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Fast classical processing is essential for most quantum fault-tolerance architectures. We introduce a
sliding-window decoding scheme that provides fast classical processing for the surface code through
parallelism. Our scheme divides the syndromes in space-time into overlapping windows along the time
direction, which can be decoded in parallel with any inner decoder. With this parallelism, our scheme can
solve the backlog problem as the code scales up, even if the inner decoder is slow. When using minimum-
weight perfect matching and union find as the inner decoders, we observe circuit-level thresholds of 0.68%
and 0.55%, respectively, which are almost identical to those for the batch decoding.
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I. INTRODUCTION

Fault-tolerance theory allows scalable and universal
quantum computation provided that the physical error rates
are below a threshold. Aharonov and Ben-Or, in their sem-
inal work [1], give a fault-tolerance scheme with no classi-
cal operations. However, the resulting threshold is far from
feasible. Multiple fault-tolerance architectures have since
been proposed [2–4] but their estimations for the thresh-
old and resource overhead mostly assume instantaneous
classical computations.

One prominent architecture [5,6] uses the surface code
[7] and achieves universality via magic state distillation
[8]. In particular, the implementation of a non-Clifford
gate using a magic state typically involves a classically
controlled Clifford correction. Therefore, the error cor-
rection between consecutive non-Clifford gates should be
fast enough to keep up with the rapidly decohering quan-
tum hardware, so that the error syndromes do not backlog
[9]. This requires an adequately high decoding through-
put—the amount of error syndromes that can be processed
by a decoder in unit time.

Many decoding schemes for the surface code have high
thresholds [10,11], yet they cannot be implemented with a
high enough throughput and thus do not address the back-
log problem. On the other hand, local decoding schemes
[12–19] are fast and scalable to a certain degree but their
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speed comes at the expense of accuracy. The accuracy of
local decoders can be improved by appending a global
decoder [20–25] while still pursuing relatively high decod-
ing throughputs. Other schemes based on specialized hard-
ware [26–29] have also been proposed. However, to the
best of our knowledge, none of the approaches mentioned
above have demonstrated adequate accuracy, throughput,
and scalability simultaneously.

In this work, we introduce the sandwich decoder for
the surface code, which solves the backlog problem
using parallelism. Our work is inspired by the idea of
“overlapping recovery” in Ref. [5] (later rediscovered in
Ref. [30]), which we reformulate as the forward decoder.
Both the sandwich and forward decoders are sliding-
window decoders, i.e., they divide the error syndromes in
space-time into overlapping windows in the time direc-
tion. As opposed to the sliding-window decoders, we
define batch decoders as the algorithms that process the
error syndromes all at once, i.e., there exists only one
window.

One significant limitation of the forward decoder is that
it processes windows sequentially, resulting in a limited
throughput. However, our sandwich decoder removes the
dependency between the windows so that they can be
handled in parallel, e.g., using separate classical process-
ing units [31]. Adjacent sandwich windows may diag-
nose differently upon the same syndromes, which would
compromise the fault-tolerance property of the decoding
scheme. We reconcile such inconsistency by decoding the
controversial syndromes in a further subroutine.

The parallelism of the sandwich decoder is a
great advantage for scalability. An inherently sequential
algorithm like the forward decoder can hardly take advan-
tage of parallel computational resources and thus will have
difficulty maintaining adequate throughput when the code
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distance increases. Meanwhile, the sandwich decoder can
solve the backlog problem as the code scales up, as long
as it is given enough parallel processing units. Little com-
munication is needed between processing units, as there
is no dependency between windows. Thus the through-
put requirement can be easily satisfied by adding more
cores or processors, which is much easier than pushing the
processor clock speed. Furthermore, the number of paral-
lel processing units needed only scales with the speed of
the quantum hardware and the code distance, not with the
length of the quantum computation.

We benchmark the sandwich decoder with the mem-
ory experiment for the distance-d-rotated surface code
[32] under circuit-level noise. In particular, we decode
each window using the minimum-weight perfect-matching
(MWPM) [5] or union-find (UF) decoder [33] and observe
numerical thresholds of 0.68% and 0.55%, respectively,
for the logical error rate per d cycles of syndrome extrac-
tion. These values are almost identical to the corresponding
thresholds for the batch decoders. It is reasonable to expect
similar preservation of accuracy when using other inner
decoders. In consequence, our sandwich decoder may
allow us to prioritize the accuracy of the inner decoder, as
throughput is assured simply with adequate computational
resources.

The paper is organized as follows. In Sec. II, we review
the concept of decoder graphs, with special focus on dif-
ferent types of boundaries in the decoder graph. In Sec. III,
we build a theoretical foundation for sliding-window
decoders. We note that existing designs of sliding-window
decoders in the literature are in fact forward decoders
under our classification scheme and thus cannot efficiently
utilize the parallelism between windows. In Sec. IV, we
introduce the sandwich decoder, which, in contrast to the
forward decoder, enables scalable parallelization between
windows. In Sec. V, we analyze the performance of the
sandwich decoder in terms of both the asymptotic behav-
ior of the decoding throughput and logical error rates and
thresholds observed in experiments. We talk about some
possible directions to generalize our results in Sec. VI,
before giving some concluding remarks in Sec. VII.

