
PRX QUANTUM 4, 040334 (2023)

Closest Lattice Point Decoding for Multimode Gottesman-Kitaev-Preskill Codes

Mao Lin ,1,* Christopher Chamberland ,2,3 and Kyungjoo Noh 2,3

1
Amazon Braket, Seattle, Washington 98170, USA

2
AWS Center for Quantum Computing, Pasadena, California 91125, USA

3
IQIM, California Institute of Technology, Pasadena, California 91125, USA

 (Received 19 April 2023; accepted 30 October 2023; published 1 December 2023; corrected 23 January 2024)

Quantum error correction (QEC) plays an essential role in fault-tolerantly realizing quantum algorithms
of practical interest. Among different approaches to QEC, encoding logical quantum information in har-
monic oscillator modes has been shown to be promising and hardware efficient. In this work, we study
multimode Gottesman-Kitaev-Preskill (GKP) codes, encoding a qubit in many oscillators, through a lattice
perspective. In particular, we implement a closest point decoding strategy for correcting random Gaussian
shift errors. For decoding a generic multimode GKP code, we first identify its corresponding lattice fol-
lowed by finding the closest lattice point in its symplectic dual lattice to a candidate shift error compatible
with the error syndrome. We use this method to characterize the error-correction capabilities of several
known multimode GKP codes, including their code distances and fidelities. We also perform numeri-
cal optimization of multimode GKP codes up to ten modes and find three instances (with three, seven,
and nine modes) with better code distances and fidelities compared to the known GKP codes with the
same number of modes. While exact closest point decoding incurs exponential time cost in the number of
modes for general unstructured GKP codes, we give several examples of structured GKP codes (i.e., of
the repetition-rectangular GKP code types) where the closest point decoding can be performed exactly in
linear time. For the surface-GKP code, we show that the closest point decoding can be performed exactly
in polynomial time with the help of a minimum-weight-perfect-matching algorithm (MWPM). We show
that this MWPM closest point decoder improves both the fidelity and the noise threshold of the surface-
GKP code to 0.602 compared to the previously studied MWPM decoder assisted by log-likelihood analog
information, which yields a noise threshold of 0.599.

DOI: 10.1103/PRXQuantum.4.040334

I. INTRODUCTION

Quantum computers hold the promise to solve certain
families of problems with significant speedups compared
to their classical counterparts [1]. However, due to the
ubiquitous noise in the physical systems that are used to
build the quantum computers [2], quantum error correction
(QEC) is essential to protect quantum information from
errors due to decoherence and other quantum noise [3].
The idea behind QEC is to encode a logical qubit onto
several physical qubits that are highly entangled [4–8].
A widely used family of QEC code is the stabilizer code
where the logical information is stored in the +1 eigen-
states of a set of commuting Pauli operators, known as

*maolinml@amazon.com

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

stabilizers [9,10]. The syndrome measurements of the sta-
bilizers provide information on the location and nature of
the possible errors. Before attempting to correct the errors,
a classical decoding algorithm is typically used to analyze
the results of the syndrome measurements to determine
the most likely errors. During the development of fault-
tolerant quantum computing, a lot of efforts have been put
into creating better ways of encoding the logical qubits or
reducing the noise of physical qubits. However, given its
essential role in QEC, devising classical decoding algo-
rithms that can reduce the effect of noise in a fast time scale
is an equally important problem [11].

Among different platforms for quantum computers,
bosonic systems have became increasingly promising
because, thanks to the infinite-dimensional Hilbert spaces
of the bosonic modes, QEC can be implemented in a hard-
ware efficient way [12–15]. For example, two-component
cat codes, which can be realized in circuit QED and
trapped ion, naturally realize noise-biased qubits where the
phase-flip error is more prominent compared to the bit-
flip error [16–20]. With that, a bias preserved CNOT gate

2691-3399/23/4(4)/040334(36) 040334-1 Published by the American Physical Society

https://orcid.org/0009-0002-6102-5730
https://orcid.org/0000-0003-3239-5783
https://orcid.org/0000-0002-6318-8472
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.4.040334&domain=pdf&date_stamp=2024-01-23
http://dx.doi.org/10.1103/PRXQuantum.4.040334
https://creativecommons.org/licenses/by/4.0/

LIN, CHAMBERLAND, and NOH PRX QUANTUM 4, 040334 (2023)

can be realized with two noise-biased cat qubits [21–24],
which is however not possible with conventional two-level
systems [25]. Such a unique feature can be used to signif-
icantly reduce the required resource overheads for imple-
menting fault-tolerant quantum computation [25–32]. The
Gottesman-Kitaev-Preskill (GKP) qubit is another exam-
ple of a bosonic qubit that has a unique feature unattainable
to two-level qubits [33]. The main novelty of the GKP
encoding is that it is designed to protect against small
errors on all qubits, which is in contrast to the conven-
tional encoding that corrects errors of arbitrary amplitude
for only a subset of qubits [34]. Hence the GKP encoding
is more resilient to errors in the phase space that shift the
values of the canonical variables q̂ and p̂ of the quantum
system. The GKP qubit with a single mode has been real-
ized in various platforms [35–38], and shown to suppress
errors from photon losses and dissipation processes. Unfor-
tunately, the GKP code with a single mode cannot correct
random shift errors with a larger size than the certain crit-
ical value, thus the logical error rate cannot be suppressed
to an arbitrarily small value. To improve the QEC prop-
erties of the GKP code, or increase the critical value of
shift errors, one approach is to consider multimode GKP
codes. For instance, one could concatenate a single-mode
GKP code with a conventional multiqubit code, such as the
repetition code or the surface code [39,40], which is gen-
erally referred to as the concatenated GKP codes [41]. For
this family of codes, the standard decoding techniques of
the multiqubit stabilizer codes, such as minimum-weight
perfect matching (MWPM) [42,43], can be used for error
correction. Importantly, the accuracy of the decoder can
be significantly enhanced by using the analog informa-
tion from the homodyne measurements of the GKP qubits
[39,40,44–49].

The QEC property of multimode GKP codes can be
understood in terms of lattices in the phase space. In the
original proposal [33], it has been shown that the stabilizer
group elements of an N -mode GKP code are in one-to-one
correspondence to the points of a 2N -dimensional lattice
in the phase space. It follows from the commutation rela-
tion between the canonical variables that the lattice has to
be symplectic integral. The logical operators of the GKP
codes, which commute with the stabilizers but not in the
stabilizer group, correspond to the symplectic dual lattice
quotient by the original lattice. Although the lattices for
single-mode GKP codes have been often used for illustra-
tion purpose, there are only a few examples in the literature
[50–56] that attempt to use the lattice structure to bet-
ter understand the properties of such codes, especially in
high (i.e., greater than two) dimensions, let alone devise a
lattice-based decoder.

In this work, we numerically implement an exact
closest-point decoder for the multimode GKP codes that
are based on the lattice structures in the phase space. For
a given GKP code, we first identify the lattice � that is

isomorphic to its stabilizer group, and its symplectic dual
�⊥ that consists of both the stabilizers and logical opera-
tors of the GKP code.

In the absence of noise, the outcome of the syndrome
measurement corresponds to a lattice point in � ⊂ �⊥, the
identity operator in the code space. Random shift errors on
the canonical variables of the GKP code will shift the syn-
drome away from the lattice points in �⊥. Since the actual
shift error is unknown a priori, the goal of the decoding
algorithm is to find a candidate error that has the short-
est length and being the most likely shift error compatible
with the syndrome measurement. It has been known that
this is equivalent to finding the closest lattice point in the
symplectic dual lattice �⊥ of the GKP code for the given
syndrome, which is also known as the closest-point search
problem in the mathematical literature [57].

The general closest-point problem, however, is known
to be NP hard [58,59] thus solving the problem, or even
finding an approximate solution [60–62], requires runtime
that is exponential in the dimension of the lattice. But intu-
itively we expect that the closest point of a lattice can be
found much faster if the lattice has certain structure [63–
66]. One trivial example is the integer lattice Zn: in order
to find the closest lattice point to an arbitrary real-valued
vector, we simply round each component to its nearest inte-
ger. Hence a GKP code based on the Zn lattice can be
decoded with runtime that scales linearly with the number
of modes. Building on that, root lattices, such as checker-
board lattices Dn and their Euclidean dual lattices, also
admit decoding algorithms with runtime scaling linearly
with the dimensionality of the lattices [63]. More complex
lattices can be built by taking the direct sum of lattices, or
a union of cosets for certain lattice �. Instead of decod-
ing the lattice as a whole, in these cases, one could decode
different components separately followed by assembling
the result together. Aided with these strategies, we show
that certain concatenated GKP codes, which correspond to
glue lattices, can be decoded more efficiently by decod-
ing different cosets separately followed by selecting the
result with the shortest distance to the input vector. We
apply these techniques to generalizations of the tesseract
and D4 codes as well as to the surface-GKP codes, and
show that they can be decoded in linear and polynomial
time, respectively.

The remainder of the paper is organized as follows. In
Sec. III, we provide the necessary background informa-
tion on the GKP codes and show that every GKP code
can be viewed as a symplectic integral lattice. In Sec. IV,
we formulate the problem of decoding GKP codes as find-
ing the closest lattice point in its sympletic dual lattice.
A general algorithm is presented for solving the prob-
lem in the unstructured lattices. In Sec. V C, we utilize
the algorithm to analyze the error-correction properties,
including code distance and fidelity, for several known
GKP codes, as well as generalizations of the tesseract

040334-2

CLOSEST LATTICE POINT DECODING... PRX QUANTUM 4, 040334 (2023)

and D4 codes. We provide a proof-of-concept demonstra-
tion that the lattice perspective of the GKP code allows
one to numerically search for optimized GKP codes. The
numerically found GKP codes, despite being not optimal,
exhibit distances and fidelities that are comparable or bet-
ter than those of the best known GKP codes. However,
solving the closest-point problem for unstructured lattices
incurs exponential time cost in the number of modes. In
Sec. VI, we present several strategies to decode struc-
tured GKP lattices. The strategies play an important role
in decoding the Dn lattices, as shown in Sec. VII, which in
turn serve as a building block for more sophisticated GKP
codes. In Sec. V B, we show that the generalizations of the
tesseract and D4 codes can be decoded with runtime that
scales linearly with respect to the size of the codes, which
enables us to benchmark the error-correction capabilities
of these code families at scale. In Sec. IX, we present an
exact and polynomial-time closest-point decoder for the
surface-GKP codes based on MWPM. We show that this
decoder improves both the fidelity and the noise thresh-
old of the surface-GKP code, compared to the previously
studied MWPM decoder assisted by log-likelihood analog
information. We conclude and discuss the future direc-
tions in Sec. X. We provide more technical details in the
appendices.

II. SUMMARY OF MAIN CONTRIBUTIONS

Here we summarize the three key contributions of this
work. First, we numerically demonstrate a closest-point
searching algorithm for decoding general multimode GKP
codes. Since the initial proposal [33], decoding a GKP
code is known to be related to finding the Voronoi cell of
its dual lattice, the cell containing all the points that are
closer to the origin than to any other lattice site. In a recent
publication [54], it is shown that the optimal maximum-
likelihood decoding strategy for multimode GKP codes
can be approximated by the closest-point decoder. In these
prior works, however, there has not been numerical imple-
mentations of the exact closest-point decoder for general
GKP codes. Here we present a self-contained introduction
of a closest-point searching algorithm for general lattices
[67]. The source code and data used in this work are
available through the package LatticeAlgorithms.jl [68].

Closest-point searching is a well-known NP-hard prob-
lem, and decoding a generic unstructured GKP code gen-
erally takes exponential time cost in the number of modes.
Hence, there is no a priori known evidence that it is practi-
cal to decode large instances of multimode GKP codes via
the closest-point searching strategy. The second contribu-
tion of this work is to show that certain structured GKP
codes can be decoded efficiently with the closest-point
decoder. We present a set of tools to decode structured
GKP codes, with which linear-time closest-point decoders
are constructed for two families of repetition-GKP codes.

More remarkably, we demonstrate an efficient closest-
point decoder for the surface-GKP code, which improves
both the fidelity and threshold of the surface-GKP code
while has exactly the same time complexity as the com-
monly used MWPM decoder. Our finding suggests that
efficient closest-point decoding strategy may exist for other
commonly studied structured GKP codes.

The third contribution of our work is we find three
instances of GKP codes that outperform the known struc-
tured GKP codes in terms of code distances and fidelity.
In particular, with numerical optimization of multimode
GKP codes up to ten modes, we find GKP codes with
three, seven, and nine modes that have better performance
than the known GKP codes of the same modes, including
repetition-GKP code, [[7, 1, 3]]-hexagonal GKP code, and
surface-GKP code. For GKP codes with an even number
of modes, the distances of the optimized codes are smaller
than the YY-repetition-GKP codes, the concatenation of
two copies of repetition-GKP codes with the YY stabilizer.
Despite that, we find that the fidelity of the optimized codes
are the same or better than that of the YY-repetition-GKP
codes with the same number of modes. The detailed study
of these new GKP codes are interesting future research
topics.

III. PRELIMINARY AND NOTATIONS

A. Displacement operators and Gaussian unitaries

In this work, we will work with the quantum Hilbert
space of N harmonic oscillator modes. Let âj and â†

j denote
the creation and annihilation operators for the j th mode,
we have the commutation relation [âj , â†

k] = δjk where we
have set � = 1. Since we use Gaussian operations and
related concepts in many places, it proves convenient to
introduce the quadrature operator x̂ ≡ (x̂1, x̂2, . . . , x̂2N)T ≡
(q̂1, p̂1, . . . q̂N , p̂N)T where

q̂j = (âj + â†
j)/

√
2, p̂j = −i(âj − â†

j)/
√

2. (1)

Then, we have

[x̂j , x̂k] = i�jk, (2)

where the symplectic form � is a 2N × 2N matrix and is
given by

� = IN ⊗ ω = IN ⊗
[

0 1
−1 0

]
=

⎡
⎢⎢⎣

ω 0 · · · 0
0 ω · · · 0
...

...
. . .

...
0 0 · · · ω

⎤
⎥⎥⎦ .

(3)

Here IN is the N × N identity matrix, and we have denoted
operators with a hat and (column) vectors in bold fonts. We
note that �−1 = �T = −�.

040334-3

LIN, CHAMBERLAND, and NOH PRX QUANTUM 4, 040334 (2023)

We remark that the choice of the ordering of the position
and momentum operators in x̂ is not unique. We refer to
the ordering convention chosen above as the qpqp order-
ing. Occasionally it is convenient to work with a different
ordering convention where x̂ ≡ (q̂1, . . . , q̂N , p̂1, . . . , p̂N)T,
which is referred as the qqpp convention. In the latter
case, the symplectic form � reads

�(qqpp) =
[

0N IN
−IN 0N

]
. (4)

In this paper, we will mostly work with the qpqp order-
ing as in Eq. (3) unless we explicitly state that the qqpp
ordering is used instead.

The quadrature operators can be thought as the gen-
erators of the translation in the 2N -dimensional phase
space of the N oscillator modes. Specifically, let u =
(u(1)

q , u(1)
p , . . . , u(N)

q , u(N)
p)T ∈ R2N be a vector in the phase

space. Then, the displacement operator D̂(u) is defined as

D̂(u) ≡ exp[iuT�−1x̂] = exp[−iuT�x̂]. (5)

This is a displacement operator in the sense that

D̂†(u)x̂j D̂(u) = x̂j + [−iuT�−1x̂, x̂j] = x̂j + uj , (6)

or equivalently, D̂†(u)x̂D̂(u) = x̂ + u, which shifts the
quadrature operators x̂ by an amount of u. With that, we
have the following commutation relation for the displace-
ment operators:

D̂(u)D̂(v) = D̂(v)D̂(u) exp[iuT�v]. (7)

Hence the two displacements associated with u and v com-
mute if and only if their symplectic product uT�v is an
integer multiple of 2π .

Displacement operator is an example of Gaussian uni-
tary operators that preserve the symplectic form �: it is
clear that the commutation relation in Eq. (2) is invari-
ant under the translation in Eq. (6). More generally, one
could consider a Gaussian unitary Û that transforms the
quadrature operator x̂ into Sx̂ + u [69],

x̂′ ≡ Û†x̂Û = Sx̂ + u. (8)

If the symplectic form � is invariant under transformation,
i.e.,

[x̂′
j , x̂′

k] = i�jk, (9)

then from

[x̂′
j , x̂′

k] =
∑
l,m

[Sjlx̂l + uj , Skmx̂m + uk] = i(S�ST)jk,

we conclude that S is a 2N × 2N symplectic matrix, i.e.,

S�ST = �. (10)

Hence a Gaussian unitary operator is fully characterized
by a symplectic matrix S and u. In this work, it suffices to
consider Gaussian operations with u = 0. Those with u 	=
0 and S = I2N are referred to as the displacement operators
as above.

B. Multimode GKP code

A GKP code with N modes is stabilized by 2N inde-
pendent stabilizer generators. Each stabilizer generator is
given by a displacement in the 2N -dimensional phase
space

Ŝj = D̂(
√

2πvj) = exp[iĝj], (11)

where j ∈ {1, . . . , 2N } and vj is a translation vector corre-
sponding to the j th stabilizer generator. We also introduce
a vector of operators ĝ ≡ (ĝ1, . . . , ĝ2N)T such that ĝi =√

2πvT
j �

−1x̂, or more compactly

ĝ =
√

2πM�−1x̂, (12)

where M is a 2N × 2N matrix with the j th row given by
the row vector vT

j . The full stabilizer group is given by

S = {Ŝ = Ŝa1
1 · · · Ŝa2N

2N | a = (a1, . . . , a2N)T ∈ Z
2N }, (13)

and since the stabilizer generators commute with each
other, a generic stabilizer-group element reads

Ŝ = exp[iaTĝ] = exp[i
√

2π(aTM)�−1x̂] = D̂(
√

2πM Ta).
(14)

Equation (14) establishes an isomorphism between the
stabilizer group and a lattice with the generator matrix M

�(M) ≡ {aTM : a = (a1, . . . , a2N)T ∈ Z
2N }, (15)

where the stabilizer-group element Ŝ is mapped to the
lattice point

√
2πM Ta. Since the stabilizers form an

Abelian group, we require that D̂(
√

2πM Ta) commute
with D̂(

√
2πM Tb) for arbitrary a, b ∈ Z2N . Equivalently,

it is required that the symplectic Gram matrix

A ≡ M�M T (16)

has only integer entries. Lattices with this property is
called symplectic integral lattices [57].

Hereafter we shall use n for the dimension of a general
lattice, and N for the number of modes of a GKP code.
We refer to the matrix M in ĝ = √

2πM�−1x̂ as the gen-
erator matrix of the GKP code (or sometimes simply the
GKP generator matrix). We will also use M� to denote the
generator matrix of a lattice �.

040334-4

CLOSEST LATTICE POINT DECODING... PRX QUANTUM 4, 040334 (2023)

C. Canonical generator matrix of a GKP code

Much like the set of generators of a stabilizer group is
not unique, one could pick a different basis, and hence a
different but equivalent generator matrix, for the same lat-
tice. For instance, a lattice �(M) can also be generated
by

M ′ = RM , (17)

where R is a unimodular matrix, which is an integer matrix
with |det(R)| = 1. The corresponding symplectic Gram
matrices are related via

A′ = RART. (18)

Since A is integer valued, and antisymmetric, i.e.,

AT = M�TM T = −M�M T = −A, (19)

it is possible to find a unimodular matrix R such that

RART = diag(d1, . . . , dN) ⊗ ω, (20)

where diag(d1, . . . , dN) [or diag(d) in short] is a diagonal
matrix whose elements are natural numbers, i.e., d ∈ NN .
Equation (20) means that for any valid generator matrix M
of a GKP code, it is possible to find a unimodular matrix R
such that M ′ = RM satisfies

A′ ≡ M ′�M ′T = diag(d) ⊗ ω. (21)

Here, dk can be interpreted as the number of states encoded
in the kth “mode.” We say that a generator matrix M of
a GKP code is in the canonical form when its symplec-
tic Gram matrix A = M�M T is given by diag(d) ⊗ ω for
some d ∈ NN . In Appendix B, we provide more details
on how to find an appropriate unimodular matrix R that
converts a valid GKP generator matrix M into a canonical
GKP generator matrix M ′ = RM .

