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Efficient Sampling of Noisy Shallow Circuits Via Monitored Unraveling
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We introduce a classical algorithm for sampling the output of shallow, noisy random circuits on
two-dimensional qubit arrays. The algorithm builds on the recently proposed “space-evolving block deci-
mation” (SEBD) [Napp et al, Phys. Rev. X 12, 021021 (2022)] and extends it to the case of noisy circuits.
SEBD is based on a mapping of two-dimensional unitary circuits to one-dimensional monitored ones,
which feature measurements alongside unitary gates; it exploits the presence of a measurement-induced
entanglement phase transition to achieve efficient (approximate) sampling below a finite critical depth Tc.
Our noisy-SEBD algorithm unravels the action of noise into measurements, further lowering entangle-
ment and enabling efficient classical sampling up to larger circuit depths. We analyze a class of physically
relevant noise models (unital qubit channels) within a two-replica statistical mechanics treatment, finding
weak measurements to be the optimal (i.e., most disentangling) unraveling. We then locate the noisy-
SEBD complexity transition as a function of circuit depth and noise strength in realistic circuit models. As
an illustrative example, we show that circuits on heavy-hexagon qubit arrays with noise rates of approxi-
mately equal to 2% per CNOT, based on IBM Quantum processors, can be efficiently sampled up to a depth
of five iSWAP (or ten CNOT) gate layers. Our results help sharpen the requirements for practical hardness
of simulation of noisy hardware.
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I. INTRODUCTION

Before quantum computers can do anything useful, they
must be able to reliably beat classical computers at some
task, ideally one that is quantifiable, well-understood the-
oretically, and has reasonable experimental requirements.
Random circuit sampling (RCS) has emerged as one of
the leading candidates for this role: it is well suited
to the architectures of present-day gate-based quantum
processors, and—at least in the ideal case of noiseless
computation—its hardness is firmly established in com-
plexity theory [1–5]. As a result, it has become the focus
of pioneering experimental efforts in the last few years
[6–9]. All such experiments, however, are by necessity car-
ried out on present-day noisy intermediate-scale quantum
(NISQ) processors, where the question of classical simu-
lation hardness is much more nuanced. This has spurred
much interest in the exploration of how noise affects the
boundary between “easy” and “hard” simulation problems.
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It is now established that RCS in the presence of a finite
noise rate can be simulated in polynomial time [10] in the
regime of anticoncentration (i.e., informally, at sufficiently
large depth [11]). However the algorithm of Ref. [10] is
not practical, leaving open the question of simulability
of finite-sized, noisy RCS experiments with reasonable
classical resources. This issue is subtle and depends on
many variables, such as circuit architecture, size and depth,
details of the noise models, choice of target metrics, etc.
A powerful classical approach is based on tensor net-
works, which leverage limited entanglement and work best
in one dimension (1D); for this reason, experiments have
focused on two-dimensional (2D) qubit arrays and picked
highly entangling gate sets. Large circuit depth also gener-
ates more entanglement and thus makes simulation harder.
However, in practice, depth is limited by the presence of
noise, as more gates also cause the accumulation of more
errors. Additionally, the presence of noise in the quan-
tum experiment lowers the bar for classical simulation: an
apples-to-apples comparison requires that we tolerate sim-
ilar levels of error from the classical algorithm as well.
This opens the door to various strategies based on tensor
networks that can outperform sufficiently noisy quantum
computers [12–14].

Characterizing the practical hardness of noisy RCS
problems is thus a pressing question in quantum
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information science. It is also closely related to recent
developments in nonequilibrium many-body physics
regarding dynamical phases of quantum information in
open systems. In particular, the fate of unitary circuits that
are sampled during the dynamics (a special case of open-
system evolution) has attracted much interest due to the
discovery of entanglement phases that occur as a func-
tion of the measurement rate [15–44]. The emergence of
a phase with limited entanglement (area law) at high mea-
surement rate in these circuits has been used to develop
an efficient algorithm for sampling the output of shal-
low unitary circuits in 2D [45]. The algorithm, dubbed
“space-evolving block decimation” (SEBD) and sketched
in Fig. 1(a), works at depths T below a finite critical depth
Tc (model dependent, but approximately equal to 4–5 in
typical models). Circuits with T = 3 in 2D are capable of
universal quantum computation and thus hard to sample in
the worst case [46], making this result surprising. Another
very recent development in dynamical phases of quan-
tum information is the discovery of a sharp noise-induced
phase transition in RCS [9,47], which was identified at a
fixed number of errors per circuit layer (i.e., noise strength
ε ∼ 1/N , N being the number of qubits). In the strong-
noise phase, it was argued [9] that the processor’s output

can be classically “spoofed,” while in the weak-noise
phase simulation is conjectured to be practically hard.

In this work, we consider the problem of noisy RCS on
shallow 2D circuits, Figs. 1(a)–1(b), where the results of
Ref. [10] are not applicable. Unlike other works, our goal
is not to sample from the ideal output within some toler-
ance determined by the noise; instead, we aim to accurately
sample the noisy output itself—a closely related but differ-
ent problem. To this end, we develop a classical algorithm,
dubbed noisy SEBD, and show that it undergoes a com-
plexity phase transition (from quadratic to exponential in
the linear size of the system) as a function of circuit depth
T and noise strength ε. The physical principle behind the
algorithm is that noise can be viewed as a sequence of
(fictitious) measurements done by the environment on the
system, Fig. 1(c). Measurements can lower the amount of
entanglement in the system and drive a phase transition to
an area-law entangled phase, where tensor-network sim-
ulation is efficient; as a consequence, noise can drive a
phase transition in the complexity of noisy SEBD. Since
the unraveling of noise into measurements is not unique,
we are free to optimize it in order to lower this threshold as
much as possible. In this work we use a two-replica statis-
tical mechanics model to optimize the unraveling, finding
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FIG. 1. Main ideas of this work. (a) Sampling of 2D shallow unitary circuits. The qubit array has linear dimensions Lx, Ly and the
circuit has depth T. The SEBD algorithm is based on an MPS simulation carried out along a spatial direction (e.g., Ly ), approximating
the wave function of a 1D subsystem of qubits on a light cone surface (green). It exploits the measurements on the top boundary
of the circuit to disentangle the wave function. (b) We consider noisy circuits with uncorrelated local noise: unitary gates (blue
rectangles) are interspersed with single-qubit noise channels (orange circles). (c) The noise channels are unraveled as measurements
(generically weak), represented here as interactions with a fresh ancilla, which is then measured. These fictitious measurements can
further disentangle the wave function. (d) Qualitative sketch of the complexity phase diagram of the noisy-SEBD algorithm. An
entanglement phase transition separates an “easy” phase (low depth and/or strong noise), where the computational cost of sampling
the noisy circuit output via noisy SEBD scales as LxLy exp(T), from a “hard” phase where the same cost scales as Ly exp(LxT). The
location of the phase boundary is model dependent. The line ε = 0 yields the finite-depth complexity transition of Ref. [45] (noiseless
SEBD) while the 1/T = 0 line [which stands for T = O(L)] yields the standard measurement-induced phase transition in two spatial
dimensions [24]. We conjecture the scaling εc(T) ∼ εc,2D + O(1/T) at large T. We emphasize that this is a transition in the complexity
of the noisy-SEBD algorithm, not of the sampling task itself [10].
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weak measurements to be more disentangling than stochas-
tic projective measurements; the effect of this optimized
choice lowers the threshold noise rate by as much as a
factor of 2, thus significantly expanding the “easy” phase.

Combined with the depth-induced complexity transi-
tion in the original (noiseless) SEBD algorithm [45], this
defines a phase boundary in the space of circuit depth T
and noise strength ε, sketched in Fig. 1(d). This adds to
our growing understanding of the boundaries of “practi-
cal” simulability of noisy quantum systems. Moreover, it
places sharp constraints on the possibility of achieving
beyond-classical computation by scaling RCS experiments
in space only—i.e., by growing quantum processor size
at fixed circuit depth. This highlights the importance of
further improvements in error rates of NISQ hardware.

The paper is structured as follows. Section II reviews
background material on random circuit sampling, matrix-
product state simulation methods, the SEBD algorithm and
monitored dynamics. In Sec. III we discuss the unravel-
ing of noise into monitored trajectories and the choice of
entanglement-optimal unravelings, including explicit solu-
tions for unital qubit channels. Section IV presents the
noisy-SEBD algorithm, numerical simulations of its com-
plexity phase transition, and an illustrative application to
circuits based on IBM Quantum’s heavy-heaxagon qubit
arrays. We conclude in Sec. V by summarizing our results,
their implications and connections with other works, and
directions for future research.

II. BACKGROUND

A. Random circuit sampling

Random circuit sampling (RCS) has emerged as a
leading candidate for early demonstrations of quantum
computational supremacy, combining good fit with exist-
ing hardware capabilities and robust complexity-theoretic
arguments for classical hardness [1–5]. The idea is to draw
a random instance U from an ensemble of local unitary
circuits of depth T, run it on a quantum computer prepared
in the initial state |0〉 ≡ |0〉⊗N , and measure the state of
each qubit in the computational basis, obtaining a bitstring
z ∈ {0, 1}N . Ideally, this process samples bitstrings from
the probability distribution PU(z) = | 〈z| U |0〉 |2, which is
computationally hard to do for classical computers. Intu-
itively, this is due to the production of extensive entangle-
ment in the system over the course of typical instances of
the unitary evolution U [48], which causes tensor-network
classical algorithms to fail. At the same time, sufficiently
generic ensembles of unitary gates in U ensure that vari-
ous other strategies for efficient classical simulation (such
as stabilizers [49] or matchgates [50–52]) are not viable.

