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Statistical correlations that can be generated across the nodes in a quantum network depend crucially
on its topology. However, this topological information might not be known a priori, or it may need to be
verified. In this paper, we propose an efficient protocol for distinguishing and inferring the topology of a
quantum network. We leverage entropic quantities—namely, the von Neumann entropy and the measured
mutual information—as well as measurement covariance to uniquely characterize the topology. We show
that the entropic quantities are sufficient to distinguish two networks that prepare GHZ states. Moreover,
if qubit measurements are available, both entropic quantities and covariance can be used to infer the
network topology without state-preparation assumptions. We show that the protocol can be entirely robust
to noise and can be implemented via quantum variational optimization. Numerical experiments on both
classical simulators and quantum hardware show that covariance is generally more reliable for accurately
and efficiently inferring the topology, whereas entropy-based methods are often better at identifying the
absence of entanglement in the low-shot regime.
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I. INTRODUCTION

Quantum entanglement [1] is a static resource that can
be shared between parties and used to generate correla-
tions. In nature, entanglement leads to interesting physical
phenomena in quantum many-body systems [2], while
from an engineering perspective, quantum entanglement
offers operational advantages in communication, cryptog-
raphy, computation, and sensing technologies [3].

We focus on quantum communication networks in
which entanglement can be generated and distributed to
different parties [4–6]. The entanglement can then be used
to assist in a variety of networking applications [6]. The
first quantum networks have been developed and will con-
tinue to scale [7–10]; therefore, to harness the power of
quantum networks, it is important to characterize different
types of entanglement structures.

The functionality of a quantum network will depend
crucially on its topology, which is the particular connec-
tivity structure between the sources and the measurement
devices. While significant effort has been dedicated to
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detecting multipartite entanglement [11–17], less is known
about inferring a network’s topology. In practice, we need
an efficient procedure for inferring network topology from
the experimental data. Furthermore, such a procedure must
be compatible with existing quantum systems, meaning it
does not rely upon quantum memory or complex multi-
qubit measurements.

Recently, several techniques have been developed to
assist in this task. In most approaches, classical data is sam-
pled from a network and tested for compatibility with a
given network topology. Numerous network compatibility
tests have been developed, including violations of entropic
bounds [18–20], network Bell inequalities [21–24], and
quantum Finner inequalities [25,26], as well as semidef-
inite tests on covariance matrices [27–29] and inflation
techniques [30,31].

In a separate approach, the von Neumann entropy
of independent measurement devices was used to infer
whether two networks of GHZ states are equivalent under
local unitary transformations [32]. Since each qubit in a
GHZ state has a maximally mixed reduced density matrix,
an analysis of the local von Neumann entropy alone will
fail to distinguish between two networks whose mea-
surement nodes receive the same number of qubits [see
Fig. 3(b)]. As a solution, Yang et al. [32] proposed using
the multipartite Shannon mutual information in addition to
the von Neumann entropy, however, this solution might be
challenging to scale to networks with n � 0 nodes since

2691-3399/23/4(4)/040347(24) 040347-1 Published by the American Physical Society

https://orcid.org/0000-0001-5456-8353
https://orcid.org/0000-0001-8983-085X
https://orcid.org/0000-0001-9924-2082
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.4.040347&domain=pdf&date_stamp=2023-12-22
http://dx.doi.org/10.1103/PRXQuantum.4.040347
https://creativecommons.org/licenses/by/4.0/


DANIEL T. CHEN et al. PRX QUANTUM 4, 040347 (2023)

FIG. 1. We consider the problem of inferring the topology
(covered by the gray cloud) of a quantum network using mea-
surement data on qubits received from the sources. In addition
to not knowing the exact connectivity or whether all links are
functioning properly, the senders and receivers may have mis-
aligned Bloch spheres used for qubit encoding and decoding.
Lastly, we also consider noise corruption when sending qubits
via connecting links.

it requires computing the joint entropy of all 2n subsets of
parties.

The main problem we consider is depicted in Fig. 1. The
network is assumed to have a two-layered structure, the
first layer consisting of quantum sources, and the second
layer consisting of measurement nodes. However, the par-
ticular connectivity between these two layers is unknown
and our goal is to identify this structure by studying the
measurement statistics at the nodes. Furthermore, we do
not assume that all nodes on the network share the same
reference frame for the encoded information, which means
that arbitrary local unitary rotations are permitted at either
the source or measurement layers. As a final complication,
we also consider the scenario of noisy connecting links.

We demonstrate two approaches to solving the above
problem. First, we show that networks of different topolo-
gies can be distinguished using only local measurements,
albeit requiring trustworthy sources to prepare GHZ states.
Building upon Yang et al. [32], we use the von Neumann
entropy to count the number of sources linked to each
node, while we use the measured mutual information—the
maximum mutual information observed between two par-
ties using measurements local to each—between two nodes
to count the number of sources they share. We extend our
analysis to the case where qubitwise uniform depolarizing
noise is applied to the sources. We show that the proto-
col can be useful for comparing network topologies when
the noise strength is known, but limited in utility other-
wise. On the other hand, when each node measures one
qubit, we show that a network’s topology can be fully char-
acterized also with measurements local to each node, and

in a manner robust to noise (we place no assumptions on
the noise model). Furthermore, our approach is practical
because it scales quadratically with the number of qubits,
uses only qubit measurements and does not require a quan-
tum memory. We also demonstrate empirically a topology
inference algorithm that can be implemented on quantum
hardware using variational quantum optimization meth-
ods [33]. The variational optimization approach improves
inference capabilities by maximizing the observed correla-
tions while allowing numerical estimations of the von Neu-
mann entropy and measured mutual information, which are
entropic quantities that are otherwise expensive to com-
pute. We conduct numerical experiments on simulators and
quantum hardware to contrast the choice of correlation
measures, namely, mutual information and covariance. In
general, covariance-based protocols are better at detecting
entanglement structures while optimizing more efficiently.
However, we also find that entropic methods tend to more
reliably identify the absence of entanglement, particularly
in the low-shot regime.

The organization of the paper is as follows. In Sec. II,
we formally introduce quantum networks and their rel-
evant entropic quantities, while establishing the notation
that we use throughout the paper. Section III introduces
protocols for distinguishing the topology of two quan-
tum networks. With state-preparation assumptions, we
show that two networks can be distinguished by observ-
ing entropic quantities admitted by individual or pairs of
measurement nodes. We also discuss instances where the
protocol breaks down under noisy channels. Then, Sec. IV
briefly discusses variational optimization algorithms for
estimating entropic quantities. Lastly, Sec. V extends our
previous protocol to measurements on individual qubits,
which gives a polynomial-time algorithm for inferring the
topology of quantum networks. This algorithm does not
depend on a priori knowledge of the prepared states and
is robust to noise. We implement and test the algorithm on
both simulator and quantum hardware to study the practi-
cal performance with respect to channel and statistical shot
noise.

II. PRELIMINARY ON QUANTUM NETWORKS

This section introduces formally n-local quantum
networks. These networks contain several components
(sources, nodes, and links) as well as important measur-
able quantities that can be used to infer the topology of the
network.

A. n-local quantum networks

An n-local quantum network, the object of interest in
this paper, is an Nq-qubit system, where Nq denotes the
number of qubits. Each qubit is indexed by an integer
k ∈ {1, 2, . . . , Nq} ≡ [Nq]. A quantum network is charac-
terized by sources �i, measurement nodes Aj , and links
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1 2 3 4 5 6 7

A1 A2 A3 A4 A5

Λ1 Λ2 Λ3

← Nodes A =

{
A1 = {1}, A2 = {2, 3}, A3 = {4},

A4 = {5, 6}, A5 = {7}

}

← Links L =

⎧⎪⎨
⎪⎩

L1 = (Λ1, A1), L2 = (Λ1, A2), L3 = (Λ2, A2),
L4 = (Λ2, A3), L5 = (Λ2, A4),
L6 = (Λ3, A4), L7 = (Λ3, A5)

⎫⎪⎬
⎪⎭

← Sources Λ =
{
Λ1 = {1, 2}, A2 = {3, 4, 5}, A3 = {6, 7}}

FIG. 2. A quantum network is composed of sources (green circles), links (edges), and measurement nodes (blue squares). Each link
sends one qubit from a source to a node. Viewing the nodes and sources jointly as the vertex set, a quantum network can be interpreted
as a bipartite graph.

Lk. Furthermore, we let N denote the number of a quantity,
for example, Ns denotes the number of sources and Nm the
number of measurement nodes.

More specifically, we can concisely interpret quantum
networks as a directed bipartite graph G = ({�, A}, L).
The vertices are partitioned into the sources � = {�i}Ns

i=1
and measurement nodes A = {Aj }Nm

j =1. The edges connect
sources to nodes, L = {(�i, Aj )}, and represent the move-
ment of qubits. See Fig. 2 for an example quantum network
and an enumeration of its respective parts.

1. Sources

A source, indexed by an integer i ∈ [Ns], is character-
ized by the subset of qubits it acts on, �i ⊆ [Nq]. In a
quantum network, Ns sources collectively prepare a state
|ψ〉 = ⊗Ns

i=1 |ψ�i〉 where H is a 2Nq-dimensional Hilbert
space and |ψ〉 ∈ H. There are two frequently used states
in the remainder of the paper (particularly in Sec. III).
The first is the Greenberger-Horne-Zeilinger (GHZ) state,
which takes the form

|GHZn〉 = 1√
2
(|00 . . . 0〉 + |11 . . . 1〉) , (1)

where n denotes the number of qubits. When n = 2, GHZ
states are equivalent to Bell states, denoted by |�〉. More-
over, partial traces of the GHZ state results in a shared
classical random bit, denoted by σn, defined as

σn = (|00 . . . 0〉 〈00 . . . 0| + |11 . . . 1〉 〈11 . . . 1|)/2. (2)

This shared random bit is the other frequently used state.
The density matrices of these two states differ by their off-
diagonal entries.

2. Links

Links Lk, for k ∈ [Nq], can be represented graph theo-
retically as an edge that connects a source node to a mea-
surement node, Lk = (�i, Aj ). Each link transmits exactly
one qubit; hence, there are as many links as qubits. Phys-
ically, they are modeled as a quantum, possibly noisy,
channel. A quantum channel is mathematically defined as a
completely positive trace-preserving (CPTP) map [34] E :
D(H) → D(H), where D(H) denotes the space of density
matrices of states in H. Alternatively, the channel can be
expressed in the operator-sum representation [34,35]

E(ρ) =
∑

i

KiρK†
i , where

∑

i

K†
i Ki = I, (3)

where {Ki} are Kraus operators [35]. For example, the
depolarizing channel for a one-qubit system ρ with
strength γ has the following Kraus operators:

K0 =
√

1 − 3γ
4

I2, K1 =
√
γ

4
σx,

K2 =
√
γ

4
σy , K3 =

√
γ

4
σz,

(4)

where I2 is a 2 × 2 identity matrix and σy , σy , σz are the
Pauli matrices. Note, here we are assuming that the channel
noise in each link acts independently of each other.