D. The logical operators of a GKP code

Displacement operators that preserve the GKP code
subspace form the normalizer group of the code, which
consists of phase-space translation that commute with the
stabilizer group

S⊥=
{

Ŝ⊥|[Ŝ⊥, Ŝ] = 0 ∀Ŝ ∈ S
}

. (22)

By definition, for an arbitrary element Ŝ⊥ ≡ D̂(u) ∈ S ,
we have uT�v ∈ Z for all v ∈ �. This gives precisely the

symplectic dual lattice for �

�⊥≡�(M⊥) = {
u | uT�v ∈ Z ∀v ∈ �

}
, (23)

which could be generated by

M⊥ = �A−1M . (24)

Indeed, as one can check, bTM⊥�M Ta = bT�a is an
integer for all a, b ∈ Z2N . In the literature, there is an
alternative definition M⊥ = A−1M , which differs from our
definition in Eq. (24) only by a unimodular matrix � mul-
tiplied from the left. Hence the two definitions generate
the same lattice. We note that since the stabilizer group
is Abelian and all elements commute with each other, it
implies that S ⊂ S⊥. Since the logical operators of a QEC
code leave the stabilizer group invariant, analogously, we
can associate all translations in the dual lattice to the
logical operators defined as

L̂j ≡ exp[i
√

2πwT
j �

−1x̂], (25)

where j ∈ {1, . . . , 2N } and wT
j is the j th row of M⊥. The

2N logical operators of the GKP code are, however, not
independent to each other, because logical operators differ
by a stabilizer are indistinguishable in the code subspace.
This corresponds to the fact that the logical information
of the GKP code is encoded in the quotient group �⊥/�,
and the number of distinct logical operators is equal to the
number of elements in the quotient group, or [54,55]

|det(M)/det(M⊥)| = |det(M)|2. (26)

We have used Eqs. (16) and (24) to derive Eq. (26). Hence
the number of states encoded in the GKP lattice is given
by |det(M)|2, the square of the determinant of the GKP
lattice generator matrix. The generator of the symplectic
dual lattice takes a particularly simple form when M is in
the canonical form, i.e., A = diag(d) ⊗ ω because

M⊥ = �A−1M = (diag(d)−1 ⊗ I2)M . (27)

Hence the logical operators are simply the stabilizers
divided by the corresponding integers di in the canonical
basis. We note that sometimes it may be more convenient
to use the identity

M⊥ = �A−1M = �(M�M T)−1M = �(M T)−1�−1.
(28)

E. Code distances of a GKP code

In order to quantify the error-correction capability of
a GKP code, we will need several metrics for evaluat-
ing GKP codes. For standard qubit-based stabilizer codes,

040334-5

LIN, CHAMBERLAND, and NOH PRX QUANTUM 4, 040334 (2023)

one such metric is the distance of the code, defined as the
weight of the shortest nontrivial logical operator [1]. Moti-
vated by that, we can define the distance of a GKP code
as the Euclidean length of the shortest nontrivial logical
operator [54]

d = min
u∈�⊥,u/∈�

√
2π ||u||, (29)

where the factor of
√

2π comes from the definition in
Eq. (25), and the minimum is taken over the lattice vec-
tors that are in the symplectic dual lattice �⊥ = �(M⊥)

but not in the original lattice � = �(M). To be more con-
crete, let us consider a GKP code that encodes a qubit into
N modes. Since Euclidean distance is independent to the
basis vectors of the lattice, we assume that the genera-
tor matrix M of the GKP code is canonized with d1 = 2
and d2 = · · · = dN = 1. From Eq. (27), we can notice that
the symplectic dual lattice �⊥ = �(M⊥) is spanned by
the same set of basis vectors as � = �(M), except that
the first two basis vectors of �⊥ are only half of those
for �. Hence the quotient group �⊥/� is generated by{
wT

1 , wT
2

}
, where w1,2 correspond to the logical operators

of the encoded qubit. Since the logical operators are indis-
tinguishable if they differ by a stabilizer, we can identify
the following set of vectors:

{w1 + u, ∀ u ∈ �} ,

{w2 + u, ∀ u ∈ �} ,

{w1 + w2 + u, ∀ u ∈ �} ,

(30)

to the logical X̄ , Z̄, and Ȳ operators, respectively. Note that
the logical identity operator Ī is simply all the lattice vec-
tors in �, i.e., {u, ∀ u ∈ �}. We can define the distances
of the different logical operators as the minimum length of
the corresponding set of vectors

dX = min
b∈Z2N

√
2π ||w1 − M Tb||,

dZ = min
b∈Z2N

√
2π ||w2 − M Tb||,

dY = min
b∈Z2N

√
2π ||w1 + w2 − M Tb||,

(31)

and the distance is given by

d = min(dX , dY, dZ). (32)

Equation (32) is a special case of Eq. (29) for GKP codes
that are in the canonical basis and encode a single qubit,
because the vectors in the three summands of Eq. (31) are
guaranteed to lie in �⊥ but not � by construction.

F. Transformation between GKP codes

Recall a Gaussian unitary Û transforms the quadrature
operator x̂ into Sx̂ where S is a symplectic matrix. If we
apply the Gaussian unitary to a stabilizer-group element
Ŝ = D̂(M Ta), as defined in Eq. (14), the new GKP code is
then stabilized by the stabilizer

Ŝ ≡ ÛŜÛ†

= exp[i
√

2π(aTM)�−1Ûx̂Û†]

= exp[i
√

2π(aTM)�−1(�ST�−1)x̂]

= D̂(
√

2π(MST)Ta), (33)

where we used the fact that S−1 = �ST�−1 because
S(�ST�−1) = I . Thus the new GKP lattice has the gen-
erator matrix

M ′ = MST. (34)

With Eq. (34), it allows us to realize any GKP code by
applying a Gaussian unitary operator to an N -mode square
lattice GKP code, which is generated by

Msq(d) ≡ diag(
√

d1, . . . ,
√

dN) ⊗ I2. (35)

To see that, consider a general GKP code in its canonical
basis, we can always decompose M into M = Msq(d)ST

with ST = Msq(d)−1M , which is a symplectic matrix
because

ST�(ST)T = (Msq(d)−1M)�(Msq(d)−1M)T = �. (36)

If ST is symplectic, then S is also symplectic because

S�ST = S��(�S)−1 = −SS−1�−1 = �. (37)

Thus we see that any GKP code can be understood as
a code that results from applying a Gaussian unitary
operator Û, with a corresponding symplectic matrix S =
(Msq(d)M)T, to a square-lattice GKP code. The corre-
sponding stabilizers are then given by

Ŝ2k−1 = D̂(
√

2πdks2k−1), Ŝ2k = D̂(
√

2πdks2k), (38)

for k ∈ {1, . . . , N }, where s1, . . . , s2N are the columns of
the symplectic matrix S.

G. The concatenated GKP code

Here we describe how to concatenate a GKP code with
another qubit stabilizer code. We assume that the base
GKP code encodes a single qubit in each mode and we
prepare N such GKP qubits with N modes. Then we con-
sider a standard qubit-based stabilizer code [[N , k, d0]],

040334-6

CLOSEST LATTICE POINT DECODING... PRX QUANTUM 4, 040334 (2023)

where d0 is the distance of the qubit stabilizer code
(not to be confused with the distance of the resulting
GKP code). Then, the resultant concatenated GKP code
encodes k qubits in N modes. For the qubit stabilizer
code [[N , k, d0]], recall that each stabilizer generator cor-
responds to a binary vector with 2N components, where
the odd-numbered and even-numbered entries represent
the presence of X and Z operators, respectively. Hence
we shall use

{
gj , j = 1, . . . , N − k

}
to denote the set of

binary vectors for the stabilizer generators. For simplic-
ity, we start with the square lattice as the base GKP code,
and form a separable lattice generated by N copies of the
square GKP code M (sq) = M⊕N

sq . From Eq. (35), we see
that

M (sq) =
√

2I2N (39)

in an appropriately chosen basis. Here the prefactor
√

2 is
due to the fact that each base GKP code encodes one qubit
(i.e., two states) in a mode. In order to obtain the lattice
corresponding to the concatenated code, we replace N − k
rows in M (sq) by the following set of vectors:

{
1√
2

gT
j , for j = 1, . . . , N − k

}
, (40)

such that the resultant matrix, denoted by M (sq)
conc, remains

full rank. In Appendix A, we will show more details on
how to arrive at M (sq)

conc, and that det(M (sq)
conc) = 2k, which

indicates that the resultant lattice indeed encodes k qubits
as desired. This process of deriving a lattice from a binary
code is known as Construction A in Ref. [57]. The Con-
struction A procedure allows us to concatenate generic
base GKP code to a stabilizer code. Let Mbase be the gen-
erator matrix of a generic qubit-into-an-oscillator GKP
code and assume that Mbase is in the canonical form. From
the discussion in Sec. III F, we can always find a sym-
plectic matrix Sbase such that Mbase = MsqST

base. Hence, the
generator matrix of the concatenated GKP code is given by

Mconc = M (sq)
conc(S

T
base)

⊕N . (41)

H. Examples of symplectic lattices and GKP codes

The error-correcting capabilities of a GKP code is
strongly tied to the properties of the underlying symplectic
lattice of the GKP code. In this section, we review several
relevant symplectic lattices.

1. Z-type lattice

The simplest way to encode a state into a multimode
GKP code is to use the hypercubic lattice denoted as
the Z2N generated by MZ2N ≡ I2N , the 2N × 2N identity
matrix. The resulting stabilized state is given by a tensor
product of N GKP qunaught states [39,70,71].

One could scale the lattice spacings along different axes
for encoding multiple states and qubits in the lattice, as
shown in Eq. (35). For instance, one way to encode a qubit
into a single mode GKP code is to use the two-dimensional
rectangular lattice given by

Mrec =
[√

2η 0
0

√
2/η

]
, (42)

where η > 0 is the square root of the aspect ratio between
the two axes. The rectangular lattice can be obtained from
the square lattice Msq(2) via the transformation

Mrec = Msq(2)ST
rec = Msq(2)

[
η 0
0 η−1

]
. (43)

Here the symplectic matrix Srec corresponds to a one-
mode squeezing operation. Similarly, an N -mode hyper-
rectangular GKP code can be obtained by applying the
tensor product of N one-mode squeezing operations to an
N -mode hypercubic GKP code generated by a scaled Z2N
lattice (by a factor of

√
2).

The logical operators of the code can be deduced from
Eq. (25). From Eq. (24), we have ω1 = (η/

√
2, 0)T, ω2 =

(0,
√

2/η)T such that [33]

X̄ ≡ L̂1 = exp
[−i

√
πηp̂

]
, Z̄ ≡ L̂2 = exp

[
i
√

π

η
q̂
]

.

(44)

Upon solving Eq. (31), we have the code distance for the
rectangular code as

drec
X = η

√
π , drec

Y =
√

(η2 + η−2)π , drec
Z = η−1√π .

(45)

2. D-type lattice

The D-type lattice, denoted as Dn, is an n-dimensional
sublattice of the Zn lattice such that the sum of the compo-
nents of the lattice points is even [57]. Formally,

Dn =
{

(x1, . . . , xn) ∈ Z
n :

n∑
k=1

xk is even

}
. (46)

In other words, the Dn lattice can be obtained by coloring
the Zn lattice in a checkerboard pattern, hence the Dn lat-
tice is also called the checkerboard lattice. The simplest
example is the D2 lattice given by

MD2 =
[

1 1
1 −1

]
, (47)

which is nothing but a rotated square lattice (by 45◦), also
known as the diamond code. An important feature of the

040334-7

LIN, CHAMBERLAND, and NOH PRX QUANTUM 4, 040334 (2023)

Dn lattice is that the volume of its fundamental parallelo-
tope is always 2, i.e., det(MDn) = 2. Combining this with
the fact that the symplectic gram matrix of MDn is an inte-
ger matrix, we find that the Dn lattice can be used to define
a GKP code that encode one qubit in N modes for even
valued n = 2N . In fact, it was shown in Ref. [55] that the
GKP code defined with the lattice D2N can be viewed as
an N -qubit repetition code (with Y-type stabilizers) con-
catenated with the diamond GKP code defined in Eq. (47).
The fact that the D2N lattice can be viewed as a repetition
code allows us to infer its code distances straightforwardly.
Because the diamond code in Eq. (47) is simply a rotated
square lattice, its code distances are the same as those
given in Eq. (45) with η = 1. Since the YY stabilizers in
the repetition code would detect the X and Z errors but not
the Y errors, the Euclidean distance for the logical Ȳ opera-
tor remains the same as that for the diamond code. Further,
because the X̄ operator for the YY repetition code is a ten-
sor product of Pauli-X operators, and the X̄ operator for
the diamond code corresponds to w1 = 1

2 (1, 1)T, one can
show that the X̄ operator for the D2N code corresponds
to an 2N -component vector with all entries equal to 1/2
[55]. This vector has the minimum length of

√
N/2 among

{w1 + u, ∀ u ∈ �} because � is an integral lattice. As a
result, we have dD2N

X = √
2π

√
N/2 = √

Nπ . Because of
the symmetry between the logical Z̄ and X̄ operators, we
conclude that

dD2N
Z = √

Nπ , dD2N
Y =

√
2π , dD2N

X = √
Nπ . (48)

We see that dD2N
X = dD2N

Y = dD2N
Z if and only if N = 2 for

the D4 lattice. We will call a code with equal X̄ , Ȳ, Z̄ logical
distances a balanced code.

3. Tesseract lattice

The tesseract lattice is a four-dimensional analog of a
cube with the following generator matrix:

Mtess = 2
1
4

⎡
⎢⎢⎣

1√
2

0 1√
2

0
0 1 0 0
1√
2

0 − 1√
2

0
0 0 0 1

⎤
⎥⎥⎦ . (49)

We can notice that this is a direct sum of two sublattices,
where q̂1 and q̂2 quadratures form a D2 lattice, and p̂1 and
p̂2 form a Z2 lattice. More importantly, the tesseract code
can be viewed as the rectangular GKP code concatenated
with the two-qubit repetition code. To see that, we con-
sider two copies of the rectangular GKP codes in Eq. (42)
with η = 21/4 and the two-qubit repetition code with a XX
stabilizer. Following the approach above, we arrive at the

following generator matrix:

M ′
tess =

⎡
⎢⎢⎢⎣

1√
2

0 1√
2

0
0

√
2 0 0

0 0
√

2 0
0 0 0

√
2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

2
1
4 0 0 0

0 2− 1
4 0 0

0 0 2
1
4 0

0 0 0 2− 1
4

⎤
⎥⎥⎥⎦

= 2
1
4

⎡
⎢⎢⎣

2− 1
2 0 2− 1

2 0
0 1 0 0
0 0 2

1
2 0

0 0 0 1

⎤
⎥⎥⎦

= RMtess, (50)

where Mtess is given in Eq. (49) and

R =

⎡
⎢⎣

1 0 0 0
0 1 0 0
1 0 −1 0
0 0 0 1

⎤
⎥⎦ . (51)

Since M ′
tess differ from Mtess only by a unimodular matrix,

they are different basis for the same lattice, namely the
tesseract lattice.

For the distance of the tesseract code, since the XX sta-
bilizer cannot detect the logical X̄ errors, it follows that
dtess

X is the same as drec
X with η = 21/4, i.e., dtess

X = 21/4√π .
On the other hand, we expect that both distances for the
logical Ȳ and Z̄ will be improved due to the XX stabilizer.
Upon explicitly solving Eq. (31) for M⊥

tess, we have

dtess
X = 2

1
4
√

π , dtess
Y = 2

1
4
√

2π , dtess
Z = 2

1
4
√

π . (52)

We see that for the case of N = 2, the D4 lattice has dis-
tance dD4 = √

2π , which is greater than dtess = 21/4√π

for the tesseract code. However, one problem for the D2N
lattice is that its distance remains the same for all values
of N because the distance of the logical Ȳ operator do not
scale with the number of modes. In Sec. V B, we will intro-
duce two generalizations of the tesseract and D4 codes that
has larger distances than the D2N lattice for N > 2.

IV. CLOSEST-POINT DECODER FOR THE GKP
CODES

In this section, we introduce the closest-point decoder
for the GKP code, which is based on the lattice structure
of the code. We begin by following Ref. [54] to formulate
the decoding problem as a lattice problem.

A. Error syndrome for GKP code

Suppose that we have a GKP code that encodes one
qubit in N oscillators. The defined GKP code can be
used to correct small shift errors, and we assume that the

040334-8

CLOSEST LATTICE POINT DECODING... PRX QUANTUM 4, 040334 (2023)

oscillator quadratures undergo independent and identically
distributed (IID) additive errors

x̂ → x̂′ ≡ x̂ + ξ , (53)

where ξ ≡ (ξ (1)
q , ξ (1)

q , . . . , ξ (N)
q , ξ (N)

q) ∼IID N (0, σ 2) are
the random shifts that follow the Gaussian distribution
N (0, σ 2). The errors can be modeled by applying the dis-
placement operator D̂(ξ) onto the GKP code. Our goal
is to apply another displacement operator D̂(−ξ ∗) onto
the errant GKP code to minimize the chance of getting a
logical error.

The shift error ξ is not known a priori, and we have
only the information from the stabilizer measurements.
Recall that the stabilizers of a GKP code are given by
Ŝj = exp[i

√
2πvT

j �
−1x̂], where vT

j is the j th row of M
[c.f. Equation (14)]. Because the stabilizers commute with
each other, they can be measured simultaneously. This is
equivalent to measuring the exponents i

√
2πvT

j �
−1x̂ mod-

ulo 2π i. Let sj denote error syndrome from the homodyne
measurements, then it differs from

√
2πvT

j �
−1ξ by an

integer multiple of 2π , i.e.,

s ≡
√

2πM�−1ξ mod 2π , (54)

where the modulo operation is applied elementwise. In
other words, the shift error is related to the syndrome via
ξ = (1/

√
2π)�M−1(s + 2πa) for certain integer valued

vector a. For the purpose of decoding, we can write

ξ = 1√
2π

�(�M TA−1)(s + 2πa)

= −1√
2π

(�M⊥)T(s + 2πa)

= η(s) −
√

2π(M⊥)Tb, (55)

where we have used the identity in Eq. (28) and introduced
the integer valued vector b ≡ −�a and

η(s) ≡ −1√
2π

(�M⊥)Ts. (56)

Thus, we learn about the shift ξ only modulo the lattice
generated by

√
2πM⊥, i.e., a lattice of logical opera-

tors. Condition on the error syndrome s obtained from the
homodyne measurement, we are looking for a shift ξ ∗ that
has the shortest length and being the most likely shift error
compatible with the measured stabilizer values. Thus we
need to solve the following problem:

b∗ = arg min
b∈Z2N

|η(s) −
√

2π(M⊥)Tb|. (57)

With that we will apply the counter displacement D̂(−ξ ∗)
with ξ∗ ≡ η(s) − √

2π(M⊥)Tb∗. After the correction, the

initial state is translated by D̂(−ξ ∗)D̂(ξ) = eiαD̂(e) where
α is an irrelevant phase and e ≡ √

2π(M⊥)Tc for some c ∈
Z2N . To see the net result of the shift error and the counter
displacement, we can again assume M⊥ is in the canonical
basis, where the first two rows of M⊥ generates the logical
operators. Hence, after the attempted correction, we will
have

Ī if c ∈ (2Z, 2Z, Z, Z · · · , Z, Z)

X̄ if c ∈ (2Z + 1, 2Z, Z, Z · · · , Z, Z)

Z̄ if c ∈ (2Z, 2Z + 1, Z, Z · · · , Z, Z)

Ȳ if c ∈ (2Z + 1, 2Z + 1, Z, Z · · · , Z, Z)

(58)

on the encoded information. Hence there will be logical
error if and only if either of the first two components of c is
an odd integer. For more general cases with noncanonical
M⊥, let R denote the unimodular matrix that canonizes the
generator matrix M , i.e., M ′ = RM is in canonical basis,
and M ′⊥ = −�(RT)−1�M⊥ is the canonized logical oper-
ators, according to Eq. (24). With that, Eq. (58) can be
applied for −�R�c in a noncanonical basis.

Before proceeding, we remark that Eq. (57) is referred to
as minimum energy decoding (MED) in Ref. [54], which
is an approximation of the optimal maximum-likelihood
decoding (MLD) for general GKP codes. In particular, the
MED is only optimal when σ → 0 as it searches for the
most possible error, instead of the most possible coset of
errors. Nevertheless, for certain quantum error-correction
codes, MED is shown to have similar performance com-
pared to the MLD, which generally has greater time com-
plexity [72]. We further note that in Ref. [54], MED is
only discussed as a subroutine for MLD to decode concate-
nated codes. Here, on the other hand, we present a general
algorithm for decoding generic GKP codes from the lattice
perspective.

B. Closest-point search problem

The problem in Eq. (57) is known as the closest-point
search problem, or the closest-vector search problem, in
the mathematical community, which can be stated formally
as follows. For a given lattice � ⊂ Rn, find a lattice point
u ∈ � that is closest to an input vector t ∈ Rn:

χ t(�) ≡ arg min
u∈�

||t − u||. (59)

In the case of tie, χ t(�) is chosen arbitrarily from the clos-
est points. Equivalently, if the lattice is generated by the
matrix M , then

(M T)−1χ t(�(M)) = arg min
b∈Zn

||t − M Tb||, (60)

where the right-hand side gives the coordinates of the clos-
est point in the basis of M . We emphasize that although

040334-9

LIN, CHAMBERLAND, and NOH PRX QUANTUM 4, 040334 (2023)

the closest-point problem is described with respect to M
in Eqs. (59) and (60), for a GKP lattice MGKP, the closest-
point problem is to be solved for its symplectic dual M⊥

GKP,
instead of the lattice itself, per Eq. (57). Although the
closest-point problem has been known to be NP hard for
decades [58,59], due to its many applications in diverse
areas [73–79], there has been many attempts to reduce the
search time for exact solutions [67,79–84], or approximate
solutions [60–62]. Here we discuss an exact algorithm,
which is based on Ref. [67], and more details of the
algorithm will be presented in Appendix C. Note that we
are interested in an exact algorithm (despite its exponen-
tial time cost) since we would like to use it to understand
generic, unstructured, and small-sized GKP codes, as well
as to benchmark efficient decoders for structured GKP
codes.

The algorithm starts by preprocessing the generator
matrix M into a lower-triangular form via the transforma-
tion

M = RLQ, (61)

where R is a unimodular matrix and Q is an orthogo-
nal matrix. As described in Sec. III C, matrices differed
by a unimodular matrix multiplied from the left generate
the same lattice, and because the orthogonal transforma-
tion can be regarded as rotating the basis vectors, matrices
M and L generate the identical lattice. The transforma-
tion in Eq. (61) is also known as lattice reduction, which
is a process of selecting a good basis for speeding up
the closest-point searching process. The Lenstra-Lenstra-
Lovász (LLL) algorithm and the Korkine-Zolotareff (KZ)
algorithm are two widely used techniques for lattice reduc-
tions. They have advantages in different scenarios, which
will be discussed further in Sec. X and Appendix C.

