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Parameterized quantum circuits used as variational ansatzes are emerging as promising tools to tackle
complex problems ranging from quantum chemistry to combinatorial optimization. These variational
quantum circuits can suffer from the well-known curse of barren plateaus, which is characterized by an
exponential vanishing of the cost-function gradient with the system size, making training unfeasible for
practical applications. Since a generic quantum circuit cannot be simulated efficiently, the determination
of its trainability is an important problem. Here we find an efficient method to compute the gradient of
the cost function and its variance for a wide class of variational quantum circuits. Our scheme relies on
our proof of an exact mapping from randomly initialized circuits to a set of Clifford circuits that can be
efficiently simulated on a classical computer by virtue of the celebrated Gottesman-Knill theorem. This
method is scalable and can be used to certify trainability for variational quantum circuits and explore
design strategies that can overcome the barren-plateau problem. As illustrative examples, we show results
with up to 100 qubits.
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I. INTRODUCTION

Inspired by the success of machine-learning methods,
variational quantum algorithms [1–3] have emerged as a
promising way to harness the power of quantum com-
puting in various domains ranging from quantum chem-
istry [4–6] to combinatorial optimization problems [7–9].
These algorithms use the output of parameterized quan-
tum circuits as variational ansatzes, whose parameters are
classically optimized through gradient-based methods.

Variational quantum circuits can suffer from trainability
issues caused by the existence of barren plateaus [10], a
limitation that has been extensively studied in the recent
literature [11–38]. It is characterized by an exponential
vanishing of the cost function’s gradient with the sys-
tem size that makes training variational quantum circuits
impossible for a large number of qubits. Barren plateaus
can originate from various and fundamentally different
phenomena. Their emergence was first shown in Ref. [10]
for 2-designs (a random unitary transformation matching
the Haar distribution up to the second moment). Recent
works linked barren plateaus to the expressibility of the
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ansatz [11] as well as noise [12] and entanglement. In
particular, Ortiz Marrero et al. [13] showed that, for archi-
tectures that can be split into a hidden and a visible
subsystem, such as quantum Boltzmann machines or feed-
forward quantum neural networks, an excess of entangle-
ment between the two subsystems would result in a highly
mixed state for the visible subsystem. This can lead to a flat
landscape for the cost function. The effect of the structure
of the cost function on the appearance of barren plateaus
was also investigated in other works [14,15], and it was
shown that global cost functions are more prone to exhibit
barren plateaus. Note that shallow models such as quantum
kernel machines [39–43] and reservoir computing models
[44–47], while often easier to train than variational quan-
tum algorithms, might also suffer from trainability issues
of a similar nature [48].

Numerous investigations have proposed strategies to
address the barren-plateau issue. In the context of
entanglement-induced barren plateaus, most strategies rely
on limiting the amount of entanglement [16–20]. Other
methods make use of tailored distributions of the initial
circuit parameters and carefully designed circuit archi-
tectures [21–29]. Yet, only a handful of configurations
offer trainability guarantees and robustness against barren
plateaus [30,31]. Tackling this fundamental issue remains
an important theoretical challenge.

In this paper, we propose an alternative approach to the
problem by providing an efficient method to estimate the
average gradients and their variance for a wide class of
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variational quantum algorithms. By studying the quantum
channel associated with a random single-qubit rotation,
we prove that, under some simple conditions, the first and
second moments can be expressed as mixed-unitary chan-
nels [49] composed of Clifford gates [50]. Upon some
additional general assumptions for the random angle dis-
tribution, we demonstrate that this allows us to exactly
map randomly initialized circuits composed of Clifford
gates and parametrized rotations to an ensemble of Clifford
circuits. Moreover, we prove that the obtained ensemble
can be efficiently sampled to compute quantities of inter-
est, such as the variance of the gradient or the average
of the cost function over the initial random parameters.
Making use of the celebrated Gottesman-Knill theorem
[51,52], we analytically prove the efficiency of our method
that can be implemented on a classical computer with a
complexity scaling polynomially in both the number of
variational parameters and the system size. In addition, we
show some numerical experiments to illustrate our method
on examples of random circuits and faithfully reproduce
the exponential suppression of the variance first found in
Ref. [10] with polynomial resources and for circuits acting
on up to 100 qubits.

II. THEORETICAL FRAMEWORK

A. Variational problem

In variational quantum algorithms, a parameterized uni-
tary transformation Û(θ) acting on n qubits is used as
a variational ansatz to achieve a task expressed as the
minimization of a cost function

C(θ) = Tr[Û(θ)ρ̂Û†(θ)Ô] (1)

for some observable Ô and some initial n-qubit state ρ̂.
This formulation is general and encompasses typical tasks,
such as the preparation of a target state |ψ〉 (setting Ô =
− |ψ〉 〈ψ |) or a ground-state search for some Hamilto-
nian Ĥ (setting Ô = Ĥ). The considered parameterized
unitaries are typically composed of a succession of param-
eterized gates and fixed layers. Here we consider a generic
ansatz of the form

Û(θ) =
M∏

i=1

Ûi(θi)Ŵi, (2)

where each unitary Ûi(θi) = e−iθiP̂i/2 is a single-qubit rota-
tion associated with a given Pauli operator P̂i ∈ {X̂ , Ŷ, Ẑ},
while the Ŵk are fixed layers composed of a sequence
of unparameterized gates that can act on multiple qubits.
Upon absorbing Clifford gates in the fixed layers, we
consider the rather general class of circuits based on Z
rotations [53]. The unitary transformation Û(θ) depends
on M continuous parameters gathered in the vector θ =

(θ0, . . . , θM−1). These rotation parameters can be opti-
mized using classical gradient-descent techniques. The
gradient of the cost function with respect to the kth parame-
ter can be conveniently estimated using the parameter-shift
rule [54,55]:

∂kC(θ) = 1
2

(
C

(
θ + π

2
ek

)
− C

(
θ − π

2
ek

))
. (3)

Here ek is the canonical vector along component k. It is
worth noting that the ±π/2 shifts in parameter θk can be
factored out and seen as an extra Clifford gate added to the
fixed layer Ŵk. In fact, remarking that the phase gate Ŝ can
be written Ŝ = eiπ/4e−iπ Ẑ/2 and assuming that P̂k = Ẑ, we
have

Ûk(θk + π/2)Ŵk = e−iθkẐ/2e−iπ Ẑ/2Ŵk

= e−iπ/4Ûk(θk)ŜŴk. (4)

We define Ŵk,± = e∓iπ/4ŜŴk such that we can write

Ûk(θk ± π/2)Ŵk = Ûk(θk)Ŵk,±. (5)

We denote by

Û±(θ) = Û
(

θ ± π

2
ek

)
(6)

the shifted unitaries appearing in the parameter-shift rule.
From what precedes we have

Û±(θ) =
M∏

i=1

Ûi(θi)V̂i,± (7)

with

V̂i,± =
{

Ŵk,± if i = k,
Ŵi otherwise.

(8)

B. Unitary ensembles and t-fold channels

To start the optimization process, the rotation angles are
randomly initialized according to some probability distri-
bution p(θ). The initialized circuit can then be represented
by a unitary ensemble U = {Û, P(Û)}, where P is a proba-
bility measure on U. One is often interested in computing
averages of quantities that are polynomial of a given order
t in the entries of Û. Such quantities can be completely
determined by the knowledge of the t-fold channel [56]

�
(t)
U
(ρ̂) =

∫

U

Û⊗tρ̂Û†⊗tdP(Û), (9)

where ρ̂ is an initial state of t copies of the original n-qubit
system. As an example, the expected value of the square of
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the cost function at the initialization can be evaluated using
Eθ [C(θ)2] = Tr[�(2)

θ (ρ̂
⊗2)Ô⊗2], where we denote by �(t)

θ

the t-fold channel associated with the unitary ensemble
{Û(θ), RM � θ ∼ p(θ)}. In Appendix B we define second-
order quantities (respectively first-order quantities) as
quantities that can be obtained from the knowledge of the
2-fold (respectively 1-fold) channel. To give a concrete
example, Eθ [C(θ)2] is a second-order quantity.

More generally, one can characterize the expressivity of
a given ansatz by comparing its t-fold channels to those
obtained for a Haar (uniform) distribution over the whole
unitary group [11,57,58]. Unitary ensembles whose t-fold
channels match the t-fold channels for the Haar measure,
the so-called t-designs [59,60], have played a crucial role
in the original discovery of the barren-plateau phenomenon
[10]. Moreover, in multiple cases random quantum circuits
are approximate t-designs [61–63]. For instance, Harrow
and Low [61] showed that quantum circuit composed of
a polynomial number of gates randomly drawn from a
universal set of two-qubit gates and applied to random
pairs of qubits are approximate 2-designs. This result has
been extended to cases where the gates are applied to
nearest-neighbor qubits in Refs. [62,63].

C. Barren plateaus

For a unitary ensemble U that describes parameterized
ansatz Û(θ) with random continuous parameters θ and a
possibly random architecture, a cost function C(Û(θ)) is
said to exhibit a barren plateau if the probability of obtain-
ing a gradient that deviates from zero by some ε > 0 van-
ishes exponentially with the system size n. More precisely,
PU(|∂kC| > ε) ≤ O(exp(−αn)) for some α > 0 [11]. As
mentioned earlier, barren plateaus were first found for uni-
tary ensembles forming 2-designs [10] and connections
to expressivity [11], noise [12], entanglement [13,16–20],
and the degree of locality of the cost function [14,15] were
later discovered. In many cases, the average value of the
gradient vanishes exactly, for instance when the rotation
parameters are initialized uniformly in [−π ,π ]. However,
this does not imply a vanishing of the gradient amplitude
on average, and thus does not tell us much about the train-
ability of the model. In this unbiased case, the variance is
a relevant quantity. Because of the Chebyshev inequality,
one has PU(|∂kC| > ε) ≤ Var [∂kC] /ε2, so that a vanish-
ing variance implies the existence of a barren plateau. On
the other hand, a nonvanishing variance guarantees large
fluctuations of the initial gradient and thus a good initial
trainability, independently of the gradient bias.

For variational quantum algorithms, the gradient is to
be estimated through measurements realized on a hardware
platform. As argued in Ref. [64], probing an exponentially
small gradient requires an exponential precision on the
measurements and thus an exponential number of exper-
iments, which is prohibitive. Barren plateaus are often

seen as a quantum version of the vanishing gradient phe-
nomenon in classical machine learning. The impact of
vanishing gradients on the trainability of a classical deep
neural network is discussed in Ref. [65]. The exact nature
of barren plateaus was investigated further by Liu et al.
[66] in a quantum machine-learning context, using a least-
square loss function and relying on a neural tangent kernel
formalism. In particular, the authors discussed the funda-
mental differences between barren plateaus and the classi-
cal vanishing gradient, and they showed that in a certain
overparameterized regime the training procedure might be
robust to noise. Let us note that variational quantum algo-
rithms can suffer from other issues beyond barren plateaus,
related for instance to the number of local minima of the
loss landscape [67] or to the complexity associated with the
classical optimization procedure [68]. Also, higher-order
moments may help diagnose the trainability of variational
quantum algorithms [69].

III. RESULTS AND DISCUSSION

The main finding of this theoretical work is that, under
some rather general assumptions on the distribution of the
rotation parameter θ , it is possible to map the 1-fold and 2-
fold channels of a random rotation R̂Z(θ) to a finite unitary
ensemble of Clifford gates. Moreover, we prove that such a
mapping allows us to estimate quantities of interest such as
the gradient variance using only Clifford circuits. Finally,
we illustrate our rigorous proofs through numerical exper-
iments. The detailed mathematical proofs are presented in
the Appendices A–C.

