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Stability of the Many-Body Scars in Fermionic Spin-1/2 Models
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We study the stability of the many-body scars in spin-1/2 fermionic systems under the most typical
perturbations in relevant materials. We find that some families of scars are completely insensitive to certain
perturbations. In some other cases, they are stable to the first order in perturbation theory. Our analytical
results apply to a large class of Hamiltonians that are known [K. Pakrouski et al., Phys. Rev. Res. 3,
043156 (2021)] to support exact many-body scars. For the numerical calculations, we choose the deformed
t-J -U model, which includes both Heisenberg and Hubbard interactions. We propose two new stability
measures that are based on physical observables rather than the fidelity to the exact initial wave function.
They enable the experimental detection of scars and are more reliable from theoretical and numerical
perspectives. One of these measures may potentially find applications in other systems where the exact
many-body scars are equally spaced in energy. In small systems and at small perturbations, a regime
particularly relevant for quantum simulators, we identify and describe an additional stability exhibited by
the many-body scars. For larger perturbation strengths, we observe a distinct mode of ergodicity breaking
that is consistent with many-body localization.
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I. INTRODUCTION

When an interacting quantum system is initialized to a
state that is not an eigenstate of its Hamiltonian, this ini-
tial state typically disappears quickly (modulo Poincaré
recurrences that happen at extremely long time scales) in
the sense that information stored in it cannot be recovered
using local measurements. This expectation is based on
the ergodicity assumption, which is closely related to the
eigenstate thermalization hypothesis (ETH), the corner-
stone conjecture that allows us to connect the microscopic
behavior of quantum systems to the macroscopic statistical
physics.

Many-body scars (MBSs) are the states for which the
above intuition does not hold. Once initialized to a super-
position of them, the system returns to the exact initial state
repeatedly and indefinitely in time, preserving the initially
stored quantum information. Besides the fundamentally
new physics of ETH violation and the potential quantum
information applications, the MBSs in fermionic systems
have also been shown to possess certain long-range order
correlations that may be relevant for superconductivity.
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While MBSs have only recently emerged as an interesting
research direction, the term “scars” in the quantum physics
context was first used by Heller [1] to refer to the extra den-
sity concentrating around the periodic orbits of one-body
chaotic systems and a general method for constructing
such eigenstates was proposed in Ref. [2].

Approximate MBSs have first been observed experi-
mentally in Rydberg-atom quantum simulators [3] that
could effectively be understood [4] as a spin-1/2 chain with
a so-called “PXP” Hamiltonian. More recently, the equiva-
lent of the PXP model and the scars arising in it have been
also implemented in Bose-Hubbard quantum simulators
[5], while MBSs hosted by the Su-Schrieffer-Heeger model
have been identified experimentally on a superconducting-
qubit quantum simulator [6]. Theoretically, MBSs have
been identified in a great variety of systems [4,7–48], with
Refs. [49–52] providing reviews of the growing body of
literature.

In our discussion here, we will rely on the group-
invariant framework [7,29,53] (one of a few [30,31,42,
54–56]) that provides a way of describing the general
mechanism that leads to the existence of MBSs in various
systems.

While the conditions that a Hamiltonian must satisfy
to support perfect MBSs are now known, the stability of
the effect under generic perturbations is poorly understood.
A few such studies exist for the PXP models [57–60]
but there are none for the fermionic systems, although
a large class of fermionic Hamiltonians is known to
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support ideal MBSs [7,21,27,29,53,61]. Making progress
in this direction is crucial for enabling the experimen-
tal studies of MBSs in fermionic systems and developing
their quantum information-processing applications. The
group-invariant MBSs present in fermionic systems are
similar [7,29,53] to the “decoherence-free subspaces” in
Refs. [62,63], which provides a connection to quantum
computing literature and makes these systems particularly
interesting.

In this work, we study the stability of the two families
of MBS that naturally occur in a large class of spin-1/2
fermionic models (such as deformed Hubbard or t-J -U
models) under three types of perturbations that may typ-
ically be present in materials approximately described by
these models: the random on-site chemical potential, the
random on-site magnetic field, and randomized density-
density interaction.

One of the key properties of MBSs is that starting any-
where within the scar subspace, the time-evolved wave
function returns to the exact initial state, a phenomenon
known as revivals. This is a consequence of the exis-
tence of a common divisor between all the energy gaps
separating the scars [29]. For our stability study, we
focus on the revivals and quantify the extent to which
the revivals in a perturbed system differ from the exact
ones.

We propose several measures of MBS stability beyond
the initial wave-function fidelity. One of these measures
is based on the quadratic Casimir operator of the associ-
ated SU(2) symmetry group of the given scar family. In our
case, the quadratic Casimir operator has a natural physical
interpretation of the total spin or pseudospin. The stability
measure based on it applies, however, to any MBS equally
spaced in energy (it has been suggested [56,64] that actu-
ally all the MBSs occurring in local models are of this
type; see also Ref. [27]). Another measure that we propose
is based on the particular correlations that are characteris-
tic of the two families of scars and that, crucially, can be
measured in experiment.

We obtain a number of analytical results characterizing
the influence of the considered perturbations on the two
MBS families in terms of the measures mentioned above.
For some combinations of scar family and perturbation, the
MBSs remain perfectly stable. For some others, they are
only effected in the second order in perturbation theory.
We verify these predictions exactly numerically in finite
systems.

At small perturbations and in small systems relevant
for potential experiments with quantum simulators, we
observe and analytically explain an additional stability
acquired by the MBSs.

Under large perturbations for a number of conven-
tionally used measures, we observe results that are con-
sistent with the many-body-localization (MBL) [65,66]
phase.

II. UNPERTURBED SYSTEM

We begin by introducing the general mechanism of
MBS formation [29] that we will build upon in this work
and will refer to as the “H0 + OT form.” Consider a Hilbert
space and its subspace S made of states that are invari-
ant under a group G. The existence of such a subspace
is a property of a particular Hilbert space and not of the
Hamiltonian. By definition, any state |s〉 in this subspace is
annihilated by any generator Ti of the group G. The same is
true also for a sum

∑
i OiTi, where Oi is any operator such

that the product OiTi is Hermitian (although scars in non-
Hermitian systems exist as well [7]). The requirements (for
a more strict formulation, see Ref. [29]) on the H0 term are
that it does not mix the invariant subspace S with the rest
of the Hilbert space and that all the gaps in its spectrum
in the S subspace have a common divisor. H0 is typically
very simple and in this work it is effectively a magnetic
field that keeps all the states in S equally spaced in energy.
For any Hamiltonian H = H0 + ∑

i OiTi built to the above
prescription, the states from S become scar states because
their dynamics are only governed by the simple H0 part,
while the rest of the Hilbert space has the full Hamiltonian,
including the terms OiTi that can be made strongly inter-
acting and chaotic. The “revivals,” i.e., the phenomenon
of the initial state from S repeatedly returning to itself, are
a result of the constructive interference due to the equal
energy spacings within S [29].

The Hilbert space we consider in this work is that of
spin-1/2 fermions on a lattice of N sites in any dimen-
sion. This case has been studied in detail in Ref. [7] and
it has been found that up to three families of scar states
may appear in a large class of models where the Hamilto-
nian has the H0 + OT form. It has also been shown that a
number of standard interaction terms such as Hubbard can
be decomposed as H0 + OT and thus support scars.

If we restrict ourselves to Hamiltonians with a real-
valued hopping amplitude, only two of the three scar
families appear. In the following, we review the proper-
ties of these two families, originally derived in Ref. [7].
Most of our analytical results are valid for any Hamilto-
nian (many of them listed in Ref. [7]) that exactly supports
the two families as scars. While we also expect the numer-
ical results to be qualitatively model independent, all our
numerical calculations use the same Hamiltonian that has
been studied numerically in Ref. [7] as an unperturbed
starting point. This Hamiltonian is specified in Eq. (7) in
the second half of this section.

Each of the two scar families is invariant under its own
implementation of a large-rank unitary group that we will
denote by U(N ) and Ũ(N )′, where N is the number of
lattice sites. Quadratic hopping terms with real amplitude
that describe a free fermionic model are closed under the
commutation operation. They can be regarded as the gen-
erators of these groups and used as the Ti terms of the
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H0 + OT form. The exhaustive list of further generators
that can be used as Ti for each scar family is given in
Ref. [7]. It is the property of this specific Hilbert space
[29,67,68] that any state that is invariant under one of these
large-rank groups automatically has a specific representa-
tion with respect to two SU(2) groups. These SU(2) groups
are familiar to the condensed-matter community as the
symmetries of the Hubbard model corresponding to spin
(we will call it SU(2)spin) and pseudospin (SU(2)η in our
notation) [69–71].

