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We introduce a framework for fault-tolerant postselection (FTPS) of fault-tolerant codes and chan-
nels—such as those based on surface codes—using soft-information metrics based on visible syndrome
and erasure information. We introduce several metrics for ranking configurations of syndromes and era-
sures. In particular, we introduce the logical gap (and variants thereof) as a powerful soft-information
metric for predicting logical error rates of fault-tolerant channels based on topological error-correcting
codes. The logical gap is roughly the unsigned weight difference between inequivalent logical corrections
and is adaptable to any tailored noise model or decoder. We deploy this framework to prepare high-quality
surface-code magic states with low overhead under a model of independent and identically distributed
(IID) Pauli and erasure errors. Postselection strategies based on the logical gap can suppress the encod-
ing error rate (EER) of a magic state preparation channel to the level of the physical error rate with low
overhead. For example, when operating at 60% of the bulk threshold of the corresponding surface code,
an overall reduction of the EER by a factor of 15 is achievable with a relative overhead factor of < 2
(approximately 23 times less than that of simple syndrome-counting rules). We analyze a schematic buffer
architecture for implementing postselection rules on magic state factories in the context of magic state dis-
tillation. The FTPS framework can be utilized for mitigating errors in more general fault-tolerant logical
channels.
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I. INTRODUCTION

Universal quantum computers are capable of solving
problems that are otherwise intractable for conventional
computers [1–3]. In order to perform the large-scale com-
putations that are required to solve such problems, fault
tolerance and quantum error correction are required to
counter the effects of noise and errors that occur throughout
the computation. However, the overheads (both the num-
ber of qubits and the time) to perform fault-tolerant quan-
tum computation using currently available techniques,
such as those based on the surface code [4], are very
large. Reducing these overheads while simultaneously
increasing error tolerance is a critical and active area of
research in the pursuit of practical quantum computation.
One of the significant contributors to this large overhead
is the production of magic states, a necessary ingredi-
ent for computational universality in many fault-tolerant
protocols. In this paper, we design new resource-efficient
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protocols for magic state preparation, which can reduce
the overheads for magic state distillation—one of the most
overhead-expensive primitives of a fault-tolerant quantum
computer.

Postselection is an essential ingredient in many univer-
sal schemes of fault-tolerant quantum computation. For
fault-tolerant architectures based on two-dimensional (2D)
topological stabilizer codes, such as surface codes [4–18]
(and related approaches [19–33]), it is ubiquitous; in order
to perform logical non-Clifford gates, magic state distil-
lation and injection are used [34–42], heavily utilizing
postselection in the process. In particular, to prepare magic
states that are required for injection, many noisy magic
states are fed into a magic state distillation protocol, pro-
ducing fewer magic states of significantly higher quality as
a result of postselection—the high-quality magic states are
only output if certain error-detecting measurements in the
protocol do not flag the presence of an error.

For a given protocol, the total overhead of magic state
distillation is strongly dependent on the quality of the ini-
tial noisy magic states. For example, to first order, the
well known 15-to-1 distillation protocol takes initial magic
states with error rate p and produces fewer magic states
with error 35p3 [34,35]. If p < 10−3, to reach a target log-
ical error rate per logical operation of 10−14 as is needed
in, e.g., quantum chemistry applications [43–46], one
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typically needs to iterate this 15-to-1 procedure twice (i.e.,
two rounds of distillation). An additional round is needed if
the physical error rate is p = 10−2. Hence, the initial magic
state quality can severely affect the resource overhead, with
a large penalty incurred every time an additional round
is added. This is under an idealized model with perfect
Clifford gates utilized in the distillation protocol.

As both the magic states and gates in the distillation
protocol are imperfect, they will be encoded in a quan-
tum error-correcting code—such as the surface code [4–6].
These additional sources of noise reduce the performance
of distillation and need to be accounted for to deter-
mine the overhead and output magic state(s) logical error
rate(s). For instance, encoding a magic state in a quantum
error-correcting code, such as the surface code, introduces
additional encoding error that can be mitigated (using
postselection strategies) in accordance with the desired
overall error rate for a noisy encoded magic state. Hence,
when estimating (or optimizing) the overhead for distil-
lation, one should also include the cost for preparing the
initial magic states at a desired quality.

Initial work by Li [47] demonstrates a reduction in the
encoding error rate (EER) under circuit-level noise using
a simple postselection scheme based on syndromes. In
particular, the magic state preparation is only accepted
if no syndromes are observed after a round of stabi-
lizer measurements. This protocol produces low-error-rate
magic states (particularly when the noise model is dom-
inated by two-qubit errors), although a general analysis
of encoding error versus overhead is absent. Singh et al.
[48] modify the no-syndrome postselection protocol of Li
by encoding the initial magic state in a small repetition
code, yielding a reduction of the overall preparation block
error rate when considered under a heavily biased noise
model.

In this paper, we introduce a general framework for
fault-tolerant postselection (FTPS) of surface-code chan-
nels (also known as logical blocks in Ref. [18]) along with
several efficient rules for postselection based on soft infor-
mation obtained from the visible syndrome and erasure.
We apply these rules to the problem of preparing magic
states encoded in the surface code. In particular, we find
that for postselection rules based on the logical gap and
its derivatives, we can improve the quality of the initial
encoded magic states by suppressing the EER by orders
of magnitude with modest additional overhead, under an
independent and identically distributed (IID) model of
Pauli and erasure errors, and over a wide range of error
rates. For example, we see that when the physical error
rate is approximately 60% of the bulk threshold, we can
suppress the EER to that of the physical error rate using a
postselection overhead of less than 2. This constitutes an
overall reduction of the EER by a factor of approximately
15, leading to significant resource savings in the overall
magic state distillation protocol.

II. MODELS OF FAULT-TOLERANT QUANTUM
COMPUTATION

All models of fault-tolerant quantum computation use
redundancy to protect information from noise. Practical
schemes for fault tolerance then use measurements to infer
where errors have occurred in a logical qubit to suppress
the probability of logical error. Circuit-based quantum
computation (CBQC) and fusion-based quantum compu-
tation (FBQC) [49] are two schemes for fault-tolerant
quantum computation that differ in the types of binary-
outcome measurements that are performed in order to infer
the likelihood of different configurations of physical errors.
Here, we focus on stabilizer-based fault tolerant schemes
[50,51], where the binary-outcome measurements are Pauli
operators.

In conventional surface-code-based CBQC [6], nonde-
structive four-qubit binary measurements are repeatedly
performed on redundantly encoded static qubits. In the
absence of errors, a measurement is expected to return
the same outcome at all times. Therefore, a measurement
that returns a different outcome compared to the previous
instance tells us that at least one of the four qubits in the
measurement saw an error and such deviations are called
syndromes. These measurements are performed without
measuring the logical information of the logical qubit and
the outcomes can then be used by a decoder to reduce
the probability of a logical error. The decoder is a clas-
sical algorithm that produces a Pauli recovery operation
that explains the observed discrepancy (if any) in measure-
ment outcomes (syndromes). The correction operation can
be tracked classically and does not need to be physically
applied to the qubits on every code cycle.