II. DECODER GRAPHS WITH BOUNDARIES

A. The memory experiment

We focus on the memory experiment that preserves the
logical state |0〉 for the [[d2, 1, d]]-rotated surface code; the
argument for other variants of the surface code or logical
basis states proceeds analogously. Specifically, we first ini-
tialize each data qubit as the state |0〉. Then, we repeatedly
apply a syndrome-extraction circuit for n cycles and obtain
syndromes σ X

i , σ Z
i ∈ {0, 1}(d2−1)/2 of the X- and Z-type

check operators, respectively, for i = 1, . . . , n. Finally, we

measure all the data qubits in the Z basis and obtain
outcomes μ ∈ {0, 1}d2

.
For the surface code, each cycle of detectors is the

exclusive OR (XOR) of two consecutive cycles of syn-
dromes. More precisely, let σ Z

n+1(μ) ∈ {0, 1}(d2−1)/2 be the
syndromes of the Z-type check operators evaluated from
the data-qubit measurement outcomes μ. Define

δZ
1 := σ Z

1 ,

δP
i := σ P

i ⊕ σ P
i−1, P ∈ {X , Z}, i = 2, 3, . . . , n, and

δZ
n+1 := σ Z

n+1(μ) ⊕ σ Z
n .

(1)

We further assume that the syndrome-extraction circuit is
fault tolerant [32] and the whole circuit of the memory
experiment is afflicted with stochastic Pauli errors. Specif-
ically, each gate, qubit idling, and initialization (respec-
tively, measurement) is modeled as the ideal operation fol-
lowed (respectively, preceded) by a random Pauli, referred
to as a fault, supported on the involved qubit(s).

Under our assumptions about the circuit and error
model, detectors are 0 in the absence of faults; thus, any
defects—detectors with value 1—indicate the presence of
faults. Furthermore, the occurrence of each fault flips at
most two detectors of each type (X or Z) [32]. We define
a detector to be open if there is a fault that flips that detec-
tor but no other detector of the same type; otherwise, it is
closed.

Example 1.—In Fig. 1(a), an X fault on data qubit A flips
detectors α and β; whereas an X fault on data qubit B only
flips detector γ . γ is an open detector and α and β are
closed detectors.

Figure 1(b) illustrates a Z-type decoder graph con-
structed as follows. First, add one vertex for each Z-type
detector. Then, add an edge between two vertices (detec-
tors) if there is a fault that flips them both. Finally, for each
open detector, add an imaginary detector and an edge con-
necting them. We also assign each imaginary detector a
binary value, such that each fault flips either zero or two
Z-type detectors. Each edge in the decoder graph thus rep-
resents an equivalence class of faults that flip the same two
detectors.

The goal of a decoding procedure is to annihilate all
defects by finding a proper set of corrections—edges that
give rise to the exact same defects. Formally, a defect is
annihilated if it is incident to an odd number of edges in
the set.

B. Open and closed boundary conditions

The notions “open” and “closed” can be extended to the
boundaries of the three-dimensional (3D) decoder graph.
There are four space boundaries and two time bound-
aries. Each space boundary consists of all the real detectors
adjacent to the top-, bottom-, left-, or right-most [in the
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FIG. 1. (a) A distance-5-rotated surface code. The data qubits (black) reside on the plaquette corners. The check operators of types
Z (blue) and X (red) are measured with ancilla qubits (empty circles) on the plaquette centers. (b),(c) Decoder graphs of types (b) Z
and (c) X for a memory experiment with three syndrome-extraction cycles that preserves |0̄〉 of the code shown in (a). The blue and
red vertices denote Z- and X-type real detectors, respectively; the white vertices denote imaginary detectors. Each edge represents the
set of faults that flip the incident detectors. Each decoder graph has two open space boundaries, whereas the X-type decoder graph also
has two open time boundaries [34].

directions of Fig. 1(a)] [35] data qubits of each layer,
respectively. The first and last layers of real detectors are
the time boundaries, representing the detectors at the time
of data-qubit initialization and final data-qubit measure-
ments.

A boundary in a decoder graph is called open if every
detector on this boundary is open. A boundary is closed if
it is not open.

1. Space boundaries

Let us consider the Z-type decoder graph with the layout
specified in Fig. 1(b). An X fault on any of the data qubits
on the top and bottom boundaries of the lattice in Fig. 1(a)
flips only one real Z-type detector (i.e., a bit in δZ), which
is open by definition. Hence, the top and bottom space
boundaries of the 3D decoder graph in Fig. 1(b) can be
referred to as open and the left and right space boundaries
are closed.

Remark 1.—One way to intuitively justify the words
“open” and “closed” is by looking at the forms of unde-
tectable errors. For codes without space boundaries (such
as the toric code), an undetectable error always looks like a
cycle or a combination of cycles, either topologically triv-
ial (in which case it will never cause a logical error) or not
(in which case it may be a logical operator). For codes with
space boundaries, an undetectable error can also be a path
with both ends at the open boundaries, as if the path goes
into and out of the code patch through those boundaries.

2. Time boundaries

Similarly, both the past (left) and future (right) time
boundaries in Fig. 1(b) are closed, since no fault flips only
one detector in δZ

1 or δZ
n+1 (unless on a space boundary).

Example 2.—Suppose that there is only a Z-stabilizer
measurement error during the last cycle of syndrome
extraction, i.e., σ Z

i = 0 for i ∈ {1, . . . , n + 1} \ {n} and
σ Z

n = 0 · · · 010 · · · 0. It follows from Eq. (1) that there are
only two defects in δZ

n and δZ
n+1, respectively. The edge

connecting these two defects indicates the Z-stabilizer
measurement error.

Example 3.—Suppose that there is only a data-qubit
measurement error at the end of the memory experiment.
We have σ Z

i = 0 for i ∈ {1, . . . , n}. As we calculate the
final set of Z syndromes, σ Z

n+1, based on the data-qubit
measurement results μ, one flipped data qubit affects all
the check operators that it involves. Therefore, σ Z

n+1 has
one or two nontrivial syndromes and δZ

n+1 has one or two
defects. With the imaginary detectors on the open space
boundaries, any single data-qubit measurement fault flips
exactly two detectors.

