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This tutorial article introduces the physics of quantum information scrambling in quantum many-body
systems. The goals are to understand how to precisely quantify the spreading of quantum information
and how causality emerges in complex quantum systems. We introduce a general framework to study
the dynamics of quantum information, including detection and decoding. We show that the dynamics of
quantum information is closely related to operator dynamics in the Heisenberg picture, and, under certain
circumstances, can be precisely quantified by the so-called out-of-time-ordered correlator (OTOC). The
general behavior of the OTOC is discussed based on several toy models, including the Sachdev-Ye-Kitaev
model, random circuit models, and Brownian models, in which the OTOC is analytically tractable. We
introduce numerical methods, including exact diagonalization and tensor network methods, to calculate
the OTOC for generic quantum many-body systems. We also survey current experimental schemes for
measuring the OTOC in various quantum simulators.
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I. INTRODUCTION

In recent years, there have been remarkable devel-
opments in laboratory platforms for studying quantum
physics. These systems range from ultracold atoms,
trapped ions, and superconducting qubits to universal
quantum computers, providing exciting opportunities to
study quantum many-body physics that was previously
out of reach. One research frontier concerns the long-time
coherent quantum many-body dynamics in closed systems,
which has drawn extensive research interests from multiple
communities, such as condensed matter physics, atomic,
molecular, and optical physics, quantum information sci-
ence, and high-energy physics. Synergistic experimental
and theoretical research has revealed a series of discov-
eries in the arena of quantum dynamics. Moreover, these
platforms expand the scope of traditional condensed mat-
ter physics and demand new tools and frameworks to study
quantum many-body systems that are far from equilibrium
(see Ref. [1] for an overview on quantum simulators and
the references therein).

In the simplest kind of quench experiment, one prepares
an initial state, designs a Hamiltonian or unitary circuit
to evolve the state, and measures the final state. While
the freedom in the initial state and engineered dynam-
ics largely depends on the specific experimental platform,

this general class of experiments certainly raises questions
regarding the general behavior of quantum many-body
dynamics when the initial state is far from equilibrium.
Consider a simple product initial state of qubits, with each
qubit in |0〉 or |1〉. Now, let the state evolve under a generic
unitary operator. The general expectation is that the state
will not remain a product state, but will instead become a
complicated superposition of product states.

One way to track the complexity is to monitor the
buildup of entanglement in the state. Entanglement can be
quantified using the tool of entanglement entropy. Given
a subregion A of the system, one can obtain the density
matrix by tracing out the complement Ā:

ρA = trĀ |ψ〉 〈ψ | . (1)

The entanglement entropy of A is defined as

S(A) = −trρA log2 ρA. (2)

It is also straightforward to show that S(A) = S(Ā) when
the total state is pure.

In a quench experiment starting from a product state,
S(A) will begin at zero and then grow over time. This
growth indicates that the density matrix is becoming more
mixed, which corresponds to an increasingly featureless
state of subsystem A. Based on statistical considerations,
we expect the density matrix to approach a maximally
mixed state if the evolving unitary is generic. In other
words, at late times, the subsystem thermalizes by entan-
gling with its environment. If we consider a system that
conserves energy instead of a generic evolution, the late-
time density matrix is expected to approach a thermal state
with a temperature determined by the initial state’s average
energy. Once ρA thermalizes, it depends only on macro-
scopic quantities such as energy or charge, while micro-
scopic information about the initial state is apparently lost
[2–6].

Thermalization typically occurs within a short time
scale, after which the complicated many-body wave func-
tion still evolves unitarily in a closed system. This evo-
lution raises a pivotal question: beyond thermalization, is
there a universal out-of-equilibrium process and a new
timescale that come into play? One significant approach
to investigate this is through scrambling dynamics, the pri-
mary focus of this tutorial. Owing to thermalization, two
orthogonal initial states with the same energy or charge
density would thermalize to the same local density matrix,
and so one would be unable to distinguish them locally.
However, since the dynamics is unitary, the two states
remain orthogonal and are always distinguishable if global
information about the two states is accessible. Thermaliza-
tion and unitary dynamics suggest that the local features
of the initial state become increasingly nonlocal under the
dynamics and cannot be recovered by local probes. This
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phenomenon, where local information becomes distributed
across a system, is what defines quantum information
scrambling.

To be more concrete, let us consider a system of inter-
acting qubits. One qubit is prepared in a single-qubit state
|a〉 to encode a secret message. At the outset, it is pos-
sible to retrieve the original state of this qubit through
single-qubit state tomography. However, as time pro-
gresses, due to interactions among the qubits, the qubit
initially in state |a〉 no longer remains in that pure state
but becomes entangled with others. Because of thermal-
ization, any local state, which approaches the Gibbs state,
no longer contains information about |a〉. Consequently,
state |a〉 becomes distributed among multiple qubits, mak-
ing its recovery increasingly challenging, even in prin-
ciple. Quantum information scrambling is quantified by
the minimal subsystem required to recover the encoded
state |a〉 as time progresses. Initially studied in the con-
text of black hole dynamics [7–10], quantum information
scrambling has also been extended to general quantum
many-body systems [11–13] and becomes a finer tool than
thermalization to characterize nonequilibrium dynamics.

It is useful to contrast scrambling with thermalization.
Thermalization and scrambling both result from interact-
ing unitary dynamics. While related to thermalization,
scrambling is a distinct process. Thermalization describes
how a local region of a quantum system loses its initial
information under unitary dynamics. In contrast, quan-
tum scrambling concerns how the “lost” information flows
to nonlocal degrees of freedom. These two processes are
characterized by different length and time scales. The ther-
malization time of a local region is typically independent
of the system size and is determined by the coupling
energy scale. On the other hand, the scrambling time,
which is roughly the time scale when the initial local infor-
mation is fully shared among the system, typically depends
on the system size.

In this tutorial, we delve into the topic of scrambling
dynamics in quantum many-body systems. We argue that,
just as a piece of metal can be characterized by its transport
properties associated with electrons, a generic quantum
many-body system can be characterized by its transport
properties related to quantum information. Our tutorial
aims to provide a deeper discussion by building on prior
perspectives from related articles [14,15] that offer basic
intuition.

The discussion is centered around a quantum informa-
tion perspective with the overall aim of clarifying in a
concrete and widely accessible setting the precise way in
which out-of-time-order correlators measure information
dynamics. We focus mostly on qubit models, including
random circuit models, which are widely studied in the
quantum information and condensed matter communities,
and, to a lesser extent, in the high-energy physics and
quantum gravity communities. The upshot of this approach

is that we will be able to state very precisely the relation-
ship between information dynamics and out-of-time-order
correlators. The cost is that we must omit or be much
more schematic about many topics, including semiclassical
physics, field theory approaches, connections to black hole
physics [9], and much else. One may reasonably conjecture
that the basic connection between information dynamics
and out-of-time-order correlators extends to these settings,
but a considerably greater background is required to define
these models and properly formulate the notion of infor-
mation dynamics in them (e.g., see Refs. [16,17] for a
discussion of AdS/CFT models in the same spirit as this
tutorial). For the same reason, the main body of the tuto-
rial does not cover the connection between scrambling
dynamics and quantum chaos, despite a substantial body
of literature on this subject. Interested readers are directed
to a brief discussion in the Epilogue (Sec. VIII) and the
reference therein.

The rest of the tutorial is structured as follows. In
Sec. II, we examine the fundamental setup of scrambling
dynamics using an Alice-Bob communication protocol.
In Sec. III A, we explore how to quantify scrambling
dynamics through entanglement entropy measures, offer-
ing basic insight through random unitary dynamics. In
Sec. IV, we examine the Hayden-Preskill protocol, a spe-
cific instance of the general setup, and demonstrate that
the scrambling dynamics can be quantified by the out-
of-time-ordered correlator (OTOC). In Sec. V, we link
scrambling and the OTOC to operator dynamics and pro-
vide an overview of the OTOC in systems with few-body
interactions. In Sec. V C, we delve into the behavior of
the OTOC in systems with short-range interactions through
several toy models. In Sec. VI, we survey numerical meth-
ods for calculating the OTOC in general systems. Finally,
in Sec. VII, we examine various experimental approaches
for measuring the OTOC.

II. BASIC SETUP OF SCRAMBLING DYNAMICS

We begin by specifying our prototype quantum many-
body system. For the sake of concreteness, we consider a
system of N qubits. Each qubit has a basis that is spanned
by |0〉 and |1〉. On each two-level system, a complete basis
of operators can be defined, which consists of the identity
and the Pauli operators. These operators are represented by
matrices as follows:

I =
(

1 0
0 1

)
, σ x =

(
0 1
1 0

)
, σ y =

(
0 −i
i 0

)
,

σ z =
(

1 0
0 −1

)
. (3)

The total Hilbert space is the tensor product of local Hilbert
spaces and has a dimension of 2N . In some parts of this
tutorial, we generalize the situation to include qudits with

010201-3



SHENGLONG XU and BRIAN SWINGLE PRX QUANTUM 5, 010201 (2024)

a local Hilbert space dimension of q, or Majorana fermion
systems. However, for now, let us continue to work with
qubits.

The dynamics of a given initial state |ψ〉 in the system
is described by a unitary time evolution operator given by

|ψ(t)〉 = U(t) |ψ〉 , (4)

where U(t) is currently an arbitrary family of unitary matri-
ces that acts on the total Hilbert space. However, we
assign more structure to U(t) later on. The simplest quench
experiment involves selecting an initial state |ψ〉, choos-
ing a dynamics U(t), and selecting a set of observables to
measure in the final state U(t) |ψ〉.

Throughout this tutorial, we often use tensor network
diagrams to provide a visual representation of equations
for clarity. We now introduce the graphic notation below.
In general, a node with legs represents a tensor that is a
multidimensional array, and each leg represents an index of
the tensor. For instance, with one leg represents a single-

qubit state vector, with two legs represents a single-qubit

operator or a matrix in general, and has four legs
and thus represents a tensor such as a two-qubit opera-

tor. In particle, we use a line to represent the identity

operator δab and a line with a dot for the normalized
identity operator δab/

√
d, where d is the dimension of the

index. It can also be interpreted as the maximally entangled
Einstein-Podolsky-Rosen (EPR) state, i.e.,

=
∑
ab

δab√
d

|a〉 |b〉 =
1√
d

∑
a

|a〉 |a〉 .

(5)

In a tensor network diagram, the nodes are connected
together by joining their legs and summing over the shared
indices. For example,

(6)

represents a matrix-vector multiplication or an operator
acting on a state, and the result with one open leg is a
vector.

A. Unitary dynamics as a classical communication
protocol: the significance of commutators

We first consider unitary dynamics as an intuitive clas-
sical communication protocol to illustrate some of the
essential aspects of scrambling dynamics, and in the next
section, we reformulate it in full quantum terms. Consider
the scenario illustrated in Fig. 1, where Alice owns one

FIG. 1. Alice and Bob try to communicate through a strongly
interacting system of N qubits. The time evolution of the system
is described by a unitary operator U. Alice has full control of the
first qubit qA and Bob has access to a set of qubits in the system,
but not all of them.

of the N qubits denoted by qA, which she has full con-
trol over. Bob owns a set of qubits denoted by B. Starting
with an initial state |ψ〉, Alice wishes to send a classical bit
a ∈ 0, 1 to Bob. Depending on the value of a, Alice either
flips her qubit by applying the σ x

qA
operator to the state or

does nothing. The system then evolves for a time t. Finally,
Bob makes a measurement OB of his qubits to attempt to
learn whether Alice flipped the spin or not.

The expectation value of Bob’s measurement given that
Alice does not flip her qubit is

〈OB〉0 = 〈ψ | U†OBU |ψ〉 = 〈ψ(t)| OB |ψ(t)〉 . (7)

Alice can also flip her qubit, and then the expectation value
of Bob’s measurement is

〈OB〉1 = 〈ψ | σ x
qA

U†OBUσ x
qA

|ψ〉
= 〈ψ(t)| σ x

qA
(−t)OBσ

x
qA
(−t) |ψ(t)〉 , (8)

where σ x(−t) = Uσ xU† is a Heisenberg operator. The dif-
ference between the expectation values 〈OB〉0 and 〈OB〉1 is

〈OB〉0 − 〈OB〉1 = 〈ψ(t)| σ x(−t)[σ x(−t), OB] |ψ(t)〉 , (9)

where we have used the operator identity σ x(−t)σ x

(−t) = I .
Let us pause to understand the physics. Whenever the

difference is small, Alice and Bob need to run the experi-
ment many times to see the difference and communicate as
the measurement outcome of each run is probabilistic. In
this case, very little information is transmitted from Alice
to Bob per run of the experiment since what Bob measures
is nearly independent of what Alice did.

Using the Cauchy-Schwarz inequality (we provide a list
of useful inequalities in Appendix A 3), we can bound the
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difference by

| 〈OB〉1 − 〈OB〉0 |2

≤ 〈ψ(t)| [σ x
qA
(−t), OB]†[σ x

qA
(−t), OB] |ψ(t)〉

≤ ‖[σ x
qA
(−t), OB]‖2

∞, (10)

where ‖O‖∞ is the operator norm defined as the square
root of the largest eigenvalue of the positive Hermitian
operator O†O. The first inequality is from the Cauchy-
Schwarz inequality, and the second is from the operator
norm’s definition. (Definitions of various matrix norms of
operators are given in Appendix A 1.) Therefore, the dif-
ference in Bob’s measurement between Alice flipping her
qubit or not is bounded by the operator norm of the com-
mutator [σ x(−t), OB]. This statement is independent of the
initial state |ψ〉 that Alice and Bob choose as the medium
to attempt to transmit the information.

The bound has a very intuitive interpretation. At t = 0,
σ x only has support on Alice’s qubit and does not over-
lap with Bob’s qubits. Therefore, the commutator is zero
initially, and no matter what Bob does to his qubits, he
cannot tell whether Alice flips her qubit. He can do no
better than random guessing when trying to determine
Alice’s bit. As t increases, σ x(−t) starts to grow as a
Heisenberg operator, acting on more qubits. Whenever the
supports of σ x(−t) and OB start to overlap, their commuta-
tor becomes nonzero, and Bob has a chance to tell whether
Alice flipped her qubit. The operator norm of the com-
mutator |[σ x

qA
(−t), OB]|∞ quantifies how quickly σqA

x(−t)
spreads in the system and starts to overlap with OB. If this
operator norm is small then the overlap is small, and Bob’s
measurement cannot distinguish between the two cases of
Alice flipping her qubit or not.

B. Bound on commutators

A natural first question is whether fundamental bounds
exist on the norm of the commutators given t and r, which
is the separation between qA and B. There are many pos-
sible behaviors for the commutator of local operators in
a quantum many-body system. For example, one might
expect very different behavior between integrable, non-
interacting, and strongly interacting models, and between
localized and delocalized models.

One is probably familiar with at least one such con-
straint, namely, the limitation on communication imposed
by the speed of light. In the modern language of quan-
tum field theory, this is called microcausality. It states that,
given any two physical local operators W(x) and V(y)
located at space-time points x and y, their commutator
must vanish if x and y are “spacelike separated,”

x, y spacelike separated → [W(x), V(y)] = 0. (11)

In other words, if y is outside of the “light cone” of
space-time point x then the corresponding operators must
exactly commute. Crucially, this is an operator state-
ment and hence a state-independent bound on information
propagation. It is a fundamental property of any unitary
Lorentz-invariant local quantum field theory.

There is somewhat analogous property for many lat-
tice models that do not have relativistic causality built-in
microscopically. As discussed earlier, the commutator is
zero when OB is outside the support of the Heisenberg
operator σ x(−t). Therefore, the support σ x(−t) that grows
as a function of time serves as an emergent “light cone”
for the lattice models, which describes how fast informa-
tion can propagate in these systems. To provide an explicit
example of the emergent light cone, let us consider the uni-
tary time evolution operator with a tensor network struc-
ture built from local two-qubit unitary gates, as sketched in
Fig. 2. This unitary operator describes the time evolution
of a spin chain with nearest-neighboring interaction, with-
out relativistic causality built in but only locality. Given the
brickwork structure of U, the tensor network representation
of a Heisenberg operator, say σ x(−t) = Uσ xU†, is

σx(−t) = .

(12)

Each blue or orange block represents a local unitary matrix,
and the green block represents the σ x at t = 0. The blue
block and orange block are unitaries conjugated to each
other. As a result, if a blue block and an orange block are
directly connected, they are replaced by straight lines, rep-
resenting identity operators. The tensor network after this
transformation is

σx(−t) = .

(13)

The remaining blocks (nonshaded region) form a lin-
ear light cone, visualizing the growth of the Heisenberg
operator over time. The effective speed of light is a/�t,
where a is the lattice constant and �t is the time scale
associated with one layer of the unitary circuit. This is
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= =

(a)

(b) (c)

a

Δt

t

r

= Uq ′
1q ′

2,q1q2

= U
†
q ′

1q ′
2,q1q2

FIG. 2. (a) The tensor network representation of a unitary cir-
cuit with spatial locality built in, the so-called brickwork circuit.
(b) Each blue block with four legs (two in and two out) represents
a two-qubit unitary gate Uq′

1q′
2,q1q2 . (c) Tensor network diagrams

for the identities u†u = I and uu† = I .

a simple but remarkable result, showing that an effective
linear light cone can emerge from the locality in systems
without microscopic relativistic causality. The commuta-
tor [σ x(−t), OB] is strictly zero when OB is outside the
emergent light cone.

There is one caveat to this approach to obtain the speed
limit for a static Hamiltonian. For instance, consider a
Hamiltonian describing nearest-neighboring interactions
between qubits:

H =
∑

r

Hr,r+1. (14)

One can Trotterize the time evolution operator exp(−iHt)
to the local tensor structure shown in Fig. 2. Each local uni-
tary block takes the form u = exp(−iHr,r+1�t). The tensor
structure in Fig. 2 approaches exp(−iHt) in the limit�t →
0. Then the velocity a/�t from the tensor structure goes to
infinity, which is not a meaningful bound. Nevertheless, for
discrete models with a local Hamiltonian and a finite local
Hilbert space dimension, one can establish a much tighter
linear light cone with finite speed of the commutator using
a more sophisticated approach originally due to Lieb and
Robinson, which we discuss in Appendix E. This bound,
now usually referred to as the Lieb-Robinson bound [18],
states that, for two local operators W(r) and V(r′) at (spa-
tial) positions r and r′, respectively, we have the following

bound on the operator norm of the commutator:

‖[W(r, t), V(r′, 0)]‖∞
‖W‖∞ · ‖V‖∞

≤ aeλ(t−|r−r′|/vLR) (15)

with a, λ, and vLR depending on the microscopic param-
eters of the Hamiltonian. This inequality, combined with
Eq. (10), bounds the difference of the signal that Bob mea-
sures at time t to determine whether Alice flips her qubit
at time t = 0. Observe that if the distance |r′ − r| ≥ vLRt,
the bound, although not zero, is exponentially small, indi-
cating that it is almost impossible for Bob to tell whether
what Alice did. This establishes an approximate light cone
with a finite speed vLR, called the Lieb-Robinson velocity,
for local systems without relativistic causality.

C. Two central goals: detection and recovery

The Lieb-Robinson bound is independent of state |ψ〉
and is universally applicable. Its importance lies in prov-
ing that information cannot travel super ballistically in
quantum many-body systems with short-ranged interac-
tion. However, in many cases, the bound can be quite
loose, just like the physical speed of light is a loose
bound on how fast an object moves in our universe. More-
over, it does not provide a way to calculate vLR, but only
proves that it is finite. Therefore we need an operational
approach to calculate how fast information spreads for
a given system—the information light cone (we provide
a precise definition of the information light cone in the
next section). For now, we can interpret the information
light cone as the minimal set of qubits, outside which Bob
either cannot distinguish Alice’s actions at t = 0 or needs
exponentially many measurements to do so. This set only
contains Alice’s qubit qA at t = 0, but grows over time.
One of the central goals in studies of scrambling dynamics
is to calculate the linear size of this region as a function
of t. The Lieb-Robinson bound provides an upper bound
R(t) ≤ vLRt for local Hamiltonians.

