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Achievability in information theory refers to demonstrating a coding strategy that accomplishes a
prescribed performance benchmark for the underlying task. In quantum information theory, the crafted
Hayashi-Nagaoka operator inequality is an essential technique in proving a wealth of one-shot achievabil-
ity bounds since it effectively resembles a union bound in various problems. In this work, we show that the
so-called pretty-good measurement naturally plays a role as the union bound as well. A judicious appli-
cation of it considerably simplifies the derivation of one-shot achievability for classical-quantum channel
coding via an elegant three-line proof. The proposed analysis enjoys the following favorable features. (i)
The established one-shot bound admits a closed-form expression as in the celebrated Holevo-Helstrom
theorem. Namely, the average error probability of sending M messages through a classical-quantum chan-
nel is upper bounded by the minimum error of distinguishing the joint channel input-output state against
(M − 1) decoupled product states. (ii) Our bound directly yields asymptotic achievability results in the
large deviation, small deviation, and moderate deviation regimes in a unified manner. (iii) The coeffi-
cients incurred in applying the Hayashi-Nagaoka operator inequality or the quantum union bound are
no longer needed. Hence, the derived one-shot bound sharpens existing results relying on the Hayashi-
Nagaoka operator inequality. In particular, we obtain the tightest achievable ε-one-shot capacity for
classical communication over quantum channels heretofore, improving the third-order coding rate in the
asymptotic scenario. (iv) Our result holds for infinite-dimensional Hilbert space. (v) The proposed method
applies to deriving one-shot achievability for classical data compression with quantum side information,
entanglement-assisted classical communication over quantum channels, and various quantum network
information-processing protocols.
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I. INTRODUCTION

Communicating classical information over a noisy
quantum channel is a foundational task in quantum
information science. To protect the transmitted mes-
sages against potential noise, an indispensable cod-
ing strategy is employed. At the transmitter, Alice
initiates the procedure by encoding each message
m ∈ {1, 2, . . . , M } into an n-qubit quantum state. Sup-
pose in the communication process that each qubit
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suffers from independent and identically distributed (IID)
quantum noise, which is characterized by an IID quantum
channel. Then, at the receiver Bob performs a quantum
measurement on the corrupted quantum system to extract
the decoded message m̂.

Via a coding strategy based on the so-called quan-
tum typicality, the well-known Holevo-Schumacher-
Westmoreland (HSW) theorem [1–7] states that the prob-
ability of erroneous decoding, ε := Pr{m̂ �= m}, vanishes
asymptotically in the limit of n → ∞, whenever the num-
ber of bits to be sent per qubit (limn→∞ 1/n log M ) is below
the channel capacity.

The HSW theorem extends the seminal work of Shan-
non [8] to the quantum scenario, and, hence, it is one of
the fundamental core stones in quantum information the-
ory. However, the HSW coding strategy relies on certain
technical assumptions that could be physically demanding.
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First, the asymptotically large qubit number n requires the
quantum devices to implement arbitrarily large encoding
and decoding. Second, the actual quantum noise may be
correlated among several qubit systems; hence, the under-
lying quantum noises are not independent. Third, even if
the noises are independent, they may not be stationary;
namely, the noise acting on the first qubit is not identical
to that on the last qubit.

To circumvent the aforementioned technical require-
ments, one-shot quantum information theory emerges as a
new research stream to consider the scenario that no struc-
tural hypotheses are imposed on the underlying quantum
state or channel. The ultimate goal is to characterize the
optimal trade-off between the error probability ε and the
message size M of transmission, for which the channel is
used only once. Such a study allows us to better understand
the fundamental capability of one-shot communication.
Therefore it may serve as a general guideline for designing
the next-generation quantum information-processing sys-
tems. However, without the IID repetitions of channel use,
conventional methods based on quantum typicality are no
longer applicable. Hence, more refined and sophisticated
coding techniques are requisite for the one-shot analysis
[9].

Why is it challenging to design and analyze good coding
strategies for a one-shot quantum information-processing
task? Essentially, a proper coding scheme aims to enforce
the error probability, Pr{⋃m̂ �=m Em̂|m}, for sending each
message m small. Here, Em̂|m denotes the event of decod-
ing to m̂ when message m was sent. Yet, the analysis and
computational evaluation of such a union error event for
a nontrivial quantum measurement could be quite difficult
(even in the classical scenario). A useful trick in this effort
is the following union bound:

Pr
{ ⋃

m̂�=m

Em̂|m

}

≤
∑

m̂ �=m

Pr{Em̂|m}. (1)

In view of the right-hand side of Eq. (1), the decoding rule
remains to minimize (M − 1) pairwise error probabilities
of deciding m against each m̂ �= m. This then serves as the
general principle of coding design.

The above coding strategy has achieved prevailing suc-
cess in classical information theory, channel coding, and
modern communication systems [10–23]. However, the
quantum union bound of the form (1) is highly nontrivial
due to the noncommutative nature of quantum mechan-
ics [24–29]. The first attempt to design a good one-shot
coding scheme for general classical-quantum (c-q) chan-
nels (without the IID condition) was proposed by Hayashi
and Nagaoka, in which a powerful operator inequality
[30, Lemma 2] was proved: for any positive semidefinite

operators 0 ≤ A ≤ 1, B ≥ 0,

1 − A
A + B

≤ (1 + c)(I − A) + (2 + c + c−1)B

for all c > 0, (2)

where we denote a noncommutative quotient by

A
B

:= B−1/2AB−1/2 (3)

(here, the inverse is defined only on the support of the oper-
ator in the denominator). At the first glimpse of Eq. (2), it
is not obvious how it resembles the union bound as Eq. (1)
and how it is applied in analyzing the error probability
in channel coding; nonetheless, an ingenious application
of it by Hayashi and Nagaoka [30] yields a Feinstein-
type bound for achieving the c-q channel capacity [16,
Theorem 1], [31]. Later, Oskouei, Mancini, and Wilde pro-
posed a quantum union bound with similar coefficients as
in Eq. (2), and hence achieved the same error bound as
Refs. [29,30,32]. Subsequently, Hayashi and Nagaoka’s
analysis based on Eq. (2) lays a technical cornerstone in a
wealth of one-shot and asymptotic achievability results in
quantum information theory, wherein a quantum measure-
ment for extracting classical information from a quantum
system is needed. For example, letting the coefficient c
in Eq. (2) be a fixed constant along with a quantum
Chernoff bound [33–36] delivers a large deviation bound
for c-q channel coding [35]. Letting c = 1/

√
n for an n-

fold IID repetition of a c-q channel, Eq. (2) achieves the
second-order coding rate [22,37–40] in the small deviation
regime. Later, both results were extended to the mod-
erate deviation regime [41,42] accordingly. In addition,
Anshu, Jain, and Warsi proposed a position-based coding
for achieving entanglement-assisted classical communica-
tion over quantum channels [43], which also relies on the
Hayashi-Nagaoka operator inequality in Eq. (2).

Apart from the success and significance of Hayashi and
Nagaoka’s approach, there are still conceptual and prac-
tical subtleties. First, the technically sophisticated proof
of the operator inequality (2) may blind the insight of the
analysis and hide the reason why such a coding strategy
works. Does there exist a good quantum coding strat-
egy that naturally reflects the union bound as in Eq. (1)
so that the analysis is more interpretable? Second, is it
possible to tighten the one-shot achievability bound for
quantum information-theoretic tasks by eliminating the
incurred coefficients in terms of c [44,45]? Removing those
coefficients may seem superficial. However, we remark
that every bit in an analytical bound counts in the one-
shot setting; one cannot ignore any coefficient. On top of
that, the unnecessary coefficients may often trivialize the
(ε, M ) trade-off. For instance, existing one-shot bounds
on the error probability ε could trivially be greater than

040330-2



SIMPLE AND TIGHTER DERIVATION OF ACHIEVABILITY... PRX QUANTUM 4, 040330 (2023)

1 for log M close to the channel capacity. This analysis
then provides no useful characterizations of certain sys-
tem configurations for practical communication. Lastly,
the Hayashi-Nagaoka decoder [30,46] involves solving a
positive semidefinite program to obtain the mathemati-
cal description of quantum measurement, for which the
computational complexity is exponential in the number of
qubits. Moreover, a quantum algorithm for implementing
the Hayashi-Nagaoka decoder is still missing.

In this paper, we give affirmative answers to the above
concerns and questions by showing that the so-called
pretty good measurement (PGM) [47,48] naturally plays
a role as the union bound. Together with the random cod-
ing technique, it yields a one-shot achievability bound via
a much simpler and self-explainable analysis, which is
merely based on previously known facts. The coefficients
mentioned above in terms of c are not required anymore,
and, hence, the established one-shot bound is sharpened.
Furthermore, the proof itself provides a more transpar-
ent connection between c-q channel coding and binary
quantum hypothesis testing.

To present our result, we first introduce a noncommuta-
tive minimal between two positive semidefinite operators
A and B as [49]

A ∧ B := A + B − |A − B|
2

.

This quantity is prominent in quantum state discrimination
since the celebrated Holevo-Helstrom theorem [50–52]
endowed it with an operational meaning [53]:

Tr [A ∧ B] determines the minimum ‘error’ of discrimina-
tion between operators A and B.

The coding strategy for a c-q channel x 
→ ρx
B (which

maps each classical symbol x to a density operator ρx
B)

proceeds as follows. The encoding is via a random code-
book {x(1), x(2), . . . , x(M )}, in which each codeword x(m)

is drawn pairwise independently according to an arbitrary
probability distribution pX. The decoding is via the PGM
with respect to the corresponding channel output states
[47,48]:

{
ρ

x(m)

B
∑M

m̄=1 ρ
x(m̄)

B

}M

m=1
.

We show that the associated average error probability is
upper bounded by (Theorem 1):

Tr [ρXB ∧ (M − 1)ρX ⊗ ρB] (4)

with ρXB = ∑
x∈X pX(x)|x〉〈x| ⊗ ρx

B the resulting joint
bipartite state between the channel input and output. Via
the Holevo-Helstrom theorem, the established bound in
Eq. (4) provides us the following interpretation for send-
ing M messages over a c-q channel (see Sec. III for the
detailed explanation):

The average error probability is upper bounded by the error
of discriminating ρXB and (M − 1)ρX ⊗ ρB.

Below, let us elaborate on the intuition of the proposed
coding strategy and why PGM works well. The key obser-
vation is that using the PGM to discriminate M states at
the channel output is exactly equivalent to (an average of)
binary discrimination between each channel output state,
say, e.g., ρ

x(m)

B against the remaining (M − 1) states ρ
x(m̄)

B
for all m̄ �= m using a two-outcome PGM. In this regard,
PGM works as a one-versus-rest classification strategy;
see Fig. 1(a). Most importantly, this manifests the fact that
PGM effectively resembles the quantum union bound as
shown in the right-hand side of Eq. (1). By taking the
conditional expectation Ex(m̄)|x(m) over the random code-
book, the remaining states are hence averaged to (M − 1)

identical marginal states ρB; see Figure 1(b). After taking
expectation Ex(m), the error bound is equivalent to dis-
criminating the joint state ρXB between channel input and
output against (M − 1) product states ρX ⊗ ρB, as shown
in Fig. 1(c). This gives the elegant and clean bound in
Eq. (4).

The proposed simple derivation enjoys the following
favorable features.

(I) The one-shot achievability bound in Eq. (4) admits
a closed-form expression as the Holevo-Helstrom
theorem. Computing such a bound is more time effi-
cient than the previous results in terms of entropic
quantities involving optimizations (see Remark 4 in
Sec. III).

(II) The proposed coding scheme based on the pretty-
good measurement is directly implementable via the
existing quantum algorithm by Gilyén et al. [54].

(III) The self-explainable proof signifies a more lucid
connection between c-q channel coding and hypoth-
esis testing. Moreover, our coding strategy and anal-
ysis show that PGM effectively works as a union
bound by itself. Hence, neither the operator inequal-
ity (2) nor a quantum union bound is needed.

(IV) The proposed bound in Eq. (4) is free of parameter
c, as in Eq. (2). This then shows that the estab-
lished one-shot achievable error bound is tighter
than previously known results based on the Hayashi-
Nagaoka operator inequality, Eq. (2); see Sec. III A
and Table II therein for a comparison with existing
results. Moreover, it unifies asymptotic derivations
in the large, small, and moderate derivation regimes.
We refer the reader to Fig. 2 for a schematic flow
chart.

(V) The proposed analysis applies to infinite-dimensional
quantum systems [55] as well, e.g., communica-
tion over infinite-dimensional channels with energy
constraints or cost constraints [56,57].