These theoretical insights have motivated pioneering
experimental efforts in the past few years to demon-
strate RCS-based quantum computational supremacy on

present-day NISQ hardware [6–9]. Verification of success-
ful RCS is nontrivial. The experiments employ a linear
cross-entropy diagnostic

XEB = 2N
∑

z

pexpt.(z)pU(z)− 1, (1)

where pU(z) is the previously defined ideal distribution (to
be computed classically), and pexpt.(z) is the distribution of
bitstrings obtained from the experiment, which generally
differs from the ideal one due to imperfect implementation
and uncontrolled noise. This quantity is convenient as it
can be estimated by sampling from the experiment:

XEB = 2N 〈pU(z)〉z∼pexpt. − 1. (2)

Furthermore, it is designed in such a way that XEB = 1 if
the experiment is perfect (pexpt. = pU, assuming the Porter-
Thomas distribution), while XEB = 0 if it is completely
noisy (pexpt.(z) = 2−N for all z). In real-world conditions,
with finite noise per gate, it has been argued that XEB ∼
f NT in the regime of interest to the experiment [6], where
f is the average fidelity per gate (more detailed results on
the conversion of local noise into global depolarizing noise
have been obtained subsequently [53,54]). This lowers the
bar for classical algorithms: they do not need to achieve a
perfect score XEB = 1, but only to exceed the fidelity of
the NISQ experiment.

This has led to a flurry of activity in the past few years
to develop approximate classical algorithms that can effi-
ciently simulate RCS with XEB scores and runtimes com-
parable to those of the NISQ experiments [12–14,55,56].
Furthermore, it was recently shown that there exists a
polynomial-time algorithm for RCS with constant noise
per gate [10], which uses a Feynman path-integral repre-
sentation for the amplitudes 〈z| U |0〉 wherein noise damps
the contribution of most paths. While this settles the com-
plexity of noisy RCS formally, at least in the regime of
anticoncentration [11], the algorithm comes with a very
large exponent and is expected to be impractical at the rel-
evant noise strengths. Thus the practical issue of efficient
classical simulation of finite-sized noisy circuits remains
open.

B. MPS simulation and the entanglement barrier

The interplay of entanglement and noise and its effects
on the complexity of classical simulation become espe-
cially transparent in the case of matrix-product state (MPS)
simulations of random circuits, limited to 1D (or quasi-1D)
geometries [57–59]. The idea is to represent a wave func-
tion |ψ〉 =∑z cz |z〉 as a product of three-index tensors via
cz = Tr(Az1

1 Az2
2 · · · AzN

N ), where each Az
i is a χ × χ matrix

(i labels position in the chain, z is the physical state |z〉,
and two virtual indices are implicit). The bond dimension
χ is a cutoff on the Schmidt rank of the state |ψ〉, which
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makes the state classically representable. The MPS ansatz
allows approximate simulations with high accuracy when-
ever the entanglement entropy [60] of |ψ〉 about each cut
obeys S � ln(χ). Given the linear growth of entanglement
in random circuits [48], the MPS method enables accurate
simulation for short circuit depths T � ln(χ), after which
the truncation of bond dimension incurs a large error. One
can nonetheless carry out finite-χ simulations for larger
depths; the effect of MPS truncation error on the fidelity
with the true state is found to be qualitatively similar to the
effect of noise in the quantum experiments [12,14]. Thus if
noise strength is large enough, classical MPS simulations
may beat NISQ experiments at the task of approximating a
given ideal random circuit.

A different task is to classically simulate (or sample
from) noisy circuits themselves. Here, classical simula-
tion needs to incorporate noise and thus mixed states.
This can be accomplished by using matrix-product oper-
ators (MPOs): a mixed state ρ =∑z,z′ cz,z′ |z〉 〈z′∣∣ is rep-
resented as a product of four-index tensors via czz′ =
Tr(A

z1,z′
1

1 A
z2,z′

2
2 · · · A

zN ,z′
N

N ), where each Az,z′
i is a χ × χ

matrix. [A representation that guarantees positivity is
given by matrix-product density operators (MPDOs) [61].]
In the presence of noise and unstructured random gates, the
unique steady state is expected to be the maximally mixed
state ρ = I/2N =⊗i(I/2)i, which is manifestly disentan-
gled, and can be written as an MPO of bond dimension
χ = 1 (i.e., the tensors Az,z′

i ≡ δz,z′/2 carry no virtual
indices). Thus entanglement grows initially due to random
unitary interactions, S ∼ T; this persists until the effects of
noise are felt, at depth T ∼ 1/p , p being noise strength;
after that, S decreases to zero. Thus to accurately simulate
the noisy dynamics one has to overcome an “entangle-
ment barrier” of height S ∼ 1/p , with computational cost
poly(N , exp(1/p)) [62,63]. While polynomial in the sys-
tem size N , for realistic noise strength p ∼ 10−2 the cost
can still be prohibitively large. Moreover, the efficient
MPO simulation only applies to 1D; in higher dimension,
small entanglement generally does not guarantee efficient
simulation [59].

C. 2D shallow circuits and the SEBD algorithm

Due to MPS simulations, 1D circuit architectures require
large depths [diverging faster than log(N )] for hardness. In
contrast, 2D circuits could be hard already for finite depth
T, as tensor-network methods in two or more dimensions
are generally not efficient. As hardness of simulation gen-
erally scales exponentially in the treewidth of the tensor
network, experimental RCS works in two-dimensional cir-
cuits [6–9] set T ∼ √

N to maximize classical hardness.
Still, it is natural to ask at what depth T the classical
simulation would become hard (asymptotically in large N ).

It is straightforward to note that T ≤ 2 is easy, as the
output state U |0〉 is given by a tensor product of decoupled

dimers (T = 1) or one-dimensional subsystems each host-
ing an MPS of finite bond dimension (T = 2). However,
starting at depth T = 3, it is possible to prepare states
whose exact simulation is provably hard [46].

Surprisingly, Ref. [45] has shown that approximate sam-
pling from 2D circuits up to a finite depth Tc ≥ 3 is in fact
possible with polynomial time classical algorithms. One
of the methods they propose, dubbed space-evolving block
decimation, is based on reducing the sampled (2 + 1)D
circuit to a (1 + 1)D circuit featuring measurements along-
side unitary gates. Below a critical depth Tc, the state that
needs to be simulated classically obeys an area law for
entanglement [64] and can thus be accurately simulated via
MPS methods. The emergence of this low-entanglement
phase is an instance of a general phenomenon taking place
in monitored dynamics, i.e., time evolution that combines
unitary interactions and measurements, which we review
next.

D. Monitored dynamics

Measurements can disentangle a quantum state. Given a
many-body wave function |ψ〉, measuring a qubit i in the
computational basis leaves behind a product state between
i and the rest of the system: ∝ |z〉i ⊗ 〈z|ψ〉¬i (z ∈ {0, 1}
is the measurement outcome, obtained randomly from the
Born rule, and ¬i denotes the rest of the system). This
not only disentangles i, but may also destroy entangle-
ment globally—as an extreme example, measuring any
one qubit of a GHZ state |ψ〉 = 1√

2
(|0〉⊗N + |1〉⊗N ) in the

computational basis leaves behind a global product state.
At the same time, in systems with local interactions, entan-
glement is generated locally. This asymmetry between
entanglement creation and destruction suggests that mon-
itored dynamics, featuring a finite rate p of measurements
alongside local unitary interactions, should generically
lead to states with low entanglement, for any rate p > 0
[18].

Surprisingly, it was found that monitored dynamics can
instead successfully stabilize a highly entangled phase as
long as the rate of measurement p is below a critical
threshold pc > 0 [15–17]. The phases are characterized
by the structure of entanglement in pure output states
of the dynamics, |ψm〉, which are indexed by the mea-
surement record m (the sequence of classical outcomes
collected during the dynamics). In particular, the scaling
of entanglement entropy SA for a subsystem A in these
states undergoes a transition from an area law SA ∼ |∂A|
(∂A is the boundary of A) to a volume law SA ∼ |A|.
These scalings are generally washed out in the mixed
state ρ =∑m pm |ψm〉 〈ψm| obtained by discarding the
measurement record.

The stability of entanglement in the volume-law phase
(p < pc) is explained qualitatively by the emergence of
a quantum error-correcting code that manages to hide
information from future measurements for a long time
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[21,25,65]. This coding perspective is illustrated con-
cretely by the behavior of a reference qubit R initially
entangled with a monitored many-body system [26]. Let
SR(t) be the entanglement entropy of the reference qubit
as a function of time t in the monitored dynamics; at late
times one generally has SR(t) ∼ e−t/τ , with a time constant
τ dubbed the purification time. The behavior of τ changes
sharply at the transition. In the volume-law phase it obeys
τ ∼ exp(N ), signifying a successful encoding of at least
some information about the state of R, which is protected
from measurements for a long time. In the area-law phase
τ becomes O(1), showing that the encoding fails. Finally,
at the critical point (p = pc) τ diverges algebraically, τ ∼
N z/d, with z a dynamical critical exponent (typically z = 1
[40]) and d the spatial dimension. In the following we will
make use of the purification time as a practical diagnostic
for the underlying entanglement phase, as it is numerically
more efficient to compute than the entanglement entropy
of large subsystems.

In one dimension, the entanglement phase transition
also corresponds to a transition in the classical simula-
tion complexity of the dynamics: area-law states in 1D
have constant entanglement, and can be efficiently sim-
ulated with MPS methods. This is the principle behind
the SEBD algorithm [45], in which a 2D sampling task
is reduced to a (1 + 1)D monitored dynamics and simu-
lated by MPS methods in the area-law phase. Reference
[66] has extended this approach to continuous-time Marko-
vian open-system dynamics: the system-environment cou-
pling, in the form of a Lindbladian master equation, can
be “unraveled” into trajectories [67] (stochastic pure-state
evolutions) that contain quantum measurements, which in
turn can lower entanglement and help the accuracy of
MPS simulation. As the unraveling is a simulation arti-
fact and is not physical, it can be optimized to minimize
the amount of entanglement. Reference [66] proposes an
adaptive scheme that chooses the unraveling with the low-
est expected value of the entropy at each position and
time during the evolution; above a threshold noise strength,
the trajectories enter an area-law phase and efficient MPS
simulation becomes possible.

In this work we build on the approaches of Refs. [45,66]
to address the problem of sampling from noisy, shallow
circuits in 2D.

III. UNRAVELING NOISE INTO MONITORED
TRAJECTORIES

In this section we review the basics noise models and
their unraveling and discuss the entanglement-optimal
unraveling to use in the noisy-SEBD algorithm.