3. Measurement nodes

Measurement nodes receive the incoming qubits and
output the corresponding measurement outcomes. For a
node Aj ⊆ [Nq], j ∈ [Nm], we consider a projection-valued
measure (PVM) {�Aj

aj } that forms a set of orthogonal pro-

jectors satisfying
∑

aj
�

Aj
aj = I2|Aj | . The node measures its

local qubits ρAj ∈ D(HAj ) that were received from its
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linked sources. We assume measurement nodes are inde-
pendent of one another, and the network applies the pro-
jector �
a = ⊗Nm

j =1�
Aj
aj . Upon measurement, the classical

output 
a is obtained with probability,

P(
a) = tr (�
a Etot(ρtot)) , (5)

where ρtot designates the total state generated by all the
sources and Etot is the joint channel across all edges. It is
worth noting that any permutations needed to map the joint
Hilbert space of sources to that of the measurement nodes
are included implicitly.

B. Entropic quantities on quantum networks

The paper focuses on two entropic quantities observed
on networks: the von Neumann entropy and the mea-
sured mutual information. Both quantities convey impor-
tant information about the topology of the network and will
be discussed in more detail in the next section.

1. von Neumann entropy

The von Neumann entropy for a quantum state ρ is
defined as

S(ρ) = −tr (ρ log ρ) , (6)

where the log(·) above refers to the matrix logarithm and
we use the convention that log 0 = 0. So, any pure state
ρ = |ψ〉 〈ψ | has a von Neumann entropy of zero. Recall
that the Shannon entropy of a probability distribution μ on
support X is defined as

H(μ) = −
∑

x∈X
μ(x) logμ(x). (7)

When measured in the eigenbasis of ρ, the von Neu-
mann entropy coincides with the Shannon entropy of the
distribution over measurement outcomes [34], with all ran-
domness coming from the superposition of pure states in
ρ [34]. When measured in any other basis, the Shannon
entropy calculated from measurement results is strictly
greater than the von Neumann entropy because measure-
ments only add noise. Thus, the von Neumann entropy can
be calculated by minimizing the Shannon entropy over the
measurement basis, i.e.,

S(ρ) = min
{�
a}

H(P(
a)), (8)

where {�
a} is a complete set of projections and P(
a) is the
probability distribution upon measuring the quantum state
in basis {�
a}.

2. Measured mutual information

Intuitively, the mutual information between two ran-
dom variables quantifies the amount of correlation between
them. However, the conventional mutual information
defined for quantum systems involves joint measurement
between the two parties. Let Ai and Aj be two measure-
ment devices. We introduce the measured mutual infor-
mation as the maximal mutual information between local
measurement distributions generated by Ai and Aj ,

Im(Ai; Aj ) = max
{�Ai


ai
⊗�Aj


aj
}

[
H(P(
ai))+ H(P(
aj ))

−H(P(
ai, 
aj ))
]

. (9)

If the two measurement nodes are not correlated, then
we can decompose the joint distribution into products.
Furthermore, since the Shannon entropy of independent
random variables is additive, the measured mutual infor-
mation will go to zero if no correlation—quantum or
classical—is shared.

III. DISTINGUISHING NETWORK TOPOLOGY

We first are interested in protocols that can distinguish
two network topologies. We define two networks to be the
same if they are related by a graph isomorphism, formally
defined below.

Definition 1 (Network topology).—Two quantum net-
works, N (1) and N (2), have the same topology if there
exists bijections φ : [Ns] → [Ns],ϕ : [Nm] → [Nm] such
that for any edge L(1)k = (�

(1)
i , A(1)j ), there is a correspond-

ing L(2)k = (�
(2)
i , A(2)j ) = (�

(1)
φ(i), A(1)ϕ(j )).

Note that in the above definition, we gave two bijections
φ and ϕ separately for sources and measurement nodes.
Conventionally, one bijective map is sufficient to describe
the relabeling of vertices. In the context of quantum net-
works, the two maps are necessary to ensure sources and
measurement nodes remain distinct.

Yang et al. gave a protocol for distinguishing the topol-
ogy of quantum networks using GHZ states [32]. More
specifically, they proved that the von Neumann entropies
measured at each node are the same between two net-
works, up to a permutation of node indices, if and only
if the topologies of the two networks are the same. How-
ever, this theorem only holds if no two measurement nodes
share more than one source. We find this class of network
restricting. In this section, we will introduce an alternative
protocol that removes this restriction and distinguishes the
topology of two networks where any pairs of nodes can
share any number of sources.

A. Topology classification using von Neumann entropy

We begin by reviewing one of the results from Yang
et al. [32] that we will be extending. Consider an n-local
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quantum network N where no two nodes share more than
one source. They constructed the characteristic vector

VN = (
S(A1) S(A2) . . . S(ANm)

)
(10)

to store the von Neumann entropy measured on each node.
Then, a quantum network can be uniquely characterized by
its characteristic vector.

Lemma 1 (Theorem 6 of Ref. [32]).—Let N (1) and N (2)

be two quantum networks preparing GHZ states and for
any two parties Ai and Aj , they share no more than one
source, that is,

∣
∣
∣
∣
{
�k ∈ � : (�k, Ai), (�k, Aj ) ∈ L, i �= j

}
∣
∣
∣
∣ ≤ 1. (11)

Then, N (1) and N (2) have the same topology if and only if
their characteristic vectors are equal to each other.

It would be helpful to establish a graphical interpretation
of the von Neumann entropy. We want to first establish
assumptions on the class of network to be considered for
the remainder of the section, enumerated below.

Assumption 1.—We assume the following:

(A) Each source prepares maximally entangled states
(GHZ states) up to local unitary transformations.
Without loss of generality, assume states are pre-
pared in the form specified in Eq. (1) (see remark
below).

(B) Each source sends at most one qubit to any given
measurement device.

(C) Only measurements local to each measurement
device can be performed.

Remark 1.—Item B of Assumption 1 was primarily to
avoid “parallel edges.” Note that the statistics obtained
from multiple maximally entangled qubits are identical to
those obtained with just one qubit. Therefore, along with
the assumption that each link represents the movement of
a single qubit, having parallel edges will generate the same
statistics at the measurement node and multiple networks
can reproduce the same measurement outcome. However,
if we allow multiple qubits from the same source to be
transmitted in one link, we can relax Item B of Assumption
1 at no cost to the protocol’s correctness.

Remark 2.—As mentioned previously, the basis of
choice at the sources can be different than the choice at
measurement nodes. However, since calculating the von
Neumann entropy and the measured mutual information
requires optimization over basis sets at the end of each
measurement node, the optimal basis will match the ref-
erence frame of the sources. Implementation of such a
procedure can be achieved via differential programming
(cf. Sec. IV or Ref. [33]). Thus, for the remainder of the

paper, the term “computational basis” would be used syn-
onymously with “the source’s reference frame” without
loss of generality.

Following Assumption 1B, we can interpret the von
Neumann entropy as a graph-theoretic quantity.

Lemma 2.—Let a quantum network satisfy Assumption
1. Then, for any node Ai, S(Ai) = N Ai

s , where N Ai
s denotes

the number of sources Ai is connected to.
Proof.—Since only GHZ states are prepared and each

source can send at most one qubit, the qubits received at
node Ai are all maximally entangled with another qubit that
is not present in Ai. Thus, the state at node Ai is maximally
mixed and has a von Neumann entropy (which, in this case,
is equivalent to the Shannon entropy) of Ai is the number
of qubits received, N Ai

s . �
Thus, in light of the graph-theoretic interpretation,

Lemma 1 states that knowing the number of sources con-
nected to each node is sufficient for knowing the topol-
ogy of a quantum network. However, the assumption that
nodes share no more than one entanglement is crucial and
restrictive, as emphasized in the following example.

1. Example: triangle networks

Consider the two networks as shown in Fig. 3. The first
network satisfies the assumption Yang et al. [32] made.
Each node receives two qubits, each from two different
sources. Since the subsystem of any maximally entan-
gled state is a maximally mixed one, the von Neumann
entropy at each node is 2. On the other hand, the sec-
ond network consists of only two preparation nodes, each
preparing a three-qubit GHZ state. Each node in network 2
also receives two qubits, one from each source. Again by
property of maximally entangled states, the von Neumann
entropy at each node is 2. One could take a step further
and study the von Neumann entropy of the joint state of
two measurement nodes only to find out that the two net-
works yield the same statistics. Thus, observing the von
Neumann entropy alone cannot distinguish networks.

As a solution, Yang et al. [32] show that the Shannon
mutual information can distinguish between the two net-
works in Fig. 3. Although the Shannon mutual information
is evaluated from classical data, this entropic quantity must

Network 1 Network 2

(a) (b)

FIG. 3. Example triangle networks that are indistinguishable
solely from von Neumann entropy. (a) Network 1. (b) Network 2.
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be evaluated for all groupings of parties where the num-
ber of groupings scales exponentially with the number
of parties. Thus, this approach is not practical for large
networks.

We propose the addition of the measured mutual infor-
mation. We claim that the basis that maximizes the Shan-
non entropy is the computational basis, which will be
formally proven later. Take any two nodes in network 1.
The Shannon entropy at each node will be 2 since a max-
imally mixed state is information theoretically equivalent
to a fair classical coin flip. The joint state of the nodes can
be written as

1
4
(I2 ⊗ |�〉 〈�| ⊗ I2) , (12)

which acts equivalently as three independent fair coin
flips. This yields a joint Shannon entropy of 3 with mea-
surements local to each node. Thus, the measured mutual
information will be 1 for all pairs of nodes in network 1.

The same does not hold for network 2! The joint state of
any pair of nodes in network 2

1
4
(|00〉 〈00| + |11〉 〈11|)⊗2 (13)

has a Shannon entropy of 2 upon measuring separately in
the respective nodes. Thus, the measured mutual informa-
tion in network 2 is 2.

B. Protocol for distinguishing network topology

The example above gave evidence for a graph-theoretic
interpretation of both entropic quantities—the von Neu-
mann entropy of a node gives the number of sources the
node is connected to, whereas the measured mutual infor-
mation gives the number of sources the two nodes share.
We formally present this in the lemma below, whose proof
is deferred to Appendix A.