(VI) The proposed methods via the pretty-good
measurement naturally extend to various quantum
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(a) (b) (c)

FIG. 1. Schematic illustration of the proposed achievability analysis for classical-quantum channel (x 
→ ρx
B) coding. (a) Given a

realization of a codebook C = {x(1), . . . , x(M )}, the error probability of sending message m = 1 using the pretty-good measurement
(PGM) is upper bounded by the error of distinguishing ρ

x(1)

B against the remaining states, i.e.,
∑M

m̄=2 ρ
x(m̄)

B . We take the sum of the
remaining channel output states because the PGM effectively works as a one-versus-rest classification strategy. (b) Taking the con-
ditional expectation over the random codebook C conditioned on codeword x(1), the error probability of sending message m = 1
is upper bounded by the error of distinguishing ρ

x(1)

B against (M − 1)ρB. Namely, by randomly drawing a codeword x(1) ∼ pX, we
are distinguishing the associated channel output state against (M − 1) average channel output states. (c) Taking the expectation over
the transmitted codeword x(1) ∼ pX, panel (b) is equivalent to distinguishing the joint state ρXB between channel input and output
against the scaled product of its marginal states (M − 1)ρX ⊗ ρB; see Eq. (4). This may be viewed as a one-shot packing lemma for
classical-quantum channel coding.

information-theoretic tasks, leading to more pro-
found and sharpened results. These tasks include

(i) binary quantum hypothesis testing (Sec. IV A),
(ii) entanglement-assisted classical communication

over point-to-point quantum channels (Sec.
IV B),

(iii) classical data compression with quantum side
information (Sec. IV C),

(iv) entanglement-assisted and unassisted classical
communication over quantum multiple-access
channels (Sec. IV D),

(v) entanglement-assisted and unassisted classical
communication over quantum broadcast chan-
nels (Sec. IV E), and

(vi) entanglement-assisted and unassisted classical
communication over quantum channels with
casual state information available at the encoder
(Sec. IV F).

We refer the reader to the summary given in Table I
below.

Lastly, the established simple analysis applies to
the position-based coding, a pivotal technique in one-
shot quantum information theory (see, e.g., Refs. [43,
43,58–60]), proposed by Anshu et al. [43, Lemma 4],
whose decoding strategy again relies on the

Hayashi-Nagaoka operator inequality in Eq. (2). The
sharpened position-based coding (Theorem 3 below) con-
stitutes the primary technique of deriving numerous one-
shot achievability bounds in Sec. IV. By virtue of its
variability, we may term it as a one-shot quantum pack-
ing lemma, and it might lead to more fruitful applications
elsewhere.

This paper is organized as follows. Section II formally
introduces the noncommutative minimal and its proper-
ties. Section III establishes our main result of the one-
shot achievability for c-q channel coding; we compare it
with existing results in Sec. III A. Section IV entails its
applications in one-shot quantum information theory. We
conclude the paper and discuss possible open problems in
Section V. The Appendix proves a useful trace inequality
regarding the noncommutative minimal.

II. THE NONCOMMUTATIVE MINIMAL AND ITS
PROPERTIES

We first recall the basic concepts of (binary) quan-
tum state discrimination, which constitutes the central tool
for the proposed achievability analysis in Sec. III below.
Given arbitrary positive semidefinite operators A and B, we
define the minimum error [61] using two-outcome positive
operator-valued measures to distinguish them as

inf
0≤T≤1

Tr [A(1 − T)] + Tr [BT].
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FIG. 2. Flow chart of the implications of the established one-shot achievability bound in the large deviation, small deviation, and
moderate deviation regimes. The precise notation is given in Sec. III.

The well-known Holevo-Helstrom theorem [50–52,62]
shows that the infimum can be attained by a Neyman-
Pearson test T = {A − B > 0} that projects onto the pos-
itive part of the difference A − B, and the minimization is
given by its dual formulation of a semidefinite program
[63], [64, Sec. 1.2.3]:

inf
0≤T≤1

Tr [A(1 − T)] + Tr [BT]

= sup
M=M†

{Tr [M ] : M ≤ A, M ≤ B}

= Tr[A ∧ B]. (5)

Here the supremum is attained by the so-called noncom-
mutative minimal (i.e., the operator with the greatest trace
among the lower bounds in terms of the Loewner par-
tial ordering) [50–52,62] of self-adjoint operators A and
B [65], i.e.,

A ∧ B ∈ arg max
M=M†

{Tr [M ] : M ≤ A, M ≤ B}. (6)

In other words, the Holevo-Helstrom theorem [50–52]
provides an operational meaning to the noncommutative
minimal “∧” for characterizing the minimum error of dis-
tinguishing positive semidefinite operators A and B [66].
We adopt such an interpretation subsequently.

The main goal of this paper is to characterize the average
error probability in quantum information-theoretic tasks in
terms of the noncommutative minimal “∧.” To that end, we
first review the important properties that will be used in the
proposed analysis. We note that the following properties
can be found in existing literature.

Fact 1 (Properties of the noncommutative minimal
[67]).—Considering arbitrary self-adjoint operators A and
B, the following hold the noncommutative minimal defined
in Eq. (6) has the following properties.

(i) (Unique closed-form expression.) The noncommu-
tative minimal A ∧ B is unique and A ∧ B = 1

2 (A +
B − |A − B|).

(ii) (Monotone increase in the Loewner ordering.) It
holds that Tr [A ∧ B] ≤ Tr [A′ ∧ B′] for A ≤ A′ and
B ≤ B′.

(iii) (Monotone increase under positive trace-preserving
maps.) It holds that Tr [A ∧ B] ≤ Tr [N (A) ∧
N (B)] for any positive trace-preserving map N .

(iv) (Concavity.) The map (A, B) 
→ Tr [A ∧ B] is
jointly concave.

(v) (Direct sum.) It holds that (A ⊕ A′) ∧ (B ⊕ B′) =
(A ∧ B) ⊕ (A′ ∧ B′) for any self-adjoint A′ and B′.

(vi) (Upper bound.) It holds that Tr [A ∧ B] ≤ Tr
[A1−sBs] for any A, B ≥ 0 and s ∈ (0, 1).
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TABLE II. Comparisons of the one-shot achievability bounds on the error probability and the coding size and rate established in
Propositions 1 and 2 of Sec. III with existing results. We also present the IID asymptotic expansion of the coding rate to highlight the
resulting third-order terms, where we use the shorthand I ≡ I(X : B)ρ and V ≡ V(X : B)ρ for brevity.

One-shot exponential bounds on the coding error

Proposition 1 ε ≤ e− supα∈(1/2,1)[(1−α)α](I↓
2−1/α

(X : B)ρ−R)

Hayashi [35] ε ≤ 4e− supα∈(1/2,1)[(1−α)α](I↓
2−1/α

(X : B)ρ−R)

Burnashev and Holevo [89]
(pure-state channels)

ε ≤ 2e− supα∈(1/2,1)[(1−α)α](I↓
2−1/α

(X : B)ρ−R)

Achievability bounds on the coding size

One-shot bounds IID asymptotic expansion

Proposition 2 log M ≥ Dε−δ
h (ρXB ‖ ρX ⊗ ρB) − log(1/δ) log M ≥ nI +

√
nV �−1(ε) − 1

2 log n − O(1)

Hayashi and Nagaoka [30]
Wang and Renner [46]

log M ≥ Dε−δ
h (ρXB ‖ ρX ⊗ ρB) − log(4/δ2) log M ≥ nI +

√
nV �−1(ε) − log n − O(1)

Beigi and Gohari [91] log M ≥ Dε−δ
s (ρXB ‖ ρX ⊗ ρB) − log[(1 − ε)/δ] log M ≥ nI +

√
nV �−1(ε) − log n − O(1)

log M ≥ Dε−2δ
h (ρXB ‖ ρX ⊗ ρB) − log[(1 − ε)/δ2]

Ogawa [101] log M ≥ Dε−δ
s (ρXB ‖ ρX ⊗ ρB) − log(1/δ) log M ≥ nI +

√
nV �−1(ε) − log n − O(1)

log M ≥ Dε−2δ
h (ρXB ‖ ρX ⊗ ρB) − log(1/δ2)

(vii) (Lower bound [68].) It holds that Tr [A ∧ B] ≥
Tr {A[ B

A+B ]} for any A, B ≥ 0.

Proof.—for (i), the uniqueness (also for multiple opera-
tors) was proved by Holevo [62, Theorem 2], [52, Sec. 2.2]
and later also by Audenaert and Mosonyi [69, Theorem
A.3 and Eq. (85)]; the closed-form expression may have
already been known by Holevo and Helstrom [50–52] (see
also Ref. [69, Lemma A.7]).

Property (ii) follows directly from the definition given
in Eq. (6) (see also Ref. [69, Lemma A.8]).

Properties (iii) and (iv) follow from the fact that the
trace norm (i.e., ‖M‖1 := Tr [|M |]) is contractive under
positive trace-preserving maps and the triangle inequality
(see, e.g., Ref. [70, Theorems 9.2 and 9.3]) of ‖ · ‖1. We
note that the monotone increase under a positive trace-
preserving map and the concavity for multiple operators
also hold.

Property (v) with trace is due to the direct-sum structure
of the trace norm; the case without trace was proved in Ref.
[69, Lemma A.9].

Property (vi) is the celebrated inequality of Audenaert
et al. [33,34,71] used in proving the quantum Chernoff
bound; later, it was generalized to infinite-dimensional
Hilbert space [36].

Property (vii) in a special case of Tr[A + B] = 1 is an
immediate consequence of the Barnum-Knill theorem [64,
Theorem 3.10], [72]. That is, the error probability using the
pretty good measurement [47,48] is no larger than twice
that of using the optimal measurement. The proof for the
general case of A, B ≥ 0 can be found in the author’s pre-
vious work [73, Lemma 3]. For completeness, we provide
an alternative proof of property (vii) (and a strengthened
result of it) in the Appendix. �

III. MAIN RESULT: A ONE-SHOT
ACHIEVABILITY FOR CLASSICAL-QUANTUM

CHANNEL CODING

In this section, we prove our main result of establish-
ing a one-shot achievability bound for classical-quantum
channel coding via a direct application of the pretty-good
measurement (PGM) [47,48].

Definition 1 (Classical-quantum channel coding).—Let
NX→B : x 
→ ρx

B be a classical-quantum channel, where
each channel output ρx

B is a density operator (i.e., a positive
semidefinite operator with unit trace).

(1) Alice holds classical registers M and X, and Bob
holds a quantum register B.

(2) An encoding m 
→ x(m) maps equiprobable mes-
sages in M to a codeword in X.

(3) The classical-quantum channel NX→B is applied on
Alice’s register X and outputs a state on B at Bob.

(4) A decoding measurement described by a positive
operator-valued measure (POVM)

{
	m

B

}
m∈M is per-

formed on Bob’s quantum register B to extract the
sent message m.

An (M , ε) code for NX→B is a protocol such that |M| = M
and the average error probability satisfies

1
M

∑

m∈M

Tr [ρx(m)

B (1B − 	m
B)] ≤ ε.

The encoding is the standard random coding strategy.
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(a) Encoding. Consider a random codebook C =
{x(1), x(2), . . . , x(M )}, where each of the code-
words x(m) ∈ X is pairwise independently drawn
from a probability distribution pX. Alice sends code-
words according to the codebook C.

(b) Decoding. At the receiver, given a realization of the
random codebook C and the corresponding channel
output states {ρx(m)

B }m∈M, Bob performs the PGM to
decode each message m ∈ M:

	m
B := ρ

x(m)

B
∑

m̄∈M ρ
x(m̄)

B

for all m ∈ M. (7)

Our main result is the following.
Theorem 1 (A one-shot achievability bound for clas-

sical-quantum channel coding).—Consider an arbitrary
classical-quantum channel NX→B : x 
→ ρx

B. Then, there
exists an (M , ε) code for NX→B such that, for any prob-
ability distribution pX,

ε ≤ Tr [ρXB ∧ (M − 1)ρX ⊗ ρB]. (8)

Here, ρXB := ∑
x∈X pX(x)|x〉〈x| ⊗ ρx

B and the noncommu-
tative minimal is A ∧ B = 1

2 (A + B − |A − B|) (see Fact 1
(i)).

Proof.—The claim follows from the lower bound of the
noncommutative minimal “∧” given in Fact 1 (vii) for
relating the pretty good measurement to the optimal mea-
surement, and the concavity of “∧,” i.e., Fact 1 (iv). Pre-
cisely, given any realization of codebook C = {x(m)}m∈M,
we calculate the average probability of erroneous decoding
using the PGM given in Eq. (7) as

1
M

∑

m∈M

Tr
[

ρ
x(m)

B

∑
m̄ �=m ρ

x(m̄)

B

ρx
B + ∑

m̄ �=m ρm̄
B

]

≤ 1
M

∑

m∈M

Tr
[

ρ
x(m)

B ∧
( ∑

m̄ �=m

ρ
x(m̄)

B

)]

, (9)

where we have applied Fact 1 (vii) with A = ρ
x(m)

B and B =
∑

m̄�=m ρ
x(m̄)

B to relate the error probability under the PGM
to the expression in terms of the noncommutative minimal.
Next, we take the expectation for each x(m) ∼ pX to bound
the expected average error probability (which is also called

the random-coding error probability), i.e.,

1
M

∑

m∈M

Ex(m), x(m̄)∼pX Tr
[

ρ
x(m)

B ∧
( ∑

m̄ �=m

ρ
x(m̄)

B

)]

(a)≤ 1
M

∑

m∈M

Ex(m)∼pX Tr
[

ρ
x(m)

B ∧
(

Ex(m̄)|x(m)

[∑

m̄ �=m

ρ
x(m̄)

B

])]

(b)= 1
M

∑

m∈M

Ex(m)∼pX Tr [ρx(m)

B ∧ (M − 1)ρB]

= Ex∼pX Tr [ρx
B ∧ (M − 1)ρB], (10)

where in (a) we used the concavity given in Fact 1 (iv) and
in (b) we recalled the pairwise independence of the random
codebook.