The next step is to find the closest point in the new basis
L. For that, we first notice

(M T)−1χ t(�(M)) = arg min
b∈Zn

||Qt − LTRTb||

= (RT)−1 arg min
b′∈Zn

||Qt − LTb′||

= (RT)−1(LT)−1χQt(�(L))

such that

χ t(�(M)) = QTχQt(�(L)). (62)

Hence, the problem reduces to finding the closest point
χ t′(�(L)) for t′ ≡ Qt. The basic idea of the searching
algorithm is to view the n-dimensional lattice as a stack of
(n − 1)-dimensional sublattices, and search these sublat-
tices recursively. For instance, a two-dimensional (2D) lat-
tice can be viewed as a collection of one-dimensional (1D)
lattices, as shown in Fig. 1. We can similarly decompose

FIG. 1. A 2D lattice as a stack of 1D sublattices. The black
dots represent the lattice points of a triangular lattice, and the
dashlines represent the parallel 1D sublattices. The decomposi-
tion into sublattices is not unique. The red dot is the input vector
t, which can be decomposed as t = t‖ + t⊥, which are parallel
and perpendicular to the sublattices, respectively. For illustration
purpose, the point is chosen to lie slightly above the center of the
equilateral triangle formed by the points o, a, and b. Hence the
closest point is a; on the other hand, the closest line to t is the
line cross o and b. The closest-point algorithm will first search
the ob line and randomly select o or b as the candidate closest
point, which sets the upper bound for the distance between the
closest point and t. Hence we can ignore the rest of the 1D sub-
lattices, and only need to search the ac line, which leads to the
true closest point, namely a.

the input vector as t′ = t′‖ + t′⊥, which are parallel and per-
pendicular to the sublattices, respectively. The searching
proceeds with the Schnorr-Euchner strategy [85], which
sorts the sublattices in the ascending order of their vertical
distances to t′. Let us denote the nearest sublattice as �′,
then we can first identify χ t′(�

′), which is the nearest point
in �′ to t′. It is important to note that χ t′(�) 	= χ t′(�

′)
because the nearest lattice point needs not lie within the
nearest sublattice, as shown in Fig. 1. Nevertheless, the
distance between χ t′(�

′) and t′ provides an upper bound
ρ ≡ ||χ t′(�

′) − t′||, and χ t′(�) cannot lie in the sublat-
tice with vertical distance larger than ρ. We only need
to search a finite set of sublattices, and update the upper
bound ρ if the new candidate point has smaller distance.
The searching is complete after all the sublattices with ver-
tical distance smaller than ρ have been visited. Once the
closest point χ t′(�(L)) is identified in the basis L, we can
transform it back to the original basis in M via Eq. (62).
This concludes the closest-point searching algorithm.

V. SEARCHING FOR OPTIMIZED GKP CODES

In previous sections, we illustrate that a GKP code can
be viewed as a symplectic integral lattice, and decoding
the GKP code is equivalent to finding the closest point
in the lattice. In this section, we will use this machinery
to analyze several known concatenated GKP codes and to
numerically search for optimized GKP codes.

040334-10

CLOSEST LATTICE POINT DECODING... PRX QUANTUM 4, 040334 (2023)

TABLE I. The stabilizers for the [[5, 1, 3]], [[7, 1, 3]], and d0 = 3
surface codes.

[[5, 1, 3]] [[7, 1, 3]] d0 = 3 surface code

I X ZZX I I I XXXX XX I XX I I I I
X I X ZZ I XX I I XX I XX I I I I I I
ZX I X Z X I X I X I X I I I I I I XX I
ZZX I X I I I ZZZZ I I I I XX I XX

I ZZ I I ZZ Z I I Z I I I I I
Z I Z I Z I Z I ZZ I ZZ I I I

I I I ZZ I ZZ I
I I I I I Z I I Z

A. Analysis of known concatenated GKP codes

Here, we analyze known concatenated GKP codes. As
a warm up, we start with the [[5, 1, 3]] and [[7, 1, 3]] qubit
codes, whose stabilizers are shown in Table I. We form
concatenated GKP codes by concatenating them with the
hexagonal GKP code generated by

Mhex = 3− 1
4

[
2 0
1

√
3

]
. (63)

The resulting codes have five and seven modes, respec-
tively, and upon solving Eq. (31), we find that they
are balanced GKP codes with distances equal to d =
31/4

√
2π ≈ 3.2989. These concatenated GKP codes are

balanced because their stabilizer groups are invariant under
the cyclic transformation of the Pauli operators

X → Y, Y → Z, Z → X , (64)

which is evident from Table I, and the hexagonal GKP
code is itself balanced with distance 3−1/4

√
2π . In fact,

for the concatenated GKP code with a balanced base GKP
code, its distance is given by [55]

d =
√

d0dbase, (65)

where d0 and dbase are the distances of the qubit stabilizer
code and the base GKP code, respectively. In a similar
spirit, we can form another balanced GKP code by con-
catenating the [[5, 1, 3]] code with the D4 code, and the
resulting code has ten modes with distance 31/2

√
2π ≈

4.3416. In contrast, the concatenation of the d0 = 3 sur-
face code with the hexagonal GKP code is not a balanced
code because its stabilizer group is not invariant under the
cyclic transformation in Eq. (64). Nevertheless, Eq. (65)
still holds and the surface-hexagonal GKP code has dis-
tance 31/4

√
2π . As a comparison, we plot the distances of

these four concatenated GKP codes in Fig. 2(a).
In addition to using the code distance, we can also quan-

tify the error-correction capability of a GKP code by cal-
culating its fidelity, subject to independent and identically

(a)

(b)

FIG. 2. (a) The distances for the GKP codes discussed in Sec.
V, as a function of number of modes. The circles indicate the
concatenated GKP codes introduced in Sec. V A, green diamonds
and red stars are for rep-recN and YY-rep-recN respectively, and
the purple squares are the numerically optimized codes. The dash
lines are guides for eyes for the corresponding families of GKP
codes. (b) The fidelites for the same set of GKP codes (indicated
with the same legends). Each data point is obtained by sampling
106 random shift errors from the Gaussian distribution N (0, σ 2)

with σ ≈ 0.5143. We emphasize that the numerically optimized
codes are not optimal, see the discussion in the main text.

distributed Gaussian shift errors, as we assume in Eq. (53).
More specifically, we use the Monte Carlo method by sam-
pling 106 random shifts from the Gaussian distribution
N (0, σ 2), followed by using the closest-point decoder and
Eq. (58) to determine the probability that the logical infor-
mation is preserved. The number of samples is determined
such that statistical fluctuations are negligible. In Fig. 2(b),
we show the fidelities of the four concatenated GKP
codes discussed above with noise strength σ ≈ 0.5143.
We notice that the fidelity of the d0 = 3 surface-hexagonal
code is similar to that of [[5, 1, 3]]-hexagonal or [[7, 1, 3]]-
hexagonal codes, which are worse than the [[5, 1, 3]]-D4
code. It is possible to improve the fidelity of the surface-
GKP code by considering larger distances such as d0 =
5, but the runtime of finding the closest point increases
exponentially with d2

0 (i.e., the number of modes in the
surface-GKP code) since we are using a general-purpose

040334-11

LIN, CHAMBERLAND, and NOH PRX QUANTUM 4, 040334 (2023)

closest-point decoder here. This poses serious challenge
to decode a single syndrome for surface-GKP codes of
large distances, not mentioning that one has to repeat for
106 samples in order to estimate its fidelity. In Sec. IX,
we will devise an exact and polynomial time closest-point
decoder that is tailored to decode surface-GKP codes much
more efficiently. With that, we will benchmark the fidelity
of surface-GKP codes with larger distances and different
noise strengths.

B. Generalizations of the tesseract and D4 codes

In Sec. III H, we demonstrated two lattices, the tesser-
act lattice and the D2N lattice, and show that both of
them can be used to encode a logical qubit. For the case
with two modes (N = 2), the D4 lattice outperforms the
tesseract lattice because dD4 = 21/4dtess. Despite that, the
distance for the D2N code with N > 2 is the same as the
D4 code because dD2N

Y is fixed to be
√

2π independent
of N . Interestingly, one could generalize the tesseract lat-
tice to higher dimensions with larger code distances than
the D2N code. In particular, since the tesseract lattice cor-
responds to a two-qubit repetition code, we consider the
concatenation of the N -qubit XX repetition code with the
rectangular GKP code in Eq. (42) with η = N 1/4. We shall
denote the resulting code as rep-recN , which corresponds
to a 2N -dimensional lattice. The distance of the rep-recN
code can be understood in the following way. Since the
XX stabilizers cannot detect the logical X̄ errors, the dis-
tance drep-recN

X = N 1/4√π , which is the X distance of the
rectangular code when η = N 1/4. For the Z̄ operator, it cor-
responds to a concatenation of N copies of 1√

2
(0, N−1/4)T,

the shift vector corresponding to the Z̄ operator of the rect-
angular code. Because the distance drep-recN

Z is the length
of the Z̄ operator multiplied by

√
2π , we arrive at the

distances for the rep-recN code

drep-recN
X = drep-recN

Z = N
1
4
√

π , drep-recN
Y = N

1
4
√

2π .
(66)

Here we used the fact that drep-recN
Y =√

(drep-recN
X)2 + (drep-recN

Z)2 because the vectors for the log-
ical X̄ and Z̄ operators are orthogonal to each other. From
Eq. (66), we have drep-recN = N 1/4√π , which is indeed
larger than

√
2π , the code distance of the D2N code, for

N > 4.
The rep-recN code is not a balanced GKP code because

drep-recN
X ,Z are always smaller than drep-recN

Y . In order to
balance the distances of different logical operators, and
increase the code distance further, we consider concatenat-
ing two copies of the rep-recN codes with the YY stabilizer.
We shall denote the resulting code as YY-rep-recN , where
N is an even number. Because the YY stabilizer detects
both the logical X̄ and Z̄ errors, but not the logical Ȳ error,

the distances for the logical X̄ and Z̄ are enhanced such
that

dYY-rep-recN
X = dYY-rep-recN

Y = dYY-rep-recN
Z = N

1
4
√

2π . (67)

The distance for the rep-recN and the YY-rep-recN codes
are confirmed via explicitly solving Eq. (31), and the
results are shown in Fig. 2(a). The green and red solid lines
indicate their respective scalings with respect to the num-
ber of modes. We note that YY-rep-recN code always has
an even number of modes and its distance is always larger
than the rep-recN code with the same number of modes, as
expected.

We calculate the fidelities of the two codes with the same
Monte Carlo method described in Sec. V A, and the results
are shown in Fig. 2(b). For σ ≈ 0.5143, the fidelity of the
six-mode YY-rep-recN code is comparable with [[7, 1, 3]]-
hexagonal code, and could improve beyond that of the
d0 = 3 surface-hexagonal code with increasing number of
modes; on the other hand, the fidelity of the rep-recN code
saturates at around 0.82. We emphasize that the rep-recN
and YY-rep-recN codes are different from the biased GKP
repetition code introduced in Ref. [86] which exhibits a
threshold of σ ∗ ≈ 0.599. An N -mode biased GKP repe-
tition code is constructed by concatenating N one-mode
rectangular GKP codes with an N -qubit repetition code,
with the aspect ratio of the inner GKP code optimized for
a given set of N and σ . Although it is similar to our con-
struction, the aspect ratio for the inner GKP codes of both
rep-recN and YY-rep-recN codes are fixed to be η2 = N 1/2.
We choose to fix the aspect ratio for the rep-recN code
because it is a natural generalization for the two-mode
tesseract code, which has aspect ratio

√
2. Hence from the

lattice perspective, the lattices for these two GKP codes
can be viewed as higher-dimensional generalizations of the
tesseract lattice.

In Sec. VIII, we will demonstrate that the rep-recN and
YY-rep-recN codes can be decoded in runtime that is linear
to the number of modes. We also perform more detailed
fidelity analysis for larger instances of these two families
of codes. Our results show that these two families of codes
do not exhibit thresholds, and increasing the number of
modes does not necessarily improve the fidelity for the
range of noise studied, which is in contrast to the surface-
GKP code or the biased GKP repetition code in Ref. [86].
This is evident for the rep-recN code, as shown in Fig. 2(b),
and indicates that the threshold of the rep-recN code, if any,
is tied to the optimization of the biasing for the inner GKP
code.

C. Numerical search for optimized GKP codes

We have studied several families of GKP codes, which
can all be understood as a concatenation of a certain qubit
stabilizer code with a base GKP code. The list of con-
catenated GKP codes can grow further by including, for

040334-12

CLOSEST LATTICE POINT DECODING... PRX QUANTUM 4, 040334 (2023)

example, Shor’s nine-qubit code [4] or Bacon-Shor code
[87], which can be similarly analyzed from a lattice per-
spective. Besides the concatenated GKP codes, however,
viewing GKP codes as lattices allows us to numerically
search for optimized GKP codes with good metrics, such
as code distance.

Recall from Sec. III F that an arbitrary GKP code can
be understood as a code that results from applying a Gaus-
sian unitary operator to the square lattice GKP code. The
resultant generator matrix reads

M = Msq(d)ST, (68)

where Msq(d) is defined in Eq. (35), and S is the (2N) ×
(2N) symplectic matrix for the Gaussian unitary. Here we
focus on GKP codes encoding a single qubit in N modes
(i.e., d1 = 2 and d2 = · · · = dN = 1), and aim to optimize
the symplectic matrix such that the resultant code has as
large a code distance as possible. For this purpose, we
consider the Bloch-Messiah decomposition for a general
symplectic matrix S ∈ R2N×2N [88]

S = O1ZO2, (69)

where O1 and O2 are orthogonal symplectic matrices,
and Z = diag(e−r1 , er1 , . . . , e−rN , erN) with real parame-
ters (r1, . . . , rN). Here the diagonal matrix Z represents
a set of one-mode squeezing operations, and O1 and O2
correspond to the unitaries that preserve the total excita-
tions in all the modes, such as beam splitting. This can
be seen by noticing that the total number of excitation
n̂ ≡ ∑N

j =1 â†
j âj = (x̂ · x̂ − N)/2, and orthogonal matrices

preserve the Euclidean length in R2N . Further, in the qqpp
ordering, a 2N × 2N orthogonal symplectic matrix can be
written as a matrix exponential [89]

Oqqpp = exp
[

X Y
−Y X

]
, (70)

where YT = Y is an N × N real symmetric matrix and
X = −X T is an N × N real antisymmetric matrix. Upon
combining Eqs. (68) and (69), we see that a generic GKP
code has generator matrix of the form M = MsqOT

2ZOT
1 .

But since O1 is an orthogonal matrix, which rotates only
the basis vectors, the GKP code is equivalent to the lattice
generated by

M = MsqOT
2Z, (71)

assuming the underlying noise model is isotropic (i.e.,
invariant under rotation). Hence for a general N -mode
GKP code, it can be parameterized by N 2 + N real param-
eters, N for the squeezing parameters and the rest for the
orthogonal symplectic matrices. We will optimize over this
set of parameters, for a given number of mode, to find good
GKP codes.

In Fig. 2(a), we show the distances for the numerically
optimized GKP codes (purple squares) as a function of the
number of modes N . Each data point is obtained by ini-
tializing 104 random symplectic matrices, and performing
gradient descent with respect to the negative distance, fol-
lowed by selecting the code with the largest distance. We
further apply the same Monte Carlo method, as described
in Sec. V A, to calculate the fidelity of the numerically
optimized codes, as shown in Fig. 2(b). We remark that
one could use the fidelity as the cost function for searching
the optimized code. However, this requires one to per-
form Monte Carlo sampling at each iteration step of the
optimization. Since finding the closest point for a gen-
eral lattice incurs significant time overhead, particularly
for large lattices, this approach is inefficient in practice.
We believe distance is a reasonable indicator for the error-
correction capability of a GKP code, particularly for low-
noise regime. For the case of two modes, the optimizer
finds the rep-recN code with N = 2, which is equivalent
to the D4 code. The D4 lattice has been shown to be the
best quantizer in the context of classical error correction
because it supports the densest sphere packing in four
dimensions [57]. Hence we believe that the optimizer has
found the optimal GKP code for the case of two modes.
However, we emphasize that the found optimized codes
need not be optimal for N > 2. Particularly, it is clear that
certain optimized code with N ≥ 3 has distance shorter
than that of the YY-rep-recN code. This may be attributed
to the fact that only 104 random ansatzes have been used in
the search, and we expect that the distance of the optimized
code will get closer or even beyond that of the YY-rep-recN
code if more random initial points are used. Surprisingly,
the found optimized codes in fact have comparable or
better fidelities compared to the YY-rep-recN code. More
interestingly, for the case with nine modes, the optimizer
finds a GKP code that has better distance and fidelity than
the d0 = 3 surface-hexagonal GKP code. Similarly, the
optimized three-mode and seven-mode codes outperform
the rep-recN code and [[7, 1, 3]]-hexagonal code, respec-
tively, in both the distance and fidelity metrics. We have
shown the generator matrices for the optimized codes with
N = 3, N = 7, and N = 9 in Appendix F. Unfortunately,
we have not been able to understand the structure of these
numerically optimized codes, which will be left for future
works.

For optimized codes with an even number of modes, we
notice that their distances are generally smaller than those
for the YY-rep-recN codes. On the other hand, we remark
that, the fidelity of the optimized codes are generally better
than that of the YY-rep-recN codes for a larger number of
modes. This is evident in Fig. 2(b) where we compare their
fidelity at σ ≈ 0.5143. In particular, we notice that despite
the optimized code with N = 4 has smaller distance com-
pared to the YY-rep-recN code with the same number of
modes, they have almost the same fidelity. We leave the

040334-13

LIN, CHAMBERLAND, and NOH PRX QUANTUM 4, 040334 (2023)

detailed study of this family of optimized codes to future
works.

In summary, we have shown that general GKP codes
can be viewed as parameterized lattices, and in principle
one could find good GKP codes via numerically optimiz-
ing their distances. In fact we found three code instances
with N = 3, N = 7, and N = 9, which outperform the
known concatenated GKP codes with the same number
of modes, in both the code distance and fidelity metrics.
We have also illustrated two generalizations of the tesser-
act codes, namely the rep-recN and the YY-rep-recN code,
which exhibit good code distances and fidelities. For the
rest of the paper, we will switch gear and focus on efficient
closest-point decoders for these two codes as well as the
surface-GKP code.

VI. EFFICIENT CLOSEST-POINT DECODER FOR
STRUCTURED GKP CODES

In this section we describe several techniques to decode
lattices with well-defined structures [57,66]. For conve-
nience, we first rephrase the closest-point problem in
Eq. (59) for a generic set of points: for any discrete set
of points � ⊂ Rn, find the closest point

χ t(�) = arg min
r∈�

||t − r|| (72)

for a given target t ∈ Rn. In the case of tie, χ t(�) is chosen
arbitrarily from the closest points.

A. Decoding a discrete set of points

We note that � in Eq. (72) needs not be a lattice, and it
needs not have regular patterns. Nevertheless, we can still
decompose the set � into several subsets, or apply a shift
to all the points in the set. Particularly, for any discrete
set � ⊂ Rn, if � can be decomposed into the union of k
discrete sets as � = ∪k

i=1�i, then we have

χ t(∪k
i=1�i) = χ t({χ t(�i) : i = 1, . . . , k}), (73)

which suggests that we can find the closest points for each
subset �i, followed by comparing their distances to t and
select the one with shortest distance. This indeed works
because the closest point in � must lie in some subsets �i,
which is by definition as close or closer than the closest
point from all the other subsets.

Further, for any discrete set of points � ⊂ Rn, we can
obtain a new set of points by shifting all the points by a
vector r, denoted as r + �. The closest point in the set of
shifted points can be obtained as

χ t(r + �) = χ t−r(�) + r. (74)

To prove this, let g = χ t(�), if all the points are shifted
by r, then the closest point is also shifted by the same

amount, i.e., χ t+r(r + �) = g + r = χ t(�) + r. Redefine
t′ = t + r, we have χ t′(r + �) = χ t′−r(�) + r as desired.

B. Decoding direct sums of lattices

Suppose we have a generator matrix M , which is a
direct sum of several square matrices M = ⊕k

i=1Mi, then
the corresponding lattice is also a direct sum of several
sublattices,

�(M) = �(⊕k
i=1Mi) = ⊕k

i=1�(Mi) = ⊕k
i=1�i.

Such a direct sum of lattices can be decoded by sim-
ply decoding each orthogonal projection of t onto the
space spanned by each component lattice, followed by
combining the results. Formally, we have

χ t(⊕k
i=1�i) = ⊕k

i=1χπi(t)(�i), (75)

where πi denotes the orthogonal projection onto the space
spanned by �i. In practice, we select the corresponding
components ti in t and decode it with Mi, followed by
assembling the result together to arrive at χ t(�).

C. Decoding union of cosets

Consider a lattice �, and a set of vectors ri (i =
0, . . . , l − 1), we can construct a union of cosets of � as

� ≡
l−1⋃
i=0

(ri + �). (76)

Here we fix r0 = 0 such that � ⊂ �, and other coset vec-
tors ri are real valued vectors in Rn. For a lattice point
u ∈ �, � contains u together with its translations by all
the coset vectors. Upon combining Eqs. (73) and (74), the
union � can be decoded as

χ t

(
l−1⋃
i=0

(ri + �)

)
= χ t({ri + χ t−ri

(�) :

i = 0, 1, . . . , l − 1}). (77)

We note that despite � needs not be a lattice, the Euclidean
dual of a lattice can be treated as a union of cosets with
respect to the original lattice, exactly as shown in Eq. (76).
Hence, if a lattice can be decoded efficiently, its Euclidean
dual can also be decoded efficiently with Eq. (77), provided
only a handful of cosets to be decoded.

As will be shown in Appendix E, concatenated GKP
codes, such as surface-GKP code, can be viewed as a union
of cosets, where the group elements in the stabilizer group
play the role of coset vectors ri in Eq. (76). However,
because the size of its stabilizer group generally grows
exponentially with the number of modes, and naive appli-
cation of Eq. (77) will require exponentially many cosets

040334-14

CLOSEST LATTICE POINT DECODING... PRX QUANTUM 4, 040334 (2023)

to be decoded. In Sec. IX, we overcome this difficulty
by combining Eq. (77) with an MWPM algorithm, which
yields a polynomial time decoder for the surface-GKP
code.

D. Decoding glue lattices

A glue lattice can be regarded as a union of cosets for a
direct sum of lattices

� =
l−1⋃
i=0

(ri + ⊕m
j =1�j). (78)

Since r0 = 0, the glue lattice has a sublattice, which is a
direct sum of m lattices. In this context, the vectors ri are
called gluing vectors. Combining Eqs. (75) and (77), we
have the closest point for the glue lattice as

χ t

(
l−1⋃
i=0

(ri + ⊕m
j =1�j)

)

= χ t

(
{ri + χ t−ri

(⊕m
j =1�j) : i = 0, 1, . . . , l − 1}

)

= χ t

(
{ri + ⊕m

j =1χπj (t−ri)
(�j) : i = 0, 1, . . . , l − 1}

)
.