A. Noise models and unraveling

In quantum computers, it is often a good approximation
to treat the inevitable interactions with the environment

as Markovian noise, modeled by quantum channels (com-
pletely positive trace-preserving maps on the space of
density matrices [68]). Mathematically a quantum channel
	 can be represented by as a sum of Kraus operators {Mi},

	(ρ) =
∑

i

MiρM †
i , (3)

which must obey the trace-preservation condition:

∑

i

M †
i Mi = I. (4)

As examples, the dephasing channel can be represented by

	(ρ) = (1 − ε)ρ + εZρZ, (5)

i.e., with Kraus operators {√1 − εI,
√
εZ}, and the depo-

larizing channel by

	(ρ) = (1 − ε)ρ + ε

3
(X ρX + YρY + ZρZ) , (6)

with Kraus operators {√1 − εI,
√
ε/3X ,

√
ε/3Y,

√
ε/3Z}.

In both cases ε is the noise strength.
One important property of the Kraus operators’ repre-

sentation is that it is not unique. For a given quantum
channel, different sets of Kraus operators are equivalent
under unitary transformations U:

M ′
j =
∑

i

UjiMi. (7)

This equivalence also holds for nonsquare, semiunitary
transformations U that satisfy only U†U = I. As an impor-
tant consequence, even when a channel	 can be unraveled
into unitary processes (such as the dephasing and depolar-
izing channels above), this equivalence allows the freedom
to choose an unraveling into nonunitary operators, which
correspond to measurements. For example, the dephas-
ing channel can be unraveled into a stochastic projective
measurement,

M0 = √
1 − 2εI, M1 =

√
2ε|0〉〈0|, M2 =

√
2ε|1〉〈1|

(8)

(i.e., a projective measurement of Z taking place with
probability 2ε). It can also be unraveled into a weak
measurement of Z,

M0 = √
1 − ε cos θI − √

ε sin θZ,

M1 = √
1 − ε sin θI + √

ε cos θZ,
(9)

where θ is a free parameter tuning the strength of the
measurement (θ = 0 returns a unitary unraveling).
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B. Sampling noisy circuits

Returning to the noisy circuit problem, we wish to sam-
ple from the distribution PN (z) = 〈z|N (|0〉 〈0|) |z〉, with
N the channel describing the noisy circuit evolution:

N = 	⊗N ◦ UT ◦	⊗N ◦ UT−1 ◦ · · ·	⊗N ◦ U1. (10)

Here	 is a single-qubit noise of strength ε as before, while
Ut(ρ) = utρu†

t describes the tth layer of the (ideal) shallow
unitary circuit, U = uTuT−1 · · · u1.

By expanding each 	 into its Kraus operators, 	(ρ) =∑
i MiρM †

i , we can rewrite the probability distribution
PN (z) as

PN (z) = 〈z|N (|0〉〈0|) |z〉 =
∑

m

| 〈z| Mm |0〉 |2, (11)

Mm =
(

N⊗

x=1

MmT,x · uT

)
· · ·
(

N⊗

x=1

Mm1,x · u1

)
, (12)

where each index mt,x labels the Kraus operator for the
noise channel 	 acting on qubit x at step t, and m is a
shorthand for the whole collection of indices {mt,x}. Thus
the operators {Mm} are a set of Kraus operators for the
channel N . We can view each m as a quantum trajec-
tory of the evolution: the initial state |0〉 evolves into the
pure state |ψm〉 ≡ Mm |0〉/〈0| M†

mMm |0〉1/2 with proba-
bility 〈0| M†

mMm |0〉; the true (mixed) state N (|0〉〈0|) is
recovered as a stochastic mixture of the trajectories. It is
straightforward to see that | 〈z| Mm |0〉 |2 ≡ PN (z, m) is
the joint probability of drawing trajectory m and sampling
bitstring z at the end. Then, Eq. (11) can be written as

PN (z) =
∑

m

PN (z, m), (13)

i.e., the marginal distribution obtained by summing over
trajectories.

This insight is widely used in simulations of open-
system dynamics [67,69–71]. The trajectory method
allows one to simulate pure states rather than density matri-
ces, which is often much more memory efficient. This
comes at the expense of having to average over many
trajectories, e.g., in order to Monte Carlo sample the expec-
tation value of a target operator. In our case, however, we
only aim to sample from the distribution PN (z), so there
is no need for trajectory averaging: any joint sample (z, m)
drawn from a simulation of the trajectory dynamics yields
a valid sample z from the desired distribution PN (z). We
emphasize that the m samples and their distribution are
purely mathematical artifacts of the method: the decompo-
sition of 	 into Kraus operators includes a gauge degree
of freedom that can be fixed arbitrarily. However, the

marginal distribution PN (z) is gauge invariant and phys-
ical, corresponding to the true experimental distribution of
bitstrings.

Beyond the practical advantage of simulating pure rather
than mixed state evolution, the gauge degree of freedom
in the choice of unraveling can be exploited to minimize
entanglement within the trajectory [66], thus extending
the applicability of tensor-network methods. Below we
address the question of which unraveling yields the lowest
entanglement for a given channel.

C. Entanglement-optimal unravelings

For a given model of dynamics (e.g., a Hamiltonian or
an individual instance of a RUC), one can locally opti-
mize the unraveling of each noise channel 	 separately
[66]. Here we take a simpler approach, and look for a gen-
eral prescription that works well on average over RUCs.
Specifically, we aim to exploit the area-law phase in mon-
itored dynamics (Sec. II D), which is driven by the density
of measurements in the dynamics. Thus we look for an
unraveling of 	 into measurements, so as to increase the
effective density of measurements and facilitate a transi-
tion to the area-law phase [72]. As we have seen in Sec.
III A, there are multiple inequivalent ways of unraveling
noise into measurements (e.g., weak vs stochastic projec-
tive measurements); therefore, we look for the unraveling
M = {Mi} of the nose channel 	 that has the strongest
disentangling effect on the dynamics.

Working at a “mean-field” level in Haar-random cir-
cuits, we consider the scaling of average purity [73]. In
trajectories of the dynamics within a two-replica setting.
This maps onto the partition function of a Z2 Ising mag-
net, whose ordered and disordered phase corresponds to
volume-law and area-law entanglement, respectively. Our
goal is to facilitate simulation by minimizing entangle-
ment, therefore we aim to minimize the couplings in the
magnet. The problem is analyzed in Appendix A, where
we show that the minimization of the coupling amounts to
maximizing the following objective function:

x(M) =
∑

i

tr
(

M †
i MiM

†
i Mi

)

2tr
(

M †
i Mi

) . (14)

This has a natural physical interpretation: if we view the
Kraus operators {Mi} as instruments of a generalized mea-
surement (positive operator-valued measure) {M †

i Mi}, and
apply such a measurement to the fully mixed state I/2,
we obtain postmeasurement states ρi ≡ MiM

†
i /Tr(MiM

†
i )

with probabilities πi ≡ Tr(M †
i Mi)/2; the objective func-

tion is given by the average purity of the postmeasurement
states: x(M) =∑i πiTr(ρ2

i ). Thus within this approach,
the unraveling that minimizes many-body entanglement
in the RUC dynamics is also the one that best purifies

040326-6



EFFICIENT SAMPLING OF NOISY SHALLOW CIRCUITS... PRX QUANTUM 4, 040326 (2023)

a single mixed qubit. Also this is a particular feature of
Haar-random circuits and likely not true of more struc-
tured models, since under Haar-random unitaries I/2 is the
natural averaged reduced density matrix for a single qubit.

We also note that this cost function (postmeasurement
purity of a mixed qubit) is in fact identical to the entangle-
ment of a Bell pair state after measuring one qubit, which
was proposed in Ref. [72] as a heuristic measure of the
disentangling power of different unravelings.

The optimal unraveling Mopt is given by

Mopt = argmaxM [x(M)] , (15)

where M = {Mi} ranges over Kraus decompositions of 	,
and thus is subject to (semi)unitary gauge freedom per
Eq. (7). In general, the semiunitary gauge freedom makes
the optimization nontrivial as it allows for infinitely many
parameters. However, below we show that for a broad
and physically relevant class of quantum channels there
exists an optimal unraveling of minimal rank, which can
be obtained analytically.

D. Unital qubit channels

Let us consider unital qubit channels, which are defined
as those that leave the fully mixed state I/2 invariant. Up to
unitary transformations (which we can ignore in the RUC
setting), unital qubit channels have the canonical form [74]

	(ρ) = p0ρ + pxX ρX + pyYρY + pzZρZ, (16)

with pα ≥ 0 and
∑

α pα = 1. We start with a set of n
Kraus operators M = {Mi}, where each element can be
represented as

Mi = aiI + biσ · ũi, (17)

where ai and bi are real non-negative numbers [75], ũi =(
eiφi,x ui,x, eiφi,y ui,y , eiφi,z ui,z

)
are complex unit vectors (i.e.,

ũ∗
i · ũi = 1), and σ = (X , Y, Z). The Kraus operators of

Eq. (17) must yield the Choi matrix of the unital channel
	 in Eq. (16), i.e., they must satisfy

∑

i

Mi ⊗ M ∗
i =
∑

α=0,x,y,z

pασ α ⊗ (σ α)∗ (18)

(we set σ 0 = I). This gives the following four relations:

∑

i

a2
i = p0,

∑

i

b2
i = 1 − p0, (19)

∑

i

aibiũi = 0,
∑

i

ũ∗
i,α ũi,βb2

i = pαδαβ . (20)

The optimization of the target function x(M) subject
to these constraints is carried out in Appendix B. The

objective function is maximized when ai = √
p0/n and

bi = √(1 − p0)/n for all i, and the unit vectors ũi are real:
ũi = ui = (ui,x, ui,y , ui,z). The remaining constraints on the
vectors {ui}, Eq. (20), read

∑

i

ui = 0,
∑

i

ui,αui,β = npα
1 − p0

δαβ . (21)

As an example, a solution with n = 4 is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u0 = (√px, √py ,
√

pz
)
/
√

1 − p0,
u1 = (√px, −√py , −√

pz
)
/
√

1 − p0,
u2 = (−√

px, √py , −√
pz
)
/
√

1 − p0,
u3 = (−√

px, −√py ,
√

pz
)
/
√

1 − p0,

(22)

i.e., the vertices of a regular tetrahedron inscribed in the
Bloch sphere, up to a rescaling

√
3pα/(1 − p0) of each

axis.
In the case of px = py = pz [depolarizing noise, Eq. (6)],

the conditions in Eq. (21) become

Ei[ui] = 0, Ei[ui,αui,β] = 1
3
δαβ , (23)

where Ei denotes averaging over i with respect to the uni-
form probability distribution Pr(i) = 1/n. The conditions
in Eq. (23) define a spherical 2-design, i.e., a probabil-
ity distribution on the sphere whose first two moments
coincide with those of the uniform distribution. Such dis-
tributions exist if n = 4 or n ≥ 6. In particular, the minimal
(n = 4) optimal unraveling is

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

M0 =
√

1−ε
4 I +√ ε

12 (X + Y + Z) ,

M1 =
√

1−ε
4 I +√ ε

12 (X − Y − Z) ,

M2 =
√

1−ε
4 I +√ ε

12 (−X + Y − Z) ,

M3 =
√

1−ε
4 I +√ ε

12 (−X − Y + Z) ,

(24)

i.e., a weak measurement along four directions correspond-
ing to the vertices of a regular tetrahedron. Similarly, a
solution to Eq. (23) with n = 6 is given by the vertices of a
regular octahedron, corresponding to weak measurements
of the Pauli X , Y, and Z operators.