Invoking the direct sum formula given in Fact 1 (v), we
arrive at the claimed inequality at the right-hand side of
Eq. (8). Lastly, since the random-coding error probabil-
ity using any pX is larger than the error probability of the
optimal code, the proof is completed. �

Below, we provide a detailed explanation of how PGM
works. An important feature of PGM is that the POVM
element 	

x(m)

B given in Eq. (7) is proportional to the sent
state ρ

x(m)

B . On the other hand, the complement of the
POVM element, i.e., 1B − 	

x(m)

B , is proportional to the
sum of the remaining states

∑
m̄�=m ρ

x(m̄)

B . Hence, the aver-
age error probability of discriminating M channel output
states, i.e., the left-hand side of Eq. (9), is equivalent to the
error of deciding each sent state ρ

x(m)

B using the following
two-outcome PGM:

{
ρ

x(m)

B

ρ
x(m)

B + ∑
m̄�=m ρ

x(m̄)

B

,

∑
m̄ �=m ρ

x(m̄)

B

ρ
x(m)

B + ∑
m̄�=m ρ

x(m̄)

B

}

.

Such the discrimination between ρ
x(m)

B with prior proba-
bility 1/M against the sum of the remaining states (again
each with prior probability 1/M ) reflects the nature of
the union bound inherited in the PGM; cf. the right-hand
side of Eq. (1). Next, taking the expectation on the rest
of the states ensures that we are discriminating ρ

x(m)

B with
prior probability 1/M against (M − 1) identical marginal
states ρB, each with prior probability 1/M . Equivalently,
this amounts to a binary hypothesis testing between ρ

x(m)

B
with prior probability 1/M against the marginal states
ρB with prior probability (M − 1)/M . Lastly, after tak-
ing the summation over m ∈ M, the above is equal to the
discrimination of the joint state ρXB against the scaled
decoupled product state (M − 1)ρX ⊗ ρB. (See Fig. 1 for
the illustration.) We hope that this simple proof provides
a conceptually clear elucidation on the intimate relation
between classical-quantum channel coding and quantum
hypothesis testing in a pedagogical way.
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Remark 1.—In the classical case where {ρx
B}x∈X mutually

commute, Theorem 1 reduces to a result by Polyanskiy [74,
Eq. (2.121)], which is only 1-bit weaker than the depen-
dence testing bound by Polyanskiy et al. [22, Theorem
17].

Remark 2.—As we show shortly in Secs. III A and
IV, the one-shot bound established in Theorem 1 already
implies (and sharpens) various previously known achiev-
ability results in the so-called achievable rate region, i.e.,
rates below the quantum mutual information. Is the bound
in Theorem 1 tight outside the achievable rate region? Tak-
ing c-q channel coding as an example, when the message
size is too large or the coding rate (i.e., R := 1/n log M ) is
way above the mutual information with respect to ρXB, the
one-shot bound in Theorem 1 might not be very tight. If
log(M − 1) ≥ D∗

∞(ρXB ‖ ρX ⊗ ρB), where D∗
∞(A ‖ B) :=

inf{γ ∈ R : A ≤ eγ B} is the max-relative entropy [75–77],
then Eq. (8) yields a trivial bound: ε ≤ 1.

In view of this, Theorem 1 can be strengthened to the
following more involved form:

ε ≤
(

1 − 1
M

Tr [ρXB ∧ (M − 1)ρX ⊗ ρB]
)

Tr [ρXB ∧ (M − 1)ρX ⊗ ρB]. (11)

Bound (11) follows from the tighter inequality (A2) given
in Lemma 1 in the Appendix, instead of Fact 1 (vii). Now
if log(M − 1) ≥ D∗

∞(ρXB ‖ ρX ⊗ ρB) then the random cod-
ing error amounts to randomly guessing equiprobable mes-
sages, i.e., ε ≤ 1 − 1/M . Regardless of the message size
M , Eq. (11) is technically a tighter one-shot bound com-
pared to Eq. (8). This naturally raises the question of
whether Eq. (11) can lead to a simple proof of the upper
bound on the strong converse exponent of c-q channel cod-
ing; see [78, Section 5.4], [79, Proposition IV.5], and [80,
Proposition VI.2.]. We leave this for future work.

The established one-shot achievability in Theorem 1
immediately covers (and sharpens) various known results
of deriving the minimal error given a fixed message or cod-
ing size M or deriving the maximal message size given a
fixed error ε. Let us define the following two important
operational quantities for c-q channel coding:

ε�(N , M ) := inf{ε ∈ R : ∃ an(M, ε)code forN },
M �(N , ε) := sup{M ∈ N : ∃ an(M, ε) code forN }.

We note that although ε�(N , M ) and M �(N , ε) are inverse
functions to each other in the one-shot setting, they lead to
different asymptotic expansions in the large deviation and
small deviation regimes, respectively.

Proposition 1 (Bounding the coding error given a fixed
coding rate).—Consider an arbitrary classical-quantum
channel NX→B : x 
→ ρx

B. Then, for any n ∈ N and R > 0,
there exists an (enR, ε) code for N⊗n

X→B such that, for any

probability distribution pX,

ε ≤ e−[n(1−α)/α](I↓
2−1/α

(X : B)ρ−R) for all α ∈ ( 1
2 , 1

)
.

Here, I↓
α (X : B)ρ := Dα(ρXB ‖ ρX ⊗ ρB), the state is evalu-

ated on ρXB := ∑
x∈X pX(x)|x〉〈x| ⊗ ρx

B, and the quantum
Petz-Rényi divergence [81] is Dα(ρ ‖ σ) := [1/(α − 1)]
log Tr [ρασ 1−α].

The exponent supα∈(1/2,1)[(1 − α)/α](I↓
2−1/α(X : B)ρ −

R) is positive if and only if R > I(X : B)ρ := D(ρXB ‖ ρX ⊗
ρB).

Proof.—For the one-shot case n = 1, we apply the
inequality of Audenaert et al., i.e., Fact 1 (vi), on the
one-shot bound given in Theorem 1 with A = ρXB, B =
(M − 1)ρX ⊗ ρB, and s = (1 − α)/α to obtain the large-
deviation-type bound. When considering product channels
in the n-shot scenario, the exponential decay follows from
the fact that ρ 
→ I↓

2−1/α(X : B)ρ is additive for any n-fold
product state. The positivity holds by noting that the map
α 
→ I↓

2−1/α(X : B)ρ is nondecreasing on [ 1
2 , 1] [78, Lemma

3.12]. �
Proposition 2 (Bounding the coding rate given a fixed

coding error).—Consider an arbitrary classical-quantum
channel NX→B : x 
→ ρx

B. Then, for any ε ∈ (0, 1), there
exists an (M , ε) code for NX→B such that, for any proba-
bility distribution pX and any δ ∈ (0, ε),

log M ≥ Dε−δ
h (ρXB ‖ ρX ⊗ ρB) − log

1
δ

. (12)

Here, Dε
h(ρ ‖ σ) := sup0≤T≤1{− log Tr [σT] : Tr [ρT] ≥

1 − ε} is the ε-hypothesis-testing divergence [38,39,46].
Moreover, for any ε ∈ (0, 1) and sufficiently large n ∈

N, there exists an (M , ε) code for N⊗n
X→B such that, for any

probability distribution pX,

log M ≥ nI(X : B)ρ +
√

nV(X : B)ρ�
−1(ε)

− 1
2 log n − O(1),

where V(X : B)ρ := V(ρXB ‖ ρX ⊗ ρB), V(ρ ‖ σ) := Tr
[ρ(log ρ − log σ)2] − D(ρ ‖ σ)2, and �−1(ε) := sup{u :
∫ u
−∞(1/

√
2π)e−t2/2dt ≤ ε} is the inverse of the cumulative

distribution of the standard normal distribution.
Proof.—By recalling the definition of the noncommu-

tative minimal given in Eq. (5) and by Theorem 1, for
any test 0 ≤ TXB ≤ 1XB satisfying Tr [ρXB(1XB − TXB)] ≤
ε − δ, one has

ε ≤ Tr [ρXB(1XB − TXB)] + (M − 1) Tr [ρX ⊗ ρBTXB]

≤ ε − δ + (M − 1)e−Dε−δ
h (ρXB ‖ ρX⊗ρB).

The second-order achievability then follows from the
expansion of the quantum hypothesis-testing divergence
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[29,38,39,82,83] by choosing δ = 1/
√

n: Dε±δ
h

(
ρ⊗n ‖ σ⊗n

)

≥ nD (ρ ‖ σ) + √
nV (ρ ‖ σ)�−1(ε) − O(1). �

We remark that both Propositions 1 and 2 extend to
the moderate deviation regime by directly following the
approaches from Refs. [41,42]. We refer the reader to
Figure 2 for the corresponding expressions.

Remark 3.—Given that Theorem 1 already provides
a one-shot bound on the average error probability, one
may wonder why weaken Eq. (8) in Theorem 1 to obtain
another one-shot bound in Proposition 1 (note that they
both have closed-form expressions). The reason is that
the minimum error in terms of the noncommutative min-
imal on the right-hand side of Eq. (8) is not multiplicative
under product states. Nevertheless, it can be further upper
bounded by certain multiplicative Rényi-type quantities.
That is exactly the spirit of the quantum Chernoff bound
[33,34,36,71], and, hence, we term the result of Propo-
sition 1 as a kind of large deviation type bound [84]
accordingly.

On the other hand, Theorem 1 also gives a one-shot
and asymptotic expansions in the small deviation regime
(Proposition 2). Hence, to some extent, Theorem 1 may be
viewed as a “meta” achievability for classical communica-
tion over quantum channels (see also Theorem 3 in Sec.
IV B below).

Remark 4.—Most existing one-shot achievability bounds
to date (e.g., Refs. [30,43,46,59]) are expressed in terms
of the quantum hypothesis-testing divergence Dε

h, as in
Eq. (12) of Proposition 2, because they directly pro-
vide a one-shot characterization (lower bound) on the
maximal message or coding size M given a fixed cod-
ing error ε, which is also called the ε-one-shot channel
capacity. To numerically compute Dε

h, one can formulate
the quantity in the standard form of a semidefinite pro-
gram (SDP); namely, it is an optimization over a dB × dB
matrix-valued variable with m := d2

B + 1 linear (scalar)
constraints, where we use dB to denote the dimension of
the underlying Hilbert space representing the quantum reg-
ister B. (Here, we only consider the computation on the
quantum part of register B for simplicity without involving
computation on the classical register X.) Using the state-of-
the-art (classical) SDP solver [85], the running time [86] is
O∗(mω) = O∗(d2ω

B ) = O∗(d4.746
B ), where ω ≤ 2.373 is the

exponent of matrix multiplication [87].
On the other hand, the one-shot bound provided in

Theorem 1 admits a closed-form expression in terms
of the trace norm. Using the state-of-the-art algorithm
for approximating singular values [88], it requires a
running time of O∗(dω

B log2 dB) = O∗(d2.373
B log2 dB). This

then shows that the computation of the proposed one-
shot achievability bound in terms of the noncommutative
minimal in Theorem 1 is nearly quadratically efficient
compared to the computation of the one-shot bounds in
terms of the quantum hypothesis-testing divergence.

A. Comparison to existing results

In the following, we compare the implications of
the established one-shot achievability bounds, i.e.,
Propositions 1 and 2, with existing results. We refer the
reader to Table II for a summary.

The exponential decaying rate of the error probability
given in Proposition 1 matches that proved by Hayashi
[35, Eq. (9)]. However, in the one-shot setting, the large
deviation type bound in Proposition 1 is tighter than
Eq. (9) of Ref. [35] (without the factor 4). Furthermore,
if NX→B is a pure-state channel, one has I↓

2−1/α(X : B)ρ =
Iα(X : B)ρ := infσB∈S(HB) Dα(ρXB‖ρX ⊗ ρB)= [α/(α − 1)]
log Tr[(

∑
x∈X pX(x)(ρx

B)α)1/α] [where the minimization is
over all density operators on Hilbert space HB, i.e.,
S(HB)]. Hence, the bound in Proposition 1 is tighter
than the bound proved by Burnashev and Holevo [89,
Proposition 1] (without the factor 2).

