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We have generalized the well-known statement that the Clifford group is a unitary 3-design into symmet-
ric cases by extending the notion of unitary design. Concretely, we have proven that a symmetric Clifford
group is a symmetric unitary 3-design if and only if the symmetry constraint is described by some Pauli
subgroup. We have also found a complete and unique construction method of symmetric Clifford groups
with simple quantum gates for Pauli symmetries. For the overall understanding, we have also considered
physically relevant U(1) and SU(2) symmetry constraints, which cannot be described by a Pauli subgroup,
and have proven that the symmetric Clifford group is a symmetric unitary 1-design but not a 2-design
under those symmetries. Our findings are numerically verified by computing the frame potentials, which
measure the difference in randomness between the uniform ensemble on the symmetric group of interest
and the symmetric unitary group. This work will open a new perspective into quantum information pro-
cessing, such as randomized benchmarking, and give a deep understanding to many-body systems, such
as monitored random circuits.
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I. INTRODUCTION

Randomness in quantum systems is a ubiquitous concept
that underpins the core of quantum information process-
ing and quantum many-body systems [1,2]. The uniform
randomness plays a central role not only in understand-
ing fundamental phenomena, such as thermalization [3,4]
and information scrambling [5,6], but also realizing effi-
cient quantum communication [7,8] and encryption [9,10].
To utilize the beautiful and powerful property of the ran-
domness, there have been significant advancements in
engineering of approximations of the Haar unitary ensem-
ble, namely the unitary design. A unitary t-design is an
ensemble of unitaries that mimics the Haar random uni-
taries up to the tth moment, and it has proven useful in
tasks, such as data hiding [11], quantum state discrimina-
tion [12,13], quantum advantage [14–16], quantum gravity
[2], to name a few.
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One of the most prominent examples of unitary designs
is the Clifford group. Initial interest in the Clifford group
was primarily in the context of quantum computing, e.g.,
the classical simulability [17,18]. However, currently it is
known to be applicable to even wider fields, such as quan-
tum state tomography [19] and hardware verification via
randomized benchmarking [20–23]. Although for general
qudits, the Clifford group is only a unitary 1-design [24],
it elevates to a unitary 2-design if the local Hilbert-space
dimension is prime [11,25,26]. Intriguingly, the multiqubit
Clifford-group singularly qualifies as a unitary 3-design
[27,28].

While the concurrent presence of classical simulability
and the pseudorandomness of the multiqubit Clifford group
has invoked numerous applications to quantum science
[29–32], we point out that existing studies have focused
predominantly on the full ensemble of unitary designs;
our comprehension on realistic scenarios with operational
constraints and restrictions remains underdeveloped. One
of the most outstanding questions pertains to the relation-
ship with symmetry, an essential concept responsible for
a wealth of phenomena in the natural sciences. To further
explore the physics and quantum information processing
under realistic constraints, it is an urgent task to establish
how the symmetry impacts the Clifford group.

In this work, we introduce the concept of a
symmetric unitary t-design and prove that the multiqubit
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Clifford group under symmetry forms a symmetric uni-
tary 3-design, if and only if the symmetry constraints
are essentially characterized by some Pauli subgroup. We
also propose a complete and unique method for construct-
ing symmetric Clifford operators with elementary quantum
gates that operate on a maximum of two qubits. We subse-
quently show that, other classes of symmetry stand in stark
contrast, as the Clifford groups under these symmetries are
merely symmetric unitary 1-designs. For comprehensive
understanding, we have highlighted such a remarkable dis-
parity through practical examples of U(1) and SU(2) sym-
metries. Finally, we provide numerical evidence for our
findings by computing the frame potentials for the Clifford
groups under two representative types of symmetries.

II. SETUP

We first overview the conventional Clifford group and
unitary designs. The Clifford group on N qubits is defined
as the normalizer of the Pauli group in the unitary group
UN , i.e., CN := {U ∈ UN |UPN U† = PN }, where PN :=
{±1, ±i} · {I , X , Y, Z}⊗N is the group generated by the
Pauli operators I , X , Y, and Z on each qubit. It is con-
venient to introduce the t-fold twirling channel to charac-
terize the randomness of a subgroup X of UN as

�t,X (L) :=
∫

U∈X
U⊗tLU†⊗tdμX (U), (1)

where L is a linear operator acting on tN qubits and μX
denotes the normalized Haar measure on X . We say that
the subgroup X is a unitary t-design if

�t,X = �t,UN . (2)

We note that the definition of unitary designs can be
extended for general subsets of the unitary group by con-
sidering a distribution on the sets [33], and that our main
statement is invariant under the extended definition, as we
show in Appendix F. From Eq. (1), we see that unitary t-
designs with larger t better approximate the Haar random
unitaries, which can be regarded as a unitary ∞-design. In
this regard, it is known that the Clifford group CN is a uni-
tary 3-design but not a 4-design [27,28]. Note that unitary
t-designs are always t′-designs if t > t′, but the contrary
does not hold in general.

The symmetric Clifford group and symmetric unitary
designs are defined as the symmetric generalizations of the
conventional ones. In the following, we consider symme-
try that can be represented by a subgroup G of UN . We
define the G-symmetric Clifford group on N qubits as the
group consisting of the Clifford gates commuting with all
the elements in G. We can give a rigorous definition as
follows:

Definition 1.—(Symmetric Clifford group.) Let G be a
subgroup of UN . The G-symmetric Clifford group CN ,G is

defined by

CN ,G := CN ∩ UN ,G (3)

with the G-symmetric unitary group

UN ,G := {U ∈ UN | ∀G ∈ G, [U, G] = 0}. (4)

Now it is natural to define for a subgroup X of UN to
be a G-symmetric unitary design if the subgroup approx-
imates the G-symmetric unitary group UN ,G . The rigorous
definition is as follows:

Definition 2.—(Symmetric unitary designs.) Let G and
X be subgroups of UN . X is a G-symmetric unitary
t-design if the t-fold twirling channel �t,X satisfies

�t,X = �t,UN ,G . (5)

Note that in these definitions, the symmetry constraint is
described by UN ,G rather than by G itself, and the conven-
tional definitions are included as the special case when the
symmetry is trivial, i.e., G = {I}.

III. MAIN RESULTS

Now we are ready to present our two main results. The
first one is the description of the randomness of symmet-
ric Clifford groups in terms of symmetric unitary designs,
which we rigorously present in Theorem 1. The second one
is the complete and unique construction of symmetric Clif-
ford circuits with elementary gates, which we concisely
state in Theorem 2.

A. Characterization of pseudorandomness in
symmetric Clifford groups

We prove that the G-symmetric Clifford group CN ,G is
a G-symmetric unitary 3-design if and only if the symme-
try constraint by G is essentially described by some Pauli
subgroup. This can be rigorously stated as follows:

Theorem 1.—(Randomness of the Clifford group under
symmetry.) Let G be a subgroup of UN . Then, CN ,G is a
G-symmetric unitary 3-design if and only if UN ,G = UN ,Q
with some subgroup Q of PN .

This theorem provides a guarantee that, under a Pauli
symmetry, the symmetric Clifford group maintains its
pseudorandomness, which is applicable to various quan-
tum information processing tasks [11–16]. Moreover, it is
remarkable that this theorem also states that the Clifford
group maintains the pseudorandomness under symmetry
only if the symmetry can be characterized by some Pauli
subgroup. We note that symmetry constraints can be cap-
tured by UN ,G without using G itself, because when two
subgroups G and G ′ of UN satisfy UN ,G = UN ,G′ , the G-
and G ′-symmetric Clifford groups are identical to each
other, and moreover the notions of G- and G ′-symmetric
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unitary designs are the same. We do not directly present
the condition for G itself, because there are cases when
G �= G ′ but UN ,G = UN ,G′ , for example, when G = {I , Z}
and G ′ = {eiθZ |θ ∈ R}.

We illustrate how we can use this theorem to know
whether symmetric Clifford groups are symmetric uni-
tary 3-designs by taking the following three physically
important examples:

G = {I⊗N , Z⊗N} , (6)

G =
{(

eiθZ)⊗N
∣∣∣ θ ∈ R

}
, (7)

G =
{(

ei(θX X +θYY+θZ Z))⊗N
∣∣∣ θX , θY, θZ ∈ R

}
. (8)

These groups are isomorphic to Z2, U(1) and SU(2),
respectively, which appear ubiquitously in quantum sys-
tems; first-principles description of electronic structures,
atomic, molecular, and optical physics, quantum spin sys-
tems, and lattice gauge theory, to name a few. When G
is given by Eq. (6), G-symmetric Clifford group is a G-
symmetric unitary 3-design, because G itself is a Pauli
subgroup. In contrast, when G is given by Eq. (7) or
(8) with N ≥ 2, G-symmetric Clifford group is not a G-
symmetric unitary 3-design, because in these cases UN ,G
cannot be expressed as UN ,Q with any Pauli subgroups Q.
We note that when G is given by Eq. (7) or (8) with N = 1,
G-symmetric Clifford group is again a G-symmetric unitary
3-design. In fact, G itself is not a Pauli subgroup, but UN ,G
can be expressed as UN ,Q with a Pauli subgroup Q = {I , Z}
or P1.

We can prove that there is no Pauli subgroup Q such
that UN ,G = UN ,Q when G is given by Eq. (7) or (8) with
N ≥ 2 as follows: First, we suppose that UN ,G = UN ,Q
with some Pauli subgroup Q. Second, we note that we
always have Q ⊂ UN ,UN ,Q . Third, the qubit permutation
group S satisfies S ⊂ UN ,G , which implies that UN ,UN ,G ⊂
UN ,S . By these three relations, we get Q ⊂ UN ,UN ,Q =
UN ,UN ,G ⊂ UN ,S . Combined with Q ⊂ PN , this implies
that Q ⊂ {±1, ±i} · {I⊗N , X ⊗N , Y⊗N , Z⊗N }. Then, we have
X(1)X(2) ∈ UN ,Q = UN ,G , where X(j ) is the Pauli X operator
on the j th qubit. However, this contradicts with Eq. (7) as
well as with Eq. (8).

We emphasize that we can completely characterize the
randomness of the examples in terms of unitary designs,
i.e., we can clarify the maximal t such that CN ,G is a
G-symmetric unitary t-design. In fact, as expected from
the nonsymmetric case, we can prove the no-go theorem
for G-symmetric unitary 4-designs except for the most
constrained case of UN ,G = {eiθ I |θ ∈ R}, which we will
describe in Theorem 4; generally we have tmax = 3 for
Pauli symmetry. On the other hand, when G is given by

Eq. (7) or (8) with N ≥ 2, we get tmax = 1, which we will
describe in Theorem 3. Note that the single-qubit case is
special since we have tmax = 3, ∞ for Eqs. (7) and (8),
respectively. This is because the symmetry constraint can
be written by Pauli subgroup {I , Z} in the case of Eq. (7),
and the G-symmetric Clifford operators are restricted to the
identity operator up to phase in the case of Eq. (8). We
finally remark that we cannot increase tmax by considering
a nonuniform mixture in the definition of unitary designs,
which we show in Appendix F.

While we guide readers to Appendix B for details on
the derivation, it is informative to provide a brief sketch
on the proof. In the proof of the “if” part, it is sufficient to
show that CN ,Q is a Q-symmetric unitary 3-design for all
Pauli subgroups Q. We explicitly construct a map D with
a certain class of symmetric Clifford operators and show
that the twirling channels satisfy �3,CN ,G = �3,UN ,G = D
by considering the fixed points of �3,CN ,G and �3,UN ,G .
We emphasize that the nontrivial and technical contribu-
tion of Theorem 1 resides in the “only if” part. Namely,
if CN ,G is a G-symmetric unitary 3-design, then there
exists a Pauli subgroup Q such that UN ,G = UN ,Q. Con-
cretely, we construct Q as the group generated by the
set Q′ := {Q ∈ {I , X , Y, Z}⊗N |∃G ∈ G such that tr(GQ) �=
0}, where A⊗n := A ⊗ A⊗n−1 and A ⊗ B := {A ⊗ B|A ∈
A, B ∈ B} for general operator sets A and B. The inclusion
UN ,G ⊃ UN ,Q directly follows from span(G) ⊂ span(Q),
because for any G ∈ G, every Pauli basis in G with a
nonzero coefficient is included in Q. However, the proof
of the inverse inclusion UN ,G ⊂ UN ,Q requires some tech-
nical lemmas (see Appendix B 2). We consider the function
U 
→ UQU† from UN ,G to UN for arbitrary taken Q ∈ Q′
and show that it is a constant function.

B. Construction of symmetric Clifford groups

From the viewpoint of algorithms and experiments, it
is crucial to give an explicit construction for the symmet-
ric Clifford operators. In fact, for a Pauli symmetry, we
show that the set of symmetric Clifford operators consid-
ered in the proof of Theorem 1 actually form a complete
and unique expression of the symmetric Clifford operators
[see Fig. 1(a)]. We will later discuss the case for non-Pauli
symmetry. This is a symmetric extension of the result in
Refs. [34,35], where they showed that the standard Clif-
ford operators can be uniquely decomposed by elementary
gate sets.

As a preparation for stating the theorem, it is crucial
to mention that every Pauli subgroup naturally gives a
decomposition into three parts. Concretely, we note that
any Pauli subgroup Q can be transformed into the form

R := P0{I , X , Y, Z}⊗N1 ⊗ {I , Z}⊗N2 ⊗ {I}⊗N3 (9)

by some Clifford conjugation action up to phase,
i.e., P0WQW† = R with some W ∈ CN , where P0 :=
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(a)

(b)

FIG. 1. Circuit representation of Q-symmetric Clifford opera-
tors presented in Theorem 2. (a) Complete and unique expres-
sion for Q-symmetric Clifford operators in a general case. (b)
Example for the symmetry Q = {I⊗4, X ⊗4, Y⊗4, Z⊗4}. Every Q-
symmetric Clifford operator can be uniquely expressed withμj ∈
{0, 1, 2, 3}, ν ∈ {0, 1}, V ∈ C2, and Pj ∈ {I , X , Y, Z}⊗2.

{±1, ±i}. We denote the subsystem of Nk qubits by Ak (k =
1, 2, 3) and the set of indices representing the qubits in
Ak by �k. We can get N1, N2, N3, and W by consider-
ing the following two types of induction processes. Let
Q be a Pauli subgroup on n qubits. The process is to
take a Pauli subgroup Q′ on n − 1 qubits such that (i)
W′QW′† = {I , X , Y, Z} ⊗ Q′ or (ii) W′QW′† = {I , Z} ⊗ Q′
up to phase with some Clifford operator W′. We can
conduct the first type of induction process while Q has
noncommutative pairs of elements, and the second type of
process while Q �= {I} up to phase, as we show in Lemma
14 in Appendix G. N1 and N2 are given as the numbers of
the first and the second induction processes, respectively,
and N3 = N − N1 − N2. We can get the Clifford operator
W by taking the product of the Clifford operators W′ in all
the induction processes. By using these notations, we can
present the following theorem:

Theorem 2.—(Complete and unique construction of the
Clifford group under Pauli symmetry.) Let Q be a sub-
group of PN . Then, there exists some W ∈ CN and R in
the form of Eq. (9) such that P0WQW† = R, and every Q-
symmetric Clifford operator U can be uniquely expressed
as Fig. 1(a) as

U =W†

⎛
⎝T
∏
j ∈�2

C(Pj )(j ,�3)

⎞
⎠V

×
⎛
⎝ ∏

j ,k∈�2,j<k

CZ
νj ,k
(j ,k)

⎞
⎠
⎛
⎝∏

j ∈�2

S
μj
(j )

⎞
⎠W (10)

with μj ∈ {0, 1, 2, 3}, νj ,k ∈ {0, 1}, V ∈ CN3 , and Pj ∈
{I , X , Y, Z}⊗N3 , where S(j ) is the S gate on the j th qubit,
CZ(j ,k) is the controlled-Z gate on the j th and kth qubit, V
acts on the subsystem A3, and C(Pj )(j ,�3) is the controlled-
Pj gates with the j th qubit as the control qubit and
the qubits in the subsystem A3 as the target qubits,
and T

∏
means the ordered product, i.e., T

∏n
j =1 Oj :=

On · · · O2O1.
The complete and unique expression by Eq. (10) gives

an efficient way to generate all the elements of a Q-
symmetric Clifford group. In fact, we can understand that it
is much more efficient than choosing symmetric elements
from the entire Clifford group. Namely, the size of the quo-
tient group of the symmetric Clifford group CN ,G divided
by the freedom of phase U0 := {eiθ |θ ∈ R} is given by

|CN ,G/U0| = 4N2 · 2N2(N2−1)/2 · |CN3/U0| · (4N3
)N2

∼ 22(N2/2+N3)
2+3(N2/2+N3), (11)

where we used the fact that there are 4, 2, |CN3/U0|, and
4N3 choices for each μj , νj ,k, V, and Pj , respectively, and
|CN3/U0| ∼ 22N 2

3 +3N3 [36]. This is much smaller than the
size |CN/U0| ∼ 22N 2+3N of the entire Clifford group. The
reduction rate is exponential with N in a standard setup
where N1 and N2 are O(1) [37,38], which highlights the
significance of the explicit construction of symmetric Clif-
ford operators. We can see that each qubit in A1, A2, and A3
contributes as 0, 1/2, and 1 qubit in the estimation of the
size |CN ,G/U0|. When we ignore the phase degree of free-
dom, the size |CN ,G/U0| of the G-symmetric Clifford group
on N qubits is almost the same as the size |CN2/2+N3/U0| of
the entire Clifford group on N2/2 + N3 qubits.

We illustrate the construction of Pauli-symmetric Clif-
ford operators by taking the symmetryQ = {I⊗4, X ⊗4, Y⊗4,
Z⊗4} on four qubits as an example, which appears as the
symmetry of the XYZ Hamiltonian with arbitrary connec-
tivity. We know from Theorem 2 that every Q-symmetric
Clifford operator U can be uniquely expressed as Fig. 1 (b)
by noting that WQW† = {I(1), Z(1)} ⊗ {I(2), Z(2)} with W =
H(1)CNOT(4,2)CNOT(1,3)CNOT(3,4)CNOT(1,2). We can confirm
that the symmetry constraint greatly reduces the size of
the Clifford group by seeing that |C4,Q/U0| ∼ 108 and
|C4/U0| ∼ 1013. Such a striking difference is displayed in
more depth in Fig. 2. Here, we indeed find that the exis-
tence of Pauli symmetry leads to exponential reduction of
|CN ,G/U0|. As can be seen from Eq. (11), we can under-
stand that the entire curve is shifted by N1 + N2/2 in the
asymptotic limit, which gives the advantage of using the
construction method presented in Theorem 2.

While we leave the detailed proof of this theorem to
Appendix C, we here provide the proof sketch. It is suf-
ficient to consider the construction of CN ,R with a specific
class of Pauli subgroups R given by Eq. (9), because there
exists some Clifford conjugation action W · W† that gives
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N

(0, 0, N )

(0, 4, N − 4)

(No Symm.)