(79)

Glue lattices encompass concatenated GKP codes, includ-
ing those obtained through Construction A [54]. In Sec.
VIII B, we will show that the YY-rep-recN code can be
viewed as a glue lattice, and Eq. (79) plays a key role in
decoding the code in linear time.

VII. LINEAR TIME DECODER FOR Dn LATTICES
AND THEIR EUCLIDEAN DUALS

In this section, we will present the linear time decoders
for Dn lattices and their Euclidean duals, denoted as D∗

n.
These two lattices will serve as building blocks for the
more complex GKP lattices as shown in Sec. VIII. As illus-
trated by Conway and Sloane in Ref. [63], the decoding of
Dn and D∗

n turns out to be very straightforward, after we
understand a bit deeper the simplest case, namely decoding
the Zn lattices.

A. Linear time decoder for Zn lattices

The n-dimensional Zn lattice is an integer lattice with
generator MZn = In. The closest point in the Zn lattice for
an arbitrary point t ∈ Rn is given by

χ t(Zn) = (�t1�, . . . , �tn�). (80)

Here �t� denotes the closest integer to t ∈ R, and in case
of a tie, the integer with the smallest absolute value is
chosen. This algorithm is presented as ClosestPointZn in
Algorithm 1.

Input: The error syndrome t ∈ R
n;

Output: The optimal integer b ∈ Z
n;

b ← (�t1�, ..., �tn�)

Algorithm 1. ClosestPointZn(t).

For decoding the Dn lattice, finding the nearest point for
Zn is not sufficient, and we have to find the second nearest
point for t. For that, we introduce the function w(t), the
second nearest integer to a real number t,

w(t) =
{

�t� + 1 if x ≥ �t�
�t� − 1 if x < �t� . (81)

In Ref. [63], w(t) is called rounding x the wrong way, and
is the key to find the second closest point in the Zn lattice
for a given point t. The idea is to find the component of
t, say tk, which is the furthest from its closest integer, and
round it the wrong way. Mathematically, let χ ′

t(Zn) denote
the second nearest point for the given t, then we have

χ ′
t(Zn) = (�t1�, . . . , �tk−1�, w(xk), �tk+1�, . . . , �tn�), (82)

where

k ≡ arg max
1≤k≤n

|tk − �tk�|. (83)

Alternatively, since tk is furthest from its nearest integer
�tk�, then among all the components of t, tk must be the
closest to the second nearest integer w(tk). Hence we can
also write k ≡ arg min1≤k≤n |w(tk)|. χ ′

t(Zn) is indeed the
second closest point to t as its norm is larger than χ t(Zn),
and if we were to round the other component ti	=k in the
wrong way (and round tk the correct way), the result-
ing χ ′′

t (Zn) will have a larger norm than χ ′
t(Zn) by the

definition of k above. We will now illustrate why the func-
tion χ ′

t(Zn) can help us to find the closest point in the Dn
lattice.

B. Linear time decoder for Dn lattices

In order to find the closest point in the Dn lattice for a
given t, recall that Dn is a sublattice of Zn where the sum of
the components of any lattice point is always even. In order
to identify χ t(Dn), we first find the closest and second clos-
est points, namely χ t(Zn) and χ ′

t(Zn), in the Zn lattice. We
note that since the two only differ by one component, i.e.,

||χ t(Zn) − χ ′
t(Zn)|| = 1,

one and only one of them lies in the Dn lattice. Hence,
the closest point in Dn lattice is whichever of χ t(Zn) and
χ ′

t(Zn) that has the even sum of the components. Since both
χ t(Zn) and χ ′

t(Zn) can be found with linear runtime, Dn

040334-15

LIN, CHAMBERLAND, and NOH PRX QUANTUM 4, 040334 (2023)

Input: The error syndrome t ∈ R
n;

Output: The optimal integer b ∈ Z
n;

b1 ← χt(Zn); *Defined in Eq. 80*
b2 ← χ′

t(Zn); *Defined in Eq. 82*
if sum(b1) is even then

b ← b1 else
b ← b2

end
end

Algorithm 2. ClosestPointDn(t).

can be decoded with runtime linear to n. The decoder is
presented as ClosestPointDn in Algorithm 2. In Appendix
D, we generalize this decoder to Dn lattices with different
lattice spacings in different directions.

C. Linear time decoder for D∗
n lattices

An Euclidean dual lattice �∗ is defined to be the set of
all the points that have integer inner product with all the
points in the original �. In other words,

�∗ ≡ {
u | uTv ∈ Z, ∀v ∈ �

}
.

The Euclidean dual lattice can be generated by M ∗ =
(M T)−1 [55], which can be seen by noticing (M Tb)T

((M ∗)Ta) = bT(M (M ∗)T)a ∈ Z for arbitrary integer vec-
tors a and b. Here we present the linear decoder for the D∗

n
lattices, the Euclidean dual of the Dn lattices. It turns out
that the D∗

n lattice is the union of two cosets of Zn [57,63],

D∗
n =

1⋃
i=0

(ri + Zn), (84)

where the n-component vectors ri are defined as

r0 = (0, . . . , 0)T, r1 =
(

1
2

, . . . ,
1
2

)T

. (85)

This can be seen by noticing that rT
1u ∈ Z for all u ∈ Dn,

and det(MD∗
n) = 1

2 = det(MDn)
−1. Hence with Eq. (77), we

have

χ t(D
∗
n) = χ t({ri + χ t−ri

(Zn) : i = 0, 1}), (86)

which can be found in runtime proportional to n. In par-
ticular, this suggests to decode Zn twice with t and t −
r1, respectively, followed by picking the one with clos-
est distance to t. The decoder for D∗

n is presented in
Algorithm 3.

VIII. LINEAR TIME DECODERS FOR THE
rep-recN AND YY-rep-recN CODES

In this section, we present the linear time decoder for
the rep-recN and YY-rep-recN codes introduced in Sec.

Input: The error syndrome t ∈ R
2N ;

Output: The optimal integer b ∈ Z
2N ;

b1 ←ClosestPointZn(t);
b2 ←ClosestPointZn(t − r1);
if sum(b1 − t) ≤ sum(b2 − t) then

b ← b1;
else

b ← b2;
end

Algorithm 3. ClosestPointDnDual(t).

V B, which are based on the strategies in Sec. VI and VII.
We will use these decoders to benchmark the fidelities of
these two codes for a different number of modes and noise
strengths.

A. Linear time decoder for the rep-recN code

Recall that the rep-recN code is the concatenation of
N -mode repetition code with the rectangular GKP code,
defined in Eq. (42), with η = N 1/4. The generator matrix
can be written as

Mrep-recN = M (sq)
rep (ST

rec)
⊕N , (87)

where M (sq)
rep is the repetition code concatenated with the

square GKP code, and

Srec =
[

N 1/4 0
0 N−1/4

]
. (88)

For example, the generator matrix of the three-mode code
reads

Mrep-rec3 = 1√
2

⎡
⎢⎢⎢⎢⎢⎣

1 0 1 0 0 0
0 2 0 0 0 0
0 0 1 0 1 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

⎤
⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎣

3 0 0 0 0 0
0 1

3 0 0 0 0
0 0 3 0 0 0
0 0 0 1

3 0 0
0 0 0 0 3 0
0 0 0 0 0 1

3

⎤
⎥⎥⎥⎥⎥⎥⎦

1
4

. (89)

We see that the Mrep-rec3 takes a form of direct sum of
two block matrices. To make this more explicit, we switch
to the qqpp convention, and the generator takes a block

040334-16

CLOSEST LATTICE POINT DECODING... PRX QUANTUM 4, 040334 (2023)

diagonal form

M (qqpp)
rep-rec3

= 1√
2

⎡
⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0
0 1 1 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

⎤
⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎣

3 0 0 0 0 0
0 3 0 0 0 0
0 0 3 0 0 0
0 0 0 1

3 0 0
0 0 0 0 1

3 0
0 0 0 0 0 1

3

⎤
⎥⎥⎥⎥⎥⎥⎦

1
4

.

We can notice that for the p̂i subspace, the generator matrix
is an identity matrix multiplied by a factor of

√
2

31/4 , hence it
generates a scaled ZN lattice. Similarly for the q̂i subspace,
the sum of the components of the basis vectors are all even
numbers multiplied by a factor of 31/4√

2
, which generates a

scaled DN lattice. More generally, with the qqpp ordering,
the generator for the rep-recN code reads

M (qqpp)
rep-recN

=
(

N 1/4

√
2

MDN

)
⊕
(√

2
N 1/4 MZN

)
, (90)

which is a direct sum of scaled DN and ZN lattice.
To decode the rep-recN code, we will need to consider

its logical operators, which turns out to be the direct sum of
the Euclidean duals of the ZN and DN lattices. To see that,
recall that in the qqpp convention, the symplectic form is
defined in Eq. (4) such that we have

M (qqpp)⊥
rep-recN

= �(qqpp)((M (qqpp)
rep-recN

)T)−1(�(qqpp))−1

=
[

N 1/4√
2

(M T
ZN

)−1 0N

0N

√
2

N 1/4 (M T
DN

)−1

]

=
(

N 1/4

√
2

MZ∗
N

)
⊕
(√

2
N 1/4 MD∗

N

)

=
(

N 1/4

√
2

MZN

)
⊕
(√

2
N 1/4 MD∗

N

)
. (91)

Here Z∗
N = ZN and D∗

N denote the Euclidean dual lat-
tices for ZN and DN , respectively, and both lattices can
be decoded in linear time as demonstrated in Sec. VI.
With Eq. (75), the closest point for �(M (qqpp)⊥

rep-recN
) is sim-

ply the assembly of those from the ZN and D∗
N lattices, and

hence the rep-recN code can be decoded in runtime propor-
tional to 2N . We present the closest-point decoder for the
rep-recN code in Algorithm 4.

Input: The error syndrome t ∈ R
2N ;

Output: The optimal integer b ∈ Z
2N ;

tq ← t[1 : 2 : end];
tp ← t[2 : 2 : end];
bq ←ClosestPointZn(tq);
bp ←ClosestPointDnDual(tp);
b[1 : 2 : end] ← bq;
b[2 : 2 : end] ← bp

Algorithm 4. DecodeRepRecN(t).

In order to characterize the error-correction capability of
the code, we calculate the fidelity of the rep-recN code with
the same Monte Carlo method and Gaussian noise distri-
bution N (0, σ 2), as described in Sec. V A. In Fig. 3(a),
we show the fidelity of the rep-recN code as a function
of the noise strength σ and the number of modes, up
to N = 30. One immediately notices a bandlike feature,
which indicates that increasing the number of modes needs
not improve the fidelity for the rep-recN code. In partic-
ular, for the low-noise regime with σ = 0.4, we see that
upon increasing the number of modes, the fidelity reaches
maximum at N = 11, beyond which the fidelity starts to
decrease. This is confirmed in the top-right inset, where
we show the infidelity between σ = 0.4 and 0.4898. Upon
increasing the noise strength, we see that the code with
N = 6 has the highest fidelity at σ = 0.5714, and the code
with N = 30, the largest number of modes studied here,
has the lowest fidelity. This is similar to what we found in
Fig. 2 that the fidelity of the rep-recN code attains the maxi-
mum value of 0.82 for N = 7 at σ ≈ 0.5143. For Fig. 3(a),
at the high noise regime with σ = 0.8, we find that one-
mode rep-recN code outperforms other codes as expected,
i.e., the noise rate is high enough and thus increasing the
number of modes only degrades the fidelity. Our result
indicates that the rep-recN code does not exhibit a noise
threshold below which increasing the number of modes
will consistently improve its error-correction capability.
This is in sharp contrast to the biased GKP repetition code
introduced in Ref. [86], and as discussed in Sec. V B, the
difference can be attributed to the fact that we have fixed
the aspect ratio of the inner rectangular GKP code to be
η2 = N 1/2. For biased GKP repetition code with generic
aspect ratio, its generator matrix in the qqpp ordering can
be obtained by substituting η for N 1/4 in Eq. (90), hence it
can also be decoded with our closest-point decoder.

In Fig. 3(b), we compare the runtime of the linear-time
decoder to the exponential-time closest-point decoder, pre-
sented in Sec. IV B, where for each data point, we average
over all the samples for all the values of σ considered. The
time overhead for the exponential-time decoder is increas-
ing rather rapidly compared to the linear time decoder, as
expected, and the difference is around 5 orders of magni-
tude for the case of ten modes. In the inset, we confirm that

040334-17

LIN, CHAMBERLAND, and NOH PRX QUANTUM 4, 040334 (2023)

(a)

(b)

FIG. 3. The numerical results for the rep-recN code. (a) The
fidelity of the rep-recN code as a function of the number of
modes and noise strength σ . Each line corresponds to a given
number of modes, which varies from N = 1 to N = 30. For
σ = 0.4, 0.5714, 0.8, we have indicated the number of modes
that support minimum and maximum fidelities. The top-right
inset shows the infidelities between σ = 0.4 and 0.4898 for a dif-
ferent number of modes in the log scale. The number of modes
that support minimum and maximum infidelities are indicated for
σ = 0.4 and 0.4898, respectively. (b) The comparison of run-
times for the exponential time closest-point decoder (square) and
linear time closest-point decoder (circle) for increasing number
of modes. For each data point, we average over all the samples
for all the values of σ considered. The inset shows the runtimes
of the linear time decoder for a different number of modes, up to
N = 30.

the runtime of the linear time decoder increases linearly
with the number of modes.

There is an important remark before we proceed. Recall
from Eq. (57) that for both exponential-time and linear-
time decoders, we are finding the closest lattice point in the
symplectic dual lattice for a given η(s), where s is a syn-
drome measurement result. From its definition in Eq. (56),
η(s) can be obtained from the syndrome s in linear time
if M⊥ is a sparse matrix with a small number of nonzero
entries in each column. This is indeed the case for the
rep-recN code as shown in Eq. (91), hence it guarantees
that the calculation of η(s) would not incur additional

overhead for decoding the rep-recN code. The similar
conclusion holds for the multimode GKP codes discussed
below, including the YY-rep-recN code and surface-GKP
codes.

B. Linear time decoder for the YY-rep-recN code

Recall that for the rep-recN code is not a balanced
code as it has drep-recN

X = drep-recN
Z = √

πN 1/4, which are
always smaller than drep-recN

Y = √
2πN 1/4. In Sec. V B, we

introduced the YY-rep-recN code for balancing the code
distances, which concatenates two copies of the rep-recN
codes with the YY stabilizer. To see how to decode the
YY-rep-recN code efficiently, we start with its generator
matrix

MYY-rep-recN = M (sq)
conc(S

T
rec)

⊕2N , (92)

where Srec is given in Eq. (88). Here M (sq)
conc is the XX

repetition codes concatenated with the YY stabilizer, and
as examples, the stabilizers for the cases of N = 2, 3 are
shown in Table II. We now show that the stablizer part of
the YY-rep-recN code is a glue lattice, i.e.,

�(M (sq)
conc) = �1 ∪

(
1√
2

gYY + �1

)
, (93)

where gYY is the binary vector corresponding to the YY
stabilizer and

�1 = �(M (sq)
rep ⊕ M (sq)

rep) = �(M (sq)
rep) ⊕ �(M (sq)

rep). (94)

Here �(M (sq)
rep) is the stabilizer part of the rep-recN code,

and M (sq)
rep is defined in Eq. (87). As discussed in Sec. III G,

M (sq)
conc is constructed by replacing (2N − 1) rows in

√
2I4N

by a set of vectors
{

1√
2
gT

j

}
, where each gj corresponds

to a stabilizer generator. Because the (2N − 2) stabilizers
from the XX repetition codes can be separated into two
disjoint blocks, as evident from Table II, the replacement
with these vectors yield a direct sum of two �(M (sq)

rep) lat-
tices. To see that Eq. (93) holds, suppose �1 is generated
by a set of basis vectors{

rj , j = 1, . . . , 4N
}

,

then �(M (sq)
conc) is span by the same set of basis vectors

except the last one,{
r1, . . . , r4N−1,

1√
2

gYY

}
,

which is evident from the construction of M (sq)
conc. For a

given x ∈ �(M (sq)
conc), let

x =
4N−1∑

i=1

airi + b√
2

gYY

040334-18

CLOSEST LATTICE POINT DECODING... PRX QUANTUM 4, 040334 (2023)

TABLE II. The stabilizers for the XX repetition code concate-
nated with the YY stabilizer for N = 2, 3. For both cases, the last
stabilizer is the YY stabilizer, which is the tensor product of the
logical Ȳ operators in the two blocks. We have also shown the
logical operators X̄ and Z̄.

N = 2 N = 3

XX I I XX I I I I
I I XX I XX I I I
YZ YZ I I I XX I

I I I I XX
YZZ YZZ

Z̄ ZZ ZZ Z̄ ZZZ ZZZ
X̄ I X ZZ X̄ I I X ZZZ

for some integers ai and b. As one can show,
√

2gYY ∈
�(

√
2I4N) because gYY is a binary vector and �(

√
2I4N)

is a 4N -dimensional square lattice with lattice spacing
√

2.
Because �(

√
2I4N) is a sublattice of �1, if b is an even

integer, we have x ∈ �1, otherwise, if b is odd, then

x − 1√
2

gYY ∈ �1.

This concludes that x is an element of the glue lattice
shown in Eq. (93), and hence �(M (sq)

conc) is a sublattice of
the latter. Similarly, we can show that the glue lattice in
Eq. (93) is a sublattice of �(M (sq)

conc) and hence the two
represent the identical lattice.

The fact that �(M (sq)
conc) is a glue lattice is important

for decoding the YY-rep-recN code, whose symplectic dual
lattice is generated by

M⊥
YY-rep-recN

= �(M T
YY-rep-recN

)−1�−1

= �(M (sq),T
conc)−1(S−1

rec)
⊕2N �−1

= (M (sq)
conc)

⊥�(S−1
rec)

⊕2N �−1. (95)

Here (M (sq)
conc)

⊥ generates the symplectic dual lattice for the
XX repetition code concatenated with the YY stabilizer.
Since the code encodes a single qubit, i.e., det(M (sq)

conc) =
2, we have det((M (sq)

conc)
⊥) = 1

2 = 1
4 det(M (sq)

conc). Hence the
symplectic dual lattice can be viewed as a union of four
cosets of the original lattice, each of which corresponds to
a logical operator. Since the original lattice �(M (sq)

conc) is a
union of two cosets, per Eq. (93), we have

�((M (sq)
conc)

⊥) =
7⋃

i=0

(
1√
2

gi + �(M (sq)
conc)

)
, (96)

which is a union of eight cosets. Here g0 = 0, and

g1 = gX̄ , g2 = gX̄ + gZ̄ , g3 = gZ̄ ,

are the binary vectors for the logical X̄ , Ȳ and Z̄ operators.
Together with

g4 = gYY + g0, g5 = gYY + g1,

g6 = gYY + g2, g7 = gYY + g3,

they form the normalizer group for the stabilizer part of the
YY-rep-recN code.

The structure of the symplectic dual lattice, as presented
in Eq. (96), can be greatly simplified if we work in the
qqpp ordering where (we omit the superscript qqpp for
clarity)

M (sq)
rep ⊕ M (sq)

rep = 1√
2

⎡
⎢⎣

MDN 0N 0N 0N
0N MDN 0N 0N
0N 0N 2IN 0N
0N 0N 0N 2IN

⎤
⎥⎦ . (97)

In this basis, the lattice �1 in Eq. (94) is a direct sum of
two lattices �1 = �

(q)

1 ⊕ �
(p)

1 where

�
(q)

1 = 1√
2
�(M⊕2

DN
) and �

(p)

1 =
√

2�(I2N) (98)

are the sublattices for the q̂ and p̂ subspaces, respectively.
The decoupled form of �1 is useful because, from Table II,
we notice that gZ̄ has support only at the p̂ subspace. For
instance, the logical operator Z̄ ≡ ZZZZ for N = 2, which
corresponds to the binary vector (0, 0, 0, 0, 1, 1, 1, 1)T.
Hence the lattice

�2 ≡ 1√
2

rZ̄ + �1 = �
(q)

2 ⊕ �
(p)

2 (99)

is also a direct sum of two lattices, where �
(q)

2 = �
(q)

1 for
the q̂ subspace, and

�
(p)

2 = 1√
2

g(p)

Z̄ +
√

2�(I2N) (100)

for the p̂ subspace. Here g(p)

Z̄ is the second half of gZ̄ ,
which has all entries being unity. Upon combining Eqs.
(98)–(100), we have

�3 ≡ �1 ∪
(

1√
2

gZ̄ + �1

)

=
[
�

(q)

1 ⊕ �
(p)

1

]
∪
[
�

(q)

1 ⊕
(

1√
2

g(p)

Z̄ +
√

2�(I2N)

)]

= �
(q)

1 ⊕
[
�

(p)

1 ∪
(

1√
2

g(p)

Z̄ +
√

2�(I2N)

)]

= 1√
2
�(M⊕2

DN
) ⊕

√
2�(MD∗

2N
). (101)

Here we have used the fact that the D∗
2N lattice is a union

of two cosets as shown in Eqs. (84) and (85). A similar

040334-19

LIN, CHAMBERLAND, and NOH PRX QUANTUM 4, 040334 (2023)

strategy can be applied to simplify the lattice

�4 ≡ �3 ∪
(

1√
2

gYY + �3

)
. (102)

We first notice that gYY = g′
YY + gZ̄ where g′

YY has nonzero
entries only at the first and the N + 1th positions. For
instance, we have g′

YY = (1, 0, 1, 0, 0, 0, 0, 0)T for N = 2.
Since 1√

2
gZ̄ ∈ �3 by definition, the glue vector in Eq. (102)

can be replaced by 1√
2
g′

YY, which has no support in the p̂
subspace. Hence �4 reduces to a direct sum of two lattices
for the q̂ and p̂ subspaces, respectively. In particular, the
lattice for the p̂ subspace is �

(p)

4 = √
2�(MD∗

2N
), which is

the same as �
(p)

3 , whereas that for the q̂ subspace reads

�
(q)

4 = �
(q)

3 ∪
(

1√
2

g′(q)

YY + �
(q)

3

)
≡ 1√

2
�

(q)′
4 , (103)

where g′(q)

YY is the first half of g′
YY and

�
(q)′
4 = �(M⊕2

DN
) ∪ (g′(q)

YY + �(M⊕2
DN

)). (104)

Since the sum of the components of g′(q)

YY is equal to 2,
an even number, and similarly for the vectors in �(M⊕2

DN
),

�
(q)′
4 is in fact a 2N -dimensional sublattice of the D2N lat-

tice. Because det(M⊕2
DN

) = 4 and �
(q)′
4 is a union of two

cosets of �(M⊕2
DN

), the volume of the fundamental paral-

lelotope of �
(q)′
4 is equal to 2, the same as that for the D2N

lattice. We conclude that �
(q)′
4 = �(D2N) and hence

�4 = 1√
2
�(MD2N) ⊕

√
2�(MD∗

2N
). (105)

Upon combining Eqs. (101), (102), and (105), we have

�((M (sq)
conc)

⊥) =
1⋃

i=0

(
1√
2

gX̄ + �4

)
, (106)

which is a glue lattice with only one glue vector that is
proportional to the binary vector for the logical X̄ operator.