A. Exact mapping and efficient sampling

As mentioned earlier, we focus on the class of varia-
tional quantum circuits composed of fixed Clifford gates
alternated with single-qubit parameterized rotations along
the X , Y, or Z directions, such as that depicted in Fig. 1.
As explained in Sec. II A, we restrict our study to rotations
along Z, as we can obtain the cases of rotations along Y
and X by adding extra Clifford gates to the different fixed
layers of the considered ansatz. Let us consider a rotation
along the Z axis with a distribution that is symmetric about
the θ = 0 angle [70]. We show in Appendix A that the 1-
fold channel corresponding to a first-order average can be
written as a convex sum of the unitary channels associated
with the identity and the Pauli-Z gates, as schematically
represented on the upper part of Fig. 2. Note that this result
has been derived and used in Ref. [71] in the case of a uni-
form probability distribution for θ in order to analyze a
variational ansatz through the lens of ZX calculus.

To compute the 1-fold channel for the randomly initial-
ized ansatz of the form given in Eq. (2) with independent
rotation parameters, one can simply compose the 1-fold
channels associated with each rotation, intertwined with
the unitary channels associated with the fixed gates Ŵk.
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FIG. 1. Schematic representation of the mapping from a variational quantum circuit (VQC) with random parameters to Clifford
approximant circuits for first-order quantities (quantities that require only knowledge of the rotation 1-fold channels to be computed;
see Appendix B). For a circuit with M parameters, a sample size of the order of M/ε2 is enough to get an approximation of the average
on the initial circuit with a precision ε on the observable mean values (see Appendix C).

We find that the 1-fold channel of the ansatz is a con-
vex sum of 2M Clifford unitary channels, where M is
the number of rotations. One can view this convex sum
as an average over a finite ensemble of Clifford approx-
imant circuits. Examples of such circuits are provided in
Appendix F for a simple architecture similar to that in
Fig. 1. Although the number of Clifford approximant cir-
cuits in this ensemble is exponential in the number of
parameters, we show in Appendix C 2 that a number of
samples polynomial in M/ε2 are sufficient to approxi-
mate the average of an observable expectation value (or,
more generally, of any first-order quantity) to any desired
precision ε. This result relies on a classical concentra-
tion argument, and is schematically represented in Fig. 1
for a simple circuit at the first order. From this, one can
estimate the expectation value of the gradient, as it suf-
fices to replace Û(θ) by Û±(θ) (as defined in Sec. II A)
in the 1-fold channel definition to obtain the expectation
of C(θ ± π/2). This gives the expectation of the gradient
thanks to the parameter-shift rule.

We prove in Appendix A that the 2-fold channel associ-
ated with a random Z rotation is also a linear combination
of Clifford channels, provided that the probability distri-
bution is an even function of θ . This result is depicted
in Fig. 2(b). To obtain this mapping, we use the Choi
representation of quantum channels [49]. The Choi opera-
tors representing unitary quantum channels given by tensor
products of Z-rotation gates are diagonal. Hence, one

can represent these channels by the diagonal coefficients
of their associated Choi operators. Using this represen-
tation and the linearity of the expectation, we obtain a
tractable representation of the average 2-fold channel of
a Z rotation. The decomposition is then derived by solving
a linear system of equations obtained by identifying the
coefficients of the previous representation for the different
channels involved. When the inequalities Eθ [f+(θ)] ≥ 0
and Eθ [f−(θ)] ≥ 0 with f±(θ) = cos θ(cos θ ± 1) are sat-
isfied, the previous linear combination is in fact a convex
sum. Equivalently, the 2-fold channel of a Z rotation
with an even angular probability distribution is a Clifford
mixed-unitary channel if

Eθ [cos2 θ ] ≥ |Eθ [cos θ ]|. (10)

The zeros of f+, f− are the angles {kπ/2, k ∈ Z} for which
R̂Z(θ) matches a Clifford gate (see Appendix A). Indeed,
if the distribution of θ is a convex sum of Dirac distribu-
tions at these angles, the average over θ becomes a discrete
average over the corresponding Clifford unitaries. Hence,
the associated 2-fold channel is indeed a convex sum of
Clifford channels. One can also verify that the previous
conditions are satisfied for distributions that are both even
with respect to angle θ and π periodic. For example, the
uniform distribution is included. In the case of a centered
Gaussian distribution, the previous conditions are satisfied
if and only if the corresponding width is large enough.
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(a)

(b)

FIG. 2. Schematic representation of the mapping rules from Z rotations with a random parameter to unitary ensembles composed of
Clifford gates. Panels (a) and (b) are respectively for first- and second-order averages. The mapping here is for probability distributions
that are even with respect to θ : we define r1 = Eθ [cos(θ)] and r2 = Eθ [cos(2θ)]. The coefficients pi are the probabilities dictating how
the corresponding Clifford circuits are sampled.

Provided the distributions of the rotation angles sat-
isfy the conditions discussed above, the scheme can be
extended to the second order, allowing one to approxi-
mate second-order quantities, such as the average of the
squared cost function Eθ [C(θ)2], using a set of Clif-
ford approximant circuits. By the parameter-shift rule,
the expectation of the squared gradient can be calculated
from knowledge of four quantities of the form Eθ [C(θ ±
(π/2)ek)C(θ ± (π/2)ek)]. The latter can be estimated with
Clifford approximants by replacing the Û⊗2 term in the
definition of the 2-fold channel by Û± ⊗ Û±. Hence, the
scheme covers the estimation of the gradient variance.
Note that at the second order, the approximant circuits
are obtained by replacing the rotation 2-fold channels
by one of the four two-qubit Clifford gates depicted in
Fig. 2, yielding an ensemble of 4M possible Clifford cir-
cuits. As for first-order quantities, a number of samples
scaling linearly in M are enough to guarantee convergence.
These rigorous results are summarized in the following

theorem, whose detailed proof is shown in Appendices A
and C.

Theorem 1.—For a variational ansatz composed of fixed
Clifford gates and of M parameterized rotations along the
X,Y, or Z direction, if the random variational parameters
(θ1, . . . , θM ) are independent and symmetric with respect
to one of the Clifford angles, i.e., ∈ {0,π/2,π , 3π/2}, then,
for any error ε > 0 and a probability 1 − δ to meet such
accuracy, any first-order quantity can be computed using

K ≥ O
(

M
ε2 log

(
2
δ

))

Clifford approximant circuits. Moreover, if the distribution
of θi satisfies the inequality

Eθi[cos2(θi − Eθi[θi])]

≥ |Eθi[cos
(
θi − Eθi[θi]

)
]| for all i ∈ {1, . . . , M }
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then the same holds for any second-order quantity.
Finally one makes use of the Gottesman-Knill theorem,

which states that, for a Clifford unitary Û and an observ-
able Ô acting nontrivially on NO qubits, the expectation
value Tr[|0〉 〈0|⊗n Û†ÔÛ] can be classically computed with
a polynomial complexity in both n and NO. Our method
inherits this complexity, and, in particular, we can classi-
cally estimate the gradient expectation and variance with a
polynomial complexity in n, NO, and M .

In Appendix D we extend the scheme presented above
for the 2-fold channels to the case where the distribu-
tion of the random angle does not satisfy the convex
condition of Eq. (10). In that case, it is still possible to
use Clifford approximant circuits to estimate second-order
quantities, but this comes at the price of an exponential
complexity in the number of variational parameters M .
This result is based on a sampling scheme proposed by
Piveteau et al. [72]. In that context, the method allows
one to trade an exponential complexity in the system size
for an exponential complexity in the number of variational
parameters M .

2 3 4 5 6 7 8
n

10−3

10−2

10−1

Ê
∂

θ 0
C

(θ
)

]
[

2

Direct estimation
Clifford estimation

FIG. 3. Estimated average of the squared gradient of the cost
function with respect to the first variational parameter versus the
number of qubits n. We emphasize that derivatives with respect
to the other angles θk give similar results (not shown). The results
are for random circuits composed of a single layer of gates,
with one rotation per qubit. Such rotations are randomly cho-
sen among RX , RY, RZ . The rotation layer is followed by a layer
of alternated CZ gates (note that this is the same type of archi-
tecture as that represented in Fig. 1). The random rotation angles
are independent and follow the uniform probability distribution
on the interval [0, 2π ]. In order to get the estimation, we ran-
domly sampled 500 different circuit architectures. For each gate
architecture, we computed the average of the squared gradient,
assuming a uniform distribution of the rotation angles, using both
a direct estimation and our method based on the mapping to Clif-
ford approximant circuits. In particular, we sampled 500 vectors
of angle parameters for the direct estimation and 500 Clifford
circuits for our method. Note that, for the uniform distribution,
the average gradient vanishes, and thus estimating the squared
gradient is equivalent to estimating the gradient variance.

In Appendix E, we also present the extension of our
scheme to the general case of N -fold channels. We prove
that the N -fold channel associated with random Z rotations
can be decomposed as a real sum of Clifford unitary chan-
nels. From this decomposition, we derive a condition for
the N -fold channel to be a convex sum of Clifford uni-
taries by imposing the coefficients of the combination to be
positive. However we show that the obtained decomposi-
tion is not unique, so that the derived condition is sufficient
but not necessary. Finding a sufficient and necessary con-
dition on the distribution of a random angle that guarantees
that the corresponding N -fold channels are Clifford mixed
unitary channels remains an open problem.

B. Numerical simulations

To illustrate the applications of our exact mapping and
the ensuing estimation method, we have performed numer-
ical experiments on concrete examples. Let us consider
a simple variational quantum circuit composed of layers
of single-qubit rotations along either the X , Y, or Z axes,
alternated with fixed layers of control-Z gates. Such an
ansatz is shown for three qubits in Fig. 1. We further
assume that the rotation angles are independent and identi-
cally distributed according to the uniform law over [0, 2π ].
Moreover, we assume that the cost function is of the form
in Eq. (1) with Ô = |0〉 〈0|⊗n.

100 101 102

K

10−4

10−3

10−2

B
ia

s
(

[
])

Ê
K

∂
θ 0
C

(θ
)2

2

FIG. 4. Squared statistical bias of the estimator considered in
Fig. 3 for random circuits with n = 5 qubits versus the num-
ber of Clifford approximant circuits K . The results have been
obtained with 500 randomly drawn circuit architectures. For each
sample size K , we consider a bootstrap batch of 100 estimators
(each estimator is obtained by sampling K circuits from a set of
2000 Clifford approximant circuits for each choice of the rota-
tion direction). Then, for each K , the statistical bias is derived
from the bootstrap batch. The estimator’s true expected value is
provided by the direct estimation of the average squared gradient
with 4000 samples. The shaded area corresponds to the interval
between the 20th and 80th percentiles of the estimated biases for
the 500 random architectures.
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We consider these architectures with random directions
of the rotation gates. Up to a different fixed first layer,
such random circuits have been showed to exhibit bar-
ren plateaus in Ref. [64]. Note that in this particular
case the averaging was done on both the rotation angles
and the rotation directions. Here we reproduce this result
using Clifford approximants. To do so, we sample both
the exact circuit architecture by randomly selecting the
rotation directions uniformly from {X , Y, Z}, and then we
either sample the rotation angles directly or we sample a
Clifford approximant circuit. For a uniform distribution,
we have, for all k ∈ Z, Eθ [cos kθ ] = 0, so the sampling of
the replacement Clifford gates is uniform (as represented
in Fig. 2 for r1 = r2 = 0). Moreover, by the parameter-
shift rule [Eq. (3)], it is clear that, for uniformly distributed
rotations, the average gradient is analytically zero; thus, it
suffices to estimate the average of the squared gradient as
Varθ [∂kC(θ)] = Eθ [∂kC(θ)2].