The scar states include two families with N + 1 states
each. The first family that we will refer to as the “zeta
states” is a subspace that is spanned by the states |nζ̃ 〉 that
are invariant under U(N ) and SU(2)η:

|nζ̃ 〉 = ζ̃ n

2n
√

N !n!
(N−n)!

|0ζ̃ 〉 ,

|0ζ̃ 〉 =
∏

i

c†
i↑ + ic†

i↓√
2

|0〉 ,

(1)

where ζ̃ = Q3 − iQ1 and |0〉 denotes the vacuum state con-
taining no particles. These states have the highest possible
physical spin: they form the spin-(N/2) representation of
SU(2)spin [29], the generators of which are

QA =
N∑

i=1

SA
i , A = 1, 2, 3, (2)

with the spin operator at site i

SA
i = 1

2

∑

α,β

c†
iασ

A
αβciβ = M A

i

2
, (3)

where σ A are the Pauli matrices and the Greek indexes take
two values, ↑ and ↓.

The states in Eq. (1) are eigenstates of the particular real-
ization of an H0 + OT Hamiltonian given in Eq. (7) that
we are going to consider in this work; however, a simpler
basis spanning the same subspace exists—see Eq. (20).
The basis in the scar subspace and the exact expressions
for the scar-state wave functions are fixed by the H0 part
of the Hamiltonian that we consider. The important phys-
ical properties of scars are, however, qualitatively basis
independent as long as H0 generates a scar spectrum with
proportional gaps and preserves the scar subspace [29].

The second family, the “eta states,” |nη〉′, are defined
on any bipartite lattice and are invariant under Ũ(N )′ and

SU(2)spin; they form the (N + 1)-dimensional representa-
tion of the pseudospin SU(2)′η:

|nη〉′ = (η′)n
√

N !n!
(N−n)!

|0〉 , η′ =
N∑

j =1

eiπ j c†
j ↑c†

j ↓. (4)

These states are also known as the η-pairing states [72,73].
In terms of quasiparticles, the nth state from this family
is an equal superposition of n pairs of spin-1/2 fermions
with up and down spin placed on all available sites on the
lattice. Therefore, each such state has a fixed total particle
number, 2n. In contrast, all the zeta states in Eq. (1) are
located in the half-filling sector with total particle number
Q = N .

The eta and zeta states are defined on a lattice of N
sites. The only requirement with respect to the spatial
arrangement of the lattice sites is that the lattice needs to
be bipartite for the eta states. The U(N ) group includes
the discrete subgroup of N ! permutations SN of the lat-
tice site indexes. The U(N ) invariance of the zeta states
thus implies invariance under site-index transformations.
In particular, the group U(N ) includes as its element a
transformation where the indexes of all sites are decreased
by one and the index of the first site is changed to N (this
is also an element of ZN ⊂ SN ⊂ U(N )). In one dimension
(1D) (similarly, an accordingly modified argument applies
in higher dimensions as well), this transformation could be
regarded as a spatial translation. Thus we conclude that the
zeta states are translation invariant.

The spatial shift by a sites defined as the index rela-
beling above is not an element of the Ũ(N )′ (which is a
symmetry of the eta states). In contrast, the elements of
the Z̃ ′

N ⊂ Ũ(N )′ are the transformations where the spatial
shift is accompanied by the alternating sign change, which
means that the above argument used for zeta states does not
apply as is. A spatial shift by a sites alone leads to a global
sign (−1)a appearing in front of the operator η′ in Eq. (4).
Therefore, only the eta states |nη〉′ (which are eigenstates
of the total momentum operator with eigenvalue πn [73])
with even n are fully translation invariant. The states with
odd n acquire a global (−1)a sign under a translation by a
sites. In an expectation value of an on-site operator, how-
ever, the minus signs cancel out, which simplifies the way
in which randomized on-site perturbations act on the eta
(and zeta) states, as discussed in more detail in Sec. IV A.

Another consequence of the U(N ) invariance is that cer-
tain two-point correlators are independent of the distance
between the two points when measured in the eta and zeta
states [29]. This amounts to the off-diagonal long-range
order (ODLRO) present in these states. ODLRO in the eta
states has first been noted in Ref. [73], while its derivation
as a consequence of the O(N ) ⊂ U(N ) invariance is given
in Eq. (18) in the Supplementary Materials of Ref. [29].
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The following expectation value of flipping two spins at
sites i and j is (i − j ) independent for the zeta states:

GU(i, j ) = 〈c†
i↑ci↓c†

j ↓cj ↑〉 . (5)

For the eta states, the distance-independent expectation
value reads [73]

GO(i, j ) = 〈c†
i↑c†

i↓cj ↓cj ↑〉 . (6)

In a number of models, a third family of states [7, Eq. (24)]
closely related to the eta states in Eq. (4) forms a scar sub-
space. While we do not consider it explicitly in this work,
many results obtained here for the eta states can be directly
generalized to that related family as well.

As the starting point, we use the Hamiltonian that has
been studied numerically in Ref. [7], where it has been
shown to support two families of states |nζ̃ 〉 [Eq. (1)] and
|nη〉′ [Eq. (4)] as exact MBSs. This is a consequence of this
Hamiltonian having the H0 + OT form [29] with respect to
the symmetry groups of these two families.

The Hamiltonian is composed of three terms,

H tJU
h = H tJU + βH b + γQ2, (7)

where H tJU is the standard t-J -U model, H b is a symmetry-
breaking term of the OT form [29] that leaves the scars
unchanged, and Q2 is a magnetic field used to split the
otherwise degenerate |nζ̃ 〉 states: Q2 |nζ̃ 〉 = (2n − N ) |nζ̃ 〉)
(the SU(2)spin-invariant states |nη〉′ are annihilated by Q2).

In particular, these terms read

H tJU =
∑

〈ij 〉σ
(tc†

iσ cj σ + h.c.)+ J
∑

〈ij 〉
	Si · 	Sj +

+ U
∑

i

ni↑ni↓ − μQ, (8)

H b =
∑

〈ij 〉
rij (M̃i + M̃j )Tij , (9)

where Q is the total particle number operator, rij ∈ [0, 1]
are real random numbers and

M̃i = rM c†
i↑ci↑ − qM c†

i↓ci↓,

Tij =
∑

σ

c†
iσ cj σ + h.c.,

(10)

with real random numbers rM = 1.426974 and qM =
2.890703.

The hopping operators Tij are shown in Ref. [7] to be
the generators of the symmetry group of the scar states
and therefore they, as well as the full term H b, annihi-
late the scars exactly. The randomness built into H b allows

us to break most symmetries of the t-J -U model that are
irrelevant for our purposes. However, the particle-number-
conservation symmetry is preserved.

The energies of the scar states are given by

En
η = (U − 2μ) n, (11)

En
ζ̃

= J
4
(N − 1)− μN + γ (2n − N ), (12)

where n is the index of a state in its respective family, given
by Eq. (4) or Eq. (1).

For all the numerical results that we present, we use the
parameters

t = 1, J = 0.1, U = 1, μ = 0, β = 1, and γ = 1
4

. (13)

They are chosen to place the scars in the middle of the
spectrum [see, e.g., Fig. 5(a)].

For the numerical calculations, we perform exact diag-
onalization of the Hamiltonians, obtaining all their eigen-
vectors and eigenvalues, allowing us to simulate lattices of
up to N = 9 sites. With this information at hand, we can
also perform the unitary time evolution exactly. The start-
ing state for the time evolution is typically an equal-weight
superposition of the N + 1 states from either scar sub-
space. Calculations involving the zeta states are performed
within the half-filling sector, while some of the calcula-
tions with the eta states are in the full Hilbert space. The
lattice dimension does not play a role for exact scars [7].
This remains true in the presence of two of our single-body
perturbations (but might matter for the density-density
term). In this work, we perform the numerical calcula-
tions in 1D and use open boundary conditions such that
the odd-N lattices are also bipartite.

III. PERTURBATIONS

While the MBSs are exact for the Hamiltonian in Eq.
(7), the purpose of the present work is to study the stability
of the MBSs in the presence of perturbations that would be
most natural in a material or system that is well described
by the t-J -U model. The perturbations that we consider are
the on-site potential

	μ =
N∑

j =1

λ
μ
j nj , (14)

the on-site magnetic field

	B = −
N∑

j =1

∑

A=X /Y/Z

λ
B,A
j M A

j , (15)
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with the magnetization component M A
j as given in Eq. (3),

and the density-density interaction

	dd =
∑

j ,k

λdd
j ,knj nk, (16)

where λμj , λB,A
j , and λdd

j ,k are site-dependent perturbation

strengths and nj = ∑
σ c†

j σ cj σ—the occupation on site j .
Note that the analytical perturbative results that we will

obtain are valid for any (including long-range) density-
density interactions of arbitrary shape. For our numerical
studies, we restrict ourselves to the nearest-neighbor inter-
action, which is the most likely perturbation that we can
expect.

In the numerical calculations, the perturbation strengths
on each site are randomly drawn and are Gaussian dis-
tributed with standard deviation λ.