(0, 6, N − 6)

(2, 0, N − 2)
|C N

, G
/U

0
|

FIG. 2. Size of symmetric Clifford groups |CN ,G/U0| under
various Pauli symmetries. Here, we show the scaling for sym-
metries such that the numbers of qubits in A1, A2, A3 are given as
(N1, N2, N3) = (2, 0, N − 2), (0, 4, N − 4), and (0, 6, N − 6).

one-to-one correspondence from CN ,Q to CN ,R for general
Pauli subgroups Q. In the proof of the completeness, the
key is to take the Heisenberg picture, i.e., to see how the
conjugation action of a unitary operator transforms Pauli
operators. For arbitrary U ∈ CN ,R, U satisfies UZ(j )U† =
Z(j ) and UX(j )U† = X(j ) for all j ∈ �1, and UZ(j )U† = Z(j )
for all j ∈ �2. We can inductively construct U′ such that
U′U is in the form of Eq. (10), and U′Z(j )U′† = Z(j ) and
U′X(j )U′† = X(j ) for all j ∈ �1 and j ∈ �2. This implies
that U′ is a Clifford operator acting nontrivially only on
the subsystem A3, and thus U′ is in the form of Eq. (10).
Since U can be written as U = U′†(U′U), and both U′ and
U′U is in the form of Eq. (10), we know that U is in the
form of Eq. (10). We prove the uniqueness by the proof
by contradiction. Namely, we take arbitrary U ∈ CN ,R and
suppose that there are two different sets of (μj , νj ,k, V, Pj )

that realize U, and show that they must coincide with each
other.

IV. U(1) AND SU(2)-SYMMETRIC CLIFFORD
GROUPS

As prominent examples of non-Pauli symmetries, we
clarify the property of the G-symmetric Clifford group
when G is given by Eq. (7) or (8) on multiple qubits. Con-
cretely, in these cases, the G-symmetric Clifford group CN ,G
is a G-symmetric unitary 1-design, but not a 2-design. This
property characterizes the randomness of the symmetric
Clifford group under U(1) and SU(2) symmetries given by
Eqs. (7) and (8). We rigorously present this statement as a
theorem.

Theorem 3.—(Randomness of U(1) and SU(2)-sym-
metric Clifford groups.) Let N ≥ 2 and G be given by Eq.
(7) or (8). Then, CN ,G is a G-symmetric unitary 1-design
but not a 2-design.

(b)(a)

FIG. 3. Circuit representations of (a) U(1)-symmetric and (b)
SU(2)-symmetric Clifford operators.

Let us remark that, as for 2-designs, we can actually
show no-go theorems in a more general class of symme-
tries, which are described as a tensor product of represen-
tations of a nontrivial connected Lie subgroup of a unitary
group. This type of symmetry represents the conservation
of the total observables on the system. In the proof of 1-
designs and the disproof of 2-designs, we use the proof
idea of the “if” part and the “only if” part in the proof of
Theorem 1, respectively.

By using the result and the proof idea of Theorem 2,
we have also found a complete and unique expression
for the G-symmetric Clifford operators when the symme-
try is given by Eq. (7) or (8). Concretely, in the case of
Eq. (7), every G-symmetric Clifford operator U is uniquely
expressed as Fig. 3(a) as

U = c

⎛
⎝ ∏

1≤j<k≤N

CZ
νj ,k
(j ,k)

⎞
⎠
⎛
⎝ N∏

j =1

S
μj
(j )

⎞
⎠Kσ (12)

with μj ∈ {0, 1, 2, 3}, νj ,k ∈ {0, 1}, σ ∈ SN , and c ∈ U0,
where Kσ is the permutation operator that brings the j th
qubit to the σ(j )th qubit. It follows that the size of the quo-
tient group of the symmetric Clifford group CN ,G divided
by the freedom of phase is

|CN ,G/U0| = 2N (N−1)/2 · 4N · N !

∼ 22(N/2)2+3(N/2)+(N+1/2) log2(N/e). (13)

In the case of Eq. (8), the G-symmetric Clifford oper-
ators are restricted to cKσ with c ∈ U0 and σ ∈ SN as
expressed in Fig. 3(b). The size of UN ,G/U0 is N !. See
Theorem 8 in Appendix C for details.

V. UNITARY 4-DESIGNS

We can show that the G-symmetric Clifford group CN ,G
is not a G-symmetric unitary 4-design except for the triv-
ial case when the G-symmetric unitary subgroup UN ,G has
only scalar multiples of I .

Theorem 4.—(No-go theorem for symmetric unitary 4-
designs.) Let G be a subgroup of UN . Then, CN ,G is a G-
symmetric unitary 4-design if and only if UN ,G = U0I .
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This theorem and Theorem 1 imply that under a non-
trivial Pauli symmetry, the symmetric Clifford group is a
symmetric unitary 3-design but not a 4-design. We can
prove this theorem by using the proof idea used in the
“only if” part of Theorem 1 as follows:

Proof.—Since the “if” part is trivial, it is sufficient
to prove the “only if” part. Suppose that CN ,G is a G-
symmetric unitary 4-design. We define L ∈ L(H⊗4) by
L :=∑P∈P+

N
P⊗4, where P+

N := {I , X , Y, Z}⊗N . We take
arbitrary U ∈ CN ,G . By Lemma 17 in Appendix G, we can
take a function sU : P+

N → {±1} and a bijection hU on P+
N

such that UPU† = sU(P)hU(P) for all P ∈ P+
N . We note

that sU and hU are dependent on U. By using the definitions
of L, sU, and hU, we get

U⊗4LU†⊗4 =
∑

P∈P+
N

(UPU†)⊗4

=
∑

P∈P+
N

(sU(P)hU(P))⊗4

=
∑

P∈P+
N

sU(P)4hU(P)⊗4

=
∑

P∈P+
N

hU(P)⊗4

=
∑

P∈P+
N

P⊗4

= L. (14)

Since this holds for all U ∈ CN ,G and CN ,G is a G-
symmetric unitary 4-design, by Lemma 10 in Appendix
B, we have U⊗4LU†⊗4 = L for all U ∈ UN ,G . We therefore
get UPU† = P for all U ∈ UN ,G and P ∈ P+

N by Lemma
11 in Appendix B. This implies that any U ∈ UN ,G sat-
isfies PUP = U for all P ∈ P+

N , which is equivalent to
U = eiθ I with some θ ∈ R. This means that UN ,G ⊂ U0I .
Since UN ,G ⊃ U0I always holds, we get UN ,G = U0I . �

VI. VERIFICATION VIA FRAME POTENTIALS

We can give a numerical evidence to Theorems 1 and 2
by computing the frame potentials, which are defined for a
subgroup X of UN ,G as [2]

Ft(X ) :=
∫

U,U′∈X
|tr(UU′†)|2tdμX (U)dμX (U′), (15)

where the integral is replaced by a summation if X is
a finite set up to phase. Similarly to the conventional
case [2], we can measure the distance between the t-fold
twirling channels �t,X and �t,UN ,G by the frame poten-
tials. It is therefore straightforward to show that Ft(X ) ≥
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Haar
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Haar

FIG. 4. Frame potentials Ft(X ) of G-symmetric groups X =
CN ,G ,UN ,G computed by numerically taking the average over
randomly generated unitaries. Here we compare the results for
the Pauli symmetry R given by Eq. (9) with N1 = 1, N2 = 2,
N3 = 3 and the U(1) symmetry given by Eq. (7) with N = 4. (a)
Frame potentials Ft(X ) for the case of the Pauli symmetry com-
puted by taking the average over 106 samples. (b) Size scaling of
the relative error of Ft(CN ,G) against the theoretical lower bound
Ft(UN ,G). Here, we independently generate M samples for U and
U′, respectively, and compute the mean value of |tr(UU′†)|2t. As
we increase the total data size M 2, the errors become smaller
for t ≤ 3, while they remain finite for t = 4. Panels (c),(d) show
the results for the case of U(1) symmetry on a 4-qubit system.
Here the G-symmetric Clifford group is only a G-symmetric uni-
tary 1-design, and not a 2-design. The numerical simulation is
performed using the library Qulacs [39].

Ft(UN ,G), where the equality holds if and only if X is a
G-symmetric unitary t-design.

Figures 4(a) and 4(b) clearly show that the Clifford
group CN ,G under Pauli symmetry is a G-symmetric unitary
3-design but not a 4-design. In sharp contrast, Figs. 4(c)
and 4(d) show that, when the Clifford group is con-
strained by G = {(eiθZ)⊗N |θ ∈ R}, which is isomorphic to
U(1), then the G-symmetric Clifford group CN ,G is only a
G-symmetric unitary 1-design and not a 2-design.

We remark that, in order to compute frame potentials
numerically, we have sampled symmetric Clifford opera-
tors uniformly from the entire CN ,G . For instance, in the
case of the Pauli-symmetric case, we have utilized the
complete and unique construction provided in Theorem 2
(or Fig. 1); we have randomly chosen the parameters μj ∈
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{0, 1, 2, 3}, νj ,k ∈ {0, 1}, Pj ∈ {I , X , Y, Z}⊗N3 with a uni-
form probability, and have also employed the method in
Ref. [35] in order to uniformly choose Clifford operators
V ∈ CN3 acting on the subsystem A3. This can also be done
in a similar way for U(1) and SU(2)-symmetric cases as
well based on Fig. 3 and Eq. (12).

It is beneficial to mention that the frame potentials of the
symmetric unitary groups can be written with those of the
unitary groups of several dimensions. In order to state the
result, we explain the irreducible decomposition of group
representations [40]. We consider the regular representa-
tion ρ of the group G, i.e., ρ(G) := G for all G ∈ G. Since
ρ is a unitary representation, ρ is completely reducible, and
thus there exist some set of pairs {(Iλ,Jλ)} of spaces such
that the Hilbert space H of the N qubits is decomposed
into

H =
⊕
λ

Iλ ⊗ Jλ (16)

and

ρ(G) =
⊕
λ

ρλ(G)⊗ I (17)

with inequivalent irreducible representations ρλ of G on Iλ
and the identity operator I on Jλ. This implies that λ is the
index for inequivalent irreducible representations, Iλ is the
representation space, and Jλ is the multiplicity space.

Theorem 5.—(Formula for frame potentials of symmet-
ric unitary groups.) Let G be a subgroup of UN and the
regular representation ρ of G be irreducibly decomposed
in the form of Eq. (17). Then, the frame potential Ft(UN ,G)
of the G-symmetric unitary group UN ,G is given by

Ft(UN ,G) = (t!)2
∑
(tλ)∈St

∏
λ

dim(Iλ)2tλ

(tλ!)2
Ftλ(U(Jλ)) (18)

with St := {(tλ)|
∑

λ tλ = t, tλ ∈ Z, tλ ≥ 0} and the unitary
group U(Jλ) on Jλ.

We illustrate the result of Theorem 5 in the case of the
Pauli symmetries Q, which are unitarily equivalent to the
Pauli subgroup R given by Eq. (9), as we have explained
in Sec. III B. In this case, λ is the index for specifying the
sequence of the eigenvalues of Zj for j ∈ �2. We take Iλ as
the Hilbert space of the subsystems A1 and A2, which is the
simultaneous eigenspace of (Zj )j ∈�2 with the eigenvalues
specified by λ, and also take Jλ as the Hilbert space of the
subsystem A3. This means that there are 2N2 choices for
λ, and for each of them, the dimensions of Iλ and Jλ are
2N1 and 2N3 , respectively. When t ≤ 2N3 , Eq. (18) gives the
following simple form:

Ft(UN ,Q) = (t!)2
∑
(tλ)∈St

∏
λ

(
2N1
)2tλ

(tλ!)2
· tλ!

= 22N1t · t!
∑
(tλ)∈St

t!∏
λ tλ!

= 22N1t · t! · (2N2
)t

= 2(2N1+N2)t · t!, (19)

where we used Ftλ(U(Jλ)) = tλ! in the first line, and the
multinomial theorem in the third line.

Proof.—We are going to prove Eq. (18) by considering
the generating function of Ft(UN ,G). For a unitary subgroup
X , we define fX by

fX (z) :=
∫

U∈X
det
(

ez(U+U†)
)

dμX (U) ∀z ∈ C. (20)

Then, fX satisfies

fX (z)

=
∫

U∈X
etr(z(U+U†))dμX (U)

=
∫

U∈X

( ∞∑
t=0

zt

t!
(tr(U))t

)( ∞∑
t′=0

zt′

t′!
(tr(U†))t

′
)

dμX (U)

=
∞∑

t=0

∞∑
t′=0

zt+t′

t!t′!

∫
U∈X

(tr(U))t(tr(U†))t
′
dμX (U)

=
∞∑

t=0

∞∑
t′=0

zt+t′

t!t′!
δt,t′Ft(X )

=
∞∑

t=0

z2t

(t!)2
Ft(X ), (21)

where we used

∫
U∈X

(tr(U))t(tr(U†))t
′
dμX (U)

= 1
2π

∫ 2π

0

(∫
U∈X

(tr(eiθU))t(tr((eiθU)†))t
′
dμX (U)

)
dθ

=
(

1
2π

∫ 2π

0
ei(t−t′)θdθ

)

×
(∫

U∈X
(tr(U))t

(
tr(U†)

)t′
dμX (U)

)

= δt,t′Ft(X ). (22)

in the second to last line, and we note that the definition
of the frame potential [Eq. (15)] is equivalent to Ft(X ) =∫

U∈X |tr(U)|2tdμX (U) by the left invariance of the Haar
measure. By Eq. (2.26) of Ref. [40], every U ∈ UN ,G can
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be written as

U =
⊕
λ

I ⊗ Uλ (23)

with the identity operator I on Iλ and some Uλ ∈ U(Jλ),
and we have

det
(

ez(U+U†)
)

= det

(⊕
λ

(
I ⊗ ez(Uλ+U†

λ)
))

=
∏
λ

(
det
(

ez(Uλ+U†
λ)
))dim(Iλ)

=
∏
λ

det
(

edim(Iλ)z(Uλ+U†
λ)
)

. (24)

Since Eq. (23) gives one-to-one correspondence between
UN ,G and the set of U(Jλ), by Eqs. (20) and (24), we get

fUN ,G (z)

=
∫

U∈UN ,G
det
(

ez(U+U†)
)

dμUN ,G (U)

=
∏
λ

∫
Uλ∈U(Jλ)

det
(

edim(Iλ)z(Uλ+U†
λ)
)

dμU(Jλ)(Uλ)

=
∏
λ

fU(Jλ)(dim(Iλ)z). (25)

By using Eq. (21) and comparing the coefficients of z2t of
both sides of Eq. (25), we get Eq. (18). �

VII. DISCUSSION

In this paper, we have generalized the unitary 3-design
property of the multiqubit Clifford group into symmetric
cases. We have rigorously shown that a symmetric Clif-
ford group is a symmetric unitary 3-design if and only if
the symmetry is given by some Pauli subgroup (Theorem
1), and also have provided a way to generate all the ele-
ments without redundancy (Theorem 2). Furthermore, we
have also proven that two physically important classes of
U(1) and SU(2) symmetries, which cannot be reduced to
Pauli subgroups, yield only symmetric unitary 1-designs.
Finally, for numerical validation, we have computed the
frame potentials by randomly sampling symmetric uni-
taries, and have confirmed that our findings indeed hold.

We can derive another property of the symmetric Clif-
ford group with respect to locality, from the results about
the construction method of the symmetric Clifford opera-
tors. As we have shown in Theorem 2 and after Theorem
3, under the Pauli, U(1), and SU(2) symmetries, all the
symmetric Clifford operators can be constructed with 2-
qubit local symmetric Clifford operators. It can be seen as
a symmetric generalization of the fact that all the Clifford

operators can be constructed with 2-qubit local Clifford
operators [34,35]. This stands in contrast to the result in
Ref. [41], which shows that while all the unitary operators
can be constructed with local unitary operators, some sym-
metric unitary operators cannot be constructed with local
symmetric unitary operators.

We envision two important future directions. First, it is
theoretically crucial to reveal the requirement to achieve
symmetric unitary designs in the approximate sense. While
it is known for the nonsymmetric case that the approximate
t-designs require only polynomial gate depth with respect
to both the qubit count N and order t [42,43], it is far from
trivial whether this is also true for the symmetric case. Sec-
ond, it is practically intriguing to develop a constructive
way to generate symmetric Clifford circuits under general
symmetry G that cannot be described by some Pauli sub-
group. While we provide such an example for both U(1)
and SU(2) symmetry, it is important to construct circuits
in an automated way for general situations, in particular,
when one is interested in performing Clifford-gate simu-
lation for the purpose of quantum many-body simulation
[44].
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APPENDIX A: GENERAL REMARKS FOR
DETAILED PROOFS

In the following, we present the detailed proofs of the
theorems in the main text. In Appendix B, we prove
Theorem 1 in the main text, which states that the sym-
metric Clifford group is a symmetric unitary 3-design if
and only if the symmetry constraint can be written as the
commutativity with a Pauli subgroup. In Appendix C, we
prove Theorem 2 in the main text, which gives a one-to-
one correspondence from the sets of elementary gates to
the symmetric Clifford gates. In Appendix D, we prove
the former half of Theorem 3 in the main text. We show
that the symmetric Clifford group is a symmetric unitary
1-design under the U(1) and SU(2) symmetries, which are
not Pauli symmetries. In Appendix E, we prove the lat-
ter half of Theorem 3 in the main text in a more general
form. We take a larger class of symmetries than the one in
Appendix D, and show that the symmetric Clifford group
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such that

FIG. 5. Overall structure of the proof of Theorem 1.

is not a symmetric unitary 2-design for those symmetries.
In Appendix G, we present the technical lemmas that we
use in the proofs of the statements above.

Before going into the details, we introduce the notations
in the following appendices. For general Hilbert spaces K
and K′, we denote the set of all linear operators from K to
K′, all linear operators on K, and all unitary operators on K
by L(K → K′), L(K), and U(K), respectively. We denote
the Hilbert space for N qubits by H. We denote the unitary

group on N qubits by UN . We denote the Pauli group on N
qubits by PN . We define the Clifford group on N qubits as
the normalizer of PN and denote it by CN . As for Clifford
operators on a single qubit, we denote the Pauli-X , Y and
Z, Hadamard and S operators on the j th qubit by Xj , Yj , Zj ,
Hj , and Sj , respectively. As for Clifford operators on two
qubits, we denote the controlled-NOT, the controlled-Z, and
the SWAP operators on the j th and kth qubits by CNOTj ,k,
CZj ,k and SWAPj ,k, respectively, where the j th qubit is
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the control qubit and the kth qubit is the target qubit of
CNOTj ,k. We denote the set of Pauli operators without phase
by P+

N := {I , X , Y, Z}⊗N , where A⊗n := A ⊗ A⊗n−1 and
A ⊗ B := {A ⊗ B|A ∈ A, B ∈ B} for general operator sets
A and B. For convenience, we formally define U0 :=
{eiθ | θ ∈ R} and P0 := {±1, ±i}. We denote the symmet-
ric group of degree M by SM . We denote by 〈O〉 the group
generated by the operators in a set O. We denote a ≡ b
(mod r) when a − b is an integer multiple of r.