In Fig. 3 the estimations of the average squared gra-
dient using either direct evaluations or by sampling Clif-
ford approximants are shown. Note that the average is
taken over both the random rotation angles and the vari-
able architecture (i.e., the random direction of the rotation
gates). The estimation obtained from Clifford approxi-
mants accurately matches the direct estimation and the
average squared gradient vanishes exponentially with the
number of qubits, as expected. In addition, the evolution
of the bias of the Clifford estimation with the number
of approximant circuits K is shown in Fig. 4. The bias
decreases polynomially with K . As appears in Fig. 5, the
same trend holds for the variance of the Clifford estimators.
These results are in agreement with the analytical scaling
derived in Appendix C.

100 101 102

K

10−4

10−3

10−2

V
ar

(
[

])
Ê

K
∂

θ 0
C

(θ
)2

FIG. 5. Variance of the estimator of the expected squared gra-
dient with respect to the first parameter θ0 versus the number of
Clifford approximant circuits K . Same type of random circuits
as in Fig. 3 with n = 5 qubits. We have used the same bootstrap
procedure as in Fig. 4. The shaded area corresponds to the inter-
val between the 20th and 80th percentiles of the estimated biases
for 500 random architectures.

20 40 60 80 100
n

10−52

10−43

10−34

10−25

10−16

10−7

V
ar

[∂
θ 0
C

(θ
)]

FIG. 6. Estimated variance of the gradient of the cost function
with respect to the first variational parameter versus the number
of qubits n. Each variance is estimated using 105 Clifford circuits.
The circuits and cost function used are the same as those used for
Fig. 3.

Using our method, we also reproduced the results show-
ing the exponential suppression of the gradient variance
presented in Ref. [64] for up to 100 qubits. The results are
presented in Fig. 6.

Finally, we illustrate the impact of an ansatz architec-
ture on its trainability by evaluating the gradient variances

10 20 30 40 50 60 70 80
i

10−3

10−2

10−1

V
ar

[∂
θ i
C

( θ
)]

FIG. 7. Variance of the cost-function gradient with respect to
the variational parameters in decreasing order and for 20 random
circuits. The circuits are acting on n = 40 qubits. Each circuit
is composed of ten layers. For each layer l, a number ml is ran-
domly chosen in the interval [0, n], and the layer is then built by
first applying ml random single-qubit rotation gates to randomly
chosen qubits, and then applying a series of entangling gates of
the same type and with the same arrangement as those considered
in Fig. 3. For each circuit and each parameter θi, the gradients are
estimated using 104 Clifford approximant circuits. The Hamilto-
nian of the cost function is a sum of ten random Pauli strings.
Note that each curve corresponds to a different architecture.
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0.002 0.004 0.006 0.008 0.010 0.012
∑

i Var [( 1/Np ) ∂θi
C (θ)]

−0.08

−0.06

−0.04

−0.02

0.00

E
[C

(θ
)]

FIG. 8. Mean value of the cost function versus variance of the
cost-function gradient for 20 random circuits and 40 qubits. Each
point represents a circuit, and the circuits considered are the same
as those of Fig. 7. The x axis is the average of the variances of
the gradients with respect to the Np circuit rotation parameters
θi, i = 1, . . . , Np .

for a set of randomly drawn ansatzes and for a given cost-
function Hamiltonian. We consider random circuits acting
on 40 qubits, and a Hamiltonian composed of a sum of ten
randomly chosen Pauli strings. As for the results presented
in Fig. 3, the considered variational circuits are composed
of layers of rotations alternated with fixed entangling lay-
ers. Here we considered circuits with ten layers. For each
rotation layer, a random subset of rotations is replaced
by identity gates (see Fig. 7 for details). The variances
of the cost-function partial derivatives with respect to the
ansatz parameters are shown in Fig. 7, and Fig. 8 shows the
average variance of the gradients versus the mean value
of the cost function for different random circuits. These
results show that, for a given cost function, modifying
the ansatz architecture has a strong effect on the trainabil-
ity. We therefore believe that our method may be used
to systematically examine such effects for large systems
with a reasonable cost, hence guiding the design of better
variational ansatzes.

IV. CONCLUSIONS AND PERSPECTIVES

In this paper we presented a classically efficient method
to estimate first- and second-order expectation values for
a large class of randomly initialized variational quantum
circuits. This includes estimating the average gradient of
the cost function and its variance, which can be used
to estimate the trainability. Our method applies to the
large class of circuits whose architecture is composed of
fixed Clifford gates and single-qubit parameterized rota-
tions, provided that the rotation angles are independent and
that their distributions are symmetric with respect to an

angle θ0 ∈ {kπ/2, k ∈ Z} and satisfy Eθ [cos2 (θ − θ0)] ≥
|Eθ [cos (θ − θ0)]|. The method relies on an exact map-
ping of randomly initialized variational quantum circuits to
ensembles of Clifford circuits and on the Gottesman-Knill
theorem. We provide rigorous convergence guarantees,
and, in particular, we show that the complexity of the
method scales polynomially in both the system size and the
number of parameters of the considered ansatz. We investi-
gated the generalization of the proposed scheme to the case
of N -fold channels, and showed that the N -fold average of
random Z rotations can be expressed as a real combina-
tion of Clifford unitaries. However, such a decomposition
is not unique, and finding a sufficient and necessary con-
dition for the considered N -fold channel to be a Clifford
mixed-unitary channel remains an open problem. Solving
this problem is of great interest as it could allow us to gen-
eralize the scheme presented in this work to ansatzes with
correlated variational parameters.

We believe that such a tool will prove very useful in
future applications, as it could be employed to conduct
classical optimization of architectures and initialization of
large-scale variational quantum circuits. As the absence of
barren plateaus can be guaranteed by a large enough vari-
ance of the gradient, regardless of the exact origin of the
potential barren plateaus, this method could be used to cer-
tify trainability for a system with a very large number of
qubits.
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APPENDIX A: 1-FOLD AND 2-FOLD CHANNELS
OF A RANDOM Z ROTATION

1. 1-fold channel

Here we give the expression of the 1-fold channel for
a single-qubit rotation around the Z axis. The rotations
around the X and Y axes can then be obtained by com-
bination with Hadamard and phase gates. Let us define
�̂0 := |0〉 〈0| and �̂1 := |1〉 〈1|:

R̂Z(θ) = e−iθ/2�̂0 + eiθ/2�̂1, (A1)

R̂Z(θ)ρ̂R̂†
Z(θ) = �̂0ρ̂�̂0 + �̂1ρ̂�̂1 + eiθ �̂1ρ̂�̂0

+ e−iθ �̂0ρ̂�̂1. (A2)
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Thus,

Eθ [R̂Z(θ)ρ̂R̂†
Z(θ)] = �̂0ρ̂�̂0 + �̂1ρ̂�̂1 + Eθ [eiθ ]�̂1ρ̂�̂0

+ Eθ [e−iθ ]�̂0ρ̂�̂1. (A3)

We recognize the characteristic function of the distribution
of θ , namely,

φ(t) := Eθ [eitθ ].

Assuming that this probability distribution is even in θ ,
we have φ(t) ∈ R for all t and we can define r1 = φ(1) =
φ(1)∗ = φ(−1). As we have 1 = �̂0 + �̂1 and Ẑ = �̂0 −
�̂1, we get

ρ̂ = (�̂0ρ̂�̂0 + �̂1ρ̂�̂1)+ (�̂1ρ̂�̂0 + �̂0ρ̂�̂1),

Ẑρ̂Ẑ = (�̂0ρ̂�̂0 + �̂1ρ̂�̂1)− (�̂1ρ̂�̂0 + �̂0ρ̂�̂1),
(A4)

and, hence,

1 + r1

2
ρ̂ + 1 − r1

2
Ẑρ̂Ẑ = Eθ [RZ(θ)ρ̂R†

Z(θ)]. (A5)

This is indeed a convex sum of Clifford channels under
the condition that r1 ∈ [−1, 1], which is always satisfied.
For distributions that are symmetric with respect to a Clif-
ford angle ∈ {kπ/2, k ∈ {0, 1, 2, 3}}, we can factor out the
corresponding rotation, which is (up to a phase) a Clifford
gate. This way we can fall back to the case of an unbi-
ased even distribution, i.e., symmetric with respect to the
zero angle. Note that in the particular case of the uniform
distribution over [0, 2π ], we have r1 = 0.

2. 2-fold channel

In this section we make use of the Choi representation of
quantum channels, which allows us to represent channels
acting on two-qubit states by 16 × 16 matrices. For a quan-
tum channel (i.e., a completely positive trace-preserving
map) E , the Choi operator is defined by

(E) =
1∑

i,j ,k,l=0

|ij 〉 〈kl| ⊗ E(|ij 〉 〈kl|). (A6)

Its corresponding matrix entries are

(E)(ijkl),(mnpq) = Tr[(E)†(|ij 〉 〈kl| ⊗ |mn〉 〈pq|)]
= Tr[E(|ij 〉 〈kl|)† |mn〉 〈pq|]. (A7)

In the following, we write

E[Û](ρ̂) := Ûρ̂Û† (A8)

for the quantum channel associated with a unitary transfor-
mation Û. We assume that Û is diagonal in the computa-
tional basis, so that we can write

Û =
1∑

i,j =0

λij �̂ij , (A9)

where we define the projectors �̂ij := �̂i ⊗ �̂j . For Û uni-
tary, we have ÛÛ† = 1 = ∑

i,j λij λ
∗
ij �̂ij , and hence λij =

eiθij for all i, j . Therefore we have

E[Û](|ij 〉 〈kl|) =
∑

m,n,p ,q

λmnλ
∗
pq�̂mn |ij 〉 〈kl| �̂pq

= λij λ
∗
kl |ij 〉 〈kl|

= ei(θij −θkl) |ij 〉 〈kl| . (A10)

Thus, the Choi matrix of E[Û] is diagonal whenever Û is of
the form given in Eq. (A9). We can represent it by a 4 × 4
matrix M , whose entries are defined by

M(ij ),(kl) := (ijkl),(ijkl). (A11)

Note that matrix M is Hermitian and that its diagonal
entries are always equal to one, due to Eq. (A10). In the fol-
lowing we represent each channel by its associated matrix
M in the basis (00), (01), (10), (11).

As earlier, we focus on rotations around the Z axis. We
have

�
(2)
Z (ρ̂) := Eθ [(R̂Z(θ)⊗ R̂Z(θ))ρ̂(R̂

†
Z(θ)⊗ R̂†

Z(θ))]
(A12)

and

R̂Z(θ)⊗ R̂Z(θ) = (e−iθ �̂0 ⊗ �̂0 + eiθ �̂1 ⊗ �̂1)

+ (�̂0 ⊗ �̂1 + �̂1 ⊗ �̂0). (A13)

Defining

�θ = (e−iθ �̂00 + eiθ �̂11),

� = �̂01 + �̂10,
(A14)

we can write

�
(2)
Z (ρ̂) = Eθ [�ρ̂�†] + Eθ [�θ ρ̂�

†
θ ]

+ Eθ [�θ ρ̂�†] + Eθ [�ρ̂�
†
θ ]. (A15)
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a. Uniform distribution

For the uniform distribution of θ in [0, 2π ], we have
Eθ [e±iθ ] = Eθ [e±2iθ ] = 0, and, thus,

Eθ [�θ ρ̂�†] = 0,

Eθ [�θ ρ̂�
†
θ ] = �̂00ρ̂�̂00 + �̂11ρ̂�̂11,

Eθ [�ρ̂�†] = �̂01ρ̂�̂01 + �̂10ρ̂�̂10,

+ �̂01ρ̂�̂10 + �̂10ρ̂�̂01.