For the dephasing channel Eq. (5) (n = 2), an optimal
unraveling is

⎧
⎨

⎩
M0 =

√
1−ε

2 I +√ ε
2 Z,

M1 =
√

1−ε
2 I −√ ε

2 Z.
(25)

In all these cases, the most disentangling unraveling takes
the form of weak measurements rather than stochastic
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projective measurements [e.g., Eq. (8) for the case of
dephasing].

In Appendix C we verify that, for the optimal unrav-
eling Eq. (25), the measurement-induced phase transition
occurs at a lower value of ε (εc � 0.044) compared to
the unraveling into stochastic projective measurements Eq.
(8) (εc � 0.084—note the probability of doing a measure-
ment is p = 2ε and the well-known MIPT critical point
is at pc � 0.168 [27]). We see that our simple mean-field
approach is already sufficient to lower the critical noise
strength by almost a factor of 2. It would be interesting
to test whether locally and adaptively optimized unravel-
ings as in Ref. [66] could further improve this threshold.
For the rest of this work, we will use the optimal unrav-
eling in Eqs. (24) and (25) for depolarizing and dephasing
noise channels unless otherwise specified.

Before moving on, we note that, although the above
solution works only for unital channels, other physically
relevant models may also be analytically tractable. In
particular, it is straightforward to find an optimized unrav-
eling for the amplitude damping channel, a paradigmatic
nonunital channel defined by Kraus operators

⎧
⎪⎪⎨

⎪⎪⎩

M0 =
(

1 0
0

√
1 − ε

)
,

M1 =
(

0
√
ε

0 0

)
.

(26)

In Appendix D we consider the optimization over 2 × 2
unitary rotations of these Kraus operators and derive the
optimized unraveling

⎧
⎪⎪⎨

⎪⎪⎩

M0 =
(

1
√
ε

0
√

1 − ε

)
/
√

2,

M1 =
(−1

√
ε

0 −√
1 − ε

)
/
√

2.
(27)

Furthermore, we numerically verify the disentangling
effect of this unraveling by studying the critical noise
strength of the measurement-induced phase transition:
εc ≈ 0.17 for the optimized unraveling, compared with
εc ≈ 0.29 for the original unraveling, again almost a factor
of 2 improvement. Finally, beyond analytically tractable
cases, one can always perform the optimization numeri-
cally for arbitrary single-qubit noise models, by restricting
to a finite number of Kraus operators.

IV. NOISY-SEBD ALGORITHM

A. Description of the algorithm

We consider noisy random circuits in 2D with finite
depth T acting on a grid with N = Lx × Ly qubits. The goal
of our algorithm is to sample bitstrings z from the distribu-
tion PN (z), Eq. (11), determined by the circuit instance

and noise channel 	 (whose parameters we assume are
known), with a small error.

Let us first review the noiseless case, studied in Ref. [45]
and illustrated in Fig. 1(a). Due to locality, the outcome zi
on any given qubit depends only on the evolution within
its past lightcone. Thus to sample all the outcomes zi on
the first row of qubits, y = 1, we need only to apply gates
and channels on qubits within the past lightcone of the line
{(x, y = 1, t = T)}, which includes qubits with y ≤ T. This
corresponds to a circuit of depth T on ≤ LxT qubits, which
can be simulated efficiently via MPS methods. At this point
one can successfully sample the outcomes zi for the first
row of qubits, and move on to the second row (y = 2) iter-
ating the same approach, performing only the gates and
channels within the past lightcone of {(x, y = 2, t = T)},
etc. This effectively maps the 2D shallow circuit to an
equivalent 1D circuit, where the readout measurements
are converted to midcircuit measurements and resets [see
Fig. 2(c) as an example]. As a result of this mapping, the
spatial direction along Ly becomes the time direction for
the 1D circuit (an idea also known as space-time duality in
quantum circuits [37–39]). The SEBD algorithm is based
on MPS simulation of this effective 1D dynamics for the
purpose of sampling the z outcomes.

The issue with iterating this approach indefinitely is that
the entanglement in the quasi-1D state of Lx × T qubits,
in principle, grows with each step, up to the point where
MPS simulation fails. However, Ref. [45] observed that,
due to the midcircuit measurements, the effective dynam-
ics may enter an area-law phase, wherein the entanglement
remains finite and approximate sampling can be carried
out efficiently with high accuracy. In general, the effec-
tive 1D circuit consists of N1D = cTLx qubits, where c is
a constant depending on the lattice geometry (the slope of
the lightcone, in the models considered here c ≈ 1/2), and
the spatial range of the two-qubit gates is proportional to
T. Equivalently, one may view the effective system as a
quasi-1D strip of size Lx × cT with nearest-neighbor gates
in both directions. Either way, each circuit layer on cTLx
qubits is followed by the measurement of Lx qubits (a
full row), giving a ratio of measurements to unitary oper-
ation of approximately 1/T. When this ratio is sufficiently
high (i.e., T sufficiently low), the system enters an area-law
phase and SEBD is efficient.

Let us now add noise to the picture. As discussed in Sec.
III B, we can unravel the noise channels	 into an arbitrary
set of Kraus operators, simulate the pure-state trajectories,
sample from the joint distribution PN (z, m) and keep only
the z samples. We adopt the entanglement-optimal unrav-
eling of unital noise channels discussed in Sec. III C to
suppress entanglement in the effective 1D state at the level
of quantum trajectories. The simulated dynamics now fea-
tures midcircuit measurements with two distinct origins: a
density ∝ 1/T coming from the final sampling step in the
2D circuit, and a density ∝ ε coming from the unraveling
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(a)

(b)

(c)

FIG. 2. Schematic depiction of the 2D qubit array and effective 1D subsystem used in the SEBD algorithm. (a),(b) Example of 2D
qubit array with Lx = 5, showing the gate sequences used: ABCD for depth T = 4 (a), ABCDB for depth T = 5 (b). The region enclosed
by the solid loop corresponds to the effective 1D subsystem, and the region enclosed by the dashed loop corresponds to sites, which
are measured after applying gates in the past lightcone. (c) Equivalent 1D circuit for T = 4 and Lx = 5 with gate sequence ABCD. The
effective 1D system has size 2Lx = 10, with gates up to the third nearest neighbor, and each measurement is followed by a reset to the
|0〉 state. The dashed lines enclose a unit cell whose architecture repeats periodically in time.

of noise. Below a critical noise rate εc, dependent on the
model and the circuit depth T, the entanglement of effective
1D state satisfies area law, and thus allows efficient classi-
cal simulation. These ideas are schematically summarized
in Fig. 1.

B. Numerical results: entanglement phase transition

In this section, we numerically study the entanglement
phase transition in the effective 1D subsystem that is used
in the noisy-SEBD algorithm [Fig. 2(c)]. As an example,
we choose shallow circuits that act on a 2D square lattice
[Figs. 2(a) and 2(b)] with unitary gates similar to those
employed in Google’s RCS experiment [6]. The two-qubit
gates are iSWAP-like fermionic simulation gates

fSim(π/2,π/6) =

⎛

⎜⎝

1 0 0 0
0 0 −i 0
0 −i 0 0
0 0 0 e−iπ/6

⎞

⎟⎠ , (28)

sandwiched between single-qubit rotations randomly cho-
sen from the set {X ±1/2, Y±1/2, W±1/2, V±1/2}, where W =
(X + Y)/

√
2 and V = (X − Y)/

√
2 are Hadamard-like

gates (note that W±1/2 and V±1/2 are non-Clifford). The
two-qubit gates are applied to bonds of the square lattice
according to the sequence ABCD for T = 4 [Fig. 2(a)] and
ABCDB for T = 5 [Fig. 2(b)]. These specific sequences
are chosen to be the most entangling for the effective

1D dynamics, defined as giving the longest single-qubit
purification time as discussed in the following. The noise
channel 	 is taken to be the depolarizing channel, Eq. (6),
with strength ε.

As a diagnostic for the entanglement phase transition,
which underpins the efficiency of noisy SEBD, we use the
single-qubit purification time τ discussed in Sec. II D. This
is advantageous from the numerical point of view, rela-
tive to a direct calculation of the bipartite entanglement
entropy, since it does not suffer from the large finite-size
drifts arising from the logarithmic divergence of entropy
at the critical point [27]. The phase transition between
area-law and volume-law entanglement scaling is probed
by the mutual information between the single reference
qubit and the rest of the system. In practice, we intro-
duce a reference qubit, which initially forms a Bell pair
with a system qubit. At later time the average entropy of
the reference qubit is captured by the exponential decay-
ing relation SR(t) ∼ e−t/τ . In the volume-law phase (low
measurement and noise rate), SR can remain nonzero for a
long time τ ∼ exp(Lx). Physically this implies that there is
finite measurement-induced entanglement between oppo-
site ends of the system as one takes Lx, Ly to infinity
jointly with Ly = poly(Lx); this can be interpreted as emer-
gent quantum teleportation [76] and has recently been
explored experimentally [44]. On the other hand, in the
area-law phase (high measurement and noise rate), SR
decays rapidly to zero with τ = O(1). At the critical
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(a) (b)

(c) (d)

FIG. 3. Purification time τ of a single probe qubit as a func-
tion of the noise rate ε for (a) depth T = 4 with gate sequence
ABCD and (b) depth T = 5 with gate sequence ABCDB. Scaling
collapse of the data for (c) T = 4 and (d) T = 5. The data are
averaged over 5 × 103–3 × 104 realizations.

point, we expect τ ∼ Lz
x, where z is the dynamical critical

exponent (typically z = 1 for measurement-induced tran-
sitions in short-range interacting 1D systems [26,27]).

