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Quantum algorithms for topological data analysis (TDA) seem to provide an exponential advantage over
the best classical approach while remaining immune to dequantization procedures and the data-loading
problem. In this paper, we give complexity-theoretic evidence that the central task of TDA—estimating
Betti numbers—is intractable even for quantum computers. Specifically, we prove that the problem of
computing Betti numbers exactly is #P-hard, while the problem of approximating Betti numbers up to
multiplicative error is NP-hard. Moreover, both problems retain their hardness if restricted to the regime
where quantum algorithms for TDA perform best. Because quantum computers are not expected to solve
#P-hard or NP-hard problems in subexponential time, our results imply that quantum algorithms for TDA
offer only a polynomial advantage in the worst case. We support our claim by showing that the seminal
quantum algorithm for TDA developed by Lloyd, Garnerone, and Zanardi achieves a quadratic speedup
over the best-known classical approach in asymptotically almost all cases. Finally, we argue that an expo-
nential quantum advantage can be recovered if the input data is given as a specification of simplices rather
than as a list of vertices and edges.
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I. INTRODUCTION

One of the major challenges in quantum information sci-
ence is the development of quantum algorithms with an
exponential advantage over the best classical counterpart.
Some of the most promising candidates in that regard have
been quantum machine-learning (QML) algorithms [1–
4]. However, two issues have challenged the prospect of
exponential speedups for many QML algorithms in recent
years. On the one hand, a series of impressive dequan-
tization results by Tang et al. [5,6] showed that several
QML problems based on low-rank matrix analysis can be
solved efficiently on a classical computer. On the other
hand, most remaining QML algorithms require the encod-
ing of a large input into a quantum state [7], which requires
large quantum random access memory (QRAM).
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These issues have resulted in increased efforts to find
quantum algorithms that are immune to dequantization
procedures and do not suffer from the data-loading prob-
lem. One prominent example is the quantum algorithm
for topological data analysis (TDA) developed by Lloyd,
Garnerone, and Zanardi (LGZ) [8], which has experienced
a recent surge of attention from a theoretical [9–15] as
well as experimental [16,17] perspective. This quantum
algorithm, which we will refer to as the LGZ algorithm,
does not require a large classical input and is immune to
standard dequantization procedures. Nevertheless, it solves
the task of estimating the Betti numbers of a simplicial
complex—the essential task of TDA—and does so seem-
ingly exponentially faster than the best classical algorithm,
provided that certain assumptions regarding the input hold.

In this paper, we show that any quantum algorithm
for TDA runs in exponential time in the worst case by
proving that (under widely believed complexity-theoretic
assumptions) the problem of topological data analysis is
intractable even for quantum computers. Specifically, we
prove that the problem of computing Betti numbers exactly
is #P-hard and that the problem of approximating Betti
numbers up to multiplicative error is NP-hard. Moreover,
we show that both problems retain their hardness if the
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input is restricted to clique-dense complexes, which is the
regime where the LGZ algorithm works best [8,12,13].
Building upon this result, we argue that the LGZ algorithm
for TDA runs in exponential time not only in the worst
case, but for asymptotically almost all inputs. We pro-
vide direct evidence for this claim by investigating the
runtime of the LGZ algorithm on random Vietoris-Rips
complexes, for which we show that it achieves a Grover-
like speedup over the best-known classical algorithm in
almost all cases. Our complexity-theoretic results and
average-case analysis do not rule out an exponential quan-
tum advantage over the best classical algorithm for some
specific inputs. Indeed, there exists a known family of sim-
plicial complexes for which the LGZ-algorithm achieves a
superpolynomial speedup [14].

We further provide a complexity-theoretic analysis of
each step of the LGZ algorithm, through which we show
that the subroutine limiting quantum advantage in TDA
is not actually the computation of Betti numbers given a
description of the simplicial complex, but the construc-
tion of a quantum state representing the simplicial complex
from a description of the underlying graph. We show that
the latter problem is #P-hard by itself. It is thus the prob-
lem of sampling simplices given a list of vertices and edges
that forms the bottleneck of topological data analysis. Pro-
vided with an oracle that enables random sampling from
the k-simplices of a simplicial complex, a modification
of the LGZ algorithm can estimate its Betti numbers in
polynomial time, exponentially faster than the best-known
classical approach with access to the same oracle. We
study problems in data analysis and computational topol-
ogy where such oracles appear naturally. In particular,
when the data is given in the form of a list or specification
of sets (simplices) and their members (vertices), an expo-
nential quantum advantage could be recovered. This is the
case, for example, when we are given the ability to sample
from a list of Facebook groups together with the members
of the sampled groups, and when a k-simplex is defined to
be a group of k + 1 individuals all of whom are members
of the same group.

The remaining article is structured as follows. In Sec.
II, we introduce the framework of topological data analy-
sis and describe the original LGZ Betti number quantum
algorithm developed by Lloyd, Garnerone, and Zanardi,
along with a brief summary of recent improvements. In
Sec. III, we study the following formal problem of com-
puting Betti numbers.

Problem 1 (Betti).—Given a clique complex S defined
by its vertices and edges and an integer k ≥ 0 as input,
output the kth Betti number βk of S.

The problem is defined exactly in the way that it would
appear in practical applications of TDA, where the ver-
tices represent a set of data points embedded in a metric
space, and the edges describe whether two points are close
to each other or not. The complexity of computing Betti

numbers was left as an open problem in the review arti-
cle [18]. We show that the problem Betti is intractable for
quantum computers even if restricted to the optimal regime
of clique-dense complexes, by establishing its hardness via
the following theorem.

Theorem 1.—The problem Betti is (a) #P-hard and (b)
remains #P-hard when the input is restricted to clique-
dense complexes.

However, the LGZ algorithm does not compute Betti
numbers exactly but only approximately. Theorem 1 is
therefore not enough to reason about the runtime of the
LGZ algorithm. Indeed, there are examples of polyno-
mial quantum algorithms that efficiently approximate #P-
hard problems, such as the Jones polynomial [19] or
the Potts model [20]. In Sec. IV, we show that even
approximating Betti numbers up to any multiplicative
error remains intractable for quantum computers (again,
under the widely held complexity-theoretic assumption
that quantum computers cannot access NP-hard problems).
To do so, we will study the problem of deciding which
Betti numbers are nonzero.

Problem 2 (Homology).—Given a clique complex S
defined by its vertices and edges and an integer k ≥ 0 as
input, output true if βk > 0 and false if βk = 0.

Problem Homology is the natural decision version of
the counting problem Betti. It was already shown by
Adamaszek and Stacho [21] that this problem is NP-hard
for complexes defined on co-chordal graphs. Here, we
strengthen this result by showing that it remains NP-hard
on clique-dense complexes.

Theorem 2.—The problem Homology is (a) NP-hard
and (b) remains NP-hard when the input is restricted to
clique-dense complexes.

Evidently, Theorem 2 directly implies that computing
any multiplicative approximation of Betti numbers is NP-
hard and therefore not accessible to quantum computers.
Because Theorems 1 and 2 hold even if restricted to the
regime where the currently known quantum algorithms
for TDA perform best—and because the relative size of
this regime compared to all possible simplicial complexes
tends towards 0 as the number of vertices increases—our
results imply that the LGZ algorithm runs in exponential
time for almost all cases. In Sec. V, we verify this claim
by investigating the runtime of the LGZ algorithm on ran-
dom Vietoris-Rips complexes. We show that it achieves
a Grover-like quadratic speedup over classical algorithms
in asymptotically almost cases. However, up to superpoly-
nomial speedups can be achieved for specifically selected
inputs.

In Sec. VI, we subsequently discuss problems beyond
TDA for which a modification of the LGZ algorithm
achieves an exponential speedup. The main assumption
enabling exponential quantum advantage is the access to
random sampling from the simplices of a simplicial com-
plex. We list examples of problems where such an oracle
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might appear naturally. Finally, in Sec. VII, we comment
on the computational hardness of computing normalized
Betti numbers, which is a quantity that is not directly
useful in practice but a more natural output of quantum
algorithms for TDA.

Remark.—Recently, simultaneous independent work by
Crichigno and Kohler [22] appeared on the arXiv. The
authors prove that the problem Homology is QMA1-hard
by investigating supersymmetric quantum systems. This
result strengthens Theorem 2 stated here and yields an
alternative proof of Theorem 1.

II. TOPOLOGICAL DATA ANALYSIS AND THE
LGZ ALGORITHM

Topological data analysis is a recent approach to the
analysis of large datasets that are high-dimensional, noisy
or incomplete. The goal of TDA is to describe the shape
of a dataset by extracting robust features—topological
invariants—which are inherently insensitive to local noise.
These topological invariants are the Betti numbers βk,
which for every k count the number of k-dimensional holes
in the dataset. While the theory behind TDA is based
on algebraic topology, it can be understood through sim-
ple linear-algebraic terms. This section gives a concise
description of the TDA pipeline and its two main proce-
dures: representing a dataset as a simplicical complex and
subsequently computing its shape by estimating the Betti
numbers of the complex.

