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Many-Body Magic Via Pauli-Markov Chains—From Criticality to Gauge
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We introduce a method to measure many-body magic in quantum systems based on a statistical explo-
ration of Pauli strings via Markov chains. We demonstrate that sampling such Pauli-Markov chains gives
ample flexibility in terms of partitions where to sample from: in particular, it enables the efficient extrac-
tion of the magic contained in the correlations between widely separated subsystems, which characterizes
the nonlocality of magic. Our method can be implemented in a variety of situations. We describe an effi-
cient sampling procedure using tree tensor networks, that exploit their hierarchical structure leading to a
modest O(log N ) computational scaling with system size. To showcase the applicability and efficiency of
our method, we demonstrate the importance of magic in many-body systems via the following discoveries:
(a) for one-dimensional systems, we show that long-range magic displays strong signatures of conformal
quantum criticality (Ising, Potts, and Gaussian), overcoming the limitations of full state magic; (b) in
two-dimensional Z2 lattice gauge theories, we provide conclusive evidence that magic is able to identify
the confinement-deconfinement transition, and displays critical scaling behavior even at relatively mod-
est volumes. Finally, we discuss an experimental implementation of the method, which relies only on
measurements of Pauli observables.
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I. INTRODUCTION

Over the last two decades, quantum information con-
cepts have revolutionized the way we understand and
approach the many-body problem [1]. Remarkable insights
on quantum matter have been obtained under the lens of
entanglement, a measure of separability that has found
applications over a wide range of phenomena, from real
time dynamics [2], to topological order [3,4] and clas-
sification of states [5,6]. A pivotal role in establishing
these applications has been played by the development of
trustful entanglement measures [7], in combination with
efficient theoretical methods to explore that in the context
of many-body systems [8]—one paradigmatic example
being tensor networks [9,10].
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On a par with entanglement, another quantum infor-
mation concept that is receiving increasing attention is
that of nonstabilizerness, also known as magic [11–13]. In
the context of quantum computing, magic is now under-
stood as a fundamental resource that would be required
to outperform classical simulations, and its concrete role
in digital simulations has been widely addressed [14–19].
However, differently from entanglement, there is presently
limited understanding of how magic reflects many-body
phenomena, and even if it does it at all [20]: a funda-
mental limiting factor is that, oppositely to entanglement,
we lack an array of scalable, efficient methods to actually
compute magic—a shortage that severely limits our capa-
bility of identifying situations where there can be a direct
connection between magic and physical phenomena.

In this work, we present a theoretical framework to
measure many-body magic that leverages on a stochastic
sampling of the system wave function. Our work builds
upon recent developments in the field, in particular, on the
recognition of stabilizer Renyi entropies (SREs) as mea-
sures of magic (including an experimental demonstration
with four qubits) [21–24]. While a direct measure of the
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former is extremely challenging as it requires a number
of measurements that grows exponentially with the size
of the partition, we introduce a Markov chain on Pauli
strings as a tool to distill the most relevant contribution to
magic. We show that our protocol returns an unbiased esti-
mator of SREs of all orders, and that it is efficient under
several important scenarios: those include both full state
magic (that is relevant, e.g., to quantify the overall dif-
ference from a stabilizer state), and long-range magic—a
quantity that is akin to mutual information and that, cru-
cially, is not plagued by any UV-divergences when applied
to field theory.

The estimation of magic via Pauli-Markov chain is a
general construction, that is broadly applicable to com-
putations as well as experiments. We explore in detail its
capabilities in the context of tree tensor networks (TTNs)
[25,26]. At first, we perform extensive methodological
checks, in particular, on the efficiency of Markov sampling
and autocorrelations. We then showcase the flexibility
of our approach with several applications, to understand
advantages and overall comparison with recently intro-
duced direct sampling methods that constitute the state
of the art in terms of measuring many-body magic in
numerical computations [27–29].

Firstly, we consider one-dimensional systems. There, by
considering both Ising, Potts and Heisenberg models, we
show that full state magic is not always indicative of quan-
tum critical behavior. In particular, while it works for the
conceptually simple cases of Ising (as already observed
in Refs. [27–30]) and Potts models, it spectacularly fails
to detect any criticality in the case of spin-1 XXZ mod-
els. Oppositely, long-range magic (whose computation was
not accessible before our algorithm, to the best of our
knowledge) displays sharp signatures of critical behavior
in all models considered. Our work thus clarifies how, in
the context of critical behavior, it is fundamental to con-
struct—and to compute—UV-divergence free estimators
to understand the role of magic.

Secondly, we consider two-dimensional interacting sys-
tems, where the connection between magic and many-body
phenomena is uncharted territory. We focus on the Z2 lat-
tice gauge theory, for two reasons: its importance as a
paradigmatic model for more complicated lattice-field the-
ories, as it displays a confinement-deconfinement transi-
tion, as well as topological order; and its direct connection
to the toric code, an epitome example of quantum mem-
ory based on the stabilizer language [7,31–39]. Thanks to
the very modest O(ln N ) size scaling of our algorithm ver-
sus system size N , we are able to consider systems up
to 100 spins. Our results show how both confined and
deconfined phase have volume-law magic: most remark-
ably, magic features striking signatures of critical behavior.
Close to the transition point, its behavior is akin to that of
a Binder cumulant, as magic density displays a crossing
as a function of volume, whose functional form is dictated

by finite-size scaling theory. Even more remarkably, uni-
versal collapses are not only evident at modest volumes,
but even at relatively small bond dimensions, signaling
that magic might be considerably less affected than other
observables by tensor-network truncations. At the phys-
ical level, our results point out that magic may serve as
an order parameter for confinement-deconfinement transi-
tions, even at volumes where other quantities (e.g., order
parameters) are of very limited use.

Finally, we give a glimpse of the applicability of our
approach to experiments. In that context, we discuss in
detail experimental errors as a function of finite sam-
pling, size, and autocorrelations. Our results indicate that
the sampling needed to scale to large systems requires
very fast repetition rates, which are available in solid-state
settings, but constitute a challenge for atomic experiments.

The rest of the paper is structured as follows. In Sec.
II, we review the basic properties of magic, as well as
SREs. In Sec. III, we describe how to sample Pauli strings
via Markov chains, discuss the efficiency of various esti-
mators, and detail our implementation with tree tensor
networks. In Sec. IV, we present our results on both one-
and two-dimensional spin systems. In Sec. V, we detail our
experimental protocol, and then conclude in Sec. VI.

II. NONSTABILIZERNESS: CHALLENGES IN
MANY-BODY PHYSICS

A. Quick overview of resource theory for magic

Quantum resource theories aim to capture the fun-
damental aspects inherent in quantum technology. For
instance, entanglement is a crucial resource for quantum
cryptography and communication. The resource frame-
work for entanglement finds practical application by pro-
viding bounds on the efficiency of entanglement distilla-
tion protocols. Error-correcting codes play a fundamen-
tal role in achieving fault-tolerant quantum computation.
These codes enable the storage of quantum information
while protecting it from the detrimental effects of noise.

The development of error-correcting codes based on the
stabilizer formalism—e.g., the toric code—has motivated
a resource theory of nonstabilizerness, or magic. Here, we
briefly review it, and summarize the main challenges in
addressing magic in the context of many-body theory.

We first formally define the notation. We consider a sys-
tem of N qubits (generalizations to larger Hilbert spaces
will be discussed below), with Hilbert space H = ⊗N

j =1Hj .
The N -qubit Pauli group PN encompasses all Pauli string
operators with an overall phase of ±i or ±1. Mathemati-
cally, we define PN as follows:

PN =
{

e
iθπ

2 σj1 ⊗ · · · ⊗ σjN |θ , jk = 0, 1, 2, 3
}

. (1)
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Moving on to stabilizer states, we can establish that a
pure N -qubit state falls into this category if it satisfies cer-
tain conditions. Specifically, a stabilizer state is associated
with an Abelian subgroup S ⊂ PN that contains 2N ele-
ments. For every S ∈ S , the stabilizer state |ψ〉 remains
unchanged under the action of S, expressed as S|ψ〉 = |ψ〉.
Alternatively, we can define stabilizers using Clifford uni-
taries, which are unitary transformations preserving the
Pauli group when conjugated with it, i.e.,

CN = {
U such that UPU† ∈ PN for all P ∈ PN

}
. (2)

The Clifford set CN can be generated using the Hadamard
gate, the π/4-phase gate, and the CNOT gate. Notably, sta-
bilizer states are pure quantum states that can be prepared
by applying Clifford operations to a canonical trivial state
|0〉⊗N .