In FBQC, destructive two-qubit measurements called
“fusions” are performed on small entangled states called
“resource states” to infer where errors have occurred.
In this paper, we use the “6-ring” FBQC protocol from
Ref. [49] in which the resource states are stabilizer states
that can be represented as a graph state in a form of a ring
of six qubits with stabilizers 〈ZiX(i+1) mod 6Z(i+2) mod 6, i ∈
{0, 1, 2, 3, 4, 5}〉 and every fusion measures two bits of
information corresponding to the XX and ZZ measure-
ments. In both FBQC and CBQC, the redundancy in the
measurements can be represented as a “syndrome graph.”
In FBQC, each edge in the syndrome graph represents
one binary measurement outcome from a fusion and every
vertex is a “check,” the value of which is the parity of inci-
dent edges. In the absence of errors, every check has an
even parity from incident edges and, similarly to CBQC,
odd parity checks are called syndromes and are used by
the decoder (and its associated correction) to reduce the
probability of logical error.

The choice of fault-tolerance scheme depends on the
physical operations that are most natural for the hardware
platform being used to build the quantum computer. Here,
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the results are presented for a FBQC scheme. However, the
methods presented herein allow efficient postselection in
any syndrome-graph-based fault-tolerance scheme, includ-
ing both CBQC and FBQC. For further discussion on how
to map between the two schemes, see Ref. [52].

III. MAGIC STATE PREPARATION

To perform a distillation protocol with fault-tolerant
gates, we require the input (noisy) magic states to be
encoded. Here, we are specifically interested in fault-
tolerant computations based on the surface code [4–6]. The
surface code is a stabilizer code [50,51], meaning that it is
defined by an Abelian subgroup S of the Pauli group Pn
(on n qubits), not containing −I . Here, we consider the
Wen version [53] (or ZXXZ version [54]). It is defined by

placing a qubit on the vertices of a square lattice, with one
stabilizer generator per plaquette, formed as a product of
Pauli ZXXZ on the four qubits in its support. By introduc-
ing boundaries of the code, as depicted in Fig. 1, the code
defines one logical qubit, with logical operators X and
Z defined as strings of Pauli operators spanning opposite
boundaries (also depicted in Fig. 1).

The preparation of these noisy magic states can be
phrased as an encoding problem. Namely, letting Q be the
state space of the noisy initial magic state qubit and letting
X and Z be the single-qubit Pauli operators acting on it,
we define a protocol to implement the following encoding
isometry:

E : Q → Q⊗d2
, such that X �→ X , Z �→ Z, (1)
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FIG. 1. (a) Noisy magic state preparation can be regarded as a channel taking a distance-1 code state (i.e., an unencoded state) to a
distance-L code state. (b) The space-time diagram for the location of boundaries, where blue and red denote the two distinct boundaries.
The noisy initial magic state supported on the central qubit on the front is encoded in a surface code on the rear. We remark that the
surface code on the boundary has a local basis that depends on the orientation of the boundary (e.g., it may be the ZXXZ or XZZX
version of the surface code). The membrane showing how the X (Z) operator of the initial magic state is mapped to a logical X
(Z) operator on the surface code is shown in blue (red). (c) The measurement pattern for implementation in FBQC using the 6-ring
fusion network [18,57]. Individual qubits belonging to resource states on the boundary are measured in the X (Z) basis as accordingly
depicted by the purple (green) edges. To prepare an encoded |T〉 = 1/

√
2(|0〉 ± eiπ/4 |1〉) on the output, the qubit belonging to the

central resource state is measured in the 1/
√

2(X + Y) basis; the ± sign is determined by the measurement outcomes. (d) The initial
configuration of qubits for a circuit-based implementation with a planar array of qubits. Measurement of the surface-code stabilizers
implements results in the desired encoding.
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where X and Z are the logical operators of the surface
code. We outline two approaches to achieve this encoding
isometry—one based on fusion-based quantum compu-
tation (FBQC) with the 6-ring fusion network [49] and
the other based on circuit-based quantum computation
(CBQC) with a planar array of qubits. These approaches
build upon the proposal of Ref. [55] and are also discussed
in Refs. [18,56].

A. Preparation protocol

We follow the construction in Ref. [18]. The protocol
contains two parameters, L and Ld. We refer to L as the
“distance” of the scheme—it determines the code distance
of the surface-code state we are preparing. We refer to Ld
as the “depth” of the scheme—it can be thought of as sim-
ulated time, i.e., the number of rounds of stabilizer mea-
surements in CBQC, or the number of layers of resource
states in FBQC, and it determines the number of stabilizer
checks in the protocol from which we can gather soft infor-
mation for postselection. One may choose a minimal depth
of Ld = 2, as is done in Refs. [47,48], allowing the encoded
magic states to be prepared. However, we consider longer
depths (which requires more temporal overhead in both
FBQC and CBQC for the construction of a single block
[58]) to allow for more information to be collected in order
to better predict logical errors on the output state.

1. Circuit-based protocol

In CBQC, the preparation protocol is described in
Fig. 1(d). We begin with a 2D L × L array of qubits. One of
these qubits is prepared as (a noisy version of) the initial
magic state |T〉, while the remaining qubits are prepared
in an eigenstate of Pauli-X or -Z according to the figure.
We then perform Ld repeated rounds of surface-code stabi-
lizer measurements. The state after these measurements is
an encoded version of the initial magic state qubit.

One can verify that this produces the intended encoded
state as follows. First, note that the |T〉 state is a +1

eigenstate of 1/
√

2(X + Y). Consider the logical X and
Z representatives for the surface code depicted in Fig. 1.
During the initialization step, for these representatives, the
state is a +1 eigenstate of 1/

√
2(X + Y), owing to the par-

ticular configuration of |0〉 and |+〉 data qubits that match
the stabilizer patterns in X and Z such that X ∼ X and Z ∼
Z (in other words, single-qubit Pauli X and Z are stabiliz-
ers equivalent to logical X and Z). These representatives
commute with the surface-code stabilizers (by definition)
and therefore the state after measurement, which is an
eigenstate of the surface-code stabilizers, remains a +1
eigenstate of 1/

√
2(X + Y).

2. Fusion-based protocol

In FBQC [18,49], the bulk of the preparation block con-
sists of 6-ring resource states that are fused along a cubic
lattice of size L × L × Ld, with each pair of qubits from
adjacent resource states in each of the three orthogonal
directions undergoing a two-way fusion, i.e., a Bell mea-
surement (e.g., XX and ZZ measurements) as in Fig. 2.
Boundaries are formed by single-qubit measurements in an
alternating X and Z pattern, with the distinction between
primal (blue) and dual (red) boundaries given by a transla-
tion of the alternating pattern by one site (or, alternatively,
flipping the X and Z measurements), as in Fig. 1(c). There
is redundancy among the measurement outcomes; certain
measurements may be multiplied together to form a check
operator, the outcome of which can be used to detect
errors. More precisely, check operators are elements of
both the (joint) stabilizer group of the resource states as
well as the measurement group (which includes fusions
and boundary measurements) [49]. One may multiply the
measurement outcomes comprising a check to construct
the syndrome—in the absence of error, these syndrome
measurements should have even parity and, as such, an odd
parity signals the presence of one or more errors.

To complete the protocol, a single qubit in the resource
state at the preparation point on the input port is measured

(a) (b)

FIG. 2. (a) The check-operator structure of the preparation protocol in the 6-ring fusion network. There is a check operator for
each cube of the fusion network (suitably truncated for boundaries). Here, the block has a different orientation (and, as such, the
measurement pattern is slightly different), such that “time” flows from top to bottom. (b) Examples of logical errors for the preparation
protocol. Chains of flipped fusion outcomes between distinct boundaries lead to logical errors. In particular, there are weight-2 logical
errors supported near the central magic state. Red (blue) error chains flip red (blue) check operators and logical membranes.
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in the magic state basis TXT† = 1/
√

2(X + Y). This yields
an initial magic state T |±〉 qubit that is entangled with the
rest of the block via the bulk two-way fusions (where |±〉
is the ± eigenstate of X and is determined by the measure-
ment outcome of the 1/

√
2(X + Y) measurement). The

output of this channel is an encoded (noisy) |T〉 state
on surface code supported on the remaining unmeasured
qubits, up to a Pauli operator depending on fusion and
measurement outcomes.