Hayashi and Nagaoka [30, Lemma 3] and Wang and
Renner [46, Theorem 1] employed the Hayashi-Nagaoka
inequality (2) to obtain a one-shot achievability bound [90]
on the message or coding size M : for any 0 < δ < ε < 1,
choosing c = δ/(2ε − δ) in Eq. (2),

log M ≥ Dε−δ
h (ρXB ‖ ρX ⊗ ρB) − log

4
δ2 , (13)

in terms of the hypothesis-testing divergence Dε
h intro-

duced in Proposition 2. The term − log 4/δ2 results from
optimizing coefficient c when applying the Hayashi-
Nagaoka inequality. Compared to Eq. (13), Proposition 2
does not need to choose the appropriate coefficient c, and,
hence, it gives a tighter one-shot achievability bound on M
(especially when δ is small):

log M ≥ Dε−δ
h (ρXB ‖ ρX ⊗ ρB) − log

1
δ

. (14)

Specialized to the IID asymptotic scenario of n-fold prod-
uct channels with δ = 1/

√
n, Eq. (14) yields an improved

third-order coding rate by a factor 1
2 log n compared to the

asymptotics based on Eq. (13).
Beigi and Gohari [91] generalized a superb classical

achievability approach by Yassaee et al. [92] to establish
a one-shot achievability bound on M [91, Corollary 1] as
well:

log M ≥ Dε−δ
s (ρXB ‖ ρX ⊗ ρB) − log

1 − ε

δ
(15)

with Dε
s (ρ ‖ σ) := sup{γ ∈ R : Tr [ρ{ρ ≤ eγ σ } ≤ ε]} the

information-spectrum divergence [16,17,30,38,93]. Com-
paring Eq. (14) to Eq. (15), we recall the relation between
the quantum hypothesis-testing divergence Dε

h and the
quantum information-spectrum divergence Dε

s [38, Lemma
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12]: for all 0 < δ′ < ε,

Dε
h(ρ ‖ σ) ≥ Dε

s (ρ ‖ σ) ≥ Dε−δ′
h (ρ ‖ σ) − log

1
δ′ . (16)

This indicates that the proposed one-shot bound (14) has a
stronger leading term Dε−δ

h instead of Dε−δ
s [94].

When considering the asymptotic expansion of the
coding rate in the IID setting, one has to translate
Dε

s in Eq. (15) back to Dε
h using Eq. (16) and to

employ the second-order achievability [95] of the quantum
hypothesis-testing divergence Dε

h [38,39,82,83]:

Dε±δ
h (ρ⊗n‖σ⊗n) ≥ nD(ρ‖σ) +

√
nV(ρ‖σ)�−1(ε) − O(1).

(17)

Then, Beigi and Gohari’s result, Eq. (15), leads to

log M ≥ nI(X : B)ρ +
√

nV(X : B)ρ�
−1(ε) − log n − O(1).

This achieves the same third-order term as the asymp-
totic expansion using Eqs. (13) and (17). On the other
hand, the established Eq. (14) with Eq. (17) gives a tighter
third-order term for the coding rate:

log M ≥ nI(X : B)ρ

+
√

nV(X : B)ρ�
−1(ε) − 1

2 log n − O(1).

Inspired by the third-order asymptotics of the classi-
cal hypothesis-testing divergence proved by Strassen [12,
Theorem 3.1] (see also Refs. [22, Lemma 46] and [37,
Proposition 2.3]), we conjecture the following third-order
achievability of the quantum hypothesis-testing diver-
gence:

Dε±δ
h (ρ⊗n‖σ⊗n) ≥ nD(ρ‖σ) +

√
nV(ρ‖σ)�−1(ε)

+ 1
2 log n − O(1). (18)

If Eq. (18) holds then the established Eq. (14) will imply
that

log M ≥ nI(X : B)ρ +
√

nV(X : B)ρ�
−1(ε) − O(1). (19)

We remark that Eq. (19) will give the best possible achiev-
able third-order coding rate for c-q channel coding without
further assumptions on the channel [96].

Remark 5.—At the writing of this paper, a very recent
work by Renes established the optimal error exponent for
symmetric classical-quantum channels [97]. The result is
asymptotic, but it matches the quantum sphere-packing
bound [98–100] for the high achievable rate region, and,
hence, it is asymptotically optimal and tighter than the
error exponent obtained in Proposition 1 in the IID asymp-
totic setting for symmetric classical-quantum channels. A
one-shot bound for that is still missing, which we leave for
future work.

IV. APPLICATIONS IN QUANTUM
INFORMATION THEORY

The analysis proposed in Sec. III naturally extends to
classical communication over quantum channels, network
information theory [102], and beyond; see Table I in Sec.
I. We apply our analysis using the pretty-good measure-
ment to binary quantum hypothesis testing in Sec. IV A.
We present entanglement-assisted classical communica-
tion over quantum channels in Sec. IV B. Section IV C is
for classical data compression with quantum side informa-
tion. Section IV D studies entanglement-assisted and unas-
sisted classical communication over quantum multiple-
access channels. Section IV E considers entanglement-
assisted and unassisted classical communication over
quantum broadcast channels. Section IV F is devoted to
entanglement-assisted classical communication over quan-
tum channels with casual state information available at the
encoder.

A. Binary quantum hypothesis testing

Binary quantum hypothesis testing and the optimal
quantum measurement is a relatively well-studied topic
in quantum information theory due to its simpler mathe-
matical structure and operational significance [33–36,38,
39,41,42,50–52,103–114]. The goal of this section is not
to re-do the analysis via optimal measurements, but to
show how the suboptimal pretty-good measurement along
with the properties of the noncommutative minimal given
in Sec. II can recover the existing results with only a
slightly suboptimal coefficient. Specifically, we show that
the pretty-good measurement can also achieve the quan-
tum Hoeffding bound [34, Sec. 5.5]. This indicates that the
proposed analysis should not be too loose in terms of the
one-shot exponential bounds (at least for binary quantum
hypothesis testing).

1. Symmetric scenario

We first consider the symmetric scenario, where the two
quantum hypotheses are described by density operators ρ

and σ with prior probabilities p ∈ (0, 1) and 1 − p , respec-
tively. Note that the one-shot quantum hypothesis testing is
also known as the quantum state discrimination; the rela-
tion between the optimal measurement (i.e., the quantum
Neyman-Pearson test) and the pretty-good measurement
was proved by Barnum and Knill [72]; see also Ref. [64,
Theorem 3.10].

Subsequently, we show that the lower bound on the
noncommutative minimal (Fact 1 (vii)) can be interpreted
as an adaptation of the Barnum-Knill theorem. On the one
hand, the Holevo-Helstrom theorem [50–52] shows that
the minimal error for distinguishing ρ and σ in the sym-
metric scenario is given by Tr[pρ ∧ (1 − p)σ ]. On the
other hand, by using the pretty-good measurement with

040330-11



HAO-CHUNG CHENG PRX QUANTUM 4, 040330 (2023)

respect to the weighted states (pρ, (1 − p)σ ) and apply-
ing the lower bound of the noncommutative minimal, Fact
1 (vii), the corresponding error probability is given by

p Tr
[

ρ
(1 − p)σ

pρ + (1 − p)σ

]

+ (1 − p) Tr
[

σ
pρ

pρ + (1 − p)σ

]

≤ 2 Tr [pρ ∧ (1 − p)σ ], (20)

which is twice the error probability compared to the min-
imal error via the optimal measurement. This coincides
with the claim made by Barnum and Knill on the relation
between the error probability using the optimal measure-
ment and that using the pretty-good measurement.

Remark 6.—As mentioned in Remark 2 of Sec. III, the
upper bound in Eq. (20) can be strengthened to

2(1 − Tr [pρ ∧ (1 − q)σ ]) Tr [pρ ∧ (1 − q)σ ],

using Eq. (A2) of Lemma 1 in the Appendix instead of
Fact 1 (vii).

On the other hand, one can also use the pretty-good mea-
surement of the form { ρ

ρ+σ
, σ

ρ+σ
} to obtain an achievable

error probability (1 − Tr [ρ ∧ σ ]) Tr [ρ ∧ σ ] or simply
Tr[ρ ∧ σ ].

2. Asymmetric scenario

We move on to consider the asymmetric scenario,
namely, the trade-off between the type-I error and the type-
II error without knowing the prior distribution. We use the
pretty-good measurement {ρ/(ρ + μσ), μσ/(ρ + μσ)}
with a coefficient μ that will be specified later and apply
Fact 1 (vii) to bound the type-I error α and the type-II
error β:

α = Tr
[

ρ
μσ

ρ + μσ

]

≤ Tr [ρ ∧ μσ ],

β = Tr
[

σ
ρ

ρ + μσ

]

≤ μ−1 Tr [ρ ∧ μσ ].
(21)

Next, we show how Eq. (21) implies both the small devia-
tion type bound and the large deviation type bound. As in
the proof of Proposition 2, we invoke the definition of “∧”
in Eq. (5) with any test T satisfying Tr [ρ(1 − T)] ≤ ε − δ,
i.e.,

Tr [ρ ∧ μσ ] = inf
0≤T≤1

Tr [ρ(1 − T)] + Tr [μσT]

≤ ε − δ + μe−Dε−δ
h (ρ‖σ). (22)

Choosing μ such that the right-hand side of Eq. (22) equals
ε and recalling the upper bound on “∧” [Fact 1 (vi), taking

s → 0] we obtain the following bound on the type-II error:
for all 0 < δ < ε < 1,

β ≤ μ−1 Tr [ρ ∧ μσ ] ≤ μ−1 = e−Dε−δ
h (ρ ‖ σ)−log δ . (23)

We remark that Eq. (23) is stronger than the analysis pro-
vided by Beigi and Gohari [91, Theorem 6] in view of
the relation between the quantum hypothesis-testing diver-
gence and the quantum information-spectrum divergence,
Eq. (16). This again magnifies the fact that the pretty-good
measurement yields a one-shot achievability bound on the
Stein exponent [i.e., the maximal exponent of the type-II
error provided that the type-I error is at most ε ∈ (0, 1)],
and it can achieve second-order asymptotics in the IID
setting as well. Note here that, since the pretty-good mea-
surement is suboptimal, it incurs a cost − log 1/δ on the
Stein exponent in the one-shot setting and a third-order
term − 1

2 log n in the n-fold IID scenario. Yet, it is still suffi-
cient to achieve moderate deviation asymptotics [42] (i.e.,
the inferior third-order term − 1

2 log n does not affect the
moderate deviation expansion).

Next, we show that the pretty-good measurement can
recover the quantum Hoeffding bound [34, Sec. 5.5].
Applying the upper bound on “∧” [Fact 1 (vi) with α =
1 − s ∈ (0, 1)] in Eq. (21), we obtain

α ≤ Tr [ρ ∧ μσ ] ≤ μ1−α Tr [ρασ 1−α],

β ≤ μ−1 Tr [ρ ∧ μσ ] ≤ μ−α Tr [ρασ 1−α].

Choosing μ = e[(α−1)/α]Dα(ρ ‖ σ)+r/α with the quantum
Petz-Rényi divergence Dα introduced in Proposition 1, we
arrive at the one-shot quantum Hoeffding bound: for all
r > 0 and α ∈ (0, 1),

α ≤ e−[(1−α)/α](Dα(ρ ‖ σ)−r), β ≤ e−r.

To the best of our knowledge, this is the first time the
quantum Hoeffding bound has been achieved using the
pretty-good measurement.

B. Entanglement-assisted classical communication
over quantum channels

In this section, we elaborate on how the achievability of
entanglement-assisted (EA) classical communication [56,
115–119] follows in the same fashion from the proposed
simple derivation in Sec. III.

Definition 2 (Entanglement-assisted classical communi-
cation over quantum channels).—Let NA→B be a quantum
channel.

(1) Alice holds a classical register M and quantum reg-
isters A and A′, and Bob holds quantum registers B
and R′.

040330-12



SIMPLE AND TIGHTER DERIVATION OF ACHIEVABILITY... PRX QUANTUM 4, 040330 (2023)

(2) A resource of an arbitrary state θR′A′ is shared
between Bob and Alice beforehand.

(3) For any (equiprobable) message m ∈ M Alice
wanted to send, she performs an encoding quantum
operation Em

A′→A on θR′A′ .
(4) The quantum channel NA→B is applied on Alice’s

quantum register A and outputs a state on Bob’s
quantum register B.

(5) Bob performs a decoding measurement {	m
R′B}m∈M

on registers R′ and B to extract the sent message m.

An (M , ε)-EA code for NA→B is a protocol such that |M| =
M and the average error probability satisfies

1
M

∑

m∈M

Tr [(1 − 	m
R′B)NA→B ◦ Em

A′→A(θR′A′)] ≤ ε.

We adopt the encoder of the position-based coding [43],
but with the pretty-good measurement as the decoder.

(a) Preparations. Alice and Bob preshare an M -fold
product state θR′A′ := θ⊗M

RA = θR1A1 ⊗ · · · ⊗ θRM AM .
(b) Encoding. For sending each m ∈ M, Alice simply

sends her system Am, i.e., Em
AM →A

= TrAM\{m} , for
tracing out systems Am̄ for all m̄ �= m.

(c) Decoding. At the receiver, the channel output states
for all m ∈ M are

ρm
RM B := θ

⊗(m−1)

R ⊗ NA→B(θRmAm) ⊗ θ
⊗(M−m)

R .
(24)

Then, Bob performs the pretty-good measurement
with respect to the channel output states:

	m
RM B := ρm

RM B∑
m̄∈M ρm̄

RM B

for all m ∈ M.

Note that the decoding part constitutes the main difference
from previous results, such as the original position-based
coding [43,60] based on the Hayashi-Nagaoka operator
inequality [30, Lemma 2], the sequential decoding strat-
egy [27] with an auxiliary probe system, and a quantum
union bound [29, Theorem 2.1] [120].