Finally, we get

�
(2)
Z (ρ̂) = �̂00ρ̂�̂00 + �̂11ρ̂�̂11 + �̂01ρ̂�̂01

+ �̂10ρ̂�̂10 + �̂01ρ̂�̂10 + �̂10ρ̂�̂01. (A16)

We can represent �(2)
Z by its associated matrix

M (�
(2)
Z ) =

⎛

⎜⎝

1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1

⎞

⎟⎠ . (A17)

One can verify that the following channels also have a
diagonal Choi matrix, and we can use the same representa-
tion of their diagonals, giving

M (E[1]) =

⎛

⎜⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞

⎟⎠ , (A18a)

M (E[Ẑ ⊗ Ẑ]) =

⎛

⎜⎝

1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

⎞

⎟⎠ , (A18b)

M (E[Ŝ ⊗ Ŝ]) =

⎛

⎜⎝

1 i i −1
−i 1 1 i
−i 1 1 i
−1 −i −i 1

⎞

⎟⎠ , (A18c)

M (E[Ŝ† ⊗ Ŝ†]) =

⎛

⎜⎝

1 −i −i −1
i 1 1 −i
i 1 1 −i

−1 i i 1

⎞

⎟⎠ , (A18d)

with Ŝ = �0 + i�1 the phase gate. Gathering all together,
we have

4M (�
(2)
Z ) = M (E[1])+ M (E[Ẑ ⊗ Ẑ])

+ M (E[Ŝ ⊗ Ŝ])+ M (E[Ŝ† ⊗ Ŝ†]). (A19)

The final result in the main text then follows by linearity
and uniqueness of the Choi matrix.

b. Even distribution

Let us consider an even probability distribution of θ
(i.e., a distribution for which θ has the same law as −θ ).
For such distributions, we again have φθ(t) = φθ(−t) ∈
[−1, 1] ⊂ R for all t ∈ R and, thus,

φθ(t) = 1
2 (φθ (t)+ φθ(−t)) = Eθ [cos(tθ)].

Defining r1 = φθ(1) and r2 = φθ(2), we can write

Eθ [�θ ρ̂�†] = r1(�̂00 + �̂11)ρ̂(�̂01 + �̂10),

Eθ [�θ ρ̂�
†
θ ] = �̂00ρ̂�̂00 + �̂11ρ̂�̂11

+ r2(�̂00ρ̂�̂11 + �̂11ρ̂�̂00),

Eθ [�ρ̂�†] = �̂01ρ̂�̂01 + �̂10ρ̂�̂10

+ �̂01ρ̂�̂10 + �̂10ρ̂�̂01.

Hence we obtain

M (�
(2)
Z ) =

⎛

⎜⎝

1 r1 r1 r2
r1 1 1 r1
r1 1 1 r1
r2 r1 r1 1

⎞

⎟⎠ . (A20)

We can express M (�
(2)
Z ) as a linear combination of matri-

ces (A18), giving

M (�
(2)
Z ) = aM (E[1])+ bM (E[Ẑ ⊗ Ẑ])

+ c
2
(M (E[Ŝ ⊗ Ŝ])+ M (E[Ŝ† ⊗ Ŝ†])).

(A21)

The coefficients a, b, c can be found by solving the linear
system

a + b + c = 1,

a − b = r1,

a + b − c = r2,

and one finds that

M (�
(2)
Z ) = 1

4 (1 + r2 + 2r1)M (E[1])

+ 1
4 (1 + r2 − 2r1)M (E[Ẑ ⊗ Ẑ])

+ 1
4 (1 − r2)M (E[Ŝ ⊗ Ŝ])

+ 1
4 (1 − r2)M (E[Ŝ† ⊗ Ŝ†]). (A22)

Therefore, the associated channel is

�
(2)
Z (ρ̂) = 1

4 (1 + r2 + 2r1)ρ̂

+ 1
4 (1 + r2 − 2r1)(Ẑ ⊗ Ẑ)ρ̂(Ẑ ⊗ Ẑ)

+ 1
4 (1 − r2)(Ŝ ⊗ Ŝ)ρ̂(Ŝ† ⊗ Ŝ†)

+ 1
4 (1 − r2)(Ŝ† ⊗ Ŝ†)ρ̂(Ŝ ⊗ Ŝ). (A23)

040335-10



EFFICIENT ESTIMATION OF TRAINABILITY. . . PRX QUANTUM 4, 040335 (2023)

Remark.—Defining CZ = �̂0 ⊗ 1 + �̂1 ⊗ Ẑ, the
control-Z gate, and CZX = (X̂ ⊗ X̂ )CZ(X̂ ⊗ X̂ ), we have

M (E[CZ]) =

⎛

⎜⎝

1 1 1 −1
1 1 1 −1
1 1 1 −1

−1 −1 −1 1

⎞

⎟⎠ ,

M (E[CZX ]) =

⎛

⎜⎝

1 −1 −1 −1
−1 1 1 1
−1 1 1 1
−1 1 1 1

⎞

⎟⎠ ,

(A24)

and, thus,

E[Ŝ ⊗ Ŝ] + E[Ŝ† ⊗ Ŝ†] = E[CZ] + E[CZX ]. (A25)

Therefore, the decomposition of�(2)
Z into a convex sum of

Clifford channels in Eq. (A23) is not unique.
The decomposition obtained in Eq. (A23) is a convex

sum if one assumes that (1 + r2 − 2r1) ≥ 0 and (1 + r2 +
2r1) ≥ 0. This condition holds if and only if

Eθ

[ 1
2 (1 + cos 2θ)± cos θ

] ≥ 0,

namely, if and only if

Eθ [cos2 θ ] ≥ |Eθ [cos θ ]|. (A26)

This condition can be reformulated as a positivity condi-
tion on the expectations of two functions of the random
angle, as represented in Fig. 9. It is fulfilled for the dis-
tributions that are π periodic, as in that case we have
Eθ [cos θ ] = 0. Another example of a distribution that sat-
isfies this constraint is a Gaussian distribution with a large
enough variance. In fact, for a centered Gaussian distribu-
tion of variance σ 2, we have r1 = e−σ 2/2 and r2 = e−2σ 2

,

−π −π/2 0 π/2 π

θ

0

1Z ZS† S

f−(θ)

f+(θ)

FIG. 9. Plot of f±(θ) = cos θ(cos θ ± 1) versus θ . The condi-
tion in Eq. (A26) is fulfilled if and only if Eθ [f+(θ)] ≥ 0 and
Eθ [f−(θ)] ≥ 0. Ŝ is the phase gate.

so the condition becomes

1 + e−2σ 2 − 2e−σ 2/2 ≥ 0. (A27)

One can show that this condition is equivalent to σ 2 ≥ σ 2
0

for some specific σ0 ∈ R, yielding a requirement on the
width of the Gaussian.

APPENDIX B: FIRST- AND SECOND-ORDER
QUANTITIES

In this appendix, we define the notion of first- and
second-order quantities as quantities that can be obtained
from knowledge of the 1-fold and 2-fold channels, respec-
tively, for each of the random rotations appearing in a
given ansatz. We also show that the average cost function
and the average gradient are first-order quantities, while
the average of the squared cost function and of the squared
gradient are second-order quantities.

1. First-order quantities

Let us consider the ansatz defined by

Û(θ) =
M∏

i=1

Ûi(θi)Ŵi, (B1)

and denote by

Ui(θi)(ρ̂) = Ûi(θi)ρ̂Û†
i (θi),

Wi(ρ̂) = Ŵiρ̂Ŵ†
i

(B2)

the unitary channels associated with different layers of the
circuit. The whole circuit unitary transformation then reads

U(θ)(ρ̂) = UM (θM ) ◦ · · · ◦ W1(ρ̂)

=
M
©
i=1
(Ui(θi) ◦ Wi)(ρ̂). (B3)

The cost function is then given by

C(θ) = Tr[U(θ)(ρ̂)Ô] (B4)

and its expectation with respect to θ is

Eθ [C(θ)] = Eθ [Tr[U(θ)(ρ̂)Ô]]

= Tr[Eθ [U(θ)(ρ̂)]Ô]

= Tr[Eθ [Û(θ)ρ̂Û†(θ)]Ô]

= Tr
[ ∫

RM
Û(θ)ρ̂Û†(θ)p(θ)dθÔ

]

= Tr[�(1)
θ (ρ̂)Ô]. (B5)

Here, we used both the linearity of the expectation and the
definition of the 1-fold channel from Eq. (9). The cost-
function expectation can thus be obtained from knowledge
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of the complete 1-fold channel �(1)
θ . Assuming that the

angles {θi} are independent from each other, the expecta-
tion against θ can be factored in expectations against the
θi, which allows us to write

�
(1)
θ (ρ̂) = Eθ [U(θ)(ρ̂)]

=
M
©
i=1
(Eθi[Ui(θi)] ◦ Wi)(ρ̂). (B6)

As explained in the main text, we can consider, without
loss of generality, all the rotations to be Z rotations. Then
the channels Eθi[Ui(θi)] are exactly 1-fold channels asso-
ciated with a Z rotation acting on a single qubit, and hence
can be computed from the results of Appendix A. As stated
earlier, we refer to quantities that can be obtained from
knowledge of the 1-fold channels associated with each
rotation of the ansatz as first-order quantities. Hence, the
average cost function Eθ [C(θ)] is a first-order quantity.

Another example of an interesting first-order quantity is
the average of the gradient. From the parameter-shift rule
and using the linearity of the expectation, we have

Eθ [∂kC(θ)] = 1
2
Eθ

[
C

(
θ + π

2
ek

)]

− 1
2
Eθ

[
C

(
θ − π

2
ek

)]
. (B7)

Here ek is the unit vector along the kth component.
The ±π/2 shifts in parameter θk can be factored out
and seen as an extra Clifford gate added to the fixed
layer Ŵk. In fact, assuming that P̂k = Ẑ and denot-
ing by Ŝ the phase gate, we have Ûk(θk + π/2)Ŵk =
e−iθkP̂k/2e−iπ Ẑ/2Ŵk = e−iπ/4Ûk(θk)ŜŴk. Defining Ŵk,± =
e∓iπ/4ŜŴk, we get Ûk(θk + π/2)Ŵk = Ûk(θk)Ŵk,+. We can
proceed likewise to define Ŵk,−. In the following, we can
write, for all i �= k, V̂i,± = Ŵi and V̂k,± = Ŵk,± for the
modified fixed layers that include the considered shift. We
have

Eθ [Û±(θ)ρ̂Û†
±(θ)] = Eθ

[
M
©
i=1
(Ui(θi) ◦ Vi,±)(ρ̂)

]

=
M
©
i=1
(Eθi[Ui(θi)] ◦ Vi,±)(ρ̂), (B8)

where Vi,±(ρ̂) = V̂i,±ρ̂V̂†
i,±. The average gradient is there-

fore a first-order quantity, namely, depending on 1-fold
channels only.

2. Second-order quantities

We now turn our attention to the mean value of the
squared cost function. This is given by

Eθ [C(θ)2] = Eθ [Tr[U(θ)(ρ̂)Ô]2]

= Eθ [Tr[(U(θ)(ρ̂)Ô)⊗2]]

= Eθ [Tr[U (2)(θ)(ρ̂⊗2)Ô⊗2]]. (B9)

For every state ρ̂ of a system of 2n qubits (i.e., a dou-
bled version of the original system where the copy is not
connected by gates to the original circuit), we define

U (2)(θ)(ρ̂) = Û⊗2(θ)ρ̂Û†⊗2(θ). (B10)

Likewise, we can define the doubled version of the circuit
layers as

U (2)
i (θi)(ρ̂) = Û⊗2

i (θi)ρ̂Û⊗2
i (θi),

W (2)
i (ρ̂) = Ŵ⊗2

i ρ̂Ŵ⊗2
i ,

(B11)

giving

U (2)(θ)(ρ̂) =
M
©
i=1
(U (2)

i (θi) ◦ W (2)
i )(ρ̂). (B12)

Thus, for independent rotations, we have

�
(2)
θ (ρ̂) = Eθ [U (2)(θ)(ρ̂)]

=
M
©
i=1
(Eθi[U (2)

i (θi)] ◦ W (2)
i )(ρ̂). (B13)

As for first-order quantities, we refer to quantities that can
be obtained from knowledge of the average 2-fold chan-
nels of the rotations layers Eθi[U (2)

i (θi)] as second-order
quantities.