The group-invariant states in Eqs. (4) and (1) are exactly
annihilated by the generators of their respective symmetry
group, listed in Ref. [7]. In particular, we will make use
of Kj = nj − 1, the generator [7] of the U(N ) subgroup of
the full symmetry group of the zeta states in Eq. (1) and
M A

j in Eq. (3)—the generators of the spin SU(2), one of
the symmetries of the eta states.

(1) The action of the on-site potential perturbation on
the zeta states is simply

	μ |nζ̃ 〉 =
N∑

j =1

λj (1 + Kj ) |nζ̃ 〉 =
N∑

j =1

λj |nζ̃ 〉 .

(17)

(2) The magnetic field perturbation term annihilates the
eta states: 	B |nη〉′ = 0 |nη〉′.

(3) Finally, the density-density interaction has a simple
action on the zeta states:

	dd |nζ̃ 〉 =
∑

j ,k

λdd
j ,k(Kj + 1)(Kk + 1) |nζ̃ 〉

=
∑

j ,k

λdd
j ,k |nζ̃ 〉 (18)

In all the three cases above, the perturbations shift all the
energies within a scar family (eta or zeta) by a constant that
leaves their gaps unchanged and therefore has no effect on
the revivals within each family.

IV. ANALYTICAL ANALYSIS

The revivals of any initial state from the scar sub-
space are a consequence [7,29] of constructive interfer-
ence, which follows from the existence of a common
divisor of the energy gaps separating the scar states for

the Hamiltonian in Eq. (7) with which we start. Here,
we study analytically how this property is affected by the
perturbations.

A. Perturbation theory

In order to characterize the effect of perturbations on
the revivals in the remaining cases with nontrivial action,
we use stationary and time-independent perturbation the-
ory and find the lowest order breaking the equal spacings.
The first-order correction to the energy of a normalized
state |ψ〉 due to an on-site perturbation λiVi with λi ∈ R

is given by 	Eψ = λi 〈ψ |Vi|ψ〉 and below, we evaluate it
analytically. For both scar families, the expectation value
〈ψ |Vi|ψ〉 does not depend on the site index i. For the
zeta states, it is a consequence of the translation invari-
ance discussed in Sec. II. For the eta states, we first
note that for a suitable α, translating any on-site opera-
tor Vi gives the same operator acting on the nearby site
Vi+1: Vi+1 = eiαp̂Vie−iαp̂ , where p̂ is the momentum oper-
ator, which is a generator of translations. Now, for any
eta state, we have 〈nη′ |Oi+1|nη′ 〉 = 〈nη′ |eiαp̂Oie−iαp̂ |nη′ 〉 =
eiαπne−iαπn 〈nη′ |Oi|nη′ 〉 = 〈nη′ |Oi|nη′ 〉, where we use the
fact that every eta state is an eigenstate of the momentum
operator [73].

Because the considered expectation value is site inde-
pendent, the first-order correction due to

∑
i λiVi is given

for both scar families by
(∑

i λi
) 〈ψ |Vi|ψ〉.

1. Random potentials and |nη〉′ scars

Consider the single-site perturbation λμl nl. The average
occupation of each site in an eta state |nη〉′ is equal [see
Eq. (4)] to 2n/N . This already suggests that the first-order
correction could be

	Eη
′

n (λ
μ

l ) = 〈nη|′λμl nl|nη〉′ = 2n
N
λ
μ

l . (19)

We show in Appendix A 1 that this expression is indeed
exact. Because the correction is linear in the index of
the scar state in the tower, the |nη〉′ scars remain equally
spaced in the first order with the modified gap 	1,η =
	η + (2

∑
l λ
μ

l )/N .

2. Random fields and |nζ̃ 〉 scars

Consider a field of a fixed direction A = X /Y/Z applied
to the site l: −λB,A

l M A
l = −2λB,A

l SA
l . We can use the fact [7]

that the |nζ̃ 〉 states in Eq. (1) can be obtained by a rotation
around the X axis from the simpler basis |nζ 〉:

|nζ 〉 = ζ n
√

N !n!
(N−n)!

|0ζ 〉 , |0ζ 〉 =
N∏

j =1

c†
j ↓ |0〉 , (20)
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(a) (b)

(c) (d)

Magnetic Field NN Interactions

FIG. 1. The dependence of the quality factor on the perturbation strength λ for finite system sizes. (a),(b) The quality factor charac-
terizes the initial state fidelity. (c),(d) The quality factor is based on (c) the total spin or (d) the pseudospin. For (a) and (c), the initial
state is in the zeta subspace given in Eq. (1) (product, “all spins up” state). The perturbation is the random on-site magnetic field. For
(b) and (d), the initial state is in the eta subspace given in Eq. (4). The perturbation is the nearest-neighbor density-density interaction.
The fitted exponents r for N = 9 are indicated. In all cases, for each value of λ, we average over ten realizations of the perturbation.
The medians and their bootstrapped standard deviations are shown. The threshold is set to 0.75. Data points at which, in more than
half of the randomized perturbation realizations, the fidelity does not peak below the threshold during the simulated time are omitted.
This limits the displayed λ range from below.

where n = 0, . . . , N and

ζ = Q1 + iQ2 =
N∑

j =1

c†
j ↑cj ↓ (21)

is the spin raising operator.
The expectation values of interest can be expressed in

the simpler basis as

〈nζ̃ |SX
l |nζ̃ 〉 = 〈(N − n)ζ |SX

l |(N − n)ζ 〉,
〈nζ̃ |SY

l |nζ̃ 〉 = −〈(N − n)ζ |SZ
l |(N − n)ζ 〉,

〈nζ̃ |SZ
l |nζ̃ 〉 = 〈(N − n)ζ |SY

l |(N − n)ζ 〉.
(22)

The states |nζ 〉 in Eq. (20) only include configurations with
n up spins and the remaining N − n down spins. The oper-
ators SX

l and SY
l flip spins, change the ratio between up and

down spins, and therefore lead to vanishing expectation
values on the right-hand side of Eq. (22).

The only nonvanishing first-order contribution is due to
the second formula in Eq. (22). Here, we note that the n up
spins in the state |nζ 〉 are evenly distributed over the lattice.
The on-site spin expectation value in the Z direction is thus
given by

〈nζ |SZ
l |nζ 〉 = 1

2
n
N

− 1
2

N − n
N

= n
N

− 1
2

, (23)

which leads to the expectation value in the |nζ̃ 〉 basis

〈nζ̃ |SY
l |nζ̃ 〉 = n

N
− 1

2
. (24)

The constant shift does not change the gap, while the
linear-in-n term again keeps the |nζ̃ 〉 scar states equis-
paced, changing their gap to 	1 = 	+ (

∑N
i=1 λ

B,Y
i )/N .

3. Density-density interactions and |nη〉′ scars

In Appendix A 2, we show that the first-order correction
to the scar energies has quadratic dependence on the state
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index in the tower for density-density interactions

λdd
l,m 〈nη|′nlnm|nη〉′ = 4λdd

l,m
n(n − 1)

N (N − 1)
(25)

and, owing to the high symmetry of the scar states, does
not depend on the site indexes l, m.

The equal energy spacing is already broken in the first
order and the gap now becomes dependent on n: 	1(n) =
U − 2μ+ 4

(∑
l,m λ

dd
l,m

)
2n/N (N − 1). There is, however,

one special line in the parameter space U − 2μ = k	ε
with k ∈ Z and 	ε = 4

∑
l,m λ

dd
l,m/N (N − 1) where the

modified energy gap of the nth scar state equals (k +
2n)	ε and all the gaps are therefore integer multiples of
	ε. The existence of such a common divisor between all
the scar gaps leads to revivals with the period T = 2π/	ε
that are preserved to first order for this special choice of U
and μ.

Table I summarizes our analytical results for all the com-
binations of the scar states and perturbations. We stress that
in three cases the perturbation has no effect on the scars
and that their exact revivals also continue indefinitely in
the perturbed Hamiltonian.

B. Quality factor

If the unperturbed system is initialized to an arbitrary
state within the scar subspace, the fidelity, the overlap
between the initial and time-evolved state, exhibits
nondecaying oscillations [7] with period T. An example
of this behavior is illustrated in Fig. 6.

We use the quality factor as one of the measures char-
acterizing the decaying oscillations in the presence of
imperfections. We define the quality factor as the number
of oscillations that occur before their amplitude decreases
below a certain threshold to be specified. For observables
that do not oscillate we instead define the quality factor as
the ratio td/T, where td is the time after which the quantity
of interest decreases below the threshold.