In the framework of resource theory, stabilizer states are
considered free states while Clifford unitaries and Pauli
measurements constitute free operations. The computation
using only free states and free operations can be efficiently
classically simulated, whereas universal quantum compu-
tation can be achieved through supplying magic (nonfree)
states. Therefore to enable successful quantum computa-
tions, additional techniques are necessary to ensure the
fault-tolerant implementation of a universal set of quan-
tum gates. This can be achieved by augmenting the Clifford
group with the Toffoli gate or the π/8-phase gate, thus
unlocking the potential for universal quantum computa-
tion.

In this context, a central task is the quantification of
the amount of non-Clifford operations needed to prepare
a given quantum state. The properties required to a good
measure M of nonstabilizerness are (i) M(|ψ〉) = 0 ⇐⇒
|ψ〉 is a stabilizer, (ii) nonincreasing under Clifford opera-
tions: M(�|ψ〉) ≤ M(|ψ〉) if � ∈ CN , and (iii) M(|ψ〉 ⊗
|φ〉) = M(|ψ〉)+ M(|φ〉).

For many-body systems, previous investigations into
magic measures have primarily concentrated on small or
weakly correlated systems, leading to a limited under-
standing of magic in entangled many-body systems. An
inherent challenge arises due to the exponential growth of
stabilizer states and their increasingly intricate geometric
structures as the system size expands. Consequently, the
general calculation or numerical analysis of magic mea-
sures for large states becomes arduous. In order to enhance
our understanding of this phenomenon, several fundamen-
tal questions require attention. These include comprehend-
ing the extent to which many-body quantum states can
exhibit magic, determining the typical amount of magic
found in generic states, and developing methodologies for
computing the magic associated with many-body states.

From a quantum information viewpoint, the main moti-
vation in understanding and measuring many-body magic
stems from its relevance as a resource towards quantum

advantage. Recent studies have shed light on the fact
that the computational power of a state cannot be solely
attributed to its magic density; other characteristics of
magic may also play significant roles [20]. These prop-
erties encompass not only the primary aspect of magic
density but also the subleading terms, nonlocal compo-
nents, topological aspects, and more. Consequently, it is
crucial to develop a numerical scheme capable of access-
ing and analyzing the various features of magic in many-
body systems. Such a scheme would facilitate a com-
prehensive exploration and understanding of the intricate
interplay between magic and computational power. This
would constitute a major step forward in our endeavor to
fully characterize the role played by magic in many-body
systems.

Notwithstanding such practical importance, understand-
ing the connection between quantum correlations and
physical phenomena is interesting from a broader perspec-
tive [20]—especially, given the importance and impact
such a connection has had in the case of entanglement.
The connection between magic and physical phenomena is
presently poorly understood, due to the combined lack of
computable measures of magic, and of methods to attack
them.

From the point of view of observables, the key result we
will exploit is Ref. [21], that demonstrated SREs as a mea-
sure of magic (at least in the case of coherent dynamics; in
more complicated scenarios, such quantities are not neces-
sarily measures, see Ref. [28]). From the point of view of
connection between magic and physical phenomena, three
works are serving as a key motivation in this direction [27–
29]. Thanks to the development of novel techniques based
on direct sampling of matrix-product states (MPSs), these
works have pointed out strong connections between criti-
cal behavior and magic in the context of one-dimensional
systems, at precision and volumes never attained before.
We will discuss this in more detail over the next section.

B. Stabilizer Renyi entropy

Stabilizer Rényi entropies (SREs) are a measure of non-
stabilizerness recently introduced in Ref. [21]. For a pure
quantum state ρ, SREs are expressed in terms of the
expectation values of all Pauli strings in PN :

Mn (ρ) = 1
1 − n

log

⎧⎨
⎩
∑

P∈PN

|Tr (ρP) |2n

dN

⎫⎬
⎭ , (3)

with d is the local dimension of the Hilbert space of N
qudits and PN is the generalized Pauli group of N qudits
[40]. The SREs have the following properties: [21] (i)
faithfulness: Mn(ρ) = 0 iff ρ ∈ STAB, (ii) stability under
Clifford unitaries C ∈ CN : Mn(CρC†) = Mn(ρ) , and (iii)
additivity: Mn(ρA ⊗ ρB) = Mn(ρA)+ Mn(ρB). The SREs
are thus a good magic measure in the point of view of
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resource theory, where the free states are defined as the
stabilizer states while the free operations are the Clifford
unitaries. This definition is a straightforward generaliza-
tion to general local dimension d from the one given in
Ref. [21]. For d > 2, the Pauli operators are no longer Her-
mitian, and thus the expectation values can be complex.
In Eq. (3), we take the absolute values of the expectation
values |Tr (ρP) |. Equation (3) can be seen as the Rényi-n
entropy of the classical probability distribution:

	P = |Tr (ρP) |2/dN . (4)

Moreover, the definition of SREs can be extended to
mixed states by properly normalizing	P. For example, for
n = 2, the mixed state SRE is given by [21]

M̃2 = − log

(∑
P∈PN

|Tr (ρP) |4∑
P∈PN

|Tr (ρP) |2
)

, (5)

which can be seen as the Rényi-2 entropy of

	̃P = |Tr (ρP) |2/
∑

P∈PN

|Tr (ρP) |2, (6)

apart from some offset. Here, the free states are defined as
the mixed states that can be obtained from pure stabilizer
states by partial tracing [21].

Furthermore, the long-range magic can be quantified by

L(ρAB) = M̃2(ρAB)− M̃2(ρA)− M̃2(ρB), (7)

where A and B are two separated subsystems [see Figs.
2(a) and 2(b)]. A similar quantity has been considered pre-
viously in the context of mana [41,42] and robustness of
magic [43,44]. L(ρAB)measures how magic is contained in
the correlation between the subsystems, and thus it quan-
tifies the degree to which magic cannot be removed by
finite-depth quantum circuits [41]. Indeed, due to the addi-
tivity of SRE, L(ρAB) vanishes for a product state ρA ⊗ ρB.
On the other hand, a nonvanishing value of L(ρAB) effec-
tively quantifies the extent of deviation from the additivity
in the case of entangled subsystems.

The long-range magic is directly reminiscent of mutual
information, that has played a major role in characterizing
the distribution of both classical information and quantum
correlations in many-body systems [1,45–56]. On the lat-
tice, the main motivation for looking at functionals such as
in Eq. (7) is that they are much more meaningful than sim-
ple bipartition properties from a field-theory standpoint.
Indeed, these quantities are expected to be free of UV
divergences, and thus solely dominated by infrared, uni-
versal properties of the lattice theory. This parallels the f
functions used in field theory [57].

As discussed above, SREs have attracted recent interest
due to their computability. The first technique was intro-
duced in Ref. [27], which expressed the SREs of integer

index n > 1 as the norm of a “2n-replica” MPS. Although
this technique yields an exact value of Mn within a given
MPS, its computational cost scales as a large power of the
bond dimension χ , specifically O(Nχ6n). Thus, although
the method is efficient in principle, in practice it can only
access bond dimension up to χ = 12, which limits its
applicability to investigate many-body physics.