The average of the squared cost function is thus a
second-order quantity, and as for the first-order case, we
can show that the squared gradient is also a second-order
quantity. In fact, by making use of the parameter-shift rule,
we see that, to obtain the average of the squared gradient,
we have to compute the following four terms:

Eθ [C(θ + a1ek)C(θ + a2ek)] (B14)

with a1, a2 ∈ {π/2, −π/2}. As before, it suffices to replace
the W (2)

i in Eq. (B13) with

V (2)i,a1,a2
(ρ̂) = (V̂i,a1 ⊗ V̂i,a2)ρ̂(V̂

†
i,a1

⊗ V̂†
i,a2
). (B15)

Finally, the gradient variance can be computed as

Varθ [∂kC(θ)] = Eθ [∂kC(θ)2] − Eθ [∂kC(θ)]2, (B16)

which is the sum of a first- and a second-order quantity.
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APPENDIX C: PROOF OF THE SAMPLING
EFFICIENCY

In this appendix we prove that, to obtain an estimation of
any first- or second-order quantity for a given ansatz up to a
precision ε and probability δ ∈ [0, 1] to meet this precision,
it suffices to sample a number of Clifford approximant cir-
cuits K ∼ log(2δ)M/ε2. By invoking the Gottesman-Knill
theorem, we obtain an estimation of any of the previous
quantities with a complexity polynomial in both the size of
the system and the number of variational parameters of the
considered ansatz.

1. Details on the mapping

Here we give details on the mapping of the randomly
initialized parameterized circuit to Clifford approximants.

Remark.—We use the notation adapted to first-order
quantities. The generalization to the second order and the
shifted versions is straightforward as it suffices to replace
each channel by its doubled and/or shifted version, as done
in Appendix B.

Assuming that the θi are independent from each other,
averaging U(θ) over θ amounts to replacing each rotation
channel Ui(θi) by a convex sum of m Clifford unitary chan-
nels Uij with associated weights pij . Thus, Eθ [U(θ)(ρ̂)] is
replaced by a discrete average over mM Clifford unitary
channels (with m = 2 for the 1-fold channel and m = 4 for
the 2-fold channel):

Eθ [U(θ)(ρ̂)] =
M
©
i=1

( m∑

j =1

pijUij ◦ Wi

)
(ρ̂). (C1)

As we want to sample from that sum, we can define,
for each i, a discrete random variable Xi taking val-
ues in {1, . . . , m} such that P(Xi = j ) = pij . This repre-
sents a choice of a given unitary in the previous convex
sum. Gathering these for all k we get a random vector
X = (X1, . . . , XM ) ∈ {1, . . . , m}M that completely defines a
unique unitary U(X) through

U(j1, . . . , jM ) =
M
©
i=1

Uiji ◦ Wi. (C2)

Thus we have

Eθ [U(θ)(ρ̂)] = EX[U(X)(ρ̂)]

=
M
©
i=1

( m∑

j =1

pijUij ◦ Wi

)
(ρ̂). (C3)

The main idea is now to approximate the k-fold channels
by an empirical average over K samples of the previous

Clifford circuits, namely,

�̂(ρ̂) := 1
K

K∑

i=1

U(Xi)(ρ̂). (C4)

2. Sampling efficiency

Our result relies on classical arguments for the sampling
of bounded functions depending on a set of random vari-
ables using McDiarmid’s concentration inequality [73,74],
which we state below.

Definition 1 (Bounded difference property).—A function
f : XM → R satisfies the bounded difference property if
and only if there exist bounds {c1, . . . , cM } such that, for
all i ∈ {1, . . . , M } and all (x1, . . . , xM ),

sup
x
′
i ∈X

|f (x1, . . . , xi, . . . , xM )− f (x1 . . . , x′
i, . . . , xM )| < ci.

Theorem 2 (McDiarmid’s inequality).—Let f : XM →
R satisfy the bounded difference property with bounds
{c1, . . . , cM } and a random vector X = (X1, . . . , XM ) taking
values in XM . Then, for all ε > 0,

P(|f (X)− EX[f (X)]| ≥ ε) ≤ 2exp
(

− 2ε2

∑M
i=1 c2

i

)
.

We show that the quantities we want to estimate satisfy
the bounded difference property and apply McDiarmid’s
inequality to prove that our previous sampling is efficient.
In the following we define

f (x) = Tr[U(x)(ρ̂)Ô], (C5)

where Ô is the cost-function observable defined in the
main text and, as in the previous section, U(x) the uni-
tary channel associated with a given Clifford approximant
circuit that is completely specified by a discrete vec-
tor x = (x1, . . . , xi, . . . , xM ) ∈ {1, . . . , m}M . By the Hölder
inequality [49,75], f is upper bounded:

|f (x)| ≤ ‖ρ̂‖1‖Ô‖∞ (C6)

with ‖A‖1, ‖A‖∞ the Schatten-1 norm and spectral norm,
respectively [49]. We note that ‖ρ̂‖1 = 1 for ρ̂ a density
operator. Defining a second vector for which only the ith
component is changed, x′ = (x1, . . . , x′

i, . . . , xM ), we get,
using the triangle inequality,

|f (x)− f (x′)| ≤ |f (x)| + |f (x′)|
≤ 2‖Ô‖∞. (C7)

Hence, f satisfies the bounded difference property with
ci = c = 2‖Ô‖∞, and we can apply McDiarmid’s inequal-
ity, which gives almost the desired result. To go further, we
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define

fK(x1, . . . , xK) =
K∑

j =1

f (xj 1, . . . , xjM )

=
K∑

j =1

Tr[U(xj )(ρ̂)Ô]

= KTr[�̂(ρ̂)Ô]. (C8)

Clearly, fK satisfies the bounded difference property with
the same bound c [to see this, we take all xij equal except
for xkl, and it follows that the difference fK(x1, . . . , xK)−
fK(x′

1, . . . , x′
K) is simply f (xk)− f (x′

k)]. Thus, McDi-
armid’s inequality applies to fK , which is a function of KM
parameters:

P(|fK(X)− EX[fK(X)]| ≥ Kε)

= P

(
| 1
K

fK(X)− EX

[
1
K

fK(X)
]
| ≥ ε

)

= P(|Tr[�̂(ρ̂)Ô] − Eθ [Tr[U(θ)(ρ̂)Ô]]| ≥ ε)

≤ 2exp
(

− 2K2ε2

KMc2

)

= 2exp
(

− Kε2

2M‖Ô‖2
∞

)
. (C9)

Therefore, choosing a precision ε > 0 and a probability
1 − δ ∈ [0, 1] to meet this precision, we get

P(|Tr[�̂(ρ̂)Ô] − Eθ [Tr[U(θ)(ρ̂)Ô]]| ≤ ε)

≥ 1 − δ (C10)

whenever the number of sampled Clifford circuits K is

K ≥ 2
ε2 log

(
2
δ

)
M‖Ô‖2

∞ = O(M ). (C11)

Note that in Eq. (C9), replacing the observable Ô by its
normalized counterpart Ô/‖Ô‖ with an associated preci-
sion ε̃ gives the same scaling for K , as in the case ε̃ =
ε/‖Ô‖. Hence we can always work with a normalized
observable. However, if one is interested in the scaling
with the system size n, we have to consider a sequence
of observables Ôn, whose norms can present a particular
scaling in n, so the presence of the norm of Ô in Eq. (C11)
allows us to keep track of this effect. In many situations of
interest, the observables considered scale polynomially in
the system size, and so does K . Finally, one can use the
Gottesman-Knill theorem, which states that, for a Clifford
unitary Û and an observable Ô acting nontrivially on NO

qubits, the expectation value Tr[|0〉 〈0|⊗n Û†ÔÛ] can be
classically computed with a complexity polynomial in both
NO and the number of qubits n [24]. Our scheme inher-
its this scaling and we can estimate the gradient variance
Varθ [∂kC(θ)] for each k on a classical computer with com-
plexity O(npN q

OM ), where M is the number of parameters
in the variational quantum circuit.

APPENDIX D: SAMPLING EFFICIENCY IN THE
GENERAL CASE

In this section we extend the previous scheme to more
general distributions. We first discuss in Appendix D 1
the scaling of the sampling complexity with the convex-
ity condition relaxed, i.e., where we no longer require
the decomposition of the 2-fold channel [Eq. (A23)] to
be a convex sum and only assume that the distribution
of θ is even. Then, in Appendix D 2 we study the case
of an arbitrary distribution of the rotation angles, which
is not necessarily symmetrically distributed. Finally, we
show that our previous scheme still applies in this general
case, but that it requires to sample a number of Clifford
approximant circuits scaling exponentially in the number
of variational parameters M. Compared to a brute-force
simulation, this method can be used to trade an expo-
nential complexity in the system size for an exponential
complexity in the number of variational parameters.

1. Sampling efficiency in the nonconvex case

Here we consider distributions of rotation angle θ that
are even, but do not satisfy the convexity condition of
Eq. (A26). In this case, our decomposition of the 1-fold
channel remains convex, while the 2-fold channel becomes
a nonconvex sum; hence, the coefficients for the Clifford
channels can no longer be interpreted as probabilities. We
first show how one can still estimate such nonconvex sums
via probabilistic sampling [72]. Letting

Eθ [U(θ)(ρ̂)] =
M
©
k=1

( m∑

j =1

qkjUkj ◦ Wk

)
(ρ̂), (D1)

we hereby assume that

qkj ∈ R,
M∑

j =1

qkj = 1, for all k. (D2)

Defining

γk :=
M∑

j =1

|qkj |, p̃kj := |qkj |/γk, (D3)

040335-14



EFFICIENT ESTIMATION OF TRAINABILITY. . . PRX QUANTUM 4, 040335 (2023)

Eq. (D1) can be rewritten in terms of convex sums:

Eθ [U(θ)] =
M
©
k=1

m∑

j =1

p̃kj [γk sgn(qkj )]Ukj ◦ Wk. (D4)

Similar to Appendix C 1, we now define the random
vector X̃ = (X̃1, . . . , X̃M ) ∈ {1, . . . , m}M , with probabili-
ties P(X̃k = j ) = p̃kj , and the rescaled random unitary
channel Ũ(X̃) through

Ũ(j1, . . . , jM ) =
M
©
k=1

[γk sgn(qkjk )]Ukjk ◦ Wk. (D5)

Therefore, we recover the form of an expectation value
similar to Eq. (C3):

Eθ [U(θ)(ρ̂)] = EX̃[Ũ(X̃)(ρ̂)]. (D6)

This allows us to apply the same arguments as in
Appendix C 2 by considering the function

f̃ (x) = Tr[Ũ(x)(ρ̂)Ô] (D7)

instead of f (x) defined in Eq. (C5). The function bound
(C6) should be rescaled accordingly:

|f̃ (x)| ≤ γ ‖Ô‖∞ (D8)

with the scaling factor defined as

γ :=
M∏

k=1

γk. (D9)

The number of sampled Clifford circuits previously
derived in Eq. (C11) should therefore be scaled with the
same factor:

K ≥ 2
ε2 log

(
2
δ

)
γM‖Ô‖2

∞. (D10)

Note that the factor γk ≥ 1 can be regarded as a measure
of “nonconvexity” in the decomposition of the kth channel.
In the case of a convex sum, where qkj > 0 for all k, j , the
scaling factor is simply γ = 1M = 1 and we recover the
previous results.