The dependence of the fidelity quality factor on the
perturbation strength can be understood analytically. In
Appendix B, we use time-dependent perturbation the-
ory to show that at small perturbation strengths λ and a

TABLE I. For each considered perturbation, we show the
lowest order of the energy perturbation that breaks the equal
spacings. A row of dots (· · · ) indicates that the perturbation does
not change the energy spacings at all. For the cases when only
the first-order perturbation preserves the equal spacings, we have
verified numerically that the next, second, order actually perturbs
them.

|nζ̃ 〉 |nη〉′
On-site potential · · · Second order
On-site field Second order · · ·
Density-density · · · First order

NN Interactions

FIG. 2. The quality factor based on the superconducting GO
correlations in Eq. (6). The medians and their bootstrapped stan-
dard deviations are shown. The initial state is a superposition
of the eta states, while the perturbation is the nearest-neighbor
density-density interaction (ten realizations). The threshold is set
to 0.75. The fitted exponent r for N = 9 is indicated.

large enough threshold, the quality factor has a power-law
dependence on λ,

Q ∝ λ−r, (26)

where r = 2 if the first-order energy perturbation leaves
the scar states equispaced and r = 1 otherwise: therefore,
for a particular scar-family–perturbation-type pair, r can
be read off the Table I. Just like the results in Table I, the
quality-factor dependence given in Eq. (26) is thus valid in
any model of the H0 + OT form [7] where the eta [Eq. (4)]
or zeta [Eq. (1)] states are scars.

(a) (b)

FIG. 3. The expectation value of the projector on the scar
subspace. (a) The expectation value is evaluated for every eigen-
state of the perturbed Hamiltonian where a GUE perturbation
of strength 10−4 has been added to the unperturbed Hamilto-
nian in Eq. (7). The projector on the zeta scar subspace Pζ̃ =
∑

n |nζ̃ 〉 〈nζ̃ | has been used: N = 6, open boundary conditions.
The plot of the overlap of every eigenstate with a uniform super-
position of the zeta states (not shown) looks identical. (b) t →
∞: the large-time expectation value of the projector to the zeta
scar subspace for varying system sizes and GUE perturbation
strengths, calculated using Eq. (28). The initial state is an equal-
weight superposition of the zeta scars and we project to the zeta
scar subspace. The dashed lines indicate the large-perturbation
expectation values discussed in the text.
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FIG. 4. The level statistic 〈r〉 computed numerically at half fill-
ing for different perturbations of varying strengths λ. The data
shown are for N = 9 and open boundary conditions. A plateau
at Poisson statistics is visible for all three perturbations and it
becomes more distinct with increasing system size (see Fig. 8).
NN, nearest neighbor; GUE, generalized unitary ensemble; GOE,
generalized orthogonal ensemble.

The top row consisting of Figs. 1(a) and 1(b) shows that
the expected power law in Eq. (26) does approximately
describe the actual dependence of the fidelity quality fac-
tor for small perturbations λ ≤ 0.1 (magnetic field) and
λ ≤ 0.01 (the density-density and on-site potential; see
Appendix D). Here and throughout the paper, we use the
“bootstrapped standard deviation” as an estimate of the
error bar. We collect the data for various realizations of
the random weights that enter the definition of the per-
turbation part of the Hamiltonian (see Sec. III). In order
to determine the bootstrapped standard deviation, we take
B random samples containing P elements each from the
data. The samples are taken with replacement, i.e., we may
pick the same data point multiple times. For each sample
i, we determine the median mi. The bootstrapped standard
deviation of the median of the full data is then given by
the estimated standard deviation of the sample medians:

(a) (b)

FIG. 5. The entanglement entropy computed for every half-
filling eigenstate, plotted as a function of the energy of that
eigenstate. We use N = 7 and open boundary conditions. The red
data points indicate the zeta scars. (a) The unperturbed Hamil-
tonian given in Eq. (7). (b) A random potential perturbation of
strength λ = 12 is added.

(a) (b)

(c) (d)

FIG. 6. The time evolution of observables in an unperturbed
system with open boundary conditions and N = 7. The initial
state is a product “all-up” half-filling state, which is a superposi-
tion of the zeta scars. The observables plotted are (a) the fidelity
to the initial wave function, (b) the expectation value of the GU
correlator in Eq. (5), (c) the total spin projection on the Z axis,
and (d) the total spin projection on the X axis.

σB =
√

1/(B − 1)
∑B

1 (mi − m̄), where m̄ is the average of
all mi. We use B = 100 000 and P as half the amount of
available data.

V. FURTHER STABILITY MEASURES

The quality factor based on fidelity is a good theoretical
measure of the revivals stability. In experiment, however,
measuring the overlap with the initial state may not be pos-
sible. Here, we define several other measures that capture
information similar to the fidelity-based quality factor but
at the same time are based on experimentally measurable
quantities.

Both of the families of scars that we consider are the
maximum-spin representation of an SU(2) group. For the
eta states in Eq. (4), this is the pseudospin SU(2), while
for the zeta states in Eq. (1), it is the regular spin SU(2).
In either case, the scar family forms a basis in a subspace
where the quadratic Casimir (the total angular momentum)
of the respective SU(2) has the maximum possible value of
N/2. This value remains unchanged for any state that starts
anywhere in the subspace and then evolves with the unper-
turbed (deformed) t-J -U Hamiltonian given in Eq. (7). In
the presence of a perturbation, the time-evolved state will
attain some weight outside of the scar subspace. This can
be detected by the decrease of the quadratic Casimir oper-
ator measured in this state. The relevant generators of the
spin SU(2) are given by L+ = ζ̃ [see Eq. (1)], L− = (L+)†,
Lz = Q2 and for the pseudospin SU(2) by L+ = η′ [see Eq.
(4)], L− = (η′)†, Lz = 0.5(Q − N ).
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We define two quality factors, based on the total spin
and the total pseudospin. The quality factor is defined as
the time it takes for the total spin to decrease by a threshold
factor (to be specified case by case) divided by the period
of the unperturbed revivals.

The quality factors based on the total spin and pseu-
dospin are shown in the bottom row, consisting of Figs.
1(c) and 1(d), for the same combinations of the initial
state and the perturbation as those used for the fidelity-
based quality-factor calculations in Figs. 1(a) and 1(b). The
controlled behavior of the total (pseudo)spin-based quality
factor allows us to use it as an additional measure of MBS
stability in the presence of perturbations. This measure can
be defined for any scars furnishing a unique representation
of SU(2) (which may actually apply to some of the other
known equally spaced scars [27,56,64]).

While the quality factor based on the total spin has a
transparent physical interpretation, it can probably not be
measured directly in experiment. One may, however, be
able to extract information about its behavior from the
measurements of the projection of the total spin on at least
two axes (Fig. 6 illustrates this).

Another possibility for detecting MBSs experimentally
arises due to the characteristic correlations of the eta and
zeta scar states given by the operators GO(i, j ) and GU(i, j )
defined in Eqs. (6) and (5). The values of these correla-
tors are known exactly analytically in the scar states and
do not depend on the distance (i-j ) between the points at
which they are measured. For example, for the zeta states,
we have finite expectation value [29]

Gnζ̃
U = 1

4
− n(N − n)

2N (N − 1)
, (27)

while when evaluated in any generic states outside of the
zeta subspace in an unperturbed system, we obtain near-
zero values (see, e.g., Fig. 4 in the Supplementary Material
of Ref. [29]). Similarly, in an unperturbed system (when
the MBS is exact), the GO operator is only substantially
nonzero within the eta subspace [7, Fig. 8]. Therefore, the
finite nonzero values of these correlators can be used as a
sensitive indicator of the state being inside or outside the
respective scar subspace.

We will study the time evolution (the unperturbed case
shown in Fig. 6) of the expectation value of these corre-
lators numerically and define the quality factors based on
the (decay of the) amplitude of their oscillations. In exper-
iment, one could choose nearest-neighbor i and j such that
the measurement is local. Numerically, we evaluate the
value averaged over all possible choices of sites i and j :
(
∑

i<j G(i, j ))/(N (N − 1)/2).
In Fig. 2, we show the quality factor based on the decay

of the superconducting GO correlations in Eq. (6) when
starting from a mix of the eta states with the density-
density perturbation. The power-law dependence in Eq.

(26) that we obtained for the fidelity-based quality factor
continues to hold here as well.

Comparing the considered types of quality factors for
a fixed pair (initial state, perturbation type) over all the
available data, we conclude that the information that they
capture is qualitatively similar. An important difference,
however, is that the fidelity-based quality factor measures
the departure from the exact initial wave function, while
the quality factors based on physical quantities character-
ize the extent to which the time-evolved state preserves
the observable properties of the whole scar subspace. For
this reason, one could expect the latter quality factors to
be more stable than the fidelity-based one as a function of
the system size. Indeed, in, e.g., Fig. 2, we observe that the
GO-based quality factor does not strongly depend on the
system size N .

For very small perturbations λ ≈ 10−5, the various qual-
ity factors are quantitatively very similar, with the excep-
tion of the total spin-based quality factor, which typically
yields higher values. At higher perturbations (λ ≥ 10−3),
we observe a tendency for the physical observables to be
more stable compared to the fidelity. To see this, one can
compare the top and bottom rows in Fig. 1, where the
top and bottom panels in the same column are using the
same conditions and threshold. A further example of this is
found for the case of random potential and eta states (data
can be found in Appendix D), where we observe for N = 9
that the total pseudospin quality factor is about a factor of 6
higher than the fidelity-based quality factor. Therefore, the
quality factors based on total (pseudo)spin or the GO/GU
correlations are both preferable theoretically and are more
accessible in potential experiments.

