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Quantum entanglement has been identified as a crucial concept underlying many intriguing phenom-
ena in condensed matter systems, such as topological phases or many-body localization. Recently, instead
of considering mere quantifiers of entanglement such as entanglement entropy, the study of entangle-
ment structure in terms of the entanglement spectrum has shifted to a focus leading to new insights into
fractional quantum Hall states and topological insulators, among others. What remains a challenge is the
experimental detection of such fine-grained properties of quantum systems. The development of protocols
for detecting features of the entanglement spectrum in cold-atom systems, which are one of the leading
platforms for quantum simulation, is thus highly desirable and will open up new avenues for experi-
mentally exploring quantum many-body physics. Here, we present a method to bound the width of the
entanglement spectrum, or entanglement dimension, of cold atoms in lattice geometries, requiring only
measurements in two experimentally accessible bases and utilizing ballistic time-of-flight (TOF) expan-
sion. Building on previous proposals for entanglement certification for photon pairs, we first consider
entanglement between two atoms of different atomic species and later generalize to higher numbers of
atoms per species and multispecies configurations showing multipartite high-dimensional entanglement.
Through numerical simulations, we show that our method is robust against typical experimental noise
effects and thus will enable high-dimensional entanglement certification in systems of up to eight atoms
using currently available experimental techniques.
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I. INTRODUCTION

Since its initial conception inspired by the EPR para-
dox [1], quantum entanglement has been identified as a
key aspect in the understanding of a plethora of physical
phenomena, such as the dynamics of disordered spin sys-
tems [2], the thermalization of closed quantum systems
[3,4], and even in the context of the black-hole infor-
mation paradox [5]. In recent years, much attention has
been directed toward the effects of entanglement in con-
densed matter, where it has been linked to topological
properties of quantum states [6,7] and quantum phase tran-
sitions [8–10], among others [11]. Studying entanglement
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in these macroscopic systems directly is oftentimes too
challenging due to limited experimental control and mea-
surement capabilities.

The development of experimental systems offering
quantum control on the level of single particles over
recent decades has enabled an alternative approach to
studying such genuine quantum phenomena. To simulate
complex quantum systems, one constructs simpler syn-
thetic systems, called quantum simulators, which mimic,
or emulate, the dynamics of the system of interest. In
particular, cold atoms trapped in lattice geometries have
evolved into the leading platform for quantum simulation
of condensed matter systems [12–18]. Through the appli-
cation of external fields, model parameters can be tuned
within a broad regime ranging from strong repulsive to
attractive interactions, equipping the system with an ideal
framework to simulate highly entangled quantum states
with single-atom-resolved readout [19–22]. The capabil-
ity to detect entanglement in these platforms is crucial for
the investigation of the aforementioned phenomena, but
still faces challenges [23]. Many experimentally available
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criteria can in fact only indicate (“witness”) the existence
of entanglement in a state qualitatively [24].

In this work, we want to go beyond detecting the mere
presence of entanglement and instead make statements
about the entanglement structure. The standard measure
of entanglement for bipartite pure quantum states ρ̂AB =
|ψ〉 〈ψ | is the entanglement entropy, defined as S(ρ̂A) =
S(ρ̂B) = −

∑d
i=1 pi log pi, with the reduced density matrix

ρ̂A = TrB(ρ̂AB) (ρ̂B analogously) and its eigenvalues pi [4].
Even though in many cases much can be learned from this
quantity, it contains less information than the full eigen-
value spectrum, also known as the entanglement spectrum,
from which it is derived. Therefore, more recently, the
entanglement spectrum itself has been used extensively to
investigate the role of entanglement in various phenomena,
including fractional quantum Hall states [25], topological
insulators and superconductors [26], one-dimensional (1D)
systems in the scaling regime [27], emergent irreversibility
[28,29], and many-body localization transitions [30,31],
leading to new insights. Furthermore, the ability to pre-
pare and certify states with a broad entanglement spectrum
would enable the execution of quantum algorithms that
exploit this property for enhancing run time and robustness
[32–34].

The number of nonvanishing terms in the entangle-
ment spectrum is known as the entanglement dimension,
or Schmidt rank, of the state. It represents the number
of terms needed to faithfully represent the quantum state
in the product Hilbert space (with generalizations estab-
lished for mixed states). Standard methods to obtain the
entanglement dimension for cold-atom systems available
today are based on full state tomography, or on efficient
fidelity-measurement schemes, for which the number of
required measurement bases scales quadratically, or lin-
early, respectively, with the local Hilbert-space dimension
L [24]. Recently, advanced methods for accessing informa-
tion about the entanglement spectrum have been proposed,
including Hamiltonian learning [35–37], random measure-
ment schemes [38,39], and ancillary-system-based readout
protocols [40]. However, these approaches either make
assumptions about the prepared states, potentially leading
to bias, or pose stringent requirements on experimen-
tal capabilities (for a more detailed discussion, see Sec.
VII B).

We propose an alternative approach to detecting high-
dimensional entanglement in systems of lattice-confined
ultracold atoms. Our method is inspired by earlier find-
ings for entangled photon pairs in different polarization
states [41]. In that work, the authors construct a mea-
surable lower bound on the state fidelity to a highly
entangled reference state. This approach provides a pow-
erful tool, as one can define a set of fidelity thresholds,
with each threshold corresponding to a matching mini-
mum entanglement dimension of the measured state [42].
Bounds on the fidelity to the reference state thus naturally

translate to bounds on the entanglement dimension of the
prepared quantum state. One can construct such a bound
by measuring in only two mutually unbiased bases
(MUBs) |i〉m and |j 〉n, i.e., ∀m, n : m〈i|j 〉n = L−1, simpli-
fying the experimental procedure significantly. However,
implementation of two such MUB measurements for cold-
atom systems is a challenging problem.

Our main contribution is to derive lower bounds on
the fidelity to highly entangled reference states that only
require position- and momentum-correlation measure-
ments, generalizing previously reported bounds in several
ways. The position and momentum bases can be accessed
by measuring the atom positions in situ and after TOF
expansion [22,43], techniques that are well established
experimentally [44]. The fidelity bounds directly yield
bounds on the entanglement dimension and thus measur-
able Schmidt-number witnesses. Furthermore, we show
that this protocol is applicable to a large class of reference
states, to bipartite systems with multiple indistinguishable
particles per species (party) for both fermions and hard-
core bosons, and even to a multipartite setting. One might
expect that a bound based on the fidelity to a reference state
gives satisfactory results only for experimental states close
to that reference, i.e., for states the reduced density-matrix
spectrum of which is similar to that of the reference state.
Our findings indicate, however, that our bound detects
high-dimensional entanglement for a broad range of quan-
tum states, even in the presence of strong decoherence.
The bound turns out to be robust against typical experi-
mental noise sources and its tightness decreases at most
linearly with the noise strength, i.e., with the impurity of
the prepared state.

In the remainder of this work, we first establish a fidelity
bound for a pair of two entangled atoms in an optical
lattice in Sec. II and test its robustness regarding typical
experimental noise using a Hubbard model in Sec. III. Sub-
sequently, we generalize the method to multiple indistin-
guishable atoms per species (Sec. IV) and to a multipartite
setting, where more than two different atomic species are
entangled (Sec. V). In Sec. VI, we derive fidelity bounds
for extended classes of reference states. Our conclusions
and a discussion of our results are provided in Sec. VII.

II. BOUND ON ENTANGLEMENT DIMENSION

Any bipartite pure quantum state on a product Hilbert
space H = HA ⊗HB can be represented in Schmidt-
decomposed form |ψ〉AB =

∑k
i=1 λi |i〉A ⊗ |i〉B, a basis

choice that minimizes the number of contributions k (also
known as the Schmidt rank or entanglement dimension,
Dent) needed to represent a given quantum state [45]. Any
separable state can be written through one tensor-product
term alone and therefore k = 1. The defining feature of
entangled states is that this no longer holds true and thus
k ≥ 2, as can be seen on the example of the singlet state
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|�〉EPR = (|↑↓〉 − |↓↑〉)/
√

2. The composition of these
tensor-product contributions and their weights defines
the entanglement structure of a quantum state. Gaining
information on the full structure is an exceedingly hard
problem for multidimensional states, i.e., states entan-
gled in several internal degrees of freedom, or multipartite
states, i.e., states made up of three or more entangled par-
ties. Determining the entanglement dimension instead is
both insightful and experimentally feasible, as we show in
this paper. We start with the case of attractive interactions
and later, in Sec. VI, we generalize to the repulsive case.

The entanglement dimension of a bipartite system is
bounded by the size of the smaller of the two local
Hilbert spaces, kmax = min[dim(HA), dim(HB)] =: L. In
the remainder of this work, we take the local Hilbert-space
dimensions to be equal and finite. One can choose a max-
imally entangled state (MES) of the system that has equal
coefficients for all L terms,

|�〉MES =
1√
L

L∑

m=1

|mm〉 . (1)

This highly entangled state acts as a reference to which
experimentally prepared states ρ̂ can be compared. To give
some intuition, the two subsystems will later be the two
atoms in the lattice, where m labels the lattice sites. The
fidelity of the experimental state ρ̂ to the reference MES,

F(ρ̂,�MES) = 1
L

L∑

m,n=1

〈mm| ρ̂ |nn〉 , (2)

implies a convenient state-distance measure to compare the
two states, as it is bounded as a function of the entangle-
ment dimension of ρ̂. One can explicitly construct a set of
bounds Bk on the fidelity to the MES, F(ρ̂,�MES), given
by

F(ρ̂,�MES) ≤ Bk(�MES) = k
L

, (3)

which hold for any experimental state ρ̂ with entangle-
ment dimension Dent ≤ k [42,46]. In the case of mixed
states, ρ̂ =∑

i pi |ψi〉 〈ψi|, the notion of an entanglement
dimension has to be extended to the so-called Schmidt
number. This is defined as the maximum entanglement
dimension of the pure parts |ψi〉 of the state, minimized
over all possible pure-state decompositions: Dent(ρ̂) =
mindecomp.{maxi[Dent(ψi)]} [4]. The violation of the rela-
tion in Eq. (3) for given k therefore indicates that ρ̂ is
entangled with a dimension of k + 1 or higher. This not
only gives a robust entanglement witness, since the low-
est threshold B1 = L−1 already indicates entanglement,
but also bounds the width of the entanglement spectrum
and hence gives insight into the entanglement structure.
We exemplify this in Sec. III C for localized dimer states
in a Hubbard model where the detected entanglement

dimension correlates with the number of macroscopic
Schmidt coefficients. Additionally, one can use the fidelity
to construct lower bounds on the entanglement of for-
mation, as has been shown in Refs. [41,47], establishing
F(ρ̂,�MES) as a versatile source of information about the
entanglement content of ρ̂. Nonetheless, fidelity measure-
ments come with significant experimental complexity, in
general requiring measuring in L+ 1 different bases for an
L-dimensional local Hilbert space [41].

In the following, we establish a lower bound F̃(ρ̂,�MES)

on the fidelity F(ρ̂,�MES) accessible to experiments with
cold atoms in optical lattices (or arrays of optical tweez-
ers). It only requires measurements in two bases, inde-
pendent of the local Hilbert-space dimension given by the
lattice size. We start with the case of two distinguishable
atoms here and develop generalizations to higher atom
numbers and other reference states in later sections. The
two atoms constitute the two entangled parties and their
local Hilbert spaces are spanned by the discrete position
states (sites) of the atoms in the optical-lattice potential.
Consequently, the MES for this product basis is a super-
position state with both atoms located at the same lattice
site, in a superposition summing over all L sites with equal
probability [Eq. (1)].

It is insightful to split the fidelity into two sums,

F(ρ̂,�MES) =
L∑

m=1

〈mm| ρ̂ |mm〉
L

+
L∑

m,n=1
m �=n

〈mm| ρ̂ |nn〉
L

︸ ︷︷ ︸
Fcoh

,

(4)

dividing the contributions into state populations (left-hand
sum) and two-particle coherences Fcoh (right-hand sum).
The state populations of the two distinguishable species, in
the following labeled as ↑ and ↓ with their corresponding
number operators n̂↑ and n̂↓, can be obtained by spatially
discretizing the joint density distribution 〈n̂↑(x1)n̂↓(x2)〉.
It can be probed directly through single particle resolved
fluorescence imaging, realizing high-precision in situ mea-
surements [22,44,48]. A representation of 〈n̂↑(x1)n̂↓(x2)〉
for the ground state of a Hubbard Hamiltonian with L = 6
at U/J = −12 is displayed in Fig. 1(a) (for details on the
model and numerical implementation, see Sec. III). Each
grid point represents a two-particle state contributing to
ρ̂. The signals on the diagonal represent dimer population
probabilities, whereas off-diagonal elements correspond to
configurations with atoms on different sites [Fig. 1(b)]. The
wave-function envelope is determined by the on-site Wan-
nier basis of the lattice and depends on the lattice depth V0
and site spacing d. Since

∑L
m=1 〈mm| ρ̂ |mm〉 /L ≤ 1/L, it

is clear that the populations contribute at most proportional
to 1/L to F . Their impact therefore becomes negligible
compared to coherences for large systems.

040338-3



NIKLAS EULER and MARTIN GÄRTTNER PRX QUANTUM 4, 040338 (2023)

(a) (b) (c)

x1/d

x
2/

d

dk1/π

d
k

2/
π

lattice site L

free TOF expansion

|F(Ψ(x1,x2))|2

Vlattice

FIG. 1. (a) The position-space correlation function 〈n̂↑(x1)n̂↓(x2)〉 of the two-particle attractive Hubbard-model ground state for
L = 6 lattice sites with lattice spacing d at U/J = −12. (b) A graphical representation of both particles occupying the same lattice
site (top) or adjacent lattice sites (bottom) with the respective signals in (a). (c) The momentum correlation function 〈n̂↑(k1)n̂↓(k2)〉
corresponding to the position correlation function of (a). All values smaller than 1× 10−5 in both (a) and (c) have been masked.