A key second goal is to determine Bob’s optimal mea-
surement to capture the signal sent by Alice, or to find the
optimal OB to maximize the difference between 〈OB〉0 and
〈OB〉1. In noninteracting or weakly interacting systems, the
excitation created by Alice can remain coherent for a long
time and propagates with a group velocity determined by
the underlying medium. Imagine a wave packet of an elec-
tron or a magnon moving through a metal or a magnet. In
this case, Bob can easily tell whether Alice made the exci-
tation by performing a local measurement, since the signal
(the wave packet) remains local for a long time. On the
other hand, in strongly interacting quantum systems, the
physics of excitations is typically very different. In fact,
such a system often cannot sustain any coherent excitation
for very long, unless that excitation has a special reason
for being protected, such as a sound mode or a Goldstone
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(a)

(b)

FIG. 3. (a) Quantum unitary circuit made from a SWAP gate.
The circuit is constructed by replacing the generic two-qubit gate

in Fig. 2 with a noninteracting SWAP gate . In this case,
Alice’s qubit state propagates through the system coherently and
remains on a single qubit (the red line). The signal travels bal-
listically because of the light-cone structure of the circuit model
shown in Eq. (13). (b) The maximal signal Bob can obtain from
single-qubit measurements. The x axis labels the qubit. Each line
represents the signal at a different time with an offset. In the case
of circuits from SWAP gates, the signal (red curves) remains maxi-
mal and propagates through the system. On the other hand, when
we perturb the SWAP gate by multiplying it by another unitary
gate close to identity, the signal (blue curves) decays quickly.

mode associated with a broken symmetry. Figure 3 illus-
trates this difference between a noninteracting system and
a strongly interacting system. We use the circuit in Fig. 3
to represent the noninteracting case, which is built from the
two-qubit SWAP gate. Since the SWAP gate simply swaps the
two qubits it acts on, Alice’s state on the first qubit prop-
agates coherently through the system and always remains
on a single qubit that Bob can measure. On the other hand,

once the local gate of the circuit is perturbed away from the
SWAP gate, the signal generally decays as time increases.

The lack of coherent excitations is a consequence of
quantum thermalization. For a strongly interacting system,
a time-evolved state becomes as complicated as allowed,
consistent with macroscopic constraints, such as a fixed
total energy. As a result, the state looks thermal locally
when t > τ , where τ is a relaxation time. This is to say,
for any local operator O, we have

〈ψ(t)| O |ψ(t)〉 ≈︸︷︷︸
t
τ

tr(e−βH O)
tr(e−βH )

, (16)

where β depends only on the average energy 〈ψ | H |ψ〉 of
the initial state |ψ〉. Technically, a finite system will even-
tually revive to its initial state after a very long (double-
exponential) time scale [19,20], which we do not consider
here.

Let us return to the communication protocol between
Alice and Bob. Since |ψ0〉 and |ψ1〉 = σ x

qA
|ψ0〉 only differ

by a single-qubit flip, they have the same energy density.
Therefore, we expect the two states to thermalize and look
the same locally after a time τ . Now imagine that Bob
is trying to tell what Alice did by performing local mea-
surements in a region some distance away from Alice’s
qubit qA. At early time, the information light cone has not
arrived at Bob’s region yet, and, by definition, Bob can do
nothing to tell the difference between the two states. Later,
when the information light cone reaches Bob’s region, the
time is well past the relaxation time τ , so Bob still cannot
tell the difference between the two states since they now
look the same locally. Therefore, unlike in the noninteract-
ing case, Bob cannot tell what Alice did using only local
measurements when the system thermalizes.

It is not plausible that information has simply stopped
spreading in the strongly interacting system, but it becomes
inaccessible to local measurements. Said differently, it may
be very difficult to transmit information in the Alice-Bob
communication protocol coherently. However, information
is still spreading and Bob needs an approach to recover
it. We know at least one approach; Bob can perform the
measurement using the Heisenberg operator σ z

0 (−t), which
is highly nonlocal. Then it is equivalent to measuring σ z

at t = 0, and Bob can easily tell what Alice did. How-
ever, this approach might not be optimal since σ z

0 (−t) can
be very complex and its support contains Alice’s qubit as
well.

The discussion so far was framed in terms of classical
information—whether Bob can tell if Alice flips her qubit
or not. A stronger version is about transmitting quantum
data. One can ask the following question. Given that Alice
initially prepares an arbitrary quantum state on her qubit
qA, is it possible for Bob to recover that quantum state on
one of his qubits, denoted qB, following some decoding
procedure, after the system is evolved by some time t?
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The takeaway of this section is that information spread-
ing is intimately related to commutators of local operators
and its speed is upper bounded by the possibly very loose
Lieb-Robinson bound. This section also raises two cen-
tral questions regarding quantum information dynamics in
strongly interacting quantum many-body systems.

(a) How is the information propagation detected?
(b) How is the information recovered?

III. QUANTUM INFORMATION FORMULATION

In this section, we formulate the general problem of
information in fully quantum terms. Recall that Alice ini-
tializes one qubit, qA, into an arbitrary quantum state. The
medium that Alice and Bob share then evolves by the
unitary U. Finally, Bob’s goal is to apply some decoding
operation to isolate the quantum information |a〉 that Alice
originally encoded in qubit qA,

|a〉

U

Deco

.

der

=

|a〉

(17)

In general, Bob’s decoding can be a very complex quan-
tum operation. We discuss examples of Bob’s decoding
in Sec. IV below, but let us first understand how to deter-
mine which qubits Bob needs to control to decode Alice’s
information in principle. In other words, let us understand
how to track where the quantum information is before
the decoding. Remarkably, this task can be accomplished
just by following a special kind of entanglement with an
auxiliary reference system, as we next explain [see also
Sec. IV(b) below].

A. Entanglement spreading

Consider a system containing N qubits whose dynamics
is described by a unitary matrix U(t). We pick two orthog-
onal initial states, |ψ0〉 and |ψ1〉, that differ by a spin flip at
Alice’s qubit,

|ψ0〉 = |0〉qA
⊗ |ψ〉 , |ψ1〉 = |1〉qA

⊗ |ψ〉 , (18)

where |0〉 and |1〉 are two orthogonal states in some basis
on Alice’s qubit qA, and |ψ〉 is the state of the remaining
system. These two states correspond to the two possible
initial states in the Alice-Bob communication protocol in
Sec. II.

Next, introduce a new auxiliary qubit called reference
R. The unitary dynamics U does not act on the reference

qubit, which one may think of as sitting in an isolated box.
Before isolating the reference, however, the reference qubit
is entangled with the system through Alice’s qubit qA. The
initial composite state of the system and the reference is

|
〉 = 1√
2
(|0〉R |ψ0〉SYS + |1〉R |ψ1〉SYS)

= 1√
2
(|0〉R |0〉qA

+ |1〉R |1〉qA
) |ψ〉 . (19)

The reference R and Alice’s qubit qA form a Bell pair and
are maximally entangled. The time evolution of the state is
given by

|
(t)〉 = 1√
2
(|0〉R U |ψ0〉SYS + |1〉R U |ψ1〉SYS)

= 1√
2
(|0〉R |ψ0(t)〉SYS + |1〉R |ψ1(t)〉SYS), (20)

or, graphically,

|Ψ(t)〉 =

R

U

SYS

(21)

with the black dot representing the EPR state (|00〉 +
|11〉)/√2.

Given the initial state, we may probe the information
dynamics by tracking the entanglement between the sys-
tem and the reference as a function of time. Initially, the
reference is only entangled with the first qubit qA. This
entanglement can be diagnosed using mutual information
between R and qA. First, define the von Neumann entropy
of a set of qubits A,

S(A) = −tr(ρA log2 ρA), (22)

where ρA is the reduced density matrix of A. Then the
mutual information of A with B is

I(A : B) = S(A)+ S(B)− S(AB). (23)

Using subadditivity and the triangle inequality (see
Appendix A 3), one can show that

0 ≤ I(A : B) ≤ 2 min(S(A), S(B)). (24)

For R and qA, it is straightforward to show that at
t = 0, S(R) = S(qA) = 1 and S(R ∪ qA) = 0 from the
fact that they form a Bell pair initially. Therefore, ini-
tially, I(R : qA) = 2, which is the largest possible value,
indicating maximal entanglement between qA and R.
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Correspondingly, at t = 0, the mutual information between
R and any other set of qubits is zero.

Starting from the initially localized entanglement, one
should expect the entanglement with reference R to expand
out across the system in some fashion. One possibility is
that the entanglement is carried in some coherent wave
packet throughout the system, remaining localized in space
at any given time. This can occur under the right condi-
tions in noninteracting systems, for instance, in the SWAP
circuit shown in Fig. 3. However, with strong interactions,
the entanglement seems likely to spread and become more
complex [21]. In other words, while at time zero the ref-
erence is entangled with one qubit; as time progresses, the
reference will instead become entangled with a complex
collection of many qubits. This process can be quantified
by the mutual information between the reference qubit and
certain regime B in the state.

For example, one can choose B to include the first l
qubits q1 · · · ql in the system. Then, the mutual information
between R and B is

I(R : q1 · · · ql) = S(R)+ S(q1 · · · ql)− S(R + q1 · · · ql).
(25)

At t = 0, the reference is entangled with qA contained in
the first l qubits. Therefore, I(R : q1 · · · ql) = 2 for all l.
As time increases, fixing l, I(R : q1 · · · ql) decreases once
the entanglement leaks out the first l qubits. This behav-
ior is illustrated in Fig. 4, where I(R : q1 · · · ql) for 1 ≤
l ≤ N are shown for the mixed-field Ising chain, which
is a prototype nonintegrable quantum many-body model
for studying thermalization [22]. The Hamiltonian is intro-
duced in Eq. (109) in Sec. VI below on the numerical
methods. The result, adapted from Ref. [17], describes the
dynamics of 22 spins initiated in a high-energy pure state.
Note the parallel curves for l < N/2. This is the first con-
crete example of the ballistic propagation of information
in a strongly interacting system in this tutorial. Also, note
that the late-time value of the mutual information increases
with l and approximately stays at the maximal value of 2
for l > N/2. This is a signature of a strongly interacting
system, which we explain in Sec. III C below using random
unitary matrices.

B. Communicating quantum information

How is entanglement spreading related to the Alice-Bob
communication protocol? The description above might
have already hinted at some similarities. We now make
the connection more precise. We consider a region B of
the system and denote its complement as B̄. The mutual
information between the reference R and B is

I(R : B) = S(R)+ S(B)− S(RB), (26)

which is between 0 and 2. Since state |
〉 defined on
R, B, and B̄ is pure, S(RB) = S(B̄). (See Appendix A 2).

(a)

(b)

N

N

FIG. 4. (a) Entanglement spreading characterized by the
mutual information I(R : q1 · · · ql) between the reference qubit
and first l qubits in the system of N qubits. Each curve represents
the mutual information for l ranging from 1 to N . Here N = 22.
For l < N/2, each curve remains at the maximal value 2 until
the information leaks out and then decays to zero. The result is
adapted from Fig. 2 of Ref. [17]. The parallel curves are a signa-
ture of ballistic propagating quantum information. As l exceeds
half of the system, the mutual information does not decay, indi-
cating that one can recover the initial entanglement between R
and the first qubit if one has access to more than half of the sys-
tem. (b) The late-time saturation value of the mutual information
in (a). It undergoes a sharp transition from 0 to 2 as l passes N/2,
indicating that one can recover the initial entanglement between
R and the first qubit if one has access to more than half of the
system. The late-time value also agrees with the random matrix
calculation in Eq. (39) below.

Therefore,

I(R : B̄)+ I(R : B) = 2. (27)
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The mutual information can also be cast into a form of
relative entropy as follows:

I(R : B) = tr(ρ(RB)(log ρ(RB)− log ρ(R)⊗ ρ(B))).
(28)

Therefore, I(R : B) is a measure of the difference between
the density matrix ρ(R)⊗ ρ(B) and ρ(RB). These density
matrices depend on the two orthogonal states |ψ0(t)〉 and
|ψ1(t)〉 in the Alice-Bob communication protocol,

ρ(RB) = 1
2

(
ρ0(B) ρ01(B)
ρ10(B) ρ1(B)

)
,

ρ(R)⊗ ρ(B) = 1
4

(
ρ0(B)+ ρ1(B) 0

0 ρ0(B)+ ρ1(B)

)
,

(29)

where

ρ0(B) = trB̄ |ψ0(t)〉 〈ψ0(t)| ,

ρ1(B) = trB̄ |ψ1(t)〉 〈ψ1(t)| ,

ρ01(B) = ρ01(B)†=trB̄ |ψ0(t)〉 〈ψ1(t)| .

Now we discuss the implication of the minimum and
maximum of I(R : B) on the Alice-Bob communication
protocol. From the quantum relative entropy, I(R : B) is
zero only when ρRB = ρR ⊗ ρB, leading to the conditions
ρ0(B) = ρ1(B) and ρ01(B) = 0. As a result,

〈ψ1| OB |ψ1〉 = 〈ψ0| OB |ψ0〉 , 〈ψ1| OB |ψ0〉 = 0,
(30)

for arbitrary operator OB within region B, indicating that
no operators in B can distinguish the two states. To make
the implication of these conditions on states |ψ0〉 and |ψ1〉
manifest, we perform a singular value decomposition on
both states between regimes B and B̄,

|ψ0〉 =
∑

n

λ
(n)
0 |ψn,B

0 〉 |ψn,B̄
0 〉 ,

|ψ1〉 =
∑

n

λ
(n)
1 |ψn,B

1 〉 |ψn,B̄
1 〉 .

(31)

The conditions ρ0(B) = ρ1(B) and ρ01(B) = 0 are equiva-
lent to

λ
(n)
0 = λ

(n)
1 , 〈ψn,B

0 |ψm,B
1 〉 = δmn, 〈ψn,B̄

0 |ψm,B̄
1 〉 = 0.

(32)

An arbitrary superposition of |ψ0〉 and |ψ1〉 has the same
density matrix in region B and is thus the same to Bob.

In the opposite limit, I(R : B) takes the maximal
value 2 if and only if I(R : B̄) = 0. This leads to the

same condition as in Eq. (31) with B replaced with B̄.
As a result, ρ0(B) = ∑

n λ
(n),2 |ψn,B

0 〉 〈ψn,B
0 | and ρ1(B) =∑

n λ
(n),2 |ψn,B

1 〉 〈ψn,B
1 | act on orthogonal states in the

Hilbert space of B, and |ρ1(B)− ρ0(B)| = 2, indicating
maximal difference between the two states in region B.
In this case, in principle, the optimal operator OB that
differentiates the two states can be constructed as

OB =
∑

n

|ψn,B
0 〉 〈ψn,B

0 | − |ψn,B
1 〉 〈ψn,B

1 | , (33)

so that 〈ψ0| OB |ψ0〉 = 1 and 〈ψ1| OB |ψ1〉 = −1.
What happens when I(R : B) is small but finite? By the

quantum Pinsker inequality, we have

I(R : B) ≥ 1
2 ln 2

tr|ρ(RB)− ρ(R)⊗ ρ(B)|2. (34)

This can be further applied to upper bound any connected
correlation between R and A,

I(R : B) ≥ (〈OROB〉 − 〈OR〉 〈OB〉)2
2 ln 2‖OR‖2∞‖OB‖2∞

. (35)

Applying this inequality to all Pauli operators OR leads to

1
‖OB‖∞

| 〈ψ0| OB |ψ0〉 − 〈ψ1| OB |ψ1〉 | ≤
√

2 ln 2 I(R : B),

1
‖OB‖∞

| 〈ψ0| OB |ψ1〉 | ≤
√

2 ln 2 I(R : B).

(36)

Therefore, the smallness of I(R : B) prevents Bob from
distinguishing the two states.

C. Quantum mutual information from random
unitary dynamics

As we have seen from comparing the noninteracting
and strongly interacting cases (Figs. 3 and 4), the quan-
tum mutual information between reference R and a certain
region of system B, I(R : B), depends on the unitary oper-
ator U that governs the dynamics. To gain some intuition
for I in a strongly interacting system, we next consider a
simple toy model where U is taken to be a random unitary
operator drawn from the Haar ensemble.

It is important to understand that a random unitary
matrix is a generic matrix acting on the Hilbert space
and does not obey a local structure sketched in Fig. 2.
Nevertheless, random unitary dynamics is a good starting
point for thinking about quantum information dynamics.
It can be used to mimic the local unitary dynamics in the
late-time regime where the initial entanglement between
the reference and the system is fully scrambled over all
degrees of freedom.
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We first start with the setup in Eq. (20). By averaging
over the Haar ensemble, we obtain an analytical universal
formula to describe the late value of the mutual informa-
tion I(R, B) as the size of B increases. The formula shows
that I(R, B) drastically increases from 0 to 2 as the size
of B exceeds half of the system, which agrees with the
numerical result on the mixed-field Ising model shown in
Fig. 4(a).

We then generalize the setup to an initial mixed state ρ
and demonstrate that the late-time mutual information is
dependent on the thermal entropy of ρ. Specifically, when
ρ is fully mixed, the mutual information remains signifi-
cantly below its maximal value unless B encompasses the
entire system. Moreover, the setup involving a fully mixed
state is crucial for the Hayden-Preskill protocol, which we
introduce in the subsequent section.

1. Pure state

To proceed, we consider the Rényi version of the mutual
information,

I (2)(R : B) = S(2)(R)+ S(2)(B)− S(2)(RB), (37)

where S(2) stands for the Rényi entropy [see the definition
in Eq. (A7) in Appendix A 2]. We start with the case with-
out the memory, where the combined state of reference R
and the system is pure. Recall that the time-evolved state
is given in Eq. (20),

|
(t)〉 = 1√
2
(|0〉R UHaar |ψ1〉SYS + |1〉R UHaar |ψ0〉SYS).

Of course, the Rényi entropy of any particular U is in prin-
ciple a complicated function of U, but what is analytically
tractable is an average of the Rényi entropy over all U sam-
pled from the Haar measure. The averaged Rényi entropy
captures well the Rényi entropy of a particular U for large
systems because the system size strongly suppresses the
variance due to quantum typicality [23].

The Rényi entropy averaged over Haar random unitaries
can be calculated using the identities in Eqs. (A17) in
Appendix A 4. We have

2−S(B) = E(trB(trRB̄ |
(t)〉 〈
(t)|)2)

= 1
22N − 1

((
1
2

− 1
2N

)
2N+l +

(
1 − 1

2N+l

)
22N−l

)

≈ 2l−N−1 + 2−l, (38)

where E indicates averaging over the Haar ensemble.
Since there is no notion of locality associated with UHaar,
the results depend only on the size l of region B, but not
its location in the system. We have taken the limit that
N → ∞ in the last line. The entropy S(RB) is the same

as that of the complement of B, S(B̄), and can be obtained
by replacing l with N − l in S(B).

Putting these results together, we obtain the Rényi
mutual information as

I (2)(R : B) = 1 + log2

(
2 − 3(1 − 22l−2N )

2 + 4l−N/2

)
, (39)

where l is the number of qubits in region B. The mutual
information is 1 when l = N/2, i.e., the region B occu-
pies half the system. It increases to its maximal value of 2
as l exceeds N/2 and decreases to its minimal value of 0
exponentially when l is less than N/2. This result indicates
that, when the initial information is fully scrambled, any
portion of the system less than half does not contain the
initial information. On the other hand, any portion larger
than half is maximally entangled with the reference spin R
and can be used to recover the initial information. This is in
sharp contrast with the nonscrambling SWAP circuit shown
in Fig. 3 where the information is located at a specific qubit
at a given time.