VI. EXTRA SCAR STABILITY IN SMALL
SYSTEMS

Small systems with N between 4 and 50 are of par-
ticular interest for the exact numerical calculations and
controlled simulations in near-term quantum simulators.
As we show below, for small perturbations the time evo-
lution that starts in the MBS subspace is qualitatively
different from the large-N counterparts and shows signs of
additional stability.

This result is largely independent on the particular type
of perturbation. To illustrate this, in this section, we replace
the simple perturbations used so far (and listed in Table
I) with a Hermitian random matrix from a Gaussian uni-
tary ensemble (GUE) (referred to as a GUE perturbation)
that couples a typical initial state to every eigenstate in the
Hilbert space. Our exact unbiased numerical calculations
will still be limited by N = 9.

The unusual behavior is due to the fact that at small
perturbations the original eigenstates are only slightly
distorted. In particular, N + 1 of them mainly still have
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the character of the eta states and N + 1, further, the char-
acter of the zeta states. This means that these “perturbed
scars” are predominantly located in the original scar sub-
space [see Fig. 3(a), which illustrates this]. Thus an initial
state |φ0〉 in the scar subspace only has a significant over-
lap with N + 1 eigenstates of the perturbed Hamiltonian
and its time evolution can be approximately understood as
the interference of these N + 1 eigenstates. Although in
the presence of perturbations these eigenenergies are no
longer equally spaced, for small N this interference does
not lead to complete averaging out. Even after an arbitrar-
ily long time, the evolved state is mainly composed of the
same N + 1 “perturbed scars” and the exact scar space is
never left at small perturbations.

To make this statement more precise, we derive in
Appendix E the expectation value of the projector P to the
scar subspace in the long-time limit, when all the phases
of the interfering states can be assumed random. Starting
from the initial state |φ0〉 this expectation value is given by

Et→∞ [〈φ(t)|P|φ(t)〉] =
∑

k

〈ϕk|P|ϕk〉|〈φ0|ϕk〉|2, (28)

where |ϕk〉 is an eigenstate of the perturbed Hamiltonian.
As we have seen [Fig. 3(a)], for small systems and

small perturbations, there are N + 1 eigenstates |ϕj 〉 with
〈ϕj |Pη′ |ϕj 〉 ≈ 1 and

∑
j |〈φ0|ϕj 〉|2 ≈ 1, while the other

eigenstates have small projectors and overlaps. Insert-
ing these approximations into Eq. (28), one can see that
Et→∞

[〈φ(t)|Pη′ |φ(t)〉] ≈ 1. The time-evolved state will
continue to mainly reside within the exact scar subspace
despite the fact that the GUE perturbation couples it to the
entire Hilbert space. Furthermore, because the exact scar
subspace is only (N + 1) dimensional, the time-evolved
state will approximately revisit the initial state |φ0〉 from
time to time in small systems. An example of this time
evolution at large times is given in Fig. 7(d).

In Fig. 3(b), we plot the value of the projector expecta-
tion value from Eq. (28) for various system sizes and per-
turbation strengths, which should provide guidance for any
experimental quantum simulations in small systems (the
actual experimental perturbations will always be weaker
than GUE). The large-perturbation value [λ ≤ 1; see Eq.
(13)], where no eigenstate subset has an increased over-
lap with the initial state, can be estimated as (N + 1)/DH ,
where DH is the Hilbert-space dimension (DH = (2N

N

)
for

the half-filling sector in which the zeta states reside).
We observe that even with the increasing system sizes,

a sizable projector expectation value is obtained for small-
enough perturbations.

VII. MANY-BODY LOCALIZATION

A distinct regime of ergodicity breaking consistent with
many-body localization (note that some aspects of this

(a) (b)

(c) (d)

× × ×

×

FIG. 7. (a),(c) The quality factors with the perturbation of
varying strengths λ given by the random (ten realizations thereof)
on-site potential. The medians and their bootstrapped standard
deviations are shown. The fitted exponent r is provided for N =
9. The initial state is an even superposition of all eta scars. (a)
The overlap-based quality factor, the threshold is 0.9. Only data
with λ ≤ 4 × 10−3 are fitted. r = −2.04. (b) The quality factor
based on the total pseudospin. r = −0.99 (fit beyond the range
of applicability of the perturbation theory). The threshold is 0.75.
(c) The quality factor based on the averaged (over sites where the
correlation is measured) GO correlator. r = −0.97 (fit beyond the
range of applicability of the perturbation theory). The threshold
is 0.75. (d) The long-time evolution of the revivals amplitude
in a small system with N = 7 sites where the GUE perturbation
(Hermitian random matrix) with strength λ = 10−4 is used. The
initial state is an “all-up” product state, which is a superposition
of the zeta states. The time evolution is performed within the
half-filling sector.

phenomenon in spin chains are a subject of ongoing debate
[74,75]) arises when the strength of the perturbations is
increased above the energy scales given by the unperturbed
system.

To identify the potential MBL region, we tune the per-
turbation strength λ and track the average (over the full
spectrum) ratio r level statistic, which is known to be a
sensitive measure for detecting the many-body localized
phase [65]. ri is defined as the ratio of successive energy
gaps si = Ei − Ei−1: ri = (min(si, si+1))/(max(si, si+1)). It
should be calculated upon resolving all the symmetries
present in the system.

Expectation values for r are known analytically [76]:
〈r〉 ≈ 0.5359 for the generalized orthogonal ensemble
(GOE, real random matrices) and 〈r〉 ≈ 0.6027 for the gen-
eralized unitary ensemble (GUE, complex random matri-
ces). These values signal that the system is ergodic. The
Poisson value of approximately 0.38629, on the other
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hand, is usually considered as a strong indicator of many-
body localization and the presence of the emerging associ-
ated conserved quantities.

The level statistics obtained numerically are shown in
Fig. 4. With all the three perturbations considered in this
work, we find that for strengths between 8 and 20, the level
statistics become approximately Poisson. In Appendix F,
we show that the distribution of r indeed follows the one
we expect from Poisson-distributed energy gaps within
this range. This observation suggests that the system is
many-body localized. We should also keep in mind that the
systems accessible to exact diagonalization are rather small
and do exhibit finite-size effects. One of such effects is the
deviation of the average level-statistics parameter 〈r〉 away
from the Poisson value observed at highest λ values in
Fig. 4. In Appendix F, by carefully analyzing the system-
size dependence, we show that the relevant observables
(including 〈r〉) do exhibit a strong trend toward typical
MBL values with increasing system size also at higher
values of λ.

MBL is typically expected to create states that are local-
ized and therefore do not have significant entanglement.
Numerically, we study the bipartite entanglement entropy
that arises if we cut our 1D system in the middle. In the
unperturbed regime, the dependence of this entropy on the
energy forms a typical thermal arc [Fig. 5(a)], with the
maximum corresponding to infinite temperature and repro-
duces the results previously known in this system [7]. The
situation is drastically different at high perturbations, as
shown in Fig. 5(b) in the presence of a random poten-
tial (the results are similar for other perturbation types).
Most of the eigenstates here have vanishing entangle-
ment, which is consistent with them being fully localized.
The entanglement of the remaining states while finite is
significantly lower than in the unperturbed system.

Careful analysis of the numerical data including the
wave functions suggests that the finite entanglement arises
due to the fact that the randomized perturbations that we
use here (chosen as the most relevant impurities in a poten-
tial MBS experiment) do not couple to all the local degrees
of freedom. The random on-site potentials [Fig. 5(b)], for
example, would fully localize the density on each site at
λ = ∞. They are, however, insensitive to the spin configu-
ration and for a Hamiltonian made of the perturbation only,
the states with identical density but different spin configu-
rations would make a degenerate subspace. The number of
states in such a subspace is 2 to the power given by the
number of half-filled sites in a density configuration. The
density configurations with the most half-filled sites lead
to the highest finite entanglement in the perturbed system,
seen as almost vertical clusters of states in Fig. 5(b). At
high perturbation strengths, the interacting part H tJU

h of the
Hamiltonian in Eq. (7) can be thought to either split the
degenerate levels of the perturbation term or couple its lev-
els very closely in energy. This leads to states with finite

entanglement and, in particular, to log(2) entanglement for
the cases when the resulting state is a superposition of just
two degenerate eigenstates of the perturbation term.

Even though the number of finite-entanglement states
grows with the system size as explained above, this growth
is outpaced by the 4N growth of the full Hilbert space and,
as we show in Appendix F, the fraction of the delocalized
states vanishes as the system size is increased.

Further evidence for the nonthermal behavior in the
strong-perturbation regime is provided by the time evolu-
tion of the entanglement entropy and the out-of-time-order
correlators (OTOCs) [77], also discussed in Appendix F.