A. Topological data analysis

The starting point of TDA is as follows: a dataset of
interest is represented by a set of n points {xi}n

i=1 (a point
cloud) embedded in a metric space. For simplicity, we
will study the example where xi are embedded in the real
vector space R

d for some positive integer d > 0, but the
formalism extends to arbitrary manifolds. A point cloud is
not connected and consequently has a trivial topology. To
study the shape of the data set, the point cloud is thus first

promoted to a topological object—a so-called simplicial
complex—which can be interpreted as the generalization
of a graph. This is done in two steps. First, a grouping scale
ε > 0 is chosen and every two points xi, xj for which

||xi − xj || < ε (1)

are connected. The point cloud and resulting graph G are
depicted in Fig. 1. Because a graph is an object with at
most one-dimensional building blocks (edges), it does not
yet allow the extraction of higher-dimensional features.
To remedy this, the graph G is promoted to a simplicial
clique complex by identifying (k + 1) cliques in G with k
simplices. A k-simplex sk of G is thus a fully connected k-
dimensional subgraph of G, i.e., a set [23] of k + 1 points
{v0, . . . , vk} ⊂ {xi}n

i=1 that are pairwise connected to each
other. By this definition, a 0-simplex is a point, a 1-simplex
a line, a 2-simplex a triangle, a 3-simplex a tetrahedron and
so on. Simplices are visualized in Fig. 2(a). The set of all
possible simplices that can be constructed on G is called
the simplicial complex S of the dataset. This particular type
of simplicial complex—constructed by identifying cliques
of G with simplices—is also referred to as clique com-
plex of G, denoted Cl(G). Furthermore, the clique complex
of a graph obtained by connecting pairwise close points
embedded in a metric space is called the Vietoris-Rips
complex.

Note that S is closed under inclusion: if a k-simplex
sk = {v0, . . . , vk} is in the simplicial complex, the (k − 1)-
simplex sk−1(j ) obtained by omitting the vertex vj from sk
is also an element of the complex. These are the bound-
ary simplices of sk. Concretely, a line is bounded by two
points, a triangle by three lines, and so on.

In anticipation of an quantum algorithm for TDA, and
to avoid repetition at a later stage, we will write sim-
plices as quantum states of a n-qubit system. Because each
k-simplex sk = {v0, . . . , vk} defines a subset of {xi}n

i=1, it
can be naturally identified with a computational basis state
|sk〉 of Hamming weight k + 1 on n qubits, where the j th

FIG. 1. The construction of a simplicial complex from a point cloud. First, a grouping scale ε is chosen and every two data points
with pairwise distance smaller than ε are connected. The resulting graph is subsequently promoted to a (simplicial) clique complex by
identifying k + 1 cliques with k-simplices.
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(a) (b)

FIG. 2. (a) A visualization of the simplicial boundary operator acting on a 0-simplex (point), 1-simplex (line), 2-simplex (triangle),
and 3-simplex (tetrahedron). More generally, a k-simplex is mapped to the alternating sum of its (k + 1) boundary simplices. (b) A
two-dimensional torus embedded in R

3. The torus has one connected component, two distinct holes (red and purple circle) and a single
void (the interior). Its first three Betti numbers are thus (β0,β1,β2) = (1, 2, 1) and all higher orders vanish.

bit of |sk〉 is one if sk contains the vertex xj , and zero
else. If we denote by Hk the Hilbert space spanned by
the computational basis states of Hamming weight k + 1,
we have |sk〉 ∈ Hk for all k and ⊕n−1

k=−1Hk = C
2n. It will

become convenient later to further define the set Sk of all
k-simplices in the simplicial complex S, and the Hilbert
space Hk(S) ⊂ Hk spanned by {|sk〉 | sk ∈ Sk}.

B. Simplicial homology

Having constructed the simplicial complex S as a rep-
resentation of the dataset {xi}n

i=1, TDA aims to describe
the shape of S. From a topological standpoint, this shape
is described by the Betti numbers β0, . . . βn of S, which
intuitively count the number of k-dimensional holes in
the simplicial complex. We will first state their techni-
cal definition: Betti numbers are defined as the ranks of
the homology groups induced by the boundary map ∂k :
Hk(S) → Hk−1(S), which is a combinatorial operator

∂k |sk〉 =
k∑

i=0

(−1)i |sk−1(i)〉 , (2)

mapping each k-simplex to the alternating sum of its
boundary simplices. The action of ∂ is visualized in Fig.
2(a). As before, |sk−1(i)〉 is the (k − 1)-simplex obtained
by setting the ith entry of the bitstring |sk〉 to zero. Note
that the boundary of a boundary is zero,

∂k−1∂k = 0. (3)

Thus ∂k induces a (finite) chain complex on S,

0
∂n−−→ Hn−1(S)

∂n−1−−→ . . .
∂1−−→ H0(S)

∂0−−→ 0, (4)

with the corresponding kth homology group Hk defined as
the quotient group of the kernel of ∂k over the image of
∂k+1:

Hk = Ker∂k
/

Im ∂k+1 . (5)

The kth Betti number βk = dim Hk equals the dimen-
sion of the kth homology group [24]. Intuitively, the kth
Betti number counts the number of k-simplices in the com-
plex that are boundaryless but not themselves a boundary,
which can be interpreted as the number of k-dimensional
holes. Thus β0 counts the number of connected compo-
nents, β1 the number of holes, β2 the number of voids,
and so on. The Betti numbers of a torus are visualized in
Fig. 2(b). As for any chain complex that satisfies Eq. (3),
Hodge theory provides a relationship between the homol-
ogy group Hk and the Hodge Laplacian �k := ∂∗

k ∂k +
∂k+1∂

∗
k+1:

Hk ∼= Ker �k = Ker (∂∗
k ∂k + ∂k+1∂

∗
k+1). (6)

In the special case presented here, this Hodge relation
can be understood intuitively as follows: both ∂∗

k ∂k and
∂k+1∂

∗
k+1 are positive Hermitian operators, thus any state

|ψ〉 annihilated by the Hodge Laplacian lies in the inter-
section of the kernels of ∂k and ∂∗

k+1. The first operator
enforces that |ψ〉 has no boundary, and the second opera-
tor guarantees that only one representative per equivalence
class is counted. Two cycles are considered equivalent if
they can be continuously deformed to each other within
the simplicial complex, i.e., if they differ by a boundary.
Equation (6) reduces the computation of βk to the linear-
algebra problem of constructing and estimating the rank
of a

( n
k+1

)× ( n
k+1

)
matrix. In the next section, we describe
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a quantum algorithm for precisely this task, developed by
Lloyd, Garnerone, and Zanardi.

C. The LGZ algorithm

The LGZ quantum algorithm [8] estimates the Betti
numbers of a simplicial complex through repeated quan-
tum phase estimation. Before providing a detailed descrip-
tion, we summarize its three main steps: First, create the
mixed density state

ρk = 1
|Sk|

∑

sk∈Sk

|sk〉 〈sk| (7)

of all k-simplices in the simplicial complex S. Here |Sk| is
the number of k-simplices of S. Secondly, exponentiate the
Hodge Laplacian �,

� =
n−1⊕

k=0

�k =

⎛

⎜⎜⎜⎝

�0 0 · · · 0

0 �1
...

...
. . .

...
0 · · · · · · �n−1

⎞

⎟⎟⎟⎠ (8)

and perform quantum phase estimation of ei� with the
eigenvector register starting in ρk. This yields random sam-
pling from the eigenvalue distribution of �k. In a third
step, steps one and two are repeated multiple times. The
relative frequency of the zero-eigenvalue gives an estimate
of the Kernel dimension of �k, and thus of the kth Betti
number:

βk = dim Hk = dim Ker �k. (9)

In the following, each step is explained in detail.

(1) Projection onto k-simplices. A variety of approaches
can be used to arrive at the state ρk. LGZ construct
it via Grover search applied to the membership
function fk, with

fk(s) =
{

1 s ∈ Sk

0 else
. (10)

Given access to the pairwise distances between
points xi, fk can be implemented in O(k2) steps. The
multisolution version of Grover’s algorithm then
allows us to construct

|Sk〉 = 1
|Sk|1/2

∑

sk∈Sk

|sk〉 , (11)

while simultaneously revealing |Sk|, in O
(
ζ

−1/2
k

)

calls to the function f . Here,

ζk = |Sk|( n
k+1

) (12)

is the fraction of occupied k-simplices of the simpli-
cial complex S. The mixed state

ρk = 1
|Sk|

∑

sk∈Sk

|sk〉 〈sk| . (13)

is then constructed by including an additional n-
qubit ancilla system, applying a CNOT gate to each
qubit in |Sk〉 and subsequently tracing out (ignoring)
the ancilla.

(2) Quantum phase estimation.The second step is to
perform quantum phase estimation (QPE) with the
operator ei� on the state ρk. While directly expo-
nentiating the Hodge Laplacian � might be costly
in general, it is the square of a sparse operator B
defined as

B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ∂1 0 · · · · · · 0

∂
†
1 0 ∂2

...

0 ∂
†
2 0

. . .
...

...
. . . . . . . . .

...
...