Such direct experimental access is not available for the
two-particle coherences Fcoh but one can instead bound
Fcoh from below by measuring in a second basis. A natural
choice for cold atoms is the momentum basis, as the system
comes with a native implementation of the corresponding
basis change, the Fourier transformation. It can be applied
efficiently by rapidly switching off the lattice potential
and interactions and subsequently letting the atoms prop-
agate in a weak harmonic potential for t = T/4 with trap
oscillation period T before taking a fluorescence image
[22,44,49]. By repeatedly preparing and measuring a state
with this scheme, one acquires samples from the momen-
tum correlation function 〈n̂↑(k1)n̂↓(k2)〉. To show how to
utilize this to bound state coherences from below, we con-
struct the corresponding measurement operator by stating
the effect of the Fourier transform on the localized Wannier
basis functions of the lattice potential. The basis function
for the nth lattice site can be expressed as ω(x − nd) due
to the discrete translational invariance of the lattice, where
d is the lattice spacing. Any shift in position space causes
a phase factor in momentum space, so one obtains

F [w(x − nd)](k) = ω̃(k) exp(indk) (5)

for the single-atom wave function in momentum space
with ω̃(k) being the Fourier transform of the Wannier
envelope. [44]. Using the field operators,

�̂†
σ (k) = ω̃(k)∗

L∑

j=1

e−idkj ĉ†
j ,σ ,

�̂σ (k) = ω̃(k)
L∑

j=1

eidkj ĉj ,σ , (6)

defined via lattice-site creation (annihilation) operators ĉ†
j ,σ

(ĉj ,σ ), one can represent the particle number operator in
momentum space in the position-space basis {|j 〉 | j ∈
{1, . . . L}} as

n̂σ (k) = �̂†
σ (k)�̂σ (k) = |ω̃(k)|2

L∑

m,n=1

|m〉〈n| eid(m−n)k. (7)

As only one particle per species is present in the lat-
tice, no differentiation between fermions and bosons has
to be made here. The full expectation value 〈n̂↑(k1)n̂↓(k2)〉
in the density-matrix picture is given by the trace over
the product of the two momentum number operators and
the density matrix, 〈n̂↑(k1)n̂↓(k2)〉 = Tr{n̂↑(k1)n̂↓(k2)ρ̂}.
Finally, by exploiting the cyclic property of the trace, one
arrives at the following expression:

〈n̂↑(k1)n̂↓(k2)〉 =
L∑

m,n,m′,n′=1

φmnm′n′(k1, k2) 〈mn| ρ̂ |m′n′〉 ,

(8a)

φmnm′n′(k1, k2) = |w̃(k1, k2)|2e−id[(m−m′)k1+(n−n′)k2]. (8b)

Each density-matrix element 〈mn| ρ̂ |m′n′〉 is weighted
by φmnm′n′(k1, k2) [Eq. (8b)], containing the Fourier-
transformed Wannier envelope ω̃(k1, k2) := ω̃(k1)ω̃(k2)

and a phase factor obtained through the Fourier trans-
formation [48]. The above-given description is natu-
rally rewritten in terms of a new set of basis functions
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{ϕR
αβ ,ϕI

αβ},

ϕR
αβ = |ω̃(k1, k2)|2 cos[d(αk1 + βk2)], (9a)

ϕI
αβ = |ω̃(k1, k2)|2 sin[d(αk1 + βk2)], (9b)

by bundling terms with the same complex phase factors
and their conjugate counterparts into trigonometric basis
functions of the two lattice momenta k1 and k2. The full
momentum correlation function then reads

〈n̂↑(k1)n̂↓(k2)〉 =
∑

(α,β)∈M

Re(gαβ)ϕR
αβ − Im(gαβ)ϕI

αβ ,

(10a)

gαβ = 2
L∑

m,n=1

〈mn| ρ̂ |(m+ α), (n+ β)〉 with

m+ α, n+ β ∈ {1 . . . L}, g00 = 1,
(10b)

M = {(α,β) ∈ {0, . . . , L− 1}
× {−(L− 1), . . . , L− 1}
|α �= 0 ∨ β ≥ 0} . (10c)

The above-mentioned basis weights Re(gαβ) and Im(gαβ)
in Eq. (10a) are sums over the real and imaginary parts
of the coherences of the density matrix ρ̂ [see Eq. (10b)].
Each coefficient gαβ is defined by the pair of position-space
distances for all contributing coherences 〈mn| ρ̂ |m′n′〉 to
gαβ with (α,β) = (m− m′, n− n′). The set of all coher-
ences contributing to a given coefficient can simply be
constructed by shifting all atom positions of one of the
coherences along the lattice. Since we have already com-
bined coherences and the corresponding phase factors with
their complex conjugates, we have to introduce the index
set M in Eq. (10c) to avoid double counting of coher-
ences. For additional information regarding Eq. (10), we
refer the reader to Ref. [44]. Obtaining the coefficients gαβ
is not directly straightforward, as the basis {ϕR

αβ ,ϕI
αβ} is

nonorthogonal due to the modulation of the periodic basis
functions through the envelope |w̃(k1, k2)|2 [44]. Project-
ing the measured distribution [cf. Eq. (10a)] onto the basis
function set therefore yields smeared-out coefficients cαβ ,

Re(cαβ) =
∫

dk1dk2 〈n̂↑(k1)n̂↓(k2)〉ϕR
αβ , (11a)

Im(cαβ) =
∫

dk1dk2 〈n̂↑(k1)n̂↓(k2)〉ϕI
αβ , (11b)

where each coefficient also contains small contributions
coming from the nonvanishing overlap with other basis
elements. To overcome this problem, we explicitly con-
struct the linear transformation Q that maps the set of

actual basis weights �G to the measured coefficients cαβ
contained in �C,

�C = Q �G, (12)

where each element of the matrix Q is given by an overlap
integral between a pair of basis functions (for details, see
Appendix A). These integrals factorize since the Fourier-
transformed Wannier envelope factorizes as well; conse-
quently, only a small number of 1D integrals linear in the
number of lattice sites must be computed to construct Q.
The actual basis weights gαβ are then extracted by formally
inverting Q and rewriting Eq. (12) as

�G = Q−1 �C. (13)

Numerically, we employ a conjugate-gradient method to
determine �G. The two projection integrals in Eqs. (11a)
and (11b) can be evaluated in a simplified way using
Monte Carlo importance-sampling techniques. By treat-
ing the momentum correlation function as a normalizable
multivariate probability density, it can be absorbed in
a redefinition of the integration variable. The remaining
integrals,

Re(cαβ) = 〈ϕR
αβ〉k1,k2∼〈n̂↑(k1)n̂↓(k2)〉, (14a)

Im(cαβ) = 〈ϕI
αβ〉k1,k2∼〈n̂↑(k1)n̂↓(k2)〉, (14b)

are then directly evaluated through the measured or sim-
ulated momentum correlation samples. This evaluation
method enables scalability to higher atom numbers intro-
duced later, as the Monte Carlo integration error scaling is
independent of the integral dimension, while also reduc-
ing the variance of the integrand at the same time. We
make some additional comments regarding synthetic data
generation and efficient computation of Q in Appendix A.

At this point, one has obtained access to basis weights
gαβ equal to sums over subsets of coherences of ρ̂. How-
ever, not only the two-particle coherences relevant for Fcoh
in Eq. (4) are contained within the basis weights gαβ but
also different-site two-particle coherences that do not con-
tribute to the fidelity F(ρ̂,�MES). We note that any general
density-matrix element is bounded from above by using
Cauchy-Schwarz inequality

Re(〈mn| ρ̂ |m′n′〉) ≤ | 〈mn| ρ̂ |m′n′〉 |
CSI≤

√
〈m′n′| ρ̂ |m′n′〉 〈mn| ρ̂ |mn〉, (15)

with the right-hand side containing only already measured
state populations and thus adding no new experimental
complexity. For pure states, the second inequality in Eq.
(15) is obviously tight but it grows looser with increas-
ing mixedness of the state. In the two-atom case presented
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here, the subset of (α, β) ∈ M that carries relevant two-
particle coherences reduces to α = β =: δ ∈ {1, . . . , L−
1}. The desired sum of relevant coherences can then be
lower bounded by subtracting the bounds in Eq. (15) for
all noncontributing coherences from the sum of relevant
basis coefficients,

L∑

m,n=1
m �=n

〈mm| ρ̂ |nn〉
L

=
L∑

m,n=1
m<n

2Re(〈mm| ρ̂ |nn〉)
L

≥
L−1∑

δ=1

⎛

⎜
⎜
⎝

Re(gδδ)
L
− 2

L−δ∑

m,n=1
m �=n

√
〈m′n′| ρ̂ |m′n′〉 〈mn| ρ̂ |mn〉

L

⎞

⎟
⎟
⎠

=: F̃coh(ρ̂,�MES)

with m′ := m+ δ, n′ := n+ δ, (16)

where the second sum of the last expression covers all
nondimer coherences. Together with the same-site popu-
lations displayed in the first sum of Eq. (4), we formulate
the complete experimentally accessible lower bound on the
fidelity of the experimental state ρ̂ to �MES as

F̃(ρ̂,�MES) =
L∑

m=1

〈mm| ρ̂ |mm〉
L

+ F̃coh(ρ̂,�MES) . (17)

Inserting this bound in Eq. (3) yields our first main result,

F̃(ρ̂,�MES) ≤ F(ρ̂,�MES) ≤ Bk(�MES) , (18)

where the fidelity bound F̃ constitutes an entanglement-
dimension witness and is obtainable directly through fluo-
rescence measurements, in situ and after the TOF. Thus, if
F̃(ρ̂,�MES) exceeds Bk(�MES) for some given k, the state
ρ̂ is certified to be entangled in at least k + 1 dimensions.

The proposed experimental protocol can be summarized
as follows. One prepares an ensemble of two atoms of
different species in a periodic potential in some state of
interest.

(1) By single-atom-resolved detection, one measures the
position-space correlation function 〈n̂↑(x1)n̂↓(x2)〉.
The signal is discretized by identifying the atom
positions obtained in each shot with a pair of lattice
sites, which yields the position-space populations
〈mn| ρ̂ |mn〉 entering in Eqs. (16) and (17).

(2) The momentum-space distribution is probed
through ballistic TOF expansion, resulting in an
effective Fourier transformation of the wave func-
tion. The coefficients cαβ are obtained From
the measured momentum correlation function,
〈n̂↑(k1)n̂↓(k2)〉, by computing the overlap between

the measured distribution and the trigonometric
basis functions {ϕR

αβ ,ϕI
αβ} [Eq. (9)], i.e., by evaluat-

ing the basis functions using the sampled momenta.
From these, the corrected expansion coefficients gαβ
are obtained via Eq. (13) and inserted into Eq.
(16), which yields the desired lower bound on the
reference-state fidelity in Eq. (17).

The statistical requirements for confident certification
are discussed in Sec. III A and a study of the robustness
of the protocol with respect to typical experimental noise
effects is given in Secs. III B and III C.

III. CERTIFICATION ROBUSTNESS UNDER
REALISTIC CONDITIONS

We study the performance of our method under realis-
tic experimental conditions through numerical simulations.
Our model system is a 1D open-boundary Hubbard model,
realized by cold atoms in a deep optical lattice (V0 = 8Er
[50]) in the tight-binding approximation [51]. Due to lim-
ited wave-function overlap between sites, all tunneling
going beyond adjacent sites is suppressed. Through the
application of external magnetic fields, Feshbach reso-
nances can be utilized to implement an effective on-site
atom-atom interaction with a highly tunable interaction
strength [52]. The dynamics of the system are captured by
the Hamiltonian

Ĥ = −J
∑

σ

∑

i

(ĉ†
i,σ ĉi+1,σ + h.c.)+ U

∑

i

n̂i↓n̂i↑, (19)

with the tunneling strength J , interaction strength U, cre-
ation (annihilation) operator ĉ†

i,σ (ĉi,σ ) for an atom on site
i and in spin state σ ∈ {↑, ↓}, and their corresponding
atom-number operators n̂i↓, n̂i↑ [53]. This system is char-
acterized by the ratio U/J (J > 0), where negative values
correspond to attractive and positive values to repulsive
interactions. In the simple case of two distinguishable
particles, both Fermi-Dirac and Bose-Einstein statistics
produce the same dynamics. The Hubbard model was cho-
sen due to its simplicity and widespread use in numerical
modeling [16,51] but our readout scheme is also applicable
to other lattice Hamiltonians.

In the remainder of this section, we consider the ground
state of the two atoms in a lattice of size L = 6 with
attractive interactions at U/J = −12 and use 2.5× 104

momentum-space and 1× 104 position-space samples for
certification, unless specified otherwise. Later, in Sec.
VI, we will also consider repulsive interactions, where
robust entanglement certification is achieved by adapting
the employed reference state. In the configuration given
above, ρ̂ is entangled in all six lattice degrees of freedom,
meaning that Dent = 6, and thus serves as a suitable test
state for our entanglement-detection scheme. Figure 1(a)
shows a representation of the position-space probability
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FIG. 2. The dependence of the fidelity F and the fidelity
bound F̃ on the interaction-to-tunneling-strength ratio U/J for
pure (r = 0) and dephased (r ∈ {0.05, 0.15}) ground states. The
Bk thresholds are the horizontal dashed lines, such that fideli-
ties above any Bk indicate at least k + 1 entanglement dimen-
sions. Both F and F̃ increase with growing attractive interaction
strength before saturation. The tightness of F̃ decreases with
increasing mixing rate r. The statistical error bars are small and
barely visible.

distribution. Through exact diagonalization, we find that
the fidelity F(ρ̂,�MES) increases with growing attractive
interaction strength (blue line in Fig. 2) but the ground state
does not converge to �MES (F(ρ̂,�MES) < 1). Knowledge
of the exact fidelity would enable us to certify five out of
the six entanglement dimensions for moderately attractive
interactions [F̃(ρ̂,�MES) > B4 for U/J � −6]. The offset
in fidelity with the MES is an effect of the finite system
size, as central sites are energetically favored for open
boundary conditions, since more tunneling pathways are
available [see Fig. 3(a)], making the distribution of popula-
tions nonuniform. Since the Schmidt coefficients are given
by the double-occupation probabilities in the strongly
attractive limit, this behavior translates to a nonuniform
entanglement spectrum. In the case of the pure ground
state, we find our fidelity bound to be tight (blue mark-
ers in Fig. 2). The use of our protocol therefore yields
the highest certifiable entanglement dimension achievable
using the fidelity to the MES.