Overall, our finite-size numerical results clearly indi-
cate that at strong perturbation strengths, the system is
nonthermal and the number of states deviating from the
thermal behavior is extensive as opposed to the MBS
regime. While such numerics cannot in principle strictly
prove the existence of the MBL phase, our observations are
consistent with many-body localization once the finite-size
effects are taken into consideration.

VIII. DISCUSSION AND OUTLOOK

The zeta scar states are completely insensitive to the
on-site chemical potential, while the eta-pairing scars are
insensitive to the on-site magnetic field. These two scar
families remain stable under magnetic fields and chemical
potentials, respectively, in the first order of the perturbation
theory. Both of these results are due to the high symmetry
of the two scar families and are Hamiltonian independent
as long as the Hamiltonian is a part of a large class of
models [7] that support eta and zeta states as exact scars.

The quality factor based on the decay of the total
quadratic Casimir operator of the underlying SU(2) sym-
metry group is a natural measure of scar stability that
should be applicable to any equispaced scars. In the par-
ticular case of scars in spin-1/2 fermionic systems, we
further propose that the stability of scars can be assessed
based on the experimentally measurable dynamics of their
characteristic ODLRO correlators.

These results should provide guidance for future exper-
imental observations of MBSs in fermionic systems and
facilitate the development of their quantum information-
processing applications.

Another motivation for future experimental studies is
the presence of two very different ergodicity-breaking phe-
nomena in the same system: while few MBSs break ergod-
icity at zero or small perturbation, an extensive fraction of
the Hilbert space exhibits nonthermal behavior at strong
disorder. We show that one can go from one regime to
the other by simply tuning the strength of a local impurity
perturbation.

It is conceivable that one can think about photoinduced
superconductivity [78–80] in terms of effectively preparing
a state that has a finite projection on the scar subspace of
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eta-pairing states. It would be interesting to study the rela-
tion between the GO-based quality factors and decay times
that we have discussed here and the time scales observed
in experiments [78,79,81].
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APPENDIX A: PERTURBATION THEORY

1. Random potentials on eta scars

Let us derive the expression

	Eη
′

n (λ) = 〈nη|′λnl|nη〉′ = 2n
N
λ. (A1)

Let us rewrite the |nη〉′ states given in Eq. (4):

|nη〉′ = NN ,n

⎛

⎝
∑

j

(−1)j c†
j ↑c†

j ↓

⎞

⎠

n

|0〉

= NN ,n

∑

j1,...,jn

n∏

k=1

(−1)jk c†
jk↑c†

jk↓|0〉

= NN ,n

∑

j1,...,jn
all different

|j1, . . . , jn〉

with |j1, . . . , jn〉 :=
n∏

k=1

(−1)jk c†
jk↑c†

jk↓|0〉. (A2)

Note that the order of the excitations does not matter, since
[c†

j ↑c†
j ↓, c†

k↑c†
k↓] = 0 ∀j , k. We can restrict the sum to all

different j1, . . . , jn because (c†
j ↑c†

j ↓)
2 = 0.

We can now apply the on-site potential operator λnl to
the scar. It provides a factor of 2λ to states where l is
occupied and annihilates the other ones:

λnl|nη〉′ = 2λn NN ,n

∑

j1,...,jn−1 �= l
all different

|j1, . . . , jn−1, l〉. (A3)

The factor of n comes from the n possible jk that could
correspond to l. Finally, we can apply 〈nη|′ on the left to

obtain the first-order energy correction:

〈nη|′λnl|nη〉′

= 2λn N 2
N ,n

⎛

⎜
⎝

∑

j1,...,jn
all different

〈j1, . . . , jn|

⎞

⎟
⎠

×

⎛

⎜
⎜
⎝

∑

j1,...,jn−1
all different

|j1, . . . , jn−1, l〉

⎞

⎟
⎟
⎠ . (A4)

Note that

〈j ′
1, .., j ′

n|j1, .., jn〉

=
{

1 if j ′
1, ., j ′

n are a permutation of j1, ., jn,
0 otherwise.

(A5)

For evaluating Eq. (A4), we can thus simply count the
number of contributing combinations of states between
the two brackets. The right bracket in Eq. (A4) con-
tains (N − 1)!/((N − 1)− (n − 1))! = (N − 1)!/(N − n)!
terms, corresponding to the number of ways to choose
n − 1 different values in {1, . . . , N } \ {l} to assign to
j1, . . . , jn−1. Each term in the right bracket is matched by
n! terms on the left-hand side: the values j1, . . . , jn must
match the indexes in the right bracket to arrive at the
same occupation number state and they can be ordered
in n! different ways. The bracket product thus evaluates
to n!(N − 1)!/(N − n)!. Inserting the expression for the
normalization constant NN ,n, we arrive at the first-order
correction

〈nη|′λnl|nη〉′ = 2λn
(N − n)!

N !n!
n!
(N − 1)!
(N − n)!

= 2n
N
λ. (A6)

With random potentials on each site, V = ∑N
l=1 λlnl, we

obtain

〈nη|′
N∑

l=1

λlnl|nη〉′ =
N∑

l=1

〈nη|′λlnl|nη〉′ = 2n
N

N∑

l=1

λl, (A7)

which still keeps the scar energies equispaced.

2. Density-density interactions on eta scars

Given a charge interaction between two sites l and m,
the first-order energy correction on the |nη〉′ scars is given
by 〈nη|′λnlnm|nη〉′. It is again helpful to express the scars
as |nη〉′ = NN ,n

∑
j1,...,jn

all different
|j1, . . . , jn〉 as in Appendix A 1.

Applying the operator λnlnm annihilates all states where
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either l or m (or both) are not occupied. The remaining
states receive a factor of 4λ:

λnlnm|nη〉′ = 4λNN ,nn(n − 1)
∑

j1,...,jn−2
all different and �=l,m

|j1, . . . , jn−2, l, m〉.

(A8)

The factor of n(n − 1) corresponds to the number of possi-
ble pairs of indexes in {1, . . . , n} one could assign to l and
m. The sum contains (N − 2)!/((N − 2)− (n − 2))! =
(N − 2)!/(N − n)! terms, corresponding to the number of
possibilities for assigning the remaining N − 2 sites to
j1, . . . , jn−2 without repetition. Applying 〈nη|′ on the left-
hand side, each term of the sum in Eq. (A8) is matched by
the terms in 〈nη|′ where the same sites are occupied. There
are n! such terms due to the different possible orderings.
Making use of the orthogonality of the states |j1, . . . , jn〉 in
Eq. (A5), we can thus determine the first-order correction
as

〈nη|′λnlnm|nη〉′ = 4λN 2
N ,nn(n − 1)

(N − 2)!
(N − n)!

n!

= 4λ
(N − n)!

N !n!
n(n − 1)

(N − 2)!
(N − n)!

n!

= 4λ
n(n − 1)

N (N − 1)
. (A9)

Note that this first-order correction is quadratic in n. This
breaks the equal spacings: the energies shifted by the first
order are given by [see Eqs. (11) and (A9)]

Eη
′

n (λ = 0)+	Eη
′

n (λ) = (U − 2μ)n + 4λ
n(n − 1)

N (N − 1)
,

(A10)

leading to n-dependent energy spacings:

(Eη
′

n+1(λ = 0)+	Eη
′

n+1(λ))− (Eη
′

n (λ = 0)+	Eη
′

n (λ))

= U − 2μ+ 4λ
2n

N (N − 1)
. (A11)

The |nη〉′ scar states are thus unstable under density-density
interactions already in first order.

In a system with significant density-density interac-
tions one could, in principle, assure that the energies
corrected in first order still support revivals by tuning
the parameters such that U − 2μ = k	ε with k ∈ Z and
	ε = 4λ/N (N − 1). Inserting this into Eq. (A10), we then
find that Eη

′
n (λ = 0)+	Eη

′
n (λ) = (kn + n(n − 1))	ε. In

a tuned system, the corrected energies are thus integer mul-
tiples of a common 	ε and support revivals with a period
of T = 2π/	ε.

As in Sec. IV A 2 and Appendix A 1, we can directly
generalize these results to arbitrary density-density inter-
actions between all sites.

APPENDIX B: QUALITY-FACTOR DEPENDENCE
ON THE PERTURBATION STRENGTH

We consider an arbitrary scarred initial state |φ0〉 =∑N
n=0 an|n〉, where |n〉 are scar states (from either eta or

zeta families) with equispaced energies εn = ε0 + n	ε. In
the unperturbed system, the fidelity returns to 1 at all peak
times tl = lh/	ε, l ∈ N:

|〈φ0|φ(tl)〉|2 = 1. (B1)

Let us investigate how the fidelity peaks change if we per-
turb the Hamiltonian to Hλ = H + λV. The time evolution
is then given by

|φ(t)〉 = e− i
�

Hλt|φ0〉 =
N∑

n=0

ane− i
�

Hλt|n〉. (B2)

We can write

e− i
�

Hλt|n〉 =
∑

k

cn,k(t)e− i
�
εkt|k〉, (B3)

where k moves over all eigenstates of H . This leads to the
fidelities

|〈φ0|φ(t)〉|2 =
∣
∣
∣
∣
∣
∣

N∑

n,m=0

a∗
mancn,m(t)e− i

�
εmt

∣
∣
∣
∣
∣
∣

2

. (B4)

At λ = 0, we have cn,m(t) = δnm, which, using the fact that
at the peak times e−i/(�)εntl = e−2π il(ε0)/(	ε) (independent of
n), yields |〈φ0|φ(tl)〉|2 = 1.