However, for the X-type decoder graph [see Fig. 1(c)],
the outcome of the first cycle of X-stabilizer extraction is a
random binary string even if there are no errors. Therefore,
the first round of X-type real detectors is formed from the
parity of the first two rounds of syndrome-measurement
outcomes, which are trivial in the absence of faults. In par-
ticular, the first round of X-type detectors forms an open
time boundary. That is, each of the X-type detectors in the
first round is connected to an imaginary detector, in order
to cope with error mechanisms that only flip a detector in
this first round. Similarly, the ending time boundary also
needs to be open, since in the end, after we measure the
data qubits in the Z basis, the outcome μ does not provide
any information about the X syndromes.

3. Importance

We emphasize that the open and closed boundary
conditions are not just some mathematical tricks that
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marginally improve the performance of the decoder; on
the contrary, to get meaningful results from the quantum
memory experiment, one must correctly close or open the
boundaries according to the context (e.g., the code or the
specific type of fault).

As we focus on the memory experiment of preserving
logical |0〉, our goal is to prevent the logical Z opera-
tor from being flipped (an odd number of times). But if
one of the time boundaries in the Z-type decoder is open,
there will be low-weight (i.e., short) undetectable X errors
with both end points on that time boundary. Such an unde-
tectable X error can easily flip the logical Z operator,
violating the principle that only at least �d/2� physical
faults can cause a failure. On the other hand, when both
time boundaries are closed, everything makes sense: the
only open boundaries are the top and bottom space bound-
aries and low-weight X fault chains starting and ending at
one of those boundaries can only flip the logical Z opera-
tor an even number of times. To flip the logical Z operator,
fault chains must cross from one open space boundary
to the other open space boundary but then it is a logical
operator with weight ≥ d and all is well.

We provide another way to understand the open-time-
boundary condition in Sec. III A and show with numerical
evidence in Appendix B that misusing closed- and open-
time-boundary conditions greatly increases the logical
error rate.

III. DESIGNING SLIDING-WINDOW DECODERS

A window consists of a number of consecutive cycles
of detectors in the decoder graph [see Fig. 2(a)]. Both the

forward and sandwich decoders work on one window at
a time. Each window is processed by an inner decoder,
a subroutine that generates corrections for that window
only. The corrections assembled from all windows should
collectively annihilate every observed defect in the whole
decoder graph.

Hereafter, we associate each window with a subgraph
of Fig. 1(b) consisting of the real detectors enclosed in the
window and certain imaginary detectors. Concretely, the
first window contains detectors from δZ

1 to δZ
w, the second

window from δZ
1+s to δZ

w+s, and so forth. That is, windows,
each with length w, proceed rightward with step size s <

w. The final window contains detectors up to δZ
n+1.

A. Artificial time boundaries

The idea of allocating detectors in windows naturally
creates two artificial time boundaries for each window
(except for the first and final ones, each of which has one
real time boundary and one artificial time boundary). Note
that these artificial time boundaries do not represent any
real initialization or termination of the memory experi-
ment. Therefore, they should naturally be open, indicating
that there may still be detectors at the other side of each
artificial time boundary unknown to the current window.

From the perspective of the current window, an isolated
defect close to such a time boundary is more likely to be
caused by some faults from the future or the past. However,
if the inner decoder regards this boundary as closed, it will
be forced to generate corrections of a higher weight within
the current window, which is more likely to cause a logical
error in the final result.

(a) (b) (c)

FIG. 2. (a) The decoder graph of a first window of length w = 3. As in Fig. 1(b), the blue and white vertices denote Z-type real
and imaginary detectors, respectively. Each edge represents the set of faults that flip the incident detectors. The past time boundary
(red line) is closed; the top and bottom space boundaries (black dashed line) and the future time boundary (red dashed line) are open.
Imaginary detectors near the future time boundary are equivalent to vertices in δZ

4 . (b),(c) The (b) forward decoder and (c) sandwich
decoder. The observed defects (pink dots) are annihilated by the corrections (blue lines). Corrections in the cores (brown region) are
retained, whereas those in the buffers (transparent region) are discarded. Retained corrections can create updated defects (orange dots)
on the seams between adjacent cores. Imaginary detectors reside near the open boundaries (dashed line) and only those incident to
corrections are shown (empty circle). The forward decoder must decode the windows sequentially by the order labeled, whereas the
sandwich decoder can, in principle, decode the windows in parallel.
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In some cases, an artificial time boundary can also
become close with some modifications, such as the arti-
ficial past time boundaries in the forward decoder. This is
also one of the key differences between the forward and
sandwich decoders.

B. Core regions and buffer regions

In both forward and sandwich decoders, each inner
decoder takes all the detectors within a window as input
and returns corrections for the entire window. However,
since adjacent windows generally have an overlap, we
do not need to apply all these corrections. Instead, each
window only retains a part of the corrections that are rel-
atively reliable and disregards the rest. The former region
(where corrections are accepted) is called the core region
and the latter region (the rest of the window) is called the
buffer region. In general, the size of a core region equals
the step size. The buffer regions are usually close to the
open artificial time boundaries, since their corrections are
less trustworthy. We will be more precise about these two
regions later.

Intuitively, the buffer regions between windows let them
share precious contextual information on faults with each
other. Therefore, having a large buffer is beneficial when
we merge the individual corrections generated by each
inner decoder back to the entire decoder graph, since the
accepted corrections become more reliable.

C. Correction consistency

One important principle of surface codes is that the
“correct” corrections are not unique: any two sets of cor-
rections that differ by one or more stabilizers are logically
equivalent. This fact poses a challenge for sliding-window
decoders: even if each decoder window individually finds
a “correct” set of corrections, there may not be an obvious
method to combine them into a consistent set of corrections
for the entire decoder graph.

An example of this is illustrated in Fig. 2(c): the win-
dows labeled 1© and 2© return inconsistent corrections
along the “seam” where we want to merge. The possi-
bility of such an inconsistency means that the combined
corrections may not annihilate all defects and that even a
low-weight fault may cause a logical error.