A different approach based on sampling of Pauli strings
according to the probability distribution 	P was pro-
posed very recently in Refs. [28,29]. In those works, the
Pauli strings are sampled directly via the perfect sampling
scheme with matrix product state (MPS) introduced in Ref.
[58]. For the case of open boundary conditions (OBCs), the
cost scales as O(Nχ3), thus enabling access to larger bond
dimensions, which opens the door for investigating magic
in entangled states. However, as we discuss in more detail
in the next section, this method provides only an efficient
estimation of M1. It has been demonstrated that for 0 <
n < 2, Mn violates monotonicity under measurements fol-
lowed by conditioned Clifford transformations [28]. Thus,
it is important to develop an efficient scheme to efficiently
compute M2, which also has the nice property of being
experimentally measurable [23,59]. Furthermore, M2 is
directly linked to the average over the Clifford orbit of
entanglement spectrum flatness in an arbitrary bipartition
[60] and participation entropy flatness [61].

We also note that the aforementioned two methods have
inherent limitations when it comes to evaluating magic
within a subsystem of a state—for instance, none can
access long-range magic. As a result, the existing tech-
niques are unable to provide insights into how magic is
distributed within a given state.

1. Examples

To familiarize with the behavior of SREs in many-body
systems, here we provide some examples of SREs in sim-
ple wave functions. First of all, we stress that the SREs
are basis dependent, i.e., it is not invariant under local
basis change. In particular, the SREs of a single-qubit state
may be nontrivial. For example, consider the following
one-parameter family of single-qubit states

|ψ(θ)〉 = 1√
2

[|0〉 + eiθ |1〉] . (8)

Note that |ψ(π/4)〉 corresponds to the canonical T state.
The SREs can be computed easily by evaluating the expec-
tation values of P ∈ {I , X , Y, Z}, and then plugging it in
Eq. (3). The result is shown in Fig. 1(a). As can be seen,
the SREs are nonzero apart from some special points θ =
mπ/2 with integer m.

Now, the SREs of a product state of N copies of
|ψ(θ)〉 can also be computed straightforwardly, utilizing
the additivity property of SRE, Mn(ρA ⊗ ρB) = Mn(ρA)+
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FIG. 1. Stabilizer entropies for qubit and qutrit. The SRE den-
sity m1 and m2 for single-qubit state (a) defined in Eq. (8), and
for single-qutrit state defined in Eq. (9)(b).

Mn(ρB). The SREs are then just given by Mn(|ψ(θ)〉⊗N ) =
NMn(|ψ(θ)〉).

For an example of qudit states, we consider the follow-
ing family of single-qutrit states:

|φ(θ)〉 = 1√
3

[|0〉 + eiθ |1〉 + e−iθ |2〉] . (9)

Here, |φ(2π/9)〉 corresponds to the canonical qutrit T
state. We now need to compute the expectation values of
32 single-qutrit Pauli operators. To define the Pauli opera-
tors, we first define the shift and clock operators for d-level
system as

X =
d−1∑
k=0

|k + 1〉〈k| and Z =
d−1∑
k=0

ωk
d|k〉〈k|, (10)

where ωd = e2π i/d, and the addition is defined modulo d.
For qutrits, we have d = 3. The qudit Pauli operators are
defined as

Taa′ = ω−2−1aa′
ZaX a′

(11)

for a, a′ ∈ Zd. Here, 2−1 is the inverse element of 2 in Zd.
Computing the expectation values of the Pauli operators

in Eq. (11), we can compute the SREs of |φ(θ)〉 using Eq.
(3). The result is shown in Fig. 1(b). In this case, the SREs
are nontrivial apart from some special points θ = m2π/3
with integer m.

(a) (b)

(c)

FIG. 2. Schematics of partitions. (a) Full partition. (b) Two
widely separated partitions for the calculation of long-range
magic in Eq. (7). (c) Subleading term as in Eq. (24), as well as a
sketch depicting the increment trick discussed in the main text.

III. MARKOV CHAIN MONTE CARLO
SAMPLING OF PAULI STRINGS

In this work, we investigate the SREs using Monte
Carlo sampling of Pauli strings according to some prob-
ability distribution �P, which depends only explicitly on
the expectation values of Pauli strings. For example, for the
calculation of Mn, we get�P = 	P [Eq. (4)], while for M̃2
we have �P = 	̃P [Eq. (6)]. Here we focus on Metropo-
lis algorithm, although other sampling methods, such as
heat bath, may also be employed. Since �P depends only
on the expectation value of P, this method is applicable
to any numerical methods in which expectation values of
(nonlocal) operators can be accessed, such as exact diago-
nalization and tensor network methods. Furthermore, this
method can also be utilized to experimentally measure
SREs (see Sec. V).

A. Algorithm theory

The scheme is summarized in Algorithm 1. If we sample
according to 	P, Mn can be estimated using the unbiased
estimators

Mn = 1
1 − n

log
〈|Tr(ρP)|2(n−1)〉

	P
(12)
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Algorithm 1. Monte Carlo sampling of Pauli strings.

for n > 1 and

M1 = 〈− log
(|Tr(ρP)|2)〉

	P
(13)

for n = 1, where 〈· · · 〉	P is the average over 	P obtained
with sampling. For n < 1, a better estimation can be done
by reversing Eq. (12), i.e.,

Mn = − 1
1 − n

log
〈|Tr(ρP)|2(1−n)〉

�P,n
, (14)

where �P,n ∝ |Tr(ρABP)|2n. Let us analyze the efficiency
of these estimators.

1. SRE with n = 1

For n = 1, the variance of M1 is shown to be at most
quadratic in N in Ref. [29]. Thus, the estimator for M1 is
efficient. Actually, we can even make a stronger statement,
if we make the assumption that the SREs are linear in N ,
i.e., Mα = Nf (α)+ O(1), where f (α) is a function that
does not depend on N . Using the relation [62],

Var(M1) = d2[(1 − α)Mα]
dα2

∣∣∣∣
α=1

, (15)

we see that Var(M1) is linear in N . It follows that the vari-
ance (standard deviation) of the SRE density, m1 = M1/N ,
scales as 1/N (1/

√
N ).

2. SRE with n �= 1

For n > 1, the variance of Eq. (12) is given by

Var
(|Tr(ρP)|2(n−1)) = 〈|Tr(ρP)|4(n−1)〉

	P

− 〈|Tr(ρP)〉|2(n−1)〉2
	P

= exp [−2(n − 1)M2n−1]

− exp [−2(n − 1)Mn] . (16)

Now, by second-order approximation Var (log x)
≈ Var (x) /x2, we have

Var (Mn) ≈ exp [−2(n − 1)M2n−1] − exp [−2(n − 1)Mn]
|n − 1| exp [−2(n − 1)Mn]

= exp [2(n − 1)(Mn − M2n−1)] − 1
|n − 1| . (17)

For n < 1,

Var
(|Tr(ρP)|2(1−n)) = 〈|Tr(ρP)|4(1−n)〉

�P,n

− 〈|Tr(ρP)|2(1−n)〉2
�P,n

= exp [(n − 1)(M2−n + Mn)]

− exp [2(n − 1)Mn] . (18)

Then,

Var (Mn) ≈ exp [(n − 1)(M2−n + Mn)] − exp [2(n − 1)Mn]
|n − 1| exp [2(n − 1)Mn]

= exp [(1 − n)(Mn − M2−n)] − 1
|n − 1| . (19)

In both cases, if the SREs grow at most logarithmically
in N , the variance grows at most polynomially. Thus, by
Chebyshev’s inequality, the number of samples needed for
a fixed error ε is polynomial in N , i.e, the estimator is effi-
cient. On the other hand, if the SREs are linear in N , as
is typically the case in many-body systems [27,30,41], the
variance grows exponentially with N when n �= 1. Thus,
the estimator for Mn, n �= 1 is efficient only if the SREs are
at most O(log N ). One can also see this intuitively by not-
ing that the quantity being estimated is exponentially small
in N when Mn is linear, and thus we need exponentially
small precision. We note in passing that states with loga-
rithmically growing SREs can arise in many-body systems
in the frustrated regime [24].