Below, we analyze the conditional error probability for
sending each message m ∈ M. Let TrRM\{m} be the partial
trace for tracing out systems Rm̄ for all m̄ �= m, except Rm.
By Eq. (24), we have the following identities: for all m ∈
M and all m̄ �= m,

TrRM\{m}[ρm
RM B] = NA→B(θRmAm) = NA→B(θRA),

TrRM\{m}[ρm̄
RM B] = θRm ⊗ NA→B(θAm)= θR ⊗ NA→B(θA).

Then, the error probability conditioned on sending each
message m ∈ M is

Tr
[

ρm
RM B

∑
m̄ �=m ρm̄

RM B

ρm
RM B

+ ∑
m̄�=m ρm̄

RM B

]

(a)≤ Tr
[

ρm
RM B

∧ ( ∑

m̄ �=m

ρm̄
RM B

)]

= Tr
[

TrRM\{m}

[

ρm
RM B

∧ ( ∑

m̄ �=m

ρm̄
RM B

)]]

(b)≤ Tr
[

(TrRM\{m}[ρm
RM B])

∧ ( ∑

m̄ �=m

TrRM\{m}[ρm̄
RM B)

]]

= Tr [NA→B(θRA) ∧ (M − 1)θR ⊗ NA→B(θA)], (25)

where, as in the proof of Theorem 1, (a) follows from the
lower bound of the noncommutative minimal, Fact 1 (vii),
and (b) is due to the monotonicity of the noncommuta-
tive minimal under positive trace-preserving maps, Fact 1
(iii). Hence, we establish the following one-shot achiev-
ability for entanglement-assisted classical communication
over quantum channels.

Theorem 2 (A one-shot achievability bound for EA clas-
sical communication over quantum channels).—Consider
an arbitrary quantum channel NA→B. Then, there exists
an (M , ε)-EA code for NA→B such that, for any density
operator θRA,

ε ≤ Tr [NA→B(θRA) ∧ (M − 1)θR ⊗ NA→B(θA)].

Remark 7.—The above derivations reemphasize the
central idea of the position-based coding proposed by
Anshu et al. [43]. Namely, the preshared entangle-
ment θRM AM = θ⊗M

RA along with the encoding m 
→
ρm

RM B
= NA→B(θRM Am) ensure the mutual independence

between each subsystem RmAm, m ∈ M, and, accordingly,
TrRM\{m}[ρm̄

RM B
] = θR ⊗ NA→B(θA) for all m̄ �= m. Here,

the partial trace TrRM\{m} may be considered as an expecta-
tion conditioned on m (see Remark 8 below for a detailed
discussion). Such independence between register Rm asso-
ciated with each channel output state thus plays the same
role as the independent random codebook used in classical-
quantum channel coding (Theorem 1). On the other hand,
we would like to point out that, normally, a communi-
cation system operates on a message set whose size is
exponentially large, i.e., M ≥ enI(R : B)N (θ)−O(n). Preparing
exponentially many copies of the preshared state θ⊗M

RA
might be practically challenging. (Note that even in the
classical case, resources required to generate mutual inde-
pendence among an exponentially large set could not be
considered as nonexpensive [121, Corollary 3.34]). Never-
theless, Anshu et al. [43, Sec. IV] adapted an entanglement
recycling technique by Strelchuk et al. [122] to reduce the
required amount of entanglement resource.
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From our analysis given above, only pairwise indepen-
dence among each subsystem RmAm, m ∈ M, is needed.
That is, we only require that TrRM\{m,m̄}AM\{m,m̄}[θRM AM ] =
θRmAm ⊗ θRm̄Am̄ for each m �= m̄. This point of view may
provide another angle to reduce the required entanglement
resource. Though, to the best of our knowledge, its explicit
construction is not clear in noncommutative probability
space. We leave this for future work.

Remark 8.—The analysis of Theorem 2 actually shares
the same flavor as that of Theorem 1. More precisely, the
partial trace TrRM\{m} in step (b) of Eq. (25) plays the same
role as the averaging over the random codebook in step
(a) of Eq. (10). In other words, the partial trace TrRM\{m}
can be interpreted as a conditional expectation [123–126]
(which is a completely positive and trace-preserving map)
from the operator algebra of bounded operators on RM B,
i.e., B(RM B), to its subalgebra [127] 1Rm−1 ⊗ B(RmB) ⊗
1RM−m .

Directly applying the pretty-good measurement as
above allows us to obtain a tighter and cleaner one-shot
achievability bound in a more general form. This then
revisits the position-based coding proposed by Anshu et
al. [43, Lemma 4]. We summarize it as the following one-
shot quantum packing lemma that is not only prominent to
Theorems 1 and 2, and all the forthcoming results in this
section, but we believe that it is applicable elsewhere in
quantum information theory as well.

Theorem 3 (A one-shot quantum packing lemma).—Let
ρRB and τR be arbitrary density operators, and let M be an
integer. For every m ∈ M := {1, . . . , M }, define

ωm
R1R2···RM B := ρRmB ⊗ τR1 ⊗ τR2

⊗ · · · ⊗ τRm−1 ⊗ τRm+1 ⊗ · · · ⊗ τRM ,

where ρRmB = ρRB and τRm = τR for every m ∈ M. Then,
there exists a measurement

	m
R1R2···RM B :=

ωm
R1R2···RM B

∑
m̄∈M ωm̄

R1R2···RM B

for all m ∈ M

satisfying, for every m ∈ M,

Tr [ωm
RM B(1 − 	m

RM B)] ≤ Tr [ρRB ∧ (M − 1)τR ⊗ ρB].

To see how the one-shot quantum packing lemma is
applied to the previous achievability bounds, we make
the following substitutions: ρRmB → NA→B(θRmAm) and
τRm̄ → θRm̄ for all m ∈ M and m̄ �= m. Then, Theorem
3 covers Theorem 2 for entanglement-assisted classical
communication over quantum channels.

On the other hand, in the scenario where RmB → XmB,
ρRmB → ρXmB, and τRm̄ → ρXm̄ for all m ∈ M and m̄ �= m,
the setting in Theorem 3 corresponds to the randomness-
assisted communication over c-q channels, where the

Xm is the shared randomness at Bob and the joint state
ρXmB results from Alice sending her mth classical sys-
tem through the c-q channel (see also the papers by Wilde
[59] and Anshu et al. [128]). Then, Theorem 3 yields the
achievability bound on the average error probability over
the ensemble of codes, i.e., the right-hand side of Eq. (8) in
Theorem 1. Via derandomization, one can always claim the
existence of a good code in the ensemble to achieve such
an error bound without randomness assistance. This con-
cludes the statement of Theorem 1 for c-q channel coding
[129].

Following the same reasoning as in Proposition 1,
Theorem 2 (or Theorem 3) leads to a large deviation type
bound, which is tighter than [60, Theorem 6] without a
prefactor 4; following the same reasoning as in Proposi-
tion 2, Theorem 2 provides a tighter lower bound on the
ε-one-shot entanglement-assisted capacity for NA→B (i.e.,
the maximal logarithmic size of messages with average
error probability below ε) than Refs. [29, Theorem 5.1],
[43, Theorem 1], and [60, Theorem 8] (with the same
improvements as the comparison made in Sec. III A).

Proposition 3 (Bounding the coding error given a fixed
coding rate).—Consider an arbitrary quantum channel
NA→B. Then, for any R > 0, there exists an (eR, ε)-EA
code for NA→B such that, for any θRA,

ε ≤ e−[(1−α)/α](I↓
2−1/α

(R : B)N (θ)−R) for all α ∈ ( 1
2 , 1

)
.

Here, we follow the notation given in Proposition 1.
Proposition 4 (Bounding the coding rate given a fixed

coding error).—Consider an arbitrary quantum channel
NA→B. Then, for any ε ∈ (0, 1), there exists an (M , ε)-EA
code for NA→B such that, for any θRA and any δ ∈ (0, ε),

log M ≥ Dε−δ
h (NA→B(θRA) ‖ θR ⊗ NA→B(θA)) − log

1
δ

.

Here, we follow the notation given in Proposition 2.

C. Classical data compression with quantum side
information

In this section, we show that how the proposed method
in Sec. III can be applied to classical data compression
with quantum side information [80,113,130–132]. In the
following, we refer to such an protocol as CQSW.

Definition 3 (Classical data compression with quantum
side information).—Let ρXB = ∑

x∈X pX(x)|x〉〈x| ⊗ ρx
B be

a classical-quantum state.

(1) Alice holds classical registers X and M, and Bob
holds a quantum register B.

(2) Alice performs an encoding E : X → M that com-
presses the source in X to an index in M.

(3) Bob performs a decoding measurement described
by a family of POVMs indexed by m ∈ M, i.e.,
{	x,m

B }x∈X on register B, to recover the source x ∈ X.
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An (M , ε)-CQSW code for ρXB is a protocol such that
|M| = M and the error probability satisfies

∑

x∈X

pX(x) Tr [ρx
B(1B − 	

x,E(x)
B )] ≤ ε.

Without loss of generality, we assume that the prior dis-
tribution of the source, pX, has full support for brevity. We
also adopt the standard random coding strategy given in
Sec. III.

(a) Encoding. The encoder maps each x ∈ X pairwise
independently to uniform index m ∈ M.

(b) Decoding. We use the following pretty-good mea-
surement (again given the realization of the above
encoding):

	
x,m
B := pX(x)ρx

B∑
x̄:E(x̄)=m pX(x̄)ρ x̄

B

for all x ∈ X, m ∈ M.

(26)

Theorem 4 (A one-shot achievability bound for classi-
cal data compression with quantum side information).—
Consider an arbitrary classical-quantum state ρXB =∑

x∈X pX(x)|x〉〈x| ⊗ ρx
B. Then, there exists an (M , ε)-

CQSW code for ρXB such that

ε ≤ Tr
[

ρXB ∧ 1
M

1X ⊗ ρB

]

.

Proof.—We use the pretty-good measurement given in
Eq. (26) to calculate the expected error probability (over
the random encoding):

Ex∼pXEm∼ 1
M

Tr
[

ρx
B

∑
x̄ �=x,E(x̄)=m pX(x̄)ρ x̄

B
∑

x̄:E(x̄)=m pX(x̄)ρ x̄
B

]

(a)≤ Ex∼pXEm∼ 1
M

Tr
[

ρx
B

∧ ( ∑

x̄ �=x,E(x̄)=m

pX(x̄)
pX(x)

ρ x̄
B

)]

(b)≤ Ex∼pX Tr
[

ρx
B

∧
Em∼ 1

M

[ ∑

x̄ �=x

1{E(x̄)=m}
pX(x̄)
pX(x)

ρ x̄
B

]]

(c)= Ex∼pX Tr
[

ρx
B

∧ (
1
M

∑

x̄ �=x

pX(x̄)
pX(x)

ρ x̄
B

)]

(d)≤ Ex∼pX Tr
[

ρx
B

∧ (
1

MpX(x)
ρB

)]

(e)≤ Tr
[

ρXB

∧ (
1
M

1X ⊗ ρB

)]

.

Here (a) uses the lower bound of the noncommutative
minimal given in Fact 1 (vii); (b) follows from the con-
cavity given in Fact 1 (iv); (c) follows from the pairwise
independent and uniform random encoding; (d) follows

from the monotone increase in the Loewner ordering and∑
x̄ �=x pX(x̄)ρ x̄

B ≤ ∑
x̄ pX(x̄)ρ x̄

B = ρB; and, lastly, (e) fol-
lows from the direct sum formula given in Fact 1 (v). �

Using the same reasoning as in Propositions 1 and 2
of Sec. III, we have the following one-shot bounds for
CQSW.

Proposition 5 (Bounding the coding error given a fixed
coding rate).—Consider an arbitrary classical-quantum
state ρXB = ∑

x∈X pX(x)|x〉〈x| ⊗ ρx
B. Then, for any R > 0,

there exists an (eR, ε)-CQSW code for ρXB such that

ε ≤ e−[(1−α)/α](R−H↓
2−1/α

(X | B)ρ ) for all α ∈ ( 1
2 , 1

)
,

where H↓
α (X | B)ρ := −Dα(ρXB ‖1X ⊗ ρB).

Proposition 6 (Bounding the coding rate given a fixed
coding error).—Consider an arbitrary classical-quantum
state ρXB = ∑

x∈X pX(x)|x〉〈x| ⊗ ρx
B. Then, for any ε ∈

(0, 1), there exists an (M , ε)-CQSW code for ρXB such that,
for any δ ∈ (0, ε),

log M ≤ H ε−δ
h (X | B)ρ + log

1
δ

,

where H ε−δ
h (X | B)ρ := −Dε−δ

h (ρXB ‖1X ⊗ ρB).

D. Multiple-access channel coding

In this section, we show one-shot achievability bounds
for classical-quantum multiple-access channel (MAC)
coding and entanglement-assisted classical communica-
tion over quantum MACs [60,133–135]. Note that the
former naturally extends to (unassisted) classical commu-
nication over quantum MACs. We present the scenario for
only two senders with one receiver; the result applies to
multiple senders in the same fashion.

Definition 4 (Classical-quantum multiple-access chan-
nel coding).—Let NXY→C : (x, y) 
→ ρ

x,y
C be a classical-

quantum multiple-access channel.

(1) Alice holds classical registers MA and X, Bob holds
MB and Y, and Charlie holds quantum register C.