The change of the mutual information at l = N/2 can
be understood as follows. The system contains two discon-
nected regions with l < N/2, but the reference spin cannot
be simultaneously maximally entangled with two nonover-
lapping regions; otherwise, it would violate the monogamy
of entanglement. As a result, the mutual information dras-
tically reduces when l < N/2.

This result is also valid in the late-time regime of
local unitary dynamics or even Hamiltonian dynamics. As
shown in Fig. 4(b), for the mixed-field Ising model, the
late-time value of mutual information for different regions
obeys the random unitary calculation, drastically increas-
ing from 0 to 2 when the region considered exceeds half of
the system. In the large-N limit, I increases from 0.033 to
1.967 in a window of six qubits around N/2.

2. Mixed state

This setup can be generalized to the case where the
two initial states of the system are mixed. Similar to the
previous case, we pick the two initial states

ρ0 = |0〉 〈0| ⊗ ρ, ρ1 = |1〉 〈1| ⊗ ρ, (40)

where ρ is the density matrix of the system, excluding the
first qubit. Then we introduce the purification of the den-
sity matrix ρ by including an additional auxiliary system
called memory. The purification of ρ, denoted |√ρ〉, is a
pure state living in the Hilbert space of the system (exclud-
ing the first qubit) and the memory. It has the property that
tracing out the degrees of freedom in the memory gives
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back the density matrix ρ,

ρ = trMEM |√ρ〉 〈√ρ| . (41)

Alice’s qubit still forms a Bell pair with the reference. The
entire state, including the reference, the system, and the
memory, is

|
〉 = 1√
2
(|0〉R |0〉qA

+ |1〉R |1〉qA
) |√ρ〉 . (42)

This state is very similar to Eq. (19). The difference is that
|√ρ〉 contains degrees of freedom of the memory that the
time evolution operator does not act on. The time evolution
of the state is

|
(t)〉 = 1√
2
(|0〉R USYS ⊗ IMEM |0,

√
ρ〉

+ |1〉R USYS ⊗ IMEM |1,
√
ρ〉). (43)

Graphically,

|Ψ(t)〉 = .

R

U

SYS

√
ρ

MEM

(44)

A similar calculation of the averaged Rényi entropy now
yields

2−SB ≈
(

trρ2

2
− 1

2N

)
2l−N + 2−l,

2−SRB ≈
(

trρ2 − 1
2N+1

)
2l−N + 2−l−1.

(45)

Therefore, the mutual information is

I (2)(R : B) = 1 + log2

(
2 − 3(1 − 22l−2N )

2 + (2−s − 2−N+1)4l−N/2

)
,

(46)

where s(ρ) is the Rényi entropy of ρ in the initial state.
It reduces back to Eq. (39) when the initial state is pure,
i.e., s = 0. When the initial state is mixed and has finite
entropy, I(l) drastically increases from 0 to its maximal
value 2 at l ∼ (N + s)/2. The behavior of I(l) for l near
(N + s)/2 is independent of s in the large-N limit and
is already shown in Fig. 4(b). This result suggests that
one now needs more than (N + s)/2 qubits to recover the
initial information.

3. Maximally mixed state

In the special case when the initial state is maximally
mixed, s(ρ) = N − 1 (the first spin is entangled with the
reference spin). In this case, I = log2(1 + 3 × 22l−2N ) and
equals 2 when l = N , i.e., the entire system. The mutual
information I (2) drastically decreases as the accessible
region contains fewer qubits. These results also apply to
the late-time regime of unitary dynamics. Denote the part
of the system that Bob does not have access to as E, and
the number of qubits in this region as |E|. We have

I (2)(R : SYS − E) = log2(1 + 3 × 4−|E|). (47)

This behavior is plotted in Fig. 5.
In this special case, the Rényi mutual information can be

used to bound the von Neumann entropy because the Rényi
entropy S(2)(SYS − E) and S(2)(R) are maximal and equal
their von Neumann counterparts. Since S(2)(R ∪ (SYS −
E)) ≤ S(R ∪ (SYS − E)), we have

I(R : SYS − E) ≤ I (2)(R : SYS − E)

= log2(1 + 3 × 4−|E|). (48)

Combining with I(R : SYS) = 2, this indicates that recov-
ering the initial information requires accessing the entire
system when the initial state is maximally mixed, in
contrast with half of the system for the pure initial state.

Another closely related diagnosis of scrambling in this
special setup is the tripartite mutual information [12,24]
given by

FIG. 5. In a fully mixed initial state setup, after applying
the Haar random unitary to the system, the mutual informa-
tion between the reference and the system excluding a few
qubits, I(R : SYS − E) (blue curve), decays exponentially with
the number of qubits excluded. On the contrary, the mutual
information between the reference and the memory plus a few
qubits in the system, I(R : SYS + E) (red curve), saturates to the
maximum.
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I3(R : E : SYS − E) = I(R : E)+ I(R : SYS − E)

− I(R : SYS), (49)

which quantifies how much information is not encoded in
E and SYS − E but in their union. The last term is 2 for
all times. For a scrambled system, the first two terms are
zero, the tripartite mutual information takes the minimal
value −2.

IV. HAYDEN-PRESKILL PROTOCOL:
DETECTING AND RECOVERING THE

INFORMATION

Having understood where the information resides at late
times, we now turn our attention to understanding how to
retrieve this information. We start with the fully mixed case
as this was the setup first studied in the Hayden-Preskill
protocol [7], which was originally proposed for black hole
dynamics, but is applicable to generic quantum many-body
systems.

The previous section introduces MEM as a mathemati-
cal tool to purify the mixed state. Now let us also consider
MEM as a physical system that someone may have access
to, but it does not evolve by the unitary dynamics. In the
black hole problem, the memory is supposed to describe
previously emitted Hawking radiation that is entangled
with the remaining system. The maximally mixed case
then corresponds to the entropic midpoint of the black
hole’s evolution, where the remaining black hole is max-
imally entangled with the emitted Hawking radiation and
is described by a fully mixed state. The question posed in
Ref. [7] was: if another qubit is thrown into the black hole
then how long does one have to wait until the information
in that qubit is available again in the subsequent radiation?
The result of the prior section is that, when Bob has access
to the memory (the early radiation), then the information
in the fresh qubit quickly becomes available again.

As shown in Fig. 5, when the accessible region of Bob
is SYS − E, the mutual information drastically reduces to
zero as the number of qubits in E increases, indicating that
Bob needs the entire system to recover the information.
What happens when Bob also has access to the qubits in
the memory? The memory is only coupled to the system by
the initial entanglement. The unitary dynamics never mix
the system and memory. As a result, one expects that the
memory does not contain any information about the refer-
ence, indicated by zero mutual information. On the other
hand, since the quantum state on the composite system,
including the reference, system, and memory, is pure, we
have

I(R : SYS − E)+ I(R : MEM + E) = 2. (50)

Thus, according to Eq. (48),

I(R : MEM + E) ≥ 2 − log2(1 + 3 × 4−|E|); (51)

I(R : MEM + E) saturates to the maximal value 2 expo-
nentially fast (Fig. 5, red curve). In other words, remark-
ably, Bob can recover the initial information provided that
he has access to the full memory, which does not contain
any information about the reference [I(R : MEM) = 0 for
all time], and a few qubits E in the system.

A. Detecting the information front

The Hayden-Preskill protocol also provides an opera-
tional way to measure information dynamics. Let us still
consider the setup with a fully mixed initial state. The uni-
tary operator U governing the dynamics may now have
more structure, such as locality, instead of being Haar
random. Under time evolution, the mutual information
between reference R and system SYS is always maxi-
mal, and the mutual information between the reference
and MEM is always 0. Initially, R is maximally entangled
with the first spin. As discussed previously, when the uni-
tary operator is Haar random, the entanglement instantly
spreads over the entire system. The mutual information
between the reference to any subregion of the time-evolved
system, even excluding a few qubits, becomes almost 0.

Now suppose that the unitary operator has a local
structure built in, so that the entanglement spreads in a
time-dependent manner, as shown in Fig. 4. In order to
capture the profile of the entanglement spreading, a natu-
ral approach is to trace the mutual information between the
reference and the first n qubits in the output I(R : q1 · · · ql),
which increases monotonically with l. The front of the
spreading at a given time is determined by the largest
l for which I(R : q1 · · · ql) < 2, because it implies that
the information has begun to leak out the first l qubits.
This approach is a conceptually straightforward applica-
tion of the definition, but it is challenging for experiments
since I(R : q1 · · · qn) involves the entanglement entropy of
a nonlocal region. Alternatively, inspired by the Hayden-
Preskill setup, one can measure the mutual information
between the reference and the memory plus one qubit in
the system I(R : MEM ∪ qn). A finite value indicates that
the initial information has reached the nth spin. Therefore,
the front of the entanglement spreading can be determined
by the largest n that I(R : MEM ∪ qn) > 0.

The mutual information used in the second approach can
be estimated by local measurement, as we discuss below,
and is much more accessible in experiments. Now let us
look into the mutual information I(R : MEM ∪ qn) more
closely. From the definition of I , we have

I(R : MEM ∪ qn)

= S(R)+ S(MEM ∪ qn)− S(R ∪ MEM ∪ qn)

= S(R)+ S(MEM ∪ qn)− S(SYS − qn). (52)

In the second equality, we used the fact that R ∪ MEM ∪
qn and SYS − qn are complementary regions in a pure
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state. The first term, S(R), is always 1 because the refer-
ence qubit is not affected by the dynamics. The last term,
S(SYS − qn), attains its maximal value N − 1 because the
system stays fully mixed under the unitary dynamics, as
does any subsystem. Therefore, the mutual information
depends only on the entanglement entropy of MEM ∪ qn,

I(R : MEM ∪ qn) = 2 − N + S(MEM ∪ qn),

N − 2 ≤ S(MEM ∪ qn) ≤ N . (53)

Initially, S(MEM ∪ qn) takes the minimal value for all
qubits qn except the first one. As time increases, its devi-
ation from the minimal value signals that the information
has reached the nth spin. Since the von Neumann entropy
upper bounds the Rényi entropy, we have

I(R : MEM ∪ qn) ≥ 2 − N + S(2)(MEM ∪ qn). (54)

As a result, S(2) can be used as an indicator for the front of
quantum information propagation. This result is particu-
larly nice, since S(2) can be related to correlation functions
that are more accessible than the von Neumann mutual
information, as we show below. See also the experimental
schemes in Sec. VII below.

Since in the case we consider here, the qubits q2∼N
are in a fully mixed state, we can choose the simplest
purification where the memory contains N − 1 auxiliary
qubits that form N − 1 EPR pairs with the N − 1 spins in
the system. The time-evolved state and the density matrix
ρ(MEM ∪ qn) is

|Ψ(t)〉 = U

MEMR qn

ρ(MEM ∪ qn) =
1
2

U

U†

MEM

.

MEM qn

qn

(55)

From the density matrix, we can obtain the purity
tr(ρ2(MEM ∪ qn)) = e−S(2)(MEM∪qn) as

tr(ρ2(MEM ∪ qn)) =

1
4N

U

U†

U

U†

=
1

4N+1

∑
W,V

U

U†

U

U†

W W
.

V

V

(56)

The operators V and W are summed over local Pauli oper-
ators (including the identity) on q1 and qn. The second
equality uses the completeness relation of Pauli operators
in Eq. (A16) in Appendix A 2 b. When W1 or Vn equals
the identity, the trace contributes 1 to the sum. Separating
these terms from the others, we get

trρ2(MEM ∪ qn)

= 1
2N+2

(
7 +

∑
W1 �=I , Vn �=I

1
2N tr(W1(−t)VnW1(−t)Vn)

)
.

(57)

The purity becomes a sum of correlators between time-
evolved local Pauli operators. The Rényi entropy is just
− log2 tr(ρ2). From Eq. (57), we can bound the mutual
information by the correlators,

I(R : MEM ∪ qn)

≥ 4 − log2

(
7 +

∑
W1 �=I , Vn �=I

1
2N tr(W1(−t)VnW1(−t)Vn)

)
.

(58)

We emphasize that this inequality applies to any unitary U.
Each term in the summation has a maximum value 1, in
which case the right-hand side takes the minimal value 0.
This happens when the Heisenberg operator W1(−t) com-
mutes with the operator Vn for all V and W. When W1(−t)
and Vn start to overlap, the correlator decreases from 1.
As a result, I(R : MEM ∪ qn) is nonzero, indicating that
the information has reached qn. At late time, all the terms
decay to 0 and the right-hand side becomes 4 − log2 7,
consistent with Eq. (51) when |E| = 1.

Because the kind of correlator appearing on the right-
hand side of Eq. (58) can be used to diagnose the infor-
mation propagation, it deserves a name. In the literature, it
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is referred to as the out-of-time-ordered correlator, usually
written as

F(t) = 1
2N tr(W1(t)VnW1(t)Vn). (59)

The time argument is changed from −t to t for simplic-
ity. Larkin and Ovchinnikov first introduced the OTOC in
the context of superconductivity [25]. It has gained exten-
sive renewed interest recently due to the connection to
scrambling dynamics discussed here as well as quantum
many-body chaos in the semiclassical regime (see the short
discussion in Sec. VIII below).

Several remarks are in order. First, we emphasize that
the OTOC is only an indicator of information propagation
and scrambling. When W1(t) and Vn do not commute, it
indicates that the information front has reached the qubit
n, but does not mean that one can recover Alice’s ini-
tial action by measuring the nth qubit. In fact, we have
seen from the random unitary calculation that it requires
all the qubits in the system, or the entire memory plus
a few qubits with nonzero commutators, to recover the
information. Second, the OTOC as an indicator of the
information propagation is tied to the simple initial state
where ρ(q2 ∼ N ) is fully mixed, namely, the Hayden-
Preskill setup. When the initial state is not fully mixed,
a precise relation between the mutual information, which
is the defining characterization of information propagation,
and simple correlation functions such as the OTOC is not
established. One can even show that the OTOC overes-
timates how fast information propagates for some other
initial states.

B. Recovering the information: many-body
teleportation

This section discusses the second question of quantum
information dynamics on how to recover the initial infor-
mation. In Sec. III B, we showed that maximal mutual
information between the reference and Bob’s qubits indi-
cates that Bob can distinguish Alice’s action on the initial
state using the operator constructed in Eq. (33). However,
in practice, the optimal operator OB is nonlocal and chal-
lenging to construct. It will be ideal if the initial state of
Alice’s qubit qA reappears on one of Bob’s qubits after Bob
follows a specific decoding protocol on his qubits. This is
called many-body teleportation [7,26–28].

1. Requirement for many-body teleportation

Many-body teleportation works if

U(|a〉qA
⊗ |ψ〉) Bob’s decoding=⇒ |φ〉 ⊗ |a〉qB (60)

for any state |a〉 to be teleported, where qA is Alice’s qubit,
qB is one of Bob’s qubits, |ψ〉 is the initial state on the
qubits except qA, and |φ〉 is the final state on the qubits
except qB. This means that Alice would be able to teleport
a bit of quantum information to Bob through a strongly
interacting medium described by U, which fully scram-
bles her information into the entire system. The key point
here is that Bob only owns part of the qubits, so he can-
not trivially unscramble the information by applying U†.
Graphically, the condition for successful teleportation is

|a〉

U .

Decoder

=

|a〉

(61)

Denote the quantum state after the decoding |
out〉; the
fidelity of teleporting state |a〉 to qubit qB is defined as

F(|a〉) = 〈
out| (|a〉 〈a|)qB ⊗ I |
out〉 . (62)

When the fidelity averaged over Alice’s state E(F(|a〉)) is
1, it indicates that the system is able to teleport any quan-
tum state with perfect fidelity. The averaged fidelity can
be obtained by sampling Alice’s state from the action of a
random unitary ua on a basis state |0〉,

EaF (|a〉) = Ea

U

Decoder

Decoder

U†

=
1
3
(1 + 2FEPR),

(63)
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where

FEPR = .

U

Decoder

Decoder

U†

(64)

Recall the boxed setup with reference R used in Eqs. (20)
and (43). Here FEPR is just the fidelity that reference R, ini-
tially forming an EPR pair with Alice’s qubit q1, forms
an EPR pair with one of Bob’s qubits after the unitary
transformation and decoding; FEPR = 1 indicates perfect
teleportation. In this case, the mutual information between
the reference and Bob’s qubit qB is 2. The necessary condi-
tion for perfect teleportation is that the mutual information
between the reference and all of Bob’s qubits I(R : B) is
2, as discussed in Sec. III A. The purpose of the decoder
is to concentrate the entanglement with reference to a sin-
gle qubit qB. Even given maximal mutual information I(R :
B), it is still in general challenging to design the decoding
protocol.

2. Conventional teleportation

Before discussing the decoder for the Hayden-Preskill
protocol, it is useful to review conventional quantum tele-
portation. Alice has a qubit encoding the state to be tele-
ported |a〉. Alice has an additional qubit that forms an EPR
state with Bob’s qubit. To teleport state |a〉 to Bob’s qubit,
Alice first measures her two qubits in the Bell basis. The
measurement projects the two qubits into one of four Bell
states:

|I〉 = 1√
2
(|00〉 + |11〉), |X 〉 = 1√

2
(|01〉 + |10〉),

|Y〉 = 1√
2
(|01〉 − |10〉), |Z〉 = 1√

2
(|00〉 − |11〉).

(65)

Those states obey that I ⊗ σ x |X 〉 = I ⊗ σ y |Y〉 = I ⊗
σ z |Z〉 = |I〉. After the measurement, Alice tells Bob the
Bell state |s〉 she obtained. Each of the four possibilities
appears with probability 1/4. Based on Alice’s message,
Bob applies the corresponding Pauli operator to his qubit

or does nothing if the Bell state is |I〉. Then state |a〉
appears on Bob’s qubit. Taking all the four measurement
outcomes into account, the final state is a mixed state
1
4 IAlice ⊗ |a〉 〈a|Bob, in which Alice’s two qubits are in the
fully mixed state and Bob has Alice’s original state. One
can also show that if we introduce an addition reference
qubit forming an EPR pair with Alice’s first qubit and
perform the same protocol, the reference will form an
EPR pair with Bob’s qubit in the final state with fidelity
FEPR = 1.

3. Many-body teleportation

Now we are ready to discuss the decoding protocol
for the Hayden-Preskill protocol [26]. Recall the setup
for the Hayden-Preskill protocol. The system contains N
qubits. The first one forms an EPR pair with reference R;
the remaining N − 1 qubits form N − 1 EPR pairs with
another N − 1 auxiliary qubits in the memory, which Bob
owns. In addition, Bob also owns a set of qubits E in the
system, so that B = MEM ∪ E. In Sec. IV, we showed that
I(R : B) approaches 2 exponentially fast as |E| increases
when the system is time evolved into the late-time regime
and fully scrambled; therefore, a decoding protocol is in
principle possible. The question now is how to design a
decoding protocol on Bob’s protocol so that R forms an
EPR pair with one of Bob’s qubits. The quality of the
decoding protocol can be characterized by FEPR. In the
Hayden-Preskill protocol, the state before the decoding is

|Ψ(t)〉 = .U

MEMR qn

(66)

Yoshida and Kitaev [26] found two decoding protocols
for this state, one probabilistic and one deterministic. The
probabilistic decoding protocol goes as follows.

(1) Bob takes another two qubits, q′
1 and R′, and pre-

pares them in an EPR state.
(2) Bob applies the unitary operator U∗ to MEM ∪ q′

1.
(3) Bob performs the Bell measurement on each qubit

in E and its partner in MEM, with which it forms an
EPR pair initially.

(4) The entire protocol is repeated, including preparing
the state in Eq. (66) until the outcome of all the Bell
measurements is the EPR state |I〉.

After these step, one of Bob’s new qubits, R′, and the ref-
erence qubit R would have high fidelity to form an EPR
pair. This implies that in the case without the reference, any
state injected into q1 initially has a high fidelity to reappear
on R′, Bob’s other new qubit. This protocol is probabilistic
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because in step (3) Bob needs to postselect the EPR pairs
from the Bell measurements. To understand this decoder,
let us calculate the probability of successful postselection
and the fidelity FEPR(R, R′) given successful postselection.
The probability of successful postselection is

Δ =

U U∗

U† UT

=
1

2N+1+|E|

U U∗

U† U

.