The simple structure �((M (sq)
conc)

⊥) enables a linear time
decoder for the code. Recall the generator M⊥

YY-rep-recN
defined in Eq. (95), in the the qqpp ordering, we have (we
omit the superscript qqpp again)

S′
rec ≡ �(S−1

rec)
⊕2N �−1

=
[

02N I2N
−I2N 02N

] [
N−1/4I2N 02N

02N N 1/4I2N

] [
02N −I2N
I2N 02N

]

=
[

N 1/4I2N 02N
02N N−1/4I2N

]
.

With that, the symplectic dual lattice for the YY-rep-recN
code reads

�(M⊥
YY-rep-recN

) =
1⋃

i=0

(
1√
2

g̃X̄ + �5

)
(107)

where g̃X̄ = S′
recgX̄ , and �5 is a direct sum of two lattices

generated by

(
N 1/4

√
2

MD2N

)
⊕
(√

2
N 1/4 MD∗

2N

)
. (108)

Because �(M⊥
YY-rep-recN

) is a glue lattice, we can use
Eq. (79) to find its closest point efficiently. In particular,
since both D2N and D∗

2N lattices can be decoded with run-
time proportional to 2N , and �(M⊥

YY-rep-recN
) consists of

only two cosets, we conclude that the YY-rep-recN can be
decoded with runtime proportional to 4N . We present its
closest-point decoder in Algorithm 5.

We calculate the fidelity of the YY-rep-recN code, up
to N = 40, with the same Gaussian noise model as in
Figs. 2(b) and 3(a), and the results are shown in Fig. 4(a).
The fidelity curve exhibits a similar bandlike feature, simi-
lar to that of the rep-recN code shown in Fig. 4(a). We have
indicated the number of modes that support minimum and
maximum fidelities from the low- to high-noise regimes,
which show that increasing the number of modes needs
not consistently improve the fidelity of the YY-rep-recN
code. For instance, as shown in the lower-left inset, the
infidelity of the code at σ = 0.4 and 0.4734 reach mini-
mum for N = 28 and 20, respectively, which outperform
the code with N = 40. As a result, we conclude that the
YY-rep-recN code, similar to the rep-recN code, does not
exhibit a noise threshold.

We compare the runtime between the exponential-time,
general-purpose closest-point decoder and the linear time
decoder tailored to the YY-rep-recN code, as shown in
Fig. 4(b). Each data point corresponds to the runtime aver-
aged over all the samples for all the values of σ considered.
As expected, the time overhead of the former is increasing
rapidly, and the runtime difference is around 4 orders of
magnitude for the case of 20 modes. In the inset, we con-
firm that the runtime of the linear time decoder increases
linearly with the number of modes.

IX. POLYNOMIAL TIME CLOSEST-POINT
DECODER FOR SURFACE-GKP CODE

In Sec. VIII B, we show that decoding the YY-rep-recN
code is equivalent to finding the closest point for a glue lat-
tice, as presented in Eq. (96). This is certainly not unique
to the YY-rep-recN code, and in Appendix E, we general-
ize the argument to show that a general concatenated GKP
code can also be viewed as a glue lattice. Here we focus

040334-20

CLOSEST LATTICE POINT DECODING... PRX QUANTUM 4, 040334 (2023)

(b)

(a)

FIG. 4. (a) The fidelity of the YY-rep-recN code as a function of
the number of modes and noise strength σ . Each line corresponds
to a given number of modes, which are even integers from N = 2
to N = 40. For σ = 0.4, 0.5714, 0.8, we have indicated the num-
ber of modes that support minimum and maximum fidelities.
The lower-left inset shows the infidelities between σ = 0.4 and
0.4734 for a different number of modes in the log scale. The num-
ber of modes that support minimum and maximum infidelities are
indicated for σ = 0.4 and 0.4734, respectively. (b) The compar-
ison of runtimes for the exponential time decoder (square) and
linear time decoder (circle) for an increasing number of modes.
For each data point, we average over all the samples for all the
values of σ considered. The inset shows the runtimes of the linear
time decoder for a different number of modes, up to N = 40.

on the surface-GKP codes, which encode a single logi-
cal qubit by concatenating a [[N , 1, d0]] surface code with
N square GKP codes. We note N = d2

0 for surface-GKP
codes. As shown in Appendix E, the symplectic dual lattice
of the surface-GKP code can be written as

�(M⊥
surf) =

2N+1−1⋃
j =0

[
1√
2

gj + �(
√

2I2N)

]
, (109)

where the vectors
{
gj
}

correspond to the elements in the
normalizer group. For notation simplicity, we assume g0 =
0 and g1, . . . , gN−1 generate the full stabilizer group, and
gN , gN+1 are the logical X̄ and Z̄ operators. The problem of

Input: The error syndrome t ∈ R
2N ;

Output: The optimal integer b ∈ Z
2N ;

tq ← t[1 : 2 : end];
tp ← t[2 : 2 : end];
b1,q ←ClosestPointDn(tq);
b1,p ←ClosestPointDnDual(tp);
b1[1 : 2 : end] ← b1,q;
b1[2 : 2 : end] ← b1,p;
g̃X̄,q ← g̃X̄ [1 : 2 : end];
g̃X̄,p ← g̃X̄ [2 : 2 : end];
b2,q ←ClosestPointDn(tq − g̃X̄,q);
b2,p ←ClosestPointDnDual(tp − g̃X̄,p);
b2[1 : 2 : end] ← b2,q;
b2[2 : 2 : end] ← b2,p;
if sum(b1 − t) ≤ sum(b2 − t) then

b ← b1;
else

b ← b2;
end

Algorithm 5. DecodeYYRepRecN(t).

decoding the surface-GKP code is equivalent to finding the
closest point in �(M⊥

surf) for a given syndrome. However,
because the lattice is a union of 2N+1 cosets, direct appli-
cation of either Eqs. (77) or (79) will incur an exponential
runtime for the decoding. We now show that the search of
2N+1 cosets can be efficiently performed with an MWPM
algorithm, and the surface-GKP code can be decoded in
polynomial time.

As discussed in Sec. IV B, we aim to find the closest
point for a given t, i.e.,

χ t(
√

2π(M⊥
surf)) = arg min

u∈√
2π�(M⊥

surf)

||t − u||. (110)

For simplicity, we will consider the scaled lattice

�′ ≡
√

2�(M⊥
surf) =

2N+1−1⋃
j =0

[
gj + �(2I2N)

]
, (111)

which is an integral lattice, and find the closest point for
the scaled vector t′ ≡ (1/

√
π)t, namely

χ ′ ≡ χ t′(�
′) = 1√

π
χ t(

√
2π�(M⊥

surf)). (112)

Since χ ′ is an integer valued vector, we first observe that
each component χ ′

i has to be either the closest or second
closest integer of t′i. In other words, χ ′ is contained in the
following set of 22N vectors

Sχ ′ ≡ {
χ ′|χ ′

i = �t′i� or w(t′i), for 1 ≤ i ≤ 2N
}

, (113)

where w(x) is the second closest integer for x ∈ R, as
defined in Eq. (81). To see that, suppose χ ′

i is neither

040334-21

LIN, CHAMBERLAND, and NOH PRX QUANTUM 4, 040334 (2023)

the closest nor the second closest integer of t′i, because
�(2I2N) is a sublattice of �′, we can use the ith basis vec-
tor of �(2I2N) to translate χ ′

i to either the closest or second
closest integer of t′i. The resultant vector is guaranteed to
have closer distance to t′, compared to the vector before
the translation, hence χ ′ must be in the set Sχ ′ .

However, directly searching through Sχ ′ is not only
impractical for large N , but also unnecessary because not
all the vectors in Sχ ′ are in the lattice �′. For instance,
although

χ ′′ ≡ (�t′1�, . . . , �t′2N �) (114)

is the closest possible integer valued vector to t′, it is
however not necessarily in �′. Instead, we have to round
certain components of χ ′′ in the wrong way, similar to how
we find the closest point in the Dn lattice, as shown in Sec.
VII B. For this purpose, we further observe that �′ can be
written in the following way:

�′ = {
v ∈ Z

2N | mod(gT
i �v, 2) = 0, 1 ≤ i ≤ N − 1

}
.

(115)

To see that Eq. (115) holds, we note that mod(gT
i �v, 2) =

0 is equivalent to 1√
2
gT

i �(v/
√

2) ∈ Z, which suggests that

v/
√

2 has integer valued symplectic product with all the
vectors in �(Msurf). It follows that v is in

√
2�(M⊥

surf) or
equivalently �′.

With these observations, finding the closest point χ ′
reduces to finding a vector in Sχ ′ , that is closest to t′ while
satisfying mod(gT

i �χ ′, 2) = 0 for 1 ≤ i ≤ N − 1. Despite
the fact that χ ′′ need not satisfy the latter condition, it can
be used as an ansatz and we enumerate the stabilizers with
mod(gT

i �χ ′′, 2) 	= 0. Our goal is to round certain entries
of χ ′′ in the wrong way such that the resultant vector χ ′ is
guaranteed to be in �′. Since χ ′′ is the closest integer val-
ued vector, changing certain entries from �t′i� to w(t′i) will
increase the distance to t′, we would like to minimize the
increased distance while ensuring χ ′ ∈ �′.

In the above description, the stabilizers of the surface-
GKP code is not explicitly invoked, hence the conclusion
can be applied to the surface-GKP code with different
choice of stabilizer generators, or other concatenated GKP
codes. However we emphasize that for the decoding strat-
egy presented below to work, we do need to assume that a
given shift error can induce at most two syndrome errors, a
property shared by the surface-GKP code and some other
concatenated GKP codes. Certain stabilizer codes, such as
the color code, do not have this property, hence the closest-
point decoder presented cannot be applied to such cases.
Also we have restricted our attention to the case where the
base GKP code is a square GKP code.

With these constraints stated, finding the closest point
χ ′ can be further reduced to the MWPM problem for a

weighted graph

G = (V, E, W). (116)

Here V = {vi} contains a set of N − 1 vertices, each corre-
sponds to a stabilizer generator gi. For any pair of distinct
vertices vi and vj , they will share an edge e ∈ E if gi and
gj share one or more nonzero entries. In particular, let gjk
denote the kth entry of gj , and

Sij ≡ {
k | gik = gjk = 1

}
(117)

be the set of shared entries of gi and gj . Since we would
like to minimize the total weight of a matching, the weight
of the edge between vertices vi,j is assigned to be

min
k∈Sij

[(w(t′k) − t′k)
2 − (�t′k� − t′k)

2], (118)

which is the increased distance if we round the kth element
of χ ′′ in the wrong way.

After the weighted graph is set up, we define a set of
highlighted vertices

H = {
vi ∈ G | mod(gT

i �χ ′′, 2) 	= 0
}

. (119)

If the number of highlighted vertices is odd, we add a
highlighted boundary vertex into H such that the num-
ber of highlighted vertices is always even. We then apply
the MWPM algorithm for the weighted graph G to iden-
tify a set of edges, which match the highlighted vertices
pairwise. The selected edges correspond to the entries in
χ ′′ that need to be rounded in the wrong way, in order to
obtain a lattice point χ ′ ∈ �′. By construction, χ ′ is the
closest point in Sχ ′ that has even a symplectic product with
all the stabilizers. Hence, from Eq. (112), we arrive at the
desired closest point, which is simply

√
πχ ′.

The above algorithm can find the closest point effi-
ciently, because the MWPM of a graph can be found in
runtime that is polynomial to the number of vertices and
edges [42,43]. It can be further sped up for the surface-
GKP code, if we use the the qqpp convention, where the
generator matrix is given by

Mqqpp
surf =

[
M (q)

surf 0N

0N M (p)

surf

]
. (120)

Here M (q)

surf and M (p)

surf are the generators for the lattices in
the q̂ and p̂ subspaces, respectively. In this convention,
the vector gi has support only in the q̂ or p̂ subspace if
it corresponds to an X or Z stabilizer, respectively. As a
result, the weighted graph defined in Eq. (116) is split into
two disjoint subgraphs G(q) and G(p). The subgraph G(q)

consists of (N − 1)/2 vertices, each corresponds to a X

040334-22

CLOSEST LATTICE POINT DECODING... PRX QUANTUM 4, 040334 (2023)

stabilizer, whereas the (N − 1)/2 vertices in G(p) corre-
spond to the Z stabilizers. The set of highlighted vertices
for the subgraphs are defined as

H (q) =
{
vi ∈ G(q) | mod((g(q)

i)Tχ ′′(p), 2) 	= 0
}

,

H (p) =
{
vi ∈ G(p) | mod((g(p)

i)Tχ ′′(q), 2) 	= 0
}

.
(121)

Here g(q)

i and g(p)

i denote the vectors for the X and Z
stabilizers, respectively, and χ ′′(p ,q) are the projections of
χ ′′ onto the q̂ and p̂ subspaces. If either H (p),(q) has an
odd number of highlighted vertices, we add a boundary
vertex into the set such that both H (p),(q) have an even
number of highlighted vertices. We then apply the MWPM
algorithm separately for the two disjoint subgraphs, which
yield two sets of selected edges. Upon combining the
two sets of selected edges, they correspond to the entries
in χ ′′ that need to be rounded in the wrong way. We
present the algorithm for decoding the square-GKP code
in Algorithm 6.

Let us compare the MWPM closest-point decoder to
MWPM log-likelihood decoder studied in Ref. [40]. For
the latter decoder, the surface-GKP code is decoded by
solving exactly the same MWPM problem, but with the
crucial difference that the edge weights are not given by
Eq. (118). Instead, in the MWPM log-likelihood decoder,
the weights are likelihood functions that estimate the prob-
ability of the logical errors due to the given syndromes,
which depend on the noise model chosen. The decoder per-
forms well when the shift error is small; however, such
log-likelihood estimation is typically unreliable if the shift
error is large and close to the decision boundaries, where
the crossover between correctable and uncorrectable shift
occurs. On the other hand, the closest-point decoder is
designed to identify the closest point exactly regardless the
size of the shift error. Further, because the closest-point
decoder does not assume the distribution of the error shifts
(other than the fact that shorter shifts are more likely), it
is not only more reliable but also can be applied to many
other noise models.

In Fig. 5(a), we provide numerical evidence that the
MWPM closest-point decoder outperforms the MWPM
log-likelihood decoder. We plot the fidelity of the surface-
GKP codes as a function of noise strength σ and distance
d0 for the two decoders. For a given distance d0, the solid
and dash lines represent the MWPM closest point and
log-likelihood decoders respectively, which shows that the
fidelity from the former is always higher than the latter.
We note from the bottom right of the plot that the dif-
ference in the fidelity is larger for larger noise strength,
hence the noisier the hardware, there will be more bene-
fit for using the closest-point decoder. In the left-bottom
inset, we show the infidelities near the low-noise regime,
which are almost indistinguishable for the two decoders.

More interestingly, we can notice that the threshold for
the closest-point decoder is slightly larger than that for the
log-likelihood decoder, as indicated by the solid and dash
vertical lines, respectively. In order to more precisely quan-
tify the difference, we perform a more careful calculation
as shown in Fig. 5(b). Here we scan through σ = 0.596 and
σ = 0.607 with a resolution of 0.001, and the distances
for the surface code are between d0 = 3 and d0 = 29. In
order to better suppress the statistical fluctuations, each
data point in Fig. 5(b) is obtained via the Monte Carlo
method with 107 samples, which is 10 times as large as that
for other plots in Fig. 5. The fidelities for the MWPM log-
likelihood and closest point decoders are indicated by the
circular and square markers, respectively, and the dash and
solid lines are guides for the eyes. To obtain the threshold
for either decoder, we determine the crossing σ ∗ where the
fidelity of the distance d0 + 2 surface-GKP code is larger
than that of the distance d0 surface-GKP code, for a given
d0. Then we investigate to what value the crossing point
converges as we increase d0, as shown in the inset. We
calculate the mean and standard deviation for the cross-
ings for d0 > 13, and obtain σ ∗ = 0.6025 ± 0.0004 for the
closest-point decoder, and σ ∗ = 0.5996 ± 0.0004 for the
log-likelihood decoder. Since the resolution of σ in our
simulation is 0.001, we choose to report only three digits
for the thresholds.

In the above threshold estimate, we made sure that our
analysis reliably yields the threshold σ ∗ values up to three
significant digits with 107 samples. On the other hand,
previous works have calculated the threshold σ mostly
up to two significant digits and obtained σ ∗ = 0.60 for
the surface GKP code using the MWPM log-likelihood
decoder [45,47], σ ∗ = 0.58 for the surface GKP code with
designed noise bias [52], and σ ∗ = 0.59 for the color-
GKP code [90]. One obvious reason why we care about
three significant digits is because the difference between
the MWPM closest-point decoder and the MWPM log-
likelihood decoder can only be resolved in the third sig-
nificant digit. Another reason is because the best known
lower bound to the quantum capacity of a Gaussian ran-
dom displacement channel (with noise standard deviation
σ) is given by [91]

max
(

log2

(
1

eσ 2

)
, 0
)

, (122)

and vanishes when σ ≥ 1/
√

e = 0.6065 Hence, show-
ing that a code has a threshold higher than 1/

√
e =

0.6065 . . . has significant implications on the Gaussian
quantum capacity as it means that the code would then
establish a better lower bound to the quantum capacity
of a Gaussian random displacement channel than what
has been known in the past two decades. Although this
is not the case with the surface GKP code decoded by
the MWPM closest-point decoder, since its threshold σ ∗ is

040334-23

LIN, CHAMBERLAND, and NOH PRX QUANTUM 4, 040334 (2023)

(a) (b)

(c) (d)

FIG. 5. Numerical results for surface-GKP codes. (a) The fidelity of the surface-GKP codes as a function of the noise strength σ

and distance d0, which are odd integers from d0 = 3 to d0 = 11, as indicated. The solid and dash lines correspond to the MWPM
closest-point decoder and the MWPM log-likelihood decoder, respectively, and the vertical lines indicate their thresholds. The bottom-
left inset shows the infidelities near σ = 0.4 for different d0. (b) The fidelity of the surface-GKP codes near the threshold. The noise
strength σ is scanned from 0.596 to 0.607 with resolution 0.001, and the distances are odd integers from d0 = 3 to d0 = 29. Each
data point is obtained from 107 Monte-Carlo samples, which is 10 times as large as that for the data points in other subplots. The
standard error of the data points are of the order 10−4, and the error bars of the fidelity are all smaller than the markers of the data
points. The black solid and dash vertical lines correspond to the thresholds for the MWPM closest-point and log-likelihood decoders,
which read 0.602 and 0.599, respectively. The red solid line corresponds to 1/

√
e = 0.6065 · · · , which is an important quantity from

the quantum information theory point of view because it is the value of σ at which the known lower bound to the quantum capacity
of a Gaussian random displacement channel vanishes. See the main text for more discussions. Inset shows the crossings as a function
of d0, which shows that the crossing from the MWPM closest point is always higher than that for the log-likelihood decoder by 0.002
for large d0. (c) The logarithm of the infidelity as a function of d0 for σ = 0.5959. The blue circles and red squares correspond to
the MWPM closest-point and log-likelihood decoders, respectively. The data points are fitted with linear functions and the slopes for
the two decoders read −2.65 × 10−3 and −1.40 × 10−3, respectively. Inset shows the slopes as a function of σ up to σ = 0.60. See
the main text for more discussion. (d) Comparison of the runtimes for the MWPM closest-point decoder and the exponential time
closest-point decoder for the surface-GKP codes. Both horizontal and vertical axes are in log scales. The red squares correspond to
the exponential-time decoder whose runtime scales exponentially with d2

0 (hence only two datapoints are calculated); the blue circles
correspond to the runtime of the MWPM closest-point decoder, which scales as d3.02

0 for large d0.

only 0.602, we have made important progress towards this
goal. As shown in Fig. 5, the gap between the threshold
of the surface GKP code and 1/

√
e (the red vertical line)

has been decreased by almost a half with the closest-point
decoder.

In Fig. 5(c), we show the logarithm of the infidelity as
a function of distance d0 for σ = 0.5959, which is slightly
below the thresholds for both decoders. The red squares
and blue circles correspond to the MWPM log-likelihood
and closest-point decoders, respectively. We notice that

040334-24

CLOSEST LATTICE POINT DECODING... PRX QUANTUM 4, 040334 (2023)

Input: The error syndrome t ∈ R
2N and {gi}

Output: The closest point χ ∈ R
2N ;

χ′′(q) ← (�t1�, �t3�, ..., �t2N−1�)
χ′′(p) ← (�t2�, �t4�, ..., �t2N�)
G(q) ← (V (q), E(q), W (q)) *Defined similarly as in
Eq. 116-118*

G(p) ← (V (p), E(p), W (p)) *Defined similarly as in
Eq. 116-118*

H(q) ←
{

vi | mod((g(q)
i)T χ′′(p), 2) �= 0

}
*Defined in

Eq. 121*
H(p) ←

{
vi | mod((g(p)

i)T χ′′(q), 2) �= 0
}

*Defined in
Eq. 121*

e(q) ← MWPM(G(q), H(q))
e(p) ← MWPM(G(p), H(p))
e[1 : 2 : end] ← e(q);
e[2 : 2 : end] ← e(p);
for 1 ≤ i ≤ 2N do

if e[i]==1 then
χ′′[i] = w(ti)

end
end
χ ← √

πχ′′

Algorithm 6. DecodeSurfaceGKP(t).

not only is the infidelity for the closest-point decoder
smaller than that of the log-likelihood decoder, the infi-
delity is also decreasing much faster, as we increase the
code distance. We fit the data points with linear func-
tions, as shown by the solid lines, and find that the slope
for the closest-point decoder is almost twice as large as
that for the log-likelihood decoder. This suggests that, for
σ = 0.5959, as the code distance of the surface-GKP code
is increased, closest-point decoder suppresses the logical
error rate twice as faster as the log-likelihood decoder does.
In the inset, we show the slopes as a function of σ up to
σ = 0.60, which shows that their relative difference is get-
ting smaller for smaller σ , another evidence that the two
decoders perform similarly for small noise regime.