Note, however, that the SREs are typically linear in N .
Therefore, using the estimators in Eq. (12), the estimation
of Mn, n �= 1 will almost always be exponentially costly.
Nevertheless, the cost typically grows much more slowly
than d2N , which is the cost for exact computation. Thus,
in practice, using this estimator is still beneficial to extend
the system sizes we can study, as we shall illustrate in Sec.
IV. Importantly, using Monte Carlo sampling, we are not
restricted to sample the Pauli strings according to 	P. An
alternative approach is to sample Pauli strings according
to the probability distribution �P,n ∝ Tr(ρP)2n. We then
need to estimate the normalization constant of�P,n to esti-
mate Mn. This is a nontrivial task, equivalent to estimating
the partition function, for which a wealth of sophisticated
methods have been put forward [63–74].
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3. Long-range magic

In addition, we are interested in estimating the long-
range magic as quantified by L(ρAB) in Eq. (7). While we
can in principle compute the individual M̃2 for ρC, C ∈
{A, B, AB}, this is not optimal, as we have seen that the
estimation for M̃2 is not efficient when M̃2 grows linearly
with N . Moreover, we expect that the leading term of M̃2
will be canceled out in L(ρAB). In this case, it is more desir-
able to estimate L(ρAB) directly, without having to resort to
inefficient estimation of M̃2. To do this, we first rewrite Eq.
(7) as follows:

L(ρAB) = I2(ρAB)− W(ρAB), (20)

where

W(ρAB) = − log

×
(∑

PA∈PA
|Tr(ρAPA)|4

∑
P∈PB

|Tr(ρBPB)|4∑
PAB∈PAB

|Tr(ρABPAB)|4
)

, (21)

and I2(ρAB) = S2(ρA)+ S2(ρB)− S2(ρAB) is the Rényi-
2 mutual information. If one is to sample according to
�PAB ∝ Tr(ρABPAB)

4, we can estimate W(ρAB) by

W(ρAB) = − log
〈 |Tr(ρAPA)|4|Tr(ρBPB)|4

|Tr(ρABPAB)|4
〉

�PAB

, (22)

where PAB is decomposed as PAB = PA ⊗ PB. Similarly,
we have

I2(ρAB) = − log
〈 |Tr(ρAPA)|2|Tr(ρBPB)|2

|Tr(ρABPAB)|2
〉

	PAB

. (23)

Therefore, as a byproduct, our scheme can be applied
to compute the Rényi mutual information for disjoint
subsystems.

4. Subleading term

The previous scheme can be straightforwardly modified
to extract the subleading term in the expansion Mn(N ) =
DN N + cN [27]. Here we consider 1D systems for sim-
plicity. Specifically, the subleading term is approximated
by the quantity cN = 2Mn(N/2)− Mn(N ) [see Fig. 2(c)],
which expands as

cN = log
〈 |Tr(ρN/2P(1))|2n|Tr(ρN/2P(2))|2n

|Tr(ρN P)|2n

〉

�P,n

(24)

for n �= 1, where ρN ,N/2 is the density matrix for a 1D
system of size N and N/2, respectively. For simplicity,
we have assumed translational invariance in Eq. (24),

but the procedure can be straightforwardly generalized
to any system. Here, denoting P = P1P2 · · · PN , where
Pi is a Pauli operator acting on site i in the N -
site system, we choose P(1) = P1P2 · · · PN/2 and P(2) =
PN/2+1PN/2+2 · · · PN . Note that, differently from Eq. (22),
here we consider two pure states of different sizes N and
N/2. For the subleading term in 1D systems, the term
inside the log in Eq. (24) does not decay exponentially,
and thus the estimation can be done more efficiently than
the estimation of the leading term in Eq. (12).

5. Increment trick for SRE

The extraction of the subleading term in Eq. (24)
presents an alternative strategy to estimate Mn, which
circumvents the problem of exponential variance for the
estimator in Eq. (12). The key idea is that, if the estimation
in Eq. (24) is efficient, then we can estimate cN , cN/2, . . .,
until the size is small enough that Mn can be evaluated
exactly. The number of cM ’s that needs to be computed
scales as O(log N ) (assuming translational invariance).
Then, we can determine Mn(N ) by considering a proper
linear combination of cM ’s. This strategy is reminiscent
of the increment trick employed in estimation of Rényi
entanglement entropies in quantum Monte Carlo simula-
tions [75–77], which considers the difference of Rényi
entropies of smaller and smaller regions, to compute the
Rényi entropy of a large entangling region with high pre-
cision. However, in this case, the form of cN is specifically
designed to cancel out the volume-law term of Mn, dif-
ferently from entanglement entropy, which exhibits area
law.

The above strategy is effective in 1D systems because
the subleading term cN is expected to either remain inde-
pendent of system size or exhibit at most logarithmic
growth. However, in higher-dimensional systems, cN may
exhibit area-law scaling, leading to growth with size. In
this case, more complicated linear combination of Mn’s
shall be considered to eliminate the area-law term (while,
at the same time, also keeping the volume law one vanish-
ing). For example, in 2D systems, the form of linear com-
bination used in extracting the topological entanglement
entropy with Kitaev-Preskill [3] or Levin-Wen scheme [4]
will cancel both the volume-law and area-law term. It is
convenient to partition the system into four subsystems as
proposed in Ref. [78], which is also suitable with 2D TTN
geometry. With this scheme, the estimation of Mn(L × L)
is reduced to Mn(L/2 × L), Mn(L/2 × L/2), . . ., such that
only O(log N ) computations are required, as in the 1D
case [79].

B. Efficient sampling with tensor networks: the
example of tree tensor networks

The probability �P of a given Pauli string P depends
only on the expectation value of P, and thus it is efficiently
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computable in TTN (or any loopless tensor network [26]).
Following the convention introduced in Ref. [25], each
tensor in the TTN structure is denoted by the pair of zero-
indexed integers [l, n], where l corresponds to the layer
index (starting from the top root tensor) and n denotes
the tensor at a particular layer l counted from the left [see
Fig. 3(a)]. Obviously, in this notation, the top root tensor is
represented by [l, n] = [0, 0].

The algorithm to sample Pauli strings for the ground
state of a quantum many-body system is described
below.

(a) After performing the adaptive variational ground-
state search [25] for a many-body Hamiltonian, we
arrive at the TTN representation of the many-body
ground-state wave function |ψ〉. We start by bring-
ing the TTN into the central canonical form, where
the [0, 0] tensor is the orthogonality center [see
Fig. 3(a)].

(b) Given the initial Pauli string P = P1P2 . . .PN ,
where Pi is a Pauli operator at site i, we construct
the coarse-grained effective “link” operators O[l,n]
at each link iteratively from the physical sites to
the top-most links, where at the bottom-most (i.e.,
the physical) layer these link operators are identi-
fied with the Pauli operators [see Fig. 3(b)]. At each
step, the link operators O[l+1,2n] and O[l+1,2n+1] are
coarse grained into O[l,n] by [l, n] tensor. The new
link operator O[l,n] acts on the [l − 1, �n/2�] tensor
a layer above in the TTN structure. We keep all the
link operators in memory for future uses.

(c) The expectation value 〈ψ |P|ψ〉 now only involves
the root [0, 0] tensor and top-most link operators
O[1,0] and O[1,1] as seen in Fig. 3(c).

(d) At each sampling step, we either propose a
single-site update P′ = P1 . . .P′

i . . .PN , or a two-
site update P′ = P1 . . .P′

i . . .P
′
j . . .PN , following

Algorithm 1. The updated sites i and j are chosen
randomly.

(e) We observe [Fig. 3(d)] that the effective link oper-
ators for P′ differ only with those of P on the
links that lie on the path from the site i (or j ) to
the root [0, 0] tensor. The number of such links
scales only logarithmically in system size. This
implies that computing 〈ψ |P′|ψ〉 can be done very
efficiently with a computational cost of O(log(N )χ4),
as opposed to O(Nχ4) for a generic many-body
operator for the TTN.