In Fig. 3, we show a finite-size scaling analysis of
τ/Lx for both T = 4 (gate sequence ABCD) and T = 5
(gate sequence ABCDB), obtained from MPS simulation
of the spacewise dynamics up to Ly = 2Lx, where only
Lx ≤ Ly ≤ 2Lx are used for fitting to avoid the early-time
transient effect. The existence of a finite-size crossing point
of the ratio τ/Lx for all system sizes [Figs. 3(a) and 3(b)]
indicates z = 1, which is consistent with the emergence of
1 + 1D conformal symmetry at the transition. Therefore,
we use the scaling ansatz

τ(ε, Lx) = LxF
[
(ε − εc) L1/ν

x

]
, (29)

to determine the location of the critical point εc and the
correlation length critical exponent ν. From the data col-
lapse, Figs. 3(b) and 3(d) (see Appendix E for method
details), we locate εc = 0.040(2) with ν = 1.3(1) for T =
4 (ABCD) and εc = 0.053(2) with ν = 1.2(1) for T = 5
(ABCDB). For both values of T we find correlation length
exponent ν ≈ 1.3, which is consistent with the known
value for the measurement-induced phase transition in 1D,
as expected. Moreover we see that increasing circuit depth
T leads to a larger critical noise rate εc, which is the
qualitative behavior sketched in Fig. 1(d).

These numerical results support our qualitative expecta-
tions for the complexity of noisy SEBD. Since the hardness
of the method is exponential in T, obtaining accurate
predictions for the phase boundary at larger T becomes

increasingly challenging. However, it is reasonable to
conjecture that, for large T,

(i) as the quasi-1D system of cT × Lx qubits approaches
a 2D limit, one should recover the 2D measurement-
induced phase transition, which occurs at a finite
noise rate εc,2D [24,77];

(ii) the transition should occur at a finite total noise
rate, comprising the unraveled measurements (rate
ε) and the sampling of the final state (rate ∼1/T),
thus εc(T) = εc,2D + O(1/T).

We find evidence in support of these conjectures in Clif-
ford circuits, which can be simulated in polynomial time
by the stabilizer method [49] (though note that this limits
us to the projective unraveling of the noise channel), see
Appendix F.

Finally, in Appendix G we verify the accuracy of the
noisy-SEBD algorithm by benchmarking its output against
direct MPO simulations of the noisy dynamics and against
stabilizer simulations of Clifford circuits.

C. Application: IBM quantum processors

Quantitatively, the results in the previous section show
that circuits on square-lattice architectures, on NISQ
platforms such as Google’s Sycamore processor with
native iSWAP-like gates and � 98% two-qubit gate fideli-
ties (translating to ε � 0.01 in our parametrization, see
Appendix H), are already in the “hard phase” at depth T =
4. Since depth T = 3 is in the easy phase already for noise-
less SEBD (i.e., for ε = 0), the inclusion of noise does not
allow efficient simulation of an additional gate layer in this
setting. This class of circuits is however a worst-case sce-
nario, representing highly scrambling dynamics optimized
for hardness of simulation [6,78].

Here we consider the application of noisy SEBD to
circuits on quantum processors with heavy-hexagon geom-
etry and native CNOT gates, such as IBM Quantum’s
family of processors, Figs. 4(a) and 4(b). We consider
again highly scrambling random circuits with iSWAP two-
qubit gates and single-qubit gates randomly chosen from
{X ±1/2, Y±1/2, W±1/2, V±1/2}. An iSWAP gate can be com-
piled into two native CNOT gates, plus single-qubit gates.
Thus the effective noise rate for iSWAP gates is twice
the CNOT error, giving, e.g., approximately equal to 96%
median gate fidelity on the Osprey processor (correspond-
ing to ε ≈ 0.025 in our parametrization, see Appendix H).

We consider subsystems of a qubit array based on the
Condor processor, Fig. 4(a). The full system has N =
1, 121 qubits and linear size Lx = 43. The gate sequence
and unit cell for the SEBD algorithm are shown in
Fig. 4(b), for the N = 65, Lx = 11 Hummingbird proces-
sor. We characterize the efficiency of the (noisy-)SEBD
algorithm by computing the half-system bipartite entan-
glement entropy S, Fig. 4(c), and single-qubit purification
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(a) (b) (c) (d)

FIG. 4. (a) Layout of the 1121-qubit IBM quantum processor Condor; 65-qubit Hummingbird is shown as the blue region. (b) Gate
sequence for circuits with depth T = 5 (ABCDA) on 65-qubit quantum processor Hummingbird, of linear size Lx = 11. Other IBM
processors have similar layout: Eagle with Lx = 15, Osprey with Lx = 27, and Condor with Lx = 43. The region surrounded by a
solid line depicts the 1D effective subsystem for noisy-SEBD simulation of random circuits with T = 5 (gate sequence ABCDA). (c)
Bipartite entanglement entropy S and (d) purification time τ of a reference qubit, for noiseless (ε = 0) and noisy (ε = 0.02 and 0.025)
circuits of depth T = 5 as a function of linear system size Lx, which refers to subsets of the heavy-hexagon lattice in panel (a). The
data are averaged over 103–104 realizations of the random circuits.

time τ , Fig. 4(d), for both noiseless and noisy random cir-
cuits with depth T = 5 (measured in units of iSWAP gates,
thus corresponding to ten CNOT gates on each qubit). As the
linear system size is varied between Lx = 7 and Lx = 43,
we observe a clear volume-law phase in the noiseless case,
with volume-law entropy S ∝ Lx and exponential purifica-
tion time τ ∼ exp(Lx). In contrast, for noise rate ε = 0.02,
we see a weak growth of S with Lx, consistent with crit-
ical scaling S ∼ ln(Lx) or eventual saturation to an area
law. The ratio τ/Lx also decreases, either to a finite con-
stant (critical behavior) or to zero (area-law behavior).
Finally, for ε = 0.025, both diagnostics are indicative of
an area-law phase.

We conclude that in this case the inclusion of a realistic
noise rate in the simulation algorithm is sufficient to drive
a transition in complexity of the SEBD algorithm. This
makes the difference between an asymptotically efficient
and asymptotically hard MPS simulation of the sampling
problem. We note that, while circuits with low depth such
as T = 5 can likely be simulated by brute-force tensor-
network methods up to hundreds or thousands of qubits,
the cost of such methods remains generically exponential
in the linear size of the system Lx. On next-generation pro-
cessors with N ∼ 105 qubits those methods would become
intractable, while noisy SEBD would remain practical in
the easy phase.

V. DISCUSSION

We have introduced a classical algorithm, noisy SEBD,
to sample from the output distribution of noisy, shallow
circuits in two dimensions. The algorithm uses the insight
of mapping a 2D RCS problem to a 1D monitored dynam-
ics problem (space-evolving block decimation [45]),
while also unraveling the action of noise into additional
measurements on the system. At sufficiently low depth
and sufficiently strong noise, this enables efficient MPS

simulation of the monitored quantum trajectories, and
thus efficient sampling from the appropriate noisy output
distribution.

Given that the unraveling of noise into measurements is
arbitrary, it can be optimized so as to reduce the amount
of entanglement [66]. Here we have focused on a “mean-
field” approach where single-qubit noise channels at all
positions and times are unraveled in the same way, chosen
based on the two-replica statistical mechanics description
of the circuit upon averaging over random gates. We have
found that, for unital channels (such as dephasing and
depolarizing), the optimal unraveling is based on uniform
weak measurements, rather than stochastic projective mea-
surements. The difference between unravelings is substan-
tial—in the standard model of brickwork circuits in 1D, the
noise threshold corresponding to the measurement-induced
entanglement transition is reduced by a factor of about 2
for the optimal weak-measurement unraveling (εc ≈ 0.04)
compared to the usual projective measurement unravel-
ing (εc ≈ 0.08, i.e., measurement rate pc = 2εc ≈ 0.16).
This is consistent with prior observations in Ref. [72], and
the optimization technique could be of independent inter-
est for the study of measurement-induced entanglement
transitions.

While noisy RCS in the anticoncentration regime was
shown to be classically simulable in polynomial time
based on a sampling of “Feynman paths” in Pauli operator
space [10], the polynomial scaling of the algorithm fea-
tures a large exponent (proportional to 1/ε, i.e., of order
100 in present-day experiments) that makes the algorithm
impractical. This leaves open the question of “practical
hardness” for finite-sized RCS experiments. Furthermore,
the requirement of anticoncentration in Ref. [10] is not met
at constant depth T [depth diverging as at least log(N )
is needed [11]], so that even the in-principle hardness of
sampling noisy shallow circuits is an open problem. Our
results contribute to sharpen the requirements for such
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hardness by identifying a phase in the parameter space
of depth T and noise strength ε [Fig. 1(d)] where noisy
RCS can be classically simulated via a straightforward
MPS algorithm in time [79] scaling as N exp(T). We
have located the entanglement phase transitions in cir-
cuit architectures based on real-world quantum processors.
In square lattices with native iSWAP-like gates, we found
that noisy SEBD allows the efficient sampling of circuits
of depth T = 3, like SEBD in the noiseless case; but for
realistic noise rates of ε � 1% it does not increase the
depth threshold (i.e., T = 4 remains in the hard phase). On
heavy-hexagon lattices with native CNOT gates, we have
instead found that the inclusion of realistic noise rates
can increase the depth threshold, as shown in Figs. 4(c)
and 4(d).