In Fig. 5(d), we further compare the runtime of the
exponential-time closest-point decoder (red squares) with
the MWPM closest-point decoder (blue circles) in a log-
log plot. For the former, it is clear that the required runtime
increases significantly from d0 = 3 to d0 = 5. Hence we
show only two data points for the exponential-time closest-
point decoder. For the MWPM closest-point decoder, the
run time is significantly reduced by 3 orders of magnitude
for d0 = 5, and scales like d3.02

0 for large d0.

X. DISCUSSION AND CONCLUSION

In this work, we have investigated the quantum error
correction with GKP codes from a lattice perspective,
and there are three main results. We first reviewed that

a general N -mode GKP code can be viewed as a 2N -
dimensional symplectic integral lattice, and showed that
decoding the GKP code is equivalent to finding the closest
point in the lattice for the given error syndrome. Because
the closest-point search problem has been studied exten-
sively in the classical error-correction literature, we for-
mulated a closest-point decoder for general GKP codes.
Second, we provide a proof-of-concept demonstration that
it is possible to numerically search an optimized GKP
code from a lattice perspective. The numerically found
codes, despite not optimal, exhibit better error-correction
properties at low error rate, compared to the known GKP
codes, such as the [[7, 1, 3]]-hexagonal codes, or the d0 = 3
surface-hexagonal GKP code. Third, we show that despite
the fact that closest-point decoder incurs exponential time
cost in the number of modes for general GKP codes,
it is possible to devise efficient closest-point decoders
for structured GKP codes. In particular, we proposed
two generalizations of the tesseract codes, namely the
rep-recN and YY-rep-recN codes, which exhibit good quan-
tum error-correction properties, and show that they can be
decoded in runtime that is linear to the number of modes.
For the surface-GKP code, with the help of a MWPM
algorithm, a polynomial-time closest-point decoder is
introduced, which outperforms the previous MWPM
log-likelihood decoder and yields a noise threshold of
σ ∗ = 0.602.

A few remarks are in order. Recall that in our numerical
search for optimized GKP codes, we started with 104 ini-
tial points and perform the optimization with respect to the
distance. Because of the relatively small size of the trial
ansatz, the optimized codes do not necessarily have the
optimal distances. In fact, for a certain number of modes,
we have examples of analytically constructed GKP codes
that outperform the numerically optimized code either in
terms of distance or fidelity. It is possible to find better
GKP codes by optimizing on top of these known GKP
codes, but for certain dimensions, we do not have known
GKP codes with good error-correction capabilities. Gen-
erally, one would need to scale to a much larger set of
initial points for finding the optimal GKP code with a
large number of modes, which will incur significant time
overhead. There would be similar overhead costs if one
chose to optimize with respect to fidelity, instead of dis-
tance, because Monte Carlo sampling is required at each
iteration step of the optimization. The bottleneck can be
partially mitigated if a more efficient algorithm is used to
find the closest point. In this work, we choose to adopt
the algorithm in Ref. [67] as our closest-point decoder
because of its simplicity, but it is certainly not the most
efficient algorithm. To the best of our knowledge, the
best deterministic closest-point search algorithm was pro-
posed by Micciancio and Voulgaris (MV) in Ref. [80].
The core of the MV algorithm is a more efficient method
to determine the Voronoi cell of the lattice, such that the

040334-25

LIN, CHAMBERLAND, and NOH PRX QUANTUM 4, 040334 (2023)

complexity of the algorithm is 2O(n). Despite the fact that it
is still exponential in the dimension of the lattice (because
closest-point search problem is NP hard), it improves the
nO(n) runtime of the previously known algorithms [82].
Subsequently, Dadush and Bonifas gave a randomized
algorithm that provides quadratic speed up compared to
the MV algorithm [81]. The algorithm is Las Vegas in the
sense that it always gives the correct result but the runtime
differs depending on the inputs. It would be interesting to
implement these algorithms and use them to search for
optimized GKP codes.

Note also that the efficiency of decoding a GKP code
relies heavily on the basis chosen. In the main text and
Appendix C, we discussed the KZ and LLL algorithms
for finding a good basis for different applications. Fur-
ther, for a given GKP code, a set of good basis vectors
will help its experimental realizations. In various proposals
for implementing GKP codes [37,38,92], the time it takes
to stabilize a GKP code is proportional to the Euclidean
length of the GKP stabilizer generators that are being mea-
sured. Thus especially for numerical optimized codes, it
is important to look for good lattice generators that can
speed up the closest-point search algorithms and are prac-
tical for experimental implementations. As a related note,
it could also be interesting to numerically optimize GKP
codes using a well-structured ansatz (e.g., geometric local-
ity or bounded length of all stabilizer generators) such that
it is guaranteed that the numerically found GKP code can
be readily implemented experimentally. Another interest-
ing future direction would be benchmarking closest-point
decoders for other families of concatenated GKP codes.
For instance, recently a MWPM decoder is proposed for
decoding the color code with a Möbius geometry, which
demonstrates a logical failure rate that is competitive with
the optimal performance of the surface code [93]. Given
that we have known the closest-point decoder can help
to increase the fidelity and noise threshold for the sur-
face code, it would be interesting to see if it can help
in the similar manner for the color code. However, the
MWPM closest-point decoder cannot be directly applied to
the color code because the decoder assumes a given shift
error can induce at most two syndrome errors. Hence find-
ing efficient closest-point decoder for the color code and
other families of concatenated GKP codes is a challenging
but urgent topic in its own right.

Lastly we remark that we have only focused on the
minimum energy decoding via the closest-point prob-
lem, which is optimal only in the σ → 0 limit [54]. A
truly optimal decoding strategy is the maximum-likelihood
decoding, which is more involved than the closest-point
decoding. An interesting future work would be to inves-
tigate the maximum-likelihood decoders and see if the
error-correction performance of multimode GKP codes
can be significantly improved in the large σ regime (e.g.,
close to where the quantum capacity nearly vanishes).

ACKNOWLEDGMENTS

It is a pleasure to thank Arne Grimsmo, John Preskill,
and Mackenzie Shaw for useful discussions. ML would
like to thank Péter Kómár and Eric Kessler for their sup-
port of the project. We also would like to thank Francesco
Arzani and Timo Hillmann for the very insightful discus-
sions on constructing lattices for concatenated GKP codes.
We would like to acknowledge the AWS EC2 resources,
which were used for part of the simulations performed in
this work.

APPENDIX A: DETAILS OF CONSTRUCTING
LATTICES FOR CONCATENATED GKP CODES

In this appendix, we provide more details for construct-
ing lattices from the concatenated GKP codes. Specifically,
we will focus on concatenating a [[N , k]] stabilizer code
with N single-mode square GKP codes to encode k qubits.

As explained in Sec. III G, we start by constructing a
separable lattice generated by N copies of the square code

M (sq) =
√

2I2N . (A1)

We will replace N − k rows in M (sq) by the set of vectors{
1√
2
gT

j , j = 1, . . . , N − k
}

, where gj are the binary vectors
for the generators of the stabilizer group. To make sure the
resultant matrix, denoted as M (sq)

conc is full rank, for each gj ,
let the lth element be the first nonzero element in gj , we
replace the lth row of M (sq) by gT

j /
√

2 if it has not been
replaced before, otherwise we look for the next nonzero
element in gj until an appropriate replacement is done. We
repeat the process for all the stabilizer generators gj and
the desired M (sq)

conc is arrived. This algorithm is shown in
Algorithm 7.

We used Algorithm 7 for the multimode GKP codes dis-
cussed in the main text, but it turns out for certain GKP
codes, the algorithm will not give a full-rank matrix. A
more general approach works with the standard form of the
stabilizer code. For that, we can view the set of binary vec-
tors

{
gT

j

}
as a (N − k) × (2N) matrix G with components

gjl. As shown in Sec. 10.5.7 of Ref. [1], via the Gaussian
elimination and relabeling the qubits if needed, one could
bring the matrix G into the standard form

r {
N − k − r {

[
I A1 A2 B 0 C

︸︷︷︸
r

0 ︸︷︷︸
N − k − r

0 ︸︷︷︸
k

0 ︸︷︷︸
r

D ︸︷︷︸
N − k − r

I ︸︷︷︸
k

E

]
.

Here r is the rank of the left (N − k) × N submatrix of
G, I is the identity matrix, and A1, A2, B, C, D, E are all
integer valued matrices. With that, the generator matrix for
the concatenated GKP code, in the qqpp ordering, can be
constructed as

040334-26

CLOSEST LATTICE POINT DECODING... PRX QUANTUM 4, 040334 (2023)

M (sq)
conc = 1√

2

⎡
⎢⎢⎢⎢⎢⎣

I A1 A2 B 0 C
0 0 0 D I E
0 0 2I 0 0 0
0 0 0 2I 0 0
0 2I 0 0 0 0

︸︷︷︸
r

0 ︸︷︷︸
N − k − r

0 ︸︷︷︸
k

0 ︸︷︷︸
r

0 ︸︷︷︸
N − k − r

0 ︸︷︷︸
k

2I

⎤
⎥⎥⎥⎥⎥⎦

}r
}N − k − r
}k
}r
}N − k − r
}k

.

To see that M (sq)
conc is a valid GKP lattice, we first note that

since
{
gj
}

corresponds to stabilizers that commute with
each other, we have mod(gT

j �
qqppgl, 2) = 0 for all j , l =

1, . . . , N − k. Hence the Gram matrix M (sq)
conc�

qqpp(M (sq)
conc)

T

is indeed integer valued. Further, the matrix has determi-
nant 2k, which can be seen by swapping the two columns
labeled by N − k − r. Thus, we conclude that M (sq)

conc is a
GKP code that encodes k qubits.

It is important to note that, swapping the columns of
M (sq)

conc is equivalent to multiplying a nonsympletic orthog-
onal matrix from the right of M (sq)

conc, which in general leads
to a nonsymplectic integral matrix M ′. Despite M ′ having
the same determinant as M (sq)

conc, it cannot be regarded as a
GKP code. This can also be seen from the fact that swap-
ping the columns of G generally spoils the commutation
relations of the stabilizers.

APPENDIX B: ALGORITHM FOR CANONIZING A
GKP LATTICE

In this section, we give an algorithm to construct a uni-
modular matrix R, which is integer valued with | det(R)| =
1, such that, for the given antisymmetric matrix A,

RART = diag(d) ⊗ ω = diag(d) ⊗
[

0 1
−1 0

]
, (B1)

Data: The set of binary vectors
{
gj , j = 1, ..., N − k

}

Result: The matrix M
(sq)
conc

M
(sq)
conc ← √

2I2N ;
for 1 ≤ j ≤ N − k do

for 1 ≤ l ≤ 2N do
if gjl �= 0 then

if the l-th row of M
(sq)
conc has not been

replaced then
M

(sq)
conc[l, :] ← 1√

2
gj ;

break;
end

end
end

end

Algorithm 7. ConcatenatedGKP.

where d = (d1, . . . , dn) are non-negative integers, and we
will assume n is an even integer in this section. The
algorithms consists of the following subroutines.

The first subroutine, which we call PutFirstRowToZero,
find a unimodular matrix R1 for a given n × n antisymmet-
ric matrix A, such that the first row and column of A(1) ≡
R1ART

1 each has only one nonzero entry, say A(1)

12 and A(1)

21 =
−A(1)

12 . They are the greatest common divisor (GCD) of the
original row, i.e., A(1)

12 = GCD(A11, A12, . . . , A1n). We shall
illustrate the details of this subroutine below.

The second subroutine, which we call Tridiagonalize,
recursively applies the subroutine PutFirstRowToZero for
the (n − 1) × (n − 1)-dimensional submatrix of A, such
that the resulting matrix is tridiagonal. The output of Tridi-
agonalize is a matrix R2, which is the product of outputs
from PutFirstRowToZero. Since the product of unimodu-
lar matrices is also unimodular, we arrive at a unimodular
matrix R2 such that A(2) ≡ R2ART

2 is tridiagonal

A(2) =

⎡
⎢⎢⎢⎢⎣

0 A(2)

12 0 0 · · ·
−A(2)

12 0 A(2)

23 0 · · ·
0 −A(2)

23 0 A(2)

34 · · ·
0 0 −A(2)

34 0 · · ·
· · ·

⎤
⎥⎥⎥⎥⎦ . (B2)

The third subroutine, which we call CanonizeTridiagonal,
ensures that the element A(2)

12 divides all the entries in the
matrix A(2), i.e., A′

23, A′
34, . . ., as shown in Eq. (B2). If

it is already the case, then we can proceed to the next
subroutine, otherwise we use the following unimodular
matrix:

R′
3 =

⎡
⎢⎢⎢⎣

1 1 1 1 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·

· · ·

⎤
⎥⎥⎥⎦ , (B3)

040334-27

LIN, CHAMBERLAND, and NOH PRX QUANTUM 4, 040334 (2023)

Input: Two integers a, b;
Output: The greatest common divisor g, and two
integers x, y satisfying ax + by = g
if a=0 then

g, x, y ← b, 0, 1
else

g, x1, y1 ← GCD(|b|%|a|, |a|)
x ← y1 − � |b|

|a|	x1

y ← x1

if g < 0 then
x, y ← −x, −y

end
x, y ← sign(a)x, sign(b)y

end

Algorithm 8. GCD(a, b).

to arrive at

A(3) = R′
3A(2)R

′T
3

=

⎡
⎢⎢⎢⎢⎣

0 A(2)

12 − A(2)

23 A(2)

23 − A(2)

34 · · ·
−(A(2)

12 − A(2)

23) 0 A(2)

23 · · ·
−(A(2)

23 − A(2)

34) −A(2)

23 0 · · ·
· · ·

⎤
⎥⎥⎥⎥⎦ .

We can again apply the subroutine PutFirstRowToZero
such that the first row of A(3) has only nonzero entry A(3)

12 .
After that, by construction, A(3)

12 is the GCD of the original
row, we have

A(3)

12 = GCD(A(2)

12 − A(2)

23 , A(2)

23 − A(2)

34 , A(2)

34 − A(2)

45 , . . .)

= GCD(A(2)

12 , A(2)

23 , A(2)

34 , . . .). (B4)

Note that A(3) needs not retain the tridiagonal form after
the application of PutFirstRowToZero, but we can always
apply the subroutine Tridiagonalize again to restore it.
Since all the entries in A(3) are integer-valued linear com-
binations of A(2)

12 , A(2)

23 , . . ., we have that A(3)

12 divides all the
elements in the resultant matrix, by Eq. (B4). We shall col-
lect all the unimodular matrices involved in this process as
R3 such that

A(3) ≡ R3A(2)RT
3 =

⎡
⎢⎢⎢⎢⎣

0 A(3)

12 0 0 · · ·
−A(3)

12 0 A(3)

23 0 · · ·
0 −A(3)

23 0 A(3)

34 · · ·
0 0 −A(3)

34 0 · · ·
· · ·

⎤
⎥⎥⎥⎥⎦,

which shares the same form as A(2) with A(3)

12 divides all the
entries in the matrix.

The fourth subroutine, which we call BlockTridiagonal-
ize, put the tridiagonal matrix A(3) into a block diagonal
form, and hence arrive at the desired form as shown

in Eq. (B1). For that, we can construct the following
unimodular matrix:

R′
4 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 · · ·
0 1 0 0 · · ·

A(3)

23 /A(3)

12 0 1 0 · · ·
0 0 0 1 · · ·

· · ·

⎤
⎥⎥⎥⎥⎦ , (B5)

such that

RA(3)RT =

⎡
⎢⎢⎢⎢⎣

0 A(3)

12 0 0 · · ·
−A(3)

12 0 0 0 · · ·
0 0 0 A(3)

34 · · ·
0 0 −A(3)

34 0 · · ·
· · ·

⎤
⎥⎥⎥⎥⎦

= A(3)

12 ω ⊕ A(4)′ .

We note that since A(3)

12 divides all the matrix elements
in A(3), the matrix R′

4 is unimodular. Since A(4)′ is an
(n − 2) × (n − 2) antisymmetric tridiagonal matrix, the
recursive applications of the subroutines CanonizeTridiag-
onal and BlockTridiagonalize will arrive at the canonical
form of A, our initial given matrix. We shall collect all
the unimodular matrices involved in this process as R4.
An optional subroutine could be devised to perform addi-
tional row and column swapping such that |d1| ≥ |d2| ≥
· · · ≥ |dn| for the canonical form shown in Eq. (B1).

Here we provide more details for the subroutine Put-
FirstRowToZero. Consider the following antisymmetric
matrix A:

A =

⎡
⎢⎢⎢⎣

0 A12 A13 A14 · · ·
−A12 0 A23 A24 · · ·
−A13 −A23 0 A34 · · ·
−A14 −A24 −A34 0 · · ·
· · ·

⎤
⎥⎥⎥⎦ . (B6)

For any integer pairs A12, A13, by Bezout’s identity, we
can use the extended Euclidean algorithm to find another
integer pairs (x3, x13) such that

A12x3 + A13x13 = GCD(A12, A13) ≡ g3. (B7)

Then we can construct an unimodular matrix

Input: An tridiagonal antisymmetric matrix A
Output: A unimodular matrix R1

g3, x3, x13 ← GCD(A12, A13)
for 3 ≤ i ≤ n − 1 do

gi+1, xi+1, x1,i+1 ← GCD(A1,i+1, gi)
end
R1 ← Matrix defined in Eq. B9

Algorithm 9. PutFirstRowToZero(A).

040334-28

CLOSEST LATTICE POINT DECODING... PRX QUANTUM 4, 040334 (2023)

Input: An tridiagonal antisymmetric matrix A
Output: A unimodular matrix R2

R2 ← In

for 1 ≤ i ≤ n − 1 do
R1 ← PutFirstRowToZero(A[i : end, i : end])
R2 ← (Ii−1 ⊕ R1)R2

end

Algorithm 10. Tridiagonalize(A).

R =

⎡
⎢⎢⎢⎣

1 0 0 0 · · ·
0 x3 x13 0 · · ·
0 −A13/g3 A12/g3 0 · · ·
0 0 0 1 · · ·

· · ·

⎤
⎥⎥⎥⎦ , (B8)

such that

RART =

⎡
⎢⎢⎢⎢⎣

0 g3 0 · · ·
−g3 0 A23 · · ·

0 −A23 0 · · ·
−A14 −(A24x3 + A34x13)

A13A24−A12A34
g3

· · ·
· · ·

⎤
⎥⎥⎥⎥⎦ .

The procedure can be proceed for the pair (g3, A14), and we
denote the corresponding Bezout coefficients as (x4, x14)

such that g3x4 + A14x14 = GCD(g3, A14) ≡ g4. One can
confirm that with the following product of unimodular
matrices

R = · · · ×

⎡
⎢⎢⎢⎢⎣

1 0 0 0 · · ·
0 x4 0 x14 · · ·
0 0 1 0 · · ·
0 −A14

g4
0 g3

g4
· · ·

· · ·

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎣

1 0 0 0 · · ·
0 x3 x13 0 · · ·
0 −A13

g3

A12
g3

0 · · ·
0 0 0 1 · · ·

· · ·

⎤
⎥⎥⎥⎥⎦ , (B9)

Input: An tridiagonal antisymmetric matrix A
Output: A unimodular matrix R3

R′
3 ← Matrix defined in Eq. B3

A(3) ← R′
3AR

′T
3

R2 ← Tridiagonalize(A(3))
R3 ← R2R

′
3

Algorithm 11. CanonizeTridiagonal(A).

Input: An tridiagonal antisymmetric matrix A
Output: A unimodular matrix R4

R′
4 ← Matrix defined in Eq. B5

A(4)′ ← R′
4AR

′T
4

R′′
4 ← Tridiagonalize(A(4)′

[3 : end, 3 : end])
R4 ← (I2 ⊕ R′′

4)R′
4

Algorithm 12. BlockTridiagonalize(A)

we have

RART =

⎡
⎢⎢⎢⎣

0 g 0 0 · · ·
−g 0 A′

23 A′
24 · · ·

0 −A′
23 0 A′

34 · · ·
0 −A′

24 −A′
34 0 · · ·

· · ·

⎤
⎥⎥⎥⎦ . (B10)

The resulting matrix has the desired property that the first
row and column has only one nonzero entry A′

12 and A′
21 =

−A′
12, which is the greatest common divisor of the original

row.
Below we present the algorithm CanonizeGKPLattice in

Algorithm 13, which canonize a given GKP code, with the
help of the above subroutines.

APPENDIX C: MORE DETAILS ON THE CLOSEST
POINT DECODER

In this section, we provide more details for the closest-
point decoder. Given an arbitrary point t ∈ Rn, and the
generator matrix M for a n-dimensional lattice �, we
describe an algorithm to compute the point χ t(�(M)) ∈
� that is closest to t [67]. In Sec. IV B, the algorithm
is described in two parts, the preprocessing part and the
decoding part. We first describe the LLL and KZ reduc-
tions, for preprocessing the generator matrix.

For a matrix M , both LLL and KZ reduction produce a
lower triangular matrix L, as given in Eq. (61),

L =

⎡
⎢⎢⎢⎣

vT
1

vT
2
...

vT
n

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

v11 0 · · · 0
v21 v22 · · · 0
...

...
. . .