. . . 0 ∂n−1

0 · · · · · · · · · ∂
†
n−1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

It is straightforward to verify that B∗B = B2 = �,
and thus Ker B = Ker �. Because B is the square
root of a Laplacian, it is often referred to as Dirac
operator. Furthermore, because ∂k is a

(n
k

)× ( n
k+1

)

matrix with n − k nonzero entries in each row and
k + 1 nonzero entries in each column, B is n-sparse.
Thus standard protocols allow the Hamiltonian sim-
ulation of eiB using O(n3) gates. To get accurate
results from QPE, the spectrum of B has to be con-
sidered: denote the smallest nonzero eigenvalue and
the largest eigenvalue of� by λmin and λmax, respec-
tively. To avoid multiples of 2π in the exponent of
eiB, the Dirac operator has to be rescaled by λ−1

max.
Therefore, the phase estimation has to be executed
with precision at least κ−1 = λmin/λmax to resolve
whether an eigenvalue is zero or not, which yields a
total cost of O(n3κ) for the QPE subroutine.

(3) Kernel estimation.
Repeating the above procedure M times results in M
samples {λi}i from the eigenvalue distribution of�k.
The relative frequency of the eigenvalue zero gives
an additive estimate of the normalized Betti number
ck,

ck = βk

|Sk| = dim Hk

|Sk| ≈ |{i : λi = 0}|
M

. (15)

The Hoeffding inequality shows that M = O(δ−2)

samples suffice to estimate ck up to additive error of
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ε. Combined with the state preparation and quantum
phase estimation, the LGZ algorithm computes an ε-
additive approximation of the normalized kth Betti
number in time

O
(

n3κ + nk2ζ
−1/2
k

ε2

)
. (16)

This closely resembles the original runtime analysis
of the LGZ algorithm carried out in Ref. [8], how-
ever, there ε was mistakenly labeled a multiplicative
error. We will argue below that it is indeed prefer-
able to state the runtime in terms of a multiplicative
approximation error, as originally intended.

Note that this quantum algorithm not only estimates the
k-th Betti number, but also supplies the corresponding
eigenvectors, which are the harmonic representatives of the
homology [25].

D. Analysis

The best-known classical algorithm computes the kth
Betti number βk in time O (( n

k+1

))
, where 0 ≤ k ≤ n − 1.

At first glance, Eq. (16) thus seems to provide an expo-
nential quantum advantage if k scales with n. Two issues
might reduce this advantage [12,13]. The first concerns
the fraction κ = λmax/λmin. While λmax is bounded from
above by the Gershgorin circle theorem [13], there are no
known lower bounds on the smallest eigenvalue λmin of the
simplicial Laplacian �k. In some cases λmin is exponen-
tially small, resulting in an exponential runtime of the LGZ
algorithm. Classes of simplicical Laplacians that have a
minimum eigenvalue scaling at least inverse polynomi-
ally in the number of vertices have been identified in, e.g.,
Refs. [9,12]. The second, more pressing issue concerns the
fraction

ζk = |Sk|( n
k+1

) . (17)

If the number of occupied k-simplices |Sk| is small com-
pared to

( n
k+1

)
, the runtime of the quantum algorithm will

again provide only a quadratic speedup over the best clas-
sical algorithm. A necessary condition for a polynomial
runtime is thus that the simplicial complex is clique-dense
[8,9,12], i.e., that

ζ−1
k =

(
n

k + 1

)
/|Sk| ∈ O(poly(n)). (18)

Note that the restrictiveness of the requirement Eq. (18)
depends entirely on how k scales with the number of
vertices n. For constant k, every graph fulfills Eq. (18) triv-
ially. If k grows slowly with n, such as k = �(log(n)), the

fraction ζ−1
k will still not grow superpolynomially in the

generic case, such as the random Erdös-Renyi model [26].
The regime where classical algorithms require exponential
time, and thus where an exponential quantum advantage
is possible, is when k grows asymptotically as k = �(n).
This is also the regime where Eq. (18) becomes restric-
tive, the regime originally considered in Ref. [8], and
the regime where standard complexity-theoretic arguments
apply. Throughout this paper, we will thus study the set-
ting where k = �(n) scales linearly with n (potentially up
to logarithmic factors), unless specifically noted otherwise.
In this case, the relative size of the clique-dense regime for
random Vietoris-Rips complexes as defined in Sec. V tends
asymptotically towards 0.

Several classes of clique-dense complexes have been
summarized in Ref. [12]. If both the clique-density require-
ment and the inverse-polynomial eigenvalue threshold are
fulfilled, the algorithm can estimate the normalized Betti
number up to inverse-polynomial additive error ε in poly-
nomial time. In this work, we give complexity-theoretic
and analytical evidence that even in this optimal regime,
the additive accuracy achievable by quantum algorithms
for TDA is not sufficient to solve the problem Homol-
ogy, e.g., to decide whether the Betti numbers are zero or
nonzero.

What practical information does an additive approxi-
mation to Betti numbers contain? We first note practical
applications of TDA [27,28] require the actual Betti num-
bers βk. More importantly, the requirement that the sim-
plicial complex is clique-dense precisely means that the
denominator of ζk, |Sk|, scales exponentially with n. Unless
the Betti number βk scales similarly, the normalized Betti
number ck will be exponentially small. In that case, any
inverse-polynomial additive error ε cannot distinguish it
from zero.

We will show in Sec. V that Betti numbers typically do
not scale exponentially in the number of vertices. Indeed,
they are asymptotically almost always bounded by O(n),
independent of k. The LGZ algorithm thus requires expo-
nential time to distinguish the Betti numbers from zero,
which could be seen as a consequence of Theorem 2.

Because of the above discussion, we argue that it can be
misleading to state the runtime in terms of the normalized
[29] Betti numbers ck. Instead, a more insightful descrip-
tion of the algorithm is the runtime required to compute
the actual Betti number βk up to multiplicative error δ.
This can be achieved naively by choosing ε = δ(βk/|Sk|),
resulting in

O
(

|Sk|2
β2

k

(n3κ + nk2ζ
−1/2
k )

δ2

)
. (19)

A series of recent improvements to the original LGZ
algorithm, most notably by utilizing quantum counting
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[8,13] and an efficient construction of the boundary oper-
ator [9] via fermionic annihilation operators, yield an
algorithm that naturally outputs a multiplicative approxi-
mation with a substantially improved runtime of

O
⎛

⎝1
δ

⎛

⎝n2

√( n
k+1

)

βk
+ nκ

√
|Sk|
βk

⎞

⎠

⎞

⎠ . (20)

We note that further improvements to the complexity Eq.
(20) might be possible by, e.g., combining the results of
Refs. [9–15]. However, it is to the best of our knowledge
not possible to prepare the state ρk significantly faster than
�(ζ

−1/2
k ) or estimate the Betti number βk given ρk signifi-

cantly faster than �
(√|Sk|/βk

)
, hence the total runtime is

lower bounded by

Tq = �

⎛

⎝
√( n

k+1

)

βk

⎞

⎠ . (21)

While this might suggest a polynomial runtime for large
Betti numbers, we will show in Sec. V that this expression
is exponential in n for asymptotically almost all inputs, in
line with Theorems 1 and 2. We now prove both theorems.

III. COMPUTING BETTI NUMBERS IS #P-HARD

In this section, we prove the complexity-theoretic hard-
ness of computing Betti numbers exactly. Let us recall the
problem definition and theorem from the first section.

Problem 3 (Betti).—Given a clique complex S defined
by its vertices and edges and an integer k ≥ 0 as input,
output the kth Betti number βk of S.

Theorem 3.—The problem Betti is (a) #P-hard and (b)
remains #P-hard when the input is restricted to clique-
dense complexes.

Informally, the complexity class NP is the set of decision
problems for which a solution can be verified in polyno-
mial time. The complexity class #P is the set of counting
problems associated to NP. That is, whereas a problem in
NP asks whether a given instance has a solution or not,
the corresponding problem in #P asks how many solutions
the instance has. The archetypal #P-complete problem is
#SAT, the problem of counting the number of satisfying
truth assignments to a given SAT instance (more details
on SAT can be found after Theorem 3). Clearly, solving
a problem in #P is at least as hard as solving the cor-
responding problem in NP, as computing the number of
solutions in particular determines whether this number is
nonzero. On the other hand, there are problems where the
decision version is easy, i.e., in P, but the counting ver-
sion is #P-complete. The most prominent such example is
the matrix permanent [30]. No known quantum algorithm
solves an NP-complete problem in polynomial time and

it is conjectured that NP �⊂ BQP, i.e., that NP-hard prob-
lems are not accessible to quantum computers. The same
holds for #P-hard problems. It is worth noting that it is not
known whether the NP-hardness of a problem implies the
#P-hardness of the corresponding counting problem [31].

The main idea of our proof of Theorem 1 is to relate
the computation of Betti numbers to the computation of
the number of maximal cliques, which is a known #P-hard
problem. To do so, we introduce the Euler characteristic
χ(S) of a simplicial complex S defined on n vertices as

χ(S) =
n−1∑

k=0

(−1)k|Sk|, (22)

where as before |Sk| is the number of k-simplices in S. The
index k is bounded by n − 1 because the largest possible
simplices on n vertices are (n − 1)-simplices. The Euler
characteristic χ allows us to relate the task of comput-
ing βk to the task of computing |Sk| via the Euler-Poincaré
formula [32].