We can verify that this protocol produces an encoded
magic state by analyzing the stabilizers of the postmea-
sured state. Consider the output unmeasured qubits of the
fusion-based implementation in Fig. 1. On these qubits,
we have a checkerboard pattern of boundary check oper-
ators from Fig. 2(a), the resource states of which are all
+1 eigenstates. Since these checks also commute with the
fusions, the postmeasured state is an eigenstate of these
boundary operators restricted to the output unmeasured
qubits, which are identical to the surface-code stabilizers.
Therefore, the output state is a surface-code eigenstate.
To determine that it is indeed an encoded magic state, we
make use of the logical membrane operators, the resource
states of which are also +1 eigenstates. The supports of
these logical membranes are depicted in the top left of
Fig. 1 and include the central qubit. Consider performing
all measurements apart from the central Mc = 1/

√
2(Xc +

Yc) measurement (which includes both the bulk fusions
and the single-qubit X , Z measurements), where Xc and Zc
are single-qubit Pauli operators on the central qubit. The
logical membranes commute with all of these measure-
ments and thus the postmeasured state is an eigenstate of
Xc ⊗ X and Zc ⊗ Z, where X and Z are surface-code log-
ical operators on the output qubits. Thus, we have a Bell
state between an unencoded qubit on the input port and
a surface code on the output port. Performing a measure-
ment of Mc on the central qubit produces the encoded state
as desired.

3. Space-time diagram

An abstract space-time diagram of this channel used to
achieve E is depicted in Fig. 1 (b). In particular, time can
be thought of as running into the page, with the noisy initial
magic state situated in the center of the input port (initial
time slice), which we call the preparation point, and with
the encoded magic state supported on the output port (final
time slice). The operator X (Z) on the input port is mapped
to X (Z) on the output port via the logical membrane. Here,
following Ref. [18], a logical membrane is the world sheet
of a logical operator. It specifies how the input and output
logical operators are correlated.

B. Distances and logical errors

The fault distance of the protocol that we present is
constant, as there is a space-time volume around the

preparation point where low-weight errors can give rise to
logical errors. In particular, for the FBQC protocol, bar-
ring the initial magic state measurement itself, the fault
distance is 2; minimally, two fusion outcomes neighboring
the initial magic state measurement can be flipped in an
undetectable way, yielding a logical error. Such a minimal
error is shown in Fig. 2 in addition to other representative
nontrivial logical errors. In CBQC (or measurement-based
quantum computation), the corresponding protocol has a
fault distance of 3, meaning that three single-qubit Pauli
errors can introduce a logical error (see, e.g., Ref. [56,
Fig. 13]). In principle, a depth of 2 is sufficient to produce
an encoded magic state. In practice, however, choosing a
larger depth provides more syndrome information to more
reliably detect and correct such errors.

C. Error model

It is helpful to separate the overall preparation error
into the error on the initial magic state and the error on
the remainder of the channel. Assuming that both of these
errors occur independently, the overall error of the magic
state preparation block becomes

pprep = pinit(1 − penc) + (1 − pinit)penc, (2)

where pinit is the error rate on the initial magic state (mea-
surement) and penc is the error rate on the remainder of
lattice that encodes the magic state in a surface code on
the output port; we call the latter the encoding error rate
(EER). To leading order in the low-error regime, pprep ≈
pinit + penc. We consider the situation where pinit is fixed,
typically by physical hardware and design choices in the
architecture, and we focus on reducing penc via postselec-
tion, which, as we will see later, is by far the dominant
source of error contributing to pprep in the absence of
FTPS [59]. Therefore, in the following, we ignore pinit and
consider only penc as the logical error rate on the encod-
ing lattice arising from IID erasure and Pauli errors on
every edge of the lattice. In FBQC, this error model cor-
responds to each measurement in a fusion suffering an
erasure with probability perasure or suffering a Pauli error
with probability perror conditioned on not being erased. In
CBQC, this error model corresponds to an erasure error
on each qubit (or measurement), e.g., arising from a leak-
age error, or a Pauli error on each qubit (or measurement)
conditioned on not being erased. Here, we will discuss
only Pauli errors, relegating the discussion of mixed era-
sure and Pauli errors to Appendix B 2. In a similar vein,
by Eq. (2), decreasing pinit by improving the quality of
the initial magic states while not mitigating penc will also
lead to diminishing returns when pinit � penc. Hence, it
is desirable to mitigate both sources of error. Here, we
address how to systematically suppress the EER penc, given
a fixed pinit.
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Given the constant fault distance of 2 when ignoring the
initial magic state measurement in the FBQC preparation
block, even with postselection, we cannot hope to reduce
the EER penc of the channel to below O(p2

error). In prac-
tice, this is not a bottleneck, as pprep will always be limited
by the quality of the initial magic state pinit, which is pro-
portional to the single-qubit error rate perror. Our goal is to
reduce the EER penc by as much as possible.

IV. FAULT-TOLERANT POSTSELECTION

In this section, we introduce the general framework
of fault-tolerant postselection and define a set of postse-
lection rules for encoding magic states in surface codes.
For a given logical block B (in any model of compu-
tation—CBQC, FBQC, or measurement-based quantum
computation), we define a block configuration E as a set of
Pauli errors ε and erasure errors ε on B. Given the check
operators of the logical block (e.g., those of the 6-ring in
Fig. 2), we can deduce the syndrome σ . The combined
information of the syndrome and the erasure information is
collectively called the visible information vE = (σ , ε). We
let the space of all visible information for a given block
be denoted VB. Here, the logical block is the magic state
preparation block, which has the parameters (L, Ld).

A postselection rule R observes the visible informa-
tion vE and decides whether to accept or reject the block
with configuration E using a soft-information function Q
followed by a policy P:

(1) A soft-information function Q : VB → R
q maps the

visible information vE ∈ VB to a vector of soft-
information data qE ∈ R

q. This step distills useful
and actionable information about B based on E.

(2) A policy P : R
q → {0, 1} digests the soft informa-

tion qE and produces a decision on whether to accept
(1) or reject (0) the block B based on the configura-
tion E. In general, the policy can be any function of
choice. Often, however, this is achieved by a scoring
function S : R

q → R
+ that maps qE to a numerical

score for the block, from which the binary decision
is achieved by accepting blocks below a certain cut-
off score, i.e., P = �(s∗ − S(qE)), where � is the
Heaviside function and s∗ is a cutoff score such
that all configurations with S(qE) ≤ s∗ are kept.
Examples of both cases will be shown in Sec. IV A.

For brevity, we will often write S(Q) to refer to the func-
tion S ◦ Q that returns a score for some visible information.
If, on average, κ fraction of blocks are kept, then the
postselection rule has an average resource overhead of
O := 1/κ times the overhead of creating a single block
(for more details, see Sec. V E). The goal is to construct
a rule such that the logical error rate (determined via

decoding) on the subset of the κ accepted blocks is sig-
nificantly less, on average, than that on all blocks. This
occurs when R strongly correlates the policy output (often
achieved through the score S(Q)) with the likelihood of
logical error, thereby facilitating easy selection of less-
error-prone blocks. Furthermore, a high-performing rule
in practice would also have low overhead. A rule that
is high performing in terms of error suppression but that
requires large, potentially exponential, overhead is likely
impractical beyond small block sizes.