At small λ > 0, we can expand cn,m(t) using time-
dependent perturbation theory. Up to second order, we
have [82, Eq. (5.369)]

cn,n(t) = exp
(

− i
�
(λ	(1)

n + λ2	(2)
n )t

)

, (B5)

where λ	(1)
n = 〈n|λV|n〉 is the first-order energy correction

to εn, and [83, Eq. (47)]

cn,m �=n(tl) =
(
λ

i�

)2 (
VmnVnn

iωmn
tl − VmmVmn

iωmn
tl

−
∑

k �=n,m

VmkVkn

ωmkωkn
(1 − eiωmktl)

)

, (B6)

where Vab := 〈a|V|b〉, ωab := (εa − εb)/�. k again labels
all eigenstates of H . Here, we use the fact that at the peak
times, eiωnmtl = 1.
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In first order of λ, we can neglect cn,m �=n(tl) and approx-
imate,

cn,n(t) ≈ exp
(

− i
�
λ	(1)

n t
)

, (B7)

leading to the fidelity

|〈φ0|φ(t)〉|2 ≈
∣
∣
∣
∣
∣

N∑

n=0

|an|2 exp
(

− i
�
(εn + λ	(1)

n )t
)∣

∣
∣
∣
∣

2

.

(B8)

At the peak times (e−i/(�)εntl = e−2π il(ε0)/(	ε)), it evaluates
to

|〈φ0|φ(tl)〉|2 ≈
∣
∣
∣
∣
∣

N∑

n=0

|an|2 exp
(

− i
�
λ	(1)

n t
)∣

∣
∣
∣
∣

2

. (B9)

The quality factor is proportional to the time at which
this quantity reaches a certain threshold. Since the time
is scaled by λ, the quality factor will generally follow a
power law with respect to λ in first order:

Q ∝ λ−1. (B10)

Note, however, that Eq. (B8) corresponds to the unper-
turbed expression up to the fact that the energies of the scar
have been corrected in first order. Thus, if the first-order
correction leaves the energies equispaced with gaps 	ε +
λc, c ∈ R, the fidelity will still return to 1 to first order,
albeit at peak times t′l = h/(	ε + λc). In these cases, let
us consider the second order in λ:

∣
∣〈φ0|φ(t′l)〉

∣
∣2 ≈

∣
∣
∣
∣

N∑

n=0

|an|2e− i
�
λ2	(2)n t′l +

N∑

n,m=0
n�=m

a∗
mancn,m(t′l)

∣
∣
∣
∣

2

.

(B11)

In the first term here and in the first two terms entering cn,m
in Eq. (B6), the time is multiplied by λ2 and we can antici-
pate (keeping in mind that the magnitude of the third term
in Eq. (B6) is bound with respect to time t) this to result
in the Q ∝ λ−2 dependence. The expression for cn,m(tl) in
Eq. (B6) has been calculated with respect to the unper-
turbed peak times tl. Since the peak-time correction is of
order λ, we can use the same expression at t′l in second
order. There is a subtlety with this argument: the smaller
λ, the longer it takes until the threshold defining the qual-
ity factor is crossed and the larger the times that we need
to consider. We need to assume that for the range of λ that
we consider, the threshold is chosen high enough.

The last term of Eq. (B6) deserves some attention as it is
not linear in t′l. Note, however, that due to the denominator

ωmkωkn, the contributions of eigenstates |k〉 with energies
close to either |n〉 or |m〉 dominate the sum. If εk ≈ εn, we
have �ωmk ≈ (m − n)	ε and if εk ≈ εm, ωmk ≈ 0. Moti-
vated by this, let us thus assume a threshold high enough
such that eiωmkt′l ≈ 1 in both cases and that (1 − eiωmkt′l) can
be approximated as linear in t′l. In this approximation, we
have cn,m �=n(t′l) ∝ λ2t′l and the time is scaled by λ2 in all
factors of Eq. (B11), leading to

Q ∝ λ−2. (B12)

In summary, the quality factor is related to the perturba-
tion strength λ through a power law at small λ and large
enough thresholds. The first-order corrections that we have
calculated in Sec. IV A control whether the exponent is −1
or −2.

APPENDIX C: DYNAMICS IN THE
UNPERTURBED SYSTEM

If we start from the half-filled state where every spin is
up (which is a linear combination of the zeta scar states),
we observe that the total spin projections on the Z and X
axes oscillate as shown in Fig. 6. This can be understood
using a simple model of a magnetic moment m in a uniform
magnetic field. The magnetic moment carried by the initial
state is along the Z axis. The Q2 term in the unperturbed
Hamiltonian in Eq. (7) is a magnetic field along the neg-
ative Y axis. The torque exerted by this external magnetic
field is given by τ = m × Bext. It determines the rate of
change of the magnetic moment and leads to its precession
in the X -Z plane, as observed in Fig. 6.

Note that this observation may be quite general: the
majority of the known MBS states actually forms a tower
equally spaced in energy. One could potentially interpret
it as a unique representation of an SU(2) group split by an
effective magnetic field. The dynamics of a state from the
scar subspace then correspond to a precession analogous to
the one that we observe here.

As we see in the plot of the total spin projection on the Z
axis, the initial state oscillates between the all-up state and
the all-down state. Both of these states have a vanishing
GU expectation value, which leads to a doubled frequency
in the GU oscillations.

APPENDIX D: NUMERICAL DATA FOR ETA
STATES AND ON-SITE RANDOM CHEMICAL

POTENTIAL

Figures 7(a)–7(c) show the quality-factor data obtained
with the random on-site potentials acting as a perturba-
tion. As illustrated in Fig. 7(a) (quality factor based on
the wave-function fidelity), the behavior predicted by the
perturbation theory is only observed for λ ≤ 10−2.

With this exception, the data obtained for the on-site
potential show the same qualitative behavior as for the two
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other perturbation types and thus support the conclusions
drawn in the main text.

APPENDIX E: INFINITE-TIME BEHAVIOR

In order to quantify how close the evolving states remain
to the exact scar space, let us calculate the expectation
value of the scar projector expectation value after a long
time where the phases are completely randomized. That is,
let us find E [〈φ(t)|P|φ(t)〉] for large t, with P = ∑

n |n〉〈n|
being the projector to the space spanned by exact scar
states |n〉. Inserting the definition of P, we obtain

E [〈φ(t)|P|φ(t)〉] =
N∑

n=0

E [〈φ(t)|n〉〈n|φ(t)〉]

=
N∑

n=0

E
[|〈n|φ(t)〉|2]

=
N∑

n=0

E
[
Re2〈n|φ(t)〉]

+ E
[
Im2〈n|φ(t)〉] . (E1)

Expressing both the scar states and the initial condition in
terms of the eigenstates |ϕk〉 of the system,

|n〉 =
∑

k

an
k |ϕk〉, |φ0〉 =

∑

k

ck|ϕk〉 → |φ(t)〉

=
∑

k

cke−iEkt|ϕk〉, (E2)

we can write

〈n|φ(t)〉 =
∑

k

ān
kcke−iEkt. (E3)

After long times, −Ekt can be treated as uniformly dis-
tributed and uncorrelated phases αk ∈ [0, 2π). Absorbing
the phases of ān

kck into αk, we obtain

〈n|φ(t)〉 =
∑

k

|an
k ||ck|eiαk ,

Re 〈n|φ(t)〉 =
∑

k

|an
k ||ck| cosαk.

(E4)

We can now calculate E
[
Re2〈n|φ(t)〉] using the identity

Var[X ] = E[X 2] − (E[X ])2

→ E[X 2] = Var[X ] + (E[X ])2,
(E5)

with X = Re 〈n|φ(t)〉. Looking at Eq. (E4) and remem-
bering that αk is uniformly distributed, it is clear that

E [Re 〈n|φ(t)〉] = 0 as the expectation value of each term
vanishes individually. We can obtain the variance using
Var[X + Y] = Var[X ] + Var[Y] and Var[λX ] = λ2Var[X ]
together with Eq. (E4):

Var [Re 〈n|φ(t)〉] =
∑

k

|an
k |2|ck|2Var[cosαk]. (E6)

The variance of cosαk with a uniformly distributed αk can
be found by again using Eq. (E5):

Var[cosαk] = E[cos2 αk] − (E[cosαk])2,

E[cos2 αk] = 1
2π

∫ 2π

0
dαk cos2 αk = 1

2
,

E[cosαk] = 1
2π

∫ 2π

0
dαk cosαk = 0,

⇒ Var[cosαk] = 1
2

.