We now show that γk is upper bounded. Following our
discussion in Appendix A, it suffices to consider the 2-fold
channel for a single-qubit Z rotation, where the decomposi-
tion can be possibly nonconvex. Without loss of generality,

let us rewrite Eq. (A23) as

�
(2)
Z (ρ̂) = qk1ρ̂ + qk2(Z ⊗ Z)ρ̂(Z ⊗ Z)

+ qk3CZρ̂CZ + qk4CZX ρ̂CZX (D11)

for some k, where

qk1 = Eθ

[ 1
4 (1 + cos 2θ + 2 cos θ)

]
,

qk2 = Eθ

[ 1
4 (1 + cos 2θ − 2 cos θ)

]
,

qk3 = qk4 = Eθ

[ 1
4 (1 − cos 2θ)

]
.

Define the non-negative function

ϕ(θ) := | 1
4 (1 + cos 2θ + 2 cos θ)

∣∣

+ ∣∣ 1
4 (1 + cos 2θ − 2 cos θ)

∣∣

+ 2 × ∣∣ 1
4 (1 − cos 2θ)

∣∣. (D12)

We then get

γk = |qk1| + |qk2| + |qk3| + |qk4|
≤ Eθ [ϕ(θ)]

≤ Eθ

[
sup
θ ′
ϕ(θ ′)

]

= sup
θ ′
ϕ(θ ′)

= 5
4 . (D13)

Here the function ϕ(θ) reaches its maximum for θ =
±π/3, ±2π/3. Therefore, the factor γk reaches its upper
bound 5/4 if the distribution of θ is a sum of Dirac-delta
distributions peaked at θ = ±π/3 and/or θ = ±2π/3, in
which case we obtain the worst-case scaling of the number
of sampled Clifford circuits (D10):

K ≥ 2
ε2 log

(
2
δ

)
γM‖Ô‖2

∞ = O(γM ),

γ ≤ ( 5
4

)M .

(D14)

Combining the above result with the Gottesman-Knill
theorem, for a cost-function observable Ô acting nontriv-
ially on NO qubits, our scheme implies a complexity of at
most O(npN q

O(5/4)
M M ) for the estimation of the gradient

variance Varθ [∂kC(θ)] for each k on a classical computer
in the general scenario, where n is the number of qubits,
M is the number of parameters in the variational quan-
tum circuit, and p , q are some constants inherited from the
Gottesman-Knill theorem.
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2. Sampling efficiency for the general case

In this section, we extend our scheme to the most generic
case, by considering an arbitrary probability distribution
for the rotation angles θ , and derive the corresponding
sampling complexity. As before, one only needs to con-
sider the 1- and 2-fold channels for a single-qubit Z-
rotation gate. In what follows, let us define Eθ [eiθ ] :=
r1 + is1 and Eθ [e2iθ ] := r2 + is2. Note that r1 = Eθ [cos θ ]
and r2 = Eθ [cos 2θ ] are defined in the same way as for
the symmetric case before, while s1 = Eθ [sin θ ] and s2 =
Eθ [sin 2θ ] are in general nonzero since we no longer
assume the distribution of θ to be even.

a. 1-fold channel

The expression of the 1-fold channel for a single-qubit
Z rotation is given by Eq. (A3), which we develop below
without assuming an even distribution in θ . We get

Eθ [R̂Z(θ)ρ̂R̂†
Z(θ)]

= �̂0ρ̂�̂0 + �̂1ρ̂�̂1 + Eθ [eiθ ]�̂1ρ̂�̂0

+ Eθ [e−iθ ]�̂0ρ̂�̂1

= �̂0ρ̂�̂0 + �̂1ρ̂�̂1 + (r1 + is1)�̂1ρ̂�̂0

+ (r1 − is1)�̂0ρ̂�̂1

= 1 + r1

2
E[1](ρ̂)+ 1 − r1

2
E[Ẑ](ρ̂)

+ s1

2
E[Ŝ†](ρ̂)− s1

2
E[Ŝ](ρ̂), (D15)

where Ŝ = �̂0 + i�̂1 is the phase gate, and one can use
this definition together with Eq. (A4) to verify the equation
above.

Here, parameter s1 can be understood as a measure
of asymmetry in the probability distribution of θ . In the
symmetric case, we have s1 = 0 and the sum reduces to
the convex one given by Eq. (A5). Following the same
procedure as in Appendix D 1, this (possibly nonconvex)
linear combination of Clifford channels can be estimated
via sampling, and the number of required samples should
be scaled, according to the nonconvexity of the sum, by a
factor γ = �M

k=1γk [see the definitions in Eqs. (D1)–(D3)
and (D9)]. We now derive an upper bound for γ (1)k , the
scaling factor associated with a single (the kth) 1-fold Z-
rotation channel that can be decomposed in the form of
Eq. (D15) in general. We proceed by applying the same
argument as in Eqs. (D11)–(D13):

γ
(1)
k =

∣∣∣∣
1 + r1

2

∣∣∣∣ +
∣∣∣∣
1 − r1

2

∣∣∣∣ +
∣∣∣
s1

2

∣∣∣ +
∣∣∣−s1

2

∣∣∣

=
∣∣∣∣Eθ

[
1 + cos θ

2

]∣∣∣∣ +
∣∣∣∣Eθ

[
1 − cos θ

2

]∣∣∣∣ + |Eθ [sin θ ]|

≤ Eθ

[ ∣∣∣∣
1 + cos θ

2

∣∣∣∣ +
∣∣∣∣
1 − cos θ

2

∣∣∣∣ + |sin θ |
]

≤ sup
θ

{ ∣∣∣∣
1 + cos θ

2

∣∣∣∣ +
∣∣∣∣
1 − cos θ

2

∣∣∣∣ + |sin θ |
}

= 2. (D16)

This implies that the number of samples K (1) required
for the estimation of the generic 1-fold channel [see
Eq. (D14)] scales as

K (1) ∼ O(γ (1)M ),

γ (1) =
M∏

k=1

γ
(1)
k ≤ 2M .

(D17)

Note that the bound derived above depends on the specific
choice of the Clifford channels in the decomposition. As
the Clifford group does not form a linearly independent
set, it should be possible to find a different decomposition
that yields a different upper bound and further optimize the
complexity.

b. 2-fold channel

The 2-fold channel for a single-qubit Z rotation is given
by Eq. (A15):

�
(2)
Z (ρ̂) = Eθ [�ρ̂�†] + Eθ [�θ ρ̂�

†
θ ]

+ Eθ [�θ ρ̂�†] + Eθ [�ρ̂�
†
θ ]. (D18)

For a generic probability distribution of θ , we have

Eθ [�ρ̂�†] = �̂01ρ̂�̂01 + �̂10ρ̂�̂10

+ �̂01ρ̂�̂10 + �̂10ρ̂�̂01,

Eθ [�θ ρ̂�
†
θ ] = �̂00ρ̂�̂00 + �̂11ρ̂�̂11

+ r2(�̂00ρ̂�̂11 + �̂11ρ̂�̂00)

+ is2(�̂11ρ̂�̂00 − �̂00ρ̂�̂11),

Eθ [�θ ρ̂�†] = r1(�̂00 + �̂11)ρ̂(�̂01 + �̂10)

+ is1(�̂11 − �̂00)ρ̂(�̂01 + �̂10),

Eθ [�ρ̂�
†
θ ] = Eθ [�θ ρ̂�†]†.

As one can verify, the Choi representation of the above
terms are all diagonal, so their sum can be represented via
the M matrix as before:

M (�
(2)
Z ) =

⎛

⎜⎝

1 r1 + is1 r1 + is1 r2 + is2
r1 − is1 1 1 r1 + is1
r1 − is1 1 1 r1 + is1
r2 − is2 r1 − is1 r1 − is1 1

⎞

⎟⎠ .

(D19)
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This can again be decomposed as a weighted sum of the
channels E[1], E[Ẑ ⊗ Ẑ], E[Ŝ ⊗ Ŝ], and E[Ŝ† ⊗ Ŝ†] given
in Eq. (A18) and of the following Clifford channels:

M (E[1 ⊗ Ŝ]) =

⎛

⎜⎝

1 i 1 i
−i 1 −i 1
1 i 1 i
−i 1 −i 1

⎞

⎟⎠ ,

M (E[Ŝ ⊗ 1]) =

⎛

⎜⎝

1 1 i i
1 1 i i
−i −i 1 1
−i −i 1 1

⎞

⎟⎠ ,

M (E[1 ⊗ Ŝ†]) =

⎛

⎜⎝

1 −i 1 −i
i 1 i 1
1 −i 1 −i
i 1 i 1

⎞

⎟⎠ ,

M (E[Ŝ† ⊗ 1]) =

⎛

⎜⎝

1 1 −i −i
1 1 −i −i
i i 1 1
i i 1 1

⎞

⎟⎠ ,

M (E[Ẑ ⊗ Ŝ]) =

⎛

⎜⎝

1 i −1 −i
−i 1 i −1
−1 −i 1 i

i −1 −i 1

⎞

⎟⎠ ,

M (E[Ŝ ⊗ Ẑ]) =

⎛

⎜⎝

1 −1 i −i
−1 1 −i i
−i i 1 −1
i −i −1 1

⎞

⎟⎠ ,

M (E[Ẑ ⊗ Ŝ†]) =

⎛

⎜⎝

1 −i −1 i
i 1 −i −1

−1 i 1 −i
−i −1 i 1

⎞

⎟⎠ ,

M (E[Ŝ† ⊗ Ẑ]) =

⎛

⎜⎝

1 −1 −i i
−1 1 i −i

i −i 1 −1
−i i −1 1

⎞

⎟⎠ .

Note that the channels listed above are all diagonal in the
Choi representation and hence the M matrices capture all
their nonzero entries. Following the same reasoning as
in Appendix A, we solve a linear system to obtain the
following decomposition:

�
(2)
Z (ρ̂) = s2

8
(E[Ŝ ⊗ 1](ρ̂)+ E[1 ⊗ Ŝ](ρ̂))

+ s2

8
(E[Ẑ ⊗ Ŝ†](ρ̂)+ E[Ŝ† ⊗ Ẑ](ρ̂))

− s2

8
(E[Ŝ† ⊗ 1](ρ̂)+ E[1 ⊗ Ŝ†](ρ̂))

− s2

8
(E[Ẑ ⊗ Ŝ](ρ̂)+ E[Ŝ ⊗ Ẑ](ρ̂))

+ 1 + r2 + 2r1

4
E[1](ρ̂)

+ 1 + r2 − 2r1

4
E[Ẑ ⊗ Ẑ](ρ̂)

+ 1 − r2 + 2s1

4
E[Ŝ ⊗ Ŝ](ρ̂)

+ 1 − r2 − 2s1

4
E[Ŝ† ⊗ Ŝ†](ρ̂). (D20)

Remark.—Denoting by ĈNOT = �̂0 ⊗ 1 + �̂1 ⊗ X̂ the
controlled-NOT (CNOT) gate and by ĈNOTX := (X̂ ⊗
X̂ )ĈNOT(X̂ ⊗ X̂ ) its conjugation by the X̂ ⊗ X̂ gate, we
have

M (E[ĈNOT(Ŝ ⊗ Ŝ)ĈNOT])

=

⎛

⎜⎝

1 i −1 i
−i 1 i 1
−1 −i 1 −i
−i 1 i 1

⎞

⎟⎠ ,

M (E[ĈNOTX (Ŝ ⊗ Ŝ)ĈNOTX ])

=

⎛

⎜⎝

1 −i 1 i
i 1 i −1
1 −i 1 i
−i −1 −i 1

⎞

⎟⎠ .