D. Forward-window decoder

The main idea of a forward decoder is to sequentially
decode each window one at a time and then propagate nec-
essary syndrome information from the current window to
the next window. In this way, it solves the inconsistency
problem by forcing the next window to output consistent
corrections with the current window.

In Fig. 2(b), for each window (not the final one) that
spans the detectors from δZ

1+is to δZ
w+is, let its past boundary

be closed and its future boundary be open. Also, let the
core region be the set of edges in the window that are inci-
dent to at least one vertex ranging from δZ

1+is to δZ
(i+1)s and

let the buffer region be the remaining edges in the window.
For the final window, both time boundaries are closed and
all edges belong to the core. The core regions in two adja-
cent windows overlap in exactly the vertices on the past
boundary of the later window.

The forward decoder processes the windows in tem-
poral order. Within each window starting from δZ

1+is, the
inner decoder first finds a set of corrections that can anni-
hilate the existing defects but only retains the corrections
in the core region. If the current window is the final
one, all observed defects will have been annihilated and
the decoder will terminate. Otherwise, only the defects
from δZ

1+is to δZ
(i+1)s will be annihilated and the detec-

tors on δ1+(i+1)s will be updated and deferred to the next
window.

In this way, since all the defects prior to the current
window have been annihilated by previously accepted
corrections, it has a closed past boundary and an open
future boundary. As a result, a forward window needs
no buffer preceding the core. The closed boundary means
that the inner decoder will not change any corrections
already accepted in the past and thus consistency between
windows is ensured.

The corrections found in the core become more reli-
able with larger buffer size, as the future faults outside the
window are less likely to affect the core.

As far as we know, the idea of the forward decoder
first appears in Ref. [5] with w = 2s and is rediscov-
ered in Ref. [30] with s = 1 but without specifying the
future-boundary conditions of windows.

E. Limitation with parallelization

A remarkable disadvantage of the forward approach is
the strict dependency among all windows: we cannot start
decoding the next window until the current window is fin-
ished. Therefore, once the decoding time of each window
fails to keep up with s cycles of newly extracted syn-
dromes, where s is the step size, the latency accumulates.
This is one of the reasons why the authors of Ref. [30]
employs look-up tables (LUTs) as their inner decoders.
Since the LUTs are generated off-line (or in advance) using
MWPM, they are fast and accurate while decoding each
window; however, LUTs require a huge amount of mem-
ory for storage, restricting code distances to up to 5 and
window size to a maximum of 3.

For sliding-window decoders, the throughput can be
greatly increased if we can decode all windows in parallel.
However, this is impossible for a forward decoder, since
this data dependency causes the critical path [36] to run
through all windows.
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IV. SANDWICH-WINDOW DECODER

Next, we introduce the sandwich decoder, the windows
of which can be processed effectively in parallel. It has a
much shorter critical path that does not increase with the
total number of windows [37]. Figures 2(b) and 2(c) visu-
alize the difference between the forward approach and the
sandwich approach.

The sandwich decoder has two subroutines and each
subroutine deals with a specific type of sandwich window.
If we do not specify the type of a window, it should be clear
from the context.

The reason for naming this approach as the sandwich
decoder is twofold, as we shall explain later. We dis-
cuss in Sec. VI other generalizations of the sandwich
decoder, especially the potential to adapt it to the stability
experiment [38] and to lattice surgery [39].

A. Type-1 windows: Buffer regions in both directions

By propagating the syndromes in the forward direction,
the forward decoder can solve the correction consistency
problem but with a long critical path. Since the decoder-
graph formalism is symmetric with respect to the direction
of time, each window should be capable of propagating
syndromes in the backward direction as well.

It follows naturally that except for the first and final
windows, the core region of each window can be “sand-
wiched” by two buffer regions and both artificial time
boundaries are open. The first (respectively, final) window
has only one buffer and one open time boundary in the
future (respectively, past) direction. We refer to such a win-
dow as a type-1 sandwich window and w = s + 2b, where
b is the length of the buffer region. Although adjacent
type-1 sandwich windows overlap, they can be regarded
as independent and thus all of them can be decoded in
parallel.

There is a lot of freedom regarding the detailed design.
Here, we describe one choice formally. For each window
that spans the detectors from δZ

1+is to δZ
w+is, the core region

contains all edges incident to at least one vertex ranging
from δZ

b+1+is (δ1 if initial window) to δZ
s+b−1+is (δZ

n+1 if final
window). Each inner decoder finds corrections that can
annihilate all defects within the window but only retains
the ones in the core.

B. Type-2 windows: Merging corrections

Since type-1 windows propagate syndrome information
forward and backward, there must be another type of win-
dow that receives syndrome information from both ends,
which we define as the type-2 window. Since syndrome
propagation closes the corresponding time boundary of the
receiving window, each type-2 sandwich window has both
time boundaries closed and the entire window is the core
region.

A1

A2 B2

C1

C2

B1

FIG. 3. Positive (A), zero (B), and negative (C) seam offsets.

Since each type-2 window is sandwiched between two
type-1 windows, it is dependent on the decoding results of
the two independent type-1 windows. But since all type-
2 windows are independent from each other, they can be
decoded in parallel.

After we apply the corrections from type-1 windows,
there may exist defects that have not been annihilated yet.
The role of type-2 windows is to reconcile this inconsis-
tency by neutralizing all remaining defects.

To illustrate this more clearly, we call the latest layer
of detectors in a core region the right seam and the oldest
layer the left seam. The core regions of two adjacent type-
1 windows can have three patterns (Fig. 3) and we refer to
this difference using a parameter called the seam offset:

(a) When the seam offset is positive, the core regions do
not have any overlap.

(b) When the seam offset is 0, the right seam of the
former core overlaps with the left seam of the
latter core. The type-2 windows thus become two-
dimensional (2D) and the contained detectors have
been updated twice. For simplicity of illustration
and implementation, we set the seam offset to be 0
in the numerical analysis and in the visualization in
Fig. 2(c).