Lemma 3.—Let a quantum network satisfy Assump-
tion 1. Then, for any two measurement nodes Ai and Aj ,
Im(Ai; Aj ) = N

Ai,Aj
s , where N

Ai,Aj
s denotes the number of

sources they share.
The interpretation presented in Lemmas 2 and 3 will be

useful for proving the correctness of our protocol. Further-
more, in spirit the characteristic vector in Ref. [32], we
define the characteristic matrix of a quantum network to
be

MN =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

S(A1) Im(A1; A2) . . . Im(A1; ANm)

Im(A2; A1) S(A2) Im(A2; A3) . . .
...

... . . . Im(ANm−1; ANm)

Im(ANm ; A1) . . . Im(ANm ; ANm−1) S(ANm)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(14)

where the diagonal is the characteristic vector VN con-
taining the von Neumann entropy and the off diago-
nals are the measured mutual information. Note that the
matrix is symmetric, MN = Mᵀ

N . By introducing the off-
diagonal terms, we can quantify the number of sources
two nodes share. This addition allows us to extend the
previous network classification protocol to include cases
where more than one entanglement is shared between
nodes.

We note that the characteristic matrix bears resemblance
to the covariance matrix used in the semidefinite tests for
network compatibility [27–29] where the off diagonals of
the covariance matrix are nonzero if and only if a source
correlates two measurements. A key distinction is that the
covariance matrix is evaluated from the classical data sam-
pled from the network, whereas the characteristic matrix
is evaluated by optimizing the measurements with respect
to von Neumann entropy and measured mutual informa-
tion. Indeed, it is significantly more efficient to evaluate

the covariance matrix, however, having control over the
measurement apparatus improves our ability to probe the
strength of the correlation between measurement devices.
Thus, the characteristic matrix might give a more detailed
view of the network’s topology. We study the differences
between entropic and covariance methods later in the paper
(cf. Sec. V) for inferring the topology of quantum networks
using qubit measurements.

We now show that the topology of an n-local quantum
network can be fully characterized by the characteristic
matrix MN , which specifies the von Neumann entropy at
each node and the measured mutual information of each
pair of nodes.

Theorem 1.—Let two quantum networks, N (1) and N (2),
satisfy Assumption 1. N (1) and N (2) have the same topol-
ogy (cf. Definition 1) if and only if S(A(1)i ) = S(A(2)i ) for all
nodes Ai and Im(A

(1)
i ; A(1)j ) = Im(A

(2)
i ; A(2)j ) for all pairs of

nodes Ai, Aj .
We defer the proof of the theorem to Appendix B.
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1 2 3 4 5 6 7

A1 A2 A3 A4 A5

Λ1 Λ2 Λ3

MN =

1 1 0 0 0
1 2 1 0 0
0 1 1 1 0
0 0 1 2 1
0 0 0 1 1

⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

FIG. 4. Example quantum network and its respective characteristic matrix MN . Theorem 1 shows that MN uniquely characterizes a
quantum network. However, inferring the network from MN is nontrivial.

The theorem states that one can uniquely find the topol-
ogy of a network from its characteristic matrix. Suppose
entropic quantities can be reliably calculated, verifying if
two networks have the same topology requires only that
the number of queries grows polynomially with respect to
the number of nodes.

Inferring the topology from the characteristic matrix
remains a difficult task. See Fig. 4 for an example network
and its corresponding characteristic matrix MN . Knowing
the topology, MN can be straightforwardly obtained using
Lemmas 2 and 3. However, we encourage the reader to
try the other direction. Even though MN indicates whether
Ai and Aj share a source(s), finding the correct number of
sources Ns and assigning nodes to the respective sources
appear to be highly nontrivial. Naively, one could search
through all possible quantum networks with Ns sources, for
all possible Ns. The search space grows exponentially and
would not be tractable for large networks. Thus, we defer
the existence of a polynomial-time algorithm for decoding
the characteristic matrix MN as a future direction.

C. Distinguishing the topology of noisy networks

Maximally entangled states such as GHZ states are
fragile and easily corrupted by noise. In this section, we
hope to establish robustness for the classification protocol
introduced subjected to depolarizing noise, that is, for a
quantum state ρ, a depolarizing channel Eγ performs the
map

Eγ (ρ) = (1 − γ )ρ + γ

2n I2n , (15)

where γ ∈ [0, 1] is the parameter of the channel, and
n is the number of qubits involved in state ρ. In the
quantum network setting, depolarizing noise acts jointly
on qubits prepared by a source, and sources are affected
independently.

1. Example: triangle network revisited

Consider the triangle network 1 shown in Fig. 3(a). Like
in the noiseless case, the Shannon entropy at each measure-
ment device is independent of the choice of measurement
basis, and H(Ai) = S(Ai) = 1 for all measurement nodes

in the network. In an attempt to characterize the topol-
ogy, we look at the measured mutual information between
devices Ai and Aj , where the joint state is

ρAi∪Aj = I2

2
⊗ |�〉 〈�| ⊗ I2

2
. (16)

If each qubit is sent through a depolarizing channel of
the same noise parameter, then the joint state received
Eγ (ρAi∪Aj ) becomes

Eγ (ρAi∪Aj ) = I2

2
⊗

(
(1 − γ ) |�〉 〈�| + γ

4
I4

)
⊗ I2

2
,

(17)

which yields the Shannon entropy of

−H(Eγ (ρAi∪Aj )) = 2 − γ

2
log (2 − γ )+ γ

2
log γ − 4

(18)

when measured using the computational basis for both
devices. When the channel is noiseless, i.e., γ = 0, then
Im(Ai; Aj ) = 1 and we recover the results shown in
Sec. III A. However, if the channel is completely noisy,
meaning that γ = 1 , then H(Eγ (ρAi∪Aj )) = 4 and the mea-
sured mutual information is zero, which can lead one at the
receiver end to think that qubits received at Ai and Aj are
independent of one another.

The same calculation can be applied to network 2 in
Fig. 3. Let σ2 = (|00〉 〈00| + |11〉 〈11|)/2. Knowing that
the joint system ρAi∪Aj = σ2 ⊗ σ2, we focus on the behav-
ior of one σ2 knowing that the remaining system behaves
identically and independently. We can find the noisy joint
system of σ2 to be

Eγ (σ2) = γ

4
I4 + (1 − γ )σ2. (19)

The above state yields the following Shannon entropy
when measured in the computational basis.

−H(Eγ (σ2)) = 2 − γ

2
log (2 − γ )+ γ

2
log γ − 2. (20)
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Since the joint system is separable, the entropy of the joint
system simply adds.

−H(Eγ (ρAi∪Aj )) = (2 − γ ) log (2 − γ )+ γ log γ − 4.
(21)

Again, we can cover the noiseless and completely random
behavior when γ = 0 or γ = 1, respectively. However, we
are interested in determining if the two systems are ever
indistinguishable due to noise.

Claiming the computational basis is again the basis of
choice that maximizes the mutual information and from
Eqs. (18) and (21), the measured mutual information is,
respectively,

I(1)m (Ai; Aj ) = 2 − γ

2
log (2 − γ )+ γ

2
log γ , (22)

I(2)m (Ai; Aj ) = (2 − γ ) log (2 − γ )+ γ log γ . (23)

We can see that the measured mutual information of the
first network is half of the second one. Consequently,
this means that for depolarizing of strength γ ∈ [0, 1), the
measured mutual information will always have a nonzero
gap and we will be able to distinguish the two networks
through local measurements.

We extend Theorem 1 to the case of applying uniform
global noise on sources. To do so, we first want to show
that the same strategy of measuring in the computational
basis in the noiseless case is still valid in the presence of
noise (which is an extension of Lemmas 5 and 6 in the
Appendix to the noisy case).

Lemma 4.—Consider a quantum network satisfying
Assumption 1, measurement nodes Ai and Aj . Moreover,
the network is made up of depolarizing channels that act
on each qubit with strength γ . Then, the local measurement
basis that maximizes the Shannon mutual information, that
is

argmax
{�Ai


ai
},{�Aj


aj
}
H(P(
ai))+ H(P(
aj ))− H(P(
ai, 
aj )) (24)

is the computational basis.
Proof.—Let ρ be either a Bell pair |�〉 〈�| or shared ran-

dom bits σ2. Under depolarizing noise on the source, the
state becomes

Eγ (ρ) = (1 − γ )ρ + 1
4
I4. (25)

Note that for any unitary U applied onto the noisy state, the
effect of the noise stays unchanged, that is

UEγ (ρ)U†=(1 − γ )UρU†+1
4
I4. (26)

Thus, the measurement basis maximizing the Shannon
entropy of ρ remains the same for all γ > 0. �

We are interested in whether there exists a γ ∈ [0, 1)
such that the measured mutual information of two net-
works is the same. If such γ exists, denote γ ∗, then the
two networks are identical according to the protocol within
some small neighborhood of γ ∗. On the other hand, if the
measured mutual information remains distinct for all γ
and pairs across two networks, then the protocol will be
applicable for any noise level that is not completely depo-
larizing while assuming an infinite precision. Below, we
provide one condition that guarantees such robustness to
noise.

Theorem 2.—Consider two quantum networks N (1) and
N (2) satisfying Assumption 1. For depolarizing channels
with known strength γ ∈ [0, 1), we can distinguish the
topology of N (1) from N (2).

Proof.—Under the assumption that each preparation
node can send at most one qubit, for any two measure-
ment nodes Ai and Aj , the joint state ρAiAj will be the
tensor product of I2, σ2, and Bell pairs. In particular, the
von Neumann entropy of each device is invariant with
respect to noise. Moreover, the measured mutual infor-
mation of σ2 and |�〉 〈�| is the same for all γ ∈ [0, 1].
Let I(γ ) = Im(Eγ (|�〉 〈�|)) = I(Eγ (σ2)), the measured
mutual information as a function of γ will be Im(Ai; Aj ) =
N

Ai,Aj
s I(γ ).
If N (1) and N (2) have different topologies, it means that

there exists at least one pair of nodes Ai and Aj such that

(without loss of generality) N
A(1)i ,A(1)j
s > N

A(2)i ,A(2)j
s . Thus, for

any depolarizing channel of strength γ , Im(A
(1)
i ; A(1)j ) >

Im(A
(2)
i ; A(2)j ). Thus, by Theorem 1, the two networks can

be distinguished given sufficient shots taken to estimate
each entropic quantity. �

Note that Theorem 2 actually provides a limited sense of
noise robustness, that is, we need a priori knowledge of γ .
The theorem can remain useful for comparing two quan-
tum networks with unknown topologies but are under the
influence of depolarizing noise of the same strength or ver-
ifying the topology of one noisy network. Recall that there
are no straightforward algorithms for deriving the topology
from the characteristic matrix even in the noiseless case.
Moreover, inferring topology only becomes more difficult
when the two networks are exposed to noises of differ-
ent strengths. Furthermore, the assumption of depolarizing
noise is largely due to simplicity, and we leave formal
analysis of the protocol using other noise models as future
work.