Our results add to the growing body of work on noise-
induced phase transitions in computational complexity.
Recent works have studied the simulation of noisy RCS
via MPS simulations truncated to constant bond dimen-
sion χ [12,14], finding that the accumulated truncation
error behaves similarly to noise in the quantum experi-
ment—i.e., causes an exponential decay of the linear cross-
entropy, Eq. (1); to beat this classical simulation method,
the quantum processor must be below a finite noise thresh-
old. We remark that the task considered in those works
is different from the one considered here. Namely the
goal in Refs. [12,14] is to simulate the ideal (noiseless)
bitstring distribution better than the noisy quantum experi-
ment, as quantified, e.g., by fidelity or linear cross-entropy.
Notably this allows for an exponentially small (in N and
T) fidelity between simulation and experiment, as long as
the former is closer to the ideal result. In contrast, our
goal is to simulate with high accuracy the noisy bitstring
distribution itself. This is a significant distinction phys-
ically as the effect of uncontrolled MPS truncation is a
priori very different from that of local noise, even at the
same level of fidelity (e.g., MPS truncation does not obey
locality).

Even more recently, a noise-induced phase transition in
RCS has been reported [9,47] in deep quantum circuits
with noise rates scaled as ε ∼ 1/N , i.e., a constant num-
ber of errors per layer. The scaling of linear cross-entropy
[Eq. (1)] in these models was predicted to sharply change
as a function of εN , from an “easy phase” where the sys-
tem appears to break into finite-sized clusters from the
point of view of linear cross-entropy, to a phase where
it behaves as a single large cluster. The former phase is
easy to spoof classically, while the latter is conjectured to
be practically hard. This transition is also different from
the one studied here. For one, it applies to a vanish-
ing noise rate ε = O(1/N ) rather than a finite ε = O(1).
Additionally, and more importantly, it is a phase transi-
tion in an observable (albeit a complex one like linear
cross-entropy) that reflects an intrinsic property of the sys-
tem, whereas the transition studied here is a property of a

simulation algorithm (noisy SEBD) that is not intrinsic to
the system.

A distinctive aspect of the problem we study here is
that the simulation task requires precise knowledge of the
noise model on the quantum processor, which is not fully
controlled or programmable, and whose characterization
is a separate challenge [80]. For this reason, the sampling
task simulated by noisy SEBD is quite different from the
standard (noiseless) one. In other words, given a noise
model, there is a fully well-defined simulation task; how-
ever, comparison with real-world noisy devices is more
subtle, as the “true” noise model for such devices is never
completely known. At the same time, this feature of the
problem (which is generic of simulation algorithms for
noisy systems) opens up an interesting direction for future
research, namely using noisy SEBD as a noise benchmark-
ing tool. One could run noisy SEBD (or other algorithms
for the same task) with a parametrized noise model, com-
pare its output with that of real quantum hardware, and
use the comparison to optimize the noise parameters. To
this end, it would be useful to generalize our discussion to
more complex noise models beyond uncorrelated single-
qubit errors. We leave these ideas as directions for future
research.

Finally, we emphasize again that noisy SEBD is only
one possible strategy for classical sampling. It remains
an interesting open question to identify other simula-
tion algorithms with polynomial cost O(N c), with c an
ε-independent constant (unlike in the Feynman path sam-
pling approach of Ref. [10] or the direct MPO approach
for 1D circuits of Ref. [62]) below a finite noise thresh-
old εc. The possibility of an intrinsically hard phase at
finite depth (before anticoncentration and the results of
Ref. [10] apply) is also an interesting open question, with
noisy SEBD providing a constraint on this hypothetical
phase boundary. Another interesting direction for future
work is the possibility of extending these results to higher
dimension or all-to-all connected systems, e.g., trapped
ion quantum computers. While MIPTs are known to arise
in all these cases, the ensuing area-law for entanglement
can only be exploited for efficient MPS simulation in 1D
(including in the effective 1D subsystems of shallow 2D
circuits used in SEBD). Whether other formulations of the
MIPT, e.g., the dynamical purification approach [25,26],
can be exploited for efficient simulation in more general
systems is an interesting open question.
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APPENDIX A: DERIVATION OF THE
UNRAVELING COST FUNCTION FROM
STATISTICAL MECHANICAL MODEL

Here we study the most disentangling unraveling of a
single-qubit noise channel 	 in the context of 1D brick-
work random circuits, by mapping the entropy calculation
of random circuits to a classical statistical mechanical
model [22,45].

1. Quasientropy

Consider a subsystem A of a one-dimensional qudit
chain. The k-Renyi entropy for the reduced density matrix
ρA is defined as

Sk (A) = 1
1 − k

log
(

Zk,A

Zk,∅

)
, (A1)

where

Zk,∅ = Tr(ρ)k, Zk,A = Tr(ρk
A). (A2)

The von Neumann entropy is given by the k → 1 limit

S1(A) = −Tr
(
ρA

trρ
log

ρA

trρ

)
. (A3)

For a hybrid random circuit, we are interested in the
trajectory-averaged behavior of k-Renyi entropy

〈Sk(A)〉 = EC [TrρSk(A)]
EC [Trρ]

= 1
1 − k

EC

[
Trρ log Zk,A

Zk,∅

]

EC [Trρ]
,

(A4)

where EC represents the combined average of Haar random
circuits EU and the average over Kraus operators EM (i.e.,
quantum trajectories).

Replica tricks can be applied to cure the average of the
logarithm. However, to get direct mapping to the stat-mech
model, one can alternatively consider the k-quasientropy
S̃k(A) [45], i.e., the kth moment of the entanglement spec-
trum, weighted by the kth power of the measurement

outcome probability,

S̃k(A) = 1
1 − k

log

⎛

⎝
EC

[
tr (ρ)k Zk,A

Zk,∅

]

EC
[
tr (ρ)k
]

⎞

⎠

= 1
1 − k

log

(
EC
[
Zk,A
]

EC
[
Zk,∅
]
)

. (A5)

Importantly, in the limit k → 1, S̃k(A) → 〈S1(A)〉, similar
to the k-Renyi entropy. The k quasientropy has a natural
mapping with a classical stat-mech model: the quanti-
ties EC[Zk,A/∅] can be viewed as partition functions for
a (2 + 0)-dimensional spin model with different boundary
conditions.

2. Generalized measurement

A general measurement procedure can be represented
by a set of Kraus operators {Mi} satisfying

∑
i M †

i Mi = I

[68]. For each quantum trajectory, a specific Kraus opera-
tor is chosen with probability pi = tr

(
MiρM †

i

)
and gives

the updated state ρ ′ = MiρM †
i /pi. However, in the cal-

culation of the k quasientropy, it is more convenient to
reparametrize the generalized measurement in terms of
operators M̃i and classical probabilities μi satisfying

tr
(

M̃ †
i M̃i

)
= q, EMM †M =

∑

i

μiM̃
†
i M̃i = I, (A6)

where q is the local Hilbert-space dimension. It is easy to
show μi is given by

μi = 1
q

tr
(

M †
i Mi

)
, (A7)

and that μi ≥ 0 and
∑

i μi = 1 (i.e., μi is a probability
distribution).

The advantage of this reparametrization is that it ren-
ders the k-quasientropy invariant under trivial decompo-
sition of Kraus operators, which is important for opti-
mizing the unraveling. As an example, consider the
sets M0 = {σz} and M1 = {σz/

√
2, σz/

√
2}, which differ

by a trivial decomposition of σz and are hence physi-
cally equivalent (both describe the unitary transformation
ρ �→ σ zρσ z). However, if we define the average over a
Kraus set as EM[f ] =∑M∈M f (MρM †), then one can
verify EM0 [Zk,∅] = 1 but EM1 [Zk,∅] = 21−k. Using the
reparametrized Kraus operators and defining the average
as EM[f ] =∑i μif (M̃iρM̃ †

i ) instead yields the consistent
results EM0 [Zk,∅] = EM1 [Zk,∅] = 1. It is also worth men-
tioning that, in the limit of interest (k → 1), these two
formalisms are equivalent.
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3. Mapping to a classical statistical mechanical model

The goal of this mapping is to calculate the averaged
partition functions EC

[
Zk,X
]

where X = A or ∅:

EC
[
Zk,X
] = EUEM

[
tr
((· · · MUρ0U†M † · · · )⊗k S⊗k

X

)]
,

(A8)

where SX is the operator that implements a cyclical per-
mutation of the k replicas only in the X subsystem. By
using the Haar-measure calculus [82], the average over
replicated gates (U ⊗ U∗)⊗k can be expanded onto permu-
tations of the replicas, giving a partition function of “spins”
valued in the permutation group of k elements Sk. Hence
the average over single-site measurement operators can
be evaluated by appropriately contracting with connect-
ing permutations. In this sense, each unitary gate can be
viewed as two permutation nodes {σ , τ } ∈ Sk, which form
a honeycomb lattice as shown in Fig. 5(b). The total par-
tition function can be evaluated by contracting the nodes
with proper weights w(k) (σr, τr′) on the links:

EC
[
Zk,X
] =
∑

{σr,τr}

∏

〈r,r′〉
w(k) (σr, τr′) , (A9)

with distinct couplings on dashed and solid links, as shown
in Fig. 5(b). The average over Haar random unitary gates
gives the coupling for dashed links:

w(k)u (σ , τ) = Wgq2
(
τσ−1) , (A10)

where Wgq2 is the Weingarten function [82]. These cou-
plings are independent of measurements. The solid links in
Fig. 5(b), on the other hand, are given by

w(k)m (σ , τ) = EM

∏

c

tr
((

M †M
)λc
)

, (A11)

where c denotes the number of cycles in permutation
τσ−1 ∈ Sk and λc is the length of cycle c. Using the
convention above for averaging over Kraus operators,
EM[f ] =∑i μif (M̃iρM̃i), we obtain

w(k)m (σ , τ) =
∑

i

μi

∏

c

tr[(M̃ †
i M̃i)

λc]

=
∑

i

μ1−k
i

∏

c

tr[(M †
i Mi)

λc]. (A12)

4. Two replicas: classical Ising model

Although the combination of Eqs. (A10) and (A12)
gives the exact expression for the partition function, the
possible negative weights of wu(σ , τ) impede the direct
mapping to a physical system with real interactions at a real
temperature. For the case of k = 2, this sign problem can

be circumvented by integrating out all τ variables, which
gives rise to a classical Ising model defined on a triangular
lattice as shown in Fig. 5(c):

EC
[
Zk,X
] =
∑

{σ }

∏

〈σ1,σ2,σ3〉

×
[
∑

τ=±1

w(2)m (σ1, τ)w(2)m (σ2, τ)w(2)u (σ3, τ)

]

≡
∑

{σ }

∏

〈σ1,σ2,σ3〉
w(2) (σ1, σ2, σ3) , (A13)

where 〈σ1, σ2, σ3〉 denotes a lower-facing triangle with
three neighboring vertices σ1, σ2, σ3. For k = 2, we have

w(2)u (σ , τ) =
{ 1

q4−1
if σ = τ ,

− 1
q2(q4−1)

if σ �= τ ,
(A14)

and denote

w(2)m (σ , τ) =
{

u if σ = τ ,
v if σ �= τ , (A15)

where u and v are determined by specific Kraus operators
via Eq. (A12). Using the definition of μi, one can see that

u =
∑

i

μ−1
i tr
(

M †
i Mi

)2
= q2, (A16)

v =
∑

i

μ−1
i tr
((

M †
i Mi

)2
)

= q
∑

i

tr
(

M †
i MiM

†
i Mi

)

tr
(

M †
i Mi

) .

