
in Figs. 11(a) and 11(c), which correspond to local (but
not necessarily symmetric) two-qubit unitaries and 2-local
symmetric unitaries, respectively, while it saturates to a
finite nonzero value in Figs. 11(b) and 11(d), which cor-
respond to local symmetric two-qubit unitaries and 2-local
“locally” symmetric unitaries (see Sec. V A), respectively.

N

N

(a)

N

(b)

N

N

(c)

N

(d)

FIG. 11. Average string order parameter s̄ versus N at fixed
p = 0.1 in the late-time states of monitored random circuits
described in Sec. V A where the unitary gates are chosen ran-
domly from (a) local two-qubit Clifford unitaries, (b) local
two-qubit Z2 × Z2 symmetric Clifford unitaries, (c) 2-local Z2 ×
Z2 symmetric Clifford unitaries, and (d) 2-local Z

N
2 symmetric

Clifford unitaries.

Moreover, for monitored circuits where the SPT order
survives up to nonzero values of p , i.e., for local symmetric
unitaries and 2-local unitaries that are locally symmetric
[Figs. 11(b) and 11(d)], one can study the phase transi-
tion at pc by using data collapse for finite-size systems.
Following Ref. [72], we assume the form

s(p , N )− s(pc, N ) = N−1F[(p − pc)N 1/ν], (E2)

near the critical point, where pc is the critical value for
applying unitary gates and ν is the correlation length crit-
ical exponent, and we can search for values of pc and ν
that result in the best data collapse. Figure 12 shows the
best collapse with use of the data points shown in Fig. 7,
giving pc = 0.50(5) for both local symmetric gates as well
as 2-local locally symmetric gates. On the other hand, the
correlation length critical exponents ν for local symmetric
gates and 2-local locally symmetric gates are 1.3(2) and

[s
(p

,N
) 

– 
s(
p
c,N

)]
 N

(p–pc) N1/ν

(a)

[s
(p

,N
) 

– 
s(
p c

,N
)]

 N

(p–pc) N1/ν

(b)

FIG. 12. Data collapse of data points shown in Fig. 7 for (a)
when gates are chosen to be local symmetric Clifford gates with
pc = 0.50(5) and ν = 1.3(2) and (b) when gates are chosen to be
2-local locally symmetric Clifford gates with pc = 0.50(5) and
ν = 1.6(1).

010304-20



NONLOCAL FINITE-DEPTH CIRCUITS. . . PRX QUANTUM 5, 010304 (2024)

1.6(1), respectively. In principle one needs to get more data
near the critical point and use them for data collapse to get
better estimates of pc and ν.
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