IV. VARIATIONAL QUANTUM NETWORK
TOPOLOGY INFERENCE

In this section we introduce our variational quan-
tum optimization framework for inferring the topol-
ogy of sources in noisy uncharacterized quantum net-
works. We implement our approach as Python software
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called qNetTI: The Quantum Network Topology Infer-
rer, which is publicly available on GitHub [36]. Our
software applies the PennyLane framework for cross-
platform differential programming [37], and builds upon
qNetVO: the Quantum Network Variational Optimizer
software [33,38]. Our variational optimization techniques
are hardware agnostic and can easily be extended to many
general quantum network characterization, validation, and
verification tasks. We apply our variational quantum opti-
mization methods in Sec. V, in which we compare entropy-
based and covariance-based topology inference when local
qubit measurements are applied.

In general, when inferring the topology of sources in a
quantum network, the respective covariances or entropic
quantities must be sufficiently large such that correlations
between measurements, or lack thereof, can be witnessed.
However, since the measurement nodes do not have a stan-
dard reference frame for each of their measurement bases,
a naive measurement choice will not necessarily reflect the
correlations between measurement devices with accuracy.
Thus, by optimizing the covariances or entropic quantities
used to infer network topology, the network inference pro-
tocol is made more robust to the errors that result from
nonoptimal measurement choices.

To further motivate our hardware-compatible optimiza-
tion scheme, we note that the entropic quantities such
as von Neumann entropy or measured mutual informa-
tion contain an optimization implicitly in their operational
definition [see Eqs. (8) and (9), respectively]. Indeed, the
von Neumann entropy at a given measurement device can-
not be ascertained by performing a single measurement.
That is, either the reduced density matrix measured at the
device must be known, or the measurements must be opti-
mized such that the Shannon entropy is minimized as in
Eq. (8). A similar remark can also be made for optimization
used to obtain the measured mutual information in Eq. (9).
To obtain these quantities in practice a quantum-hardware-
compatible optimization technique is needed, hence we
apply variational quantum-optimization methods.

Variational quantum optimization is a type of hybrid
quantum-classical algorithm in which a classical computer
tunes a parameterized quantum circuit such that a cost
function is minimized [39]. The quantum circuit is eval-
uated on quantum hardware leading to the hardware being
optimized or trained for the task encoded by the cost func-
tion. Generally, variational quantum algorithms can be
applied to a wide range of optimization and simulation
problems and show promise of providing practical advan-
tages [40]. While their seminal applications were mainly
in quantum computing, variational quantum algorithms
have recently been proposed as a technique for optimiz-
ing noisy and uncharacterized quantum network hardware
for various tasks [33].

Within our hybrid optimization framework for quan-
tum network topology inference, we construct a variational

ansatz as follows. Let the collection of sources prepare
the state |ψ〉 = ⊗Ns

i=1 |ψ�i〉 while each measurement node
performs the PVM measurement {�Aj

aj (

θAj )}aj ∈Aj where

�
Aj
aj (


θAj ) = UAj (
θAj )†
∣
∣aj

〉〈
aj

∣
∣ UAj (
θAj ) (27)

and UAj (
θAj ) is a unitary operator parameterized by 
θAj ∈
R

m. In total the measurement �
a(�) = ⊗Nm
j =1�

Aj
aj (


θAj ) is
applied while the probability of measuring outcome 
a =
(aj )

Nm
j =1 is

P(
a|�) = | 〈ψ |�
a(�)|ψ〉 |2. (28)

Then, for measurement node Aj , we may rewrite the von
Neumann entropy in Eq. (8) as the cost function

S(ρAj ) = min

θAj ∈Rm

H(P(aj |
θAj )). (29)

Likewise, measured mutual information in Eq. (9)
becomes

−Im(Ai; Aj ) = min

θAi∈R

mi , 
θAj ∈R
mj

H
(
P(ai, aj |
θAi , 
θAj )

)

− H
(
P(ai|
θAi)

)
− H(P

(
aj |
θAj

)
, (30)

in which the minus sign on the measured mutual infor-
mation results from the convention of minimizing the cost
function in variational optimization.

To optimize the quantities in Eqs. (29) and (30), a
gradient-descent algorithm is used. Consider a generic
cost function f (�) that we aim to minimize. Then, we
can incrementally approach the optimal settings �
 =
arg min� f (�) by updating the settings as

�′ = �− η∇�f (�), (31)

where η > 0 is a small stepsize and the gradient of f (�),
∇�f (�), is a vector pointing in the direction of steepest
ascent. Therefore, in many small steps the algorithm nav-
igates its way to a local minimum in the landscape of the
cost function.

To apply these variational-optimization methods to infer
the topology of an unknown quantum state |ψ〉, it must
be run on the quantum network’s hardware. The reason
is that |ψ〉 is not known and therefore cannot be recon-
structed or characterized. To evaluate gradients on quan-
tum hardware we make use of the parameter-shift rule [41],
which evaluates gradients on quantum hardware with a
computational complexity that is linear in the number of
parameters. Hence, our variational methods for quantum
network topology inference can conceivably be applied
with efficiency in practical quantum networking systems.
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As a final remark, we note that our variational quan-
tum network topology inference scheme provides sev-
eral improvements to existing techniques. First, previ-
ous methods do not typically consider the measurements
to be tunable. By optimizing measurements, our varia-
tional methods could improve the effectiveness of existing
topology inference approaches in which the violation of
entropic bounds or Bell inequalities are used to test for
network topology [18–26,30,31]. Second, quantities such
as the von Neumann entropy or measured mutual infor-
mation cannot be obtained for unknown quantum states.
Typically, calculating these quantities would require esti-
mating the entire quantum state via state tomography.
Alternatively, our quantum-hardware-compatible varia-
tional methods can approximate these quantities through
optimization. Thus, entropy-based inference methods can
be applied in practice. Finally, our methods are hardware
agnostic. The parameter-shift rule requires only a parame-
terized description of the unitary applied by the measure-
ment device, how the unitary is physically implemented is
not relevant.

V. INFERRING NETWORK TOPOLOGY FROM
QUBIT MEASUREMENTS

Previously, we considered the qubits in a measure-
ment node to be measured jointly. While there exists a
unique mapping from network topology to the character-
istic matrix (cf. Theorem 1), constructing the map in a rea-
sonable amount of time, particularly for large networks, is

difficult. Moreover, qubits undergoing depolarizing chan-
nels with unknown noise parameters can render the pro-
tocol useless. Thus, the classification protocol introduced
in Sec. III would be of practical use only in very limited
situations.

These issues can be resolved if measurements are avail-
able on the qubit level, which is often the case for real-life
situations. The increased granularity allows for a proto-
col that can infer network topology from measurements
local to each node in polynomial time. Moreover, the
procedure no longer requires GHZ state preparations, is
entirely robust to noise induced by quantum channels, and
can maintain performance using low numbers of circuit
evaluations.

The protocol is also not restricted to measured mutual
information to estimate classical correlation. In particular,
we show that covariance and classical mutual information
are both suitable choices for identifying the entanglement
structure of quantum networks. While the covariance-
based methods generally exhibit more stable convergence
and are more robust to noise, entropic alternatives excel
under the low-shot regime.

A. Entropy-based protocol for inferring network
topology

We can derive a protocol for inferring network topology
by straightforwardly extending the characteristic matrix
MN [Eq. (14)] to qubits. Let {qi, i ∈ [Nq]}, be the set
of qubits in the network. Then, we can define the qubit
characteristic matrix:

QN =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

S(q1) Im(q1; q2) . . . Im(q1; qNq)

Im(q2; q1) S(q2) Im(q2; q3) . . .
...

... . . . Im(qNq−1; qNq)

Im(qNq ; q1) . . . Im(qNq ; qNq−1) S(qNq)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (32)

Similar to MN , the diagonal entries stores the von Neu-
mann entropy of each single-qubit state and the off-
diagonal entries stores the correlation quantified by the
measured mutual information. By treating each qubit as
its own measurement node, the qubit characteristic matrix
inherits all the properties of MN , and gains additional
structure that can help with decoding the entanglement
structure.

Theorem 3.—Consider an n-local network N measured
using local qubit projectors �N


a = ⊗m
j =1�

qj
aj where aj ∈

{0, 1} and qj ∈ [Nq] index the measured qubit. More-
over, suppose Assumption 1 holds. Then, the network’s

topology is completely characterized by the qubit charac-
teristic matrix QN [Eq. (32)], where the ith row lists the
qubits entangled with qubit qi and the number of sources
Ns is equivalent to the number of unique rows (or columns)
of QN .

Proof.—Consider each qubit to be its own measurement
node. Then, the matrix QN completely characterizes the
network by invoking Theorem 1.

To see the relationship between the number of unique
rows (or columns) by the symmetry of QN , fix a particular
source �k. Then, for any row i where qi ∈ �k, the (i, j )th
entry is 1 if and only if qj ∈ �k. And since each qubit
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can only come from one source, all qubits whose corre-
sponding rows are equal to one another are from the same
source. Therefore, partitioning the set of qubits into sets
whose respective rows are equal recovers the qubit-source
mapping, and the number of partitions is the number of
sources. �

It is important to note that we do not need Item A of
Assumption 1 to hold to infer the topology. If we construct
another matrix B defined componentwise by

Bi,j =
{

1 if QN ,i,j > 0
0 otherwise

(33)

and treat each qubit as individual measurement nodes,
then B is equivalent to QN with the same entanglement
structure assuming GHZ state preparation. To infer the
topology, we can simply apply Theorem 3 to the matrix
B. Thus, for the remainder of the section, we use QN to
refer to both the qubit characteristic matrix in Eq. (32)
while assuming GHZ preparation and this binary matrix
B without the state-preparation assumption as they are
functionality equivalent.