(c) When the seam offset is negative, the core regions
overlap in more than one layer.

In each case, the size of a type-2 window is |t| + 1, where t
is the seam-offset value. A type-2 window is 3D unless the
seam offset is 0.

We can always find valid corrections for each type-2
window, since its top and bottom space boundaries are
open. After decoding all type-2 windows and applying
every correction, all defects will be annihilated.

V. ANALYSIS

A. Throughput

Sliding-window decoders may induce a throughput
overhead compared to batch decoders, due to the overlap
between windows. However, with reasonable parame-
ter choices, this overhead is only a minor constant
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factor compared to the substantial potential for increased
throughput through parallelism.

Assuming that the time complexity of decoding a win-
dow is linear in the window volume, this overhead factor
is equal to the ratio of the window size to the core region
volume, i.e., w/s, where w is the window size and s is the
step size. For UF decoders, the linear decoding complexity
holds true in practice; for decoders with superlinear com-
plexity, such as a naive version of the MWPM decoder,
dividing the decoding graph into windows even reduces
the asymptotic time complexity.

For the sandwich decoder, where w = s + 2b, the ratio
can be made arbitrarily close to 1 by increasing the win-
dow size, at the cost of increased decoding scheme latency.
In practice, setting the overhead factor to a modest value
of 2 by taking w = 4b is sufficient. With 1000 available
CPU cores for decoding, the sandwich decoder can still
achieve a 500-fold throughput increase compared to the
unparallelized batch decoder.

B. Accuracy and threshold

We benchmark our sandwich decoder for odd code
distances d = 3, 5, . . . , 17 with step size s = (d + 1)/2,
window size w = 3s, and varying number of cycles n.
We employ the independent depolarizing error model with
rate p for the entire circuit (for the detailed method of
evaluating the thresholds, see Appendix A).

Since n typically scales with d, a natural metric for accu-
racy is the logical error rate per d cycles, pL(d), assuming
the ansatz that each cycle of syndrome extraction inde-
pendently flips the logical qubit with a fixed probability.
We first calculate pL(d) by fitting the logical error rates
obtained from Monte Carlo simulations with varying n.
Then, we determine the threshold of the physical error rate
p according to the trend of pL(d).

With the above procedure, we observe threshold val-
ues p = 0.680(2)% and 0.554(1)% for the MWPM and
UF decoders as inner decoders, respectively (see Fig. 4).
For comparison, we also run the same experiments with
batch decoding instead of sandwich decoding, i.e., decod-
ing all the syndromes of a memory experiment as a single
window. We observe pL(d) close to but systematically
lower than those with sandwich decoding and thresh-
olds of 0.683(2)% and 0.553(2)% for the respective inner
decoders.

C. Exploring existing freedoms

There are many freedoms in our sliding-window decod-
ing scheme and we explore some of them in Appendix B.
For example, we vary the step size, window size, and seam
offset; compare sandwich and forward windows; compare
open and closed time boundaries; and apply sandwich-
window decoders to real-world data provided in Ref. [40].
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FIG. 4. A comparison between sandwich decoding (solid line)
and batch decoding (dashed line) with (a) MWPM and (b) UF
decoders as the inner decoder. For fixed code distance d =
3, 5, . . . , 17 and physical error rate p , we first vary the number
of cycles of syndrome extraction n and simulate each memory
experiment for 105 shots. Then, we collect the estimated logical
error rates per shot for varying n and calculate the logical error
rate per d cycles pL(d), depicted as dots. The error bars indi-
cate 95% statistical confidence and dots of the same d value are
connected for ease of visualization.

Insights into how other freedoms may affect the per-
formance of our scheme will be valuable. For example,
regarding the UF inner decoder, using a peeling decoder
based on breadth-first search instead of depth-first search
may affect the effectiveness of the syndrome propagation
process.

VI. GENERALIZATIONS

A. Stability experiment

One omission from this paper is the stability experiment
as described in Ref. [38]. One of the main motivations
for the stability experiment is to emulate the “space-
like parts” that arise in various useful logical operations
with lattice surgery, such as moving a qubit or doing
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(a) (b)

FIG. 5. An illustration of how our scheme can be potentially
extended to lattice-surgery operations such as the two-qubit
measurement. (a) The shape of the 3D decoder graph for an
experiment containing a two-qubit measurement. (b) A way
to divide this decoder graph into windows, with the core and
buffer regions for each window illustrated. Each window has size
O(d) × O(d) × O(d).

a two-qubit parity measurement. Ideally, each of those
“spacelike parts” should last only for O(d) surface-code
cycles, since adding more cycles has diminishing returns
for suppressing timelike logical errors and is detrimental
for suppressing spacelike logical errors (of the opposite
X /Z type). On the other hand, the spatial span of a “space-
like part” may be significantly larger than d, depending on
the physical distance on the surface-code lattice between
the qubits involved.

Thus, it is reasonable to consider stability experiments
on an elongated rectangular code patch and divide it into
windows in a spatial direction instead of the temporal
direction. Such a sliding-window decoder would not be
fundamentally different from a sliding-window decoder for
the memory experiment, only with the roles of the time and
one spatial dimension switched.

B. Lattice surgery

We can then generalize our sliding-window decoders
to some more useful operations in lattice surgery. For
example, the two-qubit parity measurement has an overall
H-shaped decoder graph, as opposed to the rectangular-
box–shaped decoder graph for the memory experiment
(where the box is elongated in the temporal direction)
or the stability experiment (where the box is elongated
in a spatial direction), but it is still straightforward to
divide the graph into 3D windows each with dimensions
O(d) × O(d) × O(d), as shown in Fig. 5. Two T-shaped
windows simply need to propagate seam syndromes in
three directions instead of two. Other lattice-surgery oper-
ations may add more complexity to the scheme—e.g., a
twist defect may require combining the X-decoder graph
and the Z-decoder graph in some way—but it seems that
the same principle should be able to handle everything.