Theorem 4 (Euler-Poincaré).—The Euler characteristic
of a simplicial complex S has an alternative representation
as

χ(S) =
n−1∑

k=0

(−1)kβk,

where βk are the Betti numbers of S.
Proof.—By the Rank-nullity theorem, we have |Sk| =

dim Im ∂k + dim Ker ∂k and by the definition of the Betti
number βk = dimHk = dim Ker ∂k − dim Im ∂k+1. Thus

n−1∑

k=0

(−1)k(|Sk| − βk) =
n−1∑

k=0

(−1)k(dim Im ∂k

+ dim Im ∂k+1) = 0,

where we have used Im ∂0 = Im ∂n = 0. �
The computation of the Euler characteristic thus reduces

to the computation of the Betti number vector. In the fol-
lowing, we show that #SAT, the problem of counting the
number of solutions to a given SAT problem, reduces to
the computation of the Euler characteristic of a Vietoris-
Rips complex defined by its vertices and edges. Recall that
a SAT (or boolean satisfiability problem) instance with
variables X1, . . . , Xn and clauses C1, . . . , Ck in conjunctive
normal form (CNF) is a boolean formula C1 ∧ C2 ∧ · · · ∧
Ck where every clause Cj is a disjunction of literals. A lit-
eral is either a variable Xi or its negation ¬Xi. The hardness
of computing the Euler characteristic of an abstract simpli-
cial complex defined by its inclusion-maximal simplices
has already been established in Ref. [33]. However, this
proof does not directly apply here, because the complexes
considered in Ref. [33] are not clique complexes and a
much more extensive description of the complex is given
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as input. Indeed, translating between both descriptions of
a clique complex, i.e., computing the list of inclusion-
maximal simplices from a list of edges and vertices, is by
itself a #P-hard problem [34]. Our techniques are inspired
by a proof of the hardness of computing independent sets
[33,35].

Proof of Theorem 1(a).—Let K be a SAT instance in
conjunctive normal form with variables X1, . . . , Xn and
clauses C1, . . . , Ck. We will construct a clique complex S
on 3n + k vertices such that the number of satisfying truth
assignments of K equals (−1)n(1 − χ(S)). �

To construct S we first build up the underlying graph G
as follows: for every variable Xi, construct three vertices
ti, fi and pi. It will become clear later that ti and fi encode
whether Xi is true or false, and pi whether Xi appears [36]
inK. Connect every two points vi, vj for which i �= j . Here,
v ∈ {t, f , p} is a placeholder. Consequently, add an addi-
tional vertex cj for every clause Cj . Connect cj to every
vertex except to

(a) ti if the clause Cj contains the literal Xi.
(b) fi if the clause Cj contains the literal ¬Xi.

In Fig. 3 we illustrate the graph G corresponding to the 2-
SAT instance K = (X1 ∨ ¬X2) ∧ (¬X1 ∨ X2). The vertex
set V of G is

V = {ti, fi, pi | 1 ≤ i ≤ n} ∪ {cj | 1 ≤ j ≤ k}. (23)

We can now build a clique complex S = Cl(G) on G in the
usual way by identifying (k + 1)-cliques with k-simplices.
It remains to show that the Euler characteristic of Cl(G)
counts the number of solutions to K. To do so, we intro-
duce the notion of a maximal clique, which is a clique
s ⊂ S that is not contained in any other clique of S. Maxi-
mal cliques should not be confused with maximum cliques,
which are cliques of maximal cardinality. While a max-
imum clique is always maximal, the converse must not
hold. For the clique complex shown in Fig. 3, the maximal
cliques are

{c1, p1, p2, c2}
{c1, p1, t2}, {c1, p2, f1}, {c1, f1, t2},
{c2, p2, t1}, {c2, p1, f2}, {c2, f2, f1}
{t1, t2}, {f1, f2}.

Let A be the set of all vertices labeled either ti or fi for any
i and let B be the set of all vertices labeled either ci or pi.
By construction, A ∪ B = V. Let further �(S) be the set of
all maximal cliques of S that contain only vertices of A. In
the above example, �(S) = {{t1, t2}, {f1, f2}} We will show
the following two results:

(i) The elements of �(S) are in a one-to-one corre-
spondence with the solutions of the SAT instance
K.

(ii) All remaining cliques s ∈ S\�(S) contribute triv-
ially to the Euler characteristic, that is

χ(S\�(S)) :=
∑

s∈S\�(S)
(−1)|s|−1 = 1.

As a consequence of (i) and (ii), the Euler characteristic of
S equals

χ(S) =
∑

s∈S

(−1)|s|−1

= (−1)n−1(number of solutions to K)+ 1, (24)

which proves Theorem 1. It remains to show (i) and (ii).
Proof of (i).—Let s ∈ �(S). Suppose there exists a fixed

i such that s contains neither ti nor fi. Then s can be
extended to the strictly larger clique s ∪ {pi}, since pi is
connected to all other tj , fj for j �= i. This contradicts that
s is maximal. Likewise, s can not contain both ti and fi for
any fixed i, as they are not connected in S. Therefore, any
s ∈ �(S) has cardinality n and corresponds to an assign-
ment of the variables X1, . . . , Xn. Consider now a clause
cj . By the maximality of s, there is at least one vertex of
s that is not connected to cj and therefore the truth assign-
ment corresponding to s fulfills the clause cj . Since cj was
arbitrary, s satisfies K. The same reasoning shows that any
z ∈ S corresponding to a satisfying truth assignment of K
is maximal and contained in �.

�
Proof of (ii).—Let L̃ ⊂ S be the set of all cliques of S

that contain only vertices of A and consider L = L̃\�(S).
For each v ∈ L, let us define the set

Dv = {k ∈ S | v ⊂ k and k\v ⊂ B} (25)

of all extensions of v to B. Note that {Dv}v∈L together with
D∅ = {k ∈ S|k ⊂ B} is a complete partition of S\�(S), that
is, every s ∈ S\�(S) is contained in exactly one Dv . Let
v be a clique contained in L. Thus v is not maximal and
by (i) we can find a pj ∈ B such that v ∪ {pj } is in Dv .
Since all elements of B are pairwise connected, there is
a bijection between the sets Ev = {k ∈ Dv | pj �∈ k} and
Fv = {k ∈ Dv | pj ∈ k}:

Ev → Fv, k �→ k ∪ {pj }. (26)

Because Ev ∪ Fv = Dv by definition, the Euler character-
istic of Dv is χ(Dv) = χ(Ev)+ χ(Fv) = 0. Using once
again that all elements of B are pairwise connected and the
fact that the clique complex of a complete graph has Euler
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FIG. 3. The graph G corresponding to the SAT instance K =
(X1 ∨ ¬X2) ∧ (¬X1 ∨ X2). The edges connected to the two
clauses c1 and c2 are colored in red for clarity. The Vietoris-Rips
complex on G has 8 vertices, 18 edges, 10 triangles (2-simplices)
and 1 tetrahedron (3-simplex). Its Euler characteristic is thus
χ(S) = 8 − 18 + 10 − 1 = −1 and the number of satisfying
truth assignments (−1)2(1 − χ(S)) = 2.

characteristic 1, we get χ(D∅) = 1 and

∑

s∈S\�(S)
(−1)|s|−1 = χ(D∅)+

∑

v∈L

χ(Dv) = 1, (27)

which proves (ii). Because the elements of �(S) have
cardinality n, they contribute with a factor (−1)n−1 to
χ(S). This leads to expression Eq. (24) and concludes the
proof. �

Before proving Theorem 1(b), we mention two alterna-
tive approaches to arrive at the #P-hardness of computing
Betti numbers exactly. First, note that the only cliques con-
tributing to the Euler characteristic of the above graph G
are the cliques of size n. Building upon this idea, one can
show that computing the nth Betti number of Cl(G) is
already #P-hard, as opposed to computing all Betti num-
bers. Because we do not require this stronger statement, we
omit the details. Second, one could also arrive at Theorems
1(a) and 1(b) building upon a result [37] that computing
the Witten index of a certain local supersymmetric sys-
tem is #P-hard. This is because the Witten index can be
related to the independence polynomial (which is directly
related to the Euler characteristic) of a clique complex via
the so-called Fermionic hard-core model.

We can strengthen Theorem 1(a) by restricting the class
of simplicial complexes allowed as input to the problem
Betti. As argued in Sec. II, the LGZ quantum algorithm
works best in the regime of clique-dense complexes. We
now show that computing Betti numbers remains hard
even in this regime.