Again, by solving a linear system one finds another decom-
position of the 2-fold channel that involves the above
channels, namely,

�
(2)
Z (ρ̂) = s2

4
E[ĈNOT(Ŝ ⊗ Ŝ)ĈNOT](ρ̂)

− s2

4
E[Ẑ ⊗ Ŝ](ρ̂)

+ s2

4
E[ĈNOTX (Ŝ ⊗ Ŝ)ĈNOTX ](ρ̂)

− s2

4
E[1 ⊗ Ŝ†](ρ̂)

+ 1 + r2 + 2r1

4
E[1](ρ̂)

+ 1 + r2 − 2r1

4
E[Ẑ ⊗ Ẑ](ρ̂)

+ 1 − r2 + 2s1

4
E[Ŝ ⊗ Ŝ](ρ̂)

+ 1 − r2 − 2s1

4
E[Ŝ† ⊗ Ŝ†](ρ̂). (D21)

Similar to our treatment with the 1-fold channel, let
us derive an upper bound for γ (2)k , the scaling factor for
the number of samples required for the estimation of the
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generic 2-fold kth Z-rotation channel:

γ
(2)
k = 4|s2

8
| + 4|−s2

8
|

+ |1 + r2 + 2r1

4
| + |1 + r2 − 2r1

4
|

+ |1 − r2 + 2s1

4
| + |1 − r2 − 2s1

4
|

= |Eθ [sin 2θ ]|

+ |Eθ
[

1 + cos 2θ + 2 cos θ
4

]
|

+ |Eθ
[

1 + cos 2θ − 2 cos θ
4

]
|

+ |Eθ
[

1 − cos 2θ + 2 sin θ
4

]
|

+ |Eθ
[

1 − cos 2θ − 2 sin θ
4

]
.|

≤ sup
θ

{
|sin 2θ |

+ |1 + cos 2θ + 2 cos θ
4

|

+ |1 + cos 2θ − 2 cos θ
4

|

+ |1 − cos 2θ + 2 sin θ
4

|

+ |1 − cos 2θ − 2 sin θ
4

|
}

= 1 +
√

2. (D22)

This implies that the number of samples K (2) required for
the estimation of the generic 2-fold channel scales as

K (2) ∼ O(γ (2)M ),

γ (2) =
M∏

k=1

γ
(2)
k ≤ (1 +

√
2)M ,

(D23)

which is dominant over the complexity of the estimation
of the 1-fold channel [Eq. (D17)] since 1 + √

2 > 2.
Again, combining the above result with the Gottesman-

Knill theorem, for a cost-function observable Ô acting
nontrivially on NO qubits, our scheme implies a complexity
of no more than O(npN q

O(1 + √
2)M M ) for the estimation

of the gradient variance Varθ [∂kC(θ)] for each k on a clas-
sical computer in the most generic case, where n is the
number of qubits, M is the number of parameters in the
variational ansatz, and p , q are some constants inherited
from the Gottesman-Knill theorem.

APPENDIX E: N -FOLD CHANNEL FOR A
RANDOM Z ROTATION

In this section we give a decomposition of the N -fold
channel as a real sum of Clifford unitary channels. This
allows us to extend our scheme to the estimation of N th-
order quantities with a complexity scaling polynomially
in both the number of variational parameters M and the
system size n when the decomposition is convex, and
exponential in M otherwise. We give a sufficient condi-
tion on the distribution of the random angle θ for the
decomposition to be a convex one.

Recall that, for any unitary Û, we defined E[Û](ρ̂) :=
Ûρ̂Û†. In Eq. (D15) we obtained a decomposition of the
1-fold channel of a Z rotation in terms of Clifford unitary
channels for a generic distribution of the random angle,
namely,

Eθ [R̂Z(θ)ρ̂R̂†
Z(θ)] = 1 + r1

2
E[1](ρ̂)+ 1 − r1

2
E[Ẑ](ρ̂)

+ s1

2
E[Ŝ†](ρ̂)− s1

2
E[Ŝ](ρ̂). (E1)

More generally, we have

R̂Z(θ)ρ̂R̂†
Z(θ) = 1 + cos θ

2
E[1](ρ̂)

+ 1 − cos θ
2

E[Ẑ](ρ̂)

+ sin θ
2

E[Ŝ†](ρ̂)

− sin θ
2

E[Ŝ](ρ̂) (E2)

for any θ ∈ R. This can be seen as a consequence of
Eq. (E1) for a Dirac probability measure centered at θ . On
can directly generalize this equation to obtain an expres-
sion of the N -fold channel as a real sum of Clifford unitary
channels, as

R̂⊗N
Z (θ)ρ̂R̂⊗N†

Z (θ) =
∑

I=(i1,...,in)

λI (θ)E
[ N⊗

j =1

Ûij

]
(ρ̂),

(E3)

where the sum goes over all the multi-indices I =
(i1, . . . , iN ) ∈ {0, 1, 2, 3}, and Û0 = 1, Û1 = Ẑ, Û2 = Ŝ,
and Û3 = Ŝ†. The coefficient λI (θ)I for a multi-index I
representing a product of numbers mi of the Ûi gates is
given by

λI (θ) = 1
2N (1 + cos θ)m0(1 − cos θ)m1

× sinm2(−θ) sinm3(θ) (E4)
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with m0 + m1 + m2 + m3 = N . As a result, the N -fold
channel is given by a real combination of 4N unitary Clif-
ford channels that are composed of products of the gates
1, Ẑ, Ŝ, and Ŝ†. This gives us a sufficient condition for
the N -fold channel to be a convex sum of Clifford unitary
channels, namely, it suffices that the expectation values of
all the coefficient Eθ [λI (θ)] be positive.

Although this condition is sufficient, it is not necessary.
In particular, in the case of the 2-fold channel, the expecta-
tion of coefficients associated with the multi-indices (2, 3)
and (3, 2) is given by Eθ [− sin2 θ ], which is always neg-
ative. However, we proved that a convex decomposition
exists for the uniform distribution. This is due to the fact
that the decomposition of Eq. (E3) is not unique. In fact,
the family of channels

P := {E[Û ⊗ V̂] : Û, V̂ ∈ {1, Ẑ, Ŝ, Ŝ†}} (E5)

is not linearly independent. Consider two single-qubit uni-
taries Û and V̂ that are diagonal in the computational basis.
As we are free to choose the global phase of these unitaries,
we can always write them as Û = eiθU/2�̂0 + e−iθU/2�̂1

and V̂ = eiθV/2�̂0 + e−iθV/2�̂1. We saw in Appendix A that
the product unitary Û ⊗ V̂ can be represented by the diag-
onal of the associated Choi matrix, written as a 4-by-4
matrix M :

M (E[Û ⊗ V̂])

=

⎛

⎜⎜⎝

1 e−iθV e−iθU e−i(θU+θV)

eiθV 1 e−i(θU−θV) e−iθU

eiθU ei(θU−θV) 1 e−iθV

ei(θU+θV) eiθU eiθV 1

⎞

⎟⎟⎠ .

(E6)

This shows that, for a tensor product of single-qubit uni-
taries, the matrices M in the basis ((00), (01), (10), (11))
are symmetric with respect to the antidiagonal transposi-
tion. Therefore, the channels in P belong to a real vector
space of dimension 9 (one dimension for the diagonal,
2 × 3 dimensions for the complex exponentials of the first
row, and two dimensions for the third term of the second
row). As there are 16 channels in P , the family is not lin-
early independent. The condition that all the Eθ [λI (θ)] be
positive is clearly too restrictive. One way to get back the
condition we previously derived is to use the fact that

E[1 ⊗ 1] + E[Ẑ ⊗ Ẑ] + E[1 ⊗ Ẑ] + E[Ẑ ⊗ 1]

= E[Ŝ ⊗ Ŝ] + E[Ŝ† ⊗ Ŝ†] + E[Ŝ ⊗ Ŝ†] + E[Ŝ† ⊗ Ŝ]
(E7)

to absorb the Eθ [− sin2 θ ] factors in the coefficients asso-
ciated with other channels.

RZ(θ0)

RX(θ1)

RZ(θ2)

RX(θ3)

RY (θ4)

RY (θ5)

FIG. 10. Initial variational circuit with random rotation angles.

Remark.—To obtain the previous relation, we used the
following channels:

M (E[1 ⊗ Ẑ]) =

⎛

⎜⎝

1 −1 1 −1
−1 1 −1 1
1 −1 1 −1

−1 1 −1 1

⎞

⎟⎠ ,

M (E[Ẑ ⊗ 1]) =

⎛

⎜⎝

1 1 −1 −1
1 1 −1 −1

−1 −1 1 1
−1 −1 1 1

⎞

⎟⎠ ,

M (E[Ŝ ⊗ Ŝ†]) =

⎛

⎜⎝

1 −i i 1
i 1 −1 i

−i −1 1 −i
1 −i i 1

⎞

⎟⎠ ,

(a)

(b)

(c)

FIG. 11. (a)–(c) Examples of first-order Clifford approximant
circuits for the ansatz of Fig. 10. Assuming that the probability
distribution of the angles is even, we replace each rotation by a
Clifford gate that is sampled according to Eq. (A5).
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H

RZ(θ0)

RZ(θ1)

RZ(θ2)

H S†

S†

H

H

H RZ(θ3)

RZ(θ4)

RZ(θ5)

H

H

H

S

S

FIG. 12. Equivalent form of the initial
circuit with Z rotations only.

M (E[Ŝ† ⊗ Ŝ]) =

⎛

⎜⎝

cccc1 i −i 1
−i 1 −1 −i
i −1 1 i
1 i −i 1

⎞

⎟⎠ .

We showed that the N -fold channel associated with
Z rotations can always be decomposed as a real linear
combination of Clifford unitary channels. However, it

remains an open problem to find necessary and/or suf-
ficient conditions under which the N -fold channel can
be decomposed into a convex combination of Clifford
unitaries, i.e., conditions under which the N -fold chan-
nel is a Clifford mixed-unitary channel. Knowledge of
such conditions could allow us to extend the scheme pro-
posed in this work to ansatzes with correlated rotation
parameters.

(a)

(b)

(c)

FIG. 13. (a)–(c) Examples of second-order Clifford approximant circuits for the ansatz of Fig. 10.
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APPENDIX F: EXAMPLE OF FIRST- AND
SECOND-ORDER CLIFFORD APPROXIMANT

CIRCUITS FOR A SIMPLE ANSATZ

In this appendix we provide a sample of Clifford
approximant circuits for the estimation of Eθ [C(θ)] and
Eθ [C(θ)2] for the simple circuit depicted in Fig. 10. The
generalization to Clifford approximants for other quanti-
ties, such as the expectation of the squared gradient, can
be derived from that example as it suffices to introduce
the adequate Clifford gates to the fixed layers to obtain the
right estimators (see Secs. II A and B). This circuit acts
on three qubits and is composed of two layers of rotations
that are alternated with fixed two-qubit control-Z gates.
To obtain a first-order approximant for these circuits, it
suffices to randomly replace each rotation by either the
identity gate (a wire) or the Pauli gate corresponding to
the direction of the concerned rotation gate. Three exam-
ples of the first-order Clifford approximant are represented
in Fig. 11. The second-order approximants are derived by
first mapping each rotation along X or Y to a rotation
along Z, making use of the identities X̂ = Ĥ †ẐĤ and Ŷ =
(ŜĤ)Ẑ(ŜĤ)†, where Ĥ , Ŝ are respectively the Hadamard
and phase gates. As a result, we get the ansatz with lay-
ers of Z rotations alternated with fixed layers composed of
Clifford gates represented in Fig. 12. This circuit is then
doubled vertically to give a circuit acting on six qubits.
Finally, each pair of rotations sharing the same angle is
randomly replaced by two single-qubit gates according to
the scheme of Fig. 2. Examples of the resulting Clifford
approximant circuits are provided in Fig. 13.