The above theorem gives an algorithm for reconstruct-
ing the network topology given the qubitwise characteristic
matrix QN . First, assume knowledge of the measurement
node that each qubit is sent to. The columns of QN , each
representing a qubit, can then be grouped into their respec-
tive measurement nodes. On the other hand, the rows of
QN can be partitioned into sets of indices with identi-
cal rows, that is, let �i be a set such that for all j , k ∈
�i, QN ,j ,∗ = QN ,k,∗. As the notation suggests, this set of
indices is the set of qubits from the source �i. Lastly, if
QN ,r,s = 1, qubits r (in node Aj ) and s (in node Ak) share a
source �i and the triplet (Aj ,�i, Ak) exists in the network.
In Fig. 5, we give an elementary demonstration of the
algorithm on the triangle network presented in Fig. 3(b).

Performing joint measurements, even for qubits
received in the same measurement node, can be experi-
mentally demanding. Thus, limiting ourselves to qubitwise
measurement actually enhances the practicality of the pro-
tocol. The fine-grained measurements provide a simple
algorithm for determining the topology in time quadratic to
the number of qubits. Moreover, sources are not restricted
to preparing only GHZ states; any entangled states will do.
Given infinite precision and noiseless channels, each entry
of QN can store whether there exist correlations between
qubits. As correlations can only arise from quantum entan-
glement, two qubits are from the same source if and only
if a nonzero correlation is observed.

Since the protocol aims at identifying zero or nonzero
correlations, as long as the quantum channel is not com-
pletely destructive, one can always infer the topology
given enough shots to suppress statistical noise. This
statement is formalized below.

Theorem 4.—Consider a noisy network N that is
measured using local qubit measurements and ρNet =⊗n

i=1 ρ
�i . Its topology is completely characterized by the

matrix QN as described in Theorem 3.
Proof.—Let ρi = trj �=i[ρNet] for all j ∈ [Nq]. Then, if

S(ρi) > 0 a source may exist that correlates the qubit
with other qubits. Next, the measured mutual information
Im(qi, qj ) = 0, if and only if ρi ⊗ ρj . This implies that
when Im(qi, qj ) > 0, a source must be present to correlate
the two independent qubit measurements. Therefore, the
matrix QN only has nonzero elements on its off diagonal if
there exist sources to correlate the qubits. In practice, finite
samples are taken and the scalar value of Im(qi, qj ) should
only be counted as nonzero if it is sufficiently larger than
the statistical fluctuations of uncorrelated qubits. �

Note that in the above theorem, a source can be so noisy
that it separates as

⊗
j ρj . We argue that the source no

longer qualifies as such precisely because it no longer dis-
tributes shared randomness. Otherwise, so long as a suffi-
cient number of measurements are taken and nonseparable

q4

q5

q1

q6

q2

q3

A1

A2 A3

QN =

1 0 0 1 0 1
0 1 1 0 1 0
0 1 1 0 1 0
1 0 0 1 0 1
0 1 1 0 1 0
1 0 0 1 0 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

A1 A2 A3

1 0 0 1 0 1
0 1 1 0 1 0
1 0 0 1 0 1
0 1 1 0 1 0
0 1 1 0 1 0
1 0 0 1 0 1

FIG. 5. Application of Theorem 3 on the network in Fig. 3(b). The columns of QN are organized by the nodes each qubit is from, and
unique rows are grouped together. Each group of unique rows corresponds to a preparation node (purple or green) and the connectivity
can be found by observing the nonzero entries in each row.
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states are prepared at each source, the qubitwise character-
istic matrix QN is sufficient for determining the network
topology. On a different note, for certain choices of noise,
such as colored noise and qubit dephasing noise, the char-
acteristic matrix is preserved; thus, both Theorems 2 and 4
will hold under these noise models.

1. Alternative definition for mutual information on
networks

Constructing the characteristic matrix QN requires the
number of independent circuit evaluations to grow at a rate
equal to the number of unique qubit pairs. We associate a
unique measurement basis that achieves the maximum of
Eq. (9) for each pair. In the case of Nq being large, we
might be tempted to define a measurement basis common
across all qubit pairs that maximizes an analogous quantity
that takes the mutual information of all pairs into account.
Formalizing this intuition, we seek measurement operators
{�
x = ⊗

qi
�

qi
xi } such that

max
{�
x}

∑

i<j

H(P(xi))+ H(P(xj ))− H(P(xi, xj )) (34)

and we let the mutual information between any two qubits
obtained from such basis be the classical mutual informa-
tion (as opposed to the original bipartite measured mutual
information).

Comparing Eq. (34) with the expression for measured
mutual information in Eq. (9), we can see that

max
{�
x}

∑

i<j

H(P(xi))+ H(P(xj ))− H(P(xi, xj ))

≤
∑

i<j

max
{�qi

xi ⊗�
qj
xj }

H(P(xi))+ H(P(xj ))− H(P(xi, xj )).

(35)

Thus, for each unique pair of qubits, measured mutual
information between the qubit pair is at least that of the
one calculated from the classical mutual information of the
whole network. We can construct an example where the
inequality is, in fact, strict.

Remark 3.—Consider a tripartite network that has the
following mixed state:

ρ = 1
8

(

I ⊗ I ⊗ I + 1
2
σx ⊗ σx ⊗ I

+ 1
2
σy ⊗ I ⊗ σy + 1

2
I ⊗ σz ⊗ σz

)

. (36)

For this network, the measurement basis that maximizes
the correlation—mutual information and covariance (see
next section) alike—between any pair of qubits is orthog-
onal to that of any other pair. Since the bipartite measured

mutual information consists of a collection of measure-
ment bases, one for each pair, correlations can be fully
observed. In the case of classical mutual information, in
which we seek to find one optimal basis for all qubit
pairs, there will always be correlations that are not fully
observed.

On the other hand, the benefit of considering the net-
work mutual information is clear: the number of circuit
evaluations needed is constant with respect to the number
of qubits.

2. Covariance-based topology inference

The measured mutual information is not the only mea-
sure of the correlation between two random variables.
Inspired by the literature [27–29], we propose a network
topology inference protocol by applying the decoding
scheme above on covariance matrices.

We treat each qubit measurement as a random variable
taking values in {−1, 1}. From the definition of covariance,
we get

Cov(qi, qj ) =
∑

x,y∈{−1,+1}
xy P(qi = x, qj = y)− q̄iq̄j

(37)

=
∑

x,y∈{−1,+1}
xy tr

((
�qi

x ⊗�
qj
y

)
ρqiqj

)
− q̄iq̄j

(38)

where ρqiqj is the state of qubits i and j and

q̄i =
∑

x∈{−1,+1}
x P(qi = x) (39)

=
∑

x∈{−1,+1}
x tr

(
�qi

x trj (ρqi)
)

, (40)

and similarly for q̄j . The qubit covariance matrix, denoted
by CN , is defined entrywise where the (i, j )th entry con-
tains the absolute value of the covariance between qubits i
and j .

The magnitude of the covariance depends on the mea-
surement basis. If the basis is chosen arbitrarily, there is
a chance that the basis of choice yields low covariance,
thereby skewing the inference. To reduce the probability
of such an event from occurring, we can find the basis
that maximizes the distance between the covariance matrix
and the origin, for example, for some choice of local
measurement basis {�
x = ⊗

qi
�

qi
xi }, we hope to find

arg max
{�
x}

tr
(

C†
N CN

)
. (41)
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However, note that Remark 3 still applies and there exist
correlations that cannot be fully observed from the covari-
ance matrix alone. However, this does not interfere with
inferring the network topology.

From here, the procedure for inferring the network
topology is identical to that of the mutual information-
based protocol. We provide a binary description for each
pair of qubits in a network—1 if the covariance is above
zero, and 0 (or within an acceptable statistical margin of
error) otherwise. If two qubits are entangled, then their
covariance is nonzero as long as the two qubits are not
measured in mutually unbiased bases, for example, σx and
σz. Thus, the protocol straightforwardly applies by replac-
ing the qubit characteristic matrix QN with the covariance
matrix CN .

Remark 4.—The covariance methods presented in
Refs. [27–29] aim at constructing a single covariance
matrix after collecting classical measurement data. In com-
parison, our protocol sequentially queries the network and
finds the optimal covariance matrix that maximizes the
correlation observed among all pairs of qubits. Our method
avoids the possibility of choosing a measurement basis that
leads to a small observable correlation, though at the cost
of requiring more extensive procedures like variational
optimization.

B. Comparing entropic and covariance-based
protocols

While the mutual information and covariance both quan-
tify the amount of correlation between qubits, each method
possesses unique attributes that make one more preferable
than the other depending on the context. In the following
section, we will compare the two methods in terms of their
computational complexity, the ability to accurately infer
the topology under noisy quantum channels, and under sta-
tistical noise from taking a finite number of measurements.
We will also demonstrate the capability of both methods
on quantum hardware.

1. Computational complexity

The number of circuit evaluations needed to evaluate the
covariance matrix is constant in the number of qubits. Con-
structing the characteristic matrix using classical mutual
information needs twice the number of evaluations as
the diagonal and off-diagonal entries must be constructed
independently. Lastly, in the case of using the bipartite
measured mutual information, the number of circuit evalu-
ations grows quadratically in the number of qubits. One
can optimize this to achieve linear scaling by evaluat-
ing all nonoverlapping pairs, but is still time consuming
compared to the two constant-time alternatives.

The time complexity needed to compute the cost func-
tions ranks similarly. Computing the distance induced by
the Schmidt norm of the covariance matrix from the origin

requires scanning through each entry of the matrix, result-
ing in a quadratic scaling with respect to the number of
qubits. Computing mutual information requires specifying
the marginal distribution of all qubit pairs. One can think
of the measurement outcome as a probability distribution
with a domain that grows exponentially with the number
of qubits. Obtaining the marginal distribution for a pair of
qubits requires summing over exponentially many terms,
and therefore is a time-consuming procedure. In the case
of measured mutual information, one can choose to query
one pair of qubits at a time, sacrificing query complexity
for ease of computing the cost function.

C. Inference under noisy quantum channels

Though conceptually identical, covariance is gener-
ally less affected by noisy quantum channels compared
to mutual information. Consider a Bell state undergo-
ing depolarizing channels applied qubitwise. We can then
write the mutual information and covariance analytically
in terms of the noise parameter γ ∈ [0, 1].