...
vn1 vn2 · · · vnn

⎤
⎥⎥⎦ , (C1)

Input: A GKP lattice generator M
Output: The canonical basis M ′ for the GKP code
A ← MΩMT

R2 ← Tridiagonalize(A)
R4 ← BlockTridiagonalize(R2ART

2)
R ← R4R2

M ′ ← RM

Algorithm 13. CanonizeGKPLattice(M)

040334-29

LIN, CHAMBERLAND, and NOH PRX QUANTUM 4, 040334 (2023)

where vT
k is the kth row of M , and vkj denotes its j th entry.

For later purpose, we will set the diagonal components
vkk to be all positive by multiplying −1 to the kth row
if needed. The matrix L is defined recursively to be LLL
reduced if n = 1 or if the following conditions hold:

||v1|| ≤ 2√
3
||v2||,

|vk1| ≤ |v11|
2

for k = 2, . . . , n,

(C2)

and the submatrix
⎡
⎢⎣

v21 · · · 0
...

. . .
...

vn2 · · · vnn

⎤
⎥⎦ (C3)

is also LLL reduced. Similarly, the KZ-reduced basis
is also defined recursively if n = 1 or if the following
conditions hold:

v1 is the shortest nonzero vector in �,

|vk1| ≤ |v11|
2

for k = 2, . . . , n,
(C4)

and the submatrix in Eq. (C3) is KZ reduced. Clearly the
two bases differ only by the first conditions in Eqs. (C2)
and (C4). If L is KZ reduced, then it is also LLL reduced
but the reverse is not necessarily true. However, KZ reduc-
tion typically requires runtime that is exponential to the
matrix size whereas LLL reduction operates in polynomial
time. Depending on the problem at hand, sometimes it is
advantageous to use one reduction over the other, which
will be discussed at the end of this section.

As we describe in Sec. IV B, an n-dimensional lat-
tice can always be decomposed into layers of n − 1-
dimensional sublattices. Mathematically this corresponds
to decompose the generator matrix as

L =
[

L′
vT

n

]
, (C5)

where L′ is an (n − 1) × n matrix, which is the generator
matrix for the sublattice. The n × 1 vector can be further
decomposed into vn = v‖ + v⊥ where

v‖=(vn1, . . . , vn,n−1, 0)T, v⊥=(0, . . . , 0, vnn)
T,

are parallel and perpendicular to the sublattices, respec-
tively. In this setup, the sublattices can be labeled by un ∈
Z, and the distance between two adjacent layers is simply
vnn. Since the decoding algorithm will be described as a
recursive procedure, the subscript in un help keep tracking
the dimension of the lattice.

For a given t ∈ Rn, we can similarly decompose it as
t = t‖ + t⊥, and from which we can identify the index

u∗
n ≡

⌊
tTv⊥

||v⊥||2
⌉

=
⌊

tn
vnn

⌉
, (C6)

for the sublattice that is nearest to t. Here �·� denotes the
nearest integer. For a sublattice labeled by un, its vertical
distance with t is given by

yn =
∣∣∣∣un − tn

vnn

∣∣∣∣ ||t⊥||. (C7)

The nearest lattice point χ t(�) needs not lie in the nearest
sublattice labeled by u∗

n, but it has to lie within a set of
nearest sublattices labeled by

{
u∗

n, u∗
n − 1, u∗

n + 1, u∗
n − 2, u∗

n + 2, . . .
}

, (C8)

which include the nearest sublattice, the next-nearest sub-
lattice, and further. In Eq. (C8), the nearest sublattices are
ordered according to their vertical distances to t, accord-
ing to the Schnorr-Euchner strategy [85]. We note that
the number of sublattices in Eq. (C8) can be bounded
if an upper bound for ρ is known, because χ t(�) can-
not lie in sublattices with distance yn that is larger than
the bound. Hence we could start the search of the near-
est point from the nearest sublattice, and once a candidate
lattice point for χ t(�) is identified, its distance to x will
serve as the bound ρ until the next candidate point with
shorter distance is identified. We have reduced the prob-
lem of finding the closest lattice point in an n-dimensional
lattice to finding it in a set of (n − 1)-dimensional lat-
tices. This dimensional reduction can proceed further, and
since the generator matrix is lower triangular, what we
have described above also apply to all k-dimensional lat-
tices with 1 ≤ k ≤ n − 1. Suppose we are searching a
k-dimensional sublattice with the set of nearest sublat-
tices labeled by

{
u∗

k , u∗
k − 1, u∗

k + 1, . . .
}
. There are three

possibilities.

(1) k = 1. Since the sublattice of a 1D lattice is a point,
we have arrived at a candidate closest point namely
u∗

1. If the distance between the lattice point is smaller
than the bound ρ, then we update the bound and
the candidate closest point; otherwise we discard the
point founded. After that, we set k = 2.

(2) n − 1 ≥ k > 1. We search the closest point in each
subspace via dimension reduction, and keep updat-
ing the best candidate closest point and the upper
bound ρ. This is done until none of the subspace in
the set

{
u∗

k , u∗
k − 1, u∗

k + 1, . . .
}

has vertical distance
to t less than ρ. Then we set k to k + 1.

(3) k = n. This suggests that we have searched all the
subspaces in Eq. (C8) that could possibly contain

040334-30

CLOSEST LATTICE POINT DECODING... PRX QUANTUM 4, 040334 (2023)

the closest point. Hence we output the best candidate
lattice point found.

The above closest-point algorithm can be significantly
sped up if the (n − 1)-dimensional subspaces in Eq. (C8)
are as separate as possible, which minimizes the num-
ber of subspaces to be searched within the bound ρ. In
the extreme case, if the spacing between the (n − 1)-
dimensional subspaces is much larger than that of all the
lower-dimensional lattices, then the closest point will be
very likely contained in the nearest plane. In this case, the
dimensionality of the problem is effectively reduced by
one. Similarly, the spacing between the points in the 1D
sublattice should be as small as possible. If the 1D sub-
lattice is so dense that all the higher-dimensional lattices
have much larger spacings, then we need only to search
the closest sublattices, which again reduce the dimension-
ality of the problem by one. The KZ reduction yields
an optimal basis that complies to the above two obser-
vations [67]. From Eq. (C4), we see that KZ reduction
produces the smallest possible value for v11 in Eq. (C1),
and hence the 1D sublattice is densely packed. Since the
reduction is applied recursively, v22 and other diagonal
elements are minimized subsequently. Because changing
the basis does not change the volume of the Voronoi cell
det(L) ≡ ∏n

i=1 vii, the order of minimization naturally pro-
duces vnn that is maximized, hence we conclude that the
spacing between the (n − 1)-dimensional subspaces are
maximized [67]. Unfortunately, the runtime of KZ reduc-
tion scales exponentially with the dimensionality of the
lattice. On the other hand, LLL reduction, which operates
in polynomial time in n, produces only an approximately
optimal basis because the first condition in Eq. (C2) is
not optimal. Because of the trade-offs between the runtime
and basis quality, one should choose different reduction
methods for different problems. For the purpose of charac-
terizing a GKP code, if we would like to compute its dis-
tance, we will use the LLL algorithm because the decoding
algorithm will only be ran a handful of times; if the fidelity
of the GKP code is the desired quantity, because it typically
involves decoding a few million error syndromes or more,
we will use the KZ reduction to preprocess the lattice once
for subsequent decodings. For further comparison of the
two reductions, readers are referred to the detailed review
in Ref. [94], and the benchmarking results in Ref. [67].
A detailed implementation of the algorithm presented here
can also be found in Ref. [67].

APPENDIX D: LINEAR TIME DECODER FOR
SCALED Zn AND Dn LATTICES

In Secs. VII A and VII B, we reviewed that it is possi-
ble to construct decoders with runtime proportional to the
dimensionalities of the Zn and Dn lattices. Here we gen-
eralize the algorithms for these two type of lattices with

different lattice constants. We start with the Zn lattice with
lattice constants given by λi (1 ≤ i ≤ n) for different axes.
In other words, the generator matrix of the lattice is a diag-
onal matrix diag(λ1, . . . , λn). Let yk ≡ �x1/λ1�, then the
closest point can be found as follows:

f (x, λ) = (�y1�λ1, . . . , �yn�λn). (D1)

In order to find the second closest point in the scaled Zn
lattice, from the discussion in Sec. VII A, we would like
to find the kth component, and substitute �xk/λk�λk with
w(xk/λk)λk. The resulting vector is denoted as

g(x, λ) = (�y1�λ1, . . . , �yk−1�λk−1, w(yk)λk,

�yk+1�λk+1, . . . , �yn�λn), (D2)

which clearly has larger norm compared to f (x, λ) by the
definition of w(x) in Eq. (81). To make sure g(x, λ) has the
second smallest distance from x, the change in the distance
(squared) has to be as small as possible, hence we have

k = arg min
1≤k≤n

|(xk − �yk�λk)
2 − (xk − w(yk)λk)

2|. (D3)

Since all of the above operations can be done in time pro-
portional to the dimension of the lattice, f (x, λ) and g(x, λ)

can be found efficiently for the scaled Zn lattice.
If we color the scaled Zn lattice in a checkerboard fash-

ion, we have the scaled Dn lattice. For example, the scaled
D4 lattice has the following generator matrix [55]:

⎡
⎢⎣

1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 2

⎤
⎥⎦
⎡
⎢⎣

λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

⎤
⎥⎦

=

⎡
⎢⎣

λ1 λ2 0 0
0 λ2 λ3 0
0 0 λ3 λ4
0 0 0 2λ4

⎤
⎥⎦ . (D4)

Following the same idea in Sec. VII B, in order to find
the closest point in the scaled Dn lattice, we first find the
closest and the second closest points in the Zn lattice. In
the units of the lattice constants λ, they are given by the
following integer-valued vectors:

(�y1�, . . . , �yn�) (D5)

and

(�y1�, . . . , �yk−1�, w(yk), �yk+1�, . . . , �yn�), (D6)

respectively. Again, since the norm of their difference is
1, we simply need to determine which one of the above
vectors has an even sum of components, then the corre-
sponding lattice point is the closest point in the scaled Dn
lattice.

040334-31

LIN, CHAMBERLAND, and NOH PRX QUANTUM 4, 040334 (2023)

APPENDIX E: THE CONCATENATED GKP CODE
AS A GLUE LATTICE

In this section, we show that the concatenated GKP code
introduced in Sec. III G can be viewed as a glue lattice. The
argument generalizes the one presented in Sec. VIII B in
the context of the YY-rep-recN code.

We start with concatenating a [[N , k]] stabilizer code
with a one-mode square GKP code that encode a single
qubit. The resultant code encodes k logical qubit in N
mode, and we will show that the code can be viewed as
a union of cosets.

As explained in Sec. III G, the 2N × 2N -dimensional
matrix M (sq)

conc is obtained by replacing N − k rows in
√

2I2N

by the vectors in Eq. (40). The lattice generated by M (sq)
conc

is a 2N -dimensional lattice

�(M (sq)
conc) =

2N−k−1⋃
j =0

[
1√
2

gj + �(
√

2I2N)

]
, (E1)

where the vectors gj correspond to the elements in the sta-
bilizer group. For notation simplicity, we assume g0 = 0
and g1,...,N−k generate the full stabilizer group. To see that
Eq. (E1) holds, we will generalize the argument presented
in Sec. VIII B. Suppose �(

√
2I2N) is generated by a set of

basis vectors {
rj , j = 1, . . . , 2N

}
,

then �(M (sq)
conc) is span by the same set of basis vectors

except N − k of them
{

r1, . . . , rN+k,
1√
2

g1, . . . ,
1√
2

gN−k

}
,

which is evident from the construction of M (sq)
conc. For a

given x ∈ �(M (sq)
conc), let

x =
N+k∑
i=1

airi + 1√
2

N−k∑
j =1

bj gj

for some integers ai and bj . As one can show,
√

2gj ∈
�(

√
2I2N) for all j = 1, . . . , N − k because gj is a binary

vector and �(
√

2I2N) is a 2N -dimensional square lattice
with lattice spacing

√
2. We can define bj = b′

j + b′′
j where

b′
j is the nearest even integer to bj such that the differ-

ence b′′
j is non-negative. Since b′

j is even, b′
j gj /

√
2 is in

the lattice �(
√

2I2N) such that we have

x − g̃ ∈ �(
√

2I2N), (E2)

where g̃ ≡ 1√
2

∑N−k
j =1 b′′

j gj is the binary vector of an ele-
ment in the stabilizer group. We conclude that x is an

element of the union of cosets shown in Eq. (E1), and
hence �(M (sq)

conc) is a sublattice of the latter

�(M (sq)
conc) ⊂

2N−k−1⋃
j =0

[
1√
2

g̃j + �(
√

2I2N)

]
.

Similarly, we can show that the union of cosets is a sublat-
tice of �(M (sq)

conc) and hence the two represent the identical
lattice.

In order to decode the concatenated GKP code, we
consider its symplectic dual lattice �((M (sq)

conc)
⊥). Since

the concatenated GKP code encodes k logical qubits,
�((M (sq)

conc)
⊥) can be viewed as a union of 22k cosets, each

of which corresponds to a logical operator. Combining
with Eq. (E1), we have

�((M (sq)
conc)

⊥) =
2N+k−1⋃

j =0

[
1√
2

g̃′
j + �(

√
2I2N)

]
. (E3)

Here g̃′
j correspond to the elements in the normalizer

group, that contains both the stabilizers and the logical
operators, and we assume g′

0 = 0 and g′
1,...,N+k generate the

full normalizer group. In the main text, we focus on decod-
ing the surface-GKP code, and Eq. (109) is a special case
of Eq. (E3) with k = 1.

Further, we can consider concatenating the [[N , k]] stabi-
lizer code with a general, nonsquare one-mode GKP code.
Per Eq. (41), the generator for the concatenated GKP code
can be written as

M = M (sq)
concST = M (sq)

conc(S
T
base)

⊕N , (E4)

where the symplectic matrix S takes a block-diagonal
form. Hence, for each u ∈ �(M), there is a v ∈ �((M (sq)

conc))

such that u = Sv. Thus, from Eq. (E1), we have

�(M) =
2N−k−1⋃

j =0

[
1√
2

Sgj + �(
√

2ST)

]

=
2N−k−1⋃

j =0

[
1√
2

Sgj + �(
√

2(ST
base)

⊕N)

]

=
2N−k−1⋃

j =0

[
1√
2

Sgj + ⊕N
i=1�(

√
2ST

base)

]
.

Hence this shows that the [[N , k]] stabilizer code with a
general one-mode GKP code corresponds to a glue lattice.

040334-32

CLOSEST LATTICE POINT DECODING... PRX QUANTUM 4, 040334 (2023)

APPENDIX F: GENERATOR MATRICES FOR
NUMERICALLY OPTIMIZED GKP CODES WITH

N = 3, N = 7 AND N = 9

In Sec. V C, we exhibit three instances of numerically
optimized GKP codes, with three modes, seven modes
and nine modes, that have better QEC properties than
the known GKP codes with the same number of modes.
Here we provide their generator matrices for the interested
readers.

Recall from Sec. V C that the generator matrix of a
generic GKP code can be written as

M = MsqOT
2Z, (F1)

up to a rotation of basis vectors. Here Msq = diag(
√

2,
1, . . . , 1) ⊗ I2 is the N -mode square lattice GKP that
encodes a single qubit. Hence the generator matrix is fully
determined by the diagonal matrix Z = diag(r1, r−1

1 , . . . ,
rN , r−1

N) with positive parameters

r ≡ (r1, . . . , rN),

and the sympletic orthogonal matrix O2. Since O2 takes a
block form in the qqpp ordering, as given in Eq. (70), we
can write

M = MsqT−1(Oqqpp
2)TTZ, (F2)

where

Oqqpp
2 = exp

[
X Y
−Y X

]
, (F3)

and T is the basis transformation from the qqpp order-
ing to the qpqp ordering. Recall that YT = Y is an N × N

real symmetric matrix and X = −X T is an N × N real
antisymmetric matrix. For N = 3, the basis transformation
matrix is given by

T =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

, (F4)

and similar matrices can be constructed for N = 7 and N =
9. Below, we will report the matrices X , Y and the vector
r for the optimized codes with N = 3, N = 7, and N = 9.
For other optimized modes with different N , similar quan-
tities can be found in our package LatticeAlgorithms.jl.

For N = 3, these quantities read

X =
⎡
⎣ 0.000 −0.129 0.303

0.129 0.000 −0.804
−0.303 0.804 0.000

⎤
⎦ ,

Y =
⎡
⎣ 1.126 −0.674 −1.101

−0.674 0.556 0.252
−1.101 0.252 0.235

⎤
⎦ ,

r = [
0.329 3.018 0.326

]
.

(F5)

As one can check, upon combining Eqs. (F1)–(F5), we
arrive at a three-mode GKP code with distance 2.670,
which is better than 31/4√π ≈ 2.33, the three-mode rep-
etition code.

For N = 7, the quantities read

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.000 0.080 0.237 −0.221 0.599 −0.597 −0.220
−0.080 0.000 −0.250 0.261 0.652 −0.556 −0.074
−0.237 0.250 0.000 −0.884 0.039 −0.121 0.335
0.221 −0.261 0.884 0.000 0.796 −0.431 −0.199

−0.599 −0.652 −0.039 −0.796 0.000 −0.506 −0.239
0.597 0.556 0.121 0.431 0.506 0.000 −0.105
0.220 0.074 −0.335 0.199 0.239 0.105 0.000

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.356 −0.519 −0.077 −0.616 −0.256 0.374 0.826
−0.519 −0.661 −0.073 0.527 0.300 0.239 0.629
−0.077 −0.073 −1.209 0.381 −0.201 0.014 −0.223
−0.616 0.527 0.381 −0.621 −0.670 1.313 −0.129
−0.256 0.300 −0.201 −0.670 −0.992 −0.253 −0.246
0.374 0.239 0.014 1.313 −0.253 −0.114 0.184
0.826 0.629 −0.223 −0.129 −0.246 0.184 −0.882

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

r = [
0.362 2.650 2.613 2.471 0.382 0.366 0.341

]
.

040334-33

LIN, CHAMBERLAND, and NOH PRX QUANTUM 4, 040334 (2023)

One can check that the corresponding GKP code has distance 3.326, which is better than 31/4
√

2π ≈ 3.299, the distance
for the [[7, 1, 3]]-hexagonal GKP code.

For N = 9, the quantities read

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.000 0.334 −0.761 0.958 −0.031 0.347 0.322 0.098 0.064
−0.334 0.000 −0.072 0.755 0.162 0.830 0.534 0.207 0.557
0.761 0.072 0.000 0.094 0.810 0.121 −0.415 0.422 0.155

−0.958 −0.755 −0.094 0.000 0.079 −0.879 0.213 −0.098 0.553
0.031 −0.162 −0.810 −0.079 0.000 0.379 −0.444 −0.081 0.180

−0.347 −0.830 −0.121 0.879 −0.379 0.000 −0.356 0.022 0.194
−0.322 −0.534 0.415 −0.213 0.444 0.356 0.000 −0.001 −0.538
−0.098 −0.207 −0.422 0.098 0.081 −0.022 0.001 0.000 0.167
−0.064 −0.557 −0.155 −0.553 −0.180 −0.194 0.538 −0.167 0.000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.377 0.298 −0.200 0.225 −0.411 0.010 0.072 0.438 −0.261
0.298 0.510 −0.112 0.706 0.324 0.366 −0.349 −0.207 −0.948

−0.200 −0.112 −0.181 0.233 0.265 −0.051 0.783 −0.436 0.379
0.225 0.706 0.233 −0.325 0.112 −0.157 0.171 0.343 −0.012

−0.411 0.324 0.265 0.112 0.018 0.898 −0.355 −0.138 0.004
0.010 0.366 −0.051 −0.157 0.898 −0.456 −0.360 0.916 0.692
0.072 −0.349 0.783 0.171 −0.355 −0.360 −0.369 0.182 0.244
0.438 −0.207 −0.436 0.343 −0.138 0.916 0.182 0.616 −0.245

−0.261 −0.948 0.379 −0.012 0.004 0.692 0.244 −0.245 −0.765

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

r = [
0.332 0.351 0.357 2.728 2.723 2.775 0.353 2.980 3.676

]
.

One can check that the corresponding GKP code has
distance 3.556, which is better than 31/2√π ≈ 3.070, the
distance for the nine-mode surface-GKP code.

[1] M. A. Nielsen and I. L. Chuang, Quantum computation
and quantum information (Cambridge University Press,
Cambridge, England, 2010).

[2] J. Preskill, Quantum computing in the NISQ era and
beyond, Quantum 2, 79 (2018).

[3] D. Gottesman, in Quantum Information Science and Its
Contributions to Mathematics, Proceedings of Symposia
in Applied Mathematics, Vol. 68 (American Mathematical
Society, Washington, DC, 2010), p. 13.

[4] P. W. Shor, Scheme for reducing decoherence in quantum
computer memory, Phys. Rev. A 52, R2493 (1995).

[5] A. Steane, Multiple-particle interference and quantum error
correction, Proc. R. Soc. London, A 452, 2551 (1996).

[6] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W.
K. Wootters, Mixed-state entanglement and quantum error
correction, Phys. Rev. A 54, 3824 (1996).

[7] A. R. Calderbank and P. W. Shor, Good quantum error-
correcting codes exist, Phys. Rev. A 54, 1098 (1996).

[8] A. M. Steane, Error correcting codes in quantum theory,
Phys. Rev. Lett. 77, 793 (1996).

[9] D. Gottesman, Class of quantum error-correcting codes sat-
urating the quantum hamming bound, Phys. Rev. A 54,
1862 (1996).

[10] D. Gottesman, Stabilizer Codes and Quantum Error Cor-
rection (California Institute of Technology, 1997).

[11] B. M. Terhal, Quantum error correction for quantum mem-
ories, Rev. Mod. Phys. 87, 307 (2015).

[12] V. V. Albert, K. Noh, K. Duivenvoorden, D. J. Young,
R. T. Brierley, P. Reinhold, C. Vuillot, L. Li, C. Shen, S.
M. Girvin, B. M. Terhal, and L. Jiang, Performance and
structure of single-mode bosonic codes, Phys. Rev. A 97,
032346 (2018).