APPENDIX B: PROOF OF THEOREM 1 (UNITARY
3-DESIGNS)

In this Appendix, we define the notion of symmetric
Clifford group and symmetric unitary design, and prove
Theorem 1 in the main text, namely the statement that the
symmetric Clifford group is a symmetric unitary 3-design
if and only if the symmetry constraint is described by some
Pauli subgroup.

First, we define the symmetric Clifford group as the
symmetric subgroup of the conventional Clifford group.

Definition 3.—(Restatement of Definition 1.) Let G be a
subgroup of UN . The G-symmetric Clifford group CN ,G is
defined by

CN ,G := CN ∩ UN ,G , (B1)

where

UN ,G := {U ∈ UN | ∀G ∈ G [U, G] = 0}. (B2)

An operator U ∈ UN is called a G-symmetric Clifford
operator if U ∈ CN ,G .

This definition includes the conventional Clifford group
CN as the special case when G = {I}.

Next, we define the notion of symmetric unitary design.
For a subgroup G of UN and t ∈ N, we define G-symmetric
unitary t-designs as the group that approximate UN ,G .

Definition 4.—(Restatement of Definition 2.) Let t ∈ N

and G be a subgroup of UN . A subgroup X of UN is a G-
symmetric unitary t-design if

�t,X = �t,UN ,G , (B3)

where �t,X is the t-fold twirling channel defined by

�t,X :=
∫

U∈X
Et,UdμX (U), (B4)

with the normalized Haar measure on X and Et,U is the
t-fold unitary conjugation map on L(H⊗t) defined by

Et,U(L) := U⊗tLU†⊗t ∀L ∈ L(H⊗t). (B5)

This definition includes the standard unitary designs
as the special case when G = {I}. These types of uni-
tary designs are sometimes called unweighted unitary

designs in comparison with weighted unitary designs,
where nonuniform mixtures of Et,U are considered (see
Definition 5). As we show in Theorem 11, the condi-
tions for a symmetric Clifford group being unweighted and
weighted unitary designs are equivalent to each other. It
is therefore sufficient to focus only on unweighted unitary
designs, and we express them simply as unitary designs in
the following.

We are going to prove that CN ,G is a G-symmetric uni-
tary 3-design if and only if the symmetry condition can be
described by the commutativity with some Pauli subgroup.
This can be rigorously stated as follows:

Theorem 6.—(Restatement of Theorem 1.) Let G be a
subgroup of UN . Then, CN ,G is a G-symmetric unitary 3-
design if and only if UN ,G = UN ,Q with some subgroup Q
of the Pauli group PN .

We present the overall structure of the proof of this
theorem in Fig. 5. We prove the “if” part in Proposition
1, and the “only if” part in Proposition 2.

1. Proof of the “if” part of Theorem 1 (Theorem 6)

The “if” part of Theorem 6 is equivalent to the statement
that CN ,Q is a Q-symmetric unitary 3-design for all Pauli
subgroups Q, which we show in the following proposition.
This is because if UN ,G = UN ,Q, then CN ,G = CN ,Q and G-
symmetric unitary 3-designs are the same as Q-symmetric
unitary 3-designs.

Proposition 1.—Let Q be a subgroup of PN . Then, CN ,Q
is a Q-symmetric unitary 3-design.

By the definition of unitary t-designs, the goal is to prove
�CN ,Q = �UN ,Q . In the following, we introduce two useful
properties of �t,X for X = CN ,Q and UN ,Q.

As the first property, we cannot distinguish whether
there is a symmetric unitary conjugation action before the
action of �t,X . This can be directly proven by the right
invariance of μX . We also use this lemma in the proofs of
Theorems 9 and 11.

Lemma 1.—Let N ∈ N, t ∈ N, G be a subgroup of UN ,
X = CN ,G or UN ,G , �t,X be defined by Eq. (B4), and Ct,G
be the set of all t-fold G-symmetric Clifford conjugation
mixture maps defined by

Ct,G :=
⎧⎨
⎩

n∑
j =1

λj Et,Uj

∣∣∣∣∣∣ n ∈ N, λ1, λ2, . . . , λn ∈ R, U1, U2,

. . . , Un ∈ CN ,G ,
n∑

j =1

λj = 1

⎫⎬
⎭ . (B6)

Then, for any t-fold G-symmetric Clifford mixture map
D ∈ Ct,G ,

�t,X ◦ D = �t,X . (B7)
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Proof.—Since D ∈ Ct,G , D can be written as D =∑n
j =1 λj Et,Uj with some λ1, λ2, . . . , λn ∈ R and U1, U2, . . . ,

Un ∈ CN ,G satisfying
∑n

j =1 λj = 1. For any j ∈ {1, 2, . . . , n},
we get

�t,X ◦ Et,Uj =
∫

U∈X
Et,U ◦ Et,Uj dμX (U) =

∫
U∈X

Et,UUj

× dμX (U) =
∫

U∈X
Et,UdμX (U) = �t,X ,

(B8)

where we used the right invariance of μX . We note that the
Haar measure on a compact Lie group X is right invariant
by Corollary 8.31 of Ref. [45]. We therefore get

�t,X ◦ D =
n∑

j =1

λj�t,X ◦ Et,Uj

=
n∑

j =1

λj�t,X = �t,X . (B9)

�
As the second property, we introduce trivial fixed points

of �t,X for X = CN ,Q and UN ,Q in an explicit form.
Lemma 2.—Let N ∈ N, G be a subgroup of UN , X =

CN ,G or UN ,G ,�3,X be defined by Eq. (B4), and MG be the
linear subspace of L(H⊗3) defined by

MG := span ({Vσ (G1 ⊗ G2 ⊗ G3) | σ
∈ S3, G1, G2, G3 ∈ G}) , (B10)

where the span is taken over the field C and Vσ ∈ U(H⊗3)

is the permutation operator that brings the j th copy of
qubits to the σ(j )th qubits, i.e.,

Vσ (|�1〉 ⊗ |�2〉 ⊗ |�3〉) := |�σ−1(1)〉
⊗ |�σ−1(2)〉 ⊗ |�σ−1(3)〉 (B11)

for all |�1〉 , |�2〉 , |�3〉 ∈ H. Then, �3,X (L) = L for all
L ∈ MG .

As for Eq. (B11), we note that the state of the j th copy
of qubits after the action of Vσ is the same as that of
the σ−1(j )th copy of qubits before the action, because Vσ
brings σ−1(j )th copy of qubits to the j th copy of qubits.

Proof.—Since �3,X is a linear map and MG is a
linear subspace spanned by {Vσ (G1 ⊗ G2 ⊗ G3) | σ ∈
S3, G1, G2, G3 ∈ G}, it is sufficient to show that �3,X (Vσ
(G1 ⊗ G2 ⊗ G3)) = Vσ (G1 ⊗ G2 ⊗ G3) for all σ ∈ S3,
G1, G2, G3 ∈ G. Since Vσ commutes with U⊗3, and G1,
G2, and G3 commute with U for all U ∈ UN ,G , we have

[Vσ (G1 ⊗ G2 ⊗ G3), U⊗3] = 0 for all U ∈ UN ,G . We there-
fore get

�3,X (Vσ (G1 ⊗ G2 ⊗ G3))

=
∫

U∈X
U⊗3Vσ (G1 ⊗ G2 ⊗ G3)U†⊗3dμX (U)

=
∫

U∈X
Vσ (G1 ⊗ G2 ⊗ G3)dμX (U)

= Vσ (G1 ⊗ G2 ⊗ G3). (B12)

�
Although we require only the fact that all the points in

MG are fixed points of �3,UN ,G in our proof, we can prove
that the set of all the fixed points of �3,UN ,G corresponds
with MUN ,UN ,G by using the result of Ref. [46].

In order to connect Lemmas 1 and 2 to the proof of
Proposition 1, it is sufficient to find a map D ∈ C3,Q satis-
fying D(L) ∈ MQ for all L ∈ L(H⊗3). If we can construct
such a map D, we can explicitly compute the t-fold uni-
form unitary mixture map �t,X as �3,X = �3,X ◦ D = D
for X = CN ,Q and UN ,Q, which implies that �3,CN ,Q =
�3,UN ,Q . We present the existence of such a map D as a
lemma.

Lemma 3.—Let N ∈ N, Q be a subgroup of PN , C3,Q be
the set all t-fold Q-symmetric Clifford conjugation mix-
ture maps defined by Eq. (B6) and MQ be defined by
Eq. (B10). Then, there exists a map D ∈ C3,Q such that
D(L) ∈ MQ for all L ∈ L(H⊗3).

In order to simplify the proof of this lemma, we show
that the statements of this lemma for two symmetry groups
are equivalent if the two groups can be transformed into
each other by some Clifford conjugation action up to phase.

Lemma 4.—Let N ∈ N, G and G ′ be subgroups of UN
satisfying U0G ′ = U0WGW† with some W ∈ CN , and Ct,G
and Ct,G′ be the sets of all t-fold G- and G ′-symmetric Clif-
ford conjugation mixture maps defined by Eq. (B6). Then,
there exists a map D′ ∈ C3,G′ such that D′(L) ∈ MG′ for
all L ∈ L(H⊗3) if and only if there exists a map D ∈ C3,G
such that D(L) ∈ MG for all L ∈ L(H⊗3).

Proof.—Since U0G ′ = U0WGW† is equivalent to U0G =
U0W†G ′W, it is sufficient only to prove the “if” part. We
suppose that there exists a map D ∈ C3,G such that D(L) ∈
MG for all L ∈ L(H⊗3). By the definition of C3,G , D can
be written as

D =
n∑

j =1

λj E3,Uj (B13)

with some n ∈ N, U1, U2, . . . , Un ∈ CN ,G , and λ1, λ2, . . . ,
λn ∈ R satisfying

∑n
j =1 λj = 1. We define

D′ :=
n∑

j =1

λj E3,WUj W† . (B14)
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Then, D′ ∈ C3,G by noting that WUj W† ∈ CN ,G′ for all j ∈ {1, 2, . . . , n}. By this definition, we also know that for any
L ∈ L(H⊗t),

D′(L) = W⊗3D(W†⊗3LW⊗3)W†⊗3 ∈ W⊗3MGW†⊗3

= span
({

W⊗3VσW†⊗3(WG1W† ⊗ WG2W† ⊗ WG3W†) | σ ∈ S3, G1, G2, G3 ∈ G)})
= span

({
Vσ (G′

1 ⊗ G′
2 ⊗ G′

3) | σ ∈ S3, G′
1, G′

2, G′
3 ∈ G ′)

})
= MG′ . (B15)

�
Now we note that any Pauli subgroup Q can generally

be transformed into a Pauli subgroup R in the form of

R := P0{I , X , Y, Z}⊗N1 ⊗ {I , Z}⊗N2 ⊗ {I}N3 (B16)

with some N1, N2, N3 ≥ 0 up to phase via some Clif-
ford conjugation action, which we prove in Lemma 14 in
Appendix G. By combining this property and Lemma 4,
we know that it is sufficient only to prove Lemma 3 when
Q is given as R in the form of Eq. (B16).

Since we are going to deal with three copies of the
system each of which is decomposed into three subsys-
tems, we define the notations for explicit presentation of
the Hilbert space on which an operator acts or in which
a vector exists. When we explicitly show that an operator
O acts on a Hilbert space K and a vector |�〉 exists in K,
we denote O(K) and |�〉(K), respectively. The notations for
Hilbert spaces are as follows: in order to distinguish the
Hilbert spaces H associated with the three copies of the N
qubits that we consider in the context of unitary 3-designs,
we denote the three Hilbert spaces by H1, H2, and H3 [see
Fig. 6(a)]. The symmetry R induces a natural decomposi-
tion of each Hilbert space Hj into three parts Hj

1, Hj
2 and

Hj
3 of N1, N2, and N3 qubits, correspondingly to the repre-

sentation of R. We also denote the Hilbert space of the lth
qubit in Hj

k by Hj
k,l. [see Fig. 6(b)]. We denote the tensor

product of the three spaces of H1
k , H2

k , and H3
k by Htot

k [see
Fig. 6(c)]. We may refer to Hj

k simply as Hk when we need
not specify j .

In the proof of Lemma 3, we focus on the following four
types of R-symmetric Clifford operators; the S gates on a
qubit in H2, the controlled-Z gates on two qubits in H2,
the Clifford gates on qubits in H3, and the controlled-Pauli
gates with a control qubit in H2 and target qubits in H3
[see Fig. 6(d)]. We are going to see their properties one by
one in the four lemmas below.

First, we prove the property of the mixture of the S gates
on H2. In the following, we denote the Pauli-Z basis of the
qubit in Hj

2,l by |xj ,l〉 with xj ,l ∈ {0, 1}, and define |x〉 :=⊗
j ∈{1,2,3},l∈{1,2,...,N2}, |xj ,l〉 for x := (xj ,l)j ∈{1,2,3},l∈{1,2,...,N2}.

Lemma 5.—Let N ∈ N, R be defined by Eq. (B16), C3,R
be the set of all threefold R-symmetric Clifford conjuga-
tion mixture maps defined by Eq. (B6), m ∈ {1, 2, . . . , N2},
D1,m be defined by

D1,m(L) := 1
4

3∑
μ=0

⎛
⎝ 3⊗

j =1

Sμ
(
Hj

2,m

)⎞
⎠ L

⎛
⎝ 3⊗

j =1

Sμ†
(
Hj

2,m

)⎞
⎠

(B17)

(a) (b)

(c) (d)

FIG. 6. Setup of Proposition 1 and the notations of the Hilbert
spaces in the proof. (a) In the proof of unitary 3-designs, we con-
sider unitary operations U on three copies of a Hilbert space,
which we denote by H1, H2, and H3. When we explicitly show
that a unitary operator U acts on Hj , we denote U(Hj ). (b) The
symmetry R decomposes each Hilbert space Hj into three parts;
Hj

1, Hj
2, and Hj

3 for the N1, N2, and N3 qubits, correspondingly to
the representation of R. The figure is for the case when N1 = 1,
N2 = 2, and N3 = 2. We denote the Hilbert space for the lth qubit
in Hj

k by Hj
k,l. (c) We define Htot

k := H1
k ⊗ H2

k ⊗ H3
k for k =

1, 2, 3. We note that the total Hilbert space H⊗3 can be expressed
in two ways as H1 ⊗ H2 ⊗ H3 and as Htot

1 ⊗ Htot
2 ⊗ Htot

3 . (d)
As R-symmetric Clifford operations, we focus on four types of
gates; the S gates on qubits in H2, the controlled-Z gates on
two qubits in H2, the Clifford gates on qubits in H3, and the
controlled-Pauli gates with a control qubit in H2 and target qubits
in H3.
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and K ∈ L(H⊗3) be in the form of

K = P(H
tot
1 ) ⊗ |x〉 〈y|(Htot

2 ) ⊗ O(H
tot
3 ) (B18)

with some P ∈ P+
3N1

, x, y ∈ {0, 1}3N2 and O ∈ L(Htot
3 ). Then, we have D1,m ∈ C3,R and

D1,m(K) =
{

K (if
∑3

j =1 xj ,m =∑3
j =1 yj ,m)

0 (otherwise).
(B19)

Proof.—Since S
(
Hj

2,m

)
∈ CN ,R and D1,m is an affine combination of the conjugation actions of I⊗3, S⊗3, (S2)⊗3 and

(S3)⊗3, we can confirm that D1,m ∈ C3,R. By noting that S =∑z∈{0,1} iz |z〉 〈z|, we get

D1,m(K) = 1
4

3∑
μ=0

P(H
tot
1 ) ⊗

(
iμ
∑3

j =1 xj ,m |x〉 〈y|(Htot
2 ) i−μ

∑3
j =1 yj ,m

)
⊗ O(H

tot
3 )

=
⎛
⎝1

4

3∑
μ=0

iμ(
∑3

j =1 xj ,m−∑3
j =1 yj ,m)

⎞
⎠P(H

tot
1 ) ⊗ |x〉 〈y|(Htot

2 ) ⊗ O(H
tot
3 )

=
{

K (if
∑3

j =1 xj ,m ≡∑3
j =1 yj ,m (mod 4))

0 (otherwise).
(B20)

Since xj ,m and yj ,m take only 0 or 1,
∑3

j =1 xj ,m ≡∑3
j =1 yj ,m (mod 4) is equivalent to

∑3
j =1 xj ,m =∑3

j =1 yj ,m. �
Second, we prove the property of the mixture of the controlled-Z gates on H2.
Lemma 6.—Let N ∈ N, R be defined by Eq. (B16), C3,R be the set of all threefold R-symmetric Clifford conjugation

mixture maps defined by Eq. (B6), m, m′ ∈ {1, 2, . . . , N2} satisfy m �= m′, D2,m,m′ be defined by

D2,m,m′(L) := 1
2

1∑
ν=0

⎛
⎝ 3⊗

j =1

CZν
(
Hj

2,m,Hj
2,m′
)⎞
⎠L

⎛
⎝ 3⊗

j =1

CZν†
(
Hj

2,m,Hj
2,m′
)⎞
⎠ (B21)

for all L ∈ L(H⊗3), and K ∈ L(H⊗3) be in the form of Eq. (B18) with some P ∈ P+
3N1

, x, y ∈ {0, 1}3N2 and O ∈ L(Htot
3 ).

Then, D2,m,m′ ∈ C3,R and

D2,m,m′(K) =
{

K (if
∑3

j =1 xj ,mxj ,m′ ≡∑3
j =1 yj ,myj ,m′ (mod 2))

0 (otherwise).
(B22)

Proof.—Since CZ
(
Hj

2,m,Hj
2,m′
)

∈ CN ,R and D2,m,m′ is an affine combination of the conjugation actions of I⊗3 and CZ⊗3,
we can confirm that D2,m,m′ ∈ C3,R. By noting that CZ =∑z,w∈{0,1}(−1)zw |zw〉 〈zw|, we get

D2,m,m′(K) = 1
2

1∑
ν=0

P(H
tot
1 ) ⊗

(
iν
∑3

j =1 xj ,mxj ,m′ |x〉 〈y|(Htot
2 ) i−ν

∑3
j =1 yj ,myj ,m′

)
⊗ O(H

tot
3 )

=
(

1
2

1∑
ν=0

iν(
∑3

j =1 xj ,mxj ,m′−∑3
j =1 yj ,myj ,m′ )

)
P(H

tot
1 ) ⊗ |x〉 〈y|(Htot

2 ) ⊗ O(H
tot
3 )

=
{

K (if
∑3

j =1 xj ,mxj ,m′ ≡∑3
j =1 yj ,myj ,m′ (mod 2))

0 (otherwise).
(B23)

�
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Third, we prove the property of the mixture of the Clif-
ford gates on H3. We use the result of Refs. [27,28] stating
that the conventional Clifford group is a unitary 3-design.