The heart of our efficient sampling procedure lies within
the above observation for TTN. We exploit this scaling
property to perform efficient Monte Carlo sampling of
Pauli strings by the standard Metropolis algorithm, where
the candidate Pauli string for the next configuration only

differs at a few sites with the previous Pauli string config-
uration. Crucially, the sites can be chosen arbitrarily, and
this does not change the log N scaling of the TTN sam-
pling, provided that the number of modified sites does not
scale with system size. This allows for flexible sampling
strategy, which can be designed by taking into account our
knowledge about the state that we want to sample—very
much like Monte Carlo methods are designed to probe
partition functions.

The final step for calculating the expectation value
of a proposed candidate Pauli string at each Metropolis
iteration is the following.

(a) The link operators, that reside in the path from the
updated site i (or j ) to the root [0, 0] tensor, are
updated by the coarse-graining step. The expecta-
tion value 〈ψ |P′|ψ〉 is now calculated by tensor con-
tractions of the root tensor and top-most (updated)
link operators [see Fig. 3(d)].

At this stage, it is important to discuss the efficiency of the
more widely used MPS tensor-network structure in relation
to our sampling strategy. The computational cost for direct
sampling of Pauli strings using MPS with OBCs scales
as O(Nχ3) [28,29,58], that also holds for Monte Carlo
sampling using MPS [80], as opposed to the O(log(N )χ4)

that we get utilizing TTN. Consequently, our method with
TTN for obtaining SREs becomes increasingly efficient as
the number of qudits N grows large, particularly when
N/ log N � χ . Specifically, since the MPS or the TTN
bond dimension χ saturates to a constant value with N
in 1D quantum systems with gapped spectrum due to the
area law of entanglement entropy, our approach involv-
ing TTN vastly outperforms MPS-based methods in terms
of efficiency for large N . Most importantly, the enhanced
connectedness inherent in the TTN structure allows for
efficient exploration of higher-dimensional (2D and even
3D) many-body systems (see, e.g., Refs. [81–85]). This
paves the way to investigate SREs in higher-dimensional
systems, as we present in Sec. IV.

Finally, we mention that our scheme can also be used
to compute the SREs of any partition of the system. To
do this, we need only to restrict the Pauli strings to have
support on the sites in the partition. Using the estimator for
n = 2, the same Monte Carlo procedure will yield M̃2 in
Eq. (5). Moreover, the algorithm is easily generalized to
tree tensor operator (TTO) [86], which represents many-
body density operator for mixed states.

We note that the use of Monte Carlo techniques in
tensor network has been considered before [87–89] to com-
pute the expectation value of a local operator. Instead,
here the expectation values are computed exactly, while
the sampling is done at the level of operators being
computed.
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(a)

(b)

(d)

(c)

FIG. 3. Efficient Monte Carlo sampling using the tree tensor network. (a) Tree tensor network (TTN) representation of a many-body
wave function |ψ〉, where tensors are depicted as circles arranged in a binary-tree structure. Each tensor is identified by a pair of zero-
indexed integers [l, n], representing its layer index l and tensor index n at that layer. The red circle at the top-most layer represents the
root tensor having index [0, 0], where the isometry center of the TTN is taken. (b) To evaluate the expectation value of a tensor product
of single-site operators 〈O1O2 . . .ON 〉, we first place each operator Oi at the physical site it acts on in the TTN representation. Then,
we compute the effective link operators, which live at the virtual links by the coarse-graining procedure as shown in the figure. The
coarse-graining is performed iteratively from the physical sites to the top-most virtual links, which are directly connected to the root
tensor. At each step, the link operators O[l+1,2n] and O[l+1,2n+1] are combined into O[l,n] by the [l, n] tensor. The resulting link operator
O[l,n] acts on the [l − 1, �n/2�] tensor one layer above in the TTN structure. (c) The expectation value 〈O1O2 . . .ON 〉 is calculated from
the contraction of the root [0, 0] tensor and the top-most link operators as shown in the figure. (d) Considering a modified operator,
which differs only at a single site from the previous one, O1O2 · · · O′

i · · · ON , we need only to recompute the link operators in the path
from the modified physical site i to the topmost link.

IV. APPLICATION TO QUANTUM MANY-BODY
SYSTEMS

We apply the TTN-based sampling method in Sec. III B
using the estimators in Eqs. (12) and (13) to investigate
the SREs in various many-body systems, especially near
quantum critical points, both in 1D and 2D geometries.
Unlike MPS, the structure of TTN allows for efficient
exploration of systems under periodic boundary condi-
tions (PBCs) with similar computational cost as the open
boundary conditions [25]. Therefore, we consider the peri-
odic many-body systems, i.e., ring and torus geometry in
1D and 2D, respectively, to avoid boundary effects. For
the analysis of statistical errors and the autocorrelation
times in the Markov chain samples, we refer to Appendix
A, whereas for the analysis of convergence with bond
dimension of the TTN, we refer to Appendix B.

To obtain the TTN representation of the ground state of
many-body systems we perform variational minimization
with TTN sweeping algorithm [25,26], and then employ
the sampling scheme in Sec. III B to estimate the SREs of

the ground state. In particular, since the SREs are generally
linear in the number of qudits N , we focus on the SRE
densities mn = Mn/N .

All of the models we consider possess Zn symmetry,
with n = 2 or 3, and thus, a two-site update scheme is
required to sample only the Pauli strings that preserve the
symmetry. The Pauli strings that preserve the Zn sym-
metry, generated by

∏
i Zi, are generated by Zi and X †

i Xj
(up to a phase constant). Here, X and Z are the shift and
clock operators defined in Eq. (10). To ensure that only the
Pauli strings that obey the Zn symmetry are considered, we
generate the candidate Pauli string P′ by randomly multi-
plying the current Pauli string P with either Zi or X †

i Xj .
It is easy to see that the update scheme is ergodic. For
d = 3, we set the probability to multiply with Zi or Z†

i
to be equal, so as to satisfy detailed balance. For d = 2,
when there is time-reversal symmetry, the Pauli strings are
additionally constrained to those with even numbers of
Y = iZX . As such, the Pauli strings with odd numbers of Y
can be directly rejected.
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A. Nonstabilizerness in 1D many-body systems

The behavior of SREs in quantum Ising chain in 1D, i.e.,

H1D Ising = −
∑
〈i,j 〉

σ x
i σ

x
j − h

∑
i

σ z
i , (25)

with σ x,z being the spin-1/2 Pauli matrices, has been stud-
ied in Refs. [27,30], where it has been shown that the
SRE densities peak at the critical point hc = 1, and follow
universal critical finite-size scaling hypothesis. In Fig. 4,
we show the results for Rényi-2 SRE M2, estimated effi-
ciently using the subleading term cL = 2M2(L/2)− M2(L)
as described in Sec. III. Surprisingly, the sampling errors of
the SRE density m2 scales slower than log L, with L being
the system size, even at the critical point hc = 1. There-
fore, unlike the MPS-based 2n-replica method employed in
Ref. [27] that suffers from a computational cost of O(χ12),
our Monte Carlo method for estimating m2 provides accu-
rate results without being severely limited by χ . Moreover,
the computation of m2 using the perfect sampling of MPS
[28,29] will necessarily incur statistical errors that are
exponential in system size as the direct estimation of the
subleading term cL = 2M2(L/2)− M2(L) is not feasible by
perfect sampling.

In the following, we extend the studies of SREs in 1D
quantum many-body systems to qutrit systems by consid-
ering the three-state clock model and the spin-1 XXZ model
in 1D.

1. Three-state clock model

The quantum clock model is a generalization of the
quantum Ising model with d states per site. Here we focus
on the case d = 3, where the Hamiltonian is given by

H1D clock = −
∑
〈i,j 〉
(XiX

†
j +X †

i Xj )− h
∑

i

(Zi + Z†
i ), (26)

where X , Z are the shift and clock operators in Eq. (26)
with d = 3. The model is equivalent to the three-state Potts
model [90]. There is a transition from the ferromagnetic
phase to the paramagnetic phase at hc = 1, as in the quan-
tum Ising model. The critical point is described by Z3
parafermion CFT, with central charge c = 4/5. The exact
correlation length exponent is νPotts = 5/6 [90]. It is to be
noted that, since the system obeys Z3 symmetry, a two-site
update scheme (see Sec. III B) is required to sample the
Pauli strings that preserve the symmetry. Indeed, the Pauli
strings that preserve the Z3 symmetry, generated by

∏
i Zi,

are generated by Zi and X †
i Xj (up to a phase constant).