A. Rules

We now define several rules, which we name the annu-
lar syndrome, the logical gap, the nested logical gap, and
the radial logical gap. We discuss an additional rule that
we name the surviving distance in Appendix A. These
rules can be applied to any block and configuration but
here we tailor the rules toward the problem of magic state
preparation, a natural setting for applying postselection
techniques. We will further focus on FBQC with the 6-
ring network for concreteness but the techniques readily
generalize to other models and schemes.

In these definitions, and the simulations that follow, we
make use of the notion of a syndrome graph. The syndrome
graph is defined by placing a vertex for each check operator
(bulk cubes and boundary checks) of the fusion network.
We connect two vertices with an edge whenever the corre-
sponding check operators utilize a common measurement
outcome. For the 6-ring fusion network, there are two
distinct syndrome graphs termed the primal or dual syn-
drome graphs, analogous to the planar surface code, with
the bicolorability in Fig. 1 indicating checks belonging to
the two independent syndrome graphs, i.e., neighboring
vertices associated with blue (red) checks are connected
with an edge, forming the primal (dual) syndrome graph.
Furthermore, the magic state preparation block has only
2 logical membranes, one supported on the edges of each
syndrome graph.

For more general logical blocks encoding channels from
m to n qubits, there are m + n independent logical mem-
branes that generate all possible logical correlations from
input to output (for more details, see Ref. [18]). We denote
the set of independent logical membranes, which index
2m+n logical sectors, by C.

1. Annular syndrome

The annular-syndrome rule RS = (QS, PS) relies solely
on syndrome information. It computes the weighted sum
of the −1 (“lit-up”) syndromes. We choose the weights
according to a power-law decay from the preparation point.
The intuition is that syndromes near the preparation point
are more significant in predicting a logical error than those
further in the bulk. As such, the soft-information function
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maps to a vector of length 2 with the components

QS,i(vE; α) :=
Ld∑

r=1

σi(r)
σ̄i(r) min(r, �3L/4�)α ,

i = primal, dual, (3)

where σi(r) is defined as the total number of −1 syndrome
outcomes at a distance of r from the initial magic state,
termed an “annulus,” with radius r, σ̄i(r) is the total num-
ber of syndrome measurements (independent of outcome)
in the same annulus of radius r, and α is a tunable param-
eter. One can choose any metric to define the radius; here,
we use the L∞ metric (also known as the supremum metric)
on the fusion network (depicted in the bottom left of Fig. 1,
where resource states reside on vertices of the cubic lattice)
[60]. We apply a radial cutoff of �3L/4� to ensure that for
large depth blocks where Ld > L, there is no tail region
at large radius where syndromes are counted with almost
no weight, i.e., there must be some minimum penalty for
having syndromes. Note that for more general topological
codes, one may not have a split primal and dual syndrome-
graph structure and one can simply sum over all syndromes
in a radius around the preparation point.

The policy is implemented by thresholding a score

SS(QS) :=
∑

i=primal, dual

aiQS,i,

PS(QS; s∗
S) := �(s∗

S − SS(QS)), (4)

where the ai are tunable linear weights to construct a
combined score from the primal- and dual-graph annular
syndromes.

2. Logical gap

The logical-gap rule RG = (QG, PG) is inspired by
the statistical-mechanical mapping of error correction in
Ref. [6], whereby an error-correction threshold is equiv-
alent to the phase transition in a related statistical-
mechanical model. Above the threshold, logical errors are
not suppressed due to a loss of distinguishability between
distinct logical sectors. In other words, above the thresh-
old, the decoder can no longer reliably differentiate which
logical sector of the code space to recover to (as the code
distance increases). In this spirit, one can define the logical
gap as the difference between the correction weights that
return the system to different logical sectors.

For example, in the simple case of a single logical
Z̄ operator in a surface-code memory block (e.g., only
the primal syndrome graph), with a configuration E and
possible corrections l̄correct, l̄wrong such that composing the
correction and error yields a logical operator on the code
space—namely, Ī and Z̄, respectively. The signed logical

gap is defined as

	Z̄(E) := wZ̄(l̄wrong) − wZ̄(l̄correct), (5)

where wZ̄(l̄) denotes the log-likelihood weight of the
correction l̄ for the Z̄ sector given by a choice of
decoder, defined as follows: an edge e has weight we =
ln 1 − pe/pe, where pe is the (marginal) probability of
Pauli error on that edge, edges e ∈ ε supporting erasures
have weight we = 0, and the total weight of a correc-
tion l̄ is wZ̄(l̄) = ∑

e∈l̄ we. In reality, the error ε as part
of E is unknown and therefore which correction is correct
is unknown; hence we only have access to the unsigned
logical gap, which we refer to simply as the logical gap
|	Z̄(E)| (below, we will drop the dependence on E for
brevity).

In general, any decoder can be used to compute
a logical gap and biased noise can be accommodated
by modifying the weights appropriately. If one chooses
a minimum-weight perfect-matching (MWPM) decoder,
then the decoder will always choose the minimum weight
correction. If 	Z̄ < 0, the decoder will fail and a logical
error will be introduced. If 	Z̄ > 0, the decoder will suc-
ceed in correcting the error and if 	Z̄ = 0, the decoder will
equally succeed or fail half of the time. Therefore, the EER
for the block becomes

penc =
∑

i∈(Z̄,X̄ )

∫ 0

−∞
P(	i)d	i, (6)

where P(	i) is the distribution of logical gaps of logical
membranes i for a fixed block size and error rate. In more
complex logical blocks [18] (i.e., surface-code protocols
or channels), there will be many logical membranes and
so one can compute a vector of logical gaps as the soft
information of interest:

QG,i(vE) := |	i|, i ∈ C, (7)

where, recall, C is the set of distinct logical membranes.
We can create a combined score for the block to be
thresholded by the policy as

SG(QG) :=
∑

i∈C

aie−QG,i ,

PG(QG; s∗
G) := �(s∗

G − SG(QG)), (8)

where the ai represent tunable linear weights to add the
scores of all logical membranes. We explain how to com-
pute the logical gap in Sec. V B.

3. Nested logical gap

The nested-logical-gap rule RN = (QN , PN ) is a deriva-
tive of the logical-gap rule that combines information of
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the annular syndrome as the soft information of interest:

QN (vE; α) := (QG(vE), QS(vE; α)). (9)

The policy is given by conditional thresholding, expressed
as

PN (QN ; s∗
G, s∗

S) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if SG(QG) = s∗
G and

SS(QS) ≤ s∗
S, or

SG(QG) < s∗
G,

0, otherwise.

(10)

If one were to imagine a scenario of choosing M out of
N configurations, then this policy amounts to sorting all N
configurations first by the logical gap and then by annular
syndromes, choosing the best M configurations in order.
The intuition is that the preparation block has constant dis-
tance of 2 to flip logical sectors and so up to normalization,
the gap, for a single graph (primal or dual), is bounded to
|	| ≤ 2, thus leading to a large degeneracy, as we will see
in Sec. V C. The idea is to use the annular-syndrome rule
to break this degeneracy.

4. Radial logical gap

The radial-logical-gap rule RRG = (QRG, PRG) is a
derivative of the logical-gap rule that caters specifically
to the structure of the preparation block. The radial-
logical-gap rule computes the logical gap but with a radial
power-law (similar to the annular-syndrome rule with
same cutoff) reweighting of the edge weights such that
w̃i := wi/min(r, �3Ld/4�)α . This yields 	̃i := w̃i(l̄wrong) −
w̃i(l̄correct) and

QRG,i(vE) := |	̃i|, i ∈ C. (11)

We can create a combined score for the block to be
thresholded by the policy as

SRG(QRG) :=
∑

i∈C

aie−QRG,i

PRG(QRG; s∗
RG) := �(s∗

RG − SRG(QRG)). (12)

The intuition here is to break the aforementioned degener-
acy of the logical gap in the preparation block by biasing
the decoder to compute corrections away from the prepa-
ration point (and into the bulk) so that some entropic
contributions are, in a heuristic manner, included.