Lemma 7.—Let N ∈ N, R be defined by Eq. (B16), C3,R
be the set of all threefold R-symmetric Clifford conju-
gation mixture maps defined by Eq. (B6), D3 be defined
by

D3(L) := 1
|V|
∑
U∈V

(
U(H1

3) ⊗ U(H2
3) ⊗ U(H3

3)
)

L

(
U†(H1

3) ⊗ U†(H2
3) ⊗ U†(H3

3)
)

(B24)

for all L ∈ L(H⊗3)with V being the set of all the represen-
tatives of the equivalence classes in CN3/(U0I), and K ∈
L(H⊗3) be in the form of Eq. (B18) with some P ∈ P+

3N1
,

x, y ∈ {0, 1}3N2 and O ∈ L(Htot
3 ). Then, D3 ∈ C3,R and

D3(K) = P(H
tot
1 ) ⊗ |x〉 〈y|(Htot

2 ) ⊗
∑
σ∈S3

ασT(
Htot

3 )
σ (B25)

with some {ασ }σ∈S3 ∈ C
S3 , where Tσ ∈ U(Htot

3 ) is
defined as the permutation operator satisfying

Tσ

(
|ξ1〉
(
H1

3

)
⊗ |ξ2〉

(
H2

3

)
⊗ |ξ3〉

(
H3

3

))
= |ξσ−1(1)〉

(
H1

3

)

⊗ |ξσ−1(2)〉
(
H2

3

)
⊗ |ξσ−1(3)〉

(
H3

3

)
(B26)

for all |ξ1〉 , |ξ2〉 , |ξ3〉 ∈ H3.

Proof.—Since U
(
Hj

3

)
∈ CN ,R for all U ∈ V and D3 is an

affine combination of the conjugation actions of U⊗3 for
U ∈ V , we can confirm that D3 ∈ C3,R. By the definition
of D3, D3(K) is written as

D3(K) = P(H
tot
1 ) ⊗ |x〉 〈y|(Htot

2 ) ⊗ O′(Htot
3 ) (B27)

with

O′ :=
∫

U′∈CN3

U′⊗3OU′†⊗3dμCN3
(U′). (B28)

Since the Clifford group CN3 is a unitary 3-design [27,28],
O′ can also be written as

O′ =
∫

U′∈UN3

U′⊗3OU′†⊗3 dμUN3
(U′). (B29)

For any U ∈ UN3 , by the left invariance of μUN3
, we get

U⊗3O′U†⊗3 =
∫

U′∈UN3

(UU′)⊗3O′(UU′)†⊗3 dμUN3
(U′)

=
∫

U′∈UN3

U′⊗3OU′†⊗3 dμUN3
(U′) = O′.

(B30)

This implies that O′ commutes with U⊗3 for all U ∈ UN3 .
By Theorem 7.15 of Ref. [47], O′ can be written as O′ =∑

σ∈S3
ασTσ with some {ασ }σ∈S3 ∈ C

S3 . �
Finally, we prove the property of the mixture of the

controlled-Pauli gates on H2 and H3. Here we fix the
control qubit as the mth qubit in H2.

Lemma 8.—Let N ∈ N, R be defined by Eq. (B16), C3,R
be the set of all threefold R-symmetric Clifford conjuga-
tion mixture maps defined by Eq. (B6), m ∈ {1, 2, . . . , N2},
D4,m be defined by

D4,m(L) := 1
4N3

∑
Q∈P+

N3

⎛
⎝ 3⊗

j =1

C(Q)
(
Hj

2,m,Hj
3

)⎞
⎠L

×
⎛
⎝ 3⊗

j =1

C(Q)†
(
Hj

2,m,Hj
3

)⎞
⎠ (B31)

for all L ∈ L(H⊗3), where C(Q)
(
Hj

2,m,Hj
3

)
is the controlled-

Q operator defined for Q ∈ P+
N3

by

C(Q)
(
Hj

2,m,Hj
3

)
= |0〉 〈0|

(
Hj

2,m

)
⊗ I
(
Hj

3

)

+ |1〉 〈1|
(
Hj

2,m

)
⊗ Q

(
Hj

3

)
, (B32)

and J ∈ L(H⊗3) be in the form of

J = P(H
tot
1 ) ⊗ |x〉 〈y|(Htot

2 ) ⊗ T(
Htot

3 )
σ (B33)

with some P ∈ P+
3N1

, x, y ∈ {0, 1}3N2 , and σ ∈ S3 satisfy-
ing

3∑
j =1

xj ,l =
3∑

j =1

yj ,l for all l ∈ {1, 2, . . . , N2}, (B34)

3∑
j =1

xj ,lxj ,l′ ≡
3∑

j =1

yj ,lyj ,l′ (mod 2) for all l, l′

∈ {1, 2, . . . , N2}, (B35)

and xσ(j ),m′ = yj ,m′ for all j ∈ {1, 2, 3} and m′ ∈ {1, 2, . . . ,
m − 1}, where Tσ is defined by Eq. (B26). Then, D4,m ∈
C3,R and

D4,m(J ) = cP(H
tot
1 ) ⊗ |x〉 〈y|(Htot

2 ) ⊗ T(
Htot

3 )
σ ′ (B36)

with some c ∈ R and σ ′ ∈ S3 satisfying xσ ′(j ),m′ = yj ,m′
for all j ∈ {1, 2, 3} and m′ ∈ {1, 2, . . . , m}.

Proof.—Since the controlled-Pauli operators can be
expressed as products of the controlled-X , Y, and Z opera-

tors, we can confirm that C(Q)
(
Hj

2,m,Hj
3

)
∈ CN ,R. D4,m is an
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affine combination of the conjugation actions of C(Q)⊗3

for Q ∈ P+
N3

, and thus we can also confirm that D4,m ∈
C3,R. By noting that

C(Q)
(
Hj

2,m,Hj
3

)
=
∑

z∈{0,1}
|z〉 〈z|

(
Hj

2,m

)
⊗ Qz

(
Hj

3

)
, (B37)

we know that

D4,m(J ) = 1
4N3

∑
Q∈P+

N3

P(H
tot
1 ) ⊗ |x〉 〈y|(Htot

2 )

⊗
⎛
⎝ 3⊗

j =1

Qxj ,m

(
Hj

3

)⎞
⎠ T(

Htot
3 )

σ

⎛
⎝ 3⊗

j =1

Qyj ,m†
(
Hj

3

)⎞
⎠ .

(B38)

We note that
⎛
⎝ 3⊗

j =1

Qxj ,m

(
Hj

3

)⎞
⎠ T(

Htot
3 )

σ

= T(
Htot

3 )
σ · T(

Htot
3 )

σ−1

⎛
⎝ 3⊗

j =1

Qxj ,m

(
Hj

3

)⎞
⎠ T(

Htot
3 )

σ

= T(
Htot

3 )
σ

⎛
⎝ 3⊗

j =1

Qxj ,m

(
Hσ−1(j )

3

)⎞
⎠

= T(
Htot

3 )
σ

⎛
⎝ 3⊗

j =1

Qxσ(j ),m

(
Hj

3

)⎞
⎠ . (B39)

By Eqs. (B38) and (B39), we get

D4,m(J ) = 1
4N3

∑
Q∈P+

N3

P(H
tot
1 ) ⊗ |x〉 〈y|(Htot

2 ) ⊗ T(
Htot

3 )
σ

⎛
⎝ 3⊗

j =1

Qxσ(j ),m

(
Hj

3

)⎞
⎠
⎛
⎝ 3⊗

j =1

Q−yj ,m

(
Hj

3

)⎞
⎠

= P(H
tot
1 ) ⊗ |x〉 〈y|(Htot

2 ) ⊗ T(
Htot

3 )
σ

⎛
⎜⎝ 1

4N3

∑
Q∈P+

N3

3⊗
j =1

Qxσ(j ),m−yj ,m

(
Hj

3

)
⎞
⎟⎠ . (B40)

First, we consider the case when xσ(j ),m = yj ,m for all j ∈ {1, 2, 3}. In this case, we have

1
4N3

∑
Q∈P+

N3

3⊗
j =1

Qxσ(j ),m−yj ,m

(
Hj

3

)
= 1

4N3

∑
Q∈P+

N3

3⊗
j =1

I
(
Hj

3

)
= I(H

tot
3 ). (B41)

By Eqs. (B41) and (B41), we get

D4,m(J ) = P(H
tot
1 ) ⊗ |x〉 〈y|(Htot

2 ) ⊗ T(
Htot

3 )
σ I(H

tot
3 ) = cP(H

tot
1 ) ⊗ |x〉 〈y|(Htot

2 ) ⊗ T(
Htot

3 )
σ ′ , (B42)

where c := 1 and σ ′ := σ . Since σ ′ = σ , we get xσ ′(j ),m = xσ(j ),m = yj ,m for all j ∈ {1, 2, 3} and m′ ∈ {1, 2, . . . , m}.
Next, we consider the case when xσ(j ),m �= yj ,m for some j ∈ {1, 2, 3}. Since Eq. (B34) is satisfied for k = m, we can

take p , q ∈ {1, 2, 3} that uniquely satisfy xσ(p),m �= xσ(j ),m for j ∈ {1, 2, 3}\{p} and yq,m �= yj ,m for j ∈ {1, 2, 3}\{q}. Then,
such p and q satisfy p �= q and xσ(p),m = yq,m. We note that

1
2N3

∑
Q∈P+

N3

3⊗
j =1

Qxσ(j ),m−yj ,m

(
Hj

3

)
= 1

2N3

∑
Q∈P+

N3

Q
(
Hp

3

)
⊗ Q

(
Hq

3

)

=
N3⊗
l=1

⎛
⎜⎝1

2

∑
Q∈P+

1

Q
(
Hp

3,l

)
⊗ Q

(
Hq

3,l

)
⎞
⎟⎠ =

N3⊗
l=1

SWAP

(
Hp

3,l,H
q
3,l

)
= T(

Htot
3 )

τp ,q , (B43)
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where SWAP

(
Hp

3,l,H
q
3,l

)
is the SWAP operator between the

Hilbert spaces Hp
3,l and Hq

3,l, and τp ,q ∈ S3 is the trans-
position between p and q. By Eqs. (B40) and (B43), we
get

D4,m(J ) = 1
2N3

P(H
tot
1 ) ⊗ |x〉 〈y|(Htot

2 ) ⊗ T(
Htot

3 )
σ T(

Htot
3 )

τp ,q

= cP(H
tot
1 ) ⊗ |x〉 〈y|(Htot

2 ) ⊗ T(
Htot

3 )
σ ′ , (B44)

where c := 1/2N3 and σ ′ := στp ,q. For any m′ ∈ {1, 2, . . . ,
m − 1}, since Eq. (B34) is satisfied for k = m and k =
m′, and Eq. (B35) is satisfied for k = m and k′ = m′,
we get xσ(p),m′ = xσ(q),m′ by Lemma 15 in Appendix
G. We therefore get xσ ′(j ),m′ = xσ(τp ,q(j )),m′ = xσ(j ),m′ =
yj ,m′ for j ∈ {1, 2, 3}. As for the conclusion in the
case of m′ = m, since xσ ′(j ),m = xσ(τp ,q(j )),m ≡ xσ(p),m +
δτp ,q(j ),p = yq,m + δj ,τp ,q(p) = yq,m + δj ,q ≡ yj ,m (mod 2), we
get xσ ′(j ),m = yj ,m for j ∈ {1, 2, 3}. �

By combining the five lemmas above, we prove
Lemma 3.

Proof of Lemma 3.—By Lemma 14 in Appendix G, we
can take R in the form of Eq. (B16) and W ∈ CN such that
U0WQW† = U0R. By Lemma 4, it is sufficient to show
that there exists a map D ∈ C3,R such that D(L) ∈ MR
for all L ∈ L(H⊗3). We define D by

D = D4 ◦ D3 ◦ D2 ◦ D1, (B45)

where D1, D2, D3, and D4 are defined by Eqs. (B17),
(B21), (B24), (B31), and

D1 := D1,N2 ◦ · · · ◦ D1,2 ◦ D1,1, (B46)

D2 := D2,N2−1 ◦ · · · ◦ D2,2 ◦ D2,1, (B47)

D2,m := D2,m,N2 ◦ · · · ◦ D2,m,m+2 ◦ D2,m,m+1, (B48)

D4 := D4,N2 ◦ · · · ◦ D4,2 ◦ D4,1. (B49)

By Lemma 16 in Appendix G, we can confirm that D ∈
C3,R. Take arbitrary L ∈ L(H⊗3). Since D1, D2, D3, and
D4 are linear maps, MR is a linear subspace, and L can be
written as

L =
∑

P∈P+
3N1

,x,y∈{0,1}3N2

P(H
tot
1 ) ⊗ |x〉 〈y|(Htot

2 ) ⊗ O(
Htot

3 )
P,x,y

(B50)

with some OP,x,y ∈ L(Htot
3 ), it is sufficient to show that

D4 ◦ D3 ◦ D2 ◦ D1(K) ∈ MR (B51)

for all K ∈ L(H⊗3) in the form of Eq. (B18) with P ∈
P+

3N1
, x, y ∈ {0, 1}3N2 and O ∈ L(Htot

3 ). By Lemmas 5, 6
and 7, we get

D3 ◦ D2 ◦ D1(K) =
{

P(H
tot
1 ) ⊗ |x〉 〈y|(Htot

2 ) ⊗∑σ∈S3
ασT(

Htot
3 )

σ (if x and y satisfy Eqs. (B34) and (B35))
0 (otherwise)

(B52)

with some {ασ }σ∈S3 ∈ C
S3 , where we note that Eq. (B35)

in the case of k = k′ can be derived from Eq. (B34). Since
D4 is a linear map and MR is a linear subspace, it is
sufficient to show that

D4(J ) ∈ MR (B53)

for all J ∈ L(H⊗3) in the form of Eq. (B33) with P ∈
P+

3N1
, x, y ∈ {0, 1}3N2 satisfying Eqs. (B34) and (B35) and

σ ∈ S3. By Lemma 8, we know that

D4(J ) = cP(H
tot
1 ) ⊗ |x〉 〈y|(Htot

2 ) ⊗ T(
Htot

3 )
σ ′ (B54)

with c ∈ R and σ ′ ∈ S3 satisfying xσ ′(j ),l = yj ,l for all j ∈
{1, 2, 3} and l ∈ {1, 2, . . . , N2}. We therefore get

D4(J ) = cVσ ′Vσ ′−1

(
P(H

tot
1 ) ⊗ |x〉 〈y|(Htot

2 ) ⊗ T(
Htot

3 )
σ ′

)

= cVσ ′

(
R(

Htot
1 )

σ ′−1 ⊗ S(
Htot

2 )
σ ′−1 ⊗ T(

Htot
3 )

σ ′−1

)(
P(H

tot
1 ) ⊗ |x〉 〈y|(Htot

2 ) ⊗ T(
Htot

3 )
σ ′

)

= cVσ ′

(
R(

Htot
1 )

σ ′−1 P(H
tot
1 ) ⊗ S(

Htot
2 )

σ ′−1 |x〉 〈y|(Htot
2 ) ⊗ T(

Htot
3 )

σ ′−1 T(
Htot

3 )
σ ′

)
, (B55)
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where Rσ ∈ U(Htot
1 ) and Sσ ∈ U(Htot

2 ) are defined as the
permutation operators satisfying

Rσ

(
|φ1〉

(
H1

1

)
⊗ |φ2〉

(
H2

1

)
⊗ |φ3〉

(
H3

1

))
:= |φσ−1(1)〉

(
H1

1

)

⊗ |φσ−1(2)〉
(
H2

1

)
⊗ |φσ−1(3)〉

(
H3

1

)
, (B56)

Sσ

(
|ψ1〉

(
H1

2

)
⊗ |ψ2〉

(
H2

2

)
⊗ |ψ3〉

(
H3

2

))
:= |ψσ−1(1)〉

(
H1

2

)

⊗ |ψσ−1(2)〉
(
H2

2

)
⊗ |ψσ−1(3)〉

(
H3

2

)
(B57)

for all |φj 〉 ∈ H1 and |ψj 〉 ∈ H2. We note that

S(
Htot

2 )
σ ′−1 |x〉(Htot

2 ) = S(
Htot

2 )
σ ′−1

⎛
⎝ 3⊗

j =1

|xj 〉
(
Hj

2

)⎞
⎠

=
3⊗

j =1

|xσ ′(j )〉
(
Hj

2

)
=

3⊗
j =1

|yj 〉
(
Hj

2

)
= |y〉(Htot

2 ) . (B58)

where xj := (xj ,l)l∈{1,...,N2}, yj := (yj ,l)l∈{1,...,N2}, |xj 〉 :=⊗
l∈{1,...,N2} |xj ,l〉, and |yj 〉 :=⊗l∈{1,...,N2} |yj ,l〉 for j ∈

{1, 2, 3}. By Eqs. (B55) and (B58), we have

D4(J ) = cVσ ′

(
R(

Htot
1 )

σ ′−1 P(H
tot
1 ) ⊗ |y〉 〈y|(Htot

2 ) ⊗ I(H
tot
3 )
)

.

(B59)

R(
Htot

1 )
σ ′−1 P(H

tot
1 ) can be written as

R(
Htot

1 )
σ ′−1 P(H

tot
1 ) =

∑
P1,P2,P3∈P+

N1

ζP1,P2,P3

3⊗
j =1

P

(
Hj

1

)
j (B60)

with some ζP1,P2,P3 ∈ C defined for P1, P2, P3 ∈ P+
N1

.

|y〉 〈y|(Htot
2 ) can be written as

|y〉 〈y|(Htot
2 ) =

⊗
j ∈{1,2,3},l∈{1,2,...,N2}

|yj ,l〉 〈yj ,l|
(
Hj

2,l

)

=
⊗

j ∈{1,2,3},l∈{1,2,...,N2}

1
2

∑
wj ,l∈{0,1}

× [(−1)yj ,lZ]wj ,l

(
Hj

2,l

)

= 1
23N2

∑
w∈{0,1}3N2

⊗
j ∈{1,2,3},l∈{1,2,...,N2}

× (−1)yj ,lwj ,lZwj ,l

(
Hj

2,l

)

= 1
23N2

∑
w∈{0,1}3N2

(−1)
∑

j ,l yj ,lwj ,l

3⊗
j =1

×
( N2⊗

l=1

Zwj ,l

(
Hj

2,l

))
. (B61)

By plugging Eqs. (B60) and (B61) into Eq. (B59), we get

D4(J ) = c
23N2

∑
P1,P2,P3∈P+

N1
,w∈{0,1}3N2

ζP1,P2,P3(−1)
∑

j ,l yj ,lwj ,l

× Vσ ′
3⊗

j =1

(
P

(
Hj

1

)
j ⊗

N2⊗
l=1

Zwj ,l

(
Hj

2,l

)
⊗ I (H

j
3)

)

∈ MR. (B62)

�
By combining Lemmas 1, 2, and 3, we prove Proposition

1.
Proof of Proposition 1.—Let X be CN ,Q or UN ,Q. By

Lemma 3, we can take D ∈ C3,Q such that D(L) ∈ MQ
for all L ∈ L(H⊗3). For any L ∈ L(H⊗3), By Lemma 1,
we have

�3,X (L) = �3,X (D(L)). (B63)

Since D(L) ∈ MQ, by Lemma 2, we get

�3,X (D(L)) = D(L). (B64)

Equations (B63) and (B64) imply that �3,X = D. Since
this holds for X = CN ,Q and UN ,Q, we get �3,CN ,Q =
�3,UN ,Q , i.e., CN ,Q is a Q-symmetric unitary 3-design. �

2. Proof of the “only if” part of Theorem 1
(Theorem 6)

In the “only if” part of the proof of Theorem 6, we take
arbitrary unitary subgroup G such that the G-symmetric
Clifford group is a G-symmetric unitary 3-design, and con-
struct a Pauli subgroup Q such that the constraints by
G and Q are the same. We rigorously present this state-
ment with the concrete construction of Q in the following
proposition.
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Proposition 2.—Let N ∈ N, G be a subgroup of UN , CN ,G
be a G-symmetric unitary 3-design, and Q be defined by

Q := 〈{Q ∈ P+
N | ∃G ∈ G such that tr(GQ) �= 0}〉 .