T

(67)

Note that the diagram is the same as that in Eq. (56) for
calculating ρ2(MEM ∪ E). Using S(2)(R) = 1 and S(2)(R ∪
MEM ∪ E) = N − |E|, we have

� = 2N−1−Etr2(ρMEM∪E) = 2−I (2)(R:MEM∪E). (68)

The probability of the postselection is directly related to
the Rényi mutual information between R and Bob’s qubit
before the decoding. Given the successful postselection,
the fidelity that R and R′ form an EPR pair is

FEPR = 1
4�

= 2I (2)(R:MEM∪E)−2. (69)

When the unitary U is fully scrambling, such as a Haar ran-
dom unitary, the Rényi mutual information can be obtained
from Eq. (47) as

I (2)(R : MEM ∪ E) = 2 − I (2)(R : SYS − E)

= 2 − log2(1 + 3 × 4−|E|). (70)

Substituting this into the equation for FEPR, we get

FEPR = 1
1 + 3 × 4−|E| . (71)

The fidelity FEPR approaches 1 exponentially fast as |E|
increases, indicating perfect teleportation fidelity given
successful postselection for fully scrambling unitary time
evolution. In general, since tr2ρ2(MEM ∪ E) can be writ-
ten as the sum of OTOCs, as shown in Eq. (56), the fidelity

FEPR is also directly related to OTOCs as

FEPR =
(

1
4|E|

1
2N

∑
W1,VE

tr(W1(−t)VEW1(−t)VE)

)−1

,

(72)

where V1 and WE are summed over all local operators,
including the identity, in the first qubit and E, respectively.
In the fully scrambled regime, the OTOC is 1 if either V1
or WE is the identity and 0 otherwise, and we get Eq. (71)
back. We see that the OTOC not only provides a tool to
detect information propagation, but is also directly related
to the fidelity of information recovery.

The above decoding protocol is probabilistic. Bob has
to postselect the state on E ∪ E′ to be the EPR state after
the Bell measurement. The probability� is directly related
to the Rényi mutual information between the reference
and Bob, � = 2−I (2)(R:MEM∪E). The optimal fidelity FEPR
requires the minimal �, which is 1/4 for teleporting a
single qubit and 4−n for teleporting multiple qubits. To
overcome the small successful postselection probability,
Yoshida and Kitaev [26] also designed a deterministic
decoder that does not require postselection but only uni-
tary transformation on Bob’s qubits. The general idea is
to perform a Grover search on Bob’s qubits. After a series
of unitary transformations, the states in which E does not
form an EPR pair with E′ are canceled due to destructive
interference.

The above discussion assumes that the reference, sys-
tem, and memory form a closed system and that the
dynamics is unitary. It would also be interesting to study
how dissipation and measurement affect the recovery
fidelity [29,30].

V. MICROSCOPIC PHYSICS OF OTOCS AND
OPERATOR GROWTH

A. Relating the OTOC to operator dynamics

In previous sections, we established that OTOCs can be
used to track the front of the information dynamics, and
they are directly related to the fidelity to recover the initial
information. In this section, we discuss the microscopic
physics of OTOCs regarding the growth of Heisenberg
operators [31,32].

We consider a quantum many-body system whose
dynamics is governed by a unitary operator U(t). We use
W0(t) = U†(t)W0U to represent the time-evolved Heisen-
berg operator, which is located at the origin at t = 0, and
use Vr as a static local operator at site r. Then the OTOC
between W(t) and Vr can be written as

F(r, t) = 1
trI

tr(W†
0(t)V

†
r W0(t)Vr). (73)
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The space and time dependence of F(r, t) has a very intu-
itive picture based on operator growth, sensitive to whether
the support of W(t) overlaps with that of Vr. The connec-
tion between the OTOC and operator growth can be made
more explicit by introducing the squared commutator

C(r, t) = 1
trI

tr([W0(t), Vr)]†[W0(t), Vr])

= 1
trI

‖W0(t), Vr‖2
2, (74)

which is proportional to the Frobenius norm of the commu-
tator [W0(t), Vr] and thus always positive. One can easily
show that

C(r, t) = −F(r, t)− F∗(r, t)+ 1
trI

[tr(W†
0(t)V

†
r VrW0(t))

+ tr(V†
r W†

0(t)W0(t)Vr)]. (75)

The last two terms are local observables that typically
relax to a constant quickly due to thermalization. There-
fore, C(r, t) and F(r, t) have the same behavior after a
thermalization time. In particular, if both W and V are uni-
tary, the sum of the last two terms is 2. Furthermore, when
W and V are Hermitian, F(r, t) is real. Therefore, when
W and V are unitary and Hermitian, e.g., Pauli operators,
C(r, t) = 2 − 2F(r, t).

The squared commutator manifestly depends on the
“size” of the Heisenberg operator W(t), the number of
degrees of freedom that W(t) acts on. At t = 0, W(t) acts
only on a simple site and commutes with any Vr that is far
away, so C(r, t) = 0. (In a fermionic system, if the oper-
ators W and V are both fermionic, one should consider a
squared anticommutator instead of a squared commutator.)
As time increases, W(t) becomes more and more nonlocal
and starts to overlap with Vr, indicated by the increase of
C(r, t). Varying Vr for different r, C(r, t) remains small if Vr
is outside the support of W(t) and large otherwise. There-
fore, C(r, t) probes the size of the Heisenberg operator
W(t) at a given time. This is consistent with the discus-
sion in Sec. III A that the OTOC tracks the light cone of
information dynamics for the infinite-temperature state.

To obtain a more precise understanding, it is useful to
think about the growth of the Heisenberg operator W(t)
in a complete basis of operators {S}. The basis obeys the
following normalization and completeness conditions:

1
trI

tr(S†S ′) = δSS′ ,
1

trI

∑
S

S†
abScd = δadδbc. (76)

The conventional choice of the operator basis for qubit
systems is the Pauli strings, which are products of Pauli

operators or the identity operator on every site,

S =
N∏

r=1

σ (s)r , (77)

where s = 0, 1, 2, 3 stands for I , σ x, σ y , and σ z. Note that
there are in total 4N different Pauli strings for N qubits.

The Heisenberg operator W(t) can be expanded in the
basis

W(t) =
∑
S
α(S , t)S . (78)

Without loss of generality, we fix the norm of W(t) to be

1
trI

tr(W†W) = 1. (79)

Since the time evolution is unitary, the normalization
stays the same and

∑
S |α(S , t)|2 = 1 for all time. Hence,

|α(S , t)|2 can be interpreted as a probability distribution of
the operator.

We also define a complete local operator basis at site r,
denoted Sr. In qubit systems, the local basis includes three
Pauli operators and the identity operator. The generaliza-
tion to qudit systems and fermion systems is discussed in
Appendix B. In the general case, the local Hilbert space
dimension is q, and there are q2 local operators in the local
operator basis.

Using the completeness relation, one can show that the
average OTOC between W(t) and all Sr is

1
q2

∑
Sr

1
trI

tr(W†(t)S†
r W(t)Sr) =

∑
Sr=I

|α(S , t)|2, (80)

which measures the probability that W(t) acts on site r as
the identity operator, according to the probability distribu-
tion |α(S , t)|2. Similarly, the average squared commuta-
tor is

1
q2

∑
Sr

1
trI

‖[W(t),Sr]‖2
2 = 2

∑
Sr �=I

|α(S , t)|2, (81)

which is complementary to the average OTOC.
Equation (80) establishes a precise connection between
the OTOC and operator probability. In the summation in
Eqs. (80) and (81), the term with Sr = I does not have
dynamics and can be separated from the other terms.
Therefore we define the following average OTOC and
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squared commutator:

F(r, t) = 1
q2 − 1

1
trI

∑
Sr �=Ir

tr(W†(t)S†
r W(t)Sr)

= q2

q2 − 1

∑
Sr=Ir

|α(S , t)|2 − 1
q2 − 1

, (82a)

C(r, t) = 1
q2 − 1

∑
Sr �=Ir

1
trI

‖[W(t),Sr]‖2
2

= 2q2

q2 − 1

∑
Sr �=Ir

|α(S , t)|2. (82b)

Starting with a simple local operator, the time evolution
of the operator probability distribution can be very differ-
ent between generic interacting systems and noninteracting
systems. For instance, in noninteracting fermionic systems,
a single-particle operator always remains single particle.
On the contrary, in interacting systems, a local opera-
tor tends to become as complex as possible in the late
time. Maximal complexity for an initial traceless opera-
tor implies uniform distribution over the operator basis
S except for the identity. The identity operator is special
since it is static under unitary time evolution. Therefore, in
systems with L qudits with local dimension q, we have

lim
t→∞ |α(S , t)|2 = 1

q2L − 1
(1 − δS,I ). (83)

Based on Eqs. (82a) and (82b), the late-time operator prob-
ability distribution determines the late-time value of the
average OTOC

lim
t→∞F(r, t) = − 1

q2L − 1
≈ 0 (84)

and

lim
t→∞ C(r, t) = 2

(
1 + 1

q2L − 1

)
≈ 2. (85)

One can obtain the same late-time values of the OTOC
between W(t) and a single local operator Sr using the Haar
random unitary as the time evolution operator. These late-
time values suggest that an operator becomes maximally
complex and can be used to distinguish generic interact-
ing many-body systems from noninteracting systems. We
also note that the discussion above assumes no symme-
try present. We briefly discuss how symmetries impact
scrambling dynamics in Sec. VIII below.

B. Scrambling dynamics in geometrically local systems

In Haar random unitary dynamics, there is no notion
of space and time since F(r, t) reaches its final value in

a single step for every r. In contrast, a physical many-
body system only contains few-body interactions, such as
spin-spin interactions or interaction terms involving four
fermionic operators. A generic physical Hamiltonian of N
sites is

H =
∑

b

Jb(t)Hb, (86)

where Hb acts on a set of sites by b and Jb is the coupling
strength that can generally be time dependent. For exam-
ple, in spin chains with the nearest-neighboring interaction,
b labels each bond. In general, one can regard a quan-
tum many-body system as a hypergraph, in which each
site defines a vertex and each term in the Hamiltonian Hb
defines a hyperedge eb to be the set of vertices involved in
Hb. This hypergraph completely determines the connectiv-
ity of the system. One can also generalize this description
to unitary circuits, which are a tensor product of few-body
unitaries,

U =
∏

b

Ub. (87)

From the OTOC one can define a time scale t∗ called the
scrambling time, at which F(r, t) relaxes to the final value
of about 0 for all sites r, given a Heisenberg operator W(t)
that is initially localized at one site. A natural question in
this general setup is how the scrambling time t∗ depends on
the system size. The time scale is determined by the hyper-
graph’s connectivity and the coupling strength Jb. While
the complete answer to this question is not known, there
exists extensive literature tackling specific regimes. We
also note that, although this general definition of a physical
quantum many-body system seems obscure and unneces-
sarily complex from a conventional point of view, there
currently exist experimental schemes allowing for tuning
the connectivity between microscopic degrees of freedom
[33], making quantum many-body systems with general
graph structure a physically relevant topic.

To make our discussion tangible, let us restrict to cases
where Hb acts only on two sites, describing a spin-spin
interaction, for instance. In this case, the hypergraph
reduces to a graph. One can imagine arranging the N qubits
in a chain. The Hamiltonian can be written as

H =
∑

J αβrr′ (t)σ
α
r σ

β

r′ . (88)

The strongest connectivity occurs when the graph is a com-
plete graph where each qubit connects to every qubit with
approximately the same interaction strength J (exactly the
same coupling between all pairs makes the model inte-
grable and not scrambling). In such all-to-all connected
models, it is typically found that the scrambling time
scales logarithmically with N , t∗ ∼ log N , provided the
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couplings Jb are normalized to give an extensive-in-N
energy. Furthermore, the system is approximately permu-
tation invariant in this case, so all qubits are equivalent.
Therefore, C(r, t) does not have spatial dependence. Many
calculations [11,34–36] have shown that in the large-N
limit, C(r, t) in the early time takes an exponential growth
form

C(r, t) ∼ 1
N

exp(λt), (89)

where λ is called the Lyapunov exponent related to the
coupling strength J . Here C(r, t) becomes O(1) when t ∼
log N , setting the scrambling time scale. It is suggested
that this is the fastest scrambling time scale for physical
systems with a proper normalization of Jrr′ [8,37]. Signif-
icant research interest has been put into imposing bounds
on the Lyapunov exponent to understand how fast quantum
many-body systems can process information. The chaos
bound [11] concerns a finite-temperature version of the
OTOC and shows that λ < 2πT in a quite general setting,
leading to extensive studies on understanding and refining
the bound and on operator growth in general, especially
at finite temperature, e.g., [31,32,38–41]. We briefly com-
ment on the notion of OTOCs at finite temperature and
their connection to many-body quantum chaos in Sec. VIII
below.

Moving away from all-to-all connected models, one
should expect the scrambling time to increase as one
reduces the connectivity since it will take longer for a local
perturbation to spread over the system. One approach to
reducing the connectivity is to require that Jrr′ decreases as
a function of the distance |r − r′| (see also the discussion
about scrambling on sparse graphs [42–44]). As a result,
C(r, t) generally develops a space-time profile, from which
one can define an information light cone by considering
a contour of C(r, t). The contour specifies a function r(t)
that describes how fast information propagates. The infor-
mation propagation largely depends on how the interaction
decays in space. An interesting case arises when Jrr′ decays
algebraically as a function of |r − r′|, Jrr′ ∼ 1/|r − r′|α .
One can show that, as the interaction becomes more and
more short ranged, C(r, t) deviates from the fast scram-
bling behavior [45]. As α increases, the asymptotic form of
r(t) undergoes a series of transitions from exponential r ∼
exp(tη) (η > 0) to algebraic r ∼ tξ (ξ > 1) and eventually,
when α > 1.5, becomes linear t ∼ r [46,47], indicating
that information transport slows down from superballistic
to ballistic. When α → ∞, the interaction becomes short
ranged and the usual Lieb-Robinson bound in Eq. (15)
applies, restricting r(t) to be at most ballistic [48–50].

Another line of research investigates how the presence
of quenched disorder and localization affects the infor-
mation light cone [51–60]. Based on a phenomenological
model called the weak link model [57], it was shown

that starting from a model with short-ranged interaction,
increasing the disorder strength impedes the information
propagation and drives a series of transitions of the light-
cone function from linear r ∼ t to algebraic r ∼ tξ (ξ < 1)
and eventually becomes logarithmic r ∼ log t when the
system becomes many-body localized. Similar transitions
are found in quasiperiodic systems as well [61,62].

As this high-level overview makes explicit, informa-
tion scrambling in quantum many-body systems displays
a rich set of behaviors dependent on both connectivity
and disorder summarized in Fig. 6. In the next section,
we focus on the case with short-ranged interaction where
the information light cone is linear and discuss the behav-
ior of OTOCs in more detail. Furthermore, we explicitly
show how OTOCs are calculated in a brickwork random
quantum circuit.

C. Scrambling dynamics in systems with short-ranged
interaction

For a generic system with short-ranged interaction and
no disorder, local operators spread ballistically, which has
been shown in numerous systems including field theories
[63,64], free and integrable models [65,66], interacting
spin chains [67,68], and circuit models [69–72]. In this
case, we have r(t) ∼ vBt, where vB is called the butterfly
velocity. The typical behavior of a ballistically expanding
C(r, t) is sketched in Fig. 7. Fixing r and varying t, C(r, t)
grows from 0 to the saturation value, revealing how the
operator becomes complicated locally once the operator
front reaches point r. On the other hand, fixing t and vary-
ing r, C(r, t) decays from the saturation value to 0, as r exits
the light cone. These plots are often used in the literature
to characterize the behavior of C(r, t).

In the local system, the Lieb-Robinson bound, already
mentioned in Sec. II imposes substantial restrictions on the
form of C(r, t). Because of the Lieb-Robinson bound,

C(r, t) ≤ ‖[W(t), σr]‖∞ ≤ ceλLR(t−r/vLR). (90)

Recall that λLR is a state-independent loose bound on the
behavior of C(r, t). From the bound, it is natural to guess
that

C(r, t) ∼ exp(λ(t − r/vB)) (91)

when C is far from saturation. This is indeed the correct
form of many models in the large-N or semiclassical limit
based on field theory calculations [63,73]. However, in the
random unitary circuit model [69,70], the tail of the OTOC
has a different behavior,

C(r, t) ∼ exp
(

− (x − vBt)2

4Dt

)
. (92)

In contrast to large-N and semiclassical calculations, this
ballistically expanding wave has a diffusively broadened
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(a)

(b)

linear power exponential

long-range connectivity

linear power logarithmic

disorder

FIG. 6. Control information propagation by long-range cou-
pling and disorder. (a) As the long-range connectivity of a system
increases, the shape of the information light cone changes from
a ballistic light cone to a algebraic light cone, and finally to
an exponential one. (b) Increasing the strength of disorder in a
system causes a slowdown in information propagation. As the
disorder strength increases, the shape of the light cone changes
from ballistic to algebraic and finally to logarithmic.

wavefront, meaning that the scale over which C varies as a
function of u = r − t/vB goes like

√
DBt. Note that the ran-

dom circuit model also has a version with a large number
Ndof on each site, but while vB and DB depend on this num-
ber, the holographic form is never obtained. Furthermore,
the Lieb-Robinson bound also applies to the noninteracting
system, where the squared commutator can be calculated
exactly. In this case, we obtain another different behavior

C(r, t) ∼ exp
(
λ
(t − r/vB)

3/2

t1/2

)
. (93)

The typical behavior of each of the three classes of OTOC
is illustrated in Fig. 8. One should not expect the noninter-
acting limit to be generic, but the spectrum of multiple dif-
ferent universality classes allowed by the Lieb-Robinson
bound is certainly raised. There seem many possibilities.

To understand the generic behavior of the OTOC, let us
look at the constraint on the functional form of the OTOC
imposed by the Lieb-Robinson bound. The Lieb-Robinson
bound implies that

(a)

(b)

(c)

C
(r

,t
)

C
(r

,t
)

r

r

t

t

FIG. 7. Schematic sketch of the squared commutator C(r, t)
in local clean system. (a) Illustrative contour plot demonstrates
ballistic expansion of C(r, t). (b) Fixing r, C(r, t) increases as a
function of t. (c) Fixing t, C(r, t) decreases as a function of r.

(i) C(r, t) decays exponentially or faster with r, fixing t;
(ii) C(r, t) grows exponentially or slower with t, fixing r;

(iii) C(vt, t) decays exponentially or faster with t for
v > vLR.

These constraints are most restrictive outside the light cone
where C(r, t) is still small. A general form [68,74] that
satisfies these constraints is

C(r, t) = exp
(
λ(t − r/vB)

1+p

tp

)
. (94)
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(a)

(b)

(c)

Large N or Semiclassical

Noninteracting

FIG. 8. Schematic illustration of the squared commutator with
a ballistic propagating front in quantum many-body systems.
(a) In large-N or semiclassical systems, the squared commuta-
tor C(r, t) increases rapidly after the wavefront passes, featuring
a sharp wavefront. (b) In noninteracting systems, the squared
commutator exhibits a drastically different behavior, promi-
nently peaked near the wavefront. (c) In random circuits, C(r, t)
exhibits similarities to the large-N or semiclassical case, but the
wavefront broadens diffusively.

This growth form unifies the three classes mentioned
above into a single framework by including one additional
parameter p , called the broadening exponent. The large-
N and semiclassical result fits the form with p = 0 (no
broadening). The random circuit result fits the form with
p = 1 in d = 1 (diffusive broadening). The noninteracting
fermion result fits with p = 1/2 in d = 1.