V. RESULTS AND DISCUSSION

A. Simulation details

We consider the magic state preparation block and error
model described in Sec. III. Specifically, we consider IID
bit-flip and erasure errors with strength perror and perasure on

the XX and ZZ fusion outcomes, as well as single-qubit
X - and Z-measurement outcomes. We Monte Carlo sam-
ple ntrials = 105 trials of preparation block configurations,
apply each rule to all samples, and selectively keep the
best κ fraction of them. We assess the EER penc [recall
Eq. (2)] of each rule as a function of κ . On a real quan-
tum computer, any desired κ can be achieved, on average,
by running the policy in real time with appropriate choice
of score cutoffs. The MWPM decoder [6,61] is used for
both decoding and computing the logical gap (as described
below in Sec. V B). Surviving-distance computations can
be performed using Djikstra’s shortest-path algorithms,
modified to keep track of multiplicities. Unless otherwise
stated, all linear weights {ai} for all rules are set to unity in
the spirit of being fully agnostic between primal and dual
graphs.

We primarily consider a block size of L = 8 for our anal-
ysis, as input magic states of this distance can be distilled
using two rounds of the (optimized) 15-to-1 distillation
protocol of Ref. [41], resulting in an output encoded magic
state of d = 32 and a logical error rate that is sufficient for
many interesting applications [1–3,18,45]. However, we
do show results for L = 4 in Appendix B and we observe
that qualitatively, the results do not depend on L and can
be used for larger distances as desired.

We assume on the output port that all surface-code sta-
bilizers are measured noiselessly, allowing for a logical
readout in each basis, i.e., while the output qubits them-
selves are subject to noise, we assume no measurement
noise on the stabilizer measurements (for more details, see
Ref. [18]).

B. Computing correction weights for the logical gap

To compute the logical gap (or surviving distance) for
surface-code protocols, we use the MWPM decoder. In the
syndrome-graph representation, on each boundary there
are “rough edges” corresponding to errors that only flip
a single check generator (and should be thought of as
locations where error chains can end without detection).
We attach all of these rough edges along each boundary
to an additional pseudosyndrome vertex. Pairs of pseu-
dosyndromes on opposite boundaries are associated with
a logical error class. For the purposes of decoding, we are
free to choose whether each pseudosyndrome is flipped,
subject to the constraint that pairs of pseudosyndromes
must have a parity equal to that of the bulk syndrome
graph. For a given parity, by setting the two different
choices of flipped pseudosyndrome and running MWPM
on each, we can obtain the minimum-weight recoveries
for each sector (i.e., the two distinct logical corrections for
each syndrome graph) which can then be used to compute
the gap as defined in Sec. IV A. For an illustration of the
syndrome graph, see Fig. 5 in Appendix B 1.
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C. Rule performance

We show the performance of all rules [62] in Fig. 3(a),
as a function of the keep fraction κ for pure Pauli error
perror = 0.6p∗

error and perasure = 0, where p∗
error = 0.0108

is the bulk threshold of the memory block. In other
words, we show pR

enc(κ; perror = 0.6p∗
error, perasure = 0) for

R ∈ {RS, RG, RN , RRG}. At κ = 1, there is no postselection
and hence all rules have the same EER, i.e., the same penc.
As κ decreases and fewer blocks are accepted, all rules
suppress the EER, albeit at different rates. The overhead O
for postselection is equal to 1/κ . If one assumes the same
error rate on the initial magic state such that pinit = perror,
then the intersection of the EER of each rule with the
magenta line of Fig. 3 indicates the “break-even” keep
value κ∗(R) (or overhead O∗ = 1/κ∗) at which the EER
is the equal to the initial magic state error. As per Eq. (2),
postselection yields diminishing returns for κ < κ∗(R) as
the overall error rate pprep becomes dominated by pinit in
this regime.

For perror < p∗
error, as in Fig. 3(a), the EER suppression

is superexponential (in κ) for the gap rule and its vari-
ants, with an overhead of O∗ � 2, below which there are
diminishing returns, as the initial magic state error pinit

will become the dominant source of error. When the dif-
ferential overhead cost is low, i.e., d ln pR

enc/dκ � 0 in the
regime around κ∗, it might be desirable to use (relatively
small) extra overhead to suppress the EER further below
the initial magic state error. In contrast, in the same regime,
the annular-syndrome rule RS has poor suppression of the
EER since the syndrome fraction is only loosely correlated
with the EER. As shown in Appendix B 1 a, as L increases,
the annular-syndrome rule performs increasingly poorly
since statistical fluctuations of obtaining finite-size sam-
ples with few syndromes are exponentially suppressed [cf.
Fig. 3(b)]. However, for larger L, the gap rules all still per-
form well as the gap is effectively utilizing a decoder rather
than being reliant on statistical fluctuations at finite size.
For perror ≈ p∗

error (at the bulk threshold value), as shown in
Appendix B 1 a, interestingly the same qualitative behav-
ior holds but quantitatively the EER suppression rate is
reduced as expected when the system is inherently more
noisy.

To understand the performance differences between the
various gap rules, it is instructive to analyze the distribu-
tions of scores and the correlations of the scores with their
respective EERs. From Fig. 3(c), the distribution of gap

(a) (b)

(e) (f) (g)

(c) (d)

FIG. 3. (a) The encoding error rate (EER, penc) of a L = Ld = 8 cubic magic state preparation block at perror = 0.6p∗
error, where p∗

error
is the bulk threshold, for the annular-syndrome (red), logical-gap (blue), nested-logical-gap (purple), and radial-logical-gap (green)
rules. The logical-gap-based rules give rapid suppression [steplike due to the discrete logical-gap sectors seen in (c)] in the EER as
compared the annular-syndrome rule, with the radial-gap rule at low power α = 0.1 performing the best. The magenta line indicates
the “break-even” line, where penc = pinit = perror, whereafter diminishing returns occur with decreasing κ as per Eq. (2). The gray
region, where penc ≤ 1/ntrialsκ , indicates the limits of sampling in the simulation. The shading around the colored lines denotes the
standard error (penc(1 − penc)/(ntrialsκ))1/2. (b)–(d) Distributions of scores for the (b) annular-syndrome (SS), (c) logical-gap (SG),
and (d) radial-logical-gap (SRG) rules, respectively. Annular-syndrome scores have a continuous distribution, whereas the logical-
gap sectors are discrete. The radial-logical-gap score at α = 0.1 weakly breaks the degeneracy of the logical-gap scores. (e)–(g)
The correlation of EER and score for the (e) annular-syndrome, (f) logical-gap, and (g) radial-logical-gap rules, respectively. The
postselection policy function prefers configurations with smaller scores. As can be seen in all of the plots, configurations with smaller
scores have lower EERs on average. The orange line is at penc = 0.5, indicating the absence of correlation (uniform probability of either
logical sector). The annular-syndrome score has a poor correlation with EER while the logical-gap and radial-gap rules have a strong
exponential correlation with EER, thereby endowing the logical gap with predictive power. The radial-logical-gap rule, at α = 0.1, has
a more continuous distribution and smoother correlation with the EER, thus improving upon the logical-gap rule by smoothing out the
“steplike” features in (a).
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rule scores SG(QG) is highly degenerate due to the fact the
gap for each logical membrane is bounded by the constant
fault distance of the preparation block (|	primal|, |	dual| ∈
{0, 1, 2}) and hence the combined score can only take on
five distinct values, SG(QG) ∈ {0, 1, 2, 3, 4}, ∀E, up to nor-
malization. As perror increases, the distribution of gaps
for concentrates around 	 = 0. This results in an over-
all shift of the gap score distribution toward higher val-
ues, indicating that the configurations are typically more
error prone (due to decreased distinguishability between
logical sectors—for more details, see Appendix B 1 b).
From Fig. 3(f), a decreasing gap score has an exponen-
tially smaller EER and this strong correlation of the score
and EER gives rise to the predictive power of the gap
rule. Furthermore, the fact that the gap rule does not
have an exponentially vanishing number of configurations
at low scores is what also makes it practical with low
overhead.