(B65)

Then, UN ,G = UN ,Q.
Since we always have UN ,G ⊃ UN ,Q by the construction

of Q, we focus on the proof of UN ,G ⊂ UN ,Q. In the proof
of this, it is central to prove that for any G ∈ G, each term
of G in the Pauli basis with a nonzero coefficient must be
invariant under the conjugation action of U ∈ UN ,G . We
prove it in three steps, correspondingly in Lemmas 9, 10,
and 11.

First, we show that we can construct an operator L ∈
L(H⊗3) from arbitrary taken G ∈ G such that L is invari-
ant under the conjugation action of U⊗3 for all U ∈ CN ,G .
Here we use the definition of the Clifford operators, which
transform a Pauli operator into some Pauli operator by its
conjugation action.

Lemma 9.—Let N ∈ N, t, t′ ∈ N satisfy t ≡ t′ (mod 2),
U ∈ CN , G ∈ L(H) satisfy UGU† = G, and L ∈ L(H⊗t)

be defined by

L :=
∑

P∈P+
N

γP(G)t
′
P⊗t, (B66)

where γP(G) : L(H) → C gives the expansion coefficient
of P in the Pauli basis, i.e.,

γP(G) := 1
2N tr(GP). (B67)

Then, U⊗tLU†⊗t = L.
We note that here we present this lemma in a general

form because we also use it in the proof of Theorem 10.
Proof.—By Lemma 17 in Appendix G, there exist some

function sU : P+
N → {±1} and some bijection hU on P+

N
such that for any P ∈ P+

N ,

UPU† = sU(P)hU(P). (B68)

We therefore get

∑
P∈P+

N

γP(G)P = G = UGU† =
∑

P∈P+
N

γP(G)sU(P)hU(P)

=
∑

P∈P+
N

γh−1
U (P)(G)sU(h−1

U (P))P. (B69)

By comparing both sides, we get

γP(G) = γh−1
U (P)(G)sU(h−1

U (P)) (B70)

for all P ∈ P+
N . By using this relation, we get

U⊗tLU†⊗t =
∑

P∈P+
N

γP(G)t
′
(UPU†)⊗t

=
∑

P∈P+
N

γP(G)t
′
(sU(P)hU(P))⊗t

=
∑

P∈P+
N

γP(G)t
′
sU(P)thU(P)⊗t

=
∑

P∈P+
N

(γP(G)sU(P))t
′
hU(P)⊗t

=
∑

P∈P+
N

(γh−1
U (P)(G)sU(h−1

U (P)))t
′
P⊗t

=
∑

P∈P+
N

γP(G)t
′
P⊗t

= L. (B71)

�
Second, we suppose that CN ,G is a G-symmetric uni-

tary 3-design and that L ∈ L(H⊗3) is invariant under the
conjugation action of U⊗3 for all U ∈ CN ,G , and we show
that such L is invariant under the conjugation action of
U⊗3 even for all U ∈ UN ,G . This directly follows from
the definitions of symmetric unitary designs and the Haar
measure.

Lemma 10.—Let N ∈ N, t ∈ N, G be a subgroup of UN ,
CN ,G be a G-symmetric unitary t-design, and L ∈ L(H⊗t)

satisfy U⊗tLU†⊗t = L for all U ∈ CN ,G . Then, U⊗tLU†⊗t =
L for all U ∈ UN ,G .

We present this lemma in a general form because we
also use it in the proofs of Theorem 10 and Theorem 4 in
the main text.

Proof.—Since L satisfies U′⊗tLU′†⊗t = L for all U′ ∈
CN ,G , we have

∫
U′∈CN ,G

U′⊗tLU′†⊗tdμCN ,G (U
′)

=
∫

U′∈CN ,G
LdμCN ,G (U

′) = L. (B72)

Since CN ,G is a G-symmetric unitary t-design, we have

∫
U′∈CN ,G

U′⊗tLU′†⊗tdμCN ,G (U
′)

=
∫

U′∈UN ,G
U′⊗tLU′†⊗tdμUN ,G (U

′). (B73)
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By Eqs. (B72) and (B73), we get

L =
∫

U′∈UN ,G
U′⊗tLU′†⊗tdμUN ,G (U

′). (B74)

We therefore get for any U ∈ UN ,G ,

U⊗tLU†⊗t =
∫

U′∈UN ,G
U⊗tU′⊗tLU′†⊗tU†⊗tdμUN ,G (U

′)

=
∫

U′∈UN ,G
(UU′)⊗tL(UU′)†⊗tdμUN ,G (U

′)

=
∫

U′∈UN ,G
U′⊗tLU′†⊗tdμUN ,G (U

′)

= L, (B75)

where we used the left invariance of μUN ,G . �
Finally, under the assumption that L is in the form given

in Lemma 9 and it is invariant under the conjugation action
of U⊗t for all U ∈ UN ,G , we prove that every Pauli basis
composing L with a nonzero coefficient is invariant under
the conjugation action of U for all U ∈ UN ,G . In the proof
of this, we fix a Pauli operator P and consider a continu-
ous map U 
→ UPU† from UN ,G to UN . By the assumption
above and the unitary invariance of the Hilbert-Schmidt
norm, we know that the value of this map only takes
discrete points. The combination of this and the connect-
edness of UN ,G implies that this map always takes the
constant value P, where we use the fact that only a sin-
gleton is a discrete and connected nonempty set. In the
concrete proof process, we consider the linear expansion
of UPU† in the Pauli basis.

Lemma 11.—Let N ∈ N, t ≥ 3, G be a subgroup of UN ,
and L ∈ L(H⊗t) be defined by

L :=
∑

P∈P+
N

γ ′
PP⊗t (B76)

with some γ ′
P ∈ C for P ∈ P+

N and satisfy

U⊗tLU†⊗t = L (B77)

for all U ∈ UN ,G . Then, UPU† = P for all U ∈ UN ,G and
P ∈ P+

N satisfying γ ′
P �= 0.

This lemma is also used in the proof of Theorem 4 in the
main text.

Proof.—We define αP1,P2(U): UN ,G → R by

αP1,P2(U) := 1
2N tr(UP1U†P2) (B78)

for P1, P2 ∈ P+
N , and prove that {αP,P′(U)}U∈UN ,G is dis-

crete for all P, P′ ∈ P+
N satisfying γ ′

P �= 0. We can confirm

that αP1,P2(U) ∈ R by noting that UP1U† and P2 are hermi-
tian. Take arbitrary U ∈ UN ,G . Since L satisfies Eq. (B77),
for any P′ ∈ P+

N , we get

∑
P∈P+

N

γ ′
PαP,P′(U)t =

∑
P∈P+

N

γ ′
P · 1

2tN tr((P′UPU†)⊗t)

= 1
2tN tr(P′⊗tU⊗tLU†⊗t)

= 1
2tN tr(P′⊗tL)

=
∑

P∈P+
N

γ ′
P · 1

2tN tr((P′P)⊗t)

=
∑

P∈P+
N

γ ′
PδP,P′

= γ ′
P′ . (B79)

By the triangle inequality, we have
∑

P∈P+
N

|γ ′
P||αP,P′(U)|t ≥ |γ ′

P′ |. (B80)

By taking the sum over P′ ∈ P+
N , we get

∑
P,P′∈P+

N

|γ ′
P||αP,P′(U)|t ≥

∑
P′∈P+

N

|γ ′
P′ | =

∑
P∈P+

N

|γ ′
P|. (B81)

For any P ∈ P+
N , UPU† can be expanded in the Pauli basis

as

UPU† =
∑

P′∈P+
N

1
2N tr(UPU†P′)P′ =

∑
P′∈P+

N

αP,P′(U)P′.

(B82)

By considering the Hilbert-Schmidt norm of the both sides,
we get

1 = 1
2N tr((UPU†)†(UPU†))

= 1
2N tr

⎛
⎜⎝ ∑

P′,P′′∈P+
N

αP,P′(U)∗αP,P′′(U)P′P′′

⎞
⎟⎠

=
∑

P′,P′′∈P+
N

αP,P′(U)∗αP,P′′(U)
1

2N tr(P′P′′)

=
∑

P′,P′′∈P+
N

αP,P′(U)∗αP,P′′(U)δP′,P′′

=
∑

P′∈P+
N

|αP,P′(U)|2. (B83)
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By Eqs. (B81) and (B83), we get
∑

P,P′∈P+
N

|γ ′
P||αP,P′(U)|t ≥

∑
P∈P+

N

|γ ′
P| · 1

=
∑

P∈P+
N

|γ ′
P|

⎛
⎜⎝ ∑

P′∈P+
N

|αP,P′(U)|2
⎞
⎟⎠

=
∑

P,P′∈P+
N

|γ ′
P||αP,P′(U)|2. (B84)

This is equivalently expressed as
∑

P,P′∈P+
N

|γ ′
P|(|αP,P′(U)|t − |αP,P′(U)|2) ≥ 0. (B85)

Since |αP,P′(U)| ≤ 1 by Eq. (B83) and t ≥ 3, we have
|αP,P′(U)|t − |αP,P′(U)|2 ≤ 0. This implies that equality
holds in Eq. (B85). We therefore get for any P, P′ ∈ P+

N
satisfying γ ′

P �= 0,

|αP,P′(U)|t − |αP,P′(U)|2 = 0. (B86)

Since αP,P′(U) ∈ R, we get

αP,P′(U) = 0, ±1. (B87)

This implies that {αP,P′(U)}U∈UN ,G is discrete. On the other
hand, since UN ,G is connected by Lemma 18 in Appendix G
and αP,P′(U) is continuous, {αP,P′(U)}U∈UN ,G is connected.
We therefore know that {αP,P′(U)}U∈UN ,G is a singleton,
which implies that for any U ∈ UN ,G ,

αP,P′(U) = αP,P′(I) = δP,P′ . (B88)

By plugging this into Eq. (B82), we get

UPU† =
∑

P′∈P+
N

δP,P′P′ = P. (B89)

�
By combining the three lemmas above, we prove Propo-

sition 2.
Proof of Proposition 2.—First, we prove that UN ,G ⊃

UN ,Q. We define Q′ := {Q ∈ P+
N | ∃G ∈ G tr(GQ) �= 0}.

Then, Q is the group 〈Q′〉 generated by Q′. For any G ∈ G,
we know that

G =
∑

Q∈P+
N

γQ(G)Q =
∑

Q∈Q′
γQ(G)Q +

∑
Q∈P+

N \Q′
γQ(G)Q

=
∑

Q∈Q′
γQ(G)Q ∈ span(Q′) ⊂ span(Q), (B90)

where γQ(G) is defined by Eq. (B67), and we used
γQ(G) = 0 for all Q ∈ P+

N \Q′ by the definition of Q′.

For any U ∈ UN ,Q, we therefore get [U, G] = 0. Since this
holds for all G ∈ G, we get UN ,Q ⊂ UN ,G .

Next, we prove that UN ,G ⊂ UN ,Q. Take arbitrary Q ∈
Q′. By the definition of Q′, we can take G ∈ G such that
γQ(G) �= 0. By the definition of γP(G), G can be written as

G =
∑

P∈P+
N

γP(G)P. (B91)

We define L ∈ L(H⊗3) by

L :=
∑

P∈P+
N

γP(G)P⊗3. (B92)

By Lemma 9, we get U⊗3LU†⊗3 = L for all U ∈ CN ,G .
Since CN ,G is a G-symmetric unitary 3-design, by Lemma
10, we get U⊗3LU†⊗3 = L for all U ∈ UN ,G . By Lemma 11,
we know that UPU† = P for all U ∈ UN ,G and P ∈ P+

N sat-
isfying γP(G) �= 0. Since Q satisfies γQ(G) �= 0, we have
for any U ∈ UN ,G , UQU† = Q, or equivalently [U, Q] = 0.
Since this holds for all Q ∈ Q′ and Q = 〈Q′〉, we get
[U, Q] = 0 for all U ∈ UN ,G and Q ∈ Q. This implies that
UN ,G ⊂ UN ,Q. �

By combining Propositions 1 and 2, we prove
Theorem 6.

Proof of Theorem 6.—First, we consider the “if” part.
We suppose that UN ,G = UN ,Q with some subgroup Q
of PN . Then, the conditions for G- and Q-symmetric
unitary 3-designs are equivalent and CN ,G = CN ∩ UN ,G =
CN ∩ UN ,Q = CN ,Q. Thus it suffices to show that CN ,Q
is a Q-symmetric unitary 3-design, which we proven in
Proposition 1.

Next, we consider the “only if” part. We suppose that
CN ,G is a G-symmetric unitary 3-design. We define Q :=
〈{Q ∈ P+

N | ∃G ∈ G such that tr(GQ) �= 0}〉. Then, Q is a
subgroup of PN and by Proposition 2, we get UN ,G = UN ,Q.

�

APPENDIX C: PROOF OF THEOREM 2
(CONSTRUCTION OF SYMMETRIC CLIFFORD

GROUPS)

In this Appendix, we present complete and unique con-
structions of symmetric Clifford groups with elementary
gate sets under Pauli symmetries and certain non-Pauli
symmetries in Theorems 7 and 8, respectively (see Figs. 1
and 3 in the main text). Theorem 7 corresponds to Theorem
2 in the main text. We note that the theorems about uni-
tary designs in this paper are proven without using these
theorems.

1. Pauli symmetries

First, for any Pauli symmetry, we present a construction
of the symmetric Clifford group and prove that the con-
struction is complete and unique. By using the fact that
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any Pauli subgroup can be transformed into a simple Pauli
subgroup in the form of Eq. (B16), we know that it is suf-
ficient only to consider such a form of symmetries. We
show that every symmetric Clifford operator can be writ-
ten with the four types of operators that we consider in the
proofs of Lemmas 5, 6, 7, and 8, and we also show that it
is expressed in a unique way.

Theorem 7.—(Restatement of Theorem 2.) Let N ∈ N

and Q be a subgroup of PN . Then, there exist W ∈ CN and
N1, N2, N3 ∈ N such that

P0WQW† = P0{I , X , Y, Z}⊗N1 ⊗ {I , Z}⊗N2 ⊗ {I}⊗N3 ,
(C1)

which gives a decomposition of N qubits into three
subsystems A1, A2, and A3, each consisting of N1,
N2, and N3 qubits. Moreover, for any U ∈ CN ,Q, there
uniquely exist {μj }N2

j =1 ∈ {0, 1, 2, 3}N2 , {νj ,k}1≤j<k≤N2 ∈
{0, 1}N2(N2−1)/2, V ∈ CN3 and {Pj }N2

j =1 ∈ (P+
N3
)N2 such that

U = W†

⎛
⎝T

N2∏
j =1

Cj (Pj )

⎞
⎠V

⎛
⎝ ∏

j ,k:1≤j<k≤N2

CZ
νj ,k
(2,j ),(2,k)

⎞
⎠

×
⎛
⎝ N2∏

j =1

S
μj
(2,j )

⎞
⎠W, (C2)

where S(2,j ) acts on the j th qubit in the system A2,
CZ(2,j ),(2,k) acts on the j th and kth qubits in the system
A2, V acts on the system A3, Cj (Pj ) is the controlled-Pj
gate with the j th qubit in the system A2 as the control
qubit and the qubits in the system A3 as the target qubits,
and T

∏
represents the ordered product, i.e., T

∏n
j =1 Oj :=

On · · · O2O1.
We note that here we use different notations from those

in Theorem 2 in the main text for convenience of explana-
tion. The subscript (j , k) in O(j ,k) means that O acts on the
kth qubit in the susbystem Aj .

Proof.—By Lemma 14 in Appendix G, we can
take W ∈ CN and N1, N2, N3 ≥ 0 such that P0WQW† =
P0R and R = P0{I , X , Y, Z}⊗N1 ⊗ {I , Z}⊗N2 ⊗ {I}⊗N3 .
Since U ∈ CN ,Q is equivalent to W†UW ∈ CN ,R, it
is sufficient to prove that for any U ∈ CN ,R, there
uniquely exist {μj }N2

j =1 ∈ {0, 1, 2, 3}N2 , {νj ,k}1≤j<k≤N2 ∈
{0, 1}N2(N2−1)/2, V ∈ CN3 and {Pj }N2

j =1 ∈ (P+
N3
)N2 such that

U =
⎛
⎝T

N2∏
j =1

Cj (Pj )

⎞
⎠V

⎛
⎝ ∏

j ,k:1≤j<k≤N2

CZ
νj ,k
(2,j ),(2,k)

⎞
⎠

⎛
⎝ N2∏

j =1

S
μj
(2,j )

⎞
⎠ . (C3)

First, we take arbitrary U ∈ CN ,R and prove that U can be
expressed in the form of Eq. (C3). We are going to prove
by mathematical induction that for any l ∈ {0, 1, . . . , N2},
there exist {μj }l

j =1 ∈ {0, 1, 2, 3}l, {νj ,k}1≤j ≤l,j +1≤k≤N2 ∈
{0, 1}l(2N2−l−1)/2, T ∈ CN3 , and {Qj }l

j =1 ∈ (±P+
N3
)l such

that

[U′, Z(1,m)] = [U′, X(1,m)] = 0 if 1 ≤ m ≤ N1, (C4)

[U′, Z(2,m)] = 0 if 1 ≤ m ≤ N2, (C5)

[U′, X(2,m)] = 0 if 1 ≤ m ≤ l, (C6)

where

U′ :=
⎛
⎝T

l∏
j =1

Cj (Qj )

⎞
⎠T

⎛
⎝ l∏

j =1

N2∏
k=j +1

CZ
νj ,k
(2,j ),(2,k)

⎞
⎠

×
⎛
⎝ l∏

j =1

S
μj
(2,j )

⎞
⎠U†. (C7)

We can easily verify that this holds for l = 0, because
U′ = U in this case and U ∈ CN ,R satisfies U′Z(1,m)U′† =
Z(1,m) and U′X(1,m)U′† = X(1,m) for all m ∈ {1, 2, . . . , N1},
and U′Z(2,m)U′† = Z(2,m) for all m ∈ {1, 2, . . . , N2}. We
take arbitrary l ∈ {0, 1, . . . , N2 − 1} and suppose that
we can take {μj }l

j =1 ∈ {0, 1, 2, 3}N2 , {νj ,k}1≤j ≤l,j +1≤k≤N2 ∈
{0, 1}l(2N2−l−1)/2, T ∈ CN3 and {Qj }l

j =1 ∈ (±P+
N3
)l sat-

isfying Eqs. (C4), (C5), and (C6). By Eq. (C4),
we get

[U′X(2,l+1)U′†, Z(1,m)] = [U′X(2,l+1)U′†, U′Z(1,m)U′†]