C. Parallelization on hypergraphs

A particularly straightforward avenue for generalization
is any stabilizer code the decoding problem for which can
be formulated through a hypergraph. Concretely, given a
stabilizer code and its syndrome-extraction circuit, denote
by V the set of detectors. Then, a stochastic Pauli error
model induces a hypergraph (V , E) with

E = {e ⊆ V : there is a fault that flips

exactly the detectors in e}. (2)

Consider the F2-linear map from the edge space to the
vertex space ∂ : F

|E|
2 → F

|V|
2 ,

∂E :=
∑

e∈E

∑

v∈e

v, (3)

where the vector addition corresponds to symmetric differ-
ence. For each V ⊆ V and E ⊆ E , define

�(E, V) := {e ∈ E : e incident to a vertex in V} . (4)

Then, we can parallelize the decoding procedure using the
following generalized-sandwich (GS) paradigm. It takes as
the input the graph (V , E) and a set D ⊆ V of defects and
outputs a set K ⊆ E of corrections, so that ∂K = D.

Algorithm 1 has several unspecified freedoms, such as
the “partition method” and “inner decoder.” In our work,
the decoder graphs were partitioned along the time direc-
tion and the inner decoders took as input the buffer regions
as well as the cores. It would be interesting to explore the
many design choices for which valid corrections Ki can be
found and yield low logical error rates.

Algorithm 1 provides one generalization of the sand-
wich decoder regarding disjoint core regions across win-
dows (such as having non-negative seam offset). We
can easily construct similar variants for overlapping core
regions.

1: if (V, E) consists of disconnected subgraphs, each of a
small enough size then

2: Apply the inner decoder to each subgraph in parallel,
return the union of the outputs

3: Apply the partition method to choose “cores” {Ci ⊆ V }i

with disjoint {Δ(E, Ci)}i, each of a small enough size
4: Apply the inner decoder in parallel to calculate correc-

tions Ki ⊆ Δ(E, Ci), for all i, with ∂Ki ∩ Ci = D ∩ Ci

5: V ′ ← V
∖⊔

i Ci , E′ ← E
∖⊔

i Δ(E, Ci) , D′ ← D +
∂

⊔
i Ki

)

6: return GS(V ′, E′, D′) � ⊔
i Ki

Algorithm 1. Generalized sandwich decoder GS(V, E, D)
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VII. CONCLUSIONS

In this paper, we propose the sandwich sliding-window
decoding scheme, which achieves high throughput by par-
allelizing overlapping windows in the time direction. To
better motivate and illustrate our design principles, we
reformulate previous decoding schemes as batch decoders
and forward decoders and identify their limitations in
parallelization and scalability.

We demonstrate with strong numerical evidence that
our sandwich decoder has almost identical performance
in accuracy and threshold compared to its batch-decoder
counterparts. As for generalization, we provide a parallel
divide-and-conquer formalism for our sandwich decoder,
which applies to general stabilizer codes and possibly gen-
eral logical operations. For example, for lattice surgery,
we may need to divide syndromes into windows along
the space direction, as well as the time direction. Further
theoretical justification or more numerical validation is
needed to fully evaluate our sandwich decoder in real-time
decoding for fault-tolerant quantum computation.
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Note added.—An independent study [41] has become
available to the public concurrently with ours, address-
ing the same syndrome-backlog problem in surface-code
decoding and sharing a similar methodology of dividing
the decoder graph into windows. However, there are sev-
eral differences, including the latency slow-down of the
parallel decoder discussed in Ref. [41], which is not cov-
ered in our work. Our opinions also differ on the overlap
of window divisions in subroutines, with our work lifting
restrictions for a wider scope of application.

APPENDIX A: MONTE CARLO SIMULATION OF
THE THRESHOLD

1. Union-find inner decoders

In most of our experiments, we use a UF decoder, as
proposed in Ref. [33], to decode each individual win-
dow (including the forward windows and both types of
the sandwich window). We use the weighted-growth ver-
sion of the decoder described in Ref. [33, Sec. 5] but
slightly modify the definition of the “boundary size” in our
implementation.

We choose the UF decoder due to its low time complex-
ity both in theory and in practice. However, it is unclear

whether the UF decoder is the best fit for a sliding-window
scheme. In theory, the UF decoder does not try to approx-
imate the minimum-weight correction; instead, it tries to
find an equivalence class that is likely to contain the actual
error and then it chooses an arbitrary correction in that
equivalence class with a simple peeling decoder. This
means that the updated detectors at the right and left seams
obtained by applying only part of the correction output by
the UF decoder may be misleading, although our experi-
mental results indicate that this does not noticeably affect
the performance in practice.

In any case, we also conduct some experiments with a
MWPM decoder as an alternative inner decoder to validate
the universality of the sandwich scheme.

2. Sampling errors

We employ the circuit-level depolarizing error model
with a single parameter p . More precisely, we assume that
the preparation-and-measurement errors exist on all data
and ancilla qubits, where a qubit is initialized to an orthog-
onal state with probability p and a measurement result is
flipped with probability p . Each single-qubit, two-qubit,
and idle gate is implemented as a perfect gate followed by
a depolarizing channel. With probability p , the perfect gate
is afflicted by a nontrivial Pauli fault chosen uniformly at
random.

The faults attached to different elementary operations
are applied independently.

3. Monte Carlo simulations

Given each code distance d ∈ {3, 5, . . . , 17}, we choose
a sandwich decoder with step size sd = (d + 1)/2 and
window size wd = 3sd. We use the 3D MWPM and UF
decoder, respectively, as the inner decoder to handle each
type-1 window and the 2D MWPM and UF decoder,
respectively, to handle each type-2 window (i.e., the seam
offset is 0).