Im(q1; q2) = 1 + (1 − γ )2

2
log(1 + (1 − γ )2)

+ γ (2 − γ )

2
log(γ (2 − γ )), (42)

Cov(q1, q2) = (1 − γ )2. (43)

The same can be done for amplitude-damping noise
applied onto each qubit, which has Kraus operators

K0 =
(

1 0
0

√
1 − γ

)

, K1 =
(

0
√
γ

0 0

)

(44)

for each qubit, and noise parameter γ ∈ [0, 1]. The maxi-
mal correlation is observed when measuring both qubits in
the σx basis, which, respectively, takes the form

Im(q1; q2) = 2 − γ

2
log(2 − γ )+ γ

2
log γ , (45)

Cov(q1, q2) = 1 − γ . (46)

More detailed calculations are deferred to Appendix C. We
compare these theoretic quantities with numerical solu-
tions obtained via variational optimization. We repeated
ten independent optimization trials per choice of noise
parameter, and the results are shown in Fig. 6.

Both analytical and numerical results show that covari-
ance decays slower with respect to the noise parameter γ
in the case of depolarizing and amplitude-damping noise.
This suggests a noise regime where mutual-information-
based protocols misidentify the existence of entanglement
while the covariance matrix can accurately infer the net-
work topology. On a more optimistic note, we observe that
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FIG. 6. The effect of noisy quantum channels on the observed correlation. A Bell state with fixed local rotations was prepared, and
we applied (left) depolarizing noise to each qubit and (right) amplitude-damping noise to each qubit using PennyLane’s mixed-state
simulator. We ran ten independent trials of variational optimization with step sizes of 0.05 for 30 steps, plotting the average (circles
with shaded standard error) and maximum (triangle) observed across trials. We also compare the empirical value obtained through
simulation with theory (solid lines), cf. Eqs. (42)–(43) and (45)–(46).

the respective theoretical values can be achieved numeri-
cally given an ensemble of independent optimization tri-
als, and a typical optimization run produces a result that
approximates the theoretical.

1. Inference under finite shot noise

In addition to noise induced by quantum channels, statis-
tical shot noise is another practical source of uncertainty. In
particular, having computational methods that can operate
in the low-shot regime greatly increases its applicability as
quantum resources are often scarce. Shot error can pose
an issue for iterative methods such as variational opti-
mization as noisy gradient estimates can limit the ability
to effectively navigate the optimization landscape. We put
our inference protocol to the test with a five-qubit network
where the first three qubits are entangled in a W state, i.e.,
the W state takes the form

|W〉 = 1√
3
(|001〉 + |010〉 + |100〉) , (47)

and the remaining two in a GHZ state. The optimization
result for qubit pairs with and without entanglement is
shown in Fig. 7.

Consistent with the results in Fig. 6, covariance methods
identify the presence of entanglement more strongly than
entropic measures. However, covariance tends to “over-
shoot” and falsely declares the presence of entanglement
for uncorrelated qubits. We can set an arbitrary thresh-
old for detecting correlations—we decide that two qubits

are entangled if and only if the calculated correlation
(mutual information or covariance) is above the defined
threshold. In the case of figure Fig. 7, the threshold is
set to 0.05, indicated by the black line. When qubits are
not entangled, mutual information rapidly vanishes while
covariance stays above the threshold within the range of
the shot counts considered. Thus, in the low-shot regime,
mutual information might be more suitable as it is more
likely to correctly reconstruct the entanglement structure
of the underlying network.

2. Hardware experiments

We now apply on IBM’s quantum hardware our vari-
ational scheme for inferring network topology using
local qubit measurements. As an example we again con-
sider the five-qubit state preparation |ψ〉 = |W〉 ⊗ |�〉
where the |W〉 is the W state in Eq. (47) and |�〉 =
1/

√
2(|00〉 + |11〉) is a two-qubit maximally entangled

state. We also apply our variational network inference
scheme to five-qubit GHZ states and the five-qubit zero
state (see Appendix D). In each example, a known state
is prepared while we optimize a variational ansatz that
parameterizes arbitrary qubit projective measurements as
�x = U†(
θ) |x〉〈x| U(
θ) where 
θ ∈ R

3. We then compare
the performance of our variational inference scheme on
both noisy IBM hardware and noiseless classical simulator
when 10, 100, 1000, and 10 000 shots are considered.

To quantify the performance of the optimization, we
consider the inference error, which we define as the
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FIG. 7. The effect of statistical shot noise on calculating correlations under various prepared states. Mutual information and covari-
ance are estimated using variational optimization with a step size of 0.05 for 30 steps. Each plot shows the correlation between qubit
pairs under different entanglement structures. The threshold value (black line) is set to 0.05, and was chosen arbitrarily. From the
experiment, we observe that covariance methods accurately identify the existence of entanglement, as shown in the case of (left) W
states [Eq. (47)] and (middle) GHZ states [Eq. (1)]. However, entropic methods are able to identify (right) the lack of entanglement
better than covariance-based protocols.

Euclidean distance

d(C, C
) =
√

tr [(C
−C)ᵀ (C
−C)], (48)

where C is the optimized covariance matrix and C
 is the
ideal covariance matrix for the given state. The distance in
Eq. (48) can similarly quantify the error in the characteris-
tic matrix d(Q, Q
). Note that this inference error quantifier
only works in our numerical experiment because we pre-
pare a known state. In practice, the state preparation is not
known and the performance of the optimization cannot be
quantified by Eq. (48).

For the considered state |ψ〉 = |W〉 ⊗ |�〉, the ideal
qubit covariance and characteristic matrices are

C
 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
2
3

2
3

0 0

2
3

1
2
3

0 0

2
3

2
3

1 0 0

0 0 0 1 1
0 0 0 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Q
 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

SW IW IW 0 0
IW SW IW 0 0
IW IW SW 0 0
0 0 0 1 1
0 0 0 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(49)

where IW ≡ Im(qi; qj ) ≈ 0.349976 and SW ≡ S(Wqi) ≈
0.918296 for any of the qubits qi and qj of the state |W〉.
To obtain the ideal covariance matrix and mutual infor-
mation in Eq. (49), it is sufficient to measure all qubits

in the {|+〉 , |−〉} basis. While this calculation is straight-
forward for the |�〉 state, we will be more explicit with
the WABC = |W〉〈W| state, for which the reduced density
matrices are

WA = trBC
(
WABC) = 2

3
|0〉〈0| + 1

3
|1〉〈1| (50)

and

WAB = trC
(
WABC) = 1

3
|00〉 00 + 2

3

∣
∣�+〉〈

�+∣
∣ , (51)

where |�+〉 = (|01〉 + |10〉)/√2. When the observable σx
is measured, the covariance and variance are

Cov(A, B) = tr
(
(σx ⊗ σx) WAB) = 2

3
(52)

and Var(A) = 1. The qubit von Neumann entropy can then
be explicitly calculated from Eq. (50) as

SW ≡ S(WA) = −2
3

log
2
3

− 1
3

log
1
3

≈ 0.918, (53)

while the measured mutual information is found to be
IW = Im(A, B) ≈ 0.349976 where each party measures the
observable σx.

Since all qubits are measured in the same basis, the
measured mutual information is equivalent to the classical
mutual information for all qubit pairs, that is Im(qi, qj ) =
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I(qi, qj ). Thus, for this example, it is sufficient to optimize
the classical bipartite mutual information rather than the
measured mutual information. This simplification provides
significant speed-ups when running on quantum hardware
because only one circuit needs to be evaluated to collect
the mutual information of all qubit pairs as opposed to the
ten circuits needed to optimize the measured mutual infor-
mation for each qubit pair independently. Note that queue
times for the IBM hardware are the main bottleneck in our
variational network inference scheme.

In Fig. 8, we plot the inference error as the covari-
ance and characteristic matrices are optimized with respect
to the state |ψ〉 = |W〉 ⊗ |�〉. To investigate the relation
between the number of shots and the inference error, we
consider optimizations where 10, 100, 1000, and 10 000
shots are used when collecting data from the quantum com-
puter. We expect that the inference error should decrease as
the number of shots increases.

As a baseline, we first run our numerical experiment
on PennyLane’s default.qubit classical simulator,
which is a noiseless, finite-shot simulation of a quantum

computer. The data shown in the top row of Fig. 8 plots
the mean inference error from ten independent optimiza-
tions for both the covariance and characteristic matrices.
As expected, the amount of inference error decreases as
the number of shots increases. Furthermore, we find that
the covariance and characteristic matrices do not always
find a global optimum in which all matrix terms converge
to their maximal theoretical values. As a result, the mean
does not approach zero, reflecting the importance of run-
ning the optimization algorithm multiple times. Moreover,
we find that the covariance matrix is optimized in fewer
iterations than the characteristic matrix.

We then test our optimization on the ibmq_belem 5-
qubit quantum computer, which exhibits a considerable
amount of noise. When we run the optimization on an IBM
quantum computer, the optimization steps become expen-
sive to run due to the queue wait times. As a result, we
are only able to run one optimization for each number of
shots. We plot the IBM hardware optimization results in
the middle row of Fig. 8. For the 10-shot case, it is not clear
that the inference error is decreasing. For larger numbers

FIG. 8. Variational quantum optimization of the covariance matrices and characteristic matrices for a W state and two-qubit GHZ
state prepared on IBM Hardware. From left to right each column plots the covariance matrix optimization, the characteristic matrix
optimization, the Shannon entropy minimization, and the classical mutual information maximization. Note that the Shannon entropy
and mutual information optimizations are combined to construct the characteristic matrix. In each plot the blue circles show the ten-shot
optimization, the orange diamonds show the 100-shot optimization, green plus signs show the 1000-shot optimization, and red triangles
show the 10 000-shot optimization. The x axis shows the optimization step while the y axis shows the inference error calculated as the
Euclidean distance between the ideal covariance and characteristic matrix and the matrix in each optimization step. The first row shows
the optimization data averaged over ten runs on a finite-shot noiseless classical simulator, the second row shows the optimization data
collected from the ibmq_belem quantum computer, and the third row shows the data collected when the settings from the noisy IBM
hardware optimization are re-evaluated on a noiseless classical simulator.
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of shots, the inference error decreases throughout the opti-
mization. To further validate the optimization results, we
take the settings optimized on the noisy IBM hardware
and re-evaluate them on a noiseless, infinite-shot classi-
cal simulator. Overall, there is a general improvement in
the inference error as shown in the bottom row of Fig. 8
when compared with the data collected from the noisy IBM
hardware. Although the 1000-shot case seems to be an
exception with the error increasing slightly when evaluat-
ing the same parameters on the simulator, it is worth noting
that the optimal parameters on noisy hardware might differ
slightly from optimal on a simulator; hence, we view this
run as mostly a statistical outlier. As further confirmed by
additional experimental results in the Appendix, while the
data from the quantum hardware may seem noisy, the opti-
mization over qubit measurements is indeed decreasing the
inference error.