= U′[X(2,l+1), Z(1,m)]U′†

= 0 if 1 ≤ m ≤ N1. (C8)

In the same way, by Eqs. (C4), (C5), and (C6), we get

[U′X(2,l+1)U′†, X(1,m)] = 0 if 1 ≤ m ≤ N1, (C9)

[U′X(2,l+1)U′†, Z(2,m)] = U′[X(2,l+1), Z(2,m)]U′† = 0 if 1

≤ m ≤ N2 and m �= l + 1, (C10)

[U′X(2,l+1)U′†, Z(2,l+1)] = U′[X(2,l+1), Z(2,l+1)]U′† �= 0,
(C11)

[U′X(2,l+1)U′†, X(2,m)] = U′[X(2,l+1), X(2,m)]U′† = 0 if 1

≤ m ≤ l. (C12)

Since U′ ∈ CN and X(2,l+1) ∈ P+
N , we get

U′X(2,l+1)U′† ∈ ±P+
N . (C13)
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By Eqs. (C8), (C9), (C10), (C11), (C12), and (C13), we get U′X(2,l+1)U′† ∈ ±{X(2,l+1), Y(2,l+1)} ⊗ {I(2,l+2), Z(2,l+2)} ⊗
· · · ⊗ {I(2,N2), Z(2,N2)} ⊗ {I(3,1), X(3,1), Y(3,1), Z(3,1)} ⊗ · · · ⊗ {I(3,N3), X(3,N3), Y(3,N3), Z(3,N3)}. By noting that SXS† = Y, SYS† =
−X and HXH † = Z, we can take μl+1 ∈ {0, 1, 2, 3} and T′ ∈ CN3 such that (Sμl+1

(2,l+1) ⊗ T′)U′X(2,l+1)U′†(Sμl+1
(2,l+1) ⊗

T′)† ∈ {X(2,l+1)} ⊗ {I(2,l+2), Z(2,l+2)} ⊗ · · · ⊗ {I(2,N2), Z(2,N2)} ⊗ {I(3,1), Z(3,1)} ⊗ · · · ⊗ {I(3,N3), Z(3,N3)}. Equivalently, there
exist {νl+1,k}N2

k=l+2 ∈ {0, 1}N2−l−1 and {ξk}N3
k=1 ∈ {0, 1}N3 satisfying

(Sμl+1
(2,l+1) ⊗ T′)U′X(2,l+1)U′†(Sμl+1

(2,l+1) ⊗ T′)† = X(2,l+1)

( N2∏
k=l+2

Z
νl+1,k
(2,k)

)( N3∏
k=1

Zξk(3,k)

)
. (C14)

By noting that CZ(X ⊗ I)CZ† = X ⊗ Z, we know that U′′X(2,l+1)U′′† = X(2,l+1), i.e., [U′′, X(2,l+1)] = 0 with U′′ defined
by

U′′ :=
( N3∏

k=1

CZξk(2,l+1),(3,k)

)( N2∏
k=l+2

CZ
νl+1,k
(2,l+1),(2,k)

)
(Sμl+1
(2,l+1) ⊗ T′)U′. (C15)

By Eqs. (C4), (C5), (C6), and (C15), we get [U′′, Z(1,m)] = [U′′, X(1,m)] = 0 if 1 ≤ m ≤ N1, [U′′, Z(2,m)] = 0 if 1 ≤ m ≤ N2,
and [U′′, X(2,m)] = 0 if 1 ≤ m ≤ l. In order to complete the process of mathematical induction, we show that U′′ can be
written in the form of Eq. (C7). By plugging Eq. (C7) into (C15), we get

U′′ = Cl+1

( N3∏
k=1

Zξk(3,k)

)
T′
( N2∏

k=l+2

CZ
νl+1,k
(2,l+1),(2,k)

)
Sμl+1
(2,l+1)

⎛
⎝T

l∏
j =1

Cj (Qj )

⎞
⎠ T

⎛
⎝ l∏

j =1

N2∏
k=j +1

CZ
νj ,k
(2,j ),(2,k)

⎞
⎠
⎛
⎝ l∏

j =1

S
μj
(2,j )

⎞
⎠U†.

(C16)

We note that

T′
( N2∏

k=l+2

CZ
νl+1,k
(2,l+1),(2,k)

)
Sμl+1
(2,l+1)

⎛
⎝T

l∏
j =1

Cj (Qj )

⎞
⎠ =
⎛
⎝T

l∏
j =1

Cj (T′Qj T′†)

⎞
⎠ T′
( N2∏

k=l+2

CZ
νl+1,k
(2,l+1),(2,k)

)
Sμl+1
(2,l+1). (C17)

By plugging Eq. (C17) into Eq. (C16), we get

U′′ =
⎛
⎝T

l+1∏
j =1

Cj (Q′
j )

⎞
⎠T′′

⎛
⎝ l+1∏

j =1

N2∏
k=j +1

CZ
νj ,k
(2,j ),(2,k)

⎞
⎠
⎛
⎝ l+1∏

j =1

S
μj
(2,j )

⎞
⎠U†, (C18)

where T′′ := T′T, Q′
j := T′Qj T′† for j ∈ {1, 2, . . . , l}, Q′

l+1 :=∏N3
k=1 Zξk(3,k). We have thus completed the process of math-

ematical induction, which implies that we can take {μj }N2
j =1 ∈ {0, 1, 2, 3}N2 , {νj ,k}1≤j<k≤N2 ∈ {0, 1}N2(N2−1)/2, T ∈ CN3 and

{Qj }N2
j =1 ∈ (±P+

N3
)N2 satisfying

∀m ∈ {1, 2, . . . , N1} [U′, Z(1,m)] = [U′, X(1,m)] = 0,

∀m ∈ {1, 2, . . . , N2} [U′, Z(2,m)] = [U′, X(2,m)] = 0 (C19)

with

U′ :=
⎛
⎝T

N2∏
j =1

Cj (Qj )

⎞
⎠T

⎛
⎝ ∏

j ,k:1≤j<k≤N2

CZ
νj ,k
(2,j ),(2,k)

⎞
⎠
⎛
⎝ N2∏

j =1

S
μj
(2,j )

⎞
⎠U†. (C20)
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This implies that

U = U′†

⎛
⎝T

N2∏
j =1

Cj (Qj )

⎞
⎠T

⎛
⎝ ∏

j ,k:1≤j<k≤N2

CZ
νj ,k
(2,j ),(2,k)

⎞
⎠
⎛
⎝ l∏

j =1

S
μj
(2,j )

⎞
⎠

=
⎛
⎝T

N2∏
j =1

Cj (U′†Qj U′)

⎞
⎠U′†T

⎛
⎝ ∏

j ,k:1≤j<k≤N2

CZ
νj ,k
(2,j ),(2,k)

⎞
⎠
⎛
⎝ l∏

j =1

S
μj
(2,j )

⎞
⎠ . (C21)

Equation (C19) implies that U′ acts only on the system A3, and Eq. (C20) implies that U′ is a Clifford operator. For any
j ∈ {1, 2, . . . , N2}, the Pauli operator Qj on the subsystem A3 satisfies U′†Qj U′ ∈ ±P+

N3
, i.e., U′†Qj U′ = (−1)κj Pj with

some κj ∈ {0, 1} and Pj ∈ P+
N3

. We note that

Cj (U′†Qj U′) = (Cj (−I)
)κj Cj (Pj ) = S

2κj
(2,j )Cj (Pj ). (C22)

We therefore get

U =
⎛
⎝T

N2∏
j =1

Cj (Pj )

⎞
⎠U′†T

⎛
⎝ ∏

j ,k:1≤j<k≤N2

CZ
νj ,k
(2,j ),(2,k)

⎞
⎠
⎛
⎝ l∏

j =1

S
μj +2κj
(2,j )

⎞
⎠

=
⎛
⎝T

N2∏
j =1

Cj (Pj )

⎞
⎠V

⎛
⎝ ∏

j ,k:1≤j<k≤N2

CZ
νj ,k
(2,j ),(2,k)

⎞
⎠
⎛
⎝ l∏

j =1

S
μ′

j
(2,j )

⎞
⎠ , (C23)

where V := U′†T ∈ CN3 and μ′
j ∈ {0, 1, 2, 3} is defined by μ′

j ≡ μj + 2κj (mod 4).
Next, we prove that the expression of U ∈ CN ,R by Eq. (C3) is unique. We suppose that {μj }N2

j =1, {μ′
j }N2

j =1 ∈ {0, 1, 2, 3}N2 ,
{νj ,k}1≤j<k≤N2 , {ν ′

j ,k}1≤j<k≤N2 ∈ {0, 1}N2(N2−1)/2, V, V′ ∈ CN3 and {Pj }N2
j =1, {P′

j }N2
j =1 ∈ (P+

N3
)N2 satisfy

⎛
⎝T

N2∏
j =1

Cj (Pj )

⎞
⎠V

⎛
⎝ ∏

j ,k:1≤j<k≤N2

CZ
νj ,k
(2,j ),(2,k)

⎞
⎠
⎛
⎝ N2∏

j =1

S
μj
(2,j )

⎞
⎠

=
⎛
⎝T

N2∏
j =1

Cj (P′
j )

⎞
⎠V′

⎛
⎝ ∏

j ,k:1≤j<k≤N2

CZ
ν′j ,k
(2,j ),(2,k)

⎞
⎠
⎛
⎝ N2∏

j =1

S
μ′

j
(2,j )

⎞
⎠ . (C24)

We consider applying these two operators to vectors given in the form of |�〉 ⊗ |x1x2 · · · xN2〉 ⊗ |�〉, where |�〉,
|x1x2 · · · xN2〉 := |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xN2〉 and |�〉 are vectors of the system A1, A2 and A3, respectively. We first consider
the case when xl = 0 for all l ∈ {1, 2, . . . , N2}. Then, we get

|�〉 ⊗ |x1x2 · · · xN2〉 ⊗ V |�〉 = |�〉 ⊗ |x1x2 · · · xN2〉 ⊗ V′ |�〉 . (C25)

Since this holds for all |�〉 ∈ H3, we get V = V′. We next take arbitrary j ∈ {1, 2, . . . , N2} and consider the case when
xl = δl,j for all l ∈ {1, 2, . . . , N2}. Then, we get

|�〉 ⊗ |x1x2 · · · xN2〉 ⊗ (iμj Pj )V |�〉 = |�〉 ⊗ |x1x2 · · · xN2〉 ⊗ (iμ
′
j P′

j )V |�〉 . (C26)

Since this holds for all |�〉 ∈ H3, we get iμj Pj = iμ
′
j P′

j . Since μj ,μ′
j ∈ {0, 1, 2, 3} and Pj , P′

j ∈ P+
N3

, this implies that μj =
μ′

j and Pj = P′
j . We finally take arbitrary j , k ∈ {1, 2, . . . , N2} satisfying j < k and consider the case when xl = δl,j + δl,k

for all l ∈ {1, 2, . . . , N2}. Then, we get

|�〉 ⊗ (−1)νj ,k |x1x2 · · · xN2〉 ⊗ (iμj Pj )V |�〉 = |�〉 ⊗ (−1)ν
′
j ,k |x1x2 · · · xN2〉 ⊗ (iμj Pj )V |�〉 . (C27)
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This implies that (−1)νj ,k = (−1)ν
′
j ,k . Since νj ,k, ν ′

j ,k ∈
{0, 1}, we get νj ,k = ν ′

j ,k. We therefore get μj = μ′
j , νj ,k =

ν ′
j ,k, V = V′ and Pj = P′

j for all j , k ∈ {1, 2, . . . , N2}. This
means that the expression of U ∈ CN ,R in the form of Eq.
(C3) is unique. �

2. U(1) and SU(2) symmetries

Next, we take U(1) and SU(2) symmetries given by Eqs.
(7) and (8) in the main text as examples of non-Pauli sym-
metries, and present complete and unique constructions
for the symmetric Clifford groups. In both cases, every
symmetric Clifford operator can be written as the product
of a permutation operator and a Pauli-symmetric Clifford
operator as shown in Fig. 3 in the main text.

Theorem 8.—[Construction of the U(1) and SU(2)-
symmetric Clifford groups.] Let N ∈ N, and G1 and G2 be
given by

G1 =
{(

eiθZ)⊗N | θ ∈ R

}
, (C28)

G2 =
{(

ei(θX X +θYY+θZ Z))⊗N | θX , θY, θZ ∈ R

}
. (C29)

Then, for any U ∈ CN ,G1 , there uniquely exist {μj }N
j =1 ∈

{0, 1, 2, 3}N , {νj ,k}1≤j<k≤N ∈ {0, 1}N (N−1)/2, σ ∈ SN , and
c ∈ U0 such that

U = c

⎛
⎝ ∏

j ,k:1≤j<k≤N

CZ
νj ,k
j ,k

⎞
⎠
⎛
⎝ N∏

j =1

S
μj
j

⎞
⎠Kσ , (C30)

and for any U ∈ CN ,G2 , there uniquely exist σ ∈ SN and
c ∈ U0 such that

U = cKσ , (C31)

where Kσ is defined as the permutation operator on H
defined by

Kσ

⎛
⎝ N⊗

j =1

|ψj 〉
⎞
⎠ :=

N⊗
j =1

|ψσ−1(j )〉 . (C32)

Proof.—First, we consider the expression for CN ,G1 . For
the completeness of the expression, we take arbitrary U ∈
CN ,G1 and show that U can be written in the form of Eq.
(C30). Since U is G1-symmetric, we have

U
(
eiθZ)⊗N U† = (eiθZ)⊗N (C33)

for all θ ∈ R. By taking the derivative at θ = 0, we get

N∑
j =1

UZj U† = U

⎛
⎝ N∑

j =1

Zj

⎞
⎠U† =

N∑
j =1

Zj . (C34)

By noting that the both sides are the sum of N different
Pauli operators with equal coefficients, we know that

UZj U† = Zσ(j ) ∀j ∈ {1, 2, . . . , N } (C35)

with some σ ∈ SN . We define U′ := UK†
σ . Then, we get

U′Zj U′† = UK†
σZj KσU†

= UZσ−1(j )U
† = Zj ∀j ∈ {1, 2, . . . , N }.

(C36)

By Theorem 7, U′ can be written as

U′ = c

⎛
⎝ ∏

j ,k:1≤j<k≤N

CZ
νj ,k
j ,k

⎞
⎠
⎛
⎝ N∏

j =1

S
μj
j

⎞
⎠ (C37)

with some μj ∈ {0, 1, 2, 3}, νj ,k ∈ {0, 1}, and c ∈ U0. Note
that the term c corresponds to the term V in Eq. (C2) when
N3 = 0. We therefore get

U = c

⎛
⎝ ∏

j ,k:1≤j<k≤N

CZ
νj ,k
j ,k

⎞
⎠
⎛
⎝ N∏

j =1

S
μj
j

⎞
⎠Kσ . (C38)

For the uniqueness of this expression, for any U ∈ CN ,G1 ,
we take arbitrary two representations

U = c

⎛
⎝ ∏

j ,k:1≤j<k≤N

CZ
νj ,k
j ,k

⎞
⎠
⎛
⎝ N∏

j =1

S
μj
j

⎞
⎠Kσ

= c′

⎛
⎝ ∏

j ,k:1≤j<k≤N

CZ
ν′j ,k
j ,k

⎞
⎠
⎛
⎝ N∏

j =1

S
μ′

j
j

⎞
⎠Kσ ′ (C39)

with σ , σ ′ ∈ SN , {μj }N
j =1, {μ′

j }N
j =1 ∈ {0, 1, 2, 3}N ,

{νj ,k}1≤j<k≤N , {ν ′
j ,k}1≤j<k≤N ∈ {0, 1}N (N−1)/2, and c, c′ ∈

U0, and show that all these parameters for the two repre-
sentations are the same. We suppose that σ �= σ ′. Then,
we can take j ∈ {1, 2, . . . , N } such that σ(j ) �= σ ′(j ). By
using the two representations for U, we get

Zσ(j ) = UZj U† = Zσ ′(j ), (C40)

but this is a contradiction. We therefore get σ = σ ′. By
plugging this into Eq. (C39), we get

c

⎛
⎝ ∏

j ,k:1≤j<k≤N

CZ
νj ,k
j ,k

⎞
⎠
⎛
⎝ N∏

j =1

S
μj
j

⎞
⎠

= c′

⎛
⎝ ∏

j ,k:1≤j<k≤N

CZ
ν′j ,k
j ,k

⎞
⎠
⎛
⎝ N∏

j =1

S
μ′

j
j

⎞
⎠ . (C41)
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By Theorem 7, we get μj = μ′
j for all j ∈ {1, 2, . . . , N },

νj ,k = ν ′
j ,k for all j , k ∈ {1, 2, . . . , N } satisfying j < k, and

c = c′.
Next, we consider the expression for CN ,G2 . For the com-

pleteness of the expression, we take arbitrary U ∈ CN ,G2
and show that U can be written in the form of Eq. (C31).
In the same way as the case above, we have Eq. (C35) and

UXj U† = Xσ ′(j ) (C42)

with some σ ′ ∈ SN . We suppose that σ �= σ ′. Then, we
can take j ∈ {1, 2, . . . , N } such that σ(j ) �= σ ′(j ). This
implies that

[Zj , Xj ] = U†[UZj U†, UXj U†]U = U†[Zσ(j ), Xσ ′(j )]U = 0
(C43)

but this contradicts with [Zj , Xj ] �= 0. We thus get σ = σ ′.
We define U′ := UK†

σ . Then, we get U′Zj U′† = Zj and
U′Xj U′† = Xj for all j ∈ {1, 2, . . . , N }. Since such U′ is
restricted to U′ = cI with some c ∈ U0, we get

U = cKσ . (C44)

The uniqueness of this expression is trivial. �

APPENDIX D: PROOF OF UNITARY 1-DESIGNS
IN THEOREM 3

In this Appendix, we take U(1) and SU(2) symmetries
given by Eqs. (7) and (8) in the main text as examples
of non-Pauli symmetries, and show that the symmetric
Clifford groups are symmetric unitary 1-designs for those
symmetries. This corresponds to the former half of the
statement of Theorem 3 in the main text. The proof method
is similar to the one in the “if” part of Theorem 6.

Theorem 9.—(1-design part of Theorem 3.) Let N ∈ N,
G1 and G2 be defined by

G1 =
{(

eiθZ)⊗N | θ ∈ R

}
, (D1)

G2 =
{(

ei(θX X +θYY+θZ Z))⊗N | θX , θY, θZ ∈ R

}
. (D2)

Then, CN ,Gj is a Gj -symmetric unitary 1-design for j =
1, 2.

Proof.—First, we consider the symmetry given by G2.
We define D by

D(L) := 1
N !

∑
σ∈SN

KσLK†
σ ∀L ∈ L(H), (D3)

where Kσ is the permutation operator defined by Eq. (C32).
Then, for any L ∈ L(H) and σ ′ ∈ SN , we get

Kσ ′D(L)K†
σ ′ = 1

N !

∑
σ∈SN

Kσ ′KσLK†
σK†

σ ′

= 1
N !

∑
σ∈SN

Kσ ′σLK†
σ ′σ = 1

N !