[13] A. Joshi, K. Noh, and Y. Y. Gao, Quantum information pro-
cessing with bosonic qubits in circuit QED, Quantum Sci.
Technol. 6, 033001 (2021).

[14] W. Cai, Y. Ma, W. Wang, C.-L. Zou, and L. Sun, Bosonic
quantum error correction codes in superconducting quan-
tum circuits, Fundam. Res. 1, 50 (2021).

[15] K. Noh, Ph.D. thesis, Yale University (2020).
[16] P. T. Cochrane, G. J. Milburn, and W. J. Munro, Macroscop-

ically distinct quantum-superposition states as a bosonic
code for amplitude damping, Phys. Rev. A 59, 2631 (1999).

[17] H. Jeong and M. S. Kim, Efficient quantum computation
using coherent states, Phys. Rev. A 65, 042305 (2002).

[18] M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. J.
Schoelkopf, L. Jiang, and M. H. Devoret, Dynamically pro-
tected cat-qubits: A new paradigm for universal quantum
computation, New J. Phys. 16, 045014 (2014).

[19] Z. Leghtas, S. Touzard, I. M. Pop, A. Kou, B. Vlastakis, A.
Petrenko, K. M. Sliwa, A. Narla, S. Shankar, M. J. Hatridge,
et al., Confining the state of light to a quantum manifold by
engineered two-photon loss, Science 347, 853 (2015).

040334-34

https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1103/PhysRevLett.77.793
https://doi.org/10.1103/PhysRevA.54.1862
https://doi.org/10.1103/RevModPhys.87.307
https://doi.org/10.1103/PhysRevA.97.032346
https://doi.org/10.1088/2058-9565/abe989
https://doi.org/10.1016/j.fmre.2020.12.006
https://doi.org/10.1103/PhysRevA.59.2631
https://doi.org/10.1103/PhysRevA.65.042305
https://doi.org/10.1088/1367-2630/16/4/045014
https://doi.org/10.1126/science.aaa2085

CLOSEST LATTICE POINT DECODING... PRX QUANTUM 4, 040334 (2023)

[20] R. Lescanne, M. Villiers, T. Peronnin, A. Sarlette, M. Del-
becq, B. Huard, T. Kontos, M. Mirrahimi, and Z. Leghtas,
Exponential suppression of bit-flips in a qubit encoded in
an oscillator, Nat. Phys. 16, 509 (2020).

[21] J. Guillaud and M. Mirrahimi, Repetition cat qubits
for fault-tolerant quantum computation, Phys. Rev. X 9,
041053 (2019).

[22] S. Puri, L. St-Jean, J. A. Gross, A. Grimm, N. E. Frattini,
P. S. Iyer, A. Krishna, S. Touzard, L. Jiang, A. Blais, et al.,
Bias-preserving gates with stabilized cat qubits, Sci. Adv.
6, eaay5901 (2020).

[23] J. Guillaud and M. Mirrahimi, Error rates and resource
overheads of repetition cat qubits, Phys. Rev. A 103,
042413 (2021).

[24] C. Chamberland, K. Noh, P. Arrangoiz-Arriola, E. T.
Campbell, C. T. Hann, J. Iverson, H. Putterman, T. C.
Bohdanowicz, S. T. Flammia, A. Keller, et al., Building
a fault-tolerant quantum computer using concatenated cat
codes, PRX Quantum 3, 010329 (2022).

[25] P. Aliferis and J. Preskill, Fault-tolerant quantum com-
putation against biased noise, Phys. Rev. A 78, 052331
(2008).

[26] P. Aliferis, F. Brito, D. P. DiVincenzo, J. Preskill, M.
Steffen, and B. M. Terhal, Fault-tolerant computing with
biased-noise superconducting qubits: A case study, New J.
Phys. 11, 013061 (2009).

[27] P. Webster, S. D. Bartlett, and D. Poulin, Reducing the over-
head for quantum computation when noise is biased, Phys.
Rev. A 92, 062309 (2015).

[28] A. Robertson, C. Granade, S. D. Bartlett, and S. T. Flam-
mia, Tailored codes for small quantum memories, Phys.
Rev. Appl. 8, 064004 (2017).

[29] D. K. Tuckett, A. S. Darmawan, C. T. Chubb, S. Bravyi,
S. D. Bartlett, and S. T. Flammia, Tailoring surface
codes for highly biased noise, Phys. Rev. X 9, 041031
(2019).

[30] J. P. Bonilla Ataides, D. K. Tuckett, S. D. Bartlett, S. T.
Flammia, and B. J. Brown, The XZZX surface code, Nat.
Commun. 12, 1 (2021).

[31] D. K. Tuckett, S. D. Bartlett, and S. T. Flammia, Ultrahigh
error threshold for surface codes with biased noise, Phys.
Rev. Lett. 120, 050505 (2018).

[32] A. S. Darmawan, B. J. Brown, A. L. Grimsmo, D. K. Tuck-
ett, and S. Puri, Practical quantum error correction with the
xzzx code and kerr-cat qubits, PRX Quantum 2, 030345
(2021).

[33] D. Gottesman, A. Kitaev, and J. Preskill, Encoding a qubit
in an oscillator, Phys. Rev. A 64, 012310 (2001).

[34] A. L. Grimsmo and S. Puri, Quantum error correction
with the Gottesman-Kitaev-Preskill code, PRX Quantum 2,
020101 (2021).

[35] B. De Neeve, T.-L. Nguyen, T. Behrle, and J. P. Home,
Error correction of a logical grid state qubit by dissipative
pumping, Nat. Phys. 18, 296 (2022).

[36] C. Flühmann, T. L. Nguyen, M. Marinelli, V. Negnevitsky,
K. Mehta, and J. Home, Encoding a qubit in a trapped-ion
mechanical oscillator, Nature 566, 513 (2019).

[37] P. Campagne-Ibarcq, A. Eickbusch, S. Touzard, E. Zalys-
Geller, N. E. Frattini, V. V. Sivak, P. Reinhold, S. Puri, S.
Shankar, R. J. Schoelkopf, et al., Quantum error correction

of a qubit encoded in grid states of an oscillator, Nature 584,
368 (2020).

[38] V. Sivak, A. Eickbusch, B. Royer, S. Singh, I. Tsioutsios,
S. Ganjam, A. Miano, B. Brock, A. Ding, L. Frunzio, et
al., Real-time quantum error correction beyond break-even,
Preprint ArXiv:2211.09116 (2022).

[39] K. Noh, C. Chamberland, and F. G. Brandão, Low-
overhead fault-tolerant quantum error correction with the
surface-GKP code, PRX Quantum 3, 010315 (2022).

[40] K. Noh and C. Chamberland, Fault-tolerant bosonic quan-
tum error correction with the surface–Gottesman-Kitaev-
Preskill code, Phys. Rev. A 101, 012316 (2020).

[41] K. Noh, S. M. Girvin, and L. Jiang, Encoding an oscillator
into many oscillators, Phys. Rev. Lett. 125, 080503 (2020).

[42] A. G. Fowler, Minimum weight perfect matching of fault-
tolerant topological quantum error correction in average
o(1) parallel time, Preprint ArXiv:1307.1740 (2013).

[43] O. Higgott and C. Gidney, Sparse blossom: Correcting
a million errors per core second with minimum-weight
matching, Preprint ArXiv:2303.15933 (2023).

[44] K. Fukui, A. Tomita, and A. Okamoto, Analog quantum
error correction with encoding a qubit into an oscillator,
Phys. Rev. Lett. 119, 180507 (2017).

[45] C. Vuillot, H. Asasi, Y. Wang, L. P. Pryadko, and B. M.
Terhal, Quantum error correction with the toric Gottesman-
Kitaev-Preskill code, Phys. Rev. A 99, 032344 (2019).

[46] B. M. Terhal, J. Conrad, and C. Vuillot, Towards scalable
bosonic quantum error correction, Quantum Sci. Technol.
5, 043001 (2020).

[47] K. Fukui, A. Tomita, A. Okamoto, and K. Fujii, High-
threshold fault-tolerant quantum computation with analog
quantum error correction, Phys. Rev. X 8, 021054 (2018).

[48] K. Fukui, A. Tomita, and A. Okamoto, Tracking quantum
error correction, Phys. Rev. A 98, 022326 (2018).

[49] K. Fukui, High-threshold fault-tolerant quantum compu-
tation with the gkp qubit and realistically noisy devices,
Preprint ArXiv:1906.09767 (2019).

[50] J. Harrington and J. Preskill, Achievable rates for the Gaus-
sian quantum channel, Phys. Rev. A 64, 062301 (2001).

[51] J. W. Harrington, Analysis of Quantum Error-Correcting
Codes: Symplectic Lattice Codes and Toric Codes (Califor-
nia Institute of Technology, 2004).

[52] L. Hänggli, M. Heinze, and R. König, Enhanced noise
resilience of the surface–Gottesman-Kitaev-Preskill code
via designed bias, Phys. Rev. A 102, 052408 (2020).

[53] L. Hänggli and R. König, Oscillator-to-oscillator codes do
not have a threshold, IEEE Trans. Inf. Theory 68, 1068
(2021).

[54] J. Conrad, J. Eisert, and F. Arzani, Gottesman-Kitaev-
Preskill codes: A lattice perspective, Quantum 6, 648
(2022).

[55] B. Royer, S. Singh, and S. Girvin, Encoding qubits in
multimode grid states, PRX Quantum 3, 010335 (2022).

[56] J. Conrad, J. Eisert, and J.-P. Seifert, Good Gottesman-
Kitaev-Preskill codes from the NTRU cryptosystem,
Preprint ArXiv:2303.02432 (2023).

[57] J. Conway, E. Bannai, N. Sloane, J. Leech, S. Norton,
A. Odlyzko, R. Parker, L. Queen, and B. Venkov, Sphere
Packings, Lattices and Groups, Grundlehren der mathema-
tischen Wissenschaften (Springer New York, 2013).

040334-35

https://doi.org/10.1038/s41567-020-0824-x
https://doi.org/10.1103/PhysRevX.9.041053
https://doi.org/10.1126/sciadv.aay5901
https://doi.org/10.1103/PhysRevA.103.042413
https://doi.org/10.1103/PRXQuantum.3.010329
https://doi.org/10.1103/PhysRevA.78.052331
https://doi.org/10.1088/1367-2630/11/1/013061
https://doi.org/10.1103/PhysRevA.92.062309
https://doi.org/10.1103/PhysRevApplied.8.064004
https://doi.org/10.1038/s41467-021-22274-1
https://doi.org/10.1103/PhysRevLett.120.050505
https://doi.org/10.1103/PRXQuantum.2.030345
https://doi.org/10.1103/PhysRevA.64.012310
https://doi.org/10.1103/PRXQuantum.2.020101
https://doi.org/10.1038/s41567-021-01487-7
https://doi.org/10.1038/s41586-020-2603-3
https://arxiv.org/abs/2211.09116
https://doi.org/10.1103/PRXQuantum.3.010315
https://doi.org/10.1103/PhysRevA.101.012316
https://doi.org/10.1103/PhysRevLett.125.080503
https://arxiv.org/abs/1307.1740
https://arxiv.org/abs/2303.15933
https://doi.org/10.1103/PhysRevLett.119.180507
https://doi.org/10.1103/PhysRevA.99.032344
https://doi.org/10.1088/2058-9565/ab98a5
https://doi.org/10.1103/PhysRevX.8.021054
https://doi.org/10.1103/PhysRevA.98.022326
https://arxiv.org/abs/1906.09767
https://doi.org/10.1103/PhysRevA.64.062301
https://doi.org/10.1103/PhysRevA.102.052408
https://doi.org/10.1109/TIT.2021.3126881
https://doi.org/10.22331/q-2022-02-10-648
https://doi.org/10.1103/PRXQuantum.3.010335
https://arxiv.org/abs/2303.02432

LIN, CHAMBERLAND, and NOH PRX QUANTUM 4, 040334 (2023)

[58] P. van Emde-Boas, Another NP-complete partition problem
and the complexity of computing short vectors in a lattice,
Report. Department of Mathematics. University of Amster-
dam (Department, Univ., 1981), https://books.google.com/
books?id=tCQiHQAACAAJ.

[59] D. Micciancio, The hardness of the closest vector prob-
lem with preprocessing, IEEE Trans. Inf. Theory 47, 1212
(2001).

[60] S. Arora, L. Babai, J. Stern, and Z. Sweedyk, The hardness
of approximate optima in lattices, codes, and systems of
linear equations, J. Comput. Syst. Sci. 54, 317 (1997).

[61] I. Dinur, G. Kindler, R. Raz, and S. Safra, An improved
lower bound for approximating CVP, Combinatorica (to be
published.) Preliminary version in FOCS ‘98 (2000).

[62] D. Micciancio, The shortest vector in a lattice is hard to
approximate to within some constant, SIAM J. Comput. 30,
2008 (2001).

[63] J. Conway and N. Sloane, Fast quantizing and decoding and
algorithms for lattice quantizers and codes, IEEE Trans. Inf.
Theory 28, 227 (1982).

[64] J. Conway and N. Sloane, Soft decoding techniques for
codes and lattices, including the Golay code and the leech
lattice, IEEE Trans. Inf. Theory 32, 41 (1986).

[65] Y. Be’ery, B. Shahar, and J. Snyders, Fast decoding of the
leech lattice, IEEE J. Sel. Areas Commun. 7, 959 (1989).

[66] A. van Poppelen, Master’s thesis (2016).
[67] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, Closest

point search in lattices, IEEE Trans. Inf. Theory 48, 2201
(2002).

[68] LatticeAlgorithms.jl: Julia package for solving lattice
problems, https://github.com/amazon-science/Lattice
Algorithms.jl.

[69] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf,
T. C. Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quantum
information, Rev. Mod. Phys. 84, 621 (2012).

[70] M. V. Larsen, C. Chamberland, K. Noh, J. S. Neergaard-
Nielsen, and U. L. Andersen, Fault-tolerant continuous-
variable measurement-based quantum computation archi-
tecture, PRX Quantum 2, 030325 (2021).

[71] B. W. Walshe, B. Q. Baragiola, R. N. Alexander, and N.
C. Menicucci, Continuous-variable gate teleportation and
bosonic-code error correction, Phys. Rev. A 102, 062411
(2020).

[72] S. Bravyi, M. Suchara, and A. Vargo, Efficient algorithms
for maximum likelihood decoding in the surface code,
Phys. Rev. A 90, 032326 (2014).

[73] E. Agrell and T. Eriksson, Optimization of lattices for
quantization, IEEE Trans. Inf. Theory 44, 1814 (1998).

[74] J. H. Conway and N. J. Sloane, On the Voronoi regions of
certain lattices, SIAM J. Algebraic Discrete Methods 5, 294
(1984).

[75] O. Damen, A. Chkeif, and J.-C. Belfiore, Lattice code
decoder for space-time codes, IEEE Commun. Lett. 4, 161
(2000).

[76] I. Blake, in Codes, Graphs, and Systems (Springer, New
York, NY, 2002), p. 317.

[77] D. Micciancio and O. Regev, in Post-quantum cryptogra-
phy (Springer, Berlin, Heidelberg, 2009), p. 147.

[78] I. V. L. Clarkson, in 1999 IEEE International Conference
on Acoustics, Speech, and Signal Processing. Proceedings.
ICASSP99 (Cat. No. 99CH36258), Vol. 3 (IEEE, Phoenix,
AZ, USA, 1999), p. 1609.

[79] C.-P. Schnorr and H. H. Hörner, in International Con-
ference on the Theory and Applications of Cryptographic
Techniques (Springer, Berlin, Heidelberg, 1995), p. 1.

[80] D. Micciancio and P. Voulgaris, in Proceedings of the
Forty-Second ACM Symposium on Theory of Computing
(Society for Industrial and Applied Mathematics, Philladel-
phia, PA, 2010), p. 351.

[81] D. Dadush and N. Bonifas, in Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SIAM, Philladelphia, PA, 2014), p. 295.

[82] R. Kannan, in Proceedings of the Fifteenth Annual ACM
Symposium on Theory of Computing (Association for Com-
puting Machinery, New York. NY, 1983), p. 193.

[83] R. Kannan, Minkowski’s convex body theorem and integer
programming, Math. Oper. Res. 12, 415 (1987).

[84] U. Fincke and M. Pohst, Improved methods for calculating
vectors of short length in a lattice, including a complexity
analysis, Math. Comput. 44, 463 (1985).

[85] C.-P. Schnorr and M. Euchner, Lattice basis reduction:
Improved practical algorithms and solving subset sum
problems, Math. Program. 66, 181 (1994).

[86] M. P. Stafford and N. C. Menicucci, Biased Gottesman-
Kitaev-Preskill repetition code, Preprint ArXiv:2212.11397
(2022).

[87] D. Bacon, Operator quantum error-correcting subsystems
for self-correcting quantum memories, Phys. Rev. A 73,
012340 (2006).

[88] S. L. Braunstein, Squeezing as an irreducible resource,
Phys. Rev. A 71, 055801 (2005).

[89] W. Fulton and J. Harris, Representation Theory: A First
Course (Springer Science & Business Media, New York,
NY, 2013), Vol. 129.

[90] J. Zhang, J. Zhao, Y.-C. Wu, and G.-P. Guo, Quantum error
correction with the color-Gottesman-Kitaev-Preskill code,
Phys. Rev. A 104, 062434 (2021).

[91] A. S. Holevo and R. F. Werner, Evaluating capacities
of bosonic Gaussian channels, Phys. Rev. A 63, 032312
(2001).

[92] B. Royer, S. Singh, and S. M. Girvin, Stabilization of finite-
energy Gottesman-Kitaev-Preskill states, Phys. Rev. Lett.
125, 260509 (2020).

[93] K. Sahay and B. J. Brown, Decoder for the triangular color
code by matching on a Möbius strip, PRX Quantum 3,
010310 (2022).

[94] D. Wübben, D. Seethaler, J. Jalden, and G. Matz, Lattice
reduction, IEEE Signal. Process. Mag. 28, 70 (2011).

Correction: Equation (118) contained an error and has been fixed.
Numerous minor typographical errors have been fixed throughout.

040334-36

https://books.google.com/books?id=tCQiHQAACAAJ
https://doi.org/10.1109/18.915688
https://doi.org/10.1006/jcss.1997.1472
https://doi.org/10.1137/S0097539700373039
https://doi.org/10.1109/TIT.1982.1056484
https://doi.org/10.1109/TIT.1986.1057135
https://doi.org/10.1109/TIT.2002.800499
https://github.com/amazon-science/LatticeAlgorithms.jl
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1103/PRXQuantum.2.030325
https://doi.org/10.1103/PhysRevA.102.062411
https://doi.org/10.1103/PhysRevA.90.032326
https://doi.org/10.1109/18.705561
https://doi.org/10.1137/0605031
https://doi.org/10.1109/4234.846498
https://doi.org/10.1109/ICASSP.1999.756296
https://doi.org/10.1287/moor.12.3.415
https://doi.org/10.1090/S0025-5718-1985-0777278-8
https://doi.org/10.1007/BF01581144
https://arxiv.org/abs/2212.11397
https://doi.org/10.1103/PhysRevA.73.012340
https://doi.org/10.1103/PhysRevA.71.055801
https://doi.org/10.1103/PhysRevA.104.062434
https://doi.org/10.1103/PhysRevA.63.032312
https://doi.org/10.1103/PhysRevLett.125.260509
https://doi.org/10.1103/PRXQuantum.3.010310
https://doi.org/10.1109/MSP.2010.938758

	I.. INTRODUCTION
	II.. SUMMARY OF MAIN CONTRIBUTIONS
	III.. PRELIMINARY AND NOTATIONS
	A.. Displacement operators and Gaussian unitaries
	B.. Multimode GKP code
	C.. Canonical generator matrix of a GKP code
	D.. The logical operators of a GKP code
	E.. Code distances of a GKP code
	F.. Transformation between GKP codes
	G.. The concatenated GKP code
	H.. Examples of symplectic lattices and GKP codes
	1.. Z-type lattice
	2.. D-type lattice
	3.. Tesseract lattice

	IV.. CLOSEST-POINT DECODER FOR THE GKP CODES
	A.. Error syndrome for GKP code
	B.. Closest-point search problem

	V.. SEARCHING FOR OPTIMIZED GKP CODES
	A.. Analysis of known concatenated GKP codes
	B.. Generalizations of the tesseract and D4 codes
	C.. Numerical search for optimized GKP codes

	VI.. EFFICIENT CLOSEST-POINT DECODER FOR STRUCTURED GKP CODES
	A.. Decoding a discrete set of points
	B.. Decoding direct sums of lattices
	C.. Decoding union of cosets
	D.. Decoding glue lattices

	VII.. LINEAR TIME DECODER FOR Dn LATTICES AND THEIR EUCLIDEAN DUALS
	A.. Linear time decoder for Zn lattices
	B.. Linear time decoder for Dn lattices
	C.. Linear time decoder for Dn* lattices

	VIII.. LINEAR TIME DECODERS FOR THE rep-recN AND YY-rep-recN CODES
	A.. Linear time decoder for the rep-recN code
	B.. Linear time decoder for the YY-rep-recN code

	IX.. POLYNOMIAL TIME CLOSEST-POINT DECODER FOR SURFACE-GKP CODE
	X.. DISCUSSION AND CONCLUSION
	. ACKNOWLEDGMENTS
	. APPENDIX A: DETAILS OF CONSTRUCTING LATTICES FOR CONCATENATED GKP CODES
	. APPENDIX B: ALGORITHM FOR CANONIZING A GKP LATTICE
	. APPENDIX C: MORE DETAILS ON THE CLOSEST POINT DECODER
	. APPENDIX D: LINEAR TIME DECODER FOR SCALED Zn AND Dn LATTICES
	. APPENDIX E: THE CONCATENATED GKP CODE AS A GLUE LATTICE
	. APPENDIX F: GENERATOR MATRICES FOR NUMERICALLY OPTIMIZED GKP CODES WITH N=3, N=7 AND N=9
	. REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 33.84000
 33.84000
 33.84000
 33.84000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 9.00000
 9.00000
 9.00000
 9.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