For the experiments with the UF inner decoder, we con-
sider physical error rates p ∈ {0.3%, 0.4%, 0.5%, 0.55%,
0.6%, 0.7%, 0.8%}; for the experiments with the MWPM
inner decoder, we consider physical error rates p ∈ {0.4%,
0.5%, 0.6%, 0.65%, 0.7%, 0.8%}. For each p , we run a
Monte Carlo simulation to find the logical error rate per d
cycles for 100 000 shots. For the logical error rate plots for
the sandwich and batch decoders using the UF and MWPM
inner decoders, see Fig. 6.

To define the concept of the “logical error rate per d
cycles,” pL(d), we make the ansatz that each cycle of syn-
drome extraction independently flips the logical qubit with
a fixed probability pL(1). If we exclude the data-qubit ini-
tialization and final measurement faults, the probability
of flipping the logical qubit after i cycles of syndrome
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FIG. 6. The logical error rates for (a) the MWPM sandwich decoder, (b) the MWPM batch decoder, (c) the UF sandwich decoder,
and (d) the UF batch decoder for code distances d = 3, 5, . . . , 17. The logical error rates per d cycles pL(d) are estimated with weighted
least squares, as explained in Sec. A 3. The error bars indicate 95% statistical confidence according to a conservative estimate (i.e.,
an overestimate) of the variance of p̂L(d), as explained in Sec. A 4. The sandwich decoder has almost the same performance as the
corresponding batch decoder.

extraction pL(i) satisfies

1 − 2pL(i) = [1 − 2pL(1)]i . (A1)

Define q to be the probability that the data-qubit initial-
ization and measurement collectively flip the logical qubit.
Then, the probability pL,n of logical error for an n-cycle
memory experiment satisfies

1 − 2pL,n = (1 − 2q) · (1 − 2pL(1))n. (A2)

We can thus calculate the logical error rate per d cycles
pL(d) from the estimated logical error rate per shot p̂L,n
using the weighted least-squares estimator

log(1 − 2p̂L(d)) = x
diag(w) y
/

x
diag(w) x, (A3)

where

xn = (n − n)/d,

wn = 1/V̂ar(yn), (A4)

yn = log(1 − 2p̂L,n) − log(1 − 2p̂L,n). (A5)

The explicit form of the estimator V̂ar(yn) will be given
in Sec. A 4. In our experiments, we simulate with dif-
ferent overall numbers of cycles n = �ksd/2�, where k ∈
{8, 9, . . . , 20}.

To more efficiently simulate the behavior of our scheme
for different numbers of cycles, we conduct those sim-
ulation experiments simultaneously, reusing the sampled
errors and decoder outputs for early cycles. That is, for
each d and p , we only construct one decoder graph with
n = 10sd and sample errors on it. Then, within the same
decoder graph, we calculate the logical error rates per shot
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TABLE I. The fitting parameters for the ansatz in Eq. (A9) and their standard deviations.

pth A B C D ν μ

MWPM sandwich 6.80(2) × 10−3 8.4(1) × 10−2 4.8(8) 7(2) × 101 −6.6(0) 1.00(6) 2(0) × 10−2

UF sandwich 5.54(1) × 10−3 1.06(1) × 10−1 6(1) 1.0(3) × 102 −1.1 × 101 1.00(6) 2(0) × 10−2

MWPM batch 6.83(2) × 10−3 8.2(1) × 10−2 5.3(8) 1.0(3) × 102 8.9(0) 1.05(6) 2(0) × 10−2

UF batch 5.53(2) × 10−3 9.9(2) × 10−2 6(1) 1.0(3) × 102 −4.9 × 101 1.00(6) 2(0) × 10−2

for all n = �ksd/2�, where k ∈ {8, 9, . . . , 20}. This causes
the results of those experiments to be correlated but over
the 100 000 independent shots, the effect of this correlation
should be minor.

More specifically, each simulation proceeds as fol-
lows:

(1) Before starting any sliding, sample edges on the
entire decoder graph according to precalculated

probabilities, except for the final data-qubit mea-
surement errors.

(2) Decode each type-1 window with defects generated
from the sampled edges and identify the core region.
More specifically:

(a) For the last layer in the decoder graph, the sim-
ulated errors are evaluated from the sampled
data-qubit measurement errors [recall Eq. (1)].
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FIG. 7. The fitting curves of the logical error rates of the (a) MWPM sandwich, (b) UF sandwich, (c) MWPM batch, and (d) UF
batch decoders. Here, d = 13, 15, 17 and p increases from 0.0063 to 0.0073 for MWPM and from 0.005 to 0.006 for UF, both in
increments of 0.0001. The vertical lines indicate thresholds and the colored lines are the fitting curves, all using parameters in Table I.
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FIG. 8. Rescaled logical error
rates for the (a) MWPM sand-
wich, (b) UF sandwich, (c)
MWPM batch, and (d) UF
batch decoders. Here, d = 13,
15, 17 and p increases from
0.0063 to 0.0073 for MWPM
and from 0.005 to 0.006 for UF,
both in increments of 0.0001.
The vertical axis is A + Bx +
Cx2 = pL(d) − Dd−1/μ and the
horizontal axis is x = (p −
pth)d1/ν , all using parameters in
Table I.

Then, decode this final window and apply cor-
rections in the core region. Finally, calculate the
logical error rate per d cycles.