In the following subsections, we discuss the require-
ments of our detection scheme in terms of its robustness
with respect to typical experimental imperfections and
noise sources, starting with finite measurement statistics
in Sec. III A. In Sec. III B, we study the effect of generic
dephasing noise arising in experiments, which can be
caused by, e.g., fluctuations of trapping light parameters
or control fields during state preparation. Finally, in Sec.
III C, we consider fluctuations of the depth of individ-
ual lattice sites that are characteristic of realizations using
arrays of optical tweezers. Randomized potentials lead to
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FIG. 3. The lattice-potential configurations in units of the
recoil energy ER (left) and the respective dimer-occupation prob-
ability distributions for the ground state (right). The dashed lines
indicate the potential baseline depth V0 (orange) and the uniform
probability distribution of the MES�MES (red). In all three cases,
the ground state has the maximum entanglement dimension of
Dent = 6. (a) An even unaltered lattice potential. The dimer pop-
ulation is heavily centered on the central lattice sites. One can
certify up to Dent = 5. (b) A lattice with increased potential depth
at the outlying sites, resulting in a uniform distribution among all
lattice sites and full certification of Dent = 6. (c) A lattice with
potential fluctuations 
E ∼ N (0, 0.08J ) on each lattice site.
The dimer population shows strong localization and is far away
from �MES. Nevertheless, Dent = 4 can be certified.

localization of atom pairs and thus potentially to a reduc-
tion of the entanglement dimension, an effect that becomes
observable through our detection scheme. Moreover, in
Sec. III D, we discuss the behavior of our approach in the
limit of large lattice sizes. Additionally, in Appendix C,
we have simulated the performance of the bound on ther-
mal ensembles. Readers more interested in generalizations
of the scheme may jump to the last paragraph of Sec. III,
where our results on noise robustness are summarized.

For the simulation results presented in Fig. 2, the first
two effects are already addressed within the simulation.
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Finite measurement statistics induce fluctuations of the
certified fidelity and thus impact entanglement detection.
Additionally, experimental quantum state realizations are
in general not pure wave functions |ψ0〉 but face mixing
and decoherence. A simple model to account for this is
to replace |ψ0〉 with a dephased density matrix ρ̂ = (1−
r) |ψ0〉 〈ψ0| + rL−21, with a mixing parameter r related to
the state impurity p̄ = 1− p , washing out the probability
distribution. Both effects have been included to produce
dephased ground states in Fig. 2, each with sampled corre-
lation functions at mixing strengths r = 0.05 (p̄ ≈ 0.095)
and r = 0.15 (p̄ ≈ 0.270), respectively (orange and green
data sets throughout this work). These model alterations
clearly lead to loss of bound tightness and add random
noise to the fidelity bound F̃ , as visible in Fig. 2. We
discuss these matters in more detail in the following.

A. Sampling statistics

In experiments, both the joint position-space distribu-
tion 〈n̂↑(x1)n̂↓(x2)〉 and the momentum-space distribution
〈n̂↑(k1)n̂↓(k2)〉 are probed by repeated state preparation
and measurement, each experimental run providing one
sample point drawn from the respective distribution. The
finite sample numbers are the cause of statistical errors in
our fidelity-bound estimation. In this section, we systemat-
ically explore the scaling of the standard error (SE) of our
bound F̃(ρ̂,�MES) with regard to the sample size to deter-
mine how many samples are required for acceptable error
margins. The position-space distribution can be obtained
directly in discretized form with L2 different outcomes,
whereas the momentum-space distribution is continuous
in k1 and k2 and needs to be processed via Monte Carlo
integration, demanding more samples. We therefore put
special emphasis on the momentum distribution in the fol-
lowing and fix the number of position-space samples to
Npos = 1× 104.

To analyze scaling properties with regard to available
measurement statistics, we compute the fidelity bound
F̃ for a wide range of synthetic momentum-space sam-
ple sizes Ns. The results for different values of r ∈
{0, 0.05, 0.15} are presented in Fig. 4(a). For p̄ = r = 0
(blue data set), the average of the distribution (dash-dotted
line) and the true state fidelity coincide, indicating that we
can reconstruct the right fidelities without bias. The SE
σF̃ of the distribution for different impurities and sample
numbers is shown in Fig. 4(b). We report no significant
dependence of σF̃ on the impurity and find a power-law
behavior with exponent b = (−0.48± 0.02) [Fig. 4(c),
computed with the r = 0 data set], consistent with the
expectation of Monte Carlo error scaling σMC ∼ 1/

√
Ns.

The complete set of all fitting parameters for this and
all following numerical fits can be found in Appendix B.
At high momentum-space sample numbers, we observe a
saturation of the error, as the number of position-space
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FIG. 4. (a) The fidelity bound F̃ as a function of the num-
ber of momentum-space samples for mixing strengths r ∈
{0, 0.05, 0.15}. The gap between the true fidelity F (solid
lines) and the fidelity-bound average 〈F̃〉 (dash-dotted lines)
increases with growing impurity. Each marker represents one
sampling realization. (b) The dependence of the SE of the
fidelity bound σF̃ on the number of momentum-space samples
Ns for mixing strengths from (a). (c) The linear regression of the
log-log–represented σF̃ data for r = 0 from (b), demonstrating
power-law scaling.

samples has been kept constant and the corresponding sta-
tistical fluctuations start to dominate. We conclude that
1× 104 position-space samples and 1.2× 104 momentum-
space samples are sufficient to reduce the SE to σF̃ < 0.01,
independent of the state impurity.

When the fidelity lower bound is used to certify the
entanglement dimension of the experimental state, the sta-
tistical requirements for faithful certification solely depend
on the distance to the next threshold value Bk. Fidelity-
bound values directly in the middle of two Bk lines maxi-
mize this distance and have the highest admissible margin
of error, whereas fidelities close to thresholds call for ever-
increasing sample sets to provide the needed accuracy. The
measured bound value can be monitored on the fly to adapt
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the number of samples taken in order to fulfill the statistical
requirements.

Our data indicate that surprisingly low sample num-
bers can be sufficient for robust entanglement detection.
For example, the distance to the next relevant threshold
B5 (red dashed line in Fig. 4(a) for the pure ground state
at U/J = −12 is given by B5 − 〈F̃〉 > 2σF̃ , even at only
Ns = 2000 samples, a statistically significant statement.
The fidelity to the MES drops with decreasing attractive
interaction strength and, with it, the distance to the next
lower-fidelity threshold. The sample-set sizes should thus
be adapted for less attractive interaction strengths.

B. Dephasing noise

Both the fidelity F and the fidelity bound F̃ decrease
linearly with the mixing parameter r, as shown in Fig. 5.
The bound declines faster than the actual state fidelity;
the linear fit slopes are a = −0.76 (fidelity) in contrast
to ã = −1.15± 0.03 (fidelity bound) [54]. Consequently,
the tightness gap widens linearly with a slope of aGap =
0.39± 0.03 with r. Our bound certifies the same entan-
glement dimension as could be certified with the actual
fidelity for most of the investigated impurity regime r ≤
0.25 and with only one dimension less in the regime 0.1 �
r � 0.16 (Fig. 5). Certification of high-dimensional entan-
glement therefore remains possible even for significantly
mixed states. One concrete decoherence effect potentially
arising during state preparation is the presence of a thermal
bath, resulting in a Gibbs thermal state with finite tem-
perature, i.e., a mixture of ground and excited states. We
discuss this case in Appendix C, finding that our certifi-
cation scheme is quite robust in the sense that the fidelity
bound remains tight up to rather high temperatures. Thus,
the generic white noise considered here may well overes-
timate the typical impact of decoherence on the proposed
method.

C. Lattice-potential disorder

Next, we investigate the tightness of our fidelity bound
in the presence of lattice-potential disorder, which typi-
cally arises in experiments with arrays of optical tweezers
where the relative intensities, and thus the depths, of the
individual tweezer traps are difficult to stabilize. We intro-
duce a modified Hamiltonian based on Eq. (19) including
a normally distributed potential depth fluctuation for each
lattice site,

Ĥ
V = Ĥ +
∑

i


Vi(n̂i↓ + n̂i↑) , 
Vi ∼ N (
0, (JσV)

2),

(20)

with the tunneling strength J as the energy scale. It should
be noted that the fluctuations are modeled to be uncorre-
lated, a realistic assumption in the case of optical tweezer
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FIG. 5. The systematic linear scaling of both F and F̃ with the
state-mixing parameter r. Since the true fidelity F is computed
exactly, linear regression errors [O(1× 10−16)] are solely caused
by machine precision and are omitted here. The error of F̃ is of a
statistical nature and is barely visible.

arrays but not necessarily for optical lattices. Imperfec-
tions in the potential landscape cause localization in the
ground-state wave function and decreased fidelity to the
reference state �MES, as seen in Fig. 3(c). The result-
ing composition of the localized state is quite different
compared to that of �MES, with strongly peaked double-
occupation probabilities around some localization center.
Even though the two distributions differ significantly, our
method still enables one to certify an entanglement dimen-
sion of Dent = 4, demonstrating the wide applicability of
the protocol, as we can detect major components of the
entanglement spectrum of a state not close to the refer-
ence. In particular, it allows us to track the reduction of
entanglement due to disorder-induced pair localization, as
we discuss in the following.

In the strongly attractive regime of U/J = −12, the
states with both atoms at the same lattice site make a
contribution of 95.7% to the pure undisturbed ground-
state populations. It is therefore a reasonable simplification
to treat the atom pair as a bound dimer moving through
the lattice. The ground-state localization is then in agree-
ment with the predictions of Anderson localization for
disordered potentials, where the occupation probability is
suppressed exponentially when going away from the local-
ization center [55]. 1D systems are expected to localize for
any nonzero potential disorder, with the localization length
depending on the disorder strength [56].

To investigate the effect of shot-to-shot lattice-potential
fluctuations on the (detected) MES fidelity, we simulate
single experiments on ground-state mixtures of 1× 103

individual disorder realizations configured according to
Eq. (20) and compute the disorder ensemble average F̄
over 1× 103 experimental runs. Both F̄ and ˜̄F decrease
according to a stretched exponential law of scaling like
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FIG. 6. The disorder ensemble average of the fidelity F̄ as a
function of the strength (standard deviation JσV) of lattice depth
fluctuations. After an initial transitional phase, the fidelity and the
bound follow a stretched exponential decay for potential fluctu-
ations with JσV � 0.07. The data points in the dotted part of the
line are excluded from the fit, indicating deviating behavior for
very weak fluctuations due to finite-size effects.

exp[−b(JσV)
c] with increasing potential depth fluctuation

JσV and approach the B1 entanglement threshold, shown in
Fig. 6. The bound tightness does not decrease significantly
compared to the disorder-free lattice, even for the strongest
simulated fluctuation strengths. This is quite remarkable,
as each investigated state is a mixture of thousands of
individually localized disorder realizations. Consequently,
our bound certifies the same entanglement dimension or
Schmidt number as the true fidelity for a large regime
of disorder strengths. This behavior is markedly different
from dephasing noise, where we have found a linearly
widening gap between fidelity and bound.

The breakdown of the fit at small disorder strengths is
caused by the finite size of the lattice. For very weak dis-
order, the localization length exceeds the lattice scale. In
this regime, the fidelity therefore only decreases slowly
with increasing disorder strengths, up until single disorder
centers can be fully resolved in the lattice. The Jσv = 0
data point additionally marks the critical point of the local-
ization phase transition in 1D, so anomalous behavior is
expected here. Consequently, small disorder strengths do
not significantly decrease the fidelity F(ρ̂,�MES), and thus
our bound also decreases at a reduced rate.

D. Lattice-size dependence of the state fidelity

The scalability of entanglement certification with
respect to the lattice size L is of significant concern for
experimental implementations. To systematically investi-
gate this, we repeat our previous simulation for a range
of different lattice sizes. Our data for a system with finite
sampling statistics and dephasing noise show an algebraic

asymptotic decline of the fidelity with growing lattice size,
as shown in Fig. 7(a) (the fit model and parameters are
given in Appendix B). The fidelities and fidelity bounds
approach constant nonzero values for L→∞, depend-
ing on the state-mixing strength r. Consequently, certified
entanglement dimensions continue to grow as L→∞. We
find that the scaling behavior of our bound depends on the
level of dephasing noise.

The addition of lattice disorder changes the situation.
From previous data (see Sec. III C), we expect localiza-
tion into dimers but the dependence on the lattice size
is not immediately evident. Our investigation of a lattice
with fixed disorder strength Jσv = 0.05 yields an exponen-
tial fidelity drop-off approximately exp(−bL), as shown in
Fig. 7(b). As our investigated states are mixtures of ground
states of different disorder realizations, we do not expect
the bound to be tight in the limit of large L. To account for
this, we include an offset c in the exponential fit to F̃ . All
fits match the data very well at large lattice sizes but signif-
icantly underestimate the fidelity in double- and triple-well
configurations. Again, finite-size effects offer a plausible
explanation for this behavior: the localization length of the
system can exceed the lattice size, making it impossible to
resolve a localization center fully in small systems.

Since the entanglement-dimension thresholds scale only
linearly, Bk ∼ L−1, as compared to the exponentially
decaying fidelity, the certified entanglement dimension
decreases to Dent = 1 for L→∞. Consequentially, after
an initial increase of certifiable entanglement, the entan-
glement dimension accessible through the bound starts to
decline. Based on the reported fit, we extrapolate a max-
imum certifiable entanglement dimension of Dent = 7 for
pure states and Dent = 5 for r = 0.15 for a fixed-disorder
standard deviation of Jσv = 0.05.

The above simulations demonstrate the strong impact
of site-to-site lattice-potential fluctuations on the scaling
behavior of fidelity and thus on the certifiable entan-
glement dimension for large lattice sizes. While in the
case of a disorder-free lattice the certifiable entanglement
dimension increases indefinitely with lattice size, disorder-
induced localization effects lead to a maximal certifiable
dimension reached at some finite lattice size, depending
on the disorder strength. We note that site-to-site potential
fluctuations may be present for arrays of optical tweezers,
while in the case of optical lattices, realized by a single
retroreflected laser beam, intensity fluctuations will lead to
correlated potential fluctuations not affecting the ground-
state properties. Also, the precise properties of the prepared
state may depend on the experimental preparation scheme,
not discussed in this work. Furthermore, viewing disorder
as a feature and tuning its strength deliberately, our method
allows the study of dimer localization through the lens of
the entanglement spectrum.