(A17)

With these, one can express the three-body interaction
w(2) (σ1, σ2, σ3) explicitly. Due to the permutation symme-
try σ → σ̄ (where σ̄ denotes the other permutation with
S2 ≡ Z2) and spatial reflection symmetry σ1 ↔ σ2, one
only needs to specify

w(2) (σ , σ , σ) = u2

q4 − 1
− v2

q2
(
q4 − 1

) , (A18)

w(2) (σ , σ , σ̄ ) = v2

q4 − 1
− u2

q2
(
q4 − 1

) , (A19)

w(2) (σ , σ̄ , σ) = uv
q2
(
q2 + 1

) . (A20)

Furthermore one may re-express the three-body inter-
action as the product of three two-body interaction
w(2) (σ1, σ2, σ3) = Ce−Jhσ1σ2−Jdσ1σ3−Jdσ2σ3 , where Jd and Jh
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(a) (b) (c)

FIG. 5. (a) The quantum circuit consists of brick-wall unitaries (blue rectangles) and generalized measurements (red dots). (b) The
mapped classical statistical mechanical model on the honeycomb lattice, where dashed links are weighted by the Weingarten function
and the solid links are weighted by the generalized measurements. (c) Classical Ising model for k = 2, after integrating out τ nodes.

are the two-body interaction strength for diagonally and
horizontally neighboring sites, respectively, whose expres-
sions are

Jd = 1
4

log
(

q2x2 − 1
q2 − x2

)
, (A21)

Jh = 1
4

log

(
x2
(
q2 − 1

)2
(
q2x2 − 1

) (
q2 − x2

)
)

, (A22)

where x ≡ v/u is a dimensionless parameter given by

x = 1
q

∑

i

tr
(

M †
i MiM

†
i Mi

)

tr
(

M †
i Mi

) . (A23)

Since tr
(
M †M
)2 ≥ tr

((
M †M
)2) for all Kraus operators,

one has u ≥ v, hence Jd ≤ 0 and Jh ≥ 0 for q ≥ 2.
The statistical mechanics of this classical Ising model

can be solved exactly [83,84] and the critical point xc, sep-
arating paramagnet and ferromagnet phases, is determined
by the relation 2e2Jh = e−2Jd − e2Jd . Solving for xc gives

1
xc

= q2 − 1
q2 + 1

+
√

2q4 + 2
q2 + 1

. (A24)

This phase transition between an ordered and disordered
phase in the statistical mechanical model then maps onto
to the area-law and volume-law phase transition of the
2 quasientropy in the hybrid random circuit. As we see,
within this two-replica analysis the transition is controlled
exclusively by the parameter x, Eq. (A23), with an ordered
phase (volume law) for x < xc and disordered phase for
x > xc (area law). Therefore, to obtain the optimal unrav-
eling for a given quantum channel, we aim to maximize
the function x(M). This justifies the use of x(M) as a cost
function for the unraveling of 	 in the main text.

APPENDIX B: MAXIMIZATION OF THE TARGET
FUNCTION FOR UNITAL CHANNELS

To compute Eq. (14) for the parametrizaion of Kraus
operators in Eq. (17), we first evaluate M †

i Mi. Omitting the
subscript i for ease of notation, we have

M †M = (a2 + b2)I + 2b(auR + buI ∧ uR) · σ , (B1)

with ũ = uR + iuI . (We used the identity σασβ =
σ 0δα,β + iεαβγ σ γ .)

Letting v ≡ auR + buI ∧ uR, the operator M †M has
eigenvalues λ± = (a2 + b2)± 2b‖v‖. It follows that the
ratio in the definition of x(M), Eq. (14), reads

Tr[(M †
i Mi)

2]

2Tr(M †
i Mi)

= a2
i + b2

i

2
+ 2b2

i ‖vi‖2

a2
i + b2

i
. (B2)

Focusing on the second term, we have ‖v‖2 = a2 cos2(θ)+
b2 cos2(θ) sin2(θ) sin2(χ), where ‖uR‖ ≡ cos(θ) (note ũ
is a unit vector, so ‖uR‖2 + ‖uI‖2 = 1) and χ is the
angle between uR and uI . Since we aim to maximize
x(M), we can take χ = π/2 and then maximize over θ
the function f (θ) = a2 cos2(θ)+ b2 cos2(θ) sin2(θ). The
maximum depends on the ratio of a and b:

max
θ

f (θ) =
{

a2 if a > b,
(a2+b2)2

4b2 if a ≤ b.
(B3)

It follows that

x(M) = 1 − 1
2

∑

i: ai>bi

(a2
i − b2

i )
2

a2
i + b2

i
, (B4)

where ai and bi are subject to the constraints
∑

i a2
i = p0

and
∑

i b2
i = 1 − p0, Eq. (19). For strong noise, p0 ≤ 1/2,

it is possible to choose ai ≤ bi for all i. This gets rid of the
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negative term in the sum and gives x(M) = 1, i.e., com-
plete purification, which is optimal. However, for weak
noise (p0 > 1/2) we have

∑
i a2

i >
∑

i b2
i , so it is not

possible to avoid the sum over i in the above expression.
We first handle the case in which ai > bi for all i.

Introducing ci = a2
i + b2

i and di = a2
i − b2

i , we have

x(M) = 1 −
∑

i

d2
i

2ci
≤ 1 − (

∑
i di)

2

2
∑

i ci
, (B5)

where we used Sedrakyan’s inequality (i.e., Cauchy-
Schwartz applied to the vectors {√ci} and {di/

√
ci}). The

constraints in Eq. (19) impose
∑

i ci = 1 and
∑

i di =
2p0 − 1, therefore

x(M) ≤ 1 − (2p0 − 1)2

2
. (B6)

This is saturated by setting ai = √
p0/n and bi =√

(1 − p0)/n for all i.
Next, we consider the case in which ai ≤ bi for some

i. We use primed sums to denote sums over i that are
restricted only to those indices:

∑
i: ai≤bi

=∑′
i. Let us

define γ ≡∑′
i ci (we have 0 ≤ γ ≤ 1, where γ = 0 recov-

ers the previous case); then, by the same reasoning as
above, we have

x(M) ≤ 1 − (2p0 − 1 −∑′
i di)

2

2(1 − γ )
. (B7)

Now −∑′
i di =∑′

i b2
i − a2

i is non-negative by definition,
so

x(M) ≤ 1 − (2p0 − 1)2

2(1 − γ )
, (B8)

where the right-hand side is maximized for γ = 0. Thus
the symmetric solution ai = √

p0/n and bi = √(1 − p0)/n
for all i is optimal in general.

Finally, note that when ai > bi, the maximum in Eq.
(B3) is achieved at θ = 0, i.e., ‖uI‖ = 0; thus in the
solution above, the unit vectors are real: ũ = uR.

APPENDIX C: MEASUREMENT-INDUCED PHASE
TRANSITION FOR THE OPTIMAL WEAK

MEASUREMENT IN 1D RANDOM CIRCUITS

Here we analyze measurement-induced phase transi-
tion corresponding to weak measurements from optimal
unraveling in Eq. (25) against stochastic projective mea-
surements in Eq. (8).

We consider 1D Haar random brick-wall circuits with
periodic boundary condition and optimal weak measure-
ments applied between layers of unitaries. We use the

tripartite mutual information [85]

I3,n = Sn(A)+ Sn(B)+ Sn(C)− Sn(A ∪ B)

− Sn(A ∪ C)− Sn(B ∪ C)+ Sn(A ∪ B ∪ C), (C1)

where Sn(X ) is the Renyi entropy and A, B, C are con-
tiguous subsystems of size L/4 (i.e., the system is divided
into quarters and three such subsystems are used). I3,n was
argued to be system-size-independent constant at critical-
ity and thus can be used to accurately locate the critical
point [27].

In Fig. 6 we show the I3,n for n = 0.8, 1.0, 2.0 at late time
t = 4L, varying the system size L from 8 to 24. Since the
crossing points drift to lower ε as system size increases,
we only consider the data collapse for L = 16, 20, 24.
The obtained critical point εc,weak ≈ 0.044 is smaller than
εc,projective ≈ 0.084 [27] (note that in our convention ε is
interpreted as noise rate, which is half of the measure-
ment rate in the context of the measurement-induced phase
transition: p = 2ε). This is consistent with our argument
that for a given noise rate, optimal weak measurements are
more disentangling than projective measurements.

APPENDIX D: OPTIMIZATION FOR THE
AMPLITUDE DAMPING CHANNEL

In Sec. III D, we give an analytical solution to the opti-
mization for unital qubit channels. Nonunital channels, on
the other hand, are generally hard to solve exactly due to
the absence of spherical symmetry, thus one usually seeks
for a numerical solution using optimization algorithms.
However, for a common nonunital channel, the amplitude
damping channel with Kraus operators

⎧
⎪⎪⎨

⎪⎪⎩

M0 =
(

1 0
0

√
1 − ε

)
,

M1 =
(

0
√
ε

0 0

)
,

(D1)

the optimization problem can be highly simplified since its
Kraus rank is only 2. Here we consider the optimization
over generic 2 × 2 unitary matrices taking the form

U = eiϕ/2
(

eiψ 0
0 e−iψ

)(
cos θ sin θ

− sin θ cos θ

)(
ei� 0
0 e−i�

)
.