Proof of Theorem 1(b).—In the proof of Theorem 1(a)
we reduced an arbitrary #SAT instance to the compu-
tation of the Euler characteristic of the clique complex
of a corresponding graph G. We will show that Cl(G)
is already clique-dense, which evidently proves Theorem
1(b). Recall that for an instance K with n variables and s
clauses, G is defined on N = 3n + s vertices. If K belongs
to �-SAT, i.e., every clause C ∈ K has � literals, the
number of edges of G is

|E(G)| = 9
2

n(n − 1)+ 3ns − ls + 1
2

s(s − 1). (28)

Because SAT reduces to 3-SAT, we can fix � = 3. More-
over, as 3-SAT remains NP-hard [38] when restricted to
instances where every variable appears 4 times [39,40], we
can fix s = 4

3 n. The fraction γ of connected edges over the
number of vertices squared is then

γ = |E(G)|
N 2 = 1

2
− 9n + 7s

2N 2

= 1
2

(
1 − 165

169n

)
>

1
2

(
1 − 1

n

)
. (29)

The clique-density theorem [41] states that the number of
k-simplices in G is lower bounded by �(N k+1) if

γ >
1
2

(
1 − 1

k

)
. (30)

Thus the clique-density condition Eq. (18) is fulfilled for
any k ≤ n, in particular for k = �(n), and Cl(G) is clique-
dense. �

This concludes the proof of Theorem 1. We emphasize
that it is not clear whether either Betti or Homology are in
#P or NP, respectively, which would make them #P- or NP-
complete. The nontriviality of the kth Betti number could
be witnessed by a cycle that is not a boundary, but such a
cycle may be exponentially large in the size of the input.

IV. APPROXIMATING BETTI NUMBERS IS
NP-HARD

In the previous section, we established that comput-
ing Betti numbers exactly is #P-hard. However, the LGZ
algorithm only approximates Betti numbers. To be able
to argue about the runtime of quantum algorithms for
TDA, we need to determine the complexity of computing
a multiplicative approximation to βk. This motivates us to
define the following problem, which we recall along with
Theorem 2 from Sec. I.

Problem 4 (Homology).—Given a clique complex S
defined by its vertices and edges and an integer k ≥ 0 as
input, output true if βk > 0 and false if βk = 0.
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Theorem 5.—The problem Homology is (a) NP-hard
and (b) remains NP-hard when the input is restricted to
clique-dense complexes.

Theorem 2(a) is due to Adamaszek and Stacho [21], who
proved that the decision problem Homology is NP-hard for
the clique complexes of co-chordal graphs. Since the class
of all graphs in particular includes the class of co-chordal
graphs, the theorem follows. This by itself however is not
enough to reason about the runtime of the LGZ algorithm,
as co-chordal graphs tend to be sparse, whereas it has
already been established that a necessary requirement for a
polynomial runtime of the LGZ algorithm is that the input
is clique-dense. To strengthen the results of Adamaszek
and Stacho, we show that the problem Homology retains
its hardness when restricted to the class of clique-dense
complexes.

Proof of Theorem 2(b).—Let G = (V, E) be any co-
chordal graph with vertex set V = {x1, . . . , xn} and edges
E. Building upon constructions in Refs. [21,42], we will
relate the homology of Cl(G) to the homology of the com-
plement H̄ of a bipartite graph H defined via the Alexander
dual of G. We will then show that Cl(H̄) is clique-dense,
which reduces the homology problem of co-chordal graphs
to the homology problem of clique-dense complexes and
proves the theorem.

Denote by Cl(G) the clique complex of the co-chordal
graph G. Consider the complex AG defined on the same
vertex set V consisting of simplices s with

s ∈ AG ⇐⇒ (V\s) �∈ Cl(G). (31)

AG is called the Alexander dual of G and consists of the
complements of all noncliques in Cl(G). The homologies
of AG and Cl(G) are related via the Alexander duality [43]

Hk(Cl(G)) = H k(Cl(G)) = Hn−k−3(AG), (32)

where the first equality holds due to Corollary 2.2 in Ref.
[21]. AG is not a clique complex and thus not the type of
complex that appears in TDA. However, we can relate the
homology of AG to the homology of the clique complex of
a bipartite graph H , as follows. Denote by M(AG) the set
of inclusion-maximal faces of AG. By construction,

M(AG) = {V\e | e ∈ V × V and e �∈ E} (33)

is the complement of all edges e that are not in the edge
set of G, i.e., that are edges of Ḡ. In particular, M(AG)

can be computed in polynomial time given G. Let us now
construct a bipartite graph H with two parts of size n and
m, respectively, where m = |M(AG)|. Each vertex in the
first part corresponds to one of the vertices xi of G, and
each vertex in the second part corresponds to the inclusion-
maximal faces Fj ∈ M(AG) of the Alexander dual of G.
Connect every pair (xi, Fj ) for which xi �∈ Fj . By Eq. (33),

each Fj is only connected to exactly two vertices. H is
thus a graph on n + m vertices with 2m edges and clearly
sparse. By construction, Cl(H̄) is isomorphic to the sus-
pension of AG and the suspension isomorphism [21,42,44]
relates the homology of both complexes via

Hk(AG) = Hk+1(Cl(H̄)), (34)

where the complement H̄ is now dense. Combining Eqs.
(32) and (34) yields

Hk(Cl(G)) = Hn−k−2(Cl(H̄)), (35)

which reduces the homology problem of co-chordal graphs
G to the homology problem of dense co-bipartite graphs H̄ .
For Eq. (35) to be well defined, we have to pick 0 ≤ k ≤
n − 2, which does not matter for the reduction as the last
Betti number βn−1 can be computed in linear time.

To conclude the proof, we show that Cl(H̄) obtained
via this construction is clique-dense. Let N = n + m be the
number of vertices of H̄ . The fraction γ of connected edges
over the number of vertices squared is

γ = |E(H̄)|
N 2 = N (N − 1)− 4m

2N 2 ,

= 1
2

(
1 − 5N − 4n

N 2

)
>

1
2

(
1 − 5

N

)
. (36)

By the clique-density theorem [41], Cl(H̄) contains
�(N k+1) many k-simplices if

γ >
1
2

(
1 − 1

k

)
. (37)

Hence H̄ fulfills the requirement Eq. (18) for any k ≤ N/5
and in particular, since n ≤ N , for k = �(n). The clique
complex Cl(H̄) is thus clique-dense. For completeness, we
note that one could similarly show that Eq. (18) is fulfilled
for any k ≤ n by utilizing that the MaxClique problem
required to establish NP-hardness for co-chordal graphs
[21] remains hard for graphs with a constant fraction of
edges, in which case m = �(n2) and

5N − 4n
N 2 = o

(
1
n

)
. (38)

Having reduced the homology problem of the clique
complexes of co-chordal graphs to the homology prob-
lem of clique-dense clique complexes, this concludes the
proof. �

Theorems 1 and 2 together describe the computational
hardness of topological data analysis. It is widely believed
that quantum computers cannot solve NP-hard or #P-hard
problems in subexponential time. Our results therefore
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imply that any quantum algorithm for TDA, including
the LGZ algorithm, runs in exponential time in the worst
case. Moreover, our proofs show that even in the optimal
clique-dense regime, quantum algorithms for TDA require
exponential time. Because the LGZ algorithm performs
optimally in the clique-dense regime, and the relative size
of this regime tends towards zero, this further implies that
the LGZ algorithm runs in exponential time for asymptot-
ically almost all inputs. The same holds for any quantum
algorithm for TDA that uses similar techniques (Grover
search) as LGZ to arrive at the mixed state ρk, which are
only efficient in the clique-dense case.

V. TIME COMPLEXITY OF THE LGZ
ALGORITHM

Having established the complexity-theoretic hardness
of topological data analysis, we turn back to the origi-
nal LGZ algorithm. We consider here the version of the
LGZ algorithm that outputs a multiplicative approximation
to βk, as originally intended [8] and required by practical
applications. Our previous results imply that the algorithm
will have a runtime exponential in the input size for asymp-
totically almost all inputs. In this section, we verify this
directly by considering random Vietoris-Rips complexes.

Disregarding other details—like potentially exponen-
tially small eigenvalue gaps of the simplicial Lapla-
cian—the optimal runtime of the LGZ algorithm as derived
in Eq. (20) will be of order poly(n)ξ , where

ξ =
√( n

k+1

)

βk
. (39)

Recall that the best-known classical algorithm for com-
puting βk takes time O (( n

k+1

))
. The LGZ algorithm will

thus achieve a superquadratic speedup only if the kth Betti
number is large. However, as we will discuss in the follow-
ing, Betti numbers of Vietoris-Rips complexes are small in
expectation and variance.

Consider a set of points {xi}n
i=1 randomly distributed

IID in a metric space of dimension d according to any
bounded probability density function. Let us denote by Vε

the simplicial complex that results from the TDA proce-
dure outlined in Sec. II. That is, we choose a grouping scale
ε > 0, connect all (xi, xj ) that are closer than ε and iden-
tify cliques in the corresponding graph with simplices. The
resulting simplicial complex is called a Vietoris-Rips com-
plex, and together with the assumption that {xi}n

i=1 were
distributed randomly, a random Vietoris-Rips complex.
Note that this is the most natural input distribution model
for practical applications of topological data analaysis.