The physics of the general growth form and the broad-
ening exponent p are as follows. Given the general shape
in Eq. (94), the contours C(r, t) = θ obey

rθ = vBt +
(

tp

λ
log

1
θ

)1/(1+p)

. (95)

Hence, no matter the value of θ , asymptotically, one has

lim
t→∞

rθ
t

= vB. (96)

However, at any finite t, the contour has an extra sub-
ballistic time dependence going like tp/(p+1), which is
due to the wavefront broadening. As a result, the spatial
distance between two contours at a given t is

δr = rθ1 − rθ2 ∼ tp/(1+p). (97)

This is the key difference between the large-N or semiclas-
sical models and the other models such as noninteracting
systems and random circuit models. In the large-N or
semiclassical models, δr does not grow with t as t →
∞. Although the noninteracting system is not scrambling
and should not be expected to be generic, the difference
between the large-N or semiclassical models and random
circuit models, both strongly interacting and scrambling,
requires understanding.

D. Random circuit model

We now provide a concrete calculation of the OTOC
in a random quantum circuit, a prototypical many-body
model for studying entanglement generation [75] and oper-
ator dynamics [69,70]. See also the review by Fisher et al.
[76]. The random circuit contains alternating even and odd
layers of random two-qubit gates

(98)

with each block an independent Haar random uni-
tary of dimension 4 × 4 for qubits or q2 × q2 in general
for local dimension q. There are also generalizations of
the random unitary circuit to respect charge conservation
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[77,78], dipolar conservation [79], or other kinetic con-
straints, which are important for studying the interplay
between transport phenomena and scrambling. In these
random circuit models, the random average of the local
unitary operator usually maps the quantum many-body
models to statistical models that are easier to handle, while
retaining the universal aspects of the quantum many-body
dynamics.

Let us focus on the random circuit model without any
structure except for the brickwork structure. The idea to
calculate the OTOC is to track the Haar-averaged time
evolution of the operator probability distribution,

|α(S)|2 = 1
q2N |tr(S†W(t))|2, (99)

where S is an operator string defined in Appendix B 1 and
t is discrete.

In the random unitary circuit, each Haar random unitary
can be averaged out independently. Consider applying a
single local unitary gate u to site r and r + 1 to operator W.
The updated operator probability is given by

|α(S)|2 = 1
q2N E|tr(S†U†WU)|2. (100)

It is instructive to consider only two sites first. It is
straightforward to show that the Haar average leads to

|α′(S)|2 =
∑
S′

[
δI ,SδI ,S′ + 1

q4 − 1
(1 − δI ,S)(1 − δI ,S′)

]

× |α(S ′)|2. (101)

Note the remarkable feature that the updated operator prob-
ability depends only on the operator probability before
the update, but not the amplitude. This simplification is
due to the Haar random local dynamics, but it is not true
in general many-body systems. In addition, the identity
operator stays the identity operator, as expected from the
unitary time evolution. The nonidentity operators become
uniformly distributed nonidentity operators because of the
scrambling nature of the Haar random unitary. To proceed,
each operator string is mapped to a binary string. On each
site, the identity operator is mapped to 0 and the others
are mapped to 1. The probability of the binary string P(S)
is the sum of the probability of operators mapping to the
same string. Then the transition rules are given by

P(00, t + 1) = P(00, t), (102a)

P(01, t + 1) = 1
q2 + 1

(P(11, t)+ P(10, t)+ P(01, t)),

(102b)

P(10, t + 1) = 1
q2 + 1

(P(11, t)+ P(10, t)+ P(01, t)),

(102c)

P(11, t + 1) = q2 − 1
q2 + 1

(P(11, t)+ P(10, t)+ P(01, t)).

(102d)

Since, in the Haar random circuit, each unitary is indepen-
dent, the transition rules above also hold locally when a
local unitary u acts on sites r and r + 1. In this case, the
binary string probabilities only change locally on sites r
and r + 1 according to the transition rules given above.
Thus, the unitary dynamics after random average becomes
stochastic dynamics described by a master equation.

To gain an analytical handle on the effective stochas-
tic dynamics, it is useful to consider the probability that
the last 1 in the binary string ends at r, Pend(r). Based on
Eqs. (102), applying the local unitary urr+1 updates Pend as

P′
end(r) = 1

q2 + 1
(Pend(r, t)+ Pend(r + 1)), (103a)

P′
end(r + 1) = q2

q2 + 1
(Pend(r, t)+ Pend(r + 1)). (103b)

Note that (Pend(r, t)+ Pend(r + 1)) is conserved, as
expected. The unitary ur,r+1 redistributes them so that the
operator has a higher probability of ending at r + 1, lead-
ing to expansion. Recall that the unitary circuit acts on
the even and odd bonds alternatively. The layer of even
(odd) t acts on even (odd) bonds. To take into account the
combined effect of even and odd layers of the unitary cir-
cuit, it is more convenient to track the sum of Pend on even
bonds, denoted Pend(b), after each even layer. Because of
Eqs. (103), Pend(b) for even b fully specifies Pend(r) after
the even unitary layer. One can show that Pend obeys

Pend(b, t + 2) =
(

q2

q2 + 1

)2

Pend(b + 2, t)

+
(

1
q2 + 1

)2

Pend(b − 2, t)

+ 2q2

(q2 + 1)2
Pend(b, t). (104)

This equation describes a biased random walk. In the
continuum limit, the equation becomes a biased diffusion
equation

∂tPend(r, t) = vB∂rPend(r, t)+ D∂2
r Pend(r, t), (105)

where

vB = q2 − 1
q2 + 1

, D = 2q2

(q2 + 1)2
. (106)

Note that in the circuit model, an upper bound of veloc-
ity is 1, which is set by the geometry of the circuit and
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the naive light cone of the Heisenberg operator shown in
Eq. (13). This upper bound can be regarded as the Lieb-
Robinson velocity of the circuit model. Here the butterfly
velocity obtained is smaller than the upper bound. For
q = 2, vB = 3/5. This is because of the return probability
in the biased diffusion equation. As q → ∞, the butterfly
velocity approaches 1 and D decreases to 0.

The solution of the biased diffusion equation with initial
condition δ(r) is

Pend(r, t) = 1√
4πDt

exp
(

− (r − vBt)2

4Dt

)
. (107)

To obtain the squared commutator, it is reasonable to
assume that the operator on every site behind the endpoint
of the operator is in local equilibrium. As a result, from
Eq. (82b),

C(r, t) = 2q2

q2 − 1

∑
Sr �=I

|α(S)|2 ∼ 2
∫ ∞

r
Pend(r′, t)dr′

= 1 + erf
(

− (r − vBt)√
4Dt

)
. (108)

It exhibits ballistic expansion and diffusive broadening of
the wavefront. When t > r/vB, it quickly saturates to the
final 2, indicating scrambling. The tail behavior of C(r, t)
can be obtained by expanding the error function in the limit
that r − vBt 
 √

Dt. This leads to the growth form given
in Eq. (92), which is in contrast with the growth form
obtained in the semiclassical or large-N and AdS/CFT
models. Physically, the Gaussian tail of the squared com-
mutator obtained in the random circuit model relies on
two factors. First, the endpoint of the operator undergoes
a random walk biased towards expansion. Second, the
operators behind the endpoint immediately reach the local
equilibrium because of the Haar random unitary.

VI. NUMERICAL METHODS

In this section, we discuss some existing numerical
methods to calculate the OTOC in many-body systems,
including commenting on their applicability and limita-
tions. The numerical methods can be roughly divided
into two categories, exact diagonalization and tensor net-
works. There are many other wholly or partially numerical
approaches to calculating OTOCs, such as the truncated
Wigner approximation in the semiclassical limit [80,81],
but these are among the most general purpose. To be
concrete, we consider the following prototypical spin
chain Hamiltonian called the mixed-field Ising model with
nearest-neighboring Ising interaction,

H =
∑

i

(Jσ z
i σ

z
i+1 + Hxσ

x
i + Hzσ

z
i ). (109)

We suggest interested readers try the different methods
introduced below on this Hamiltonian.

A. Exact diagonalization and the Krylov space method

We first discuss the exact diagonalization–based method
to compute the OTOC in the system described by Hamil-
tonian H . In this case, it is more convenient to consider
the OTOC in the form of F = tr(W(t)VW(t)V), where W(t)
is the time-evolved Heisenberg operator and V is a local
probe operator at site r. The most straightforward method
to compute OTOC is to perform a full exact diagonaliza-
tion on H to obtain the eigenvectors |n〉 as well as the
eigenvalues εn. Then the OTOC can be evaluated as

F(t) = 1
2N

∑
m,n,p ,q

eiεnmtWnmVmleiεpqtWpqVqn, (110)

where εmn = εm − εn. The matrices W and V are in the
eigenstate basis. They only need to be computed once to
calculate the OTOC at different times. Although this is the
simplest and numerically exact method, it suffers severely
from limited scalability. The bottleneck is the full diago-
nalization of H and storing the eigenstates, which can be
done for up to 15 qubits—it takes about 40G memory to
store the whole set of eigenstates.

One can avoid exact diagonalization by implementing
the Heisenberg time evolution using the Krylov method
[82]. The Krylov basis can be generated by applying the
Hamiltonian to the operator iteratively k times, where k +
1 sets the effective Hilbert space dimension. Specifically,
we have

W(n) = HW(n−1) − W(n−1)H , 1 ≤ n ≤ k. (111)

The Krylov method is also numerically exact. It does
not require diagonalizing the Hamiltonian, but it requires
regenerating the basis by applying the Hamiltonian to the
operator multiple times at each step, which can be time
consuming. This method is limited by storing the large
matrix of W(t). Initially, W is a local operator in the form
of a sparse matrix. The complexity of W(t) increases with
time, and in the late time, W(t) becomes dense and requires
a huge memory to store. As a result, this operator-Krylov
method, similar to the naive exact diagonalization method,
can also only work for up to 15 spins.

The difficulty of storing the full Heisenberg operator
can be circumvented by calculating the OTOC in the
Schrödinger equation and using the typicality of random
states. Using the property of Haar random state |ψ〉, we
know that

Eψ(〈ψ | O |ψ〉) = 1
2N trO. (112)
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Therefore, we can replace the trace in the OTOC by
sampling over Haar random states,

F = Eψ 〈ψ | W(t)VW(t)V |ψ〉
= Eψ 〈ψ | eiHtWe−iHtVeiHtWe−iHtV |ψ〉 . (113)

Based on quantum typicality, the sample-to-sample fluctu-
ation is suppressed by the large Hilbert space. As a result,
one random state is sufficient to capture the OTOC. See
also Ref. [83]. One can evolve V |ψ〉 and |ψ〉 back and
forth in time efficiently using the Krylov method. We dub
this method the “Krylov-State” method. Figure 9(a) shows
the OTOC from this method and the exact diagonalization
based on Eq. (110), which agree well with each other. The
main bottleneck of this method is to store the entire quan-
tum state, a dense vector in the Hilbert space instead of a
dense matrix as that in the previous methods. As a result,
the maximal applicable system size is doubled, i.e., about
30 qubits [84,85].

All three methods introduced in this section are numer-
ically exact for calculating the OTOC. They apply to
arbitrarily long time, but are limited to quite a small system
size. Among the three, the Krylov-State method applies
to systems with up to 30 qubits and is thus significantly
better than the Krylov-Operator method and the most
straightforward the exact diagonalization (ED) method.

B. Tensor-network methods

In this section, we discuss another class of methods that
have been used in the literature to calculate the OTOC,
which is based on time-evolving matrix product states
(MPSs) and matrix product operators (MPOs) [67,68,86–
88] and Sec. 8.4 of Ref. [89]. Unlike the exact diagonal-
ization and Krylov methods, these methods can be used
to study huge systems containing a few hundred spins;
the numerical cost increases linearly with L. The main
bottleneck here is the time scale. These methods always
produce a result for any time, but the result becomes more
and more inaccurate as the state and operator are evolved
longer and longer. In the following, we summarize the key
concept of these methods and discuss their application to
calculate the OTOC, assuming that readers have a basic
familiarity of the density matrix renormalization group and
time-evolution block decimation [90].

The central object in these methods is the matrix product
state. In the MPS, the wave-function amplitude is a product
of a series of matrices defined for each spin,

〈{s}|ψ〉 = As1
1 As2

2 · · · AsL
L . (114)

Fixing s to ↑ or ↓, As
i is a matrix associated with the

ith spin, and s is the physical index. The dimension of
the matrix χ is called the bond dimension. On the first
site and the last site, As is a vector so that the product

(a)

(b)

Time-splitting MPO

FIG. 9. Comparison of the squared commutator between σ z
r1

and σ z
r2

calculated using different methods. (a) Comparison
between the Heisenberg time evolution based on exact diag-
onalization (ED-Operator) and the Schrodinger time evolution
based on the Krylov method and quantum typicality (Krylov-
State). Only one random initial state is used in the Krylov-State
method. The squared commutators from the two methods agree
well with each other. (b) Comparison between the Krylov-State
method and MPO methods. The Krylov-State method is numer-
ically exact. The result from the MPO method, which involves
truncation errors, agrees perfectly with the exact result up to
Czz ∼ 1. The accuracy of the MPO results can be enhanced by
time splitting. The inset shows the same figure on a log-linear
scale, demonstrating that the three methods agree when C is
small. The maximal bond dimension of both MPO methods is
set to 32.

results in a number, the wave function amplitude of the
spin configuration {s}. The tensor network representation
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of an MPS is

|ψ〉 = .· · ·
χ

s

A
(115)

Analogously, one can also write down the matrix prod-
uct form of an operator, called MPO, in which case,
matrix A has two physical indices. The tensor network
representation of an MPO is similar to that of an MPS:

W = .· · ·
(116)

The MPS requires storing 2L matrices, the 2 arising from
the physical indices ↑ and ↓, in total 2Lχ2 complex num-
bers. Therefore, an MPS is a very compact approach to
represent a wave function that contains 2L numbers. As
expected, an MPS of a small bond dimension χ can only
represent a tiny portion of the Hilbert space, characterized
by low entanglement entropy. The entanglement entropy
of an MPS with bond dimension χ is maximal logχ ,
a constant, while the entanglement entropy of a random
state in the Hilbert space scales linearly with L. Fortu-
nately, the entanglement entropy of the ground state of
one-dimensional gapped systems exhibits area law, i.e.,
does not scale with system size, and can thus be captured
accurately.

A large toolbox for manipulating the MPS or MPO
has been developed over the years [89,90]. The key idea
behind studying dynamics using the MPS or MPO is to
evolve the state and operator while preserving the matrix
product form. However, unlike searching for the ground
state, the complexities of the simple initial states and ini-
tial operators increase over time, and in late time, the states
exhibit volume-law entanglement entropy. As a result, at
some point during the evolution, usually a short time scal-
ing as one over the interaction strength, the state cannot
be captured faithfully by an MPS with a reasonable bond
dimension. In practice, the quantities of physical interest
are local observables and correlation functions, instead of
the entire quantum state. To obtain the physical observable
〈O(t)〉 at a given time, one can repeat the simulation with
increasing bond dimension, and the result can be trusted if
it converges with the bond dimension.

There are two major approaches to evolving an MPS
or MPO: time-evolving block decimation (TEBD) and the
time-dependent variational principle (TDVP). In TEBD,
the local unitary gate is directly applied to the MPS and
increases the bond dimension of the MPS. Then the MPS
is truncated so that the bond dimension stays the same,
leading to the truncation error. Furthermore, the trunca-
tion error in TEBD does not necessarily respect conserved
quantities, such as the energy and charge, which start devi-
ating from their initial values after a short time scale. This

issue can be fixed by using the TDVP method to evolve the
state instead. In short, TDVP generates an effective Hamil-
tonian for the local tensor in the MPS, which depends
on other tensors. The effective Hamiltonian is used to
evolve the tensor unitarily. As a result, the total energy is
conserved by construction during the time evolution, and
TDVP can take into account other conserved quantities.
Although respecting conservation laws does not necessar-
ily ensure correct local observable, correlation function or
transport behavior, this is the first step towards approach-
ing the correct nonequilibrium state beyond a short time.
This is particularly important in the late-time regime where
hydrodynamics emerges and conserved quantities play a
crucial role.

1. MPS-based method

Now, we discuss applying these methods to calculate
the OTOC. Like methods using exact diagonalization, one
can also calculate the OTOC in either the Schrödinger or
Heisenberg picture. In Schrödinger’s picture, similar to
the exact diagonalization discussed before, the trace in the
OTOC F(t) is replaced by the average over an ensemble
of states. However, the ensemble of random states is not
feasible in tensor network methods because the random
states have large entanglement that the MPS cannot cap-
ture. Instead, in practice, an ensemble of random product
states is used. Fix the initial state as ψ . Either TEBD or
TDVP can be used to generate the two states

|ψ1〉 = eiHtWe−iHtV |ψ〉 , |ψ2〉 = VeiHtWe−iHt |ψ〉 .
(117)

Then the OTOC is just the overlap between the two
states followed by averaging over the initial states. The
two methods, dubbed the TEBD-MPS and TDVP-MPS
methods, respectively, which differ by the time evolution
method, are compared in detail in ref. [86] and bench-
marked with the numerically exact Krylov-State method.
As expected, the TDVP-MPS method produces more accu-
rate results as time passes a short time scale. Since the
numerical costs of the TDVP-MPS and TEBD-MPS meth-
ods are comparable, TDVP is the better approach to
calculate the OTOC in the Schrödinger picture. In the
state-based method, the primary source of error is the inca-
pability of representing the complicated state using an
MPS with a finite bond dimension.

2. MPO-based method

During the time evolution of a state, the entanglement
of the states increases uniformly across the whole system.
On the other hand, because of the emergent light-cone
structure in the Heisenberg evolution of a local opera-
tor shown in Eq. (13), the Heisenberg operator W(t) is
almost a product of identity operators I ⊗ · · · ⊗ I outside

010201-26



SCRAMBLING DYNAMICS. . . PRX QUANTUM 5, 010201 (2024)

the light cone and becomes complicated inside the light
cone. For this reason, the entanglement entropy of an oper-
ator (see Appendix A 2 b for a brief introduction on the
operator entanglement entropy), which can be regarded as
a state with doubled physical degrees of freedom, devel-
ops a light-cone profile as well, staying small outside the
light cone and becoming large within the light cone regard-
less of the time scale. Therefore, the part of the Heisenberg
operator outside the light cone can be captured accurately
using an MPO with a small bond dimension. This intuition
leads to the method of calculating the OTOC in the Heisen-
berg picture using an MPO. In the MPO-based method, the
main step is to evolve the Heisenberg operator, which is
similar to evolving the MPS by treating the MPO as an
MPS with doubled physical degrees of freedom. The time
evolution operator to evolve the operator state is

W(t) = UWU† → U ⊗ U∗ |W〉 . (118)

This can also be viewed as evolving the operator state
|W〉 using the “super-Hamiltonian” H ⊗ I − I ⊗ H ∗. The
time evolution can be implemented using either TEBD
or TDVP. The OTOC can be calculated once the MPO
form of the Heisenberg operator W(t) is obtained. In this
approach, it is more convenient to calculate the OTOC in
the form of a squared commutator

C(r, t) = 1
2L tr([W(t), Vr]†[W(t), Vr]),

where Vr, a local operator on site r, is scanned over the
system. Given the MPO of W(t), the MPO of the commuta-
tor [W(t), Vr] is obtained efficiently by modifying the local
tensor at site r as

[W (t), Vr] = ,· · ·

−= .

(119)

The bond dimension remains the same because Vr is a local
operator represented by the orange tensor with only phys-
ical indices. The squared commutator can be obtained by
contracting the MPO of the commutator with its Hermi-
tian conjugate copy. However, noting that C(r, t) is just the
square of the Frobenius norm of the commutator, this last
step can be replaced by evaluating the norm of the MPO
directly by treating it as an MPS. Evaluating the norm
of an MPS is a standard procedure in the tensor network
simulation. Calculating the norm then squaring it is much
more accurate than calculating the overlap between the
MPO and its Hermitian conjugate copy, especially when

C(r, t) is small. Figure 9(b) shows the squared commuta-
tors from the MPO method and the Krylov-State method
for 20 qubits. The MPO results are accurate when the
squared commutator is small, but starts to deviate from the
exact Krylov-State result from the Krylov-State method as
the squared commutator reaches about 1.