(D2)

Substituting Eqs. (D1) and (D2) into Eq. (14), one can
obtain

x = 1

2 + 4ε2

1+3ε−(1−ε) cos 4θ

, (D3)
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(a) (b) (c)

(d) (e) (f)

FIG. 6. (a)–(c) Tripartite mutual information I3 [shown as log(−I3)] in 1D random circuits with dephasing noise of strength ε
unraveled into optimal weak measurements, for Renyi indices (a) n = 0.8, (b) n = 1.0, and (c) n = 2.0. (d)–(f) Data collapse of
log(−I3) versus (ε − εc)L1/ν , with fit parameters indicated. The data are averaged over 5 × 102–5 × 103 realizations.

reaching maximum when θ = π/4, which gives the opti-
mized unraveling

⎧
⎪⎪⎨

⎪⎪⎩

M0 =
(

1
√
ε

0
√

1 − ε

)
/
√

2,

M1 =
(−1

√
ε

0 −√
1 − ε

)
/
√

2.
(D4)

We also numerically verify the effect of disentangling
from using the optimized unraveling in the context of
measurement-induced phase transition in 1D random cir-
cuits. In Fig. 7 we show the tripartite mutual information
I3 at late time t = 4L in the 1D Haar random circuits
subject to the amplitude damping channel. The critical
point for optimized unraveling Eq. (D4) εc ≈ 0.17 is much
smaller than that for original unraveling Eq. (D1) εc ≈
0.29, indicating the disentangling effect from unraveling
optimization also works for nonunital channels.

APPENDIX E: DATA COLLAPSE

In Sec. IV B we determine the critical point εc and
correlation length exponent ν by finding a data collapse
satisfying the scaling ansatz

τ(ε, Lx) = LxF
[
(ε − εc) L1/ν

x

]
. (E1)

To quantify the collapse we consider the similar objec-
tive function as in Ref. [27]. We first sort the data by xi =

(εi − εc) L1/ν
x,i where i = {1, . . . , n} labels sorted data points

and define yi = τ(xi)/Lx,i. Then the objective function
R(εc, ν) is defined as

R(εc, ν) = 1
n − 2

n−1∑

i=2

(yi − ȳi)
2 , (E2)

where

ȳi = (xi+1 − xi)yi−1 − (xi−1 − xi)yi+1

xi+1 − xi−1
, (E3)

is the estimation of yi given by linear interpolating
(xi−1, yi−1) and (xi+1, yi+1). Then the aim is to minimize
Eq. (E2) over (εc, ν). As an example, a color plot of R
is shown in Fig. 8 for data set of T = 5 (ABCDB) shown
in Fig. 3(c). We estimate the error by consider a region
enclosed by R = 1.3 × Rmin, which is shown as a black
contour in Fig. 8.

APPENDIX F: PHASE BOUNDARY AT LARGE T

Here we present the results of stabilizer simulations of
Clifford circuits to study the entanglement phase transition
in circuits of large depth T. The goal is to qualitatively
study the phase boundary in Fig. 1(d) at values of T that
are beyond what can easily be studied via exact simula-
tion of generic circuits (e.g., T = 4, 5 in Fig. 3). Due to
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(a) (b)

(c) (d)

FIG. 7. Tripartite mutual information I3 [shown as log(−I3)] for n = 1.0 in 1D random circuits with damping of strength ε for
(a) original unraveling and (b) optimized unraveling. (c),(d) Corresponding data collapse of log(−I3) versus (ε − εc)L1/ν , with fit
parameters indicated. The data are averaged over 2 × 102–5 × 103 realizations.

the restriction of stabilizer simulation, we cannot unravel
depolarizing noise into weak measurements. For this rea-
son we use stochastic projective measurements, bearing in
mind that this will give a larger numerical value of the

FIG. 8. Color map of data collapse object function R, Eq. (E2).
The black contour encloses a region satisfying R ≤ 1.3 × Rmin,
which gives an estimation of the error.

threshold noise strength εc (cf. Appendix C). We expect
the qualitative behavior of εc(T) to be similar across weak
and projective unravelings.

We consider Clifford circuits that mimic the models ana-
lyzed in Sec. IV B. To approximate the iSWAP-like gates,
we sample two-qubit Clifford gates that are iSWAP with
90% probability and SWAP otherwise (corresponding to a
uniform sampling of the dual-unitary half of the two-qubit
Clifford group [40]). These gates are sandwiched between
random single-qubit Clifford rotations. A projective mea-
surement of Z is applied with probability p = 2ε on each
qubit after each gate. Specifically, we simulate the space-
wise evolution of the circuit as in, e.g., Fig. 2(c). This
involves a quasi-1D subsystem, which is a strip of length
Lx and width 1 + T/4. As a diagnostic of the phase transi-
tion we use the tripartite mutual information I3(A : B : C)
between contiguous regions that make up strips of length
Lx/4. Results in Fig. 9 show a transition at critical noise
rate εc(T) that increases with T, as expected. We have,
e.g., εc(T = 8) � 0.070, which increases to εc(T = 24) �
0.133.

We additionally simulate the conventional MIPT in
square 2D circuits, whose dimensions Lx = Ly = L are
jointly increased. The tripartite mutual information I3, for a
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FIG. 9. Entanglement phase transition in Clifford circuits with
dephasing noise of strength ε. First five panels refer to quasi-1D
subsystems that mimic the noisy-SEBD simulation of 2D cir-
cuits of depth T = 8, 12, 16, 20, 24 (T = 4, not shown, is found
to be in the area-law phase for all ε). The last panel shows data
for the conventional MIPT in 2D square lattices of size L × L,
L = 8, 16, 32, with circuits of depth O(L). Vertical dashed lines
indicate estimates of the critical point. Data obtained by aver-
aging between 4 × 102 and 2 × 104 realizations of the random
circuits depending on system size.

partition of the square into four rectangles of size L/4 × L,
also shows a transition. We observe εc,2D � 0.16, consis-
tent with the value pc,2D = 0.3116(1) reported in Ref. [77]
for this circuit architecture [86] (recall p = 2ε).

Finally, in Fig. 10 we compare the observed critical
points for shallow circuits of depth T, εc(T), with the 2D
MIPT εc,2D. We see good agreement with the conjectured
form εc(T) � εc,2D + O(1/T), sketched in Fig. 1(d).

APPENDIX G: BENCHMARKS

Here we benchmark our noisy-SEBD algorithm against
stabilizer simulations of Clifford random circuits and MPO
simulation with controlled errors. Since the depolarizing
channel with general ε is not a Clifford operation, we
consider the probabilistic trace setup [87], i.e., replac-
ing the depolarizing channel by a probabilistic mixture of

FIG. 10. Noise threshold for the entanglement phase transition
as a function of circuit depth T (data from Fig. 9). Dashed line
indicates a linear fit of datapoints T = 16, 20, 24 to a + b/T; the
extrapolation to T = ∞ is in good agreement with the 2D MIPT
datapoint.

an identity operation with probability 1 − 4
3ε and a trace

channel (or erasure) ρ �→ (I/2)i ⊗ Triρ with probability
4
3ε. With this replacement, each instance or trajectory in
this random ensemble is classically simulatable [49], and
on average reproduces the effect of the depolarizing noise
with strength ε.

We first consider the noisy sampling problem in the
architecture given in Sec. IV B with ε = 0.02, Lx = 5,
Ly = 5, and T = 4. In this case the system size is small
enough that direct MPO simulation of the density matrix
can be implemented with small error and can thus serve
as a benchmark for noisy SEBD. In the upper row of
Fig. 11, we show the averaged final probability PN (z) of
ten randomly chosen output bitstrings z from noisy Clif-
ford circuits, varying the number of sampled trajectories K
from 103 to 105 (note we unravel depolarizing noise into
probabilistic erasure for the stabilizer simulation, and into
weak measurements for noisy SEBD; we use the same K
for both methods). The probabilities PN (z) are scaled by
the exact reference value obtained from MPO simulation,
whose truncation error is kept below 10−10. As the trajec-
tory number increases, one can see both SEBD and Clifford
simulation show a good convergence to the exact result.

We then consider the same circuit architecture but with
Lx = 9, Ly = 9, where exact MPO computation would
require large computational effort. Therefore, in this case
we directly compare SEBD results against the Clifford
results (with 106 trajectories for the latter). Results are
shown in the bottom row of Fig. 11, again displaying good
agreement.

APPENDIX H: CONVERTING GATE FIDELITY
TO NOISE RATE

The convention for noise strength ε used in this work is
in terms of single-qubit channels as in Eq. (6). The usual
figure of merit for two-qubit gates is the average fidelity f .
To convert between the two, we note that

f =
∫

dψ 〈ψ |	⊗2[|ψ〉 〈ψ |] |ψ〉

= (1 − ε)2 + [1 − (1 − ε)2]
∫

dψ 〈ψ | P |ψ〉2 , (H1)

where the integral is over the Haar measure on the two-
qubit Hilbert space, P is any traceless Pauli operator,
and the formula applies equally to dephasing and depo-
larizing noise [in fact to any unital noise channel upon
setting 1 − ε �→ p0, cf. Eq. (16)]. The Haar integral yields
Tr(P2)/20 = 1/5, so

f = (1 − ε)2 + ε(2 − ε)

5
� 1 − 8

5
ε, (H2)
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FIG. 11. Estimated probability of ten randomly generated output bitstrings of noisy Clifford circuits of depth T = 4, with Lx =
5, Ly = 5 (top row) and Lx = 9, Ly = 9 (bottom row). Probabilities are estimated by averaging over K trajectories, with K = 103–105

indicated on top. In the top row, the averaged probabilities pave (from noisy-SEBD and stabilizer simulations) are normalized by the
exact value obtained from MPO simulation. In the bottom row, the averaged probabilities pave from noisy SEBD are normalized by the
average of 106 trajectories of stabilizer simulations. The ratios converge towards 1 (horizontal lines) with increasing K .

at small ε, thus ε � (5/8)(1 − f ). In particular, this means
that a gate fidelity of f = 96% translates to ε � 0.025,
which is used in Sec. IV C.
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