In Fig. 9 we show the optimal covariance and charac-
teristic where the optimal matrix values are taken over
all optimization steps. As the number of shots increases,
so does the optimization’s ability to resolve the correla-
tion structure with greater accuracy. On the other hand,
when the number of shots is small, statistical fluctuations
can lead to stronger correlations than present, leading to
false-positive correlations. For example, in the ten-shot
case of Fig. 9 the zero terms of the covariance and char-
acteristic matrices are optimized to be quite large, which
would lead a researcher to infer that the two qubits are
correlated. Also note that the IBM hardware can have
significant errors on a given qubit for example, in the
10 000-shot characteristic matrix the top left matrix term
remains close to zero despite taking more shots than other
more successful trials. From experiments on the simula-
tor, we know that mutual information generally is more
difficult to optimize than covariance. Moreover, a noisy

device might not be stable for the amount of time needed
to acquire 10 000 shots. This instability leads to noise that
inhibits the optimization’s ability to make progress toward
an optimum, particularly so for computing the mutual
information. Therefore, unless one finds oneself working
in the low-shot regime, covariance-based method is gen-
erally preferred as it exhibits more reliable convergence
when presented with adequate resources.

VI. CONCLUSION

In this work, we introduced protocols for distinguishing
and inferring the topology of n-local quantum networks.
The protocols construct matrices that encode entangle-
ment structures, i.e., the characteristic matrix [cf. Eqs. (14)
and (32)] and the covariance matrix. The entries of these
matrices can be estimated using only local measurements,
which allows for easy implementation on quantum hard-
ware. Assuming sources prepare GHZ states, the charac-
teristic matrix can uniquely determine the topology of a
quantum network. Moreover, if one is capable of mak-
ing qubitwise measurements, the topology of the network
can be inferred in polynomial time from both the char-
acteristic matrix and the covariance matrix. Furthermore,
the protocol is robust to noise and can be implemented
on quantum hardware using quantum variational optimiza-
tion. From experiments on both classical simulators and
quantum hardware, we found that covariance-based meth-
ods are generally more stable during optimization, leading
to more reliable discoveries of quantum entanglement.
However, with limited shots, entropic protocols are more
effective at avoiding false positives.

It is worth noting that the characteristic matrix can-
not distinguish between quantum entanglement and shared

FIG. 9. In the top row, we plot the maximal value achieved for each term of the covariance matrix across all optimization steps. In the
bottom row, we plot the maximal mutual information (off diagonals) and minimal Shannon entropies (diagonal) across all optimization
steps. The bar graph plots the Euclidean distance between the ideal and inferred matrices for each distinct number of shots.
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randomness. However, the characteristic matrix does indi-
cate which qubits are correlated. Thus, an entanglement
witness can be tailored to the network’s topology. One
approach might be to then test each source independently
using an entanglement witness of choice [11,12].

Future work should also focus on relaxing assumptions
made in the paper for even broader applications. For exam-
ple, we assumed all measurement nodes are observed and
measurements can be performed on all nodes. In reality, the
known set of measurement nodes can merely be a subset of
the entire network. Exploring the limits and extensions of
our protocol for the case of partially observed networks
can be a fruitful future direction. On the other hand, the
protocol for distinguishing network topology (cf. Sec. III)
relies on preparing the GHZ state, which is delicate and
lacks robustness in practice. Extending the analysis to
sources potentially distributing states with greater entan-
glement robustness, such as the W-class states [42,43],
cluster states, or other partially entangled states would
increase the applicability of this protocol. Another direc-
tion is to extend the protocol to infer network topology
in more complex scenarios, for example, networks with
intermediate processing nodes between source and mea-
surement nodes, or communication between measurement
devices and sources.

CODE AVAILABILITY

Our data, numerical methods, and software tools are
publicly available on GitHub [36].
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APPENDIX A: PROOF OF LEMMA 3

In order to show Lemma 3, we use the following
established results reviewed in Lemmas 5 and 6.

Lemma 5.—Let σn be an n-qubit shared uniform random
bit, and let the classical probability distribution upon mea-
suring σn be P(
a). Then, the following inequality is true
for any measurement basis:

H(P(
a)) ≥ 1 (A1)

with equality occurring when measured in the computa-
tional basis.

Proof.—Recall that the entropy of the measurement of a
state is minimized when measured in its eigenbasis [34].
An eigenbasis of σn is the computational basis, which
behaves like a classical coin flip upon measuring. Thus,
the Shannon entropy is lower bounded by 1. �

Lemma 6.—Consider the distribution acquired through
local measurements on a Bell state, that is

P(
a) = 〈�|�a1 ⊗�a2 |�〉 (A2)

for projective operators {�a1} and {�a2}. Then, for any
choice of �a1 and �a2 ,

H(P(
a)) ≥ 1, (A3)

where the equality holds when measured in the computa-
tional basis.

Proof.—By subadditivity [34], the Shannon entropy of
measuring |�〉 is at least the entropy of its marginal, which
is σ1. Since σ1 is a classical coin flip, it has a Shannon
entropy of 1 and the entropy of |�〉 is lower bounded by 1.

�
Now, we present the proof for Lemma 3 below.
Proof.—Recall the definition of measured mutual infor-

mation in Eq. (9). We must first determine the basis to
measure in at each node, that is�Ai


ai
and�

Aj

aj

. Moreover, for
any two nodes Ai and Aj , the qubits received can be either
maximally entangled or independent (maximally mixed).
By Assumption 1A, the measurement basis does not influ-
ence the entropies at each node. Thus, we can achieve
the lower bounds in Lemmas 5–6 by measuring in the
computational basis.

Knowing the basis of choice, we proceed to understand
the graph-theoretic properties of the mutual information.
Let N Ai

s be the number of sources connected to device Ai.
Then, we know that H(P(
ai)) = N Ai

s and similarly with
H(P(
aj )) where P(
ai) and P(
aj ) are probability distribu-
tions upon measuring at node Ai and Aj , respectively.

For the joint entropy H(P(
ai, 
aj )), partition Ai ∪ Aj into
sets:

S1 = {(qk, q�) : qk ∈ Ai, q� ∈ Aj , {qk, q�} ⊆�i for some i},
(A4)

S2 = {qk : ∀q�, {qk, q�} �∈ S1}. (A5)

Each pair of qubits in S1 are entangled and act jointly
as a fair coin flip. On the other hand, each qubit in S2
acts independently of one another also like a fair coin
flip. Moreover, each element in S1 and S2 is indepen-
dent of each other and Shannon entropies are additive.
Thus, H(P(
ai, 
aj )) = |S1| + |S2|. Since the total number
of qubits is 2|S1| + |S2| = H(P(
ai))+ H(P(
aj )), the joint
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entropy can be expressed as

H(P(
ai, 
aj )) = H(P(
ai))+ H(P(
aj ))− |S1|. (A6)

By definition of S1, we find the measured mutual informa-
tion to be

Im(Ai; Aj ) = |S1| = N
Ai,Aj
s . (A7)

�

APPENDIX B: PROOF OF THEOREM 1

Proof.—For sufficiency, observe that if two networks
have the same topology, then the number of sources con-
nected to A(1)i is the same as A(2)i , and the number of sources
shared between A(1)i and A(1)j is the same as A(2)i and A(2)j .
By Lemmas 2 and 3, the von Neumann entropy of each
node and measured mutual information of pairs of nodes
are the same.

We now show necessity. Suppose the von Neumann
entropy at each measurement node and the measured
mutual information between any pair of measurement
nodes for the two networks are identical.

First, we note that the two networks must have the same
number of nodes; an immediate contradiction is reached
otherwise. On the other hand, the two networks will also
have the same number of links, which can be written alter-
natively using the von Neumann entropy as N� = ∑

i S(Ai)

using Assumption 1A. Lastly, the number of sources must
also be the same. Suppose not, and N (1)

s < N (2)
s . Since the

number of links present in either network is the same, there
must be at least one link � connected to the preparation
node in N (1) that is not connected to the same prepara-
tion node in N (2). This means that the measurement device
Ai that was connected to Aj via � in N (1) must have lost
the connection to Aj in N (2). Thus, the Im(A

(1)
i ; A(1)j ) >

Im(A
(2)
i ; A(2)j ) and we have reached a contradiction.

Now, focus on the case where the two networks have the
same number of sources, links, and nodes. Define a triplet
in a network to be a tuple of three elements, (Ai,�k, Aj ),
such that Ai and Aj share �k. For two n-local quantum
networks, we construct the map ξ such that

(i) ξ((A(1)i ,�(1)
k , A(1)j )) = (A(2)i ,�(2)

k , A(2)j ) where (A(1)i ,
�
(1)
k , A(1)j ) is in N (1) and (A(2)i ,�(2)

k , A(2)j ) is in N (2),
and

(ii) performing the map ξ on all triplets tn in N (1) yields
N (2).

Think of ξ as the map that “moves” N (1) to N (2). In partic-
ular, when a triplet is present in both networks, we take ξ
to be the identity; when a triplet is only present in one net-
work, then ξ moves the corresponding triplet into a new
location. This restriction is important since this removes

the case that ξ cyclically moves edges, e.g., (1, 1, 2) �→
(2, 1, 3), (2, 1, 3) �→ (3, 1, 1), and (3, 1, 1) �→ (1, 1, 2).

This map can induce relabeling of indices. Let
φ : [Ns] → [Ns] be the map that relabels the source
indices, and ϕ : [Nm] → [Nm] be the one for measure-
ment nodes. Then, we can can define φ and ϕ using ξ : if
ξ(A(1)i ,�(1)

k , A(1)j ) = (A(2)i ,�(2)
k , A(2)j ), then define

φ(�
(1)
k ) = �

(2)
k , ϕ(A(1)i ) = A(2)i , ϕ(A(1)j ) = A(2)j . (B1)

If φ and ϕ are well defined, then they are immediately
bijective because we are comparing networks of equal
sizes—nodes have to be mapped to (onto) and two nodes
cannot be “squished” and become indistinguishable (one-
to-one). Therefore, we will show that if ξ preserves the
characteristic matrix, then φ and ϕ are well defined and
the two networks have the same topology. We do both by
contradiction.

If φ is not well defined, then there are i, j , m, n (i �= m)
such that

ξ(A(1)i ,�(1)
k , A(1)j ) = (A(2)i ,�(2)

k , A(2)j ) (B2)

but

ξ(A(1)m ,�(n)
k , A(1)n ) = (A(2)m ,�(2)

� , A(2)n ) (B3)

for some � �= k. However, this means that connections
between A(1)i and A(1)m through �(1)

k are moved away upon
applying ξ and

Im(A
(2)
i , A(2)m ) ≤ Im(A

(1)
i , A(1)m )− 1, (B4)

which contradicts the assumption that ξ preserves the
measured mutual information.