In the three-state clock model, the magic density dis-
plays similar behavior as in the quantum Ising model
[27,30], as shown in Fig. 5(a). Namely, m1 displays max-
imum at the critical point hc = 1. We further investigate
the finite-size scaling of m1, that has been done for the
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FIG. 4. Efficient estimation of Rényi-2 SRE density in 1D
quantum Ising chain. (a) The subleading term for the Rényi-2
SRE, cL = 2M2(L/2)− M2(L), directly estimated using the effi-
cient scheme specified in Sec. III, for various system sizes in 1D
quantum Ising chain. (b) The SRE density m2 for the 1D quan-
tum Ising chain near the critical point hc = 1 computed using the
increment method using different subleading terms. (Inset) The
sampling errors for m2 at hc = 1 for various system sizes L (in
log scale). Clearly, the errors show even slower than logarithmic
growth for the efficient sampling scheme. Here we consider TTN
bond dimension χ = 30 and the number of samples is NS = 106.
Error bars represent 95% confidence interval.

quantum Ising chain [27], using the finite-size scaling
hypothesis:

m1 − m1,m = L−γ /ν f
(
L1/ν(h − hc)

)
, (27)

where m1,m is the maximum SRE density at hc = 1. In
Fig. 5(b), we show the data collapse corresponding to the
finite-size scaling relation of Eq. (27), where we obtain
the critical exponent ν ≈ 0.844, close to the expected
theoretical value νPotts = 5/6.

2. Spin-1 XXZ chain

Next, we consider a spin-1 XXZ chain with single-ion
anisotropy, whose Hamiltonian reads

HXXZ = −
∑
〈i,j 〉

[
Sx

i Sx
j + Sy

i Sy
j +�Sz

i Sz
j

]
+ D

∑
i

(Sz
i )

2,

(28)

where Sα’s, α = x, y, z, are the spin-1 operators, � is the
easy-axis anisotropy, and D is the single-ion anisotropy.
The model has a global U(1) symmetry corresponding to
the conservation of total magnetization

∑
i Sz

i , and here we
consider the scenario of zero total magnetization.
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FIG. 5. Magic density in 1D quantum three-state Clock model.
(a) The SRE density m1 in the ground-state of the three-state
Clock model as a function of h. (b) Finite-size scaling for m1.
Here. m1,m is the maximum m1 at hc = 1. We extract the crit-
ical exponent ν ≈ 0.844 and γ ≈ 0.66. The correlation-length
exponent ν is close to the known νPotts = 5/6. We used bond
dimension up to χ = 36 and the number of sample is NS = 106.
Error bars represent 95% confidence interval.

The phase diagram of the model has been studied in pre-
vious works [91–94]. For � > 0, the model hosts three
phases (with increasing D): the antiferromagnetic Néel
order, the symmetry-protected topological (SPT) Haldane
phase, and the large-D trivial phase. The Néel to Hal-
dane transition is an Ising transition, while the Haldane to
large-D transition is a Gaussian transition.

Here, we focus on the isotropic case, i.e., � = 1. In
this case, the transition is known to be at D ∼ −0.3 and
D ∼ 0.97 for Néel-Haldane and Haldane-large D transi-
tions, respectively [92–94]. Figure 6(a) shows the SRE
density m1. We observe that m1 is large and rather con-
stant in the topological Haldane phase, while it becomes
smaller in the neighboring phases. Note that the maximum
value of m1 for a product state is 2

3 log(4) ≈ 0.92, achieved
by the tensor product of single-qutrit states, each of which
has 〈P〉2 = 1/4 for all P �= I . Thus, it is seen that the magic
in the SPT Haldane phase almost saturates the maximum
value.

3. Long-range SRE

In the spin-1 XXZ chain, while the onset of the topo-
logical Haldane phase is rather apparent from the magic
density, there is no clear peak at the transitions, render-
ing the determination of the critical point difficult. Here we
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FIG. 6. Magic density and long-range magic in spin-1 XXZ
chain. (a) The magic density m1 and (b) long-range magic L(ρAB)

of the ground-state of the spin-1 XXZ model with � = 1 as a
function of D. We consider bond dimension up to χ = 60 and
the number of samples is NS = 106. Error bars represent 95%
confidence interval. The dashed vertical lines represent the best
estimates available for the transition points.

show that, unlike the magic density, the long-range magic
LAB [see Eq. (7)], using the estimators in Eqs. (22) and
(23), can be used as a faithful indicator of quantum phase
transitions. For the analysis of LAB, we consider the spa-
tially separated, extended subsystems A = {1, 2, . . . , L/4}
and B = {L/2 + 1, . . . , 3L/4} in a periodic chain of L sites,
as depicted in Fig. 2(b).

The long-range magic, for the the spin-1 XXZ chain,
as plotted in Fig. 6(b) shows clear extremums at the two
transitions. Although L(ρAB) is still nonzero for small L
away from criticality, it quickly decays to zero as the sys-
tem size is increased. The peak at the Gaussian transition
is very close to D ∼ 0.97, as obtained with DMRG up to
L = 20 000 spins [93]. Notably, our results are obtained
with only moderate sizes, and without any prior knowl-
edge of the order parameter. At the Ising transition, the
extremum occurs at a negative value as a minimum. Unlike
entanglement, the SRE is not known to satisfy subadditiv-
ity, meaning that it is not always the case that L(ρAB) ≥ 0.
Nevertheless, the nontrivial value at criticality is a useful
indicator for detecting criticality.

The decay of long-range SRE away from criticality
can be understood through a simple physical argument.
Within a gapped phase characterized by a finite correla-
tion length, when considering two subsystems A and B
separated by a distance exceeding the correlation length,
A and B are approximately uncorrelated. More formally,
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FIG. 7. Long-range magic in 1D quantum Ising chain. The
long-range magic L(ρAB) as in Eq. (7) in the ground state of 1D
quantum Ising chain as a function of the transverse field h. It
peaks at the critical point hc = 1. (Inset) L(ρAB) at hc = 1 for
various system sizes L (in log scale). We consider TTN bond
dimension up to χ = 30 and the number of samples is NS = 106.
Error bars represent 95% confidence interval.

ρAB ≈ ρA ⊗ ρB, which implies L(ρAB) ≈ 0. In contrast, at
criticality, the correlation length becomes infinite, such that
A and B are always correlated regardless of their distance.
This results in a nontrivial value of L(ρAB).

We also come back to the quantum Ising chain [Eq.
(25)], and investigate the long-range magic across the Ising
transition. We observe that L(ρAB) peaks at the critical
point, as shown in Fig. 7. Furthermore, we plot L(ρAB)

at hc = 1 in the inset of Fig. 7, where we see that the
long-range magic grows logarithmically in L. In contrast,
L(ρAB) quickly decays away from criticality (not shown).
We note that, at the critical point, we observe long autocor-
relation times between samples, which is the reason for the
growing errors for larger sizes. This is reminiscent of the
problem of critical slowing down in the Monte Carlo sim-
ulations at criticality [95]. It is thus interesting to develop a
cluster update, akin to Wolff cluster update [96], that may
overcome this issue, which we leave for future studies.