Finally, we consider the dependence of the statistical
errors on the lattice size, again with fixed sample numbers.
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FIG. 7. The lattice-size dependence of the fidelity. (a) The scaling of the fidelity F of the ground state of a flat optical lattice as a
function of the number of lattice sites L and the mixing parameter r. The numerical data, including statistical noise, fit well to the
asymptotic algebraic behavior. The certifiable entanglement dimension continues to grow with increasing lattice size, as the fidelity
asymptotically approaches its infinite-system-size value. (b) A log-linear plot of the fidelity for a disordered lattice of size L with
fixed disorder strength JσV = 0.05, showing an exponential fidelity decay. The number of entanglement dimensions accessible to
certification has a maximum of Dent = 7 before decreasing again with growing system size. The numerical fits have been computed
using data points with L ≥ 6 (nondotted lines) and contain an offset for the bounds. The data for r = 0.05 are not included in the figure
for better visual clarity. The statistical error bars, especially on the true fidelity F(L, r), are barely visible. Both configurations are
evaluated with an increased 2.5× 104 position space and 5× 104 momentum-space samples.

For this purpose, we analyze 1× 104 bootstrap resampling
realizations to estimate the SE σF̃ for lattice chains with
lengths up to L = 20, as displayed in Fig. 8. All three sim-
ulated mixing rates give qualitatively and quantitatively
similar errors. To extract the general trend, we average
over the three mixing-rate data sets for improved statis-
tics and fit with an algebraic asymptotic growth model,
which shows good agreement in the investigated regime
(the model is also listed in Appendix B). We therefore
find σF̃ to be largely independent of the lattice size. Scal-
ing up to extended lattice chains is therefore not statis-
tically prohibitive, opening up the possibility of feasibly
preparing and certifying states with very-high-dimensional
entanglement.

In summary, state dephasing and lattice fluctuations
have different impact signatures on both the true fidelity
F and on our fidelity bound F̃ . While the bound tight-
ness is loosened by growing dephasing, with a linearly
widening gap between F and F̃ , it remains mostly tight
in the presence of lattice-potential fluctuations. The sta-
tistical errors follow the expected Monte Carlo scaling
proportional to 1/

√
Ns; very moderate sample numbers

of approximately 1× 104 both in momentum and posi-
tion space are sufficient to reduce the SEs to the subper-
cent range for all investigated lattice sizes. The bound is

therefore robust with respect to typical noise sources and
the entanglement-certification capability comes close to
that of the true fidelity.

lattice site L

FIG. 8. The dependence of the SE of the fidelity bound σF̃
on the lattice size L at a fixed number of samples. All mixing
rates r ∈ {0, 0.05, 0.15} show similar initial growth of σF̃ before
saturation. The combined data set is well described using an alge-
braic asymptotic growth model, showing little variation in σF̃ for
lattices with L � 10.
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IV. MULTIPLE PARTICLES PER SPECIES

In the context of quantum simulation of condensed
matter physics problems, the two-atom configuration dis-
cussed so far presents a somewhat unphysical low-density
limit. Eventually, one would like to access the entangle-
ment structure near half-filling, meaning atom number
N = L/2, where true many-body effects emerge.

However, our method still relies on the measurement of
coefficients of trigonometric basis functions, the number
of which scales with the local Hilbert-space size and thus
exponentially in the particle number. Hence the true many-
body regime stays out of reach for the scheme presented
in this work. Nonetheless, studies of few-body cold-atom
systems in the past decade have revealed that the few-
body dynamics approach the many-body limit even at very
moderate particle numbers [57,58]. Few-body systems are
thus interesting candidates for quantum simulation and,
in particular, entanglement certification, and give experi-
mentalists capabilities beyond that of simpler two-particle
systems such as entangled photon pairs. Recent success in
the preparation and control of indistinguishable atom sys-
tems motivate this ansatz [59,60]. Here, we want to extend
our method to multiple particles in each of the two subsys-
tems and present numerical simulations for up to N = 4
particles per species.

A. Theoretical considerations

Systems in which the number of atoms per species is
increased to N > 1 can conveniently be described in a sec-
ond quantization picture with different Fock modes. These
modes are labeled by the spin of the particles and their
lattice positions and are occupied by a given number of
particles. For the fermionic atoms in the Fermi-Hubbard
model, each lattice site can at most be populated by one
atom per species due to Pauli exclusion. Hard-core bosons
have the same exclusion rule, here enforced by strong
repulsive on-site interactions. The resulting dimension of
the local Hilbert space, i.e., the Hilbert space available to
each species, which determines the maximal entanglement
dimension, thus becomes

Dmax
ent =

(
L
N

)

. (21)

A half-filling configuration gives the highest-possible
entanglement dimension for a given lattice size, with
Dmax

ent (N = L/2) = L!/[(L/2)!]2. The 2N -body wave func-
tion |�〉N+N

MES then reads

|�〉N+N
MES =

1
√(L

N

)

L∑

mi=1
mi<mi+1

|m1 . . .mN 〉A ⊗ |m1 . . .mN 〉B ,

(22)

with the normalization adapted to reflect the changed
Hilbert-space size. In this notation, |m1 . . .mN 〉A/B des-
ignates the Fock state of species A or B, where sites
m1 . . .mN are occupied by one atom each. Here, the mi are
in ascending order and are mutually different due to the
aforementioned exclusion rules.

The general approach of bounding the fidelity to the
MES to bound the Schmidt number remains unaltered.
All experimental tools for single-atom and spin-resolved
detection are still applicable but one has to take care to
properly address the indistinguishability within the sub-
species. While state populations can be extracted in a
straightforward extension to the two-atom case, some
changes have to be applied to access the coherences in
Eq. (4) in the second quantization picture. Here, due to
different commutation relations of fermions and bosons,
our bound behaves differently for the two cases. In this
work, we focus only on hard-core bosons and fermions,
as their Hilbert spaces are identical and can thus be treated
analogously. The detailed construction of the fidelity lower
bound from multiparticle real-space and momentum corre-
lation functions is presented in Appendix D. The crucial
difference between fermions and bosons is the appear-
ance of signs in the coherence terms stemming from the
fermionic anticommutation relations. This diminishes the
tightness of the estimate used in Eq. (16), even for pure
states, and makes high-dimensional entanglement certifi-
cation more challenging for fermionic systems than for
hard-core bosons, as we show in Sec. IV B.

Lastly, we briefly address the scalability of the method
toward larger particle numbers. Increasing the system size
in terms of the number of atoms in the system requires sig-
nificant computational resources, both for synthetic data
generation and data processing. Furthermore, the neces-
sary measurement statistics also increase for systems with
higher atom counts. Our data processing is based on Monte
Carlo techniques, which do not inherently scale with the
dimension of the momentum space, i.e., the number of
atoms in the system, but scaling can be introduced through
the variance of the joint momentum distribution. We inves-
tigate these statistical scaling properties in Sec. IV C.

B. Numerical results

We simulate the ground state of N = 3 particles of both
species in a lattice with L = 6 for both fermions and hard-
core bosons. This setup enables a maximum entanglement
dimension of Dmax

ent =
(6

3

) = 20 [see Eq. (21)]. To com-
pare the behavior of this few-body system with that of
two atoms, we repeat the interaction-strength sweep shown
in Fig. 2. Our numerical data show that the fidelity to
the MES in the strongly attractive regime is lower than
in the two-atom case [see Figs. 9(a) and 9(b)] but the
behavior is otherwise qualitatively the same. The fidelity
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reduction is caused by a combination of same-site exclu-
sion, which increases the distance between atoms of the
same species, and finite-size effects, penalizing occupa-
tion of sites close to the edges. The combination of both
effects leads to a very nonuniform distribution of dimer
populations. However, as anticipated, the fidelity bound
F̃ shows a strong dependence on the underlying quantum
statistics; for bosons, much higher and thus tighter fidelity
bounds were achieved compared to fermions. This also
leads to a large difference in terms of the certified entan-
glement dimension; in the pure case at U/J = −15, we
certify Dent = 7 for fermions and Dent = 13 for hard-core
bosons. The trend also carries over to dephased states with
r > 0, where we observe a stronger impact of dephasing
than in the two-atom case. In the fermionic case, at the
strongest investigated dephasing of r = 0.15, no entangle-
ment is witnessed in the ground state and only Dent = 2
is found for weaker dephasing of r = 0.05. The impact is
less severe for bosons, where we find Dent = 3 for r = 0.15
and Dent = 13 for r = 0.05, respectively. These findings
contrast with our data for a half-filling configuration for
N = 2 atoms per species with L = 4, shown in Fig. 16 in
Appendix E. Here, bosons and fermions show very similar
results, with minor deviations only visible for pure states
in the weakly attractive regime. Additionally, the effect of
dephasing is much more comparable to our initial findings
for N = 1 atom per species in Fig. 2. With higher num-
bers of particles and lattice sites present in the system,
an increasing amount of coherences have to be subtracted
using the bound in Eq. 16, explaining the difference in
performance for different system sizes.

Finally, we also investigate the case of N = 4 hard-core
bosons per species on a lattice with L = 8. Using 3× 105

samples in both position and momentum space, we are
able to estimate F̃ = 0.50± 0.06 at U/J = −15. Given
Dmax

ent =
(8

4

) = 70, this fidelity translates into a certified
entanglement dimension with respect to a 1σ confidence
interval of Dent = 31 (3σ confidence: Dent = 23). In accor-
dance with the above-described dephasing characteristics
at r = 0.05, we see a strongly reduced fidelity bound of
F̃ = 0.10± 0.07, which gives Dent = 3 at the 1σ level.

Interestingly, the addition of disorder on the lattice
reveals some key differences compared to the 1+ 1-atom
case. Instead of the stretched exponential approach toward
B1, we find standard exponential decay of F̄ , with the
bound decreasing significantly below the entanglement-
detection threshold [cf. Fig. 9(c)]. The matter wave func-
tion cannot converge to one localization center but is
distributed across the entire lattice due to the above-
discussed exclusion rules. A nonzero number of states with
unpaired atoms retain nonvanishing populations and con-
nected coherences, which in turn induce tightness loss.
Nonetheless, the initial transitional phase is compara-
tively short, with a good numerical fit agreement already
for JσV ≥ 0.01. To summarize, the onset of localization
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FIG. 9. The numerical results for the entanglement-dimension
certification of 3+ 3 indistinguishable atoms in a lattice with
L = 6. Scaling of the fidelity F and the fidelity bound F̃ for
different interaction-to-tunneling-strength ratios U/J for pure
(r = 0) and dephased (r ∈ {0.05, 0.15}) states with (a) fermions
and (b) hard-core bosons. The dotted line represents the infinite-
measurement-statistics limit F̃∞ computed using exact coher-
ences of ρ̂. (c) The scaling of the disorder ensemble average F̄
as a function of the normalized optical-lattice depth fluctuation
Jσv for the pure ground state of hard-core bosons. We find good
agreement with exponential decay for both the true fidelity F̄ and
our bound ˜̄F for Jσv ≥ 0.01 disorder strengths. The simulation
has been conducted at U/J = −12. All measurements have been
simulated using 1× 105 momentum-space and position-space
samples each.
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number of atoms per species

experimental fit

FIG. 10. A log-linear plot of the fidelity bound SE σF̃ for
N + N atoms in a lattice at half-filling (N = L/2). For coherence
reconstruction, 3× 105 position- and momentum-space samples
each were used. The SE is well described using an exponen-
tial numerical fit. Because of the higher computational cost for
4+ 4 atoms, a smaller number of resamples was taken, leading
to higher uncertainty in σF̃ .

effects is found for weaker disorder in few-body systems
and quickly converges toward the sensible infinite disor-
der ensemble, i.e., the perfect mixture of localized dimer
states. However, state dephasing is the dominant effect, as
even the strongest disorder strength Jσv = 0.15 results in
a deviation 
F := |F − F̃| ≈ 0.08, half of the difference
caused by minor dephasing at r = 0.05.

C. Scaling of sampling complexity with N

To gain a better understanding of the complexity in
terms of the required experimental runs Ns, we conducted
a scaling analysis of N + N atoms at half-filling for N ∈
{1, 2, 3, 4}. We have found that the SE of the fidelity bound
σF̃ increases exponentially with N (see Fig. 10). From the
fit coefficients, one can extract an expected increase of σF̃
by a factor sN = 3.31± 0.13 for every additional atom pair
introduced into the system. Using the earlier-confirmed (cf.
Fig 4) σF̃(Ns) ∼ 1/

√
Ns relation, an increase of the sample

size by a factor of s2
N = 11.0± 0.9 is necessary to keep sta-

tistical errors constant while increasing the particle number
per species, N , by one. It shows that scaling deep into the
many-body regime remains infeasible but configurations
with a few atoms per species are realistically achievable.

V. MULTIPARTITE ENTANGLEMENT

In the previous section, we showed that when extended
to few-body systems of multiple atoms per atomic
species, our method still succeeds in the certification of
high-dimensional entanglement, even for mixed states.
Since only two spin states are populated, the system is
fully described by the atom number N , the interspecies

interaction strength U, and the tunneling strength J , so
the same experimental toolbox can be used as for the case
of one atom per species. When, instead, a higher number
of spin states and thus entanglement parties is involved,
a plethora of experimental and theoretical complications
arise for entanglement detection but we can adapt the
bound F̃ to be able to certify genuine multipartite entan-
glement. In the following, we first formulate the theoretical
framework needed for the classification of multipartite
entanglement in this system and then describe a possible
setup certifying high-dimensional tripartite entanglement.
Finally, we present simulation results of entanglement cer-
tification for three atomic species in an optical lattice of
L = 6 sites.