The Betti numbers of random Vietoris-Rips complexes
were analyzed by Kahle in Refs. [45,46]. Because we are
interested in the behavior of Betti numbers as n → ∞, we
allow the grouping scale ε to vary with n. Let us denote

by r̂ = n−1/d the average distance [47] between two ver-
tices of Vε . Kahle identified three regimes for ε that fully
describe the asymptotic behavior of Betti numbers of Vε .

(a) Subcritical regime: The subcritical regime occurs
when ε = o(r̂) and the Vietoris-Rips complex is
sparsely connected. In this regime, the Betti num-
bers experience a transition from vanishing to non-
vanishing. In either case, they are upper bounded
by

E[βk] = o(n). (40)

(b) Critical regime: If ε = �(r̂) is in the same order of
magnitude as r̂, V is said to be in the critical regime.
This region is also called the thermodynamic limit
and is the regime where Betti numbers take on their
maximal value. The expectation value and variance
of βk are

E[βk] = �(n), Var[βk] = �(n). (41)

(c) Supercritical regime: Here, ε = ω(r̂) dominates
the average separation r̂ and large connected com-
ponents emerge, which do not contribute to the
homology of V. Consequently, Betti numbers grow
sublinearly and

E[βk] = o(n). (42)

In all three regimes, the expectation value of βk grows
at most linearly with n. Moreover, the variance Var(βk)

is also bounded by O(n). Thus βk = O(n) asymptotically
almost surely (a.a.s.) over random Vietoris-Rips com-
plexes and the LGZ algorithm applied to random Vietoris-
Rips complexes almost always achieves only a quadratic
speedup over classical approaches.

This average-case analysis does of course not exclude
the possibility that specific families of graphs exhibit
large enough Betti numbers to provide a much better
quantum advantage. Indeed, a recent paper by Google
Quantum AI [14] provided an example of a graph with
a superpolynomial speedup. It has Betti numbers scaling
as βlog(n)−1 ∼ (n/ log(n))log(n), which is sufficiently large
to give a superpolynomial advantage over the best-known
classical algorithm. Unlike the present paper, the authors
of Ref. [14] study the regime where k scales logarithmic
with n. This relaxes the clique-density condition Eq. (18)
but removes the possibility for an exponential speedup. To
the best of our knowledge, there is currently no known
example of a graph that provides an exponential quantum
advantage.

Upper bounds on the size of Betti numbers of Vietoris-
Rips complexes imply lower bounds on the runtime of the
LGZ algorithm. Goff analyses the maximal size of Betti
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numbers of Vietoris-Rips complexes in Ref. [48]. For the
kth Betti number, he proves an upper bound of O(nk),
which is slightly more prohibitive than the trivial upper
bound O(nk+1). However, the best construction in Ref.
[48] achieves only βk = O(nk/2+1/2) (which corresponds
to a quartic quantum advantage) and does not saturate this
bound. Since the upper bound in Ref. [48] was obtained
inductively, it might be loose. Whether or not it can be
tightened is an open question that would provide insight
into whether any superpolynomial quantum advantage for
TDA can be achieved in the regime where k scales as
k = �(n).

The above discussion implies that the LGZ algorithm
achieves a Grover-like speedup over the best classical
approach in almost all cases and up to a superpolyno-
mial speedup in certain specific cases. This agrees with
Theorem 2 and the widely believed conjecture that quan-
tum computers cannot solve #P-hard or NP-hard problems
in polynomial time. While a quadratic speedup is signifi-
cant, this suggests that quantum algorithms for topological
data analysis might not achieve a practical advantage for
the noisy intermediate-scale quantum (NISQ) era and early
generation fault-tolerant quantum computers [49]. In the
next section, we argue that an exponential speedup can
be recovered if computational problems beyond TDA are
considered.

VI. QUANTUM ADVANTAGE BEYOND TDA

Up to this point, our complexity-theoretic analysis in
Secs. III and IV as well as our direct analysis of the
LGZ algorithm in Sec. V have exclusively focused on
clique complexes, and even more specifically on Vietoris-
Rips complexes. While all simplicial complexes appearing
in the typical setting of TDA [50] are of this form, the
LGZ algorithm and the ideas behind it can be applied to
a much broader class of simplicical complexes. Comput-
ing Betti numbers of more general simplicial complexes
is an important problem in computational topology [51–
54]. In this section, we argue that an exponential quantum
advantage can be recovered if certain computational prob-
lems beyond TDA are considered. To illustrate this, we
emphasize three points:

(a) The limiting factor for quantum advantage in TDA
is the construction of (and subsequent random sam-
pling from) the list of k-simplices of a clique com-
plex, given the underlying graph as input. This by
itself is an NP-hard problem, thus quantum algo-
rithms solve it only polynomially faster than the best
classical algorithm.

(b) Given an oracle that provides random sampling
from the k-simplices in an (abstract) simplicial com-
plex, quantum algorithms for TDA can efficiently
compute the kth Betti number of the simplicial

complex. Moreover, they can do so sometimes
exponentially faster than the best-known classical
algorithm with access to the same oracle.

(c) Such an oracle is not natural in TDA. Indeed,
constructing such an oracle for a clique complex
described by its underlying graph is again NP-hard.
However, in some applications of computational
topology, it is natural to describe simplicial com-
plexes by a method of specifying the set of sim-
plices. This enables the efficient construction of
such an oracle.

Let us illustrate the first point. The main complexity of
quantum algorithms for TDA arises from two factors. First,
the clique complex S has to be constructed from the input
graph. We call this the construction step. Taking again
k = �(n) and surpressing factors polynomial in n, this step
takes time

O(ζ−1/2
k ) = O

⎛

⎝
√( n

k+1

)

|Sk|

⎞

⎠ (43)

via Grover search, where |Sk| is the number of k-simplices
in the complex and n is the number of vertices. The
complex construction by itself is a limiting factor in the
runtime: efficient sampling from the k-simplices of a clique
complex, given a description of the underlying graph,
allows us to find a maximum clique of the graph. It is
therefore an NP-hard problem, which in particular suggests
that quantum computers cannot solve it significantly more
efficiently than via Grover search.

The second step, which we call estimation step, is to
estimate the Betti numbers given the ability to sample from
the set of k-simplices, and to determine whether a given k-
simplex is in the complex. The estimation step can be done
via, e.g., quantum phase estimation and quantum counting,
which has complexity proportional to

O
(

1
δ

√
|Sk|
βk

)
. (44)

Here, δ is the multiplicative error and factors of poly(n)
are again suppressed. It is this second step where quantum
algorithms for TDA have the potential to provide an expo-
nential advantage over classical algorithms. To our knowl-
edge, the best classical algorithm can compute the Betti
numbers of a simplicial complex with inverse-polynomial
spectral gap of the Laplacian λmax/λmin = poly(n) from a
list of simplices in time O(|Sk|). This is because determin-
ing the kernel dimension of sparse matrices scales at best
linearly in the matrix dimension [55]. For a detailed dis-
cussion of the best classical algorithms for estimating Betti
numbers, see, for example, Sec. IV in Ref. [14].
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On the other hand, the LGZ algorithm can solve the
same task up to constant multiplicative error exponentially
faster if βk ≈ |Sk|. In the following subsection, we discuss
regimes where the quantum algorithm solves the second
step, estimation, efficiently.

A. Complexes beyond Vietoris-Rips

While Vietoris-Rips complexes do not have sufficiently
large Betti numbers for a large quantum speedup, other
types of complexes do. For Erdös-Renyi complexes, the
LGZ algorithm solves the estimation step exponentially
faster than the best-known classical approach in asymptot-
ically almost all cases. Random Erdös-Renyi complexes
are the clique complexes of random Erdös-Renyi graphs
G(n, p). The graph G(n, p) on n vertices with probabil-
ity parameter p is constructed by randomly connecting
vertices with probability p , independently from every
other edge. Kahle [56] showed that for random Erdös-
Renyi complexes, the fraction in Eq. (44) is asymptotically
almost always 1. Specifically, for any 0 ≤ k < n and a
probability parameter n−1/k < p < n−1/(k+1), we have

E(βk) ≈ E(|Sk|) and βk ≈ |Sk|, (45)

i.e., the kth Betti number takes on its maximal possible
value |Sk| (the number of k-simplices in the complex).
Consequently, the estimation step takes time O(poly(n))
on a quantum computer and time O(|Sk|) on a classi-
cal computer. Since for random Erdös-Renyi complexes,
|Sk| ≈ nk/2, this gives an exponential quantum advantage
for the estimation step if k = �(n).

Similarly, an exponential quantum advantage may
appear if we go beyond clique complexes to abstract sim-
plicial complexes. Abstract simplicial complexes are not
defined via the cliques of an underlying graph but via a
collection of inclusion-maximal simplices that are closed
under subset taking. In general, this collection might be
exponentially large and reintroduce the data-loading prob-
lem. However, in some typical real-world examples such a
description is compact. There are many well-known exam-
ples of abstract simplicial complexes with exponentially
large Betti numbers. One example is the k-skeleton of the
n-simplex, which is the simplicial complex on n + 1 ver-
tices containing all possible simplices of dimension less
than or equal to k. These simplicial complexes have close
to maximal Betti numbers: The kth Betti number of the k-
skeleton of an n-simplex equals βk = ( n

k+1

)
. They are also

compactly specified by a list of maximal nonsimplices. For
these and similar abstract simplicial complexes with expo-
nentially large Betti numbers, the LGZ algorithm solves
the estimation step efficiently.