As shown in Ref. [68], because of the light-cone struc-
ture of the Heisenberg operator, the MPO method is very
accurate in capturing the tail of the OTOC even with a
bond dimension as small as 4, and can be used to obtain the
butterfly velocity. This method also clearly demonstrates
a broadened wavefront, agreeing with the general growth
form for p > 0, in contrast to the behavior in the Sachdev-
Ye-Kitaev (SYK) chain. Obtaining the asymptotic value
of p is quite subtle and requires accessing a wider space-
time region and larger bond dimension. The TEBD-MPO
method was also compared to the TDVP-MPS method by
Hémery et al. [86], who showed that both methods are
accurate in capturing the tail of the OTOC and tracking the
light cone. The TEBD-MPO method has two advantages
over the TDVP-MPS method. First, it does not require
sampling over the initial states and is thus free of statistical
error. Second, at given time t, the commutator of W(t) and
Vr and therefore C(r) for all r can be obtained efficiently
using Eq. (119). On the other hand, in the TDVP-MPS
method, in order to get C(r, t) for all sites r, initial states
Vr |ψ〉 with different r need to be evolved individually in
addition to sample |ψ〉.

One can also evolve the Heisenberg operator using
the TDVP method based on the super-Hamiltonian H ⊗
I − I ⊗ H ∗. The quantity made explicitly conserved in
the TDVP-MPO method, instead of the energy, is the
expectation value of the super-Hamiltonian

〈W| H |W〉 = tr(W†(t)HW(t))− tr(W(t)HW†(t)), (120)

which is just zero for a Hermitian operator W(t). In
practice, the TDVP-MPO method does not significantly
increase the accuracy of the TEBD-MPO method. It is less
accurate to capture the exponentially small value of the
OTOC because it does not directly take advantage of the
light-cone structure. However, the TDVP-MPO method is
still a very useful and convenient method to use when
the system has long-range interaction [47], in which case
the circuit from Trotterization does not admit the structure
shown in Fig. 2. It is also possible to generalize the TDVP-
MPO method to conserve energy or/and charge, which
remains to be explored.

A few remarks are in order. First, the MPO-based
method utilizes the light-cone profile of the entanglement
structure of the Heisenberg operator. It becomes exact if
the operator entanglement entropy is bounded, such as in
the noninteracting system. Second, in a chaotic system,
because of the rapid generation of operator entanglement
entropy within the light cone, the tensor network based
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on the method is not expected to capture the growth
and saturation of C(r, t). However, the accuracy of the
MPO-based method can be improved significantly with
increasing computational cost. The idea is to evolve both
operators W and V, forward and backward, respectively,
and evaluate

1
2L tr([W(t/2), Vr(−t/2)]†[W(t/2), Vr(−t/2)]). (121)

This expression is equivalent, since [W(t/2),
Vr(−t/2)] = e−iHt/2[W(t), Vr]eiHt/2. This time-splitting
method divides the entanglement growth within the light
cone into two operators and reduces the truncation error.
The cost is that each Vr needs to be evolved individually in
order to obtain the full space-time profile of C(r, t). In addi-
tion, the fast construction of the commutator in Eq. (119) is
no longer applicable, since now the commutator is between
two time-evolved Heisenberg operators, both taking MPO
form with bond dimension χ . As a result, the MPOs of
W(t/2)V(−t/2) and W(t/2)V(−t/2) have bond dimension
χ2, and the MPO of their difference, the commutator, has
bond dimension 2χ2. Graphically,

W (t/2) = · · ·

V (−t/2) = · · ·

[W (t/2), Vr(−t/2)] =

,

,

.· · ·

(122)

Fixing the physical indices to be α and β, the local ten-
sor of the MPO of the commutator is constructed from the
local tensor of the two Heisenberg operators

=

⎛
⎜⎝ ,

⎞
⎟⎠ , = ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

+

−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= .

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(123)

The minus sign in the local tensor of the last site
implements the difference between the two terms in the

commutator. Once the MPO of the commutator is con-
structed, its Frobenius norm and thus the OTOC C(r, t)
can be calculated in the same way as before. As shown
in Fig. 9(b), the time-splitting approach significantly
enhances the accuracy of the MPO in the late-time regime.
Finally, in all the tensor network–based methods applied
to a system with about 100 spins, because of the targeted
intermediate time scaling of about 100/J , where J is the
coupling constant, one should carefully check the conver-
gence of the result with the Trotter time step. In general,
the time step dt should be reduced to about 0.005/J to
avoid accumulating the Trotter error.

VII. EXPERIMENTAL SCHEMES

As we enter an era of quantum simulation, marked
by the existence of multiple experimental platforms with
unprecedented power to control and detect quantum many-
body physics far from equilibrium, there is a surge of inter-
est in measuring scrambling dynamics and OTOCs. The
essential step required to measure an OTOC is to write it as
an observable or a combination of observables, including
specifying the initial states, the time evolution operators,
and the measurements. In this section, we briefly dis-
cuss several such experimental schemes, including those
already implemented in the laboratory. This discussion
focuses on the essence of several OTOC measurement pro-
tocols, and it does not delve into the experimental details
of various concrete experiments. These schemes fall into
two main categories, one requiring the rewinding time and
the other requiring measurements averaging over random
states.

A. Rewinding time

The experimental schemes falling into this category
require engineering both the forward evolution operator
U(t) and the backward time evolution operator U(−t), and
is closely related to the Loschmidt echo [91,92]. The first
scheme that we describe is based on an interferometric pro-
tocol [93]. This scheme requires introducing a reference
qubit that is initialized in state |+〉 = (|0〉 + |1〉)/√2. The
initial state of the system and the reference qubit is

|
0〉 = |+〉 |ψ〉 . (124)

To measure OTOC 〈W†(t)Vx
r W(t)Vx

r〉, one first applies the
controlled-V gate to the state (assuming that V is unitary),
acting on site r and controlled by the reference qubit, then
evolves the state by a butterfly unitary circuit Ubutterfly, and
applies the controlled-NOT (CNOT) gate. The butterfly uni-
tary circuit Ubutterfly does not act on the ancillary qubit and
is of the form

Ubutterfly = U†(t)WU(t) = W(t), (125)
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where U(t) is an arbitrary unitary circuit and W is a local
unitary gate. The butterfly circuit is just another name for
the Heisenberg operator of a local unitary operator. After
these steps, the state is

|
〉 = 1√
2
(|0〉 Ubutterfly |ψ〉 + |1〉 σ x

r Ubutterflyσ
x
r |ψ〉)

= 1√
2
(|0〉 W(t) |ψ〉 + |1〉 σ x

r W(t)σ x
r |ψ〉). (126)

The last step is to measure σ x on the reference spin. The
expectation value, which can be obtained by running the
circuit and measuring repetitively, is

〈
| σ x
R |
〉 = Re 〈ψ | W†(t)V†

r W(t)Vr |ψ〉 (127)

in the form of an OTOC. The imaginary part of the OTOC
can be obtained by measuring σ y instead of σ x. This pro-
tocol works for an arbitrary initial state of the system, but
requires introducing the reference spin and the CNOT gate
and is used in Ref. [94].

For certain initial states, introducing the reference qubit
is not necessary. Consider an initial state that is an eigen-
state of a local operator, for instance, σ x

r . This means that
the local qubit of the state is either |+〉 or |−〉. The idea
is to measure whether the qubit at site r remains an eigen-
state of σ x

r after evolving by the butterfly circuit. This is
quantified by its expectation value, given by

〈ψ(t)| σ x
r |ψ(t)〉 = 〈ψ | W†(t)σ x

r W(t) |ψ〉 . (128)

If the support of W(t) does not overlap site r then the
local qubit remains an eigenstate; otherwise, the expec-
tation value decays. Formally, one can write the above
equation in the form OTOC 〈ψ | W†(t)σ x

r W(t)σ x
r |ψ〉, using

the fact that state |ψ〉 is an eigenstate of σ x
r . This scheme

is carried out in Refs. [95–97]
In the previous example, the OTOC is measured with

respect to a pure state. To directly measure the OTOC
for the infinite-temperature ensemble, the most straight-
forward setup is to prepare double copies of the system,
such as a ladder. The initial state is a product of Bell states
across each rung |
〉 = ∏ |0〉i |0i′ 〉 + |1〉i |1i′ 〉. The Hamil-
tonian of the full system H = H ⊗ I − I ⊗ H ∗. Then the
OTOC can be cast into an observable in this double copied
system

1
trI

tr(W†(t)V†W(t)V) = 〈
| V†eiHtW ⊗ W†eiHtV |
〉 .

(129)

Replacing the initial state |
〉 with the thermal field double
state |√ρ〉 generalizes this scheme to measure the OTOC
at finite temperature for a specific generalization [98]. The
double copy setup is also essential to directly realize the

many-body teleportation protocol discussed in Sec. IV,
where one copy represents the system and the other copy
represents the memory qubit owned by Bob. The many-
body teleportation protocol has been implemented in ion
trap [99] and superconducting qubit [100] experiments.

It is also possible to measure the OTOC at infinite tem-
perature without introducing the second copy in NMR
experiments [101–103]. In this setup, the initial state is
a high-temperature mixed state in the presence of the
magnetic field along the z direction. The initial state is
given by

ρ0 = 1
trI

(
I + ε

∑
r

σ z
r

)
. (130)

The density matrix is then evolved by unitary time evo-
lution in the form of the butterfly circuit, which can be
engineered by a sequence of pulses. In the evolved mixed
state, the total magnetization is given by

〈σ z〉 = tr(Uρ(t)ρ0U†
ρ(t)σ

z)

= ε

trI
tr
(

W(t)
∑

r

σ z
r W†(t)

∑
r

σ z
r

)
(131)

in the form of an OTOC. Note that the identity part of the
initial mixed state does not contribute to the expectation
value. In an NMR experiment, a natural choice of W is
exp(iθ

∑
r σ

z
r ) from a pulse, which is a nonlocal operator.

Then result 〈σ z〉 is a periodic function in θ with period 2π ,
denoted 〈σ z〉θ . Using the Lehmann representation, one can
show that

∫ 2π

0
dθ

∫
dωω2S(θ)e−iωθ ∼ 1

trI
tr([Sz(t), Sz][Sz(t), Sz]).

(132)

This squared commutator approximately counts the num-
ber of spins within the support of the local Heisenberg
operator σ z(t). In practice, one can perform a discrete
Fourier transformation on a finite number of measurement
results with a discrete value of θ . We note that it is also pos-
sible to measure the OTOC between two local operators
using selective pulses for an ensemble of small molecules
[101].

B. Randomized measurement

The key ingredient for the above protocols is the butter-
fly circuit Ubutterfly, which requires implementing both U(t)
and U†(t), namely, effectively rewinding the time, and can
be challenging for generic U. An experimental protocol
that bypasses this requirement is to exploit statistical cor-
relation from randomized measurement [104], which has
been implemented in NMR [105] and ion traps [106]. In its
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simplest form, this protocol considers the product of two
expectation values

F(ψ) = 〈ψ | W(t) |ψ〉 〈ψ | V†W(t)V |ψ〉 . (133)

When the initial state is averaged over the Haar ensemble,
using the Haar random average formula in Eq. (A17b) in
Appendix A 4, the above quantity leads to

EψF(ψ) = 1
2N (2N + 1)

tr(W(t))tr(V†W(t)V)

+ 1
2N (2N + 1)

tr(W(t)V†W(t)V). (134)

Typically, the first term is O(1), while the second term,
which is the important piece, is O(2−N ). However, when
W is a traceless operator, the first term vanishes and only
the second term, the OTOC, survives. This scheme can
also be extended to obtain the leading finite-temperature
correction of the OTOC as well. In this protocol, the major
challenge is to prepare the Haar random initial states.
Alternatively, one can also estimate the OTOC by sam-
pling over the local unitary that acts on each qubit and
averaging the initial states in the computational basis in a
specific manner. In this approach, the quantity that is being
considered is

F�n = 〈ψ�n| W(t) |ψ�n〉 〈ψ0| V†W(t)V |ψ0〉 . (135)

Compared with Eq. (133), the two expectation values are
measured from two different states |ψ�n〉 and |ψ0〉. The state
|ψ�n〉 is generated by acting with local unitaries on a state
|n〉 in the computational basis

|ψ�n〉 = u1 ⊗ · · · ⊗ uN |�n〉
= u1 |n1〉 ⊗ u2 |n2〉 ⊗ · · · ⊗ uN |nN 〉 , (136)

where ui is drawn from the Haar ensemble or any ensemble
producing the same averaged result as the Haar ensem-
ble involving four copies of the state (such an ensemble
is called a 2-design) and ni ∈ {0, 1}. The state |ψ0〉 is gen-
erated from the all-zero state |0〉 using the same unitaries.
The random average of the unitaries can be performed
independently on each qubit using Eqs. (A17). To gain
insight into the result, we first average F�n over u1. We
define the following operators acting on the first qubit:

O1 = 〈un2
2 | · · · 〈unN

N | W(t) |un2
2 〉 · · · |unN

N 〉 ,

Õ1 = 〈u0
N | · · · 〈u0

2| V†W(t)V |u0
2〉 · · · |u0

N 〉 .
(137)

Averaging over u1 leads to

Eu1(F�n) = 2 − δn1,0

6
tr(O1)tr(Õ1)+ 2δn1,0 − 1

6
trn1(O1Õ1).

(138)

The trick here is to use a weighted sum over n1 to cancel
the first term. One can show that

∑
n1

(
− 1

2

)n1

Eu1F�n = 1
4

tr(O1Õ1). (139)

Consecutively averaging over other local unitaries ui and
summing over ni in a similar fashion leads to the OTOC

∑
�n

(
− 1

2

)∑
ni

Eu1···uN (F�n) = 1
4N tr(W(t)V†W(t)V).

(140)

One can also extend this protocol to directly measure the
operator probability distribution defined in Sec. V [107].

VIII. EPILOGUE

In this tutorial, we have covered the definition of quan-
tum scrambling dynamics in generic quantum many-body
systems, which is distinct from thermalization. While ther-
malization concerns the local density matrix, scrambling
dynamics manifests in nonlocal degrees of freedom. We
have shown that scrambling dynamics can be understood
by treating unitary dynamics as a quantum communica-
tion protocol. Scrambling, by definition, is characterized
by the time-dependent mutual information between a ref-
eree qubit, which is initially entangled with one of the
qubits, and a partition of the system. It also affects other
nonlocal dynamical properties of the system, such as the
entanglement entropy and entanglement spectrum [108].
Importantly, we have shown that one does not need full
access to the system to recover an initial qubit state pre-
pared in one of the qubits in the many-body system, even
when the system is fully scrambled. In the Hayden-Preskill
setup, which involves a maximally mixed initial state, the
mutual information can be converted to the OTOC. We
have demonstrated the important role of OTOCs in quan-
tum information and dynamics and discussed their general
behavior in local systems featuring ballistic information
dynamics. We have presented several toy models where
the OTOC can be calculated exactly, as well as numerical
tools to compute OTOCs in generic systems. We have also
surveyed recent exciting experimental progress in detect-
ing information dynamics. However, it is not practical to
cover all aspects of this large field in this tutorial arti-
cle. There are several related interesting topics that we did
not discuss, and we would like to briefly mention them
here.

A. Finite temperature

First, this tutorial largely considered scrambling at infi-
nite temperature. Physically, this amounts to saying that
Alice and Bob were using a medium at high temperature
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compared to the scales in the intrinsic Hamiltonian. Mathe-
matically, this means that we considered OTOCs where the
expectation was taken in the maximally mixed state. This
regime is ideal for understanding the basics of information
dynamics since we do not have to deal with any static cor-
relations in the quantum state. However, it is interesting
to understand information away from infinite temperature,
especially in the context of black hole physics.

Given a quantum state ρ, one can define an OTOC
in this state by Fρ = tr(ρW(t)VW(t)V). When ρ is the
maximally mixed state, this recovers the simple trace
expression we considered for most of this tutorial. How-
ever, if Alice and Bob wish to use a medium at noninfi-
nite temperature to convey quantum information then one
expects so-called thermal OTOCs to be relevant where
ρ ∝ e−βH is a thermal equilibrium state. However, the
physics of scrambling is more complicated in this case.
This is because there are multiple versions of Fρ called
“regulated” OTOCs,

F̃ρ = tr(ρq1W(t)ρq2Vρq3W(t)ρq4V), (141)

where qi ∈ [0, 1] and
∑

i qi = 1. This class of objects
corresponds to displacing the operators W(t) and V
in imaginary time (when ρ ∝ e−βH is the thermal
state).

The case q1 = 1, qi>1 = 0 is the usual OTOC in state
ρ. The case qi = 1/4 is a particularly natural choice
from a mathematical point of view; this is the form of
the OTOC to which the chaos bound [11] applies. In
early examples, different regularizations gave equivalent
characterizations of the scrambling dynamics. However,
it was later discovered that the butterfly velocity can
depend on the choice of regularization [109–111]. This
raises the question of which regularization is most rele-
vant for information spreading. A finite-temperature ver-
sion of some of our information calculations was given
in an appendix of Ref. [12]. A notion of “perfect size
winding” [112] has also been shown to be related to
optimal many-body teleportation at finite temperature.
Both of these cases are related to the (1/2, 0, 1/2, 0) and
(1/4, 1/4, 1/4, 1/4) OTOCs, but there is still work to do to
elucidate the general structure of information spreading at
finite temperature. There are several proposals to measure
the OTOC at finite temperature for different regulariza-
tions [98,104,113]; recently, the OTOC with regularization
(1/2, 0, 0, 1/2) has been measured experimentally in a
small system [114].

B. Symmetries

Symmetries and conservation laws can strongly affect
scrambling dynamics. The basic intuition is that an initial
state cannot scramble as much in the presence of con-
served quantities due to the restricted Hilbert space. For
instance, the early growth rate of the OTOC is suppressed

by temperature [11] and/or chemical potentials [115,116].
Moreover, in extended systems, conserved quantities usu-
ally lead to a slow mode associated with their transport,
which can significantly slow down the scrambling dynam-
ics and cause a prolonged power-law tail of the OTOC in
the late-time regime [53,77–79,117].

An interesting question regarding symmetry is how it
affects the information recovery fidelity in the Hayden-
Preskill protocol discussed in Sec. IV. It boils down to
studying the late-time value of the OTOC appearing in
Eq. (72), which we repeat here:

FEPR =
(

1
4|E|

1
2N

∑
W1,VE

tr(W1(−t)VEW1(−t)VE)

)−1

(142)

with W(−t) = UWU†. This equation holds for any uni-
tary operator U acting on qubit systems. In the presence
of conserved quantity Q, we have [U, Q] = 0. Because of
the block diagonalized structure U, the late-time value of
OTOCs cannot be estimated using the Haar random uni-
tary such as in Eq. (84). Instead of scaling with 1/2N , one
can show that in systems with conserved charge or energy,
the late-time value of the OTOCs scales as O(1/poly(N ))
[116,118]. Larger symmetry groups can even lead to a
finite late-time value of OTOCs and thus significantly
suppress the recovery fidelity [119,120].