B. SRE density in 2D many-body systems: Z2 lattice
gauge theory

Based on the favorable scaling of our scheme with
system size, we investigate the nonstabilizerness in 2D
systems, which so far have not been properly explored in
the literature. In particular, we consider a Z2 lattice gauge
theory, with Hamiltonian

HZ2 gauge = −h
∑
�

∏
i∈�

τ x
i −

∑
i

τ z
i , (29)

where the spin-1/2 Pauli operators, τα , α = x, z, live on the
links of the square lattice. The first term is the plaquette
term that flips the four spins on an elementary square pla-
quette of the lattice. We are interested in the charge-free

sector, that satisfies the Gauss law
∏
i∈+
τ z

i = 1, (30)

on each vertices of the lattice. It is well known that the
Hamiltonian in Eq. (29) is dual to the 2D transverse-field
Ising model on the square lattice

H2D Ising = −
∑
〈i,j 〉

σ x
i σ

x
j − h

∑
i

σ z
i (31)

by Wegner duality [97]. Here, the spin-1/2 Pauli opera-
tors, σα , α = x, z, live on the lattice sites of the dual square
lattice. It can be shown that the duality transformation pre-
serves SREs (see Appendix C). This enables us to compute
the SREs of the Z2 gauge theory (29) by considering the
ground state of the transverse-field Ising model, which is
computationally more convenient for TTNs. At the same
time, our results also shed light on the transition point
of the Ising model: there, the transition from ferromag-
netic phase to the paramagnetic phase is known to be at
hc � 3.04, as obtained with quantum Monte Carlo [98]. In
the lattice gauge theory framework, such a transition cor-
responds to confined to deconfined transition, where the
behavior of Wilson loops turns from area to perimeter law.

The results for magic density for n = 1, 2 are presented
in Fig. 8. It is seen that both quantities detect the transi-
tion. However, the observed behavior is very different from
the 1D quantum Ising chain, which exhibits a peak at the
transition. Instead, here we observe that the curves exhibit
crossings at the transition.

In Fig. 9(a), we depict m1 close to the critical point,
using a fixed bond dimension χ = 30. Remarkably, we
observe that m1 detects the transition point very well: all
the curves cross near the critical point at hc = 3.04(1). We
should highlight at this point that the TTN ansatz with
such a low bond dimension of χ = 30 cannot approxi-
mate the ground-state wave function accurately near the
critical point, particularly in 2D critical systems. Con-
sequently, the standard phase-transition detectors, such
as the Binder cumulant, calculated from the TTN state
with χ = 30, do not exhibit the expected critical cross-
ing behavior—see Appendix D for a direct comparison in
the present case. Therefore, the remarkable observation of
the perfectly crossing behavior in m1 near the critical point
underscores the significant value of magic in detecting and
characterizing quantum phase transitions. This is particu-
larly relevant in situations where other quantities are prone
to significant errors, e.g., due to limited bond dimensions
in tensor-network states. While we believe that a further
characterization of what the scaling resources (e.g., size
and bond dimension) to detect a transition point are is out-
side the scope of our paper, this would be very much worth
pursuing based on the Ising model results we presented.
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FIG. 8. Magic densities in 2D Z2 gauge theory. The SRE den-
sities (a) m1 and (b) m2 of the ground state of Z2 gauge theory on
L × L square lattice as a function of h. We use TTN bond dimen-
sion up to χ = 60 and the number of samples is NS = 106. Error
bars represent 95% confidence interval.

Furthermore, we show excellent data collapse for m1 in
Fig. 9(b), using the finite-size scaling relation of Eq. (27),
from which we extract the correlation length exponent ν =
0.64 ± 0.05, that is close to the known ν3D = 0.63 for 3D
(classical) Ising universality [98].

V. EXPERIMENTAL PROTOCOL

The numerical method described above can be easily
adapted for experimental measurements of SREs. In par-
ticular, we can sample Pauli strings according to 	P using
Monte Carlo sampling. We note that, although the proba-
bility distribution	P can be sampled directly through mea-
surements in the Bell basis [59,99], the method requires
preparation of two copies of a state and joint operations on
them. In practice, this may not be feasible in some experi-
mental platforms, or difficult to scale up to larger sizes and
higher-dimensional systems. Moreover, the method only
works for real wave functions [100]. Instead, our proposal
relies solely on measurements in the computational basis
on a single instance of a state, and it is applicable to generic
quantum states.

In experiments, the Pauli strings are measured from NM
copies of ρ where the measurement outcomes are Ai ∈
{+1, −1}. The expectation value is then given by the aver-
age taken over the random measurement outcomes. The
sampling of Pauli strings can be performed with Metropo-
lis algorithm, similar to our numerical calculations. How-
ever, it is important to note that in experimental setups, the
candidate Pauli string is not restricted to few-site updates,
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FIG. 9. Finite-size critical scaling of SRE density in 2D Z2
gauge theory. (a) The SRE density m1 near the critical point
at the Z2 gauge theory. Even with small TTN bond dimension
χ = 30, m1 captures the transition very well: all the curves cross
near the known critical point hc = 3.04. (b) Finite-size scaling of
m1. Here, m1,cr is m1 at h = 3.04. We find the correlation length
critical exponent ν = 0.64 ± 0.05. The extracted ν is remarkably
close to the known ν3D � 0.63 for 3D Ising universality class.
Here, the number of samples is NS = 107.

as is the case of TTN. This flexibility allows for multisite
updates and can potentially reduce the autocorrelation time
associated with the sampling process enormously.

For a finite number of measurements NM , we have that

P̄ = 1
NM

NM∑
i=1

Ai (32)

is an estimate for 〈P〉. The total number of resources is
thus NM × NS, where NS is the number of sampled Pauli
strings. In view of Eq. (16), when the SREs are at most
O(log N ), the required NS is polynomial in N . Note that
NM may still be exponential, but it is expected to be no
larger than O(dN ), with d being the local dimension. As a
result, the number of resources required in our protocol is
significantly lower than the protocol in Ref. [23] when the
SREs are at most O(log N ). Moreover, our protocol offers
a possibility to measure M1, in which case NS is always
polynomial [101].

The variance of the estimator in Eq. (32) is given by
Var(P) = 1 − 〈P〉2. Thus, the standard error reads

�P =
√

1 − 〈P〉2

NM
. (33)
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FIG. 10. Simulated experiment to measure SREs. Simulation
of experimental measurement of SREs in the ground state of 1D
quantum Ising chain for L = 8. Here, NM = 500 and NS = 104.

For large NM , the random variable P̄ approximately has a
Gaussian distribution with average 〈P〉 and standard devia-
tion�P. Note that this will introduce bias to the estimators
in Eqs. (12) and (13). This bias can be made smaller by
increasing NM , where the estimators become unbiased in
the limit NM → ∞.

Here, we simulate this situation numerically by perturb-
ing the computed 〈P〉 with ε, where ε is a random number
chosen from a Gaussian distribution centered at zero and
with standard deviation �P. We would like to investigate
the effects of taking finite NM and NS. Here, we consider
the ground state of 1D transverse-field Ising chain at h = 1
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FIG. 11. The errors in SRE density for simulated experiments.
The deviation δmn = |mn,sim. expt. − mn,exact| for n = 1, 2 in the
ground state of 1D quantum Ising chain at the critical point h = 1
for L = 16. In (a), we fix NS = 10 000 and vary NM , while in (b),
we fix NM = {103, 105} and vary NS .

for concreteness. An example of the results of such a pro-
tocol is shown in Fig. 10 for L = 8 with NM = 500 and
NS = 10 000.

Next, we compute the deviation δmn = |mn,sim. expt. −
mn,exact| for n = 1, 2, where mn,sim. expt. denotes the SRE
density in simulated experiments. The results are shown in
Fig. 11. We see that, for fixed NS, the error first increases
for small NM , before it eventually decreases. We expect
this is due to the bias with a finite number of Pauli measure-
ments, as mentioned above. Indeed, as shown in Fig. 11(b),
we see that increasing NS while fixing NM does not result
in vanishing δmn.

VI. CONCLUSIONS AND OUTLOOK

We have proposed a Markov chain Monte Carlo
approach to compute magic in many-body systems. We
have discussed how the full state magic Mn can be esti-
mated for different values of n, and demonstrated the
corresponding efficiency in several scenarios. Moreover,
long-range magic can be estimated efficiently in gen-
eral. The implementation of our algorithm is flexible and
compatible with various wave-function-based methods.
Specifically, we have provided detailed insights into the
efficiency and flexibility of our method when applied to
tree tensor networks.