B. Oracle construction

Solving the estimation step efficiently enables the effi-
cient computation of Betti numbers only if we have access

to random sampling of k-simplices in the complex. While
random sampling of simplices is in general a hard prob-
lem, we note that datasets that permit random simplicial
sampling could be available in real-world applications.

For example, consider the problem of calculating the
homology of Facebook, where k + 1 Facebook users form
a simplex if they are members of the same Facebook group
(the same k + 1 users can all be members of more than one
group). The resulting simplicial complex is not a clique
complex. In this setting, random sampling of simplices can
be achieved efficiently by simply querying Facebook for
a random element of their stored list of groups, assum-
ing classical access to this list. If we moreover assume
coherent [57] access to a membership function fk (see Sec.
II C), a quantum algorithm can efficiently solve the esti-
mation step by following the steps of the LGZ algorithm:
randomly sample a k-simplex from the complex, apply
quantum phase estimation to it with the exponentiated sim-
plicial Laplacian and record the relative frequency of the
zero eigenvalue using quantum counting. In this model, a
quantum algorithm can thus compute the simplicial homol-
ogy of Facebook efficiently, provided the Betti numbers
of Facebook are comparable to the number of simplices.
At the same time, even with access to efficient simplex
sampling, the best classical approach seems to require the
computation of the nullity of a exponentially large matrix,
which takes exponential time [55].

In general, if we are given a list of sets and their
members, and define a k-simplex to be k + 1 points all
of which lie in the same set, this describes an abstract
simplicial complex from which we can efficiently sam-
ple simplices. If we further assume coherent access to
a membership function for the simplices, a modification
of the LGZ algorithm supplies an exponential advantage
over classical algorithms for computing homology when
the kth Betti number is large and comparable to the num-
ber of k-simplices, and the spectral gap is scaling inverse
polynomially.

VII. COMPLEXITY OF ESTIMATING
NORMALIZED BETTI NUMBERS

Motivated by practical applications of TDA, the previ-
ous chapters have focused on computing Betti numbers
exactly or up to multiplicative error. From a quantum algo-
rithms’ perspective, a more natural output is an additive
approximations to the normalized kth Betti number

ck = βk

|Sk| , (46)

i.e., to the kth Betti number divided by the number of k-
simplices in the simplicial complex. Indeed, this is the
original output of the LGZ-algorithm [8], although there
mistakenly labeled a multiplicative approximation. Later
work [13,14] focuses on multiplicative approximations. As
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we discussed in Secs. II and V, in almost all cases where
ck can be estimated in polynomial time, the normalized
Betti number is exponentially small. Any inverse polyno-
mial additive error ε can therefore not distinguish it from
zero, in agreement with the hardness of Homology.

Nevertheless, the complexity of estimating normalized
Betti numbers (BNE) is a highly interesting topic offering
a potentially exponential quantum advantage. In a recent
paper [12], Dunjko et al. proved that a generalization
of this task, called low-lying spectral density estimation
(LLSD), is DQC1-hard. In another recent work, Cade et
al. [58] proved that estimating normalized Betti numbers
for arbitrary chain complexes (as opposed to clique com-
plexes) is also DQC1-hard. The complexity class DQC1
(or deterministic quantum computation with one clean
qubit) is the class of decision problems solvable by a one
clean qubit machine in polynomial time with low error
probability (e.g., at most 1/3 for all instances). A one clean
qubit machine is a n-qubit system, where the first qubit
starts out in the pure state |0〉, while all other n − 1 qubits
start out in the maximally mixed state. The initial density
matrix of the one clean qubit machine is thus

ρDQC1 = |0〉 〈0| ⊗ 1
2n−11n−1, (47)

where 1n−1 is the identity matrix on n − 1 qubits. We
are then allowed to apply any polynomial-sized quantum
circuit to ρ and subsequently measure the first qubit.

The results of Refs. [12,58] imply a relationship
between the problem of estimating normalized Betti num-
bers and other well-known DQC1-complete problems,
such as the power-of-one-qubit task of estimating normal-
ized traces of unitaries [59] and the approximation of the
Jones polynomial at a fifth root of unity for the trace clo-
sure, due to Shor and Jordan [60]. Theorems 1 and 2 further
show that both the Betti number problem and the Jones
polynomial problem are #P-hard in the exact case and that
additive approximations to both problems are not value
distinguishing [61]. It is widely believed that the one clean
qubit model can not be simulated by a classical computer
in polynomial time.

How do the DQC1-completeness results of Refs. [12,58]
relate to Theorems 1 and 2? As emphasized by the respec-
tive authors, it is not clear whether either result actually
applies to quantum algorithms for TDA, as they both con-
cern (possibly strong) generalizations of the central task of
TDA, which is estimating Betti numbers of Vietoris-Rips
complexes. Let us first discuss the potential complexity-
theoretic gap between BNE and LLSD, as defined in Ref.
[12], Sec. 3A. BNE solves LLSD only if the Hermitian
matrix that is used as input for LLSD is the simplicial
Laplacian �k of a simplicial complex. Whether LLSD
remains DQC1-hard if restricted to simplicial Laplacians
remains an open problem. Similarly, the results of Ref.

[58] apply to more general chain complexes, and it is not
clear whether the DQC1-hardness remains if the input is
restricted to clique complexes. For arbitrary chain com-
plexes, the Betti number estimation problem is trivially
NP-hard.

If BNE were shown to be DQC1-hard, this would greatly
strengthen the claim that the version of the LGZ-algorithm
targeting an additive approximation to the normalized
Betti number provides an exponential quantum advantage.
Strengthening the above hardness results is thus an exciting
direction for further research. Nevertheless, it would not
contradict Theorems 1 and 2, since a computational advan-
tage for additively estimating normalized Betti numbers
does not necessarily translate to a computational advantage
for multiplicatively estimating Betti numbers.

VIII. DISCUSSION

In this paper, we investigated the computational com-
plexity of computing Betti numbers in topological data
analysis. We proved that the problem of computing Betti
numbers of clique complexes exactly is #P-hard, while
the problem of estimating them up to any multiplicative
error is NP-hard. Moreover, we show that both problems
retain their hardness if the input is restricted to clique-
dense complexes, a regime of measure zero in which the
LGZ-algorithm performs best. Because quantum comput-
ers are not expected to be able to solve #P-hard or NP-hard
problems in subexponential time, our results imply that
quantum algorithms for TDA run in exponential time in
the worst case. Contrary to previous claims, this holds
even in the optimal regime of clique-dense complexes. We
verify our results through a detailed analysis of random
Vietoris-Rips complexes, from which we conclude that the
LGZ-algorithm achieves a quadratic speedup over the best
classical algorithm for asymptotically almost all inputs.

Our results show that the bottleneck of quantum algo-
rithms for TDA is the construction of a clique complex
from a description of its underlying graph. If the simplicial
complex is instead specified in a way that allows random
sampling from the simplices in the complex, a modifica-
tion of quantum algorithms for TDA can compute Betti
numbers efficiently if certain conditions are met. Under the
same conditions, classical algorithms for estimating Betti
numbers still require a runtime exponential in the number
of data points. In this case, an exponential quantum advan-
tage is recovered. We note that data composed of lists of
sets and their members takes the form required to retain
an exponential quantum advantage, and provide examples
where such input models appear naturally.

ACKNOWLEDGMENTS

A. Schmidhuber acknowledges helpful discussions
with Ryan Babbush and Marcos Crichigno. S. Lloyd

040349-14



COMPLEXITY-THEORETIC LIMITATIONS... PRX QUANTUM 4, 040349 (2023)

acknowledges helpful discussions with Michele Reilly and
was funded by DARPA and DOE.

[1] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick
Rebentrost, Nathan Wiebe, and Seth Lloyd, Quantum
machine learning, Nature 549, 195 (2017).

[2] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd,
Quantum algorithm for linear systems of equations, Phys.
Rev. Lett. 103, 150502 (2009).

[3] Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione,
An introduction to quantum machine learning, Contemp.
Phys. 56, 172 (2015).

[4] Maria Schuld and Nathan Killoran, Quantum machine
learning in feature Hilbert spaces, Phys. Rev. Lett. 122,
040504 (2019).

[5] Ewin Tang, in Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, Phoenix, AZ,
USA (Association for Computing Machinery, New York,
NY, USA, 2019), p. 217.

[6] Nai-Hui Chia, András Gilyén, Tongyang Li, Han-Hsuan
Lin, Ewin Tang, and Chunhao Wang, in Proceedings of
the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, Chicago, IL, USA (Association for Computing
Machinery, New York, NY, USA, 2020), p. 387.

[7] Scott Aaronson, Read the fine print, Nat. Phys. 11, 291
(2015).

[8] Seth Lloyd, Silvano Garnerone, and Paolo Zanardi, Quan-
tum algorithms for topological and geometric analysis of
data, Nat. Commun. 7, 1 (2016).