(2) Alice performs an encoding mA 
→ x(mA) ∈ X for
any equiprobable message mA ∈ MA she wanted to
send. Bob performs an encoding mB 
→ y(mB) ∈ Y
for any equiprobable message mB ∈ MB he wanted
to send.

(3) The channel NXY→C is applied on Alice’s and Bob’s
registers X and Y and outputs a state on C at Charlie.

(4) A decoding measurement {	mA,mB
C }(mA,mB)∈MA×MB is

performed on register C to extract the sent message
(mA, mB).

An (MA, MB, ε) code for NXY→C is a protocol such that
|MA| = MA, |MB| = MB, and the average error probability
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satisfies

1
MAMB

∑

(mA,mB)∈MA×MB

Tr [(1 − 	
mA,mB
C )ρ

x(mA),y(mB)

C ] ≤ ε.

We follow the strategy presented in Sec. III.

(a) Encoding. Each pair of messages (mA, mB) ∈ MA ×
MB is mapped to a codeword (x(mA), y(mB)) ∈
X × Y pairwise independently according to some
probability distribution pX ⊗ pY.

(b) Decoding. We use the pretty-good measurement
with respect to the corresponding channel output
states (given the realization of the random code-
book): for (mA, mB) ∈ MA × MB,

	
mA,mB
C = ρ

x(mA),y(mB)

C
∑

(m̄A,m̄B) ρ
x(m̄A),y(m̄B)

C

.

Then, we obtain the following result (without duplicating
the proof).

Theorem 5 (A one-shot achievability bound for clas-
sical-quantum MAC coding).—Consider an arbitrary
classical-quantum multiple-access channel NXY→C : (x, y) 
→
ρ

x,y
C . Then, there exists an (MA, MB, ε) code for NXY→C

such that, for any probability distributions pX and pY,

ε ≤ Tr [ρXYC

∧
((MA − 1)ρX ⊗ ρYC + (MB − 1)ρY ⊗ ρXC

+ (MA − 1)(MB − 1)ρX ⊗ ρY ⊗ ρC)],

where ρXYC := ∑
(x,y)∈X×Y pX(x)|x〉〈x|X ⊗ pY(y)|y〉〈y|Y ⊗

ρ
x,y
C .
Next, we consider the entanglement-assisted setting.
Definition 5 (Entanglement-assisted classical commu-

nication over quantum multiple-access channels).—Let
NAB→C be a quantum multiple-access channel.

(1) Alice holds classical register MA and quantum reg-
isters A and A′. Bob holds classical register MB and
quantum registers B and B′. Charlie holds quantum
registers C, R′

A, and R′
B.

(2) Charlie and Alice share an arbitrary state θR′
AA′ .

Charlie and Bob share an arbitrary state θR′
BB′ .

(3) Alice performs an encoding EmA
A′→A on θR′

AA′ for any
equiprobable message mA ∈ MA she wanted to send;
Bob performs an encoding EmB

B′→B on θR′
BB′ for any

equiprobable message mB ∈ MB he wanted to send.
(4) The channel NAB→C is applied on Alice’s and Bob’s

registers A and B, and outputs a state on quantum
register C at Charlie.

(5) Charlie performs a decoding measurement
{	mA,mB

R′
AR′

BC}(mA,mB)∈MA×MB on registers R′
A, R′

B, and C

to extract the sent message (mA, mB).

An (MA, MB, ε)-EA code for NAB→C is a protocol such that
|MA| = MA, |MB| = MB, and the average error probability
satisfies

1
MAMB

∑

(mA,mB)∈MA×MB

Tr [(1 − 	
mA,mB
R′

AR′
BC)NAB→C(EmA

A′→A

(θR′
AA′) ⊗ EmB

B′→B(θR′
BB′))] ≤ ε.

As in Sec. IV B, we use the encoder of the position-
based coding (see also Ref. [60]) and the pretty-good
measurement for decoding.

(a) Preparation. The MA-fold product states θR′
AA′ :=

θ
⊗MA
RAA are shared between Charlie and Alice, and

the MB-fold product states θR′
BB′ := θ

⊗MB
RBB are shared

between Charlie and Bob.
(b) Encoding. Alice adopts encoding EmA

AMA→A
=

TrAMA\{mA} for each mA ∈ MA, and Bob adopts
encoding EmB

BMB→B
= TrBMB\{mB} for each mB ∈ MB.

(c) Decoding. Denote the corresponding channel output
state for sending message (mA, mB) ∈ MA × MB by

ρ
mA,mB

R
MA
A R

MB
B C

:= θ
⊗(mA−1)

RA
⊗ θ

⊗(mB−1)

RB
⊗ NAB→C(θRAA

⊗ θRBB) ⊗ θ
⊗(MA−mA)

RA
⊗ θ

⊗(MB−mB)

RB
.

Then, we use the associated pretty-good measure-
ment: for all (mA, mB) ∈ MA × MB,

	
mA,mB
RARBC =

ρ
mA,mB

R
MA
A R

MB
B C

∑
(m̄A,m̄B) ρ

m̄A,m̄B

R
MA
A R

MB
B C

.

Following the analysis presented in Sec. IV B, we imme-
diately obtain the following result (without duplicating the
proof).

Theorem 6 (A one-shot achievability bound for EA clas-
sical communication over quantum MAC).—Consider an
arbitrary quantum multiple-access channel NAB→C. Then,
there exists an (MA, MB, ε)-EA code for NAB→C such that,
for any θRAA and θRBB,

ε ≤ Tr [ρRARBC

∧
((MA − 1)ρRA ⊗ ρRBC + (MB − 1)ρRB

⊗ ρRAC + (MA − 1)(MB − 1)ρRA ⊗ ρRB ⊗ ρC)],

where ρRARBC := NAB→C
(
θRAA ⊗ θRBB

)
.

E. Broadcast channel coding

In this section, we study entanglement-assisted and
unassisted classical communication over quantum broad-
cast channels [43,117,128,136–141].
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Definition 6 (Classical-quantum broadcast channel
coding).—Let NX→BC : x 
→ ρx

BC be a classical-quantum
broadcast channel.

(1) Alice holds classical registers MB, MC, and X. Bob
holds quantum register B and Charlie holds quantum
register C.

(2) Alice performs an encoding (mB, mC) 
→ x(mB, mC)

∈ X for any equiprobable message (mB, mC) ∈
MB × MC she wanted to send to Bob and Charlie,
respectively.

(3) The channel NX→BC is applied on Alice’s register
X, and outputs a marginal state on B at Bob and a
marginal state on C at Charlie.

(4) Bob performs a decoding measurement {	mB
B }mB∈MB

on register B to extract the sent message mB,
and Charlie performs a decoding measurement
{	mC

C }mC∈MC on register C to extract the sent mes-
sage mC.

An (MB, MC, εB, εC) code for NX→BC : x 
→ ρx
BC is a pro-

tocol such that |MB| = MB, |MC| = MC, and the average
error probabilities satisfy

1
MBMC

∑

(mB,mC)∈MB×MC

Tr [(1 − 	
mB
B )ρ

x(mB,mC)

B ] ≤ εB,

1
MBMC

∑

(mB,mC)∈MB×MC

Tr [(1 − 	
mC
C )ρ

x(mB,mC)

C ] ≤ εC.

We follow the analysis proposed in Sec. III by consid-
ering communication from Alice to Bob and from Alice to
Charlie, separately.

(a) Encoding. We introduce two auxiliary classical reg-
isters U and V for precoding. Message mB ∈ MB
for Bob is encoded to a precodeword u(mB) pair-
wise independently according to some probability
distribution pU; message mC ∈ MC for Charlie is
encoded to a precodeword v(mC) pairwise indepen-
dently according to some probability distribution
pV. Then, Alice picks a (deterministic) encoding
(u(mB), v(mC)) 
→ x(u(mB), v(mC)) ∈ X.

(b) Decoding. Denoting (with a slight abuse of nota-
tion) the marginal channel output states at Bob by
ρ

mB
B := (1/MC)

∑
mC∈MC

ρ
x(u(mB),v(mC))

B , mB ∈ MB,
Bob performs the corresponding pretty-good mea-
surement:

	
mB
B := ρ

mB
B

∑
m̄B∈MB

ρ
m̄B
B

, mB ∈ MB.

Similarly, denoting (with a slight abuse of notation
again) the marginal channel output states at Char-
lie by ρ

mC
C := (1/MB)

∑
mB∈MB

ρ
x(u(mB),v(mC))

C , mC ∈

MC, Charlie performs the corresponding pretty-
good measurement:

	
mC
C := ρ

mC
C

∑
m̄C∈MC

ρ
m̄C
C

, mC ∈ MC.

Then, we obtain the following result (without duplicating
the proof).

Theorem 7 (A one-shot achievability bound for
classical-quantum broadcast channel coding).—Con-
sider an arbitrary classical-quantum broadcast channel
NX→BC : x 
→ ρx

BC. Then, there exists an (MB, MC, εB, εC)

code for NX→BC such that, for any probability distributions
pU and pV, and (deterministic) encoding (u, v) 
→ x(u, v),

εB ≤ Tr [ρUB ∧ (MB − 1)ρU ⊗ ρB],

εC ≤ Tr [ρUC ∧ (MC − 1)ρV ⊗ ρC],

where ρUVBC := ∑
(u,v)∈U×V pU(u)|u〉〈u|U ⊗ pV(v)|v〉〈v|V

⊗ ρ
x(u,v)

BC .
Note that Theorem 7 extends to classical communication

over quantum broadcast channels straightforwardly (see
Table I).

Remark 9.—Theorem 7 employs independent precoding
pU ⊗ pV and hence it provides a simple and clean one-shot
achievability bound. We note that such a scenario was con-
sidered by Anshu et al. [128]. Hence, Theorem 7 improves
on the achievability in Ref. [128, Theorem 13].

Generally, Alice can adopt a joint precoding pUV, which
is called Marton’s inner bound in the classical setting [142,
143] (see also the studies in the quantum setting [43,117,
136–139]); however, it would require additional covering
techniques. We leave this for future work [144].

Next, we present entanglement-assisted classical com-
munication over quantum broadcast channels.

Definition 7 (Entanglement-assisted classical communi-
cation over quantum broadcast channels).—Let NA→BC be
a quantum broadcast channel.

(1) Alice holds classical registers MB and MC, and
quantum registers A′

B and A′
C. Bob holds quantum

registers B and R′
B. Charlie holds quantum registers

C and R′
C.

(2) Bob and Alice share an arbitrary state θR′
BA′

B
. Charlie

and Alice share an arbitrary state θR′
CA′

C
.

(3) Alice performs an encoding EmB,mC
A′

BA′
C→A on θR′

BA′
B

⊗
θR′

CA′
C

for any equiprobable message (mB, mC) ∈
MB × MC she wanted to send to Bob and Charlie,
respectively.

(4) The channel NA→BC is applied on Alice’s register
A, and outputs a marginal state on B at Bob and a
marginal state on C at Charlie.

(5) Bob performs a decoding measurement {	mB
R′

BB}mB∈MB

on register B to extract the sent message mB,
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and Charlie performs a decoding measurement
{	mC

R′
CC}mC∈MC on register C to extract the sent mes-

sage mC.

An (MB, MC, εB, εC)-EA code for NA→BC is a protocol
such that |MB| = MB, |MC| = MC and the average error
probabilities satisfy

1
MBMC

∑

(mB,mC)∈MB×MC

Tr
[
(1 − 	

mB
R′

BB)NA→BC

◦ EmB,mC
A′

BA′
C→A(θR′

BA′
B

⊗ θR′
CA′

C
)
]

≤ εB,

1
MBMC

∑

(mB,mC)∈MB×MC

Tr
[
(1 − 	

mC
R′

CC)NA→BC

◦ EmB,mC
A′

BA′
C→A(θR′

BA′
B

⊗ θR′
CA′

C
)
]

≤ εC.

We follow the similar analysis as above by consider-
ing communication from Alice to Bob and from Alice to
Charlie, separately. Again, we also employ the encoder of
the position-based coding as in Refs. [43, Theorem 6] and
[128, Theorem 6], and apply the pretty-good measurement
for decoding.

(a) Preparation. Consider an arbitrary state θRBRCA sat-
isfying θRBRC = θRB ⊗ θRC . Let θRBAB be a purified
state of θRB , and let θRCAC be a purified state of
θRC . Then, Alice and Bob share the MB-fold product
states θR′

BA′
B

:= θ
⊗MB
RBAB

, and Alice and Charlie share

the MC-fold product states θR′
CA′

C
:= θ

⊗MC
RCAC

.
(b) Encoding. For each (mB, mC) ∈ MB × MC, Alice

sends the (mB, mC)th registers AB and AC and then
performs an isometry transformation VABAC→EA
such that VABAC→EA(θRBAB ⊗ θRCAC) equals a puri-
fied state θERBRCA of θRBRCA with an addi-
tional purifying register E. The overall encod-
ing map is then EmB,mC

A
MB
B A

MC
C →A

= TrE ◦ VABAC→EA ◦
Tr

A
MB\{mB}
B A

MC\{mC}
C

.