Through our algorithm’s flexibility, we have gained
valuable insights into the role of magic in many-body
systems. In one-dimensional systems, we observed that
full state magic is not universally associated with crit-
ical behavior. While it displays criticality signatures in
certain cases like Ising and Potts models, it does not in oth-
ers. However, long-range magic overcomes this limitation
and consistently exhibits indications of critical behavior
across all scenarios we investigated. We speculate that the
functional form of long-range magic, similar to mutual
information, is free of potential UV divergences in a
field-theory framework.

The very mild volume-scaling cost of our sampling has
also enabled us the exploration of two-dimensional Z2
lattice gauge theories. There, we have found that magic
displays finite-volume crossings in correspondence of the
confined-deconfined phase transition, and it also follows
universal scaling behavior up to the volumes (100 spins)
we were able to treat. Remarkably, magic was well con-
verged even at modest bond dimensions.

Our numerical results suggest a deep connection
between (long-range) magic and many-body properties,
highlighting the direct links between stabilizer Renyi
entropies and physical phenomena such as quantum crit-
ical behavior and confinement-deconfinement transitions.
To complement our theoretical findings, we have proposed
an experimental protocol for measuring stabilizer Renyi
entropies solely using measurements in the computational
basis.
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In terms of future investigations, our technique can be
extended to explore nonstabilizerness in finite-temperature
scenarios by generalizing it to tree tensor operators that
efficiently represent low-temperature many-body states. In
particular, it would be interesting to study the behavior
of stabilizer Renyi entropies at finite-temperature phase
transition and compare it with other information-theoretic
quantities, such as entanglement [86,102–104], quantum
discord [105], and quantum coherence [106]. Along the
same lines, another possible scenario would be applying
our tools to faulty quantum circuits, recently discussed in
the context of magic in Ref. [107]. It would also be instruc-
tive to perform a systematic investigation of magic within
topological phases, extending our analysis of the Haldane
phase. Another interesting perspective is to understand the
role of magic in many-body quantum dynamics of closed
quantum systems, whose investigation in the context of
Ising models has been the subject of recent works [108].
In particular, our method allows for the investigation of
genuine long-distance magic, that might be instrumental in
establishing the presence or absence of propagation bounds
for magic.

At the methodological level, our work opens a series
of questions. The Markov chain Monte Carlo approach
could be extended to investigate other magic measures that
depend only on expectation values, such as mana. More-
over, so far, we have only employed very basic sampling
strategies. It would be worth exploring how different ones,
such as heat bath or nonlocal updates, can be used to design
better magic estimators since, in terms of experimental
applicability, having shorter autocorrelations could con-
siderably improve realistic implementations. In terms of
efficiency of the increment trick in 2D models, it would be
interesting to study whether a one-dimensional projection
of 2D systems, such as the one introduced in Ref. [109],
would be beneficial. Finally, it would be interesting to
understand the finer structure of sampling Pauli strings in
many-body systems, that could reveal both useful insights
into novel algorithms, and potentially deeper connections
between many-body properties and magic.
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APPENDIX A: AUTOCORRELATIONS AND
STATISTICAL ERRORS

Here, we analyzed the integrated autocorrelation time of
m1 and m2 close to the critical point of the 2D transverse-
field Ising model at h = 3. The integrated autocorrelation
time is defined as τI = 1 + 2

∑∞
t=1 ρ(t), where ρ(t) is the

autocorrelation function. The integrated autocorrelation
time affects the statistical errors of the averages obtained
from Monte Carlo sampling [111]. We observe that τI
is linear for M1, while it saturates for M2, as shown in
Fig. 12(a). We have also checked that τI does not show
much variation with respect to bond dimension.

Moreover, the standard deviation σ for various system
sizes is shown in Fig. 12(b). For n = 2, it is seen that
σ grows exponentially, confirming the analysis in Sec.
III. On the other hand, for n = 1, σ is decreasing with
power-law behavior (see inset). The power-law exponent
is found to be compatible with 1/2, again as anticipated
in Sec. III. We note here that the behavior of the inte-
grated autocorrelation time and the standard deviations
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FIG. 12. Autocorrelation time and statistical errors in Monte
Carlo sampling of SREs. (a) Integrated autocorrelation time τI at
the ground state of 2D transverse-field Ising model with h = 3
for various system sizes N = L × L. It is linear for m1 and satu-
rates for m2. (b) Standard deviation σ for various system sizes.
Inset shows σ for m1 in log-log scale. The solid line denotes a fit
σ = aN−b for L ≥ 6, with b = 0.503. The standard deviation is
obtained by error propagation.
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FIG. 13. Convergence of SRE with respect to bond dimension.
SREs m1 and m2 at the ground state of 2D transverse-field Ising
model with h = 3 and L = 10 for various bond dimension χ .

remains qualitatively similar near the critical points for
other many-body systems considered here.

APPENDIX B: CONVERGENCE WITH BOND
DIMENSION

In our simulations, we have ensured that the SREs have
converged with bond dimensions of the TTN in each mod-
els. To this end, we carried out simulations with different
bond dimensions and verified that the SREs have suf-
ficiently converged within statistical accuracy, which is
typically on the order of 10−3. Figure 13 illustrates an
example of the dependence of the SREs m1 and m2 for the
ground state of the 2D transverse-field Ising model with
linear size L = 10. We see that as the bond dimension χ
is increased, the SREs eventually converge to a constant
within error bars.

APPENDIX C: EQUIVALENCE BETWEEN 2D Z2
GAUGE THEORY AND THE 2D

TRANSVERSE-FIELD ISING MODEL

The duality transformation between Eqs. (29) and (31)
is defined with the following transformation:

σ x
i σ

x
j = τ z

〈ij 〉

σ z
i =

∏
i∈�

τ x
i . (C1)

More precisely, the transformation maps the charge-free
sector of Eq. (29) to the even sector of Eq. (31).

It is easy to see that the mapping in Eq. (C1) maps Pauli
strings in the Ising model to Pauli strings in Z2 gauge
theory, because the Pauli operators on both sides of the
equation generate the Pauli group in the corresponding
models. Since the SREs depend only on the expectation
values of Pauli strings, it follows that the SREs are pre-
served by the duality transformation. Therefore, the SREs
in the Ising model are identical to the SREs in Z2 gauge
theory. It should be, however, noted that the equivalence
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FIG. 14. The Binder cumulant across the critical point in the
2D quantum Ising model. Here we approximate the ground state
of 2D quantum Ising model with TTN having bond dimension
χ = 30, in parity with Fig. 9.

relation in the case of the subsystem mixed-state SRE [e.g.,
M̃2 defined in Eq. (5)], and the long-range magic thereof,
is nontrivial because of the nonlocal nature of the transfor-
mation, Eq. (C1). Consequently, the distribution of magic
within the subsystems may differ in these two theories.

It is worth nothing that the same conclusion evidently
holds for other dualities that map Pauli strings to Pauli
strings, such as the Kramers-Wannier duality, which maps
h → h−1 in Eq. (25) and Eq. (26). As previously discussed,
the long-range magic is not preserved under the duality.
This is reflected in the distinct behavior of L(ρAB) for h > 1
and h < 1 in Fig. 7.

APPENDIX D: BINDER CUMULANT IN 2D
QUANTUM ISING MODEL WITH TTN

In Sec. IV B, we have demonstrated the ability of the
magic density to accurately detect and characterize the
quantum critical point in the 2D Z2 gauge theory, and
thereby in 2D quantum Ising model. Notably, the curves of
m1 for different linear system sizes exhibit a clear critical
crossing behavior near the critical point hc = 3.04, even
with a modest TTN bond dimension of χ = 30. However,
the same level of accuracy is not achieved when utilizing
the Binder cumulant, defined as

U = 1 − 〈