C. More on wavefront broadening

Another direction concerns conjectured universality in
the OTOC structure in locally interacting systems. In
Sec. V C we indicated that semiclassical or large-N mod-
els and random circuit models gave two distinct classes
of OTOC behavior, and we argued that the random circuit
behavior was generic, i.e., that finite-N corrections would
qualitatively change the large-N form of the OTOC. It is
important to better understand the universality classes that
can arise, especially in Hamiltonian systems at noninfi-
nite temperature. In the literature, OTOCs are sometimes
analyzed along a ray within the light cone in terms of a
velocity-dependent Lyapunov exponent [74,121],

C(x, t) ∼ eλ(v)t, (143)

where v = |x|/t. For instance, λ(v) = λ(1 − v/vB)
p+1 for

the growth form in Eq. (94). The definition of the but-
terfly velocity is λ(vB) = 0, and at large N one typically
finds that ∂vλ(v)|vB �= 0. This corresponds to p = 0 in our
discussion above. By contrast, the one-dimensional ran-
dom circuit form has ∂vλ(v)|vB = 0, which corresponds
to p = 1. As we said, the latter form is conjectured to
be generic in one dimension, but it is important to better
understand this issue.
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D. Quantum chaos

Another motivation for studying OTOCs in the liter-
ature lies in their connection to quantum chaos. In the
semiclassical regime, schematically, one can replace the
commutator in the squared commutator with a Poisson
bracket and obtain [25,122]

C = 1
trI

tr([x(t), p]2) ≈ {x(t), p}2 =
(
∂x(t)
∂x

)2

, (144)

which measures the sensitivity of the final position to the
initial position, and thus classical chaos. Then it seems nat-
ural to promote the squared commutator to be a diagnosis
of quantum chaos [11]. However, it turns out to be quite
subtle [123]. For instance, although C is expected to exhibit
early-time Lyapunov growth in the semiclassical limit
of many-body systems before saturation [122,124,125],
not all quantum many-body systems have a semiclassi-
cal limit, some large-N limit in which quantum fluctuation
is suppressed. The random quantum circuit introduced in
Sec. V D does not have the exponential growth behavior
expected to be a diagnosis of quantum many-body chaos.
Furthermore, some integrable systems exhibit early-time
exponential growth due to unstable dynamics [126–128].
Therefore, while the late-time value of the OTOC has a
clear physical meaning, as discussed in Sec. V, the connec-
tion of the early-time growth of the squared commutator
to previously proposed measures of quantum many-body
chaos (see Refs. [129,130] for discussions), such as the
spectral form factor from the random matrix behavior,
needs to be further settled. A more general question is
whether quantum scrambling and quantum many-body
chaos measure the same property, and if not, when they
differ from each other. This discussion also largely hinges
on a precise definition of many-body chaos.

E. More on numerical methods

Ongoing experiments on scrambling and nonequilib-
rium quantum many-body dynamics in general are reach-
ing system sizes beyond the capability of exact diagonal-
ization, calling for new numerical tools. In Sec. VI, we
discussed MPO- and MPS-based methods to calculate the
tail of OTOCs for large system sizes in one dimension, uti-
lizing the light-cone structure of operator spreading. One
direction is to extend such a method to higher dimensions
using other ansatzes for states or operators. For example,
Wu et al. [131] calculated the OTOCs of the mixed-
field Ising model in two dimensions using the restricted
Boltzmann machine.

Moreover, it would be ideal to develop general-purpose
numerical tools to directly simulate many-body teleporta-
tion for arbitrary unitary circuits with local structure and
initial states for large system sizes of about 100 qubits. The
conventional MPS- or MPO-based method does not work

due to the rapid growth of the entanglement entropy that an
MPS with a finite bond dimension cannot capture. It would
be interesting to explore the effectiveness of other wave-
function ansatzes, such as various neural network states or
the multiscale entanglement renormalization ansatz, in this
context.

Understanding scrambling dynamics, i.e., how infor-
mation flows from local to nonlocal degrees of free-
dom, is also useful for developing numerical methods to
simulate conventional thermalization dynamics of local
observables and calculate transport coefficients, which are
usually given by time-ordered two-point correlation func-
tions. Schematically, in a strongly interacting system, the
equation of motion of single-qubit observables depends on
the equation of motion of two-qubit observables, which
depends on three-qubit observables, leading to an infinite
series of equations involving arbitrary orders of correla-
tion functions that becomes impractical to solve. Trans-
port properties are captured by low-order correlations. It
is tempting to assume that the dynamics of sufficiently
high-order correlation functions do not feed back to the
dynamics of simple correlation functions and to truncate
the infinite series of equations or simplify the higher-order
equations by approximation. These ideas have led to mul-
tiple new numerical algorithms [132–136]. There is still
work to do to justify the assumptions and better under-
stand the interplay between the scrambling dynamics and
dynamics of local observables.

We believe that we are only just starting to explore this
exciting field of quantum information scrambling. With
the many connections discovered so far and the prospect
of new large-scale experiments on the horizon, there are
many exciting possibilities to explore, including the dis-
covery of new maximally chaotic quantum systems, the
laboratory simulation of holographic models of quantum
gravity, a deeper understanding of quantum chaos, new
insights into transport in strongly interacting systems, and
much else. We therefore hope that the reader will consider
getting into this field and bringing a new point of view.
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APPENDIX A: USEFUL DEFINITIONS,
OPERATOR IDENTITIES, AND ENTROPY

INEQUALITIES

1. Matrix norm

We summarize various matrix norms used in this
tutorial. Given an operator O acting on a Hilbert space with
dimension d, we denote by λi the singular values of O. By
definition, the λi are either positive or zero. We order the
singular values so that λ1 ≤ λ2 ≤ · · · ≤ λd. Equivalently,
the λi are the positive square roots of the eigenvalues of
the Hermitian operator O†O. Throughout this tutorial, we
use the following conventions for matrix norms,

‖O‖1 =
d∑
i

λi = tr(
√

O†O), (A1a)

‖O‖2 =
√√√√ d∑

i

λ2
i =

√
tr(O†O), (A1b)

‖O‖∞ = λd. (A1c)

Here ‖O‖1 is the trace norm, ‖O‖2 is the Frobenius norm,
and ‖O‖∞ is the operator norm, which is the largest
singular value of O. We have the inequalities

1
d
‖O‖2

2 ≤ ‖O‖2
∞. (A2)

2. Bipartite entanglement entropy

a. State entanglement

In this section, we provide the definition of the bipar-
tite entanglement entropy for a pure state. We consider
a pure state |AĀ〉 of a quantum system consisting of a
region A and its complement Ā. One can perform Schmidt
decomposition on the state,

|AĀ〉 =
∑

n

λn |A〉n ⊗ |Ā〉n . (A3)

The states |A〉n and |Ā〉n form an orthogonal basis in
regions A and Ā, respectively, namely, 〈An|Am〉 = δmn and
〈Ān|Ām〉 = δmn. The coefficients λn, called the singular
values, are all positive. Normalization requires that

∑
n

λ2
n = 1. (A4)

From the Schmidt decomposition, one can obtain the
reduced density matrix of region A,

ρ(A) =
∑

n

〈Ān |AĀ〉 〈AĀ| Ān〉

=
∑

n

λ2
n |A〉n 〈A|n . (A5)

Then the von Neumann bipartite entanglement entropy is

S(A) = −tr(ρ(A) log(ρ(A))) = −
∑

n

λ2
n log λ2

n. (A6)

One can generalize it to the Rényi entropies

S(α)(A) = 1
1 − α

log(trρα) = 1
1 − α

log
∑

n

λ2α
n (A7)

for α > 0. Taking the limit α → 1 yields the von Neumann
entropy.

Crucially, since the entanglement entropies depend only
on the singular values λn and not on the basis states, the
entanglement entropies of region A are always the same as
those of its complement Ā,

S(α)(A) = S(α)(Ā). (A8)

Note that this is only true for a pure state.

b. Operator entanglement

One can generalize the concept of the bipartite entan-
glement entropy to a many-body operator Ô. The opera-
tor entanglement quantifies how well an operator can be
approximated by the product of two operators, OA and OĀ,
in two complement regions.

The definition of the operator entanglement follows
closely that of a pure state. The key idea is to map a many-
body operator Ô to a fictitious quantum state in a doubled
Hilbert space |O〉. Then, the operator entanglement entropy
of O is defined as the regular state entanglement entropy of
|O〉, which is defined in the previous section.

Let us first consider a single-qudit operator to under-
stand the map. In the computational basis, the operator
takes the form

Ô =
∑
nm

|n〉 Onm 〈m| , (A9)

and the corresponding two-qudit state is

|O〉 = 1√
d

∑
nm

Onm |n〉 |m〉 . (A10)

Formally, the state is obtained by acting Ô on the first qudit
of an EPR pair, defined as

|I〉 = 1√
d

∑
n

|n〉 |n〉 . (A11)

It is straightforward to show that Ô |I〉 = |O〉, and the state
is normalized if the normalization of the operator is fixed
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to tr(OO†) = d. The following graph shows the map for
the single-qudit operator:

Ô = , |I〉 = , |O〉 = Ô |I〉 = .
(A12)

For N qudits, we define the state |I〉 of 2N qudits as a
product of N local EPR pairs,

|I〉 =
1

dN/2

N∏
i

∑
n

|ni〉 |ni〉

= . (A13)

Now the operator Ô, acting on N qudits in the original sys-
tem, can be represented as the following tensor network
(note that the bond dimension of the horizontal line can in
general be exponentially large for complicated operators):

Ô = .
(A14)

The operator state |O〉 for an N -qudit operator Ô is
obtained by acting Ô on the odd qudits in state I ,

|O〉 = Ô |I〉

= .

(A15)

The graph illustrates the operator-to-state mapping for five
qudits in the original system (equivalent to ten qudits in the
doubled system). If Ô is a product operator, for instance,
I ⊗ I ⊗ X ⊗ X ⊗ I , then the corresponding operator state
is a product state with zero entanglement. The bipar-
tite entanglement of the state after the mapping, dubbed
the operator entanglement, characterizes the entanglement
structure of the operator. It quantifies how well a many-
body operator can be approximated by the product of
two operators in complement regions. The operator entan-
glement also determines the required bond dimension of
the MPO to represent the operator faithfully and thus
quantifies the computation resource to store the operator
classically.

3. Entropy inequalities

The following is a list of useful entropy inequalities:

〈ψ |φ〉 ≤
√

〈ψ |ψ〉 〈φ|φ〉 (Cauchy-Schwarz inequality),

S(A)+ S(B) ≥ S(AB) (subadditivity),

|S(A)− S(B)| ≤ S(AB) (triangle inequality),

S(AB)+ S(BC) ≥ S(ABC)+ S(B) (strong subadditivity),

trρ1(log2 ρ1 − log2 ρ2) ≥ 1
2 ln 2

‖ρ1 − ρ2‖2
1 (Pinsker’s inequality).

We recommend the lecture notes by Preskill [137, Chap.
10] on quantum computation and the introductory arti-
cle by Witten [138] for a brief description of entropy
inequalities.

4. Operator identities

Now we summarize some operator identities that are
repeatedly used throughout this article. For a quantum
many-body system with dimension d, a complete operator
basis S for a quantum system satisfies the conditions

1
d
(S†S ′) = δSS′ ,

1
d

∑
S

S†
abScd = δadδbc. (A16)

The ensemble average of the d × d Haar random unitary
matrix obeys

E
(
Ua′aU∗

b′b
) = 1

d
δa′b′δab, (A17a)

E(Ua′aU∗
b′bUc′cU∗

d′d)

= 1
d2 − 1

(δa′b′δc′d′δabδcd + δa′d′δb′c′δadδbc)

− 1
d(d2 − 1)

(δabδcdδa′d′δb′c′ + δa′b′δc′d′δadδbc).

(A17b)
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APPENDIX B: OPERATOR STRINGS AND THE
OTOC IN QUDIT SYSTEMS AND MAJORANA

SYSTEMS

1. OTOC in qudit systems

As a generalization of the Pauli matrix, a complete basis
of operators in q-dimension Hilbert space can be defined as

σmn =
q−1∑
k=0

|k〉 〈k + m| exp
(

i
2π
q

kn
)

. (B1)

This is a unitary but not a Hermitian basis. These operators
obey

1
q

tr(σ kn†
σ k′n′

) = δkk′δnn′ . (B2)

They also satisfy the completeness relation

1
q
σ

†,mn
ab σmn

cd = δadδbc. (B3)

Similar to the qubit system, a Heisenberg operator in the
system containing multiple qudits can be expanded in the
operator string basis

W(t) =
∑
S
α(S), (B4)

where S is a product of operators σmn
r acting on each qudit.

Using the completeness relation, one can show that the
averaged OTOC is

1
q2

1
qN

∑
mn

tr(W†(t)σmn,†
r W(t)σmn

r )) =
∑
Sr=I

|α(S)|2. (B5)

It measures the probability that the operator on the rth qubit
in W(t) is the identity. From this relation, one can also show
that the averaged squared commutator

1
q2 − 1

∑
mn

1
qN ‖[W(t), σmn

r ]‖2
2 = 2q2

q2 − 1

∑
S(r) �=I

|α(S)|2.

(B6)

In the scrambling limit, the operator string reaches a
local equilibrium where each on-site operator is equally
probable, and the averaged squared commutator reaches 2.

2. OTOC in Majorana systems

Consider a system of N Majorana fermions, labeled
χα , which obeys the commutation relation {χα ,χβ} = δαβ .

A conventional basis for operators in this system is the
Majorana string

S = im(m−1)/22m/2s1s2 · · · sN , (B7)

where sr can be either χr or Ir and m counts the number
of Majorana operators in the string. The factor im(m−1)/2 is
to ensure the Hermicity of S and 2m/2 is to ensure the nor-
malization trS2 = trI . The Heisenberg operator χ(t) can
be expanded in this basis as

χ(t) = 1√
2

∑
α(S , t)S . (B8)

The expansion contains only an odd number of Majorana
operators because the fermion parity is conserved. The
unitary quantum dynamics ensures that

∑
S |α(S)|2 = 1

for all time. Therefore, |α(S)|2 can be interpreted as a
probability distribution. Then the OTOC can be written as

F(r, t) = 1
trI

tr(χ(t)χrχ(t)χr) = −1
4

+ 1
2

∑
sr=χr

|α(S)|2.

(B9)

It is directly related to the probability that the Majorana
operator χr appears in the operator string. In the scram-
bling limit, the Majorana operator and the identity operator
have the same probability to appear and F(r, t) approaches
0. In the Majorana system, the counterpart of the squared
commutator is the squared anticommutator

C(r, t) = 4
trI

tr({χ(t),χr}{χ(t),χr}) = 4
∑

sr=χr

|α(S)|2.

(B10)

In the scrambling limit, C(r, t) approaches 2, the same
value as that in the qudit system.

APPENDIX C: OTHER TOY MODELS

This section sketches how the OTOC is calculated in
various models in addition to the random circuit model
presented in the main text.

1. Free fermions

We start with noninteracting systems. Although one
should not expect these models to be generic, they provide
important lessons on possible functional forms regard-
ing the tail of the OTOC since the Lieb-Robinson bound
applies to the noninteracting systems as well. Consider a
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noninteracting Majorana system described by the Hamil-
tonian

H = 1
2

∑
a,b

hrr′χrχr′ , (C1)

where χ is the Majorana operator that obeys the com-
mutation relation {χr,χr′ } = δrr′ . The Hermicity of H
requires that hrr′ = −h∗

rr′ and hrr′ = −hr′r. Therefore, h is
a purely imaginary antisymmetric matrix. In addition, we
assume that H is translational symmetric and can thus
be diagonalized by a Fourier transformation. Introduce
χk = ∑

r(1/
√

N )eikrχr satisfying {χk,χk′ } = δk,−k′ . Then
the Hamiltonian can be written as

H = 1
2

∑
k

εkχ−kχk. (C2)

The spectrum εk is an odd function in k because matrix h is
imaginary and antisymmetric. The goal here is to calculate
the OTOC

F(r, t) = 1
trI

tr(χ0(t)χrχ0(t)χr), (C3)

or, equivalently, the squared anticommutator defined in
Appendix B 2,

C(r, t) = 4
trI

tr({χ0(t),χr}{χ0(t),χr}). (C4)

Using the Hamiltonian in the momentum space, one can
show that the Heisenberg operator χ0(t) is

χ0(t) =
∑

r

g(r)χr, (C5)

where

g(r) =
∑

k

1
N

eiεkt−ikr = 1
2π

∫
eiεkt−ikrdk. (C6)

Because εk = −ε−k, the coefficient g(r, t) is real, as
expected from expanding the Hermitian operator χ0(t).
The fact that only a single Majorana operator appears in the
expansion is because of the noninteracting Hamiltonian.
In general, Majorana strings of all lengths would appear.

From g(r), one can obtain the OTOC as

C(r, t) = 4g2(r, t). (C7)

Therefore, the behavior of C(r, t) is controlled by g(r, t),
which can be analyzed using the saddle-point approxima-
tion. We expand the function around k0 as

g(r, t) ∼
∫

dδk
2π

exp
{

i(v(k0)t − x)δk

+ i
2
ε
(2)
k0

tδk2 + i
6
ε
(3)
k0

tδk3 + · · ·
}

, (C8)

where v(k0) is the group velocity at k0. One can always
find suitable k0 that make the first derivative term vanish
for |x| < max(|v(k0)|)t, while it is not possible to do so if
|x| > max(|v(k0)|)t. This leads to a change of behavior of
g(x, t) at |x| = max(|v(k0)|)t, indicating that the butterfly
velocity vB is the maximal velocity. In the region x > vBt,
the first-order derivative term is always nonzero. We keep
up to the third-order term and obtain

g(r, t) ∼ 1
2π

∫
dδkei(vBt−r)δk+iε(3)k0

tδk3/6

∼ 1
t1/3

Ai
(

r − vBt

(−ε(3)k0
t/2)1/3

)
, (C9)

where Ai(Z) is the Airy function. Note that here ε(3)k0
is

negative since the group velocity is maximal at k0. In the
limit that r − vBt 
 |∂3

k ε(k0)t/2|1/3, we can use the asymp-
totic form of the Airy function and obtain Eq. (93). In this
case, the wavefront broadens subdiffusively with δr ∼ t1/3

and the broadening exponent p = 1/2. On the other hand,
in the long time limit t 
 r/vB, one can find a k0 that
makes the first derivative vanish and perform the Gaus-
sian integral to get g(r, t) ∼ 1/t1/2. As a result, in the long
time limit C(r, t) decays to 0 as 1/t in the noninteract-
ing systems. This is in sharp contrast with a scrambling
system where C(r, t) approaches 2 in the long time limit.
These results from saddle-point analysis can be explicitly
checked by exact calculation using the nearest-neighboring
hopping model given by hrr′ = iδr,r′+1 − iδr,r′−1. In this
case, εk = sin k and g(r, t) = Jr(t), a Bessel function.

2. Brownian models

We have seen that the random circuit model and the
SYK model give rise to distinct functional forms of the
OTOC. Both cases feature a ballistic light cone, but
the wavefront broadens diffusively in the random circuit
model, while the wavefront is sharp in the SYK model.
The question then arises which, if any, of these char-
acteristic shapes describes the generic case with a finite
local Hilbert space dimension. Unfortunately, this question
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cannot be reliably answered using small-sized numerical
simulations. These exhibit ballistic expansion with some
broadened wavefront, but it is unclear if the broadening
will vanish in a large system, tend to the diffusive limit, or
have some other characteristic form. Noninteracting par-
ticles exhibit a ballistic expansion of C with yet another
characteristic broadening of the wavefront (C does not sat-
urate at late time in this model, instead falling back to
zero). One should not expect the noninteracting limit to be
generic, but the spectrum of multiple different universality
classes is certainly raised.

To answer this question, we now introduce another class
of models known as Brownian models [10,35–37,139–
141], in which the interaction between the underlying
degrees of freedom are stochastic variables. Here we con-
sider a specific version of the model with spin-spin interac-
tions, called the Brownian coupled cluster model. Like the
random circuit model, it features a random time-dependent
Hamiltonian, but unlike the random circuit model, it has
a large-N limit. Using it, we develop a physical picture
of why p = 1 is generic for one-dimensional scrambling
systems. The model can be defined in any dimension, but
here we continue to focus on d = 1. The degrees of free-
dom are arranged in clusters that are then connected in
a one-dimensional array. Every cluster contains N spin-
1/2 degrees of freedom, and there are L clusters. The
Hamiltonian is time dependent and consists of two kinds
of terms, within-cluster interactions and between-cluster
interactions. In order to avoid mathematical complexities
associated with stochastic calculus, it is simplest to present
the model in discrete time.