A. Multipartite-entanglement certification

While bipartite entanglement of pure states is fully
developed theoretically, many questions are still open con-
cerning the characterization and certification of multipar-
tite entanglement. For states consisting of three entangled
qubits, two sets of nonequivalent states sharing genuine
tripartite entanglement have been identified, those equiv-
alent under local operations and classical communica-
tion (LOCC) to the Greenberger-Horne-Zeilinger (GHZ)
state and those LOCC equivalent to the W state [4,61,
62]. Because of this nonequivalence of entanglement, the
Schmidt decomposition is no longer defined for general
multipartite states. Different methods are therefore needed
to obtain and describe the entanglement structure of mul-
tipartite quantum states. Numerous different approaches
have been proposed to define canonical forms of tripartite
and multipartite states with a minimal number of nonzero
coefficients. However, to uniquely define any given quan-
tum state through these methods, a number of parameters
significantly higher than the local Hilbert-space dimen-
sion is required [47,63–65]. For some states, most notably
also for generalizations of the GHZ state to higher local
dimensions,

|ψ〉ABC =
k∑

i=1

λi |i〉A ⊗ |i〉B ⊗ |i〉C , (23)

it is still possible to define a generalized Schmidt decom-
position, as every contribution to |ψ〉ABC combines orthog-
onal basis vectors |i〉 for all three subsystems, assumed to
have the same local Hilbert-space dimensions. No basis
transformation can therefore reduce the number of terms
used for the representation of Eq. (23) any further [4,66].
One can now define a multipartite-entanglement dimen-
sion with the properties of an entanglement monotone in
analogy to that of bipartite states [67], also with a maxi-
mum value of Dmax

ent = dim HA. A generalized GHZ state

040338-14



DETECTING HIGH-DIMENSIONAL ENTANGLEMENT. . . PRX QUANTUM 4, 040338 (2023)

with equal contributions on all sites given by

|GHZ〉L =
1√
L

L∑

m=1

|mmm〉 (24)

therefore represents a suitable generalization of the two-
atom MES [Eq. (1)] as a reference state. It should be noted
that this state is not maximally entangled in the sense
that it has the maximum number of terms needed to be
faithfully represented among all states with genuine tripar-
tite entanglement but, rather, it has the highest number of
terms possible for it to also have a generalized Schmidt
decomposition of the given form.

The entanglement dimension of an experimental state
ρ̂ can be bounded by a set of fidelity thresholds Bk to
that reference state analogous to Eq. (3), opening up in
principle the same certification route taken for bipartite
entanglement. We prove these bounds in Appendix F. The
algorithm given by Eqs. (8)–(16) can be adapted straight-
forwardly to include three or more atomic species (for
details, see Appendix G).

B. Experimental model

There are several different possible cold-atom imple-
mentations in which multipartite entanglement can be
realized. Here, we choose a generalized Hubbard model
with three distinct atomic species. The interaction strength
between different spin states is usually regulated through
the use of a magnetic Feshbach resonance [22,52]. When
a third spin state is added to the system, each of the three
possible atom pairs is now governed by their individual
interaction strengths Uij . To experimentally realize control
over a mixture of three different spin states, an isotope with
three overlapping Feshbach resonances connecting three
low-energy eigenstates can be used. One possible choice
is 6Li, for which Feshbach resonances for the three lowest
energy states at 690 G, 811 G, and 834 G are experimen-
tally accessible and have been realized before [71–73].
Since all three Feshbach resonances are magnetic, it is
no longer possible to control the individual interaction
strengths independently but, rather, all three values U12,
U23, and U13 are tuned at the same time through shifts
of the external magnetic field. For field strengths up to
527 G, all three scattering lengths are negative, delivering
a broad regime of attractive interactions between all atom
species, as shown in Fig. 11. States close to the MES [Eq.
(24)] can thus be realized by preparing the Hubbard-model
ground state in this regime. A three-particle extension to
the Hubbard-model Hamiltonian can be constructed as

Ĥ = −J
∑

σ ,i

(ĉ†
i,σ ĉi+1,σ + h.c.)+

∑

σ1,σ2
σ1<σ2

∑

i

Uσ1σ2 n̂i,σ1 n̂i,σ2 ,

(25)

(a)

(b)

magnetic field strength (G)

U
/J

FIG. 11. (a) The dependence of the three different interaction-
to-tunneling-strength ratios U12/J , U13/J , and U23/J on the
external magnetic field (in gauss) based on Ref. [68] and gauged
to fit experimental data published in Ref. [44]. (b) Magnification
of the narrow s-wave Feshbach resonance at 543 G [69,70].

with σ , σ1, σ2 ∈ {1, 2, 3} labeling the different hyperfine
states [73]. We base our numerical simulation of tripar-
tite entangled systems on precise scattering lengths for
6Li published in Ref. [68]. From these measurements, we
derive U/J values for different magnetic field strengths
gauged to fit the interaction-strength data for U13 reported
in Ref. [44] [Fig. 11(a)] to establish experimental com-
parability. This provides access to the interaction-strength
triplet for a wide field-strength regime and thus enables
one to study high-dimensional tripartite entanglement in
Hubbard-model ground states. An alternative approach
could be based on ultracold fermionic atoms in optical
lattices with SU(N )-symmetric interactions [74,75]. They
have recently been shown to feature strong effective multi-
body interactions, making them a promising atomic plat-
form for the preparation of multipartite entanglement in
the future [76].

C. Numerical results

To assess the effect of the new intricate triplet struc-
ture of interaction strengths, we perform a sweep across
the accessible range of magnetic field strengths B for three
distinguishable atoms in the ground state of Eq. (25). The
result is presented as a function of U13 in Fig. 12(a). All
presented true fidelities F(ρ̂,�MES) are again computed
through exact diagonalization of the Hamiltonian. The sig-
nal found at U13 ≈ −3.8J relates to a narrow s-wave Fes-
hbach resonance at B = 523 G [magnified in Fig. 11(b)],
which was earlier reported in Refs. [69,70]. The observed
fidelities are of similar magnitude as values reported for the
3+ 3 atom configuration in Figs. 9(a) and 9(b) but with
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FIG. 12. The numerical results for entanglement-dimension
certification of a tripartite-state configuration in a lattice with L =
6. (a) The scaling of the fidelity F and the fidelity bound F̃ for dif-
ferent interaction-to-tunneling-strength ratios U/J for pure (r =
0) and dephased (r ∈ {0.05, 0.15}) states. (b) The dependence
of the disorder-averaged fidelity F̄ on the normalized strength
of the lattice-potential fluctuations, JσV, for the pure ground
state at U13/J = −12 (U12/J = −3.67, U23/J = −6.66). The
fidelities are adequately described through a stretched exponen-
tial fit approaching the B1 boundary in the strong-disorder limit.
The two simulations used to create the data sets displayed in
Figs. 12(a) and 12(b) both use 5× 104 momenum-space samples
and 1× 104 position-space samples, repectively. The statistical
errors caused by disorder averaging and limited statistics are rel-
atively small. Data points in the dotted part of the fit have been
excluded from fitting.

significantly higher-fidelity bounds for the tripartite con-
figuration. The impact of dephasing is of similar strength,
as observed for simple two-atom configurations in Fig. 2.

The analysis of lattice disorder reveals differences
compared to our results for two-species settings. At
U13/J = −12, we see a stretched exponential decay in
both F and F̃ with lasting bound tightness, match-
ing our results for two-atom configurations. How-
ever, we find a much steeper fidelity reduction and

a smaller initial plateau. The fit yields stretch pow-
ers of c = 0.300± 0.013 for the true fidelity and
c̃ = 0.489± 0.011 for our fidelity bound. The three
strongly attractive interaction strengths drive the atoms
into triple-occupation states, which dominate the pure
ground state at these values of U/J with 96.62%
triple-occupation (trimers) and 3.35% double-occupation
(dimers) contributions. In a lattice with nonvanishing
disorder, the wave function therefore localizes solely
around a small number of lattice sites. Such bunching
is prohibited for bipartite settings with indistinguishable
particles, where Pauli exclusion enforces a maximum of
two atoms per site (see Sec. IV), explaining the greater
disorder susceptibility in the tripartite system. Decreas-
ing the attraction strength diminishes the triplet bunch-
ing effect, leading to a less strong impact of disorder.
This property comes at the cost of lower fidelity at very
low disorder strengths, since the single-occupation and
double-occupation probabilities rise accordingly.

At vanishing disorder, robust certification of four-
dimensional tripartite entanglement is possible and for
very strong disorder, Jσv ∼ 0.25, two-dimensional tripar-
tite entanglement can still be confidently certified. We
thus witness multipartite entanglement for an extended
disorder regime. In the regime shown in Fig. 12(b), the
contribution from lattice disorder to bound tightness is less
than, or of the same order of magnitude as, the contribu-
tion from state dephasing. However, the reduction in true
fidelity through disorder dominates all other error sources
considered.

VI. GENERALIZATION TO OTHER REFERENCE
STATES

Up to this point, we have shown the application of our
method to ground states of Hubbard models with attractive
interspecies interactions. We now develop generalizations
to repulsive models of two or more atoms. As the entire
process of measuring the gαβ coefficients is agnostic with
regard to the measured state, the steps outlined in Eqs.
(10)–(14) can be applied in an identical manner, leav-
ing the experimental procedure unchanged. However, the
reference state �ref must change and therefore one must
extract different coherences. The employed scheme for
deriving fidelity lower bounds can, in principle, be applied
to any reference state. However, the bound tightness, espe-
cially in the presence of dephasing noise, will generally
depend on the properties of the chosen reference state,
leaving room for optimization in a given experimental
scenario.

A. Two repulsively interacting atoms

A suitable reference state for the ground state of a repul-
sive Hubbard model of two atoms in a lattice of L sites may
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be given by an equal superposition of all nondimer states,

|�ref〉 = 1√
L(L− 1)

L∑

i�=j

|ij 〉 , (26)

which in turn means that the fidelity to that reference state
is given by

F(ρ̂,�ref) = 1
L(L− 1)

L∑

i�=j
k �=l

〈ij | ρ̂ |kl〉 . (27)

The procedure to extract coherences by subtracting bounds
on all other noncontributing coherences presented in Eq.
(16) can then be adapted to remove coherences not of
the type of Eq. (27). This can be done without added
complexity, as all coherences have the same weight in
the fidelity and can be homogeneously extracted from
contributing gαβ coefficients. This delivers a valid and
accessible lower bound on F(ρ̂,�ref). However, since �ref
is not natively given in a Schmidt-decomposed form, one
first has to compute the Schmidt decomposition |�ref〉 =∑L

i=1 λi |λi〉A ⊗ |λi〉B with Schmidt coefficients λi, λ1 ≥
λ2 . . . ≥ λL in order to give the entanglement-dimension
thresholds Bk(�ref) =

∑k
i=1 λ

2
i . In the case of L = 6, we

find λ1 =
√

5/6 and λ2 = . . . = λ6 =
√

1/30. This results
in a high barrier of B1 = 5/6 to detect entanglement
at all, while the higher thresholds are equally spaced
between B1 and 1. This is, in essence, caused by the fact
that our initial guess for a reference state is simply not
that highly entangled, as can be seen through the entan-
glement entropy S(�ref) = 5/6 log(6/5)+ 1/6 log(30) ≈
0.719 compared to the MES used in the attractive case with
S(�MES) = log(6) ≈ 1.792.

We can compensate this shortcoming by exploiting the
additional structure of reference states of the form given in
Eq. (26). As we show in Appendix H, uniform nondimer
reference states always have an associated Schmidt basis
vector |λ1〉A ⊗ |λ1〉B = 1/L

∑L
i,j=1 |ij 〉, an equal superpo-

sition of all states in the entire Hilbert space. If one now
defines a new reference state |� ′ref〉 in terms of the same
Schmidt basis but varies the value of λ1 and uniformly
adapts the remaining Schmidt coefficients to preserve nor-
malization, one obtains a family of highly entangled states
symmetric under lattice-site exchange. This is important,
as the weight w of coherences now only depends on
whether they are of type dimer-dimer (〈ii| ρ̂ |jj 〉, wd

d),
dimer-nondimer (〈ii| ρ̂ |jk〉, wnd

d ), or nondimer-nondimer
(〈ij | ρ̂ |kl〉, wnd

nd ≥ 0), independent of the specific lattice
sites. This makes their extraction much simpler and the
process more resilient against dephasing effects, as we
show below. Explicit expressions for the weights w are also
given in Appendix H. The fidelity for a generic reference

state from that family then reads

F(ρ̂,� ′ref) = wnd
nd

L∑

i�=j
k �=l

〈ij | ρ̂ |kl〉 + wd
d

L∑

i=1
j=1

〈ii| ρ̂ |jj 〉

+ wnd
d

L∑

i=1
j �=k

〈ii| ρ̂ |jk〉 + 〈jk| ρ̂ |ii〉 . (28)

The bound can then be derived as follows. First, one
bounds the nondimer-nondimer contributions from below
by taking the sum of all coefficients and subtracting the
bounds of all other terms as originally shown in Eq. (16),

wnd
nd

L∑

i�=j
k �=l

〈ij | ρ̂ |kl〉 ≥ wnd
nd

( ∑

(α,β)∈M

Re(gαβ)

−
L∑

m,n,m′,n′=1
m=n∨m′=n′

√
〈m′n′| ρ̂ |m′n′〉 〈mn| ρ̂ |mn〉

)

=: F̃nd
nd ,

(29)

where the second sum on the right-hand side includes
dimer populations as well as all dimer coherences. Second,
we have to bound the dimer-dimer terms. In principle, this
can be done analogously to Eq. (29) and would amount
to subtracting bounds for all nondimer terms, which for a
repulsive model are much larger than dimer-dimer terms.
Even slight dephasing would cause a significant underes-
timation of these coherences and a corresponding loss of
bound tightness. A more controlled approach is to bound
the sum as

wd
d

L∑

i=1
j=1

〈ii| ρ̂ |jj 〉 = wd
d

⎛

⎝
L∑

i=1

〈ii| ρ̂ |ii〉 +
L∑

i�=j

〈ii| ρ̂ |jj 〉
⎞

⎠

≥ wd
d

L∑

i=1

〈ii| ρ̂ |ii〉 −
∣
∣
∣wd

d

∣
∣
∣

L∑

i�=j

√
〈ii| ρ̂ |ii〉 〈jj | ρ̂ |jj 〉

=: F̃d
d , (30)

where we have replaced the dimer-dimer coherences with
the negative of their upper bound. This introduces a small
bias in the case of wd

d ≥ 0, meaning that all states with non-
vanishing dimer populations can no longer deliver a tight
bound but the loss of bound tightness from this term is
largely independent of the level of dephasing and thus is
much more stable.