(c) Decoding. Denoting (with a slight abuse of nota-
tion) the marginal channel output states at Bob for
sending mB ∈ MB by

ρ
mB

R
MB
B B

:= θ
⊗(mB−1)

RB
⊗ TrCERC ◦ NA→BC

◦ VABAC→EA(θRBAB ⊗ θRCAC) ⊗ θ
⊗(MB−mB)

RB
,

Bob performs the corresponding pretty-good mea-
surement:

	
mB

R
MB
B B

:=
ρ

mB

R
MB
B B

∑
m̄B∈MB

ρ
m̄B

R
MB
B B

, mB ∈ MB.

Similarly, denoting (with a slight abuse of notation
again) the marginal channel output states at Charlie
for sending mC ∈ MC by

ρ
mC

R
MC
C C

:= θ
⊗(mC−1)

RC
⊗ TrBERB ◦NA→BC ◦VABAC→EA

(θRBAB ⊗ θRCAC) ⊗ θ
⊗(MC−mC)

RC
,

Charlie performs the corresponding pretty-good
measurement:

	
mC

R
MC
C C

:=
ρ

mC

R
MC
C C

∑
m̄C∈MC

ρ
m̄C

R
MC
C C

, mC ∈ MC.

Then, we obtain the following result (without duplicating
the proof).

Theorem 8 (A one-shot achievability bound for EA
classical communication over quantum broadcast chan-
nels).—Consider an arbitrary quantum broadcast channel
NA→BC. Then, there exists an (MB, MC, εB, εC)-EA code
for NA→BC such that, for any θRBRCA satisfying θRBRC =
θRB ⊗ θRC ,

εB ≤ Tr [ρRBB ∧ (MB − 1)ρRB ⊗ ρB],

εC ≤ Tr [ρRCC ∧ (MC − 1)ρRC ⊗ ρC],

where ρRBRCBC := NA→BC(θRBRCA).

F. Communication with casual state information at the
encoder

In this section, we consider entanglement-assisted and
unassisted classical communication over quantum chan-
nels with causal channel state information available at the
encoder [43,117,128], which is the quantum generalization
of the classical Gel’fand-Pinsker channel [145]; see also
Ref. [102, Sec. 7].

Definition 8 (Classical-quantum channel coding with
causal state information).—Let NXS→B : (x, s) 
→ ρ

x,s
B be

a classical-quantum channel parameterized by s ∈ S and
assume that a channel state pS is available at the encoder.

(1) The channel holds a classical register S. Alice holds
classical registers M, X, and S′ (an identical copy of
S). Bob holds a quantum register B.

(2) Given a realization of the channel state s ∈ S′, an
encoding (m, s) 
→ x(m, s) maps an equiprobable
message m ∈ M to a codeword in X.

(3) The classical-quantum channel NXS→B is applied on
Alice’s register X given the realization of the chan-
nel state s ∈ S, and outputs a state on B at Bob. (The
realizations s ∈ S′ at Alice and s ∈ S at the channel
are identical.)
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(4) Bob performs a decoding measurement described by
a measurement {	m

B}m∈M on B to extract the sent
message m ∈ M. (Note that Bob is aware of the
mathematical description of the probability distri-
bution pS but not of the realization of a specific
s ∈ S.)

An (M , ε) code for NXS→B with state information pS
is a protocol such that |M| = M and the average error
probability satisfies

1
M

∑

(m,s)∈M×S

pS(s) Tr [ρx(m,s),s
B (1B − 	m

B)] ≤ ε.

We adopt the standard random coding strategy as fol-
lows.

(a) Encoding. We introduce an auxiliary classical regis-
ter U for precoding. The message m ∈ M is mapped
to a precodeword u ∈ U pairwise independently
according to pU. With the realization of the channel
state s ∈ S′, Alice picks a (deterministic) encoding
(u(m), s) 
→ x(u(m), s) ∈ X.

(b) Decoding. At the receiver, denoting (with a slight
abuse of notation) the channel output state by ρm

B :=
∑

s∈S pS(s)ρx(u(m),s),s
B for each m ∈ M, Bob performs

the corresponding pretty-good measurement:

	m
B := ρm

B∑
m̄∈M ρm̄

B

for all m ∈ M.

Then, following the analysis in Sec. III, we obtain a one-
shot achievability bound (without duplicating the proof).

Theorem 9 (A one-shot achievability bound for classi-
cal-quantum channel coding with casual state informa-
tion).—Consider an arbitrary classical-quantum channel
NXS→B : (x, s) 
→ ρ

x,s
B with state information pS. Then,

there exists an (M , ε) code for NXS→B with state informa-
tion pS such that, for any probability distribution pU and
(deterministic) map (u, s) 
→ x(u, s),

ε ≤ Tr [ρUB ∧ (M − 1)ρU ⊗ ρB].

Here, ρUB := ∑
(u,s)∈U×S pU(u)|u〉〈u| ⊗ pS(s)ρx(u,s),s

B .
The result extends to classical communication over

quantum channels NAS→B with quantum state information
ϑS (see also the definition below in the entanglement-
assisted setting). We refer the reader to Table I for the
corresponding results.

Remark 10.—In the precoding phase of Theorem 9, the
chosen probability distribution pU is independent of the
channel state pS. This coding strategy is called casual state
information at the encoder [102, Sec. 7.5] and it was also
studied in the quantum setting [128, Theorem 12]. (Hence,
Theorem 9 improves on Ref. [128, Theorem 12].)

For the scenario of noncasual state information at the
encoder, the precoding probability distribution on U may
be correlated with the channel state pS [117, Sec. 4], [43,
Sec. V]. This would require additional techniques. We
leave this for future work [144].

Next, we move on to the entanglement-assisted setting.
Definition 9 (Entanglement-assisted classical communi-

cation over quantum channels with causal state informa-
tion).—Let NAS→B be a quantum channel with a channel
state ϑS.

(1) The channel holds a quantum register S. Alice holds
a classical register M and quantum registers A′ and
S′. Bob holds quantum registers R′ and B.

(2) A resource of arbitrary state θR′A′ is shared between
Bob and Alice. Moreover, let ϑS′S be a purified state
of ϑS shared between Alice and the channel.

(3) Alice performs an encoding Em
A′S′→A on registers A′

and S′ of state θR′A′ ⊗ ϑS′S for any equiprobable
message m ∈ M.

(4) The quantum channel NAS→B is applied on Alice’s
register A and the register S of the channel state, and
outputs a state on B at Bob.

(5) Bob performs a decoding measurement {	m
R′B}m∈M

on R′B to extract the sent message m. (Note that
Bob is aware of the mathematical description of
the channel state ϑS, but Bob cannot access the
channel’s register S nor operate on such a channel
state.)

An (M , ε)-EA code for NAS→B with state information ϑS
is a protocol such that |M| = M and the average error
probability satisfies

1
M

∑

m∈M

Tr [(1 − 	m
R′B)NAS→B

◦ Em
A′S′→A(θR′A′ ⊗ ϑS′S)] ≤ ε.

We also use the encoder of the position-based coding
as in Refs. [43, Theorem 5], [128, Theorem 4], and the
pretty-good measurement for decoding.

(a) Preparation. Consider an arbitrary state θRAS satis-
fying θRS = θR ⊗ ϑS. Let θRU be a purified state of
θR with an additional quantum register U at Alice.
Then, Alice and Bob share the M -fold product states
θR′A′ := θ⊗M

RU .
(b) Encoding. For each m ∈ M, Alice sends the mth

register of U and applies an isometry transformation
VS′U→EA such that VS′U→EA(θRU ⊗ ϑS′S) equals a
purified state θERAS of θRAS with an additional puri-
fying register E. Then, the overall encoding map is
Em

UM →A
= TrE ◦ VS′U→EA ◦ TrUM\{m} .

(c) Decoding. Denoting (with a slight abuse of notation
again) the marginal channel output states at Bob for
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sending m ∈ M by

ρm
RM B := θ

⊗(m−1)

R ⊗ NAS→B ◦ TrE

◦ VS′U→EA(θRU ⊗ ϑS′S) ⊗ θ
⊗(M−m)

R ,

Bob performs the corresponding pretty-good mea-
surement:

	m
RM B := ρm

RM B∑
m̄∈M ρm̄

RM B

, m ∈ M.

Then, applying the analysis in Sec. IV B, we obtain the
following result (without duplicating the proof).

Theorem 10 (A one-shot achievability bound for EA
classical communication over quantum channels with
casual state information).—Consider an arbitrary quantum
channel NAS→B with state information ϑS. Then, there
exists an (M , ε)-EA code for NAS→B with state infor-
mation ϑS such that, for any θRAS satisfying θRS = θR ⊗
ϑS,

ε ≤ Tr [ρRB ∧ (M − 1)ρR ⊗ ρB].

Here, ρRB := NAS→B(θRAS).

V. CONCLUSIONS

We propose a conceptually simple analysis of one-shot
achievability for processing classical information in quan-
tum systems. The key point of this work is to demonstrate
that the pretty-good measurement directly translates the
conditional error probability of a multiple-state discrimi-
nation to the error of discriminating a state against the rest.
This can be viewed as the one-versus-rest strategy, and,
hence, the pretty-good measurement effectively resembles
the quantum union bound in quantum coding design and
analysis. We obtain an elegant closed-form expression of
the average error probability for classical communication
over quantum channels with standard random coding and
basic properties of the noncommutative minimal. The pro-
posed method is tight in the sense that it gives tighter
one-shot achievability bounds for channels without further
constraints such as symmetry (see Sec. III A), and it unifies
the asymptotic derivations in the large, small, and mod-
erate deviation regimes (Fig. 2). Moreover, the analysis
naturally applies to various quantum information-theoretic
tasks (see Sec. IV and Table I). This manifests that the
proposed method may be considered a fundamental and
unified approach to deriving achievable error bounds in
quantum information theory. In this regard, we may term it
as a one-shot quantum packing lemma (Theorem 3). Essen-
tially, the proposed analysis can be applied to and can
sharpen almost all existing results that rely on the Hayashi-
Nagaoka operator inequality [30, Lemma 2]; see, e.g.,
Refs. [30,43,46,59,60,80,128,132,146]. The improvement
is crucial because every bit counts in a one-shot bound

because weaker one-shot bounds could be trivial in certain
practical scenarios. Hence, we expect more applications
of the proposed analysis to emerge. As for the computa-
tional aspect, we point out a recently developed quantum
algorithm for implementing the pretty-good measurement
[54]. Last but not least, the proposed achievability analysis
also applies to the converse analysis for the covering-type
problems [73,144,147,148].

We list some open problems along these research direc-
tions.

(a) Standard second-order analysis of the achievable
coding rate consists of two steps: (i) reducing the
underlying task to binary quantum hypothesis test-
ing and (ii) an asymptotic expansion of the quantum
hypothesis-testing divergence [29,38,39,82,83]. The
proposed approach simplifies step (i), and, hence,
now the bottleneck lies in step (ii). Specifically,
we conjecture a third-order achievable expansion
of the quantum hypothesis-testing divergence in
Eq. (18). If Eq. (18) holds then Proposition 2 will
lead to the best possible third-order coding rate for
general classical-quantum channels without further
assumptions, i.e.,

log M ≥ nI(X : B)ρ +
√

nV(X : B)ρ �−1(ε) − O(1).

(b) To the best of our knowledge, conjectures made by
Mosonyi and Audenaert [69, Conjectrue 4.2], and
Qi et al. [60, Conjecture 18] are still open. If they
were true then the established one-shot achievability
bound for classical-quantum multiple-access chan-
nels (Theorem 5) will directly imply an upper bound
on the error probability by a sum of exponential
decays [149].

(c) Can the established strengthened one-shot bound
in Eq. (11) provide a simple proof for the upper
bound on the strong converse exponent of classical-
quantum channel coding (see Refs. [78, Sec. 5.4],
[79, Proposition IV.5], and [80, Proposition VI.2])?

(d) In the classical setting (where all the channel out-
put states {ρx

B}x∈X mutually commute), the derived
bound in Theorem 1 is still weaker than the random-
coding union bound proved by Polyanskiy et al. [22,
Theorem 16], i.e., the latter implies Theorem 1 in
the commuting case. Nevertheless, we remark that
Eq. (8) can already yield Gallager’s random-coding
bound in the commuting case. Hence, there are tech-
nical noncommutativitiy difficulties that remain to
be solved.

(e) It is not clear whether the derived bound in Theorem
1 can lead to Gallager’s random-coding exponent
[14,15] for general classical-quantum channels. It is
interesting to see if the recent techniques proposed
by Dupuis [150] (see also Ref. [147]) and Renes
[97] can be combined with the proposed analysis.
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APPENDIX: A TRACE INEQUALITY

This section is devoted to proving the trace inequality in
Fact 1 (vii):

Tr [A ∧ B] ≥ Tr
[

A
B

A + B

]

. (A1)

Note that a special case of Eq. (A1) for Tr [A] = Tr [B] =
1 is a consequence of Barnum and Knill’s theorem [72]
(see also Ref. [64, Theorem 3.10]). The result has been
extended to the case of general positive semidefinite A and
B in the author’s previous work [73, Lemma 3]. For com-
pleteness, we provide a strengthened proof in the following
lemma that implies the desired Eq. (A1) by extending the
ideas of Sason and Verdú [151] and Renes [152].