[1] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S.
Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cin-
cio, and P. J. Coles, Variational quantum algorithms, Nat.
Rev. Phys. 3, 625 (2021).

[2] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld,
N. Tishby, L. Vogt-Maranto, and L. Zdeborová, Machine
learning and the physical sciences, Rev. Mod. Phys. 91,
045002 (2019).

[3] M. Cerezo, G. Verdon, H.-Y. Huang, L. Cincio, and P. J.
Coles, Challenges and opportunities in quantum machine
learning, Nat. Comput. Sci. 2, 567 (2022).

[4] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q.
Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien,
A variational eigenvalue solver on a photonic quantum
processor, Nat. Commun. 5, 4213 (2014).

[5] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M.
Brink, J. M. Chow, and J. M. Gambetta, Hardware-efficient
variational quantum eigensolver for small molecules and
quantum magnets, Nature 549, 242 (2017).

[6] GOOGLE AI QUANTUM AND COLLABORATORS, F.
Arute et al., Hartree-Fock on a superconducting qubit
quantum computer, Science 369, 1084 (2020).

[7] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approx-
imate optimization algorithm, arXiv:1411.4028 (2014).

[8] N. Lacroix, C. Hellings, C. K. Andersen, A. Di Paolo, A.
Remm, S. Lazar, S. Krinner, G. J. Norris, M. Gabureac, J.
Heinsoo, A. Blais, C. Eichler, and A. Wallraff, Improving
the performance of deep quantum optimization algorithms
with continuous gate sets, PRX Quantum 1, 020304 (2020).

[9] M. P. Harrigan et al., Quantum approximate optimization
of non-planar graph problems on a planar superconducting
processor, Nat. Phys. 17, 332 (2021).

[10] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush,
and H. Neven, Barren plateaus in quantum neural network
training landscapes, Nat. Commun. 9, 4812 (2018).

[11] Z. Holmes, K. Sharma, M. Cerezo, and P. J. Coles, Connect-
ing ansatz expressibility to gradient magnitudes and barren
plateaus, PRX Quantum 3, 010313 (2022).

[12] S. Wang, E. Fontana, M. Cerezo, K. Sharma, A. Sone, L.
Cincio, and P. J. Coles, Noise-induced barren plateaus in
variational quantum algorithms, Nat. Commun. 12, 6961
(2021).

[13] C. Ortiz Marrero, M. Kieferová, and N. Wiebe, Entangl-
ement-induced barren plateaus, PRX Quantum 2, 040316
(2021).

[14] A. V. Uvarov and J. D. Biamonte, On barren plateaus and
cost function locality in variational quantum algorithms, J.
Phys. A: Math. Theor. 54, 245301 (2021).

[15] M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J.
Coles, Cost function dependent barren plateaus in shallow
parametrized quantum circuits, Nat. Commun. 12, 1791
(2021).

[16] T. L. Patti, K. Najafi, X. Gao, and S. F. Yelin, Entangle-
ment devised barren plateau mitigation, Phys. Rev. Res. 3,
033090 (2021).

[17] R. Wiersema, C. Zhou, J. F. Carrasquilla, and Y. B. Kim,
Measurement-induced entanglement phase transitions in
variational quantum circuits, arXiv:2111.08035 (2021).

[18] J. Kim and Y. Oz, Entanglement diagnostics for efficient
quantum computation, J. Stat. Mech.: Theory Exp. 2022,
073101 (2022).

[19] J. Kim and Y. Oz, Quantum energy landscape and circuit
optimization, Phys. Rev. A 106, 052424 (2022).

[20] S. H. Sack, R. A. Medina, A. A. Michailidis, R. Kueng,
and M. Serbyn, Avoiding barren plateaus using classical
shadows, PRX Quantum 3, 020365 (2022).

[21] L. Friedrich and J. Maziero, Avoiding barren plateaus with
classical deep neural networks, Phys. Rev. A 106, 042433
(2022).

[22] E. Grant, L. Wossnig, M. Ostaszewski, and M. Benedetti,
An initialization strategy for addressing barren plateaus in
parametrized quantum circuits, Quantum 3, 214 (2019).

[23] H.-Y. Liu, Z.-Y. Chen, T.-P. Sun, Y.-C. Wu, Y.-
J. Han, and G.-P. Guo, Mitigating barren plateaus
with transfer-learning-inspired parameter initializations,
arXiv:2112.10952 (2022).

[24] K. Mitarai, Y. Suzuki, W. Mizukami, Y. O. Nakagawa,
and K. Fujii, Quadratic Clifford expansion for efficient
benchmarking and initialization of variational quantum
algorithms, Phys. Rev. Res. 4, 033012 (2022).

[25] G. S. Ravi, P. Gokhale, Y. Ding, W. M. Kirby, K. N. Smith,
J. M. Baker, P. J. Love, H. Hoffmann, K. R. Brown, and
F. T. Chong, CAFQA: A classical simulation bootstrap
for variational quantum algorithms, arXiv:2202.12924
(2022).

040335-21

https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1038/s43588-022-00311-3
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/nature23879
https://doi.org/10.1126/science.abb9811
https://arxiv.org/abs/1411.4028
https://doi.org/10.1103/PRXQuantum.1.020304
https://doi.org/10.1038/s41567-020-01105-y
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1103/PRXQuantum.3.010313
https://doi.org/10.1038/s41467-021-27045-6
https://doi.org/10.1103/PRXQuantum.2.040316
https://doi.org/10.1088/1751-8121/abfac7
https://doi.org/10.1038/s41467-021-21728-w
https://doi.org/10.1103/PhysRevResearch.3.033090
https://arxiv.org/abs/2111.08035
https://doi.org/10.1088/1742-5468/ac7791
https://doi.org/10.1103/PhysRevA.106.052424
https://doi.org/10.1103/PRXQuantum.3.020365
https://doi.org/10.1103/PhysRevA.106.042433
https://doi.org/10.22331/q-2019-12-09-214
https://arxiv.org/abs/2112.10952
https://doi.org/10.1103/PhysRevResearch.4.033012
https://arxiv.org/abs/2202.12924


VALENTIN HEYRAUD et al. PRX QUANTUM 4, 040335 (2023)

[26] J. Kim, J. Kim, and D. Rosa, Universal effectiveness of
high-depth circuits in variational eigenproblems, Phys. Rev.
Res. 3, 023203 (2021).

[27] J. Kim, Y. Oz, and D. Rosa, Quantum chaos and circuit
parameter optimization, arXiv:2201.01452 (2022).

[28] M. H. Cheng, K. E. Khosla, C. N. Self, M. Lin, B. X. Li, A.
C. Medina, and M. S. Kim, Clifford circuit initialisation for
variational quantum algorithms, arXiv:2207.01539 (2022).

[29] J. Dborin, F. Barratt, V. Wimalaweera, L. Wright, and
A. G. Green, Matrix product state pre-training for quan-
tum machine learning, Quantum Sci. Technol. 7, 035014
(2022).

[30] A. Pesah, M. Cerezo, S. Wang, T. Volkoff, A. T. Sornborger,
and P. J. Coles, Absence of barren plateaus in quantum
convolutional neural networks, Phys. Rev. X 11, 041011
(2021).

[31] L. Schatzki, M. Larocca, Q. T. Nguyen, F. Sauvage, and M.
Cerezo, Theoretical guarantees for permutation-equivariant
quantum neural networks, arXiv:2210.09974 (2022).

[32] Z. Holmes, A. Arrasmith, B. Yan, P. J. Coles, A. Albrecht,
and A. T. Sornborger, Barren plateaus preclude learning
scramblers, Phys. Rev. Lett. 126, 190501 (2021).

[33] A. Arrasmith, M. Cerezo, P. Czarnik, L. Cincio, and P. J.
Coles, Effect of barren plateaus on gradient-free optimiza-
tion, Quantum 5, 558 (2021).

[34] A. Arrasmith, Z. Holmes, M. Cerezo, and P. J. Coles,
Equivalence of quantum barren plateaus to cost concentra-
tion and narrow gorges, Quantum Sci. Technol. 7, 045015
(2022).

[35] S. Wang, P. Czarnik, A. Arrasmith, M. Cerezo, L. Cincio,
and P. J. Coles, Can error mitigation improve trainability of
noisy variational quantum algorithms?, arXiv:2109.01051
(2021).

[36] Y. Du, T. Huang, S. You, M.-H. Hsieh, and D. Tao, Quan-
tum circuit architecture search for variational quantum
algorithms, Npj Quantum Inf. 8, 1 (2022).

[37] K. Sharma, M. Cerezo, L. Cincio, and P. J. Coles, Train-
ability of dissipative perceptron-based quantum neural net-
works, Phys. Rev. Lett. 128, 180505 (2022).

[38] G. De Palma, M. Marvian, C. Rouzé, and D. S. França,
Limitations of variational quantum algorithms: A quan-
tum optimal transport approach, PRX Quantum 4, 010309
(2023).

[39] V. Heyraud, Z. Li, Z. Denis, A. Le Boité, and C. Ciuti,
Noisy quantum kernel machines, Phys. Rev. A 106, 052421
(2022).

[40] S. Jerbi, L. J. Fiderer, H. Poulsen Nautrup, J. M. Kübler,
H. J. Briegel, and V. Dunjko, Quantum machine learn-
ing beyond kernel methods, Nat. Commun. 14, 517
(2023).

[41] Z. Li, V. Heyraud, K. Donatella, Z. Denis, and C. Ciuti,
Machine learning via relativity-inspired quantum dynam-
ics, Phys. Rev. A 106, 032413 (2022).

[42] M. Schuld, Supervised quantum machine learning models
are kernel methods, arXiv:2101.11020 (2021).

[43] P. Rebentrost, M. Mohseni, and S. Lloyd, Quantum support
vector machine for big data classification, Phys. Rev. Lett.
113, 130503 (2014).

[44] P. Mujal, R. Martínez-Peña, J. Nokkala, J. García-Beni,
G. L. Giorgi, M. C. Soriano, and R. Zambrini, Opportuni-
ties in quantum reservoir computing and extreme learning
machines, Adv. Quantum Technol. 4, 2100027 (2021).

[45] Z. Denis, I. Favero, and C. Ciuti, Photonic kernel machine
learning for ultrafast spectral analysis, Phys. Rev. Appl. 17,
034077 (2022).

[46] G. Marcucci, D. Pierangeli, and C. Conti, Theory of neuro-
morphic computing by waves: Machine learning by rogue
waves, dispersive shocks, and solitons, Phys. Rev. Lett.
125, 093901 (2020).

[47] D. Pierangeli, G. Marcucci, and C. Conti, Photonic
extreme learning machine by free-space optical propaga-
tion, Photonics Research 9, 1446 (2021).

[48] S. Thanasilp, S. Wang, M. Cerezo, and Z. Holmes, Expo-
nential concentration and untrainability in quantum kernel
methods, arXiv:2208.11060 (2022).

[49] J. Watrous, The Theory of Quantum Information (Cam-
bridge University Press, Cambridge, UK, 2018).

[50] M. A. Nielsen and I. L. Chuang, Quantum Computa-
tion and Quantum Information: 10th Anniversary Edition
(Cambridge University Press, Cambridge, UK, 2010).

[51] D. Gottesman, The Heisenberg representation of quantum
computers, arXiv:quant-ph/9807006 (1998).

[52] S. Aaronson and D. Gottesman, Improved simulation of
stabilizer circuits, Phys. Rev. A 70, 052328 (2004).
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