∑
σ∈SN

KσLK†
σ = D(L).

(D4)

This implies that

D(L) ∈ span{V⊗N | V ∈ U1} (D5)

by Theorem 7.11 of Ref. [47]. It is therefore sufficient
to show that UV⊗N U† = V⊗N for all U ∈ UN ,G2 and V ∈
U1, in order to show that D(L) satisfies UD(L)U† =
D(L) for all U ∈ UN ,G2 . Take arbitrary U ∈ UN ,G2 and
V ∈ U1. Since U satisfies [U, (eiθX )⊗N ] = [U, (eiθY)⊗N ] =
[U, (eiθZ)⊗N ] = 0 for all θ ∈ R, by taking the derivative at
θ = 0, we get

[U, Xtot] = [U, Ytot] = [U, Ztot] = 0, (D6)

where Xtot :=∑N
k=1 Xk, Ytot :=∑N

k=1 Yk, and Ztot :=∑N
k=1 Zk. Since V is a unitary operator on a single qubit,

V can be written as V = ei(φI I+φX X +φYY+φZ Z) with some
φI ,φX ,φY,φZ ∈ R. This implies that

V⊗N = ei(NφI I+φX Xtot+φYYtot+φZ Ztot). (D7)

By Eqs. (D6) and (D7), we get [V⊗N , U] = 0 for all
U ∈ UN ,G2 and V ∈ U1. By Eq. (D5), this implies that
[D(L), U] = 0 for all U ∈ UN ,G2 . By Lemma 1, for X =
CN ,G2 and UN ,G2 , we get

�1,X (L) = �1,X (D(L)) =
∫

U∈X
UD(L)U†dμX (U)

=
∫

U∈X
D(L)dμX (U) = D(L) (D8)

for all L ∈ L(H). Since this holds for X = CN ,G2 and
UN ,G2 , this implies that �1,CN ,G2

= �1,UN ,G2
, or equiva-

lently, CN ,G2 is a G2-symmetric unitary 1-design.
Next, we consider the symmetry given by G1. We define

D by Eq. (D3). Then, D satisfies D ∈ C1,G . By the same
argument as the case of G2, we get D(L) ∈ span{V⊗N | V ∈
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U1}. We define D′ ∈ C1,G1 by

D′(L) := 1
2N

∑
(μ1,μ2,...,μN )∈{0,1}N

(
N∏

k=1

Zμk
k

)
L

×
(

N∏
k=1

Z†μk
k

)
∀L ∈ L(H). (D9)

and D′′ by D′′ := D′ ◦ D. Then, we get D′′ ∈ C1,G1 by
Lemma 16 in Appendix G, and

D′′(L) ∈ span{(V + ZVZ)⊗N | V ∈ U1}. (D10)

It is therefore sufficient to prove that [(V + ZVZ)⊗N , U] =
0 for all U ∈ UN ,G1 and V ∈ U1, in order to show that
UD′′(L)U† = D′′(L) for all U ∈ UN ,G1 . Take arbitrary U ∈
UN ,G and V ∈ U1. In the same way as Eq. (D6), we can
prove that U satisfies

[U, Ztot] = 0. (D11)

Since V is a unitary operator on a single qubit, we
note that V = ei(φI I+φX X +φYY+φZ Z), i.e., V = eiφI cos(φ)I +
i sin(φ)(φX X + φYY + φZZ)/φ with some φI ,φX ,φY,φZ ∈
R, where φ :=

√
φ2

X + φ2
Y + φ2

Z . We thus get V + ZVZ =
2eiφI [cos(φ)I + i sin(φ) · φZZ/φ]. We take r ≥ 0 and ψ ∈
R such that r cos(ψ) = cos(φ) and r sin(ψ) = sin(φ) ·
φZ/φ. Then we get V + ZVZ = 2reiφI eiψZ . This implies
that

(V + ZVZ)⊗N = (2reiφI )N eiψZtot . (D12)

By Eqs. (D11) and (D12), we get [(V + ZVZ)⊗N , U] = 0
for all U ∈ UN ,G1 and V ∈ U1. By Eq. (D10), this implies
that [D′′(L), U] = 0 for all U ∈ UN ,G1 . By the same argu-
ment as the case of G2, we know that CN ,G1 is a G1-
symmetric unitary 1-design. �

We note that there exists a group G such that the G-
symmetric Clifford group CN ,G is not even a G-symmetric
unitary 1-design. As a simple example, we can take N =
1 and G = {eiθ(αZ+βX ) | θ ∈ R} with α,β ∈ R satisfying
α > β > 0. In this case, we can show that C1,G is not a G-
symmetric unitary 1-design as follows: We take arbitrary
U ∈ C1,G . Then, U satisfies

Ueiθ(αZ+βX )U† = eiθ(αZ+βX ) (D13)

for all θ ∈ R. By taking the derivative at θ = 0, we get

αUZU† + βUXU† = U(αZ + βX )U† = αZ + βX .
(D14)

By noting that both UZU† and UXU† are Pauli operators
and α > β > 0, we get

UZU† = Z, UXU† = X ∀U ∈ C1,G . (D15)

By Lemma 10, we get

UZU† = Z, UXU† = X ∀U ∈ U1,G . (D16)

This implies that U = eiθ I with some θ ∈ R for all U ∈
U1,G , i.e., U1,G ⊂ U0I , but this contradicts with (αZ +
βX )/

√
α2 + β2 ∈ U1,G . We therefore know that C1,G is not

a G-symmetric unitary 1-design.

APPENDIX E: DISPROOF OF UNITARY
2-DESIGNS IN THEOREM 3

In this Appendix, we show that for a certain class of
non-Pauli symmetries, the symmetric Clifford group is not
a symmetric unitary 2-design. This is a generalized state-
ment of the latter half of Theorem 3 in the main text.
Concretely, we consider the setup where a system consists
of M ≥ 2 copies of n qubits and a symmetry group G is
given by

G = {F⊗M | F ∈ F} (E1)

with a connected Lie subgroup F of Un on n qubits. In a
physical perspective, this symmetry represents the conser-
vation of the total M quantities each of which is defined on
n qubits. In a mathematical perspective, G is isomorphic to
F and the conserved quantities on n qubits are elements of
the Lie algebra f of F . This form of symmetries includes
the U(1) and SU(2) symmetries given by Eqs. (7) and (8)
in the main text as special cases. In fact, those two sym-
metry groups are represented with M = N , n = 1 and F
given by

F = {eiθZ | θ ∈ R
}

, F = {ei(θX X +θYY+θZ Z)

| θX , θY, θZ ∈ R} . (E2)

Theorem 10.—(Generalized version of the 2-design part
of Theorem 3.) Let N ∈ N and G be a subgroup of UN
given in the form Eq. (E1) with M ≥ 2, n ∈ N and a con-
nected Lie subgroup F of Un. Then, CN ,G is a G-symmetric
unitary 2-design if and only if UN ,G = UN .

Since we are going to deal with many Hilbert spaces
in the proof, we define the notations for Hilbert spaces as
follows: In the context of unitary 2-designs, we consider
two copies of the Hilbert space H associated with N qubits,
which we denote by H1 and H2. The symmetry G naturally
induces the decomposition of the Hilbert space Hj into M
parts, which we denote the kth part by Hj

k. We denote Hj
k

simply by Hk when we need not specify j .
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Proof.—Since CN is a unitary 3-design [27,28], the “if”
part is trivial. In the following, we consider the “only if”
part. Suppose that CN ,G is a G-symmetric unitary 2-design.
We define f as the Lie algebra of F , and we are going to
prove that f ⊂ {aI | a ∈ R}. We take arbitrary A ∈ f. Since
eiθA ∈ F for all θ ∈ R, we have

M⊗
k=1

eiθA(Hk) ∈ G. (E3)

We take arbitrary U ∈ CN ,G . Then, U satisfies

[
U,

M⊗
k=1

eiθA(Hk)

]
= 0. (E4)

By taking the derivative at θ = 0, we get

[
U,

M∑
k=1

A(Hk)

]
= 0. (E5)

We define βP as the expansion coefficient of P in A in the
Pauli basis, i.e., βP := tr(AP)/2n. Then, A can be written
as

A =
∑

P∈P+
n

βPP. (E6)

By plugging Eq. (E6) into Eq. (E5), we get
⎡
⎣U,

M∑
k=1

∑
P∈P+

n

βPP(Hk)

⎤
⎦ = 0, (E7)

or equivalently,

U

⎛
⎝ M∑

k=1

∑
P∈P+

n

βPP(Hk)

⎞
⎠U† =

M∑
k=1

∑
P∈P+

n

βPP(Hk). (E8)

We define

B :=
M∑

k=1

∑
P∈P+

n

β2
PP(H

1
k ) ⊗ P(H

2
k ). (E9)

Then, we get U⊗2BU†⊗2 = B by Lemma 9. Since this holds
for all U ∈ CN ,G and CN ,G is a G-symmetric unitary 2-
design, we get U⊗2BU†⊗2 = B for all U ∈ UN ,G by Lemma
10. By noting that the SWAP operator SWAP(H1,H2) between
the Hilbert space H1 and H2 satisfies [SWAP(H1,H2), G] = 0
for all G ∈ G, we know that eiθ ·SWAP(H1,H2) ∈ UN ,G for all
θ ∈ R. We thus get
⎛
⎝ 2⊗

j =1

eiθ ·SWAP(H
j
1,Hj

2)

⎞
⎠B

⎛
⎝ 2⊗

j =1

e−iθ ·SWAP(H
j
1,Hj

2)

⎞
⎠ = B

(E10)

for all θ ∈ R. By taking the derivative at θ = 0, we get
⎡
⎣ 2∑

j =1

SWAP(H
j
1,Hj

2), B

⎤
⎦ = 0. (E11)

This implies that for any Q, R, S ∈ P+
n ,

tr

⎛
⎝
⎡
⎣ 2∑

j =1

SWAP(H
j
1,Hj

2), B

⎤
⎦(Q(H1

1) ⊗ R(H
1
2) ⊗ S(H

2
1)
)⎞⎠ = 0.

(E12)

By using Eq. (E9), we expand the left-hand side of this as
follows:

tr

⎛
⎝
⎡
⎣ 2∑

j =1

SWAP(H
j
1,Hj

2), B

⎤
⎦(Q(H1

1) ⊗ R(H
1
2) ⊗ S(H

2
1)
)⎞⎠

= tr

⎛
⎝
⎡
⎣ 2∑

j =1

SWAP(H
j
1,Hj

2),
M∑

k=1

∑
P∈P+

n

β2
PP(H

1
k ) ⊗ P(H

2
k )

⎤
⎦(Q(H1

1) ⊗ R(H
1
2) ⊗ S(H

2
1)
)⎞⎠

= tr

⎛
⎝
⎡
⎣ 2∑

j =1

SWAP(H
j
1,Hj

2),
2∑

k=1

∑
P∈P+

n

β2
PP(H

1
k ) ⊗ P(H

2
k )

⎤
⎦(Q(H1

1) ⊗ R(H
1
2) ⊗ S(H

2
1)
)⎞⎠

=
∑

P∈P+
n

β2
Ptr
([([

SWAP(H
1
1,H1

2) ⊗ I (H
2
1) ⊗ I (H

2
2), P(H

1
1) ⊗ I (H

1
2) ⊗ P(H

2
1) ⊗ I (H

2
2)
]
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+
[

SWAP(H
1
1,H1

2) ⊗ I (H
2
1) ⊗ I (H

2
2), I (H

1
1) ⊗ P(H

1
2) ⊗ I (H

2
1) ⊗ P(H

2
2)
]

+
[
I (H

1
1) ⊗ I (H

1
2) ⊗ SWAP(H

2
1,H2

2), P(H
1
1) ⊗ I (H

1
2) ⊗ P(H

2
1) ⊗ I (H

2
2)
]

+
[
I (H

1
1) ⊗ I (H

1
2) ⊗ SWAP(H

2
1,H2

2), I (H
1
1) ⊗ P(H

1
2) ⊗ I (H

2
1) ⊗ P(H

2
2)
])

×
(

Q(H1
1) ⊗ R(H

1
2) ⊗ S(H

2
1) ⊗ I (H

2
2)
)]

⊗
2⊗

j =1

M⊗
k=3

I (H
j
k)

⎞
⎠

= 22(M−2)n
∑

P∈P+
n

β2
P

(
tr
([

SWAP(H
1
1,H1

2), P(H
1
1) ⊗ I (H

1
2)
] (

Q(H1
1) ⊗ R(H

1
2)
)

⊗ PS(H
2
1) ⊗ I (H

2
2)
)

+tr
([

SWAP(H
1
1,H1

2), I (H
1
1) ⊗ P(H

2
1)
] (

Q(H1
1) ⊗ R(H

1
2)
)

⊗ S(H
2
1) ⊗ P(H

2
2)
)

+tr
(

PQ(H1
1) ⊗ R(H

2
1) ⊗
[

SWAP(H
2
1,H2

2), P(H
2
1) ⊗ I (H

2
2)
] (

S(H
2
1) ⊗ I (H

2
2)
))

+tr
(

Q(H1
1) ⊗ PR(H

2
1) ⊗
[

SWAP(H
2
1,H2

2), I (H
2
1) ⊗ P(H

2
2)
] (

S(H
2
1) ⊗ I (H

2
2)
)))

. (E13)

The four terms in the sum can be calculated as follows:

tr([SWAP, P ⊗ I ](Q ⊗ R)⊗ PS ⊗ I)

= tr([SWAP, P ⊗ I ](Q ⊗ R))tr(PS)tr(I)

= tr(SWAP([P ⊗ I , Q ⊗ R])) · 2nδP,S · 2n

= 22nδP,Str(SWAP([P, Q] ⊗ R))

= 22nδP,Str([P, Q]R), (E14)

tr([SWAP, I ⊗ P](Q ⊗ R)⊗ S ⊗ R)

= tr([SWAP, I ⊗ P](Q ⊗ R))tr(S)tr(R)

= tr(SWAP[I ⊗ P, Q ⊗ R]) · 2nδS,I · 2nδR,I

= 22nδR,IδS,I tr(SWAP[I ⊗ P, Q ⊗ I ])

= 0, (E15)

tr(PQ ⊗ R ⊗ [SWAP, P ⊗ I ](S ⊗ I))

= tr(PQ)tr(R)tr([SWAP, P ⊗ I ](S ⊗ I))

= 2nδP,Q · 2nδR,I · tr(SWAP[P ⊗ I , S ⊗ I ])

= 22nδP,QδR,I tr(SWAP([P, S] ⊗ I))

= 22nδP,QδR,I tr([P, S])

= 0, (E16)

tr(Q ⊗ PR ⊗ [SWAP, I ⊗ P](S ⊗ I))

= tr(Q)tr(PR)tr([SWAP, I ⊗ P](S ⊗ I))

= 2nδQ,I · 2nδP,R · tr(SWAP[I ⊗ P, S ⊗ I ])

= 0, (E17)

where we used the cyclicity of the trace and the swap trick
tr(SWAP(L ⊗ M )) = LM . By plugging Eqs. (E13), (E14),

(E15), (E16), and (E17) into Eq. (E12), we get

22(M−1)nβ2
S tr([S, Q]R) = 0. (E18)

Suppose that βS �= 0. Then, Eq. (E16) means that
tr([S, Q]R) = 0. Since this holds for all Q, R ∈ P+

n , we
have [S, Q] = 0 for all Q ∈ P+

n . This implies that S = I .
We therefore know that βS �= 0 for all S ∈ P+

n \{I}, or
equivalently, A = βI I . Since this holds for all A ∈ f, we get
f ⊂ {aI | a ∈ R}). Since the connected Lie group F can be
generated by eif by Corollary 2.31 of Ref. [48], we know
that F ⊂ {eiaI | a ∈ R}, which implies that G ⊂ {eiaI | a ∈
R}. We thus get UN ,G = UN . �

APPENDIX F: WEIGHTED UNITARY DESIGNS

In this Appendix, we introduce weighted symmetric uni-
tary designs and show that the condition for a symmetric
Clifford group to be a weighted symmetric unitary design
is equivalent to the condition for it to be an unweighted
symmetric unitary design, which we defined in Definition
4. The definition of weighted symmetric unitary designs is
as follows.

Definition 5.—(Weighted symmetric unitary designs.)
Let N , n, t ∈ N, G be a subgroup of UN , λ1, λ2, . . . , λn ∈ R,
and U1, U2, . . . , Un ∈ UN . A finite set of pairs {(λj , Uj )}n

j =1
is a weighted G-symmetric unitary t-design if

∑n
j =1 λj = 1

and

n∑
j =1

λj Et,Uj = �t,UN ,G . (F1)
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We present the equivalence between the conditions for a
symmetric Clifford group to be weighted and unweighted
symmetric unitary designs in the following theorem.

Theorem 11.—(Equivalence between unweighted and
weighted symmetric unitary designs for symmetric Clif-
ford groups.) Let N , t ∈ N, G be a subgroup of
UN ,G . Then, there exists n ∈ N, λ1, λ2, . . . , λn ∈ R and
U1, U2, . . . , Un ∈ CN ,G such that {(λj , Uj )}n

j =1 is a weighted
G-symmetric unitary t-design if and only if CN ,G is an
unweighted G-symmetric unitary t-design.

By combining this theorem with Theorems 1, 3, and 4 in
the main text, we know that the condition for an ensemble
of CN ,G is an unweighted G-symmetric unitary t-design.

Proof.—First, we prove the “if” part. We suppose that
CN ,G is an unweighted G-symmetric unitary t-design. We
define n := |CN ,G/(U0I)|, λj := 1/|CN ,G/(U0I)| for all j ∈
{1, 2, . . . , n}, and take U1, U2,. . . , Un from all the equiva-
lence classes of CN ,G/(U0I). Then, we get

n∑
j =1

λj Et,Uj = �t,CN ,G = �t,UN ,G . (F2)

This means that {(λj , Uj )}n
j =1 is a weighted G-symmetric

unitary t-design.
Next, we prove the “only if” part. We suppose that there

exists n ∈ N, λ1, λ2, . . . , λn ∈ R and U1, U2, . . . , Un ∈
CN ,G such that {(λj , Uj )}n

j =1 is a weighted unitary t-design.
We define a map D on L(H⊗t) by

D :=
n∑

j =1

λj Et,Uj . (F3)

Then, we have

D = �t,UN ,G . (F4)

Since D ∈ Ct,G , by Lemma 1, we get

�t,CN ,G ◦ D = �t,CN ,G . (F5)

Since μUN ,G is left invariant and μCN ,G is normalized, we
get

�t,CN ,G ◦�t,UN ,G

=
∫

U′∈CN ,G

∫
U∈UN ,G

Et,U′ ◦ Et,UdμCN ,G (U
′)dμUN ,G (U)

=
∫

U′∈CN ,G

∫
U∈UN ,G

Et,U′UdμCN ,G (U
′)dμUN ,G (U)

=
∫

U′∈CN ,G

∫
U∈UN ,G

Et,UdμCN ,G (U
′)dμUN ,G (U)

=
∫

U∈UN ,G
Et,UdμUN ,G (U)

= �t,UN ,G . (F6)

By Eqs. (F4), (F5), and (F6), we get

�t,CN ,G = �t,CN ,G ◦ D = �t,CN ,G ◦�t,UN ,G = �t,UN ,G .
(F7)

This means that CN ,G is an unweighted G-symmetric uni-
tary t-design. �

APPENDIX G: TECHNICAL LEMMAS

In this Appendix, we present the technical lemmas that
we use in the proofs of the theorems in this work.