(E7)

The first integral can be obtained using partial integration.
Combining Eqs. (E5), (E6), and (E7), we obtain

E
[
Re2〈n|φ(t)〉] = 1

2

∑

k

|an
k |2|ck|2. (E8)

For the imaginary part, we get the same result, since
Im eiαk = sinαk only differs by a constant phase shift. We
can insert this into Eq. (E1) to arrive at the projector
expectation value:

E [〈φ(t)|P|φ(t)〉] =
N∑

n=0

∑

k

|an
k |2|ck|2

=
∑

k

〈ϕk|P|ϕk〉|〈φ0|ϕk〉|2. (E9)

APPENDIX F: MANY-BODY LOCALIZATION

We first consider the system-size dependence of the
level-statistics parameter r. From the early literature on
it, it is known that in small systems, deviations from the
reference ensemble values are to be expected.

Figure 8(a) shows the perturbation-strength dependence
of the average level-statistics parameter r for three dif-
ferent system sizes. We observe that the plateau in the
vicinity of the Poisson reference value becomes more pro-
nounced with increasing system size. Poisson statistics are
expected in the many-body localized regime as a result of
the emergence of a large number of conservation laws due
to disorder. Besides the average value of r, we have also
examined its distribution within the Poisson plateau shown
in Fig. 9 and found excellent agreement with the distribu-
tion expected in the MBL regime [65]. We note that at the
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(a)

(b)

FIG. 8. (a) The average level statistics 〈r〉 within the half-
filling sector as a function of the strength of the nearest-neighbor
(NN) density-density perturbation. The horizontal lines indicate
the reference values for random matrix ensembles (GOE and
GUE) and the Poisson statistics. (b) The system-size dependence
of the average level-statistics parameter 〈r〉 for λ = 40 and two
different types of perturbations.

higher perturbation strengths (λ > 20), the r dependence
moves closer to the Poisson value as the system size is
increased, thereby bringing the dependence closer to the
typical curve that one would expect for MBL. A plau-
sible reason for the deviation from the Poisson value at
extremely strong perturbations is as follows. At large λ,
the Hamiltonian Hλ = H + λV can be seen as λV, with a
small perturbation H . λV typically has highly degenerate
eigenenergies. For example, both the random potentials
and the density-density interactions do not distinguish
between the possible values of spin on sites occupied by
one particle. H weakly splits the degenerate energy levels
but they will remain crowded around the eigenenergies of
λV. This means that we have an effective “level attraction,”
indicated by a value of r smaller than what we expect from
Poisson-distributed energy spacings.

In Fig. 8(b), we investigate the system-size dependence
of 〈r〉 in more detail and plot it for two different perturba-
tion types as a function of 1/N for λ = 40—the value at
which the deviation from the Poisson reference in Figs. 4

and 8(a) may appear significant. In both cases, we observe
a clear strong trend toward the Poisson value with grow-
ing system size. Therefore, regardless of the reason for
the r dependence to drift lower than the Poisson value,
we expect this effect to be negligible in large enough sys-
tems such that the MBL region that we have called the
“Poisson plateau” so far actually extends to arbitrarily high
interaction strengths.

We now turn to the finite-size effects observed in the
entanglement-entropy data. One can see in Fig. 5 that
although most of the states have zero or drastically reduced
entanglement in the presence of strong disorder, some
states remain fairly delocalized with finite entanglement
entropy. To quantify this effect, we count the number of
states with an entanglement entropy larger than 0.5 and
calculate the fraction of such states in the whole Hilbert
space for random potential disorders of strengths within
the Poisson plateau of the 〈r〉 dependence. The results in
Fig. 10(a) show a strong trend for the fraction of the delo-
calized states to decrease with the system size and we
expect their contribution to be vanishing at large enough
sizes.

The time evolution of the entanglement entropy starting
from a random product state can be used as another diag-
nostic of MBL [66]. In Fig. 11, we show the entanglement
time evolution for N = 7 with and without (random on-site
potential) disorder. In the case of the unperturbed system,
we observe rapid growth of entanglement, as expected
in an ergodic, interacting, and thermalizing system. The
result is clearly nonthermal in the presence of strong per-
turbations (within the MBL regime, λ = 12 judging by the
level statistics)—the entanglement growth is much slower,
although it is not logarithmic. It is possible that the truly
logarithmic growth (expected for MBL [66]) can only be
seen in larger system sizes, as we do observe some other
MBL signatures discussed above becoming clearer with
increasing system size.

FIG. 9. The distribution of the r values at half filling in a
chain of N = 9 sites under a random potential perturbation
of strength λ = 20. The distribution expected from Poisson-
distributed energy spacings (2/(1 + r)2; see Ref. [65]) is over-
lain.
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(a) (b)

FIG. 10. (a) The fraction of the delocalized (entanglement
entropy larger than 0.5) half-filling states as a function of the
inverse system size. We show the median and its bootstrapped
standard deviation over ten realizations of random on-site poten-
tials and choose a perturbation strength within the Poisson
plateau for each realization based on 〈r〉. (b) The evolution of the
OTOC given in Eq. (F1), starting from a random product state.
We fix one of the site indexes at k = 4. The perturbation used is
the random potential.

The OTOC [77] is a concept that can be used to charac-
terize the effective speed with which a perturbation caused
by a local operator spreads in space. Given two operators
Vj and Wk acting on sites k and j , respectively, and an ini-
tial state |ψ〉, it is given by (bear in mind a slight notation
change compared to Ref. [77])

Fkj (t) = 〈ψ |WkeiHtVj e−iHtWkeiHtVj e−iHt|ψ〉 . (F1)

We study the particular OTOC specified by Wk = σ 2
k (the

Pauli Y matrix acting on the spin on site k) and Vj = σ 3
j

(the Pauli Z matrix acting on the spin on site j ). The initial
state |ψ〉 is a random product state. To study the spread of
a perturbation, we fix k = 4. As long as the information at

FIG. 11. The entanglement-entropy time evolution starting
from a random product state. The cut is made in the middle of
the 1D chain. λ = 0 corresponds to the unperturbed Hamiltonian
in Eq. (7). The λ = 12 data are for the same Hamiltonian, where
a strong random chemical potential has been added, correspond-
ing to the middle of the MBL plateau seen in the level statistics
(Fig. 4). The inset shows the entanglement time evolution in the
perturbed case on a much longer time scale.

k = 4 has not reached j , the OTOC Fkj (t) remains close
to 1. Once the operator Wk affects j , Fkj (t) is decreased.
By tracking the time and position at which such a decrease
happens, one can draw an approximate “light cone” of the
spread of information.

Figure 10(b) shows this light cone for the perturbed (in
the MBL regime) and unperturbed systems. With no per-
turbation, the information reaches the outermost site in 1.3
time units, leading to a velocity of 2.3 sites per time unit.
With the perturbation, the propagation takes 19 time units,
corresponding to a velocity of 0.16.

We observe that the information spreads an order of
magnitude slower in the perturbed system, which can be
considered as another manifestation of it being localized.

To summarize, we can say that all the data that we
have undoubtedly suggest that in contrast to the MBSs,
the number of states breaking ergodicity at high perturba-
tion strength is extensive. Our data are also consistent with
many-body localization occurring in this regime, although
finite-size effects are still strong for the sizes accessible to
exact diagonalization.
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Greiner, V. Vuletić, and M. D. Lukin, Probing many-body
dynamics on a 51-atom quantum simulator, Nature 551, 579
EP (2017).

[4] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Ser-
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listic eigenstates in disordered chaotic spin ladders and
the Fermi-Hubbard model, Phys. Rev. Lett. 123, 036403
(2019).

[19] N. Shibata, N. Yoshioka, and H. Katsura, Onsager’s scars
in disordered spin chains, Phys. Rev. Lett. 124, 180604
(2020).

[20] A. A. Michailidis, C. J. Turner, Z. Papić, D. A. Abanin,
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[51] Z. Papić, in Entanglement in Spin Chains: From The-
ory to Quantum Technology Applications, edited by A.
Bayat, S. Bose, and H. Johannesson (Springer International
Publishing, Cham, 2022), p. 341.

[52] A. Chandran, T. Iadecola, V. Khemani, and R. Moessner,
Quantum many-body scars: A quasiparticle perspective,
Annu. Rev. Condens. Matter Phys. 14, 443 (2023).

[53] Z. Sun, F. K. Popov, I. R. Klebanov, and K. Pakrouski,
Majorana scars as group singlets, Phys. Rev. Res. 5, 043208
(2023).

[54] S. Moudgalya and O. I. Motrunich, From symmetries to
commutant algebras in standard Hamiltonians, Ann. Phys.
455, 169384 (2023).

[55] S. Moudgalya and O. I. Motrunich, Exhaustive charac-
terization of quantum many-body scars using commutant
algebras, arXiv:2209.03377 [cond-mat.str-el] (2022).
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