On the other hand, if ϕ is not well defined, then there are
j , k, �, m (k �= �) such that

ξ(A(1)i ,�(1)
k , A(1)j ) = (A(2)i ,�(2)

k , A(2)j ) (B5)

but

ξ(A(1)i ,�(1)
� , A(1)n ) = (A(2)m ,�(2)

� , A(2)n ) (B6)

for some m �= i. However, this means that the connection
to A(1)i from �

(1)
� is moved away so

S(A(1)i ) ≤ S(A(2)i )− 1, (B7)

which contradicts the assumption that ξ preserves the
Shannon entropy. Thus, if two networks have the same
characteristic matrix, then the two networks have the same
topology. �
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APPENDIX C: MUTUAL INFORMATION AND
COVARIANCE OF CHANNEL NOISE

Let ρ be the density matrix of the Bell state. We hope to
calculate the mutual information and covariance between
the two qubits after applying depolarizing and amplitude-
damping noise independently on each qubit. We approach
the calculation the same way. We first write down the
density operator through the respective quantum channels,
E(ρ), via the Kraus operator formalism. Then, we will find
the classical distribution induced by measurement in the
basis that maximizes the correlation quantity of interest.

1. Depolarizing noise

Quantum channel that applies qubit-depolarizing noise
can be written as the following summation:

E(ρ) =
∑

i,j

(Ki ⊗ Kj )ρ(Ki ⊗ Kj )
†, (C1)

where {Ki} are the Kraus operators of a single-qubit depo-
larizing channel

K1 =
√

3γ
4

I2, K2 =
√
γ

4
σx,

K3 =
√
γ

4
σy , K4 =

√
γ

4
σz.

(C2)

Expanding the summation, the quantum state E(ρ) can be
compactly written as

E(ρ) = γ (2 − γ )

4
I4 + (1 − γ )2ρ. (C3)

Measuring the above state in the σz basis yields the
following probability distribution:

P(x1x2) =
{
(1 + (1 − γ )2)/4 if x1 = x2

γ (2 − γ )/4 otherwise .
(C4)

The remainder calculation follows the definition of mea-
sured mutual information and covariance, which will lead
to Eqs. (42) and (43).

2. Amplitude damping

We follow a similar procedure in the case of applying
amplitude-damping noise. Again, we can write the noisy

quantum state similar to Eq. (C1) but with Kraus operators

K1 =
(

1 0
0 1 − γ

)

, K2 =
(

0
√
γ

0 0

)

. (C5)

Expanding the summation yields the following density
matrix:

E(ρ�) = 1
2

⎛

⎜
⎜
⎜
⎝

1 + γ 2 0 0 1 − γ

0 γ (1 − γ ) 0 0
0 0 γ (1 − γ ) 0

1 − γ 0 0 (1 − γ )2

⎞

⎟
⎟
⎟
⎠

,

(C6)

and measuring in the σx basis—the basis that maximizes
the observed correlation—is equivalent to measuring the
state

1
4

⎛

⎜
⎜
⎜
⎝

2 − γ γ γ 2γ 2 − 3γ + 2
γ γ 2γ 2 − γ γ

γ 2γ 2 − γ γ γ

2γ 2 − 3γ + 2 γ γ 2 − γ

⎞

⎟
⎟
⎟
⎠

(C7)

in the computational basis, that is, the induced classical
distribution is encoded in the diagonal. Following defini-
tions of mutual information and covariances, respectively,
again yields Eqs. (45) and (46).

APPENDIX D: INFERENCE OF FIVE-QUBIT
ZERO STATE AND FIVE-QUBIT GHZ STATE IBM

HARDWARE

In this section, we present the remainder of the results
from our numerical experiments on IBM quantum hard-
ware. Namely, we show the inference error when our
variational scheme is applied to a five-qubit zero state and
a five-qubit GHZ state. The former isolates the optimiza-
tion of the von Neumann entropy, while the latter isolates
the optimization of covariance and mutual information. We
follow the same approach used for the inference of the
|W〉 ⊗ |�〉 as discussed in the main body of the paper.

In Figs. 10 and 11 we plot the network inference for a
five-qubit zero state preparation |ψ〉 = |00000〉. Since |ψ〉
is separable, for any two-qubit measurement �qi ⊗�qj ,
the mutual information I(qi; qj ) = 0 and the covariance
is Cov(q1, q2) = 0. As a result, randomly initialized mea-
surements are optimal as shown in the simulated results
in the top-right plot of Fig. 10. On the other hand, the
variance of any qubit is Var(qi) ∈ [0, 1] and the Shan-
non entropy H(P(ai)) ∈ [0, 1] where the maximal variance
and minimal Shannon entropy are both achieved only
when the state |0〉〈0| is measured in the computational
basis. Therefore, randomly initialized measurements must
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FIG. 10. Variational quantum optimization of the covariance matrices and characteristic matrices for a five-qubit zero state prepared
on IBM Hardware. In each plot the blue circles show the ten-shot optimization, the orange diamonds show the 100-shot optimiza-
tion, green plus signs show the 1000-shot optimization, and red triangles show the 10 000-shot optimization. The x axis shows the
optimization step while the y axis shows the inference error calculated as the Euclidean distance between the ideal covariance and
characteristic matrix and the matrix in each optimization step. The first row shows the optimization data averaged over ten runs on
a finite-shot noiseless classical simulator, the second row shows the optimization data collected from the ibmq_belem quantum
computer, and the third row shows the data collected when the settings from the noisy IBM hardware optimization are re-evaluated
on a noiseless classical simulator. From left to right each column shows the covariance matrix optimization, the characteristic matrix
optimization, the Shannon entropy optimization, and the classical mutual information optimization.

be optimized to achieve the optimal covariance matrix and
characteristic matrix, which are the 5 × 5 identity and zero
matrix, respectively.

As the number of shots increases we expect to see the
network inference error decrease. This trend can easily
be seen in the classical simulator data in the top row of
Fig. 10. First, note in the rightmost column that a 10×
increase in the number of shots corresponds to roughly
a 10x decrease in the amount of error. In the covari-
ance, characteristic, and Shannon entropy optimizations,
we find a similar pattern in which more shots leads to less
error, however, the separation is not as profound as in the
mutual information case because the covariance and Shan-
non entropy optimizations over measurements have some
error. This error is reflected in the standard error bar on
the classical simulator optimization, which plots the aver-
age optimization over ten independent optimization runs.
When we run the same optimizations on the IBM hard-
ware, we find a similar trend where increasing the number
of shots decreases the error.

In Fig. 11, we visualize the network inference per-
formance by taking the optimal matrix elements for the
covariance and characteristic matrices across the whole
optimization on IBM hardware. For the covariance-based
inference case, we find that the inference error decreases as
the number of shots increases. This trend does not hold for
the characteristic matrix, which shows the error increases
when more than 100 shots are considered. We largely
attribute this feature to the noise on the IBM hardware,
which is quite dynamic and can vary considerably over the
course of an optimization.

In Figs. 12 and 13 we plot the network inference for a
five-qubit GHZ state preparation |ψ〉 = 1/

√
2(|00000〉 +

|11111〉). For any two-qubit measurement �qi ⊗�qj ,
the mutual information I(qi; qj ) ∈ [0, 1] and covariance
Cov(qi, qj ) ∈ [0, 1] where these values are maximal when
�qi = �qj are the same measurement. As a result, ran-
domly initialized measurements must be optimized to
obtain their maximal values. On the other hand, the vari-
ance of any qubit is Var(qi) = 1 and the Shannon entropy
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FIG. 11. In the top row, we plot the maximal value achieved for each term of the covariance matrix across all optimization steps. In
the bottom row, we plot the maximal mutual information of each qubit pair (off diagonals) and minimal Shannon entropy of each qubit
(diagonal) across all optimization steps. The bar graph plots the Euclidean distance between the ideal and inferred matrices for each
distinct number of shots.

H(P(ai)) = 1 for any choice of measurement, hence ran-
domly initialized measurements are optimal. Note that in
the Shannon entropy plots of Fig. 12. The ideal qubit
covariance and characteristic matrices are both 5 × 5
matrices of ones.

As the number of shots increases we expect to see the
network inference error decrease. This trend can easily
be seen in the classical simulator data in the top row of
Fig. 12. For instance, note that for the Shannon entropy

optimization, a 10× increase in the number of shots cor-
responds to roughly a 10× decrease in the inference error,
which is a result of the Shannon entropy being constant for
all measurements. For the other optimizations, the 10 000-
shot case does not necessarily perform the best, but this
can largely be attributed to finding local optima during
optimization, causing the mean inference error to level off
with wide error bars. When we run the same optimiza-
tions on the IBM hardware, we find that more shots do

FIG. 12. Variational quantum optimization of the covariance and characteristic matrices for a five-qubit GHZ state prepared on IBM
Hardware. See Fig. 10 for descriptions of individual plots.
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FIG. 13. In the top row, we plot the maximal value achieved for each term of the covariance matrix across all optimization steps. In
the bottom row, we plot the maximal mutual information of each qubit pair (off diagonals) and minimal Shannon entropy of each qubit
(diagonal) across all optimization steps. The bar graph plots the Euclidean distance between the ideal and inferred matrices for each
distinct number of shots.

not necessarily decrease the inference error. We attribute
this feature to the fact the IBM quantum hardware is noisy.
Furthermore, the noise is not necessarily constant over the
course of an optimization run. Thus, we suspect that con-
sidering too many shots allowed the noise to drift during
optimization skewing the optimization. Furthermore, the
numerical experiments were run serially from fewer shots
to more shots, meaning that the performance of the IBM
device might have also deteriorated considerably after the
completion of the 100-shot experiment.

The noise in the IBM hardware is visualized in Fig. 13.
For both the covariance and characteristic matrices, we
find the inference error to increase as the number of shots
increases. First, this trend results from the fact that we
take the maximal covariance and mutual information for
each qubit pair, thus, in the ten-shot case statistical fluctua-
tions lead to a larger covariance and mutual information,
implying less error. Second, we observe in the 1000-
and 10 000-shot cases that the inference scheme fails for
certain qubits. In these cases, either local optima are being
found, or the IBM hardware is failing to produce entangled
states. From our classical simulator data, we find that char-
acteristic matrix optimizations are particularly susceptible
to finding local optima, meaning that the results in Fig. 13
could simply be the optimization finding local optima.
In practice, these errors can be mitigated by running the
optimization repeatedly from different initial settings.
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