1. Transformation of Pauli subgroups into the
standard form

For the proofs of Lemma 3 and Theorem 7, we show that
any Pauli subgroup can be transformed into the form of Eq.
(B16) up to phase via some Clifford conjugation action.
For that purpose, we prepare two simple properties about
Pauli operators. First, we prove that any Pauli operator can
be transformed into the Z operator on the first qubit up
to multiplicity of a constant via some Clifford conjugation
action.

Lemma 12.—Let N ∈ N, P ∈ PN , and P �∈ P0I . Then,
there exists some W ∈ CN such that WPW† = χZ1 with
χ ∈ P0.

Proof.—By noting that S†
j Yj (S

†
j )

† = Xj and Hj Xj H †
j =

Zj , we can construct W1 ∈ CN with S†
j and Hj such that

W1PW†
1 = χ

∏N
j =1 Z

μj
j with χ ∈ P0 and μj ∈ {0, 1}. Since

P �∈ P0I , we can take some a ∈ {1, 2, . . . , N } such that
μa = 1. We next define W2 :=∏j ∈{1,2,...,N }\{a}(CNOTj ,a)

μj .

Then, W2(
∏N

j =1 Z
μj
j )W

†
2 = Zj . We finally define W3 :=

SWAP1,j if j �= 1 and W3 := I if j = 1. We define W :=
W3W2W1. Then, WPW† = χZ1. �

Next, we prove that any pair of two noncommutative
Pauli operators can be simultaneously transformed into the
Z and X operators on the first qubit up to multiplicity of a
constant via some Clifford conjugation action.

Lemma 13.—Let N ∈ N, P, P′ ∈ PN , and P and P′ be
noncommutative with each other. Then, there exists some
W ∈ CN such that WPW† = χZ1 and WP′W† = χ ′X1 with
χ ,χ ′ ∈ P0.

Proof.—Since P and P′ are noncommutative with each
other, P �∈ P0I . By Lemma 12, we can take W1 ∈ CN

such that W1PW†
1 = χZ1 with χ ∈ P0. Since W1PW†

1 and
W1P′W†

1 are noncommutative, W1P′W†
1 can be written as

W1P′W†
1 = ηX1 ⊗ P′′ or W†

1P′W1 = ηY1 ⊗ P′′ with η ∈ P0
and P′′ ∈ PN−1. We define W2 := I in the former case and
W2 := S†

1 in the latter case. Then, (W2W1)P′(W2W1)
† =

ηX1 ⊗ P′′. If P′′ �∈ P0I , we can take W′ ∈ CN−1 by Lemma
12 such that W′P′′W′† = η′Z2 with η′ ∈ P0. We define
W3 := W′ · CZ1,2 and χ ′ := ηη′. If P′′ ∈ P0I , we define
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W3 := I and χ ′ := η. We define W := W3W2W1. Then,
WPW† = χZ1 and WP′W† = χ ′X1. �

By using the two lemmas above, we prove that we can
transform any Pauli subgroup into the form of Eq. (B16) up
to multiplicity of a constant via some Clifford conjugation
action.

Lemma 14.—Let n ∈ N and Q be a subgroup of Pn.
Then, there exists W ∈ Cn and n1, n2, n3 ≥ 0 such that
P0WQW† = P0{I , X , Y, Z}⊗n1 ⊗ {I , Z}⊗n2 ⊗ {I}⊗n3 .

Proof.—We prove this lemma by mathematical induc-
tion about n. Since the statement of Lemma 14 trivially
holds for n = 1, it is sufficient to show that any subgroup
Q of Pk+1 satisfies the following two properties for all
k ∈ N:

(i) If Q has a noncommutative pair of elements, then
P0WQW† = P0{I , X , Y, Z} ⊗ Q′ with some W ∈ Ck+1 and
subgroup Q′ of Pk.

(ii) If every pair of the elements of Q is commutative
and Q �⊂ P0I , then P0WQW† = P0{I , Z} ⊗ Q′ with some
W ∈ Ck+1 and commutative subgroup Q′ of Pk.

Under the assumption of these two properties, we can
construct the mathematical induction as follows. Sup-
pose that the statement of Lemma 14 holds for n =
k ∈ N and take an arbitrary subgroup Q of Pk+1.
If Q has a noncommutative pair of elements, by
the property (i), P0WQW† = P0{I , X , Y, Z} ⊗ Q′ with
some W ∈ Ck+1 and subgroup Q′ of Pk. Since we
suppose that the statement of Lemma 14 holds for
n = k, Q′ satisfies P0W′Q′W′† = P0{I , X , Y, Z}⊗k1 ⊗
{I , Z}⊗k2 ⊗ {I}⊗k3 with some W′ ∈ Ck and k1, k2, k3 ≥
0. We therefore get P0[(I ⊗ W′)W]Q[(I ⊗ W′)W]† =
P0{I , X , Y, Z}⊗k1+1 ⊗ {I , Z}⊗k2 ⊗ {I}⊗k3 . If every pair of
the elements of Q is commutative and Q �⊂ P0I , by the
property (ii), P0WQW† = P0{I , Z} ⊗ Q′ with some W ∈
Ck+1 and commutative subgroup Q′ of Pk. Since we
suppose that the statement of Lemma 14 holds for n =
k, Q′ satisfies P0W′Q′W′† = P0{I , Z}⊗k2 ⊗ {I}⊗k3 with
some W′ ∈ Ck and k2, k3 ≥ 0. We therefore get P0[(I ⊗
W′)W]Q[(I ⊗ W′)W]† = P0{I , Z}⊗k2+1 ⊗ {I}⊗k3 . If Q ⊂
P0I , we trivially get P0Q = P0. In all cases, the statement
of Lemma 14 holds for n = k + 1, and we can complete
the proof by mathematical induction.

In the following, we prove the properties (i) and (ii).
First, we prove the property (i). Since Q is a finite group,
Q can be expressed as the group 〈{Qj }M

j =1〉 generated by
some Q1, Q2, . . . , QM ∈ Q. We take a, b ∈ {1, 2, . . . , M }
such that Qa and Qb are noncommutative with each other.
By Lemma 13, we can take W ∈ Ck+1 such that WQaW† =
χZ1 and WQbW† = χ ′X1 with some χ ,χ ′ ∈ P0. For any
j ∈ {1, 2, . . . , M }, WQj W† can be written as

WQj W† = Z
μj
1 X

νj
1 ⊗ Q′

j (G1)

with some μj , νj ∈ {0, 1} and Q′
j ∈ Pk. We therefore get

P0WQW† = P0 〈{WQj W†}M
j =1〉

= P0 〈χZ1,χ ′X1, {WQj W†}j ∈{1,2,...,M }\{a,b}〉
= P0 〈Z1, X1, {Q′

j }j ∈{1,2,...,M }\{a,b}〉
= P0 〈Z, X 〉 ⊗ Q′

= P0{I , X , Y, Z} ⊗ Q′, (G2)

where Q′ := 〈{Q′
j }j ∈{1,2,...,M }\{a,b}〉.

Next, we prove the property (ii). As in the proof of
the property (i), Q can be expressed as Q = 〈{Qj }M

j =1〉
with some Q1, Q2, . . . , QM ∈ Q. Since Q �⊂ P0I , we can
take a ∈ {1, 2, . . . , M } such that Qa �∈ P0I . By Lemma
12, we can take W ∈ Ck+1 such that WQaW† = χZ1
with some χ ∈ P0. Since every pair of elements of Q
is commutative, [WQj W†, Z1] = χ−1[WQj W†, WQaW†] =
χ−1W[Qj , Qa]W† = 0 for all j ∈ {1, 2, . . . , M }. This
implies that for any j ∈ {1, 2, . . . , M }, WQj W† can be
written as

WQj W† = Z
μj
1 ⊗ Q′

j (G3)

with some μj ∈ {0, 1} and Q′
j ∈ Pk. We therefore get

P0WQW† = P0 〈{WQj W†}M
j =1〉

= P0 〈χZ1, {WQj W†}j ∈{1,2,...,M }\{a}〉
= P0 〈Z1, {Q′

j }j ∈{1,2,...,M }\{a}〉
= P0 〈Z〉 ⊗ Q′

= P0{I , Z} ⊗ Q′, (G4)

where Q′ := 〈{Q′
j }j ∈{1,2,...,M }\{a}〉. Since every pair of ele-

ments of Q is commutative, we have for any j , j ′ ∈
{1, 2, . . . , M }\{a},

[Q′
j , Q′

j ′] = [Z
μj
1 WQj W†, Z

μj ′
1 WQj ′W†]

= [(χ−1WQaW†)μj WQj W†,

× (χ−1WQaW†)
μj ′ WQj ′W†]

= χ
−μj −μj ′ W[Q

μj
a Qj , Q

μj ′
a Qj ′]W† = 0. (G5)

This means that every pair of elements of Q′ is commuta-
tive. �

2. Property of 3-bit sequences

For the proof of Lemma 8, we prove the following
property of 3-bit sequences.
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Lemma 15.—Let {xj }, {x′
j }, {yj }, {y ′

j } ∈ {0, 1}3 satisfy

3∑
j =1

xj =
3∑

j =1

yj ,
3∑

j =1

x′
j =

3∑
j =1

y ′
j ,

3∑
j =1

xj x′
j

≡
3∑

j =1

yj y ′
j (mod 2), (G6)

and p , q ∈ {1, 2, 3} and σ ∈ S3 satisfy xσ(j ) �= xσ(p) for all
j ∈ {1, 2, 3}\{p}, yj �= yq for j ∈ {1, 2, 3}\{q}, and x′

σ(j ) =
y ′

j for all j ∈ {1, 2, 3}. Then, x′
σ(p) = x′

σ(q).
Proof.—We define zj := xσ(j ) and z′

j := x′
σ(j ). Then,

3∑
j =1

zj =
3∑

j =1

xσ(j ) =
3∑

j =1

xj =
3∑

j =1

yj , (G7)

3∑
j =1

z′
j =

3∑
j =1

x′
σ(j ) =

3∑
j =1

x′
j =

3∑
j =1

y ′
j , (G8)

3∑
j =1

zj z′
j =

3∑
j =1

xσ(j )x′
σ(j ) =

3∑
j =1

xj x′
j ≡

3∑
j =1

yj y ′
j (mod 2).

(G9)

Since {zj } and {yj } satisfy Eq. (G7), zj �= zp for all j ∈
{1, 2, 3}\{p}, and yj �= yq for all j ∈ {1, 2, 3}\{q}, we can
take w ∈ {0, 1} such that for any j ∈ {1, 2, 3},

zj ≡ w + δj ,p , yj ≡ w + δj ,q (mod 2). (G10)

By Eqs. (G8), (G9), and (G10), we get

z′
p − y ′

q =
3∑

j =1

δj ,pz′
j −

3∑
j =1

δj ,qyj

≡
3∑

j =1

(zj − w)z′
j −

3∑
j =1

(yj − w)y ′
j (mod 2)

=
⎛
⎝ 3∑

j =1

zj z′
j −

3∑
j =1

yj y ′
j

⎞
⎠− w

⎛
⎝ 3∑

j =1

z′
j −

3∑
j =1

yj

⎞
⎠

= 0. (G11)

Since z′
p , y ′

q ∈ {0, 1}, this implies that z′
p = y ′

q. By com-
bining this, the definition of {z′

j } and the assumption that
x′
σ(j ) = y ′

j for all j ∈ {1, 2, 3}, we get

x′
σ(p) = z′

p = y ′
q = x′

σ(q). (G12)

�

3. Property of t-fold mixture maps

In order to construct t-fold G-symmetric Clifford conju-
gation mixture maps D in Lemma 3 and D′′ in Theorem 9,
we prove that the set Ct,G of all t-fold G-symmetric Clifford
mixture maps is closed under composition.

Lemma 16.—Let N , t ∈ N, G be a subgroup of UN , Ct,G
be the set of all t-fold G-symmetric Clifford conjugation
mixture maps defined by Eq. (B6) and D,D′ ∈ Ct,G . Then,
D ◦ D′ ∈ Ct,G .

Proof.—Since D,D′ ∈ Ct,G , D and D′ can be written as

D =
n∑

j =1

λj Et,Uj , D′ =
n′∑

j ′=1

λ′
j ′Et,U′

j ′
(G13)

with some n, n′ ∈ N, U1, U2, . . . , Un, U′
1, U′

2, . . . , U′
n′ ∈

CN ,G and λ1, λ2, . . . , λn, λ′
1, λ′

2, . . . , λ′
n′ ∈ R satisfying∑n

j =1

λj =∑n′
j ′=1 λ

′
j ′ = 1. Then we get

D ◦D′ =
n∑

j =1

n′∑
j ′=1

λj λ
′
j ′Et,Uj ◦ Et,U′

j ′
=

n∑
j =1

n′∑
j ′=1

λj λ
′
j ′Et,Uj U′

j ′
,

(G14)

Uj U′
j ′ ∈ CN ,G , and the coefficients satisfy

n∑
j =1

n′∑
j ′=1

λj λ
′
j ′ =
⎛
⎝ n∑

j =1

λj

⎞
⎠
⎛
⎝ n′∑

j ′=1

λ′
j ′

⎞
⎠ = 1. (G15)

We therefore get D ◦ D′ ∈ Ct,G . �

4. Bijections induced by Clifford operators

We use the following lemma in the proofs of Lemma 9
and Theorem 4 in the main text.

Lemma 17.—Let N ∈ N and U ∈ CN . Then, there exist
some function sU : P+

N → {±1} and some bijection hU on
P+

N such that

UPU† = sU(P)hU(P) (G16)

for all P ∈ P+
N .

Proof.—U ∈ CN implies that for any P ∈ P+
N , UPU† ∈

PN , i.e.,

UPU† = s′P′ (G17)

with some s′ ∈ {±1, ±i} and P′ ∈ P+
N . Since P and P′ are

hermitian, we have

s′∗P′ = (s′P′)† = (UPU†)† = UPU† = s′P′. (G18)

Thus we get s′∗ = s′, and s′ ∈ {±1}. We define sU(P) := s′
and hU(P) := P′. For any P1, P2 ∈ P+

N satisfying P1 �= P2,
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we get

tr(hU(P1)hU(P2)) = tr(sU(P1)UP1U† · sU(P2)UP2U†)

= sU(P1)sU(P2)tr(P1P2) = 0,
(G19)

and thus we get hU(P1) �= hU(P2). This implies that hU is
injective. By noting that P+

N is a finite set, we know that
hU is bijective. �

5. Connectedness of symmetric unitary groups

For the proof of Lemma 11, we prove the connectedness
of UN ,G for a general subgroup G of U(H). Here we give
a detailed explanation that an operator that is commutative
with all representations of a group should be in the form of
Eq. (2.26) of Ref. [40], or Eq. (G32).

Lemma 18.—Let N ∈ N and G be a subgroup of UN .
Then, UN ,G is connected.

Proof.—We consider the regular representation ρ(G) of
G, i.e., ρ(G) = G for all G ∈ G. Since ρ(G) is a unitary
representation, ρ(G) is completely reducible. Thus there
exist Hilbert spaces {Hλ}λ, {Iλ}λ and {Jλ}λ satisfying

H =
⊕
λ

Hλ, Hλ = Iλ ⊗ Jλ (G20)

and ρ(G) is decomposed in the form of

ρ(G) =
⊕
λ

ρλ(G)(Iλ) ⊗ I (Jλ) (G21)

with irreducible representations ρλ(G) of G on Iλ such
that ρλ1(G) and ρλ2(G) are inequivalent if λ1 �= λ2. For the
proof of this lemma, it is sufficient to prove

UN ,G =
{⊕

λ

I (Iλ) ⊗ U(Jλ)
λ | Uλ ∈ U(Jλ)

}
. (G22)

By using this relation, the connectedness of UN ,G follows
from the connectedness of U(Jλ) for all λ.

Since UN ,G ⊃
{⊕

λ I (Iλ) ⊗ U(Jλ)
λ | Uλ ∈ U(Jλ)

}
is triv-

ial, we are going to prove the converse inclusion relation.
We take arbitrary U ∈ UN ,G . Equation (G21) can equiva-
lently be expressed as

ρ(G) =
∑
λ

�λ (ρλ(G)⊗ I) �†
λ (G23)

with isometries �λ from Hλ to H. Since U commutes with
ρ(G) for all G ∈ G, for any μ and ν, we have

�†
μ[U, ρ(G)]�ν = 0. (G24)

By plugging Eq. (G23) into Eq. (G24), we get

∑
λ

�†
μ

[
U�λ(ρλ(G)⊗ I)�†

λ − �λ(ρλ(G)⊗ I)�†
λU
]
�ν = 0.

(G25)

By noting that �†
λ1
�λ2 = I if λ1 = λ2 and �†

λ1
�λ2 = 0 if

λ1 �= λ2, this implies that

�μU�ν(ρν(G)⊗ I)− (ρμ(G)⊗ I)�†
μU�†

ν = 0. (G26)

For each μ and ν, we take a basis {Eμ,ν,l}l of L(Iν → Iμ).
Then, �†

μU�ν can be written as

�†
μU�ν =

∑
l

Uμ,ν,l ⊗ Eμ,ν,l (G27)

with some Uμ,ν,l ∈ L(Jν → Jμ). By plugging Eq. (G27)
into Eq. (G26), we get

∑
l

(Uμ,ν,lρν(G)− ρμ(G)Uμ,ν,l)⊗ Eμ,ν,l = 0. (G28)

This implies that Uμ,ν,lρν(G)− ρμ(G)Uμ,ν,l = 0. Since
this holds for all G ∈ G, by Schur’s lemma (Propositions
5.3.3 and 5.3.4 of Ref. [49]), we get

Uμ,ν,l =
{

uμ,lI (if μ = ν)

0 (if μ �= ν). (G29)

Since �λ�
†
λ is the projection onto Hλ and H =⊕λHλ, U

can be written as

U =
(∑

μ

�μ�
†
μ

)
U

(∑
ν

�ν�
†
ν

)
=
∑
μ,ν

�μ(�
†
μU�ν)�†

ν .

(G30)

By plugging Eqs. (G27) and (G29) into Eq. (G30), we get

U =
∑
μ,ν,l

�μ(Uμ,ν,l ⊗ Eμ,μ,l)�
†
μ =
∑
μ,l

�μ(uμ,lI ⊗ Eμ,μ,l)

× �†
μ =
∑
μ

�μ(I ⊗ Uμ)�
†
μ, (G31)

where Uμ :=∑l uμ,lEμ,μ,l. This can equivalently be
expressed as

U =
⊕
λ

I (Iλ) ⊗ U(Jλ)
λ (G32)

with some Uλ ∈ L(Jλ). For any λ, Uλ ∈ U(Jλ) follows
from U ∈ U(H). We therefore get Eq. (G22). �
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