In the hope of improving upon the gap rule by breaking
the degeneracy of the gap sectors to yield a more fine-
grained score, one can nest the annular-syndrome score
inside each of the discrete gap sectors and assess the per-
formance of this nested rule RN . This does provide minor
improvements over certain ranges of κ as compared to the
gap rule [Figs. 3(a) and 6] but is not particularly remark-
able due to the poor correlation of syndromes with EER
[Fig. 3(e)] persisting inside each gap sector. In contrast,
modifying the gap by adding an inverse radial weighting
in RRG breaks the degeneracy of the gap scores [Fig. 3(d)]

by favoring corrections—that determine the gap—away
from the initial magic state (where the fault distance is
constant). For low power α = 0.1, the radial-gap score
SRG(QRG) weakly breaks the degeneracy of the gap score
while still preserving the gap sectors. This heuristically
incorporates more entropic effects in the bulk, providing
a smoother graded correlation of the radial-gap score and
the EER [Fig. 3(g)], thus leading to improved predictive
power of RRG over RG. We find that RRG is at least as good
if not better than RG for all κ . At higher α, e.g., α = 1.0
as in Fig. 3(a), the radial-gap-rule performance degrades
due to the now strong power law that mixes gap sectors,
thus obtaining a poor nonmonotonic correlation with the
EER (see Appendix B 1 c) and hence losing the original
predictive power of the gap.

To compare the performance of the rules over a range
of Pauli-error rates, in Fig. 4(a) we show the break-even
overhead as a function of the fraction of the bulk thresh-
old perror/p∗

error. Over this entire range, the radial-gap rule
at low α has the lowest overhead required to reach the
break-even point, everywhere performing better than the
gap and nested gap. In contrast, the annular-syndrome
rule performs poorly. At an error rate of perror = 0.6p∗

error,
the radial-gap rule has a relative overhead of only 1.78,
which is approximately 23 times lower than the best
annular-syndrome rule and 1.17 times lower than the gap
rule. As the error rate increases, the annular-syndrome
break-even overhead increases exponentially due to its
reliance on statistical fluctuations (e.g., configurations

(a) (b)

P

P

FIG. 4. (a) The break-even overhead O∗ = 1/κ∗ as a function of the fraction of the bulk threshold perror/p∗
error (where p∗

error is the
bulk threshold) at L = Ld = 8 for different postselection rules. The annular-syndrome rule has relatively poor performance, with large
overhead needed (as a function of error rate and L, low overhead is desired) to achieve the break-even point, suggesting that simple
syndrome-counting based rules are inefficient. In stark contrast, the radial-gap rule (green), at α = 0.1, outperforms the logical-gap
(blue) and annular-syndrome (red) rules by having the lowest overhead to achieve the break-even condition penc = pinit = perror over
the entire error range. In particular, the radial-gap rule has a benign scaling for error rates below the bulk threshold with, e.g., only a
modest approximately 1.78 overhead at 0.6p∗

error to reach the break-even point. The nested-gap rule has similar performance to the gap
rule as seen and is therefore not shown for clarity. (b) Magic states are prepared, postselected, and then stored in a buffer for distillation.
In the figure, the initial encoded magic states ρT are prepared and postselected upon using the soft-information function Q and policy
P. Magic states are either discarded (if rejected by the policy) or accepted and if accepted they are sent to the buffer. Accepted magic
states are denoted ρ ′

T and have error rate pprep and are utilized in the distillation protocol. The output states of the distillation protocol
are denoted ρ̃T and are used for fault-tolerant quantum computation.

010302-10



FAULT-TOLERANT POSTSELECTION... PRX QUANTUM 5, 010302 (2024)

with zero syndromes are desirable but are exponentially
rare) and quickly surpasses tractable simulation; hence the
absence of break-even points at higher errors in Fig. 4(a).
This is similarly seen, even for the gap rule with an absence
of a break-even point in the current simulation at perror =
p∗

error. On the flip side, however, even at the bulk threshold
error rate, the radial-gap rule can still achieve the break-
even condition at a reasonable overhead of approximately
17. It is important to note that for a given rule, there may
not always be a break-even point, even with infinite simu-
lation capacity, since above the optimal decoding threshold
(in the thermodynamic limit), the visible information can-
not be used to reliably distinguish logical sectors. These
qualitative results hold true even in the presence of nonzero
erasure, as shown in Appendix B 2.

D. Comparison to prior work

Here, we compare our results with that of Li [47] and
Singh et al. [48]. We remark that a direct comparison with
their results is difficult due to differences in error mod-
els and intended purpose. Both prior works design their
protocols to exploit structure in the noise, either targeting
noise models dominated by two-qubit errors or noise mod-
els with a high bias between X and Z errors, respectively.
Such error models are motivated by, e.g., certain super-
conducting architectures. In contrast, we focus on generic
error-model-independent strategies and present results on
a nontailored IID noise model. While our simulations are
based on an unstructured 6-ring fusion-based error model,
we normalize the error strength to the bulk threshold to
allow for the transferability of our results to different
architectures.

The annular-syndrome rule is the one closest in spirit
to the syndrome-based postselection rules of Li [47] and
Singh et al. [48]. As described in detail in Sec. V C, vari-
ants of the gap rule significantly outperform the annular-
syndrome rule in terms of error-rate suppression across a
range of physical error rates, requiring only modest over-
head to do so. Furthermore, the gap-based rules allow us to
output low-error encoded magic states even at high physi-
cal error rates (relative to the bulk threshold). For example,
even with error rates close to the bulk threshold, the gap-
based rules can reach the break-even point with a tractable
overhead. In contrast, for the same situation, the annular-
syndrome rule requires physically unrealistic overheads
(see Figs. 4 and 6).

E. Architectural design

In reality, the input magic state preparation blocks must
be selected in real time from a finite set. Further, sev-
eral magic states are required for each round of distillation
and so one must determine how many parallel preparation
sites—called preparation factories—are required such that
there is a sufficient rate of initial magic states reaching the

first level of distillation. We propose and analyze a simple
buffer-based architecture to obtain a more accurate esti-
mate of the cost and performance of the postselection rules
proposed in the previous sections. This buffer architecture
is particularly well suited to photonic FBQC architec-
tures but is applicable to matter-based CBQC architectures,
provided that the routing costs are accounted for.