[9] Shashanka Ubaru, Ismail Yunus Akhalwaya, Mark S.
Squillante, Kenneth L. Clarkson, and Lior Horesh, Quan-
tum topological data analysis with linear depth and expo-
nential speedup, Preprint ArXiv:2108.02811 (2021).

[10] Iordanis Kerenidis and Anupam Prakash, Quantum
machine learning with subspace states, Preprint ArXiv:
2202.00054 (2022).

[11] Ryu Hayakawa, Quantum algorithm for persistent Betti
numbers and topological data analysis, Preprint ArXiv:2111.
00433 (2021).

[12] Casper Gyurik, Chris Cade, and Vedran Dunjko, Towards
quantum advantage via topological data analysis, Preprint
ArXiv:2005.02607 (2020).

[13] Sam Gunn and Niels Kornerup, Review of a quantum
algorithm for Betti numbers, Preprint ArXiv:1906.07673
(2019).

[14] Dominic W. Berry, Yuan Su, Casper Gyurik, Robbie King,
Joao Basso, Alexander Del Toro Barba, Abhishek Rajput,
Nathan Wiebe, Vedran Dunjko, and Ryan Babbush, Quan-
tifying quantum advantage in topological data analysis,
Preprint ArXiv:2209.13581 (2022).

[15] Sam McArdle, András Gilyén, and Mario Berta, A stream-
lined quantum algorithm for topological data analysis with
exponentially fewer qubits, Preprint ArXiv:2209.12887
(2022).

[16] He-Liang Huang, Xi-Lin Wang, Peter P. Rohde, Yi-Han
Luo, You-Wei Zhao, Chang Liu, Li Li, Nai-Le Liu, Chao-
Yang Lu, and Jian-Wei Pan, Demonstration of topological
data analysis on a quantum processor, Optica 5, 193 (2018).

[17] Ismail Yunus Akhalwaya, Shashanka Ubaru, Kenneth L.
Clarkson, Mark S. Squillante, Vishnu Jejjala, Yang-Hui
He, Kugendran Naidoo, Vasileios Kalantzis, Lior Horesh,
and Exponential advantage on noisy quantum computers,
Preprint ArXiv:2209.09371 (2022).

[18] Volker Kaibel and Marc E. Pfetsch, in Algebra, Geometry
and Software Systems (Springer, Berlin, Heidelberg, 2003),
p. 23.

[19] Dorit Aharonov, Vaughan Jones, and Zeph Landau, in Pro-
ceedings of the Thirty-Eighth Annual ACM Symposium
on Theory of Computing, Seattle, WA, USA (Association
for Computing Machinery, New York, NY, USA, 2006),
p. 427.

[20] Dorit Aharonov, Itai Arad, Elad Eban, and Zeph Landau,
Polynomial quantum algorithms for additive approxima-
tions of the Potts model and other points of the Tutte plane,
Preprint ArXiv:quant-ph/0702008 (2007).

[21] Michał Adamaszek and Juraj Stacho, Complexity of sim-
plicial homology and independence complexes of chordal
graphs, Comput. Geom. 57, 8 (2016).

[22] Marcos Crichigno and Tamara Kohler, Clique homology is
QMA1-hard, Preprint ArXiv:2209.11793 (2022).

[23] In algebraic topology, a simplex is defined as the linear span
of an ordered set. The ordering will be fixed later on by
an ordering of the qubits encoding the simplices into quan-
tum states. The particular ordering chosen does not impact
topological invariants such as Betti numbers. We will thus
omit it in this preliminary introduction to TDA, which also
facilitates the description of our proofs in Secs. III and IV.

[24] Because we have chosen to represent simplices as basis ele-
ments of a quantum mechanical Hilbert space, all homolo-
gies in this paper are computed over the field C. In most
applications of TDA, the data is however embedded in a
real metric space, hence one is interested in the homol-
ogy over the real R. The simplicial Laplacian is real
and symmetric in both cases, so this distinction does not
matter.

[25] If the grouping scale ε varies reasonably slow during a fil-
tration step, the harmonic representative of a persistent hole
will not change by too much. Thus quantum phase esti-
mation applied to the initial harmonic representative will
have a high chance of projecting onto the new harmonic
representative. This describes a quantum algorithm that can
check whether a given hole persists.

[26] P. Erdös and A. Rényi, On random graphs I, Publicationes
Mathematicae Debrecen, Hungary, 6, 290 (1959).

[27] Afra Zomorodian, Topological data analysis, Adv. Appl.
Comput. Topol. 70, 1 (2012).

[28] Larry Wasserman, Topological data analysis, Annu. Rev.
Stat. Appl. 5, 501 (2018).

[29] The computational complexity of computing normalized
Betti numbers is an interesting topic by itself. It was
investigated in Ref. [12], which we briefly review in Sec.
VI.

[30] Leslie G. Valiant, The complexity of computing the perma-
nent, Theor. Comput. Sci. 8, 189 (1979).

[31] Noam Livne, A note on #p-completeness of np-witnessing
relations, Inf. Process. Lett. 109, 259 (2009).

[32] Henri Poincaré, Second complément à l’analysis situs,
Proc. London Math. Soc. 1, 277 (1900).

040349-15

https://doi.org/10.1038/nature23474
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1080/00107514.2014.964942
https://doi.org/10.1103/PhysRevLett.122.040504
https://doi.org/10.1038/nphys3272
https://doi.org/10.1038/ncomms10138
https://arxiv.org/abs/2108.02811
https://arxiv.org/abs/2202.00054
https://arxiv.org/abs/2111.00433
https://arxiv.org/abs/2005.02607
https://arxiv.org/abs/1906.07673
https://arxiv.org/abs/2209.13581
https://arxiv.org/abs/2209.12887
https://doi.org/10.1364/OPTICA.5.000193
https://arxiv.org/abs/2209.09371
https://arxiv.org/abs/quant-ph/0702008
https://doi.org/10.1016/j.comgeo.2016.05.003
https://arxiv.org/abs/2209.11793
https://doi.org/10.1090/psapm/070/587
https://doi.org/10.1146/annurev-statistics-031017-100045
https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.1016/j.ipl.2008.10.009


ALEXANDER SCHMIDHUBER and SETH LLOYD PRX QUANTUM 4, 040349 (2023)

[33] Bjarke Hammersholt Roune and Eduardo Sáenz-de
Cabezón, Complexity and algorithms for Euler character-
istic of simplicial complexes, J. Symb. Comput. 50, 170
(2013).

[34] Richard M. Karp, in Complexity of Computer Compu-
tations, The IBM Research Symposia Series, edited by
R.E. Miller, J.W. Thatcher, and J.D. Bohlinger (Springer,
Boston, MA, 1972), p. 85.

[35] Michael R. Garey and David S. Johnson, Strong NP-
completeness results: Motivation, examples, and implica-
tions, J. ACM 25, 499 (1978).

[36] If every literal Xj appears in the SAT instance, the vertices
pj do not contribute to the Euler characteristic and they can
be neglected, leading to a graph of size 2n + k.

[37] P. Marcos Crichigno, Supersymmetry and quantum compu-
tation, Preprint ArXiv:2011.01239 (2020).

[38] Technically, we not only require that the problem remains
NP-hard but that the corresponding counting problem
remains #P-hard. However, these reductions are parsimo-
nious and preserve the number of solutions. Thus they also
establish #P-hardness of the counting problem.

[39] Craig A. Tovey, A simplified NP-complete satisfiability
problem, Discrete Appl. Math. 8, 85 (1984).

[40] Piotr Berman, Marek Karpinski, and Alexander D. Scott,
Computational complexity of some restricted instances of
3-SAT, Discrete Appl. Math. 155, 649 (2007).

[41] Christian Reiher, The clique density theorem, Ann. Math.
184, 683 (2016).

[42] Jonathan Ariel Barmak, Star clusters in independence com-
plexes of graphs, Adv. Math. (N. Y.) 241, 33 (2013).

[43] Anders Björner and Martin Tancer, Combinatorial alexan-
der duality - a short and elementary proof, Discrete Com-
put. Geom. 42, 586 (2009).

[44] Dimitry Kozlov, Combinatorial Algebraic Topology
(Springer Science & Business Media, Heidelberg, 2008),
Vol. 21.

[45] Matthew Kahle, Random geometric complexes, Discrete
Comput. Geom. 45, 553 (2011).

[46] Matthew Kahle and Elizabeth Meckes, Limit theorems for
Betti numbers of random simplicial complexes, Homol.
Homotopy Appl. 15, 343 (2013).

[47] By possibly normalizing the metric, we assume that
no two points of V are further than 1 apart. Hence
Vε is disconnected for ε = 0 and fully connected for
ε = 1.

[48] Michael Goff, Extremal Betti numbers of rips complexes,
Preprint ArXiv:0910.0040 (2009).

[49] Ryan Babbush, Jarrod R. McClean, Michael Newman,
Craig Gidney, Sergio Boixo, and Hartmut Neven, Focus
beyond quadratic speedups for error-corrected quantum
advantage, PRX Quantum 2, 010103 (2021).

[50] In theory, a set of data points could also be represented
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