While fidelity bounds can be derived analogously for
arbitrary reference states, this susceptibility to dephasing
renders reference states with no structure in their entangle-
ment spectrum less suitable in practice. Coherences would
appear in the fidelity with widely varying weights and
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would require a large number of bounds in the style of Eq.
(29). Dephasing leads to underestimation of many of those
bounds as described above and ultimately to the loss of any
usable bound.

A similar argument can be made for the dimer-nondimer
coherences as shown below:

wnd
d

L∑

i=1
j �=k

〈ii| ρ̂ |jk〉 + 〈jk| ρ̂ |ii〉

≥ −2
∣
∣
∣wnd

d

∣
∣
∣

L∑

i=1
j �=k

√
〈ii| ρ̂ |ii〉 〈jk| ρ̂ |jk〉 =: F̃nd

d . (31)

Combining all three partial bounds results in the measur-
able fidelity lower bound given by

F(ρ̂,� ′ref) ≥ F̃nd
nd + F̃nd

d + F̃d
d =: F̃ ′. (32)

Consequently, one can first perform the measurement
scheme as originally introduced in Sec. II and then opti-
mize the certified entanglement dimension by varying the
value of λ1 of |� ′ref〉. The results of this optimization
procedure for the two-atom ground state with L = 6 are
displayed in Fig. 13. The highly peaked entanglement
spectrum of the “naive” initial guess |�ref〉 offers the best
fidelity but insurmountable entanglement thresholds. On
the other hand, a uniform spectrum, i.e., a maximally
entangled state, delivers ideal bounds but at the cost of
loss in fidelity. We find the highest certified entanglement
dimension of Dent = 4 at λ1 ≈ 0.706.

B. Multiple atoms per species with repulsive
interactions

Next, we also investigate a repulsive system of N atoms
per spin state at half-filling (L = 2N ). Here, the adaptation
of our method is much more straightforward than we saw
before. In the attractive case, the Hubbard-model ground
state was close to a superposition of states in which all
atoms were bound in dimers, across all lattice-site com-
binations [cf. Eq. (22)]. Therefore, we used this MES as a
reference state. In the repulsive regime, the ground state is
close to a superposition of states with no dimers. At half-
filling, for a given configuration of sites being occupied by
species-A atoms, there is a unique configuration of species-
B atoms realizing a dimer-free state, namely all B atoms
occupying the sites not occupied by A atoms. This means
that the standard choice of perfectly anticorrelated atom
positions,

|�〉N+N
ref = 1

√(L
N

)

L∑

mi,ni=1

|m1 . . .mN 〉A ⊗ |n1 . . . nN 〉B ,

with mi < mi+1, ni < ni+1, mi �= nj ∀i, j ,
(33)

0.0
0.2
0.4
0.6
0.8
1.0

λ
i

(a) (b)

0.4 0.5 0.6 0.7 0.8 0.9
λ1 of Ψ ref

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

fid
el

it
y

F
to

Ψ
re

f

B1

B2

BB3

B4

BB5

B6
(c)

F F̃ ′

MES
Naive
Optimum

Ψref entanglement. spectrum

FIG. 13. The entanglement spectra of two selected states, with
the adapted MES with equally spaced Bk thresholds in (a) and
the reference state with the highest fidelity in (b). (c) By vary-
ing the first coefficient λ1 of � ′ref in postprocessing, we find
the optimal Dent = 4 at λ1 ≈ 0.706 for the ground state for the
two atoms at U/J = 30. The measurement was simulated using
5× 104 shots in position and momentum space. The blue-shaded
area represents the 1σ confidence interval of the bound.

is also a MES, equivalent to Eq. (22) up to a permutation
of the species-B basis states and thus ideally suited for our
entanglement-detection scheme. One therefore only has to
extract coherences of perfectly anticorrelated states instead
of correlated ones, while leaving the rest of the scheme
unaltered.

We have simulated the extraction procedure for the
ground state of a system of varying repulsive U/J with
N = 3 hard-core bosons per species in a lattice with L = 6.
The results are shown in Fig. 14. Depending on the level
of dephasing, certification of up to Dent = 13 is feasible.
Our data mirror previous data from our investigation for
attractive systems in Fig. 9(b), where we have observed
matching fidelities and bounds for exchanging U↔ −U
and replacing the attractive MES in Eq. (22) with the
repulsive MES from Eq. (33), reminiscent of a particle-
hole symmetry. This means that the method can be applied
to Hubbard-model ground states over the entire range of
interaction strengths, with particularly favorable properties
in the half-filling case. But, also, multiatom scenarios away
from half-filling can be treated. There, we do not have
a unique particle-hole matching but several contributions
with nonvanishing configurations have to be considered in
a reference state. For states close to half-filling, the entan-
glement spectrum remains mostly flat but the lower the
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FIG. 14. The numerical results for the entanglement-
dimension certification of 3+ 3 hard-core bosons in a lattice
of size L = 6 with repulsive interactions. The represented data
mirror the above results for the same setting but with attractive
interactions, in Fig. 9(b). The dotted lines again represent
the infinite-measurement-statistics limit F̃∞ computed using
exact coherences of ρ̂. All measurements were simulated using
1× 105 momentum-space and position-space samples each.

density in the lattice, the less informative is the knowl-
edge of the positions of species A about species B. This
causes a more strongly peaked entanglement spectrum,
as we have observed in the case of two atoms on L = 6
sites. To demonstrate that certification is still possible we
performed, as an example, a simulated application of the
method for the ground state of N = 2 hard-core bosons
per species in L = 6 lattice sites at U/J = −12, using
5× 104 samples in momentum and position space each.
The naive uniform superposition of all nondimer states
as |�ref〉 yields a fidelity bound F̃(ρ̂,�ref) = 0.682±
0.021. The entanglement spectrum of |�ref〉 is given by
λ1 =

√
0.4, λ2 = . . . = λ6 =

√
0.1, and λ7 = . . . = λ15 =√

1/90. This means that F̃(ρ̂,�ref) > B3 =
∑3

i=1 λ
2
i =

0.6, so Dent = 4 can be certified at 3σ confidence. Also,
here one could conceive of a scheme to design better-suited
reference states in the spirit of Fig. 13, which we leave for
future investigations.

VII. CONCLUSIONS AND DISCUSSION

A. Summary

We have presented a new method to bound the fidelity
of few-body states of ultracold-atom systems to a highly
entangled state. High fidelity indicates the presence of
high-dimensional entanglement in the experimental state
and can be used to bound entanglement quantifiers such
as the entanglement dimension or the entanglement of for-
mation. We have constructed lower bounds on the fidelity
that are measurable in systems of ultracold atoms in optical
lattices utilizing only position- and momentum-space mea-
surements. A detailed study of the statistical significance

and tightness of these bounds under realistic assumptions
about experimental measurement conditions and noise
sources indicates manageable experimental and statistical
requirements. Interestingly, states that are highly mixed
due to lattice-potential fluctuations retain their bound tight-
ness to a high degree, allowing one to observe the disorder-
induced reduction of ground-state entanglement. Generic
white noise has been identified to cause linear decline of
the tightness of our fidelity bound, while finite temperature
has a comparably mild impact on bound tightness. We have
generalized this method to certify entanglement in multi-
partite systems and configurations with several atoms per
spin state, requiring alterations to the coherence-extraction
framework to account for partial indistinguishability. In
these settings, we have demonstrated the feasibility of cer-
tifying up to Dent = 31 entanglement dimensions for 4+ 4
hard-core bosons and up to Dent = 4 of genuine tripar-
tite entanglement. Furthermore, by using reference states
beyond the canonical MES, we have demonstrated the
wide applicability of our method to quantum simulation
experiments with itinerant particles in lattice geometries.

B. Literature context

Our work should be considered in the context of
research lines focusing on efficient state tomography
schemes or, leaving out tomography as an intermedi-
ate step, direct entanglement-detection methods. Here, we
briefly review these research lines, commenting on their
strengths and weaknesses compared to our method, with-
out any claim of completeness. Full quantum state tomog-
raphy in a bipartite system generally requires a number of
different measurement bases that scale quadratically in the
local Hilbert-space dimension [77]. This limits its applica-
bility to very small system sizes [78], despite significant
advances in the efficiency of maximum-likelihood estima-
tion [79] and Bayesian tomography methods [80]. A more
economic scaling of experimental cost can be reached by
restricting the state space in which the reference state is
being searched. Examples for such approaches are com-
pressed sensing tomography [81–83], assuming that the
prepared state has reduced rank, and methods using vari-
ational ansatz functions, such as neural-network quantum
state tomography [84–87] or matrix-product state tomog-
raphy [88–90], which restricts its search space to weakly
entangled states—operating in exactly the opposite regime
to the one targeted in this work. The drawback of this
class of methods is that restricting the state space neces-
sarily leads to bias, as it is generally not known whether
the experimentally prepared state lies in the class of states
representable by the ansatz.

For extracting properties of the entanglement spectrum,
it is often not necessary to fully reconstruct the quantum
state. For example, if the global state of the system can
be assumed to be pure, the entanglement spectrum can
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already be extracted from the state ρ̂A of a subsystem. A
variational approach to determine the entanglement Hamil-
tonian, i.e., the logarithm of the reduced density matrix,
has recently been demonstrated experimentally [35–37].
Another notable approach is the use of random measure-
ments to detect entanglement [91] within the framework of
shadow tomography [92]. This framework can be applied
to extract Schmidt-number witnesses by probing correla-
tion matrices [38,39]. However, the method requires large
sample sizes and the implementation of Haar-random uni-
tary operators, an open challenge for systems of itinerant
particles. If one is only interested in Rényi entanglement
entropies, methods using multiple copies of the quan-
tum state can be employed [93]. A related protocol uses
ancillary particles to measure the entanglement spectrum
directly for cold lattice-confined bosons [40]. While this
method is very elegant, it poses stringent requirements on
experimental capabilities.

The approach pursued in our work relies on measur-
able lower bounds on the fidelity to a highly entangled
reference state for probing the entanglement dimension.
A number of works have studied efficient methods for
estimating fidelity, or at least bounding it, ranging from
correlation-measurement-based approaches [41,94,95] to
variational methods [96] and random Pauli-string mea-
surements [97,98]. Often, these schemes are tailored to
a specific experimental system, such as entangled photon
pairs in the case of Refs. [41,95], where the capability to
measure in a pair of MUBs is exploited. This makes it diffi-
cult to apply these methods to other platforms, where these
capabilities are not given. The strength of our proposal
lies in the development of an entanglement-certification
scheme that relies on techniques readily available to cold-
atom experiments and is generally applicable to bipartite
and multipartite scenarios realizable with this versatile
quantum simulation platform.

C. Scalability

The term quantum simulation often entails the notion
of scalability to system sizes that are beyond the reach of
classical simulation methods, i.e., reaching the regime of
quantum advantage. Here, we summarize our findings on
the scaling of both experimental and computational cost
of our method as a function of lattice size L and particle
number per species N .

We have found an algebraic saturation of the SE of
our fidelity bound for growing lattice sizes for N = 1.
Statistical requirements for faithful entanglement certifica-
tion thus remain approximately constant for an extended
regime of lattice sizes, which opens up one pathway to
prepare highly entangled states in large lattices. How-
ever, increasing the number of atoms (keeping the density
constant) in bipartite configurations results in an exponen-
tial increase of the SE, which consequently necessitates

an increase of samples taken by nearly one order of
magnitude to add an additional pair of atoms to the sys-
tem. We note, however, that experimental sampling of
momenta is achieved through fluorescence imaging, where
all momenta of one atomic species are captured in a sin-
gle image. Consequently, there is no inherent connection
between the sampling rate and the system size. This allows
comparably fast sample production in systems with several
atoms compared to the creation of such samples by numer-
ical simulations, where the computational complexity is
linked to the number of atoms.

The data-processing routine used in this work consists
of several steps: projection of the sampled momentum
distribution onto modes of the momentum-basis expan-
sion, basis change via formal matrix inversion of the
matrix Q to correct for nonorthogonality, and coherence
extraction. All these steps have exponential computational
complexity scaling in N , which also prohibits applica-
tion to genuine many-body systems. By contrast, the local
Hilbert-space size, and thus the processing complexity, is
only polynomial in the lattice size L.

D. Outlook

The detection scheme proposed here can be generalized
and extended in various ways. First, the momentum-space
measurement, achieved by completely switching off the
lattice potential, operates in the continuous domain. One
could also envision only tuning the interparticle interac-
tion strength to zero and allowing the particles of each
species to undergo a tunneling evolution in the lattice
before they are imaged. This would correspond to a mea-
surement in a discrete basis complementary to the in situ
measurement, similarly giving access to coherences as
the current scheme but avoiding the step of projecting
measured data onto a function basis in continuous space.
Furthermore, it would also relax the resolution require-
ments in momentum space, making the method accessible
to a even broader range of contemporary experimental
setups. Second, entanglement-dimension witnesses based
on measurements in two complementary bases may be
developed analogously for other quantum simulation plat-
forms. Examples are trapped ions, superconducting qubits,
or Rydberg atoms, realizing spin systems, where the entan-
gled subsystems consist of multiple spins, or qubits, with
native local unitary transformations available to each spe-
cific platform. Furthermore, one could include a small
number of additional measurement bases to give further
constraints on state coherences, improving bound tight-
ness, especially for higher atom numbers. Finally, while
investigating the impact of experimental imperfections on
our ability to certify entanglement in realistic settings, we
have found distinctly different signatures for pure state
dephasing and lattice disorder. This implies that this bound
could be used as a probe of disorder and localization in
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the prepared state. More generally, we would like to apply
the developed method to more quantum states of inter-
est, beyond Hubbard-model ground states, exploring the
rich variety of entanglement phenomena accessible with
cold-atom quantum simulators.
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APPENDIX A: NUMERICAL METHODS

All of the numerical results presented in this paper
require a number of processing steps, ranging from syn-
thetic sample generation to nonorthogonality corrections
and coherence extraction, that come with computational
complexity scaling exponentially with the size of the sys-
tem. In the following, we will briefly describe the numeri-
cal methods we have used for optimizing the performance
of classical processing steps, which have been crucial for
reaching the largest reported system sizes.