Lemma 1 (A trace inequality for a noncommutative par-
allel sum).—Let A and B be arbitrary positive semidefinite
operators satisfying Tr [A + B] > 0. Then, it holds that

Tr
[

A
B

A + B

]

≤ Tr [A ∨ B] · Tr [A ∧ B]
Tr [A + B]

≤ Tr [A ∧ B].

(A2)

Here, A ∨ B := (A + B + |A − B|)/2 and A ∧ B := (A +
B − |A − B|)/2.

Remark 11.—In the scalar case of positive a and b,
the inequality ab/(a + b) ≤ a ∧ b is obvious, and the
term ab/(a + b) = (a−1 + b−1)−1 is called the parallel
sum of a, b. Hence, Lemma 1 may be viewed as a
noncommutative generalization of it. We note that an
operator parallel sum (A−1 + B−1)−1 has been studied
before (e.g., Refs. [153, Sec. 3], [154, Sec. 5]), and it
is related to the Kubo-Ando operator (harmonic) mean
[155,156]. Furthermore, it can be shown that Tr [(A−1 +
B−1)−1] ≤ Tr [A B

A+B ], and hence Lemma 1 also pro-
vides an upper bound (in trace) to the operator parallel
sum.

Proof of Lemma 1.—We define the collision divergence
[76] for A, B ≥ 0 as

D∗
2(A ‖ B) := log Tr [(B−1/4AB−1/4)2].

Let {	A, 	B} be the optimal measurement for distin-
guishing positive semidefinite operators A and B, i.e., by
recalling the Holevo-Helstrom theorem [50–52],

sup
0≤T≤1

Tr [AT] + Tr [B(1 − T)] = Tr [A	A] + Tr [B	B]

= Tr [A ∨ B].

Denote by “⊕” the direct sum operation. We intro-
duce a measure-and-prepare operation �, which is
a completely positive and trace-preserving (CPTP)
map:

� : ( · ) 
→ Tr [(·)	A ⊕ 	B] ⊕ Tr [(·)(1 − 	A ⊕ 	B)].

We calculate

�(A ⊕ B) = Tr [A ∨ B] ⊕ Tr [A ∧ B],

�((A + B)⊕2) = Tr [A + B] ⊕ Tr [A + B].

Since the map eD∗
2( · ‖ · ) is monotonically decreasing under

CPTP maps [157–159], we obtain

Tr
[

A
A

A + B

]

+ Tr
[

B
B

A + B

]

= eD∗
2(A⊕B‖(A+B)⊕2) ≥ eD∗

2(�(A⊕B)‖�((A+B)⊕2))

= exp
{

D∗
2

([
Tr [A ∨ B] 0

0 Tr [A ∧ B]

] ∥
∥
∥
∥

[
Tr [A + B] 0

0 Tr [A + B]

])}

= ( Tr [A ∨ B])2

Tr [A + B]
+ ( Tr [A ∧ B])2

Tr [A + B]
.

(A3)

Noting that the left-hand side of Eq. (A3) can be written as

Tr
[

A
A

A + B

]

+ Tr
[

B
B

A + B

]

= Tr [A + B] − 2 Tr
[

A
B

A + B

]

,

040330-21



HAO-CHUNG CHENG PRX QUANTUM 4, 040330 (2023)

then the above inequality translates to

2 Tr
[

A
B

A + B

]

≤ Tr [A + B] − ( Tr [A ∨ B])2

Tr [A + B]
− ( Tr [A ∧ B])2

Tr [A + B]
= ( Tr [A + B])2 − ( Tr [A ∨ B])2 − ( Tr [A ∧ B])2

Tr [A + B]

(a)= 2 Tr [A ∨ B] · Tr [A ∧ B]
Tr [A + B]

(b)≤ 2 Tr [A ∧ B].

Here, (a) follows from the identity A + B = A ∨ B + A ∧
B; and the inequality Tr [A ∨ B] ≤ Tr [A + B] used in (b)
is because A + B is a feasible solution to the infimum rep-
resentation of the noncommutative maximum [51,52,62]:

A ∨ B = A + B + |A − B|
2

= arg min
M=M†

{Tr [M ] : M ≥ A, M ≥ B}.

This completes the proof. �
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[96] We note that Altuğ and Wagner proved that the third-order
coding rate O(1) is optimal for classical symmetric and
singular channels [185, Proposition 1] (see also Ref. [37,
Theorem 4.3]). In other words, if the nonsingularity con-
dition is not imposed, a larger third-order coding rate than
O(1) is not possible.

[97] J. M. Renes, Achievable error exponents of data com-
pression with quantum side information and commu-
nication over symmetric classical-quantum channels,
ArXiv:2207.08899 (2022).

[98] M. Dalai, Lower bounds on the probability of error for
classical and classical-quantum channels, IEEE Trans. Inf.
Theory 59, 8027 (2013).

[99] M. Dalai and A. Winter, Constant conpositions in the
sphere packing bound for classical-quantum channels,
IEEE Trans. Inf. Theory 63, 5603
(2017).

[100] H.-C. Cheng, M.-H. Hsieh, and M. Tomamichel, Quan-
tum sphere-packing bounds with polynomial prefactors,
ArXiv:1704.05703 (2017).

[101] T. Ogawa, in The 38th Symposium on Information
Theory and its Applications (SITA2015) (IEEE, Kurashiki,
Okayama, Japan, 2015).

[102] A. E. Gamal and Y.-H. Kim, Network Information The-
ory (Cambridge University Press, Cambridge, England,
2011).

[103] H. P. Yuen, R. S. Kennedy, and M. Lax, Optimum testing
of multiple hypotheses in quantum detection theory, IEEE
Trans. Inf. Theory 21, 125 (1975).

[104] F. Hiai and D. Petz, The proper formula for rela-
tive entropy and its asymptotics in quantum probability,
Commun. Math. Phys. 143, 99 (1991).

[105] T. Ogawa and H. Nagaoka, Strong converse and Stein’s
lemma in quantum hypothesis testing, IEEE Trans. Inf.
Theory 46, 2428 (2000).

[106] T. Ogawa and M. Hayashi, On error exponents in quan-
tum hypothesis testing, IEEE Trans. Inf. Theory 50, 1368
(2004).

[107] M. Hayashi, Optimal sequence of quantum measure-
ments in the sense of Stein’s lemma in quantum hypoth-
esis testing, J. Phys. A: Math. General 35, 10759
(2002).

[108] M. Nussbaum and A. Szkoła, The Chernoff lower bound
for symmetric quantum hypothesis testing, Ann. Stat. 37,
1040 (2009).

[109] M. Mosonyi and T. Ogawa, Quantum hypothesis test-
ing and the operational interpretation of the quantum
Rényi relative entropies, Commun. Math. Phys. 334, 1617
(2014).

[110] M. Hayashi and M. Tomamichel, Correlation detection
and an operational interpretation of the Rényi mutual
information, J. Math. Phys. 57, 102201 (2016).

[111] H.-C. Cheng, M.-H. Hsieh, and M. Tomamichel, Quantum
sphere-packing bounds with polynomial prefactors, IEEE
Trans. Inf. Theory 65, 2872 (2019).

[112] H.-C. Cheng, L. Gao, and M.-H. Hsieh, in 2019 IEEE
International Symposium on Information Theory (ISIT)
(IEEE, Rue Saint-Victor, Paris, 2019).

[113] H.-C. Cheng, Ph.D. thesis, University of Technology Syd-
ney, 2018.

[114] H.-C. Cheng, A. Winter, and N. Yu, Discrimination of
quantum states under locality constraints in the many-
copy setting, ArXiv:2011.13063.

[115] C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thap-
liyal, Entanglement-assisted classical capacity of noisy
quantum channels, Phys. Rev. Lett. 83, 3081 (1999).

[116] C. Bennett, P. Shor, J. Smolin, and A. Thapliyal,
Entanglement-assisted capacity of a quantum channel and
the reverse Shannon theorem, IEEE Trans. Inf. Theory 48,
2637 (2002).

[117] F. Dupuis, Ph.D. thesis, Université de Montéal, ArXiv:1004.
1641 (2010).

[118] N. Datta and M.-H. Hsieh, One-shot entanglement-
assisted quantum and classical communication, IEEE
Trans. Inf. Theory 59, 1929 (2013).

[119] W. Matthews and S. Wehner, Finite blocklength converse
bounds for quantum channels, IEEE Trans. Inf. Theory 60,
7317 (2014).

[120] The pretty-good measurement was also used in Ref.
[186, Sec. 4] by following Beigi-Gohari’s approach [187],

040330-25

https://doi.org/10.1109/TIT.2014.2361632
https://doi.org/10.1109/tit.2006.889463
https://arxiv.org/abs/2207.08899
https://doi.org/10.1109/tit.2013.2283794
https://arxiv.org/abs/1704.05703
https://doi.org/10.1109/TIT.1975.1055351
https://doi.org/10.1007/bf02100287
https://doi.org/10.1109/18.887855
https://doi.org/10.1109/tit.2004.828155
https://doi.org/10.1088/0305-4470/35/50/307
https://doi.org/10.1214/08-aos593
https://doi.org/10.1007/s00220-014-2248-x
https://doi.org/10.1063/1.4964755
https://doi.org/10.1109/tit.2019.2891347
https://arxiv.org/abs/2011.13063
https://doi.org/10.1103/PhysRevLett.83.3081
https://doi.org/10.1109/tit.2002.802612
https://arxiv.org/abs/1004.1641
https://doi.org/10.1109/tit.2012.2228737
https://doi.org/10.1109/tit.2014.2353614


HAO-CHUNG CHENG PRX QUANTUM 4, 040330 (2023)

wherein the obtained one-shot expression and the asymp-
totic analysis are more involved.

[121] S. P. Vadhan, Pseudorandomness (Now Publishers Inc,
Norwell, Massachusetts, United States, 2012).

[122] S. Strelchuk, M. Horodecki, and J. Oppenheim, General-
ized teleportation and entanglement recycling, Phys. Rev.
Lett. 110, 010505 (2013).

[123] H. Umegaki, Conditional expectation in an operator alge-
bra, I, Tohoku Math. J. 6, 177 (1954).

[124] H. Umegaki, Conditional expectation in an operator alge-
bra, II, Tohoku Math. J. 8, 86 (1956).

[125] H. Umegaki, Conditional expectation in an operator alge-
bra, III, Kodai Math. J. 11, 51 (1959).

[126] E. Carlen, in Contemporary Mathematics, Vol. 529
(American Mathematical Society (AMS), Providence,
Rhode Island, United States, 2010), p. 73.

[127] Namely, the subalgebra consists of all operators in
B(RM B) of the form 1Rm−1 ⊗ ϒRmB ⊗ 1RM−m for all
ϒRmB ∈ B(RmB).

[128] A. Anshu, R. Jain, and N. A. Warsi, On the near-optimality
of one-shot classical communication over quantum chan-
nels, J. Math. Phys. 60, 012204 (2019).

[129] We note that, by applying Theorem 3 in randomness-
assisted communication over c-q channels, it is equivalent
to calculating the average error probability using a mutu-
ally independent random codebook, while in Theorem 1,
we only require a pairwise independent random codebook.

[130] I. Devetak and A. Winter, Classical data compression
with quantum side information, Phys. Rev. A 68, 042301
(2003).

[131] J. M. Renes and R. Renner, One-shot classical data com-
pression with quantum side information and the distilla-
tion of common randomness or secret keys, IEEE Trans.
Inf. Theory 58, 1985 (2012).

[132] H.-C. Cheng, E. P. Hanson, N. Datta, and M.-H. Hsieh,
Duality between source coding with quantum side infor-
mation and classical-quantum channel coding, IEEE
Trans. Inf. Theory (Early Access) 68, 7315 (2022).

[133] A. Winter, The capacity of the quantum multiple-access
channel, IEEE Trans. Inf. Theory 47, 3059 (2001).

[134] M.-H. Hsieh, I. Devetak, and A. Winter, Entanglement-
assisted capacity of quantum multiple-access channels,
IEEE Trans. Inf. Theory 54, 3078 (2008).

[135] S. C. Xu and M. M. Wilde, Sequential, successive, and
simultaneous decoders for entanglement-assisted clas-
sical communication, Quantum Inf. Process. 12, 641
(2012).

[136] J. Yard, P. Hayden, and I. Devetak, Quantum broadcast
channels, IEEE Trans. Inf. Theory 57, 7147 (2011).

[137] I. Savov and M. M. Wilde, Classical codes for quantum
broadcast channels, IEEE Trans. Inf. Theory 61, 7017
(2015).

[138] F. Dupuis, P. Hayden, and K. Li, A father protocol for
quantum broadcast channels, IEEE Trans. Inf. Theory 56,
2946 (2010).

[139] J. Radhakrishnan, P. Sen, and N. Warsi, One-shot Mar-
ton inner bound for classical-quantum broadcast channel,
IEEE Trans. Inf. Theory 62, 2836 (2016).

[140] Q. Wang, S. Das, and M. M. Wilde, Hadamard quantum
broadcast channels, Quantum Inf. Process. 16, 1 (2017).

[141] H.-C. Cheng, N. Dattaand, and C. Rouźe, Strong converse
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