The time evolution operator is

U(t) =
t/dt∏
m=1

exp
(

−i
∑

r

H (m)
r − i

∑
〈rr′〉

H (m)
rr′

)
(C10)

with m a discrete time index. The within-cluster terms and
the between-cluster terms are

H (m)
r = J αβm,r,a,bσ

α
r,aσ

β

r,b, (C11)

H (m)
rr′ = gJ̃ αβm,r,r′,a,bσ

α
r,aσ

β

r′,b, (C12)

where α,β ∈ {0, 1, 2, 3}, a, b = 1, . . . , N label spins within
a cluster, r, r′ label clusters (sometimes called sites), and
〈rr′〉 means nearest neighbors. At each time step, the mod-
els contain two sets of uncorrelated random variables J and
J̃ with mean zero and variance dt/8(N − 1) and dt/16N ,
respectively.

In the limit that dt → 0, one can formulate a stochastic
differential equation for the time evolution operator. From
it, one can derive a master equation for the operator proba-
bilities |c(S)|2 averaged over circuit realizations, i.e., over
realizations of the couplings J and J̃ . We will not get into

the details of these equations here, but refer the reader to
Ref. [36] for complete details. The only important property
we need is that |c(S)|2 depends only on the total number of
nonidentity Pauli operators on each cluster. This is techni-
cally an approximation, but it holds after a short time even
if the initial condition does not obey it because the circuit
average erases any distinction between the different Pauli
operators. The total number of nonidentity Pauli operators
in PS on cluster r is called the weight of the cluster and is
denoted wr(S).

In this model, the operator-averaged squared commuta-
tor C has a cluster index as well as the index of the qubit
within a cluster,

Ca(r, t) = 1
3trI

∑
Sr,a

‖W(t),Sr,a‖2
2. (C13)

According to Eq. (82b), Ca(r, t) = 8
3

∑
Sr,a �=I |α(S , t)|2. It

is convenient to analyze the Ca(r, t) averaged over all spins
within a cluster r,

φ(r, t) ≡ 1
N

∑
a

Ca(r, t) = 8
3

∑
S

wr(S)|α(S)|2, (C14)

which measures the averaged number of nonidentity opera-
tors that appears over the N spins, or the averaged operator
weight 〈wr〉 within cluster r. At early time, φ(r, t) ≈ 0,
while at late time it saturates to φ(r, t) = 2, as the usual
case.

Like the Haar random circuit, using random averaging
of coupling, one can derive a master equation governing
the dynamics of the operator probability |α(S)|2. When N
is small, it can be shown that C(r, t) obeys a drift-diffusion
equation, as in the random circuit model. This leads to
a circuit averaged φ(r, t) obeying the universal form in
Eq. (94) with p = 1. Hence, the Brownian coupled clus-
ter model recovers the result of the random circuit model
at small N .

At infinite N , something very different occurs. It can be
shown that φ(r, t) obeys a so-called Fisher-Kolmogorov-
Petrovksy-Piskunov- (FKPP) type equation of the form

∂tφ = 3
2
(2 − φ)

(
g2

2
∂2

r φ + (1 + g2)φ

)
. (C15)

Here g is the ratio of the strength of the between-cluster
and within-cluster terms, and we have taken a continuum
limit, which is qualitatively accurate. Although we will
not explain its detailed derivation, one can see that this
equation contains three essential pieces of physics: expo-
nential growth in time, spreading in space, and saturation.
The FKPP equation is very well known and describes a
wide variety of physical processes, including the prop-
agation of combustion waves, the dynamics of invasive
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species, and the physics of certain quantum chromodynam-
ics processes.

The key physical property of the FKPP equation is
that, starting from a localized source, it supports traveling-
wave solutions with C(r, t) = f (r − vBt), where vB =√

18g2(1 + g2) is the butterfly velocity. Well ahead of the
front at r = vBt, the waveform is

φ(r, t) ∼ eλ(t−r/vB), (C16)

which is Eq. (94) with p = 0. Hence, the Brownian cou-
pled cluster model also recovers the physics of large-N
and semiclassical results. The exponent λ = 6(1 + g2) is
an example of a quantum Lyapunov exponent.

Given the large- and small-N limits, the next question
is how they are connected as N is varied. Physically, the
infinite N limit functions to suppress quantum fluctua-
tions, so that one may view the distribution |c(S)|2 as
being concentrated on a single weight configuration. At
finite N , quantum fluctuations occur, meaning that the dis-
tribution |c(S)|2 now assigns nonvanishing probability to
different operator weight configurations. It is important to
understand that these fluctuations are proper quantum fluc-
tuations. They are a consequence of the fact that W(t) is
a superposition of many different Pauli strings of different
weights. In particular, the randomness associated with the
couplings J and J̃ has already been averaged over and no
longer enters the description. In essence, the circuit aver-
age serves to dephase the quantum operator amplitudes and
convert the Heisenberg equation of motion for the oper-
ator amplitudes into a master equation for the operator
probabilities.

Following Ref. [36], we call these quantum fluctua-
tions “noise.” In an abuse of notation where φ(r, t) now
represents a noisy field, we obtain a noisy FKPP equation,

∂tφ = 3(1 − φ)f (φ)+
√

1
N
(2 − φ/2)f (φ)η(r, t),

(C17)

where

f (φ) =
(

g2

2
∂2

r + (1 + g2)

)
φ,

and η(r, t) is a white noise term representing quantum fluc-
tuations. This noise term, while suppressed by 1/N , has
a dramatic effect on the physics. Note also that the noise
is multiplicative, vanishing when φ = 0, so it respects the
causal structure.

The main effect of the noise term is to make the front
position noise dependent. This means that the front con-
tinues to move with velocity vB, but it is also randomly
buffeted forward and backward as in a random walk.
Within a particular noise realization, the wavefront is sharp
and exhibits p = 0. However, the physical quantity in

the quantum problem is the noise-averaged value of φ.
Close enough to the physical front at r = vBt, the random
walk nature of the front position inevitably manifests and
smears the sharp p = 0 front into a diffusive p = 1 front.
Using the noisy FKPP literature [142], Xu and Swingle
[36] showed that the corresponding diffusion constant was
D ∼ 1/ log3 N at large N , a remarkably large value relative
to standard 1/N corrections.

3. Coupled Sachdev-Ye-Kitaev model

The large-N or semiclassical setting is another class of
typically interacting models for which scrambling dynam-
ics and the OTOC is tractable. A representative model in
this class is the Sachdev-Ye-Kitaev model [143,144] (see
also the review [145]) describing a cluster of N interacting
Majorana fermions,

H =
∑

i1<i2<i3<i4

ji1i2i3i4χi1χi2χi3χi4, (C18)

where χi is the Majorana operator obeying the usual com-
mutator {χi,χj } = δij . The coupling constants ji1i2i3i4 are
uncorrelated Gaussian variables with zero mean and stan-
dard deviation 〈j 2〉 = 6J 2/N 3, where the factor of 1/N 3

is required to make sure that the energy of the system is
extensive, i.e., scaling linearly with N .

One can generalize the SYK model to higher dimensions
by considering M clusters of N fermions [73,146–148].
Each cluster only interacts with its nearest neighbors. The
Hamiltonian contains both on-site terms and bond terms,

H =
∑

r

Hr +
∑
〈rr′〉

Hrr′ , (C19)

where Hr is the usual SYK Hamiltonian in Eq. (C18) and
the bond term is given by

Hrr′ =
∑

1�j<k�N
1�l<m�N

J ′
jklm,rr′χj ,rχk,rχl,r′χm,r′ . (C20)

The OTOC of the generalized SYK model can be calcu-
lated using the same diagrammatic approach in the large-
N limit. The details of the calculation can be found in
Refs. [73,149], showing that the OTOC takes the simple
exponential form in Eq. (91) up to higher-order correc-
tions.

APPENDIX D: PHENOMENOLOGICAL
DESCRIPTION

Given these developments, a conjecture and a corre-
sponding physical picture naturally present themselves.
We claim that, due to the inevitable presence of quantum
fluctuations, generic one-dimensional quantum systems
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always have squared commutators obeying the universal
form in Eq. (94) with p = 1. There is an analogous claim
in higher dimensions, where the value of p depends on the
dimension and is related to a random surface growth prob-
lem (the Kardar-Parisi-Zhang universality class). Based on
discussions in previous sections, the key pieces of evidence
in favor of this claim are the random circuit model and the
Brownian coupled cluster model. Interestingly, FKPP-like
equations have also been obtained in various large-N and
weak coupling calculations of squared commutators. These
were all noiseless equations, but surely once quantum fluc-
tuations are included, the dynamics will be governed by
an FKPP-like equation with multiplicative noise and a
corresponding broadened front.

Based on the previous discussion on the random circuit,
SYK model, and Brownian coupled cluster, the universal
features of the dynamics of the OTOC are

(1) ballistic expansion,
(2) late-time saturation,
(3) local exponential (Lyapunov) growth,
(4) random walk near the wavefront.

A phenomenological description that captures all the key
features is

C(r, t) ∼ 1√
2πDt

∫
d�r

e−�r2/2Dt

eλ((r+�r)/v−t) + 1
, (D1)

which is a convolution between a Fermi-Dirac func-
tion and a Gaussian distribution, describing a traveling
wave moving at velocity v. In the limit that λ → ∞, the
Fermi-Dirac distribution function becomes a step function,
and Eq. (D1) recovers the behavior of the random cir-
cuit model. On the other hand, in the limit that D → 0,
the Gaussian distribution becomes a delta function, and
Eq. (D1) reduces to the exponential form for the large-N
models. Let us work with the dimensionless variables

r̃ = rv
D

, t̃ = tv2

D
, ξ = λD

v2 . (D2)

The phenomenological description becomes

C(r, t) = 2√
2π

∫
d�r

e−�r2/2

eξ
√

t(�r+(r−t)/
√

t) + 1
, (D3)

where we have dropped the tilde notation for simplicity,
whose behavior is controlled by a single parameter ξ . The
integration does not have a closed form, but we understand
its behavior in different space-time regimes.

First, one can show that C(r, t) = 1 when r = t, setting
the wavefront as expected. When (r − t)/

√
t ≤ const, the

Fermi-Dirac function approaches a step function in the

large-t limit, and

C(r, t) ≈ erfc
(

r − t√
2t

)
. (D4)

On the other hand, when r − t > ξ t, the exponential term
dominates the denominator and the integration leads to

C(r, t) ≈ 2 exp(ξ((1 + ξ/2)t − r)), (D5)

which recovers the large-N form. Interestingly, both the
Lyapunov exponent and the butterfly velocity increase by
a factor (1 + ξ/2). We perform the integration numeri-
cally and plot log C as a function of r − t, fixing t, in

Exponential

Di
ffu

siv
e

Scrambled

(a)

(b)

FIG. 10. (a) The squared commuter crossover from the dif-
fusive regime to the exponential regime as r − t increases, i.e.,
moving away from the light cone. (b) A schematic illustration of
the different space-time regions of the squared commutator. Near
the light cone, its behavior is dominated by the diffusive region,
displaying diffusive broadening.
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Fig. 10(a), which clearly demonstrates that log C interpo-
lates between the two limiting cases, the error function and
the exponential function.

Based on the discussion above, one arrives at the fol-
lowing picture of scrambling dynamics in an extended
quantum many-body system with short-ranged interaction
and finite local Hilbert space dimension. The informa-
tion propagates ballistically with a butterfly speed vB.
Because of inevitable quantum fluctuation, in the space-
time region near r − vBt ∼ √

Dt, which we refer to as
the diffusive region, C(r, t) is characterized by a dif-
fusive broadened wavefront. In this region, there is no
well-defined Lyapunov exponent that is independent of
position and velocity. However, far ahead of the wave-
front r − vBt > λD/vBt, C(r, t) grows exponentially with
a well-defined Lyapunov exponent, and we thus refer to
this region as the exponential region.

Still, it would be nice to check this claim that the wave-
front broadens diffusely in a quantum spin chain with
no randomness in space or time and generic interactions.
More generally, the preceding discussion did not provide a
method to calculate squared commutators for generic phys-
ical systems. One may wonder if there exist general meth-
ods or numerical algorithms to study the OTOC for these
systems. This will be the topic of the next section. Before
moving to the details of these methods, we would like to
point out that numerical results strongly support diffusive
broadening of the information wavefront in spin chains
with large system sizes. Figure 11 shows data obtained
from the matrix product operator approach introduced in
Sec. VI for the mixed-field Ising model at infinite tem-
perature. The simulation is performed for n = 201 spins
out to quite a long time, several hundred 1/J . It has been
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FIG. 11. Separation between two different contours of con-
stant C as a function of time for the mixed-field Ising model.
The inset shows a log-log plot of the same data. The asymptotic
approach to a slope of 1/2, corresponding to p = 1, is clearly
visible in the data. Taken from Fig. 4(b) of Ref. [36].

checked that the results are converged in the bond dimen-
sion with a bond dimension as low χ = 32. What is plotted
are the contours of the constant squared commutator. The
inset shows the difference between different contours as
a function of time on a log-log plot. Equation (95) pre-
dicts that the difference between contours should go like
tp/(p+1), so on a log-log plot the data should approach a
straight line of slope p/(p + 1). This is precisely what
occurs with an asymptotic slope of 1/2, corresponding to
p = 1. Hence we verify that, for a large, nonrandom inter-
acting spin chain, the operator growth dynamics is ballistic
with a diffusively broadened front, exactly as predicted.

The chaotic regime ahead of the front should also be
present, but is difficult to observe. Based on the picture
shown in Fig. 11(b), the size of the chaotic regime is deter-
mined by the ratio v2

B/λD. Therefore, one may observe the
exponential growth in systems with large vB but small λ,
as shown in Ref. [150].

APPENDIX E: LIEB-ROBINSON BOUND

This appendix reviews an elementary proof of a Lieb-
Robinson bound for a simple one-dimensional spin to give
a sense of how it works. The analysis follows a discus-
sion of Osborne. Let us assume that the Hamiltonian can
be written as a sum of terms hr that act on sites r and
r + 1. This can always be done coarse graining any finite-
range interaction. Let the operator norm of hr be J , which
measures the local energy scale of the Hamiltonian.

Consider an operator W located at site r0. The goal of
the Lieb-Robinson bound is to upper bound how far from
r0 this operator can spread after time t. The rough idea is to
consider a series of approximations to W(t) that involve
truncating more and more distant terms in the Hamilto-
nian. These truncations then converge, roughly speaking,
to W(t), while also giving a bound on the spreading.

Denote the restriction of H to the interval [r − �, r + �]
by H�, which means keeping only terms from H that are
fully supported on the interval. The restricted Hamiltonian
reads

H� =
r0+�−1∑

r=r0−�+1

hr (E1)

with the dependence on r0 suppressed. Using the H�, define
the sequence of Heisenberg operators W� via

W� = eiH�tWe−iH�t. (E2)

To quantitatively estimate how these terms differ from each
other, define the norms α� by

α� = ‖W� − W�−1‖∞ (E3)
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with α0 = ‖W‖∞. In terms of these, it is possible to upper
bound objects of the form ‖W� − W�′‖∞ as

‖W� − W�′‖∞ ≤
�∑

j =�′+1

αj , (E4)

by repeatedly adding and subtracting the W�′′ and using the
triangle inequality.

The α� are determined using a differential equation,

d
dt
α� ≤

∥∥∥∥d(W� − W�−1)

dt

∥∥∥∥
∞

. (E5)

Using the invariance of the norm under unitary transfor-
mations, the right-hand side can be equivalently written as∥∥∥∥ d

dt
(U�+1W�U

†
�+1−W)

∥∥∥∥
∞

, (E6)

which is

‖[−iH�+1, W�] + [iH�, W�]‖∞ = ‖[H�+1 − H�, W�]‖∞.
(E7)

The next step identifies H�+1 − H� with hr0+� + hr0−�,
since these are the only new terms in H�+1 fully sup-
ported on [r0 − �− 1, r0 + �+ 1] but not fully supported
on [r0 − �, r0 + �]. We also use the fact that W�−1 has
no nontrivial support on r0 ± � or r0 ± (�+ 1) and hence
commutes with H�+1 − H�. Thus, the right-hand side of the
α� differential equation can be taken to be

‖[H�+1 − H�, W� − W�−1]‖≤ 4J‖W� − W�−1‖= 4Jα�−1.
(E8)

Using ‖AB‖ ≤ ‖A‖‖B‖ and the triangle inequality, one has

dα�
dt

≤ 4Jα�−1. (E9)

The factor of 4 is a crude upper bound that takes into
account both hr0+� and hr0−�, which both appear twice due
to the commutator.

Now we solve the upper limit of this system of differen-
tial equations with the initial condition that α0 = ‖W‖ and
α�>0(t = 0) = 0. The result is

α�(t) ≤ ‖W‖∞
(4Jt)�

�!
. (E10)

This result is almost the end of the calculation. The remain-
ing thing to do is to estimate the difference between W� and
the true W(t). This is

‖W(t)− W�‖∞ ≤
∞∑

j =�+1

αj ≤
∞∑

j =�+1

‖W‖∞
(4Jt)j

j !
. (E11)

There are various ways to treat this infinite sum. For � 

4Jt, the simplest estimate is to say that it cannot by much

larger than its first term, which is quite small. More pre-
cisely, the ratio of term j to term j + 1 is 4Jt/(j + 1) ≤
4Jt/(�+ 2), so making even a crude approximation using
a geometric series in 4Jt/(�+ 2) converges to some-
thing order one times the first term. After using Stirling’s
approximation for large �, the first term is

‖W‖∞
(4Jt)�+1

(�+ 1)!
≈ ‖W‖∞

(
4eJt
�+ 1

)�+1

. (E12)

This result corresponds to roughly the �th order in per-
turbation theory when expanding W(t) in a Taylor series.
Physically, it will describe the commutator dynamics for
sufficiently small t and large �.

Neglecting the difference between � and �+ 1, the first
term is order one when � = 4eJt. Setting �0 = 4eJt, the
first term can be written as

e� log (�0/�). (E13)

Using −1 ≥ −1 + log (�0/�̃) (valid for �̃ ≥ �0) and inte-
grating both sides from �0 to �, it follows that

−(�− �0) ≥ � log
�0

�
. (E14)

The left-hand side is the first-order expansion of the right-
hand side in �− �0, so the inequality states that going
beyond first order only decreases the value. Hence,

e� log (�0/�) ≤ e−(�−�0), (E15)

or, using �0 = 4eJt,

‖W(t)− W�‖∞ ≤ ‖W‖∞f (t)e4eJt−�. (E16)

Here f (t) is a polynomial prefactor that does not affect
the basic exponential scaling. Note that the bound is defi-
nitely not tight at very large �, since 1/�! decreases faster
than e−�. The bound is also trivial once � < �0 because
the right-hand side is growing exponentially, while the
left-hand side is bounded by 2‖W‖.

Having established that W� is close to W(t) for � 
 Jt,
it remains to upper bound the commutator. The idea is
straightforward: if an operator V is a distance r from W then
an upper bound on the commutator ‖[W(t), V]‖ is obtained
by approximating W with W�=r−1 since Wr−1 exactly com-
mutes with V. First add and subtract Wr−1 inside the norm
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to give

‖[W(t), V]‖∞ = ‖[W(t)− Wr−1 + Wr−1, V]‖∞, (E17)

and then use [Wr−1, V] = 0 and the bound on ‖W(t)−
Wr−1‖ to obtain

‖[W(t), V]‖∞ ≤ 2‖V‖∞‖W(t)− Wr−1‖∞. (E18)

Using the upper bound above, this is

‖[W(t), V]‖∞ ≤ 2‖V‖∞‖W‖∞f (t)e4eJt−r, (E19)

which is Eq. (15) in the main text.
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