Consider nfac preparation factories, each of which syn-
chronously generates a magic state block on a clock with
time interval tfac. Consider also a collective memory buffer
that can store a number of magic state blocks for a time
tflush = ncyclestfac, measured in the number of factory clock
cycles ncycles, before the entire buffer, i.e., all of its magic
states, is erased. For a distillation protocol that takes in
min blocks and outputs mout blocks, if the buffer is not
filled with min magic state blocks by tflush, distillation can-
not proceed, leading to wasted resources when the buffer
is flushed. We assume that the temporal overhead for the
classical computation needed for postselection is negligi-
ble in between the factories and the collective buffer, that
there is all-to-all connectivity between factories and mem-
ory slots in the buffer as shown in Fig. 4(b), that routing
magic states is free (in space and time), as in Ref. [57], and
that all magic state factories are uncorrelated in terms of
quality of initial magic states.

For a given postselection rule R, each keep ratio κ

corresponds to a cutoff score(s) that we more explicitly
denote s∗(κ; R) (for score SR(Q)), determined by numer-
ical simulation a priori. At each factory clock cycle, nfac
magic state blocks are produced. A classical computa-
tional filter then applies the policy of the rule on each
block, only accepting a block if SR(Q) ≤ s∗(κ; R). The
accepted blocks are moved into the buffer and since the
probability of accepting a single magic state block is by
construction κ , there are on average κnfac blocks stored
in the buffer after one clock cycle. Since the magic states
produced in each clock cycle are uncorrelated with those
produced in previous cycles, the collection of accepted
magic state blocks after ncycles follows a binomial dis-
tribution with mean μ = ncyclesnfacκ and variance σ 2 =
ncyclesnfacκ(1 − κ). To ensure a filled buffer of size min up
to failure probability pflush for an acceptance probability
κ , we solve pflush = F(min − 1; ncyclesnfac, κ) for ncyclesnfac,
where F(x; n, p) is the cumulative distribution function
(cdf) for the binomial distribution of n trials and success
probability p . Note that pflush rapidly decays in the regime
of interest where min − 1 < μ and that the solution allows
for a simple space-time trade-off between ncycles and nfac
(since the product remains fixed), which is useful for work-
ing around any physical-resource constraints that might
be present. Furthermore, σ/μ ∼ 1/

√ncyclesnfac means that
the relative fluctuations of buffer filling vanish with larger
magic state requirements, as would be the case for multi-
ple rounds of distillation. Practical implementation of this
collective buffer scheme with a common flush time, or a
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variation that allows for individual flush times rather than
a collective flush time, both require a detailed specification
of a physical architecture and its description of errors that
will, e.g., inform constraints on total overhead and con-
straints on space-time geometries for routing magic state
blocks.

A distillation protocol produces magic states with out-
put error rate f (pprep; c, k) = cpk

prep (to first order), for
some constants c and k, assuming that the input magic
state error rate pprep is sufficiently small. For example, the
well-known 15-to-1 distillation protocol [34,41] outputs 1
magic state of quality arbitrarily close to 35p3

prep using 15
input magic states of quality pprep. This assumes that the
code distances for the input surface codes are large such
that errors in the Clifford operations are negligible. For an
algorithm of interest, with nT T gates and nQ qubits, one
must distill magic states of a error rate palg = O(1/nTnQ)

to run the entire algorithm with constant error rate. To
achieve this, one must choose the distillation protocol such
that f (pprep; c, k) < palg.

We would like to choose the distillation protocol that
achieves this output error rate with the fewest resource
states possible. One should jointly optimize the distilla-
tion protocol (across the landscape of possible distillation
protocols [37,39,63]) and postselection protocol (i.e., the
postselection rule, how many preparation factories are
required, the preparation postselection rate, and the dis-
tance of the protocol) to minimize overall resources. As
we have seen, the radial-gap rule achieves the lowest error
rates to prepare magic states for a given postselection
overhead (i.e., fixed O).

VI. CONCLUSIONS AND FUTURE WORK

As fault-tolerant demonstrations on current quantum
technologies are becoming more prevalent [64–68], it is
essential to develop more accurate modeling and resource-
estimation tools to determine the requirements for large-
scale quantum computations. We have established a frame-
work for fault-tolerant postselection and applied it to the
magic state preparation problem, a dominant source of
overhead for fault-tolerant quantum computations. Our
numerical results demonstrate that the postselection rules
that we propose rapidly suppress the EER of initial magic
states in surface-code blocks—under an error model of IID
Pauli errors and erasure errors and over a wide range of
error rates—to the level of the initial magic state error, all
for low constant multiplicative overhead of approximately
1.5–5 times the cost of a single magic state preparation
block. In particular, the logical gap—a postselection rule
inspired by the statistical mechanics-to-quantum error-
correction correspondence—and its variants serve as a
powerful soft-information metric at the topological level.
We observe up to an approximately 25 times reduction

of overhead compared to commonly used syndrome-based
postselection strategies, for practical operational regimes.

The proposed gap-based postselection protocols are
general and can be applied to a variety of different fault-
tolerant primitives, e.g., including the modified prepara-
tion protocols of Ref. [69]. Furthermore, while we use
an implementation of MWPM to compute the gap, it
may be computed with other more time-efficient decod-
ing algorithms (e.g., UnionFind [70]). Recent advances in
matching decoders (of which MWPM is the prototype)
such as the SPARSE BLOSSOM [71] and FUSION BLOSSOM
[72] decoders, along with other parallelized approaches
[73], are significantly faster and may be used for practical
implementations of our work. This may be an important
consideration for practical implementations; Magic state
preparation using syndrome-based postselection rules is
now being explored in experiments [74] and our investi-
gation shows that the logical gap could greatly improve
the fidelity of the output, for the same overhead.

The gap-based soft information can inspire and serve
as a foundation for postselection rules and/or multiplex-
ing strategies for other logical blocks as part of the error
requirements in a larger quantum architectural stack. As
a future avenue, the framework introduced here can be
viewed as a binary classification problem and such a
problem may potentially admit a high-performing neural-
network strategy, e.g., with one hidden layer representing
the soft information. Specifically, the input to the neu-
ral network can include VB, the error model parameters if
known (e.g., perror, perasure), and user-specified parameters

FIG. 5. A representation of the magic state preparation block
(with L = 10) along with both primal and dual syndrome graphs
used for the simulation. The pseudosyndromes used for the cal-
culation of the gap are depicted on the top, bottom, left, and
right.
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FIG. 6. The EER of a L = Ld = 4, 8 (first and second row, respectively) cubic magic state preparation block over a range of Pauli-
error rates perror/p∗

error ∈ [0, 1] for the annular-syndrome, logical-gap, nested-logical-gap, and radial-logical-gap rules. The shading
around the colored lines denotes the standard error (penc(1 − penc)/(ntrialsκ))1/2.

such as the desired keep ratio. The output is simply the
classification of whether to accept or reject the sample.