(b) When the window has not reached the last
cycle but would be the final window if the

number of cycles were to equal �ksd/2� for k ∈
{8, 9, . . . , 19}, make two copies of the current
simulations. On one copy, treat this window as
the final window in case (a). On the other copy,
proceed as in case (c).
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FIG. 9. The basic analysis on step size s and buffer size b when d = 9, p = 0.005, and the numbers of cycles n ∈
{30, 40, 50, 60, 70, 80, 90}. Recall that the sandwich-window size w is s + 2b. We fix the buffer size to 3 and 5 and vary the step
size. (a) The x axis is the number of cycles and the y axis is the logical error rate per shot. (b) Converting logical error rates per shot to
logical error rates per d cycles and changing the x axis to the step size.
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FIG. 10. A comparison between forward windows and sandwich windows. We fix d = 9, p = 0.005, and the step size s = 4. The
forward-window size is s + b and the sandwich-window size is s + 2b.

(c) When the window is not the final window for
any numbers of cycles requested, decode, apply
correction in the core region, and slide to the
next window.

(3) For each type-2 window (i.e., the overlapping seam
between two consecutive decoded type-1 windows),
put all inconsistent detectors into a 2D decoder and
apply all the generated corrections.
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FIG. 11. A comparison between open and closed artificial time boundaries for forward windows. We fix d = 9, p = 0.005, and
s = 4.
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4. Error estimation

For each value of n (and combination of other param-
eters), our Monte Carlo simulation gives an estimated
logical error rate per shot p̂L,n with variance

Var(p̂L,n) = pL,n · (1 − pL,n)

N
, (A6)

where N = 105 denotes the number of shots. The weights
wi used in the least-squares estimator given in Eq. (A3) are
derived from the approximate variance,

V̂ar(yn) = V̂ar
(
log(1 − 2p̂L,n)

)

≈
(

2
2p̂L,n − 1

)2

· V̂ar(p̂L,n). (A7)

As mentioned above, our estimations p̂L,n for different val-
ues of n are correlated. Therefore, we cannot use the usual
variance estimator for weighted least squares. Instead, we
take a conservative estimate of the variance:

V̂ar
(
log(1 − 2p̂L(d))

)

�
(

∑

n

|xn|wn

√
V̂ar(yn)

/ ∑

n

wnx2
n

)2

. (A8)

5. Thresholds

We evaluate the thresholds for the sandwich and batch
decoders with the MWPM and UF inner decoders by curve
fitting with the same ansatz as Eq. (43) in Ref. [42].
Specifically,

pL(d) = A + Bx + Cx2 + D d−1/μ,

x = (p − pth) d1/ν .
(A9)

For all the four combinations of decoding schemes and
inner decoders, we perform Monte Carlo simulations as in

Sec. A 3, with d = 13, 15, 17 and p increasing from 0.005
to 0.006 for UF and from 0.0063 to 0.0073 for MWPM,
both in increments of 0.0001. For the fitting parameters,
see Table I and Figs. 7 and 8.

APPENDIX B: NUMERICAL ANALYSIS

1. Step size and window size

When we evaluate the performance of sandwich
decoders, the step size s and window size w are two natural
features to consider:

w = s + 2 × buffer size (b). (B1)

As the number of cycles increases, the logical error rate per
shot also increases and gradually converges to 0.5, follow-
ing from Eq. (A2). Figure 9 gives an example for d = 9 and
p = 0.005. Generally speaking, a larger buffer size, as well
as a larger step size when the buffer size is fixed, results in
lower logical error rates.

2. Sandwich versus forward windows

During each sandwich window, since we only accept
the corrections in the middle, the decoder receives defect
information from both the future and the past. The forward
window [5,30] can prevent premature matchings by taking
account into its most recent future detection events. How-
ever, it sometimes fails to prevent problematic matchings
from the past because the knowledge that the decoder holds
of its most recent past events is limited to a single layer of
propagated syndromes.

Indeed, we show in Fig. 10 that when we release the
same amount of future events to both the sandwich win-
dow and the forward window, i.e., fix the step size and the
size of the buffer region(s), the sandwich windows produce
lower logical error rates. Moreover, it means that given
any forward decoder, we can construct a sandwich decoder
such that it performs comparatively well or even better.
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FIG. 12. A comparison between different seam offsets for sandwich decoders. We fix d = 9 and p = 0.005.
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FIG. 13. A comparison between the UF sandwich decoder and
the UF batch decoder on Google QEC data. For d = 3, each point
is the average of four configurations of the surface codes as spec-
ified in Ref. [40]. There is only one configuration when d = 5.
Each configuration has 50 000 shots. The sandwich decoder that
we choose has a step size of (d + 1)/2 and a window size of
3(d + 1)/2. We plot in a style similar to that of Ref. [40, Fig.
3], where the y axis is the logical fidelity 1 − 2pL(n) and n is
the number of cycles. If follows from Eq. (A2) that the slope
indicates the logical error rate per cycle.

3. Open versus closed time boundaries

As mentioned in Sec. III D, it is unclear in Ref. [30]
whether the future boundaries of windows are generally
open or closed. Therefore, we do a series of simulation
experiments where we close all the time boundaries in win-
dows and compare the performance with the normal case
where only the past (left) time boundary of the first window
and the future (right) time boundary of the last window
are closed. As shown in Fig. 11, open boundaries lead to
lower logical error rates compared to closed boundaries.
As we increase the buffer size, the advantage becomes less
obvious.

4. Seam offset for inconsistent corrections

In Fig. 12, we study the effect of having different seam
offsets (Fig. 3). The results seem to vaguely indicate that
our choice of seam offset 0 is actually the best or close to
the best value, although the difference is small and the data
are far from conclusive.

5. Real-world data from Google QEC experiments

We also evaluate the performance of the sandwich (UF)
decoders on real-world data provided in Ref. [40] for d = 3
and d = 5. As shown in Fig. 13, the sandwich decoders
only have slightly larger logical error rates compared with
those obtained by the batch (UF) decoders. Note that
Ref. [40] used tensor-network and belief decoders, which

inherently have higher accuracy than UF decoders, to
obtain the suppression of errors from d = 3 to d = 5.
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