The key technique for synthetic data generation is the
sampling process for high-dimensional probability distri-
butions. Computing the full distribution on a grid becomes
prohibitively expensive, so a Monte Carlo type algorithm
must be employed instead. Realizing that the momentum
integral over Eq. (10a) separates for each term, one can uti-
lize a so-called ancestral sampling procedure [99]. Since
the integrals can be split up, one can integrate out all but
one of the momenta to obtain the marginal p(k1). After
sampling k1 from that distribution, one can fix k1 and
integrate out the rest, now leaving k2 open to obtain the
conditional probability distribution p(k2|k1). This scheme
can be repeated until all momenta are fixed and a complete
sample is generated. Replacing d-dimensional integrals
with the product of d 1D integrals, which can be computed
beforehand, greatly increases the accessible system sizes.
The remaining 1D integrals I(δ) are of form

I(δ) =
∫

dk |w̃(k)|2 cos(dδk) . (A1)

We find that |w̃(k)| can be well approximated through a
Gaussian g(μ = 0, σ), which also agrees with the exper-
imental findings [44]. Replacing the Wannier envelope
yields an expression of the form I(δ) ∼ exp(−(dσδ/2)2).
With this, the expression for p(k1) becomes a sum over
terms weighted by the integral over the remaining l−
1 momenta, I(δ2, . . . , δl) ∼ exp(−(dσ/2)2 ∑l

i=2 δ
2
i ). As

these are exponentially small in
∑l

i=2 δ
2
i , we can define a

cutoff δc and neglect all terms for which
∑l

i=2 δ
2
i > δc.

A similar technique can be used to simplify the compu-
tation of the matrix elements of the basis overlap matrix
Q [see Eq. (12)]. The matrix is needed to correct the mea-
sured coefficients cαδ for overlap with different nonorthog-
onal basis elements. In the two-atom case, each element is
given by

Qα̃β̃

αβ =
∫

dk1dk2 |w̃(k1, k2)|4

cos[d(αk1 + βk2)] cos[d(α̃k1 + β̃k2)] . (A2)

By similar manipulations of the trigonometric functions
under the integral, one can obtain the following factorized
form:

Qα̃β̃

αβ =
1
2

(
f (α + α̃)f (α − α̃)+ f (β + β̃)f (β − β̃)

)

f (γ ) =
∫

dk |w̃(k)|4 cos(γ k) . (A3)

Using the fact that f (γ ) = f (−γ ), one only needs to
evaluate f (γ ), where γ ∈ {0, . . . , 2(L− 1)}.

The formal inversion �G = Q−1 �C can be efficiently
approached by exploiting the fact that Q is Hermitian
and positive definite and using Cholesky decomposition,
Q = LL† [100], which gives the lower-diagonal matrix L
acting as a preconditioner for Q−1. For large Q, saving
the dense L can become too costly, so that the itera-
tive conjugate-gradient algorithm [101] becomes the more
practical solution. Both algorithms are available within
the NumPy and SciPy scientific computing libraries in
PYTHON [102,103], which we have used for our numerical
simulations presented in this work.

APPENDIX B: FITTING PARAMETERS

In Table 1 we list the numerical fit models and fit
parameters for all conducted fits appearing in this paper.

APPENDIX C: BOUND PERFORMANCE FOR
THERMAL STATES

To ascertain the susceptibility of the derived fidelity
bounds to thermal excitation, we have conducted
additional simulations for the thermal states, ρ̂T ∼
exp(−βH), of two attractively interacting distinguishable
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TABLE I. The fitting parameters [104].

Figure Description Fitting model Fitting parameters

a b c

4(c) SE Ns dependence σF̃(Ns) = aN b
s 0.92+0.16

−0.13 −0.48± 0.02 · · ·
5 Dephasing F(r) = ar+ b

F(r = 0.00) −0.76± 2× 10−16 0.787± 3× 10−17 · · ·
F̃(r = 0.00) −1.15± 0.03 0.788± 0.004 · · ·

6 Disorder F̄(σ ) = ae−bσ c + 1/L
F̄(r = 0.00) 5.6± 1.1 4.65± 0.19 0.256± 0.015
˜̄F(r = 0.00) 3.7± 0.6 4.48± 0.13 0.311± 0.015

7(a) L-dependence order F(L) = aL−b + c
F(r = 0.00) 0.902± 0.002 2.123± 0.003 0.76734± 6× 10−5

F(r = 0.05) 0.906± 0.002 2.115± 0.003 0.72998± 6× 10−5

F(r = 0.15) 0.916± 0.002 2.101± 0.003 0.65226± 5× 105

F̃(r = 0.00) 0.95± 0.09 2.14± 0.14 0.766± 0.003
F̃(r = 0.05) 0.94± 0.06 1.94± 0.09 0.697± 0.003
F̃(r = 0.15) 0.93± 0.05 1.64± 0.08 0.565± 0.005

7(b) L-dependence disorder
F(r = 0.00) F(L) = ae−bL 0.9813± 0.0027 0.05350± 2.5× 10−4 · · ·
F(r = 0.05) 0.9347± 0.0025 0.05364± 2.5× 10−4 · · ·
F(r = 0.15) 0.8405± 0.0020 0.05387± 2.2× 10−4 · · ·
F̃(r = 0.00) F̃(L) = ae−bL + c 1.040± 0.018 0.0534± 0.0026 −0.047± 0.026
F̃(r = 0.05) 0.984± 0.013 0.0575± 0.0022 −0.043± 0.019
F̃(r = 0.15) 0.910± 0.006 0.0644± 0.0017 −0.070± 0.011

8(b) SE L dependence σF̃(L) = aL−b + c −0.0044± 1.6× 10−4 1.25± 0.06 0.00743± 2.4× 10−5

9(c) 3+ 3 disorder F̄(σ ) = ae−bσ + c
F̄(r = 0.00) 0.5197± 0.0012 4.52± 0.05 0.0889± 9× 10−4

˜̄F(r = 0.00) 0.604± 0.004 5.30± 0.06 0.0195± 9× 10−4

10 SE N dependence σF̃(N ) = aebN (4.4× 10−4 ± 5× 10−5) 1.20± 0.04 · · ·
12(b) Tripartite disorder F̄(σ ) = ae−bσ c + 1/L

F̄(r = 0.00) 1.98± 0.22 6.50± 0.05 0.300± 0.013
˜̄F(r = 0.00) 0.93± 0.04 8.58± 0.11 0.489± 0.011

atoms in a lattice of size L = 6. The resulting fidelities
as a function of the normalized inverse temperature, βJ ,
are displayed in Fig. 15. In contrast to our results using
white noise as a generic decoherence model, presented in
Fig. 5, we observe no significant loss of bound tightness
for a broad temperature range of βJ � 0.5. This value of
βJ translates to a ground-state fraction of approximately
19.3% and an ensemble purity of approximately 0.164. For
even higher temperatures (smaller βJ ), the bound starts to
deviate from F , as shown in the inset, but this is inconse-
quential for entanglement-dimension certification, as both
F and F̃ are lower than B1 and entanglement can no longer
be witnessed.

These results indicate that the proposed bound is
resilient against dissipation through coupling to a finite-
temperature bath. Thus the method can be applied in
an experimental setup where one cools directly into the

Hubbard-model ground state, ending up at some finite tem-
perature. We note that ground states may also be prepared
by adiabatic deformations of the optical potential, starting
with a localized dimer. Realistic modeling of the prepa-
ration process will depend on the concrete experimental
setup and is left for future investigation.

APPENDIX D: DETAILS ON
INDISTINGUISHABLE-ATOM

BIPARTITE-ENTANGLEMENT CERTIFICATION

Here, we want to give a full derivation of our fidelity
bound for systems of multiple indistinguishable parti-
cles per species. We begin by giving the field operators
�̂↑(k), �̂↓(k), in terms of their lattice-site creation and
annihilation operators, where we have introduced short-
ened notation âj := ĉj ,↑ and b̂j := ĉj ,↓. Operators within
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one bosonic (fermionic) species are subject to commu-
tation (anticommutation) relations. Both species are dis-
tinguishable via their spin degree of freedom, meaning

that operators from different species always commute.
Formally, these statements then read

�̂↑(k) = ω(k)
L∑

j=1

eidkj âj , �̂↓(k) = ω(k)
L∑

j=1

eidkj b̂j , (D1a)

[
â†

i , âj

]

±
=

[
b̂†

i , b̂j

]

±
=δij , (D1b)

[
âi, âj

]
± =

[
b̂i, b̂j

]

±
=
[
â†

i , â†
j

]

±
=
[
b̂†

i , b̂†
j

]

±
=0, (D1c)

[
â†

i , b̂j

]

−
=

[
b̂†

i , âj

]

−
=
[
âi, b̂j

]

−
=
[
â†

i , b̂†
j

]

−
=0, (D1d)

where we have used [·]± to denote the anticommutator and commutator, respectively, and ω̃(k) is the Fourier transform
of the Wannier envelope. We can then rewrite the 2N -atom momentum correlation function using the field-operator form
given in Eq. (D1a) and obtain

〈
: n̂↑(k1)n̂↑(k2)n̂↓(k3)n̂↓(k4) :

〉 =
〈
�̂

†
↑(k1)�̂

†
↑(k2)�̂

†
↓(k3)�̂

†
↓(k4)�̂↑(k2)�̂↑(k1)�̂↓(k4)�̂↓(k3)

〉

=
∣
∣
∣ ω̃(k1)ω̃(k2)ω̃(k3)ω̃(k4)︸ ︷︷ ︸

=:ω̃(k1,k2,k3,k4)

∣
∣
∣
2 L∑

pp ′qq′
rr′ss′

e−id[k1(p−p ′)k2(q−q′)+k3(r−r′)+k4(s−s′)]
〈
â†

p â†
qb̂†

r b̂†
s âq′ âp ′ b̂s′ b̂r′

〉
, (D2)

in analogy to the two-atom result in Eq. (8). Note that
the we have used the normal ordered correlation func-
tion

〈
: n̂↑(k1)n̂↑(k2)n̂↓(k3)n̂↓(k4) :

〉
, as it correctly represents

single-atom-resolved measurements in momentum space
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FIG. 15. The numerical study of a thermal state of two atoms
at U/J = −12 in a lattice with L = 6 sites. (a) The fidelity
F(ρ̂T,�MES) as a function of the normalized inverse ensemble
temperature βJ on the left axis. On the right, we show the ensem-
ble ground-state participation amplitude. (b) An enlargement of
the values of βJ ≤ 1. The bound rapidly starts to loose tightness
for βJ � 0.5. As before, the data have been taken using 1× 104

position-space and 2.5× 104 momentum-space samples.

[105,106]. This subtle distinction was not necessary for
fully distinguishable particles, as the field operators �̂σ
commute with each other. By inserting the coefficient
expansion of ρ̂ in the Fock basis and exploiting the rela-
tions in Eq. (D1d), the expectation values in Eq. (D2)
become

〈
â†

p â†
qb̂†

r b̂†
s âq′ âp ′ b̂s′ b̂r′

〉
=

L∑

k<l,k′<l′
m<n,m′<n′

ρ̂
(mnm′n′)
(klk′l′)

〈klmn| â†
p â†

qb̂†
r b̂†

s âq′ âp ′ b̂s′ b̂r′ |k′l′m′n′〉 (D3a)

=
L∑

k<l,k′<l′
m<n,m′<n′

ρ̂
(mnm′n′)
(klk′l′)

〈kl| â†
p â†

qâq′ âp ′ |k′l′〉 〈mn| b̂†
r b̂†

s b̂s′ b̂r′ |m′n′〉 , (D3b)

where we have split the expectation value into a prod-
uct between the two subsystems, or species. They can be
evaluated independently using the commutation (anticom-
mutation) relations from Eqs. (D1b) and (D1c), resulting
in

〈kl| â†
p â†

qâq′ âp ′ |k′l′〉 = 〈0| âlâkâ†
p â†

qâq′ âp ′ â
†
k′ â

†
l′ |0〉

= (δp ′k′δq′l′ ∓ δq′k′δp ′l′)(δpkδql

∓ δqkδpl), (D4a)
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〈mn| b̂†
r b̂†

s b̂s′ b̂r′ |m′n′〉 = 〈0| b̂nb̂mb̂†
r b̂†

s b̂s′ b̂r′ b̂
†
m′ b̂

†
n′ |0〉

= (δr′m′δs′n′ ∓ δs′m′δr′n′)(δrmδsn

∓ δsmδrn). (D4b)

Inserting the above results from Eqs. (D3) and (D4) into
Eq. (D2) gives a rather long expression. Therefore, for the

moment, we leave out all terms connected solely to one
of the two subsystems as shown in Eq. (D5a) and reinte-
grate them later once all terms relating to the remaining
subsystem have been sufficiently simplified.