Further reduction of space-time volume might be
possible by reducing the depth of the preparation

block—e.g., preparation factories producing (L, Ld) =
(4, 2) for postselection might be sufficient for efficiently
choosing quality blocks that can be routed into buffers,
i.e., fused into large-depth-identity (memory) blocks. This

FIG. 7. The score distribution for the annular-syndrome rule. Each column has a fixed Pauli-error rate in the range perror/p∗
error ∈

[0, 1]. Each row has a fixed choice of the rule parameter α, the power-law decay exponent of the radial weighting.
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FIG. 8. The score distribution for the gap rule over Pauli-error rates in the range perror/p∗
error ∈ [0, 1].

short-depth situation is difficult to model as considered
here (where postselection and decoding both take place
on the full information of the block), since the final time-
like boundary layer of perfect measurements in simulation
becomes a large fraction of the block. For other logical
blocks, fault-tolerant protocols, and error models (such as
correlated or biased), the incorporation of more informa-
tion about the noise model and geometry into the logical-
gap computation may lead to further improvements.
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APPENDIX A: SURVIVING-DISTANCE RULE

The surviving-distance rule RD = (QD, PD) relies solely
on erasure information and computes an analogue of the
code distance of the block that remains after removing
the erased clusters. Namely, we compute the length of the
shortest path on the syndrome graph between two distinct
boundaries, where erased edges have zero cost. In other
words, the surviving distance is the minimal number of
Pauli errors that can result in a logical error, given the

FIG. 9. The score distribution for the radial-gap rule. Each column has a fixed Pauli-error rate in the range perror/p∗
error ∈ [0, 1]. Each

row has a fixed choice of the rule parameter α, the power-law decay exponent of the radial weighting.
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FIG. 10. The correlation of the EER and the score for the annular-syndrome rule. Each column has a fixed Pauli-error rate in the
range perror/p∗

error ∈ [0, 1]. Each row has a fixed choice of the rule parameter α, the power-law decay exponent of the radial weighting.

observed erasure. Furthermore, we may augment this rule
by incorporating the multiplicity m(di) of the shortest path
into the scoring to compute an effective distance for each
pair of boundaries as the soft information of interest:

QD,i(vE; c) := di − c ln m(di), i ∈ boundary pairs, (A1)

where c is a tunable parameter that governs the weighting
of the multiplicity. Each separated pair of boundaries (e.g.,
the two logical operators on a single surface-code memory

block) contributes an effective distance and we can create
a combined score for the block to be thresholded by the
policy as

SD(QD) :=
∑

i∈boundary pairs

aie−QD,i ,

PD(QD; s∗
D) := �(s∗

D − SD(QD)), (A2)

FIG. 11. The correlation of the EER and the score for the gap rule over range of Pauli-error rate in the range perror/p∗
error ∈ [0, 1].
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FIG. 12. The correlation of the EER and the score for the radial-gap rule. Each column has a fixed Pauli-error rate in the range
perror/p∗

error ∈ [0, 1]. Each row has a fixed choice of the rule parameter α, the power-law decay exponent of the radial weighting.

where the ai are tunable linear weights to add the scores of
different pairs of boundaries. The preparation block only
has two pairs of boundaries terminating the X̄ , Z̄ logical
correlator and i = primal, dual. The intuition is that span-
ning paths between boundaries mimic logical errors chains
and so having smaller effective distances due to erasure
makes the configuration less desirable.

APPENDIX B: DETAILED ERROR MODEL AND
SIMULATION

We show extensive numerical results for the perfor-
mance of the rules discussed in the main text over a range
of Pauli error and erasure error as discussed in Sec. III C.
In the case of pure Pauli errors, we also include the score

distributions and the correlations of the EER and the scores
for several different choices of rule parameters.

1. Simulation details

We consider the hardware-agnostic fusion error model
of Ref. [49]. In this scheme, we assume that all errors aris-
ing during state preparation, idling, and fusions can be
modeled by bit flips and erasures on the outcomes of the
fusion. As such, we assume that each 6-ring cluster state
is output with no errors and that each XX - and ZZ-fusion
outcome is subject to a bit-flip error with rate perror and
an erasure with rate perasure. To perform simulations, we
construct a syndrome graph for the protocol, sample bit
flips and erasures on the edges of the syndrome graph,
compute scores, decode, and measure whether a logical

FIG. 13. The EER of a L = Ld = 8 cubic magic state preparation block over a mixed erasure and Pauli-error model with
(perasure, perror) = (x, x), where x∗

1:1 = 9.71 × 10−3 for the annular-syndrome, logical-gap, nested-logical-gap, and radial-logical-gap
rules. The shading around the colored lines denotes the standard error (penc(1 − penc)/(ntrialsκ))1/2.

010302-16



FAULT-TOLERANT POSTSELECTION... PRX QUANTUM 5, 010302 (2024)

FIG. 14. The EER of a L = Ld = 8 cubic magic state preparation block over a mixed erasure and Pauli-error model with
(perasure, perror) = (x, (x/9)) where x∗

1: 1
9

= 4.99 × 10−2 for the annular-syndrome, logical-gap, nested-logical-gap, and radial-logical-

gap rules. The shading around the colored lines denotes the standard error (penc(1 − penc)/(ntrialsκ))1/2.

failure has occurred. For the gap-based scores, we append
extra vertices to the syndrome graph called “pseudosyn-
dromes,” which, when flipped, allow for the computation
of the minimal-weight recovery in each logical sector (as
discussed in Sec. V B). These pseudosyndromes are shown
in Fig. 5. After performing many such trials, one can esti-
mate the logical error rate as a function of the physical
error rate and acceptance rate (trials are ordered by their
scores).

a. Rule performance

The EER as a function of the keep fraction is shown
in Fig. 6 for select values of perror/p∗

error ∈ [0, 1]. The first
row shows results at L = Ld = 4 and the second row shows
results at L = Ld = 8. Note that all the rules perform qual-
itatively similarly to that shown in the main text, with the
expected degradation of performance as perror approaches
the bulk threshold p∗

error. It is interesting to note, that even
at threshold, at the smaller size where finite-size effects are
strong and beneficial, one can still hit the break-even point
with a relative overhead of approximately 6 to 7.

b. Score distributions

In Figs. 7–9, we show the distributions of scores for
the annular-syndrome, logical-gap, and radial-logical-gap
rules, over a range of rule parameters (each row) and for
perror/p∗

error ∈ [0, 1] (each column), respectively. Increas-
ing the power-law exponent α in the annular-syndrome
rule squeezes the distribution of scores, which apparently
leads to performance improvement as seen in Fig. 6. As
discussed in the main text, the gap rule has a discrete
distribution over the full range of errors. In the radial-
gap rule, a small power-law exponent α mildly breaks
this degeneracy and spreads the gap sectors, while a large
α mixes and reorganizes the gap sectors entirely, with

the former yielding superior rule performance as seen in
Fig. 6.

c. Correlation of EER and scores

In Figs. 10–12, we show the correlations of scores and
the EER for the annular-syndrome, logical-gap, and radial-
logical-gap rules, over a range of rule parameters (each
row) and for perror/p∗

error ∈ [0, 1] (each column), respec-
tively. As before, the correlation of annular-syndrome
score and EER is weak, for all α, although for low values it
is stronger and hence beneficial. Again, the gap and radial
gap have a strong correlation of their respective scores and
the EER, leading to significant performance gains as dis-
cussed in the main text, with the low α of the radial gap
leading to a more monotonic and consistent correlation and
thus yielding the best performance.

2. Mixed erasure and Pauli errors

We consider both erasure and Pauli errors. For this error
model, fusion outcomes are erased with probability perasure
and nonerased outcomes are further subject to a bit-flip
outcome with rate perror. We simulate two representative
cases with (perasure, perror) = (x, x) and (perasure, perror) =
(x, (x/9)), where x/x∗ ∈ [0, 1] and x∗ is the bulk thresh-
old along the error ray parametrized by x. This thresh-
old is determined empirically in both cases with MWPM
decoding as x∗

1:1 = 9.71 × 10−3 and x∗
1:1/9 = 4.99 × 10−2,

respectively. The results for the 1:1 case are shown in
Fig. 13 and the results for the 1:1/9 case are shown in
Fig. 14, the latter being a more physically relevant sce-
nario for FBQC using photonics, where loss (which leads
to fusion-outcome erasure) is a dominant source of error.
In both cases, the qualitative behavior is similar to that
of the pure Pauli-error case, demonstrating that the gap-
based postselection rules yield significant improvement in
the presence of erasures as well.
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