First, we resolve all open δ terms to eliminate
{p , q, p ′, q′} from the summation, which produces a sum
of phase factors,

L∑

k<l
k′<l′

L∑

pp ′qq′
ρ̂
(mnm′n′)
(klk′l′) e−id[k1(p−p ′)+k2(q−q′)] 〈kl| â†

p â†
qâq′ âp ′ |k′l′〉 (D5a)

=
L∑

k<l
k′<l′

ρ̂
(mnm′n′)
(klk′l′)

(
e−id[k1(k−k′)+k2(l−l′)] ∓ e−id[k1(k−l′)+k2(l−k′)] ∓ e−id[k1(l−k′)+k2(k−l′)] + e−id[k1(l−l′)+k2(k−k′)]

)
, (D5b)

each with a different permutation of site indices appearing
in the bra and ket in Eq. (D5a). The sign of the different
terms is determined by the underlying quantum statis-
tics. Treating this sum of complex phase terms within the
brackets in Eq. (D5b) (in combination with their complex-
conjugate counterparts) as the new basis functions would
give the desired combinations of coherences as weights.
However, we find that these functions are linearly depen-
dent, so that Q is generally rank deficient and thus cannot
be inverted. Unambiguous reconstruction is therefore not
possible. We overcome this issue by reorganizing terms. In
a first step, we relabel all site indices such that all phases
are of the same form, noted below the complex phases

in Eq. (D6a). One has to take care to properly transport
the conditions k < l and k′ < l′, which implement a sec-
ond quantization picture, by introducing the corresponding
Heaviside step functions θ(x) in Eq. (D6b). Using the
symmetry (antisymmetry) of the density matrix ρ̂ under
particle exchange, one can rejoin all four terms into one
term but without any restrictions regarding an ordering of
{k, l} or {k′, l′}, as seen in Eq. (D6c). Finally, we replace
two of the summation variables by the differences of the
index pairs 
k = k − k′ and 
l = l− l′ to group together
phases with the same factors appearing in the exponent
[see Eq. (D6d)],

L∑

k<l
k′<l′

ρ̂
(mnm′n′)
(klk′l′)

⎛

⎝e−id[k1(k−k′)+k2(l−l′)] ∓ e−id[k1(k−l′)+k2(l−k′)]
︸ ︷︷ ︸

l′←→ k′
∓ e−id[k1(l−k′)+k2(k−l′)]
︸ ︷︷ ︸

l ←→ k

+ e−id[k1(l−l′)+k2(k−k′)]
︸ ︷︷ ︸

l′←→ k′ l ←→ k

⎞

⎠ (D6a)

=
L∑

kk′ll′
e−id[k1(k−k′)+k2(l−l′)]

(

ρ̂
(mnm′n′)
(klk′l′) θ(l− k)θ(l′ − k′)∓ ρ̂(mnm′n′)

(kll′k′)
︸ ︷︷ ︸
k′ ←→ l′

θ(l− k)θ(k′ − l′)

∓ ρ̂(mnm′n′)
(lkk′l′)

︸ ︷︷ ︸
k←→ l

θ(k − l)θ(l′ − k′)+ ρ̂
(mnm′n′)
(lkl′k′)

︸ ︷︷ ︸
k′←→ l′ k ←→ l

θ(k − l)θ(k′ − l′)
)

(D6b)

=
L∑

kk′ll′
ρ̂
(mnm′n′)
(klk′l′) e−id[k1(k−k′)+k2(l−l′)] (D6c)

=
L∑

kl

∑


k:=k−k′

l:=l−l′

k≤
l

ρ̂
(mnm′n′)
(klk′l′)

(
e−id[k1 
k+k2 
l] + e−id[k1 
l+k2 
k)]) . (D6d)

Repeating the above-described procedure for the second subsystem yields Eq. (D7). This grouping of complex phases in
combination with the Wannier envelope makes up a complete basis and can thus be used to unambiguously reconstruct
the corresponding basis weights,
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〈: n̂↑(k1)n̂↑(k2)n̂↓(k3)n̂↓(k4) :〉 =
∣
∣ω̃(k1, k2, k3, k4)

∣
∣2

L∑

kk′ll′
mm′nn′

ρ̂
(mnm′n′)
(klk′l′) eid[k1(k−k′)+k2(l−l′)+k3(m−m′)+k4(n−n′)]

= ∣
∣ω̃(k1, k2, k3, k4)

∣
∣2

L∑

klmn

∑


k,
l

k≤
l

∑


m,
n

m≤
n

ρ̂
(mn(m−
m)(n−
n))
(kl(k−
k)(l−
l))

× (
e−id[k1 
k+k2 
l] + e−id[k1 
l+k2 
k]) (e−id[k3 
m+k4 
n] + e−id[k3 
n+k4 
m]) . (D7)

The summation over the differences 
k and 
l also
allows for a configuration where k > l, terms that were
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FIG. 16. The numerical results for the entanglement-
dimension certification of 2+ 2 indistinguishable atoms in
a lattice with L = 4. The dependence of the fidelity F and
the fidelity bound F̃ on the interaction-to-tunneling-strength
ratio U/J for pure and dephased states with (a) fermions
and (b) hard-core bosons. The dotted line represents the
infinite-measurement-statistics limit F̃∞ computed using exact
coherences of ρ̂. The differences between the two plots are most
discernible for pure states at U/J ∼ 0. All measurements were
simulated using 5× 104 momentum-space and position-space
samples each.

previously excluded in Eq. (D6a). This swapping of
indices is equivalent to a particle exchange, which is
accompanied by an additional minus sign for fermions
in the corresponding matrix elements in ρ̂. The alternat-
ing signs in Eq. (D5b) have effectively been shifted into
the definition of the density matrix ρ̂. This means that
unlike the simple two-atom case, some coherences inher-
ently acquire a sign here, which can lead to “destructive
interference” between coherences. The direct consequence
is a loss in bound tightness for fermions, as observed in
Sec. IV B.

APPENDIX E: 2+2 ATOMS

Figure 16 shows data for the case of N = 2 atoms per
species, in analogy to Fig. 9. We observe that the loss of
tightness for fermions is far less pronounced than in the
case of N = 3 atoms per species. The subtle differences
between Fermi-Dirac and Bose-Einstein statistics can be
most notably observed for very weak interaction strengths
and pure states, where our bound underestimates the true
state fidelity only for fermions.

APPENDIX F: TRIPARTITE
ENTANGLEMENT-DIMENSION BOUNDS

Here, we extend the concept of entanglement-dimension
bounds Bk to tripartite reference states with generalized
Schmidt decomposition, as given in Eq. (23), in close anal-
ogy to original work for bipartite states given in Refs.
[42,107]. The general idea is again to give bounds on the
maximal fidelity between some generalized reference state
|�〉L =

∑L
i=1 λi |iii〉 and some state ρ̂k with generalized

Schmidt number k. This comparison can be made in a sen-
sible way, as |�〉L is already given in a form similar to
the Schmidt decomposition of bipartite systems. All con-
tributions are combinations of orthogonal basis states |i〉
on the three subsystems and only appear once each. No
unitary-basis transformation can therefore reduce the num-
ber of states appearing in |�〉L, giving it the same role as
the bipartite-entanglement dimension. It is not necessary to
consider general mixed states, as convexity of the fidelity
guaranties that fidelity is maximized through a pure state,

040338-25



NIKLAS EULER and MARTIN GÄRTTNER PRX QUANTUM 4, 040338 (2023)

so we restrict the proof to pure states only [42]. The high-
est possible fidelity between the reference and a pure state
|φ〉k =

∑L
lmn=1 clmn |lmn〉 with |φ〉k ∈ Sk, where Sk is set of

states with generalized Schmidt rank k, thus reduces to

sup
|φ〉k∈Sk

F(�L,φk) = sup
|φ〉k∈Sk

∣
∣L〈�|φ〉k

∣
∣2

= sup
|φ〉k∈Sk

∣
∣
∣
∣

L∑

i=1

λiciii

∣
∣
∣
∣

2

. (F1)

Without loss of generality, let λ1 ≥ λ2 . . . ≥ λL. Since
|φ〉k ∈ Sk, at most k of the ciii can take nonvanishing val-
ues. Additionally, wave-function normalization requires∑

i |ciii|2 ≤ 1. It is therefore clear that the supremum is
realized with clmn �= 0 only for l = m = n ≤ k. Solving
this optimization problem with a Lagrange multiplier, we

arrive at ci = λi/

√∑k
j=1 λ

2
j for the optimal choice of

coefficients. Inserting this into the fidelity yields

sup
|φ〉k∈Sk

F(�L,φk) =
∣
∣
∣
∣
∣
∣

∑k
i=1 λ

2
i√∑k

j=1 λ
2
j

∣
∣
∣
∣
∣
∣

2

=
k∑

i=1

λ2
i . (F2)

If one uses the generalized GHZ state |GHZ〉L =
1/
√

L
∑L

i |iii〉 as the reference state, one arrives at the

same family of bounds as for the bipartite case,

sup
|φ〉k∈Sk

F(GHZL,φk) = k
L

, (F3)

as used in Sec. V. This resemblance is directly related to
the restriction to Schmidt-decomposable states as refer-
ence states. Multipartite states in general cannot be brought
into a form where each subsystem basis vector appears
only once through some basis transformation. Therefore,
this technique can never be expected to be able to detect
all terms for a generic multipartite quantum state but, at
most, the minimum of all local Hilbert-space dimensions.

APPENDIX G: DETAILS ON
MULTIPARTITE-ENTANGLEMENT

CERTIFICATION

Extension of the original scheme for entanglement certi-
fication to multipartite entanglement is straightforward but
tedious. Here, we briefly want to give a starting point for
how this extension is derived and present the final bound
F̃coh. As before, we decompose the momentum correla-
tion function of three atoms, 〈n̂1(k1)n̂2(k2)n̂3(k3)〉, in terms
of coherences and consider phases picked up due to the
Fourier transformation. This results in

〈n̂1(k1)n̂2(k2)n̂3(k3)〉 =
L∑

a,b,c=1
a′,b′,c′=1

φa...c′(k1, k2, k3) 〈abc| ρ̂ |a′b′c′〉 , (G1a)

φa...c′(k1, k2, k3) = |ω̃(k1, k2, k3)|2 exp
{−id[(a− a′)k1 + (b− b′)k2 + (c− c′)k3]

}
. (G1b)

We label the three distinguishable atom species {1, 2, 3}, with their respective lattice-site indices {a, b, c} and {a′, b′, c′}
for the bra and ket states. This description can be expressed analogously to Eq. (10) in trigonometric basis functions
of all three lattice momenta k1, k2, and k3. Special care has to be taken to avoid double counting by adapting the set
M of admissible lattice gap sets to again enforce

(α,β, γ ) ∈ M ⇒ (−α,−β,−γ ) /∈ M

∨ (α,β, γ ) = (0, 0, 0). (G2)

This is necessary to be able to do the full reconstruction of the momentum correlation function, since the true coeffi-
cients gαβγ have to be obtained from the full distribution of measured coefficients cαβγ first. The redefined set M for
three atomic species is given in Eq. (G3c). All remaining steps outlined in Eqs. (11)–(15) can be adapted analogously,
such that one arrives at the final result for the bound of the coherence contributions as follows:

F̃coh(ρ̂,�MES) =
L−1∑

δ=1

⎛

⎜
⎜
⎝

Re(gδδδ)
L

− 2
L−δ∑

a,b,c=1
a�=b∨b�=c

√
〈a′b′c′| ρ̂ |a′b′c′〉 〈abc| ρ̂ |abc〉

L

⎞

⎟
⎟
⎠

with a′ := a+ δ b′ := b+ δ c′ := c+ δ, (G3a)
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gαβγ = 2
L∑

a,b,c=1

〈abc| ρ̂ |(a+ α), (b+ β), (c+ γ )〉 with a+ α, b+ β, c+ γ ∈ {1 . . . L}, g000 = 1 (G3a)

M =
{
(α,β, γ ) ∈ {−(L− 1), . . . , L− 1}3

∣
∣
∣α ≥ 0 ∧ (β ≥ 0 ∨ α > 0) ∧ (γ ≥ 0 ∨ β > 0 ∨ α > 0)

}
. (G3b)

APPENDIX H: SCHMIDT BASIS PROPERTIES OF
ANTICORRELATED REFERENCE STATES

Here, we show some generic properties of the Schmidt
decomposition of potential reference states |�ref〉, which
are exploited in the main text for optimizing Schmidt
dimension witnesses for Hubbard-model ground states in
the repulsive regime. Regarding a two-atom configuration
in a lattice with L sites, an intuitive choice is the uniform
superposition of all nondimer states,

|�ref〉 = 1√
L(L− 1)

L∑

i�=j

|ij 〉 , (H1)

on which we need to perform a Schmidt decomposition
to compute the entanglement-dimension bounds. The first
step consists of a singular-value decomposition of the
wave-function coefficient matrix C, defined through

Cij = 〈ij |�ref〉 =
{

0, for i = j ,
1√

L(L−1) , for i �= j .
(H2)

This matrix is symmetric and thus the absolute values
of its eigenvalues are equal to its singular values. It
is clear that such a matrix always has an eigenvector
|λ1〉A = |λ1〉B = 1/

√
L
∑L

i=1 |i〉, since every row of C con-
tains the same number, L− 1, of constant coefficients.
This yields the eigenvalue of λ1 = (L− 1)/

√
L(L− 1) =√

(L− 1)/L and a corresponding Schmidt vector of

|λ1〉 = |λ1〉A ⊗ |λ1〉B =
1
L

L∑

i,j=1

|ij 〉 . (H3)

Consequently, we can split up our reference state as

|�ref〉 = λ1 |λ1〉 +
L∑

i=2

λi |λi〉 =: λ1 |λ1〉 + λ′ |λ′〉 , (H4)

where we have included all remaining contributions in a
normalized state,

|λ′〉 =
(√

1
L− 1

−
√

L− 1
L2

)
L∑

i�=j

|ij 〉

−
√

L− 1
L2

L∑

i=1

|ii〉 , (H5)

and λ′ = 1/
√

L. Note that both |λ1〉 and |λ′〉 are symmetric
under lattice-site exchange, such that any superposition of
these states will have the same symmetry. This means that
one can define the one-parameter family of reference states

|� ′ref〉 (λ) = λ |λ1〉 +
√

1− λ2 |λ′〉 (H6)

by varying the relative weight between them.
Finally, we compute the weights w of coherences in the

fidelity, introduced in Eq. (28), as a function of the param-
eter λ. Using the above-discussed symmetry, we know that
all dimer-dimer terms 〈ii| ρ̂ |jj 〉 must contribute equally,
giving them a shared weight wd

d. Analogous arguments
can be made for dimer-nondimer coherences 〈ii| ρ̂ |jk〉with
weight wnd

d and finally with nondimer-nondimer contribu-
tions 〈ij | ρ̂ |kl〉 with weight wnd

nd. These weights are given
by

wl
k = |� ′ref〉 〈� ′ref|lk
= λ2 |λ1〉 〈λ1|lk + (1− λ2) |λ′〉 〈λ′|lk
+ λ

√
1− λ2

(
|λ1〉〈λ′|lk + |λ′〉〈λ1|lk

)
, (H7)

where the notation |·〉 〈·|lk refers to the matrix element of
the projector with respect to some basis elements k and l,
placeholders for dimer or nondimer states. By plugging in
the definitions of the two states from Eqs. (H3) and (H5),
we obtain the following expressions for the three different
weights as follows:

wnd
nd =

1+ λ2(L− 2)
L2(L− 1)

+ 2λ
√

1− λ2

L2
√

L− 1
, (H8a)
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wnd
d =

2λ2 − 1
L2 − (L+ 2)λ

√
1− λ2

L2
√

L− 1
, (H8b)

wd
d =

L− 1− λ2(L− 2)− 2λ
√

1− λ2
√

L− 1
L2 . (H8c)

It is clear from Eq. (H8a) that, for all L ≥ 2, one has wnd
nd ≥

0, since λ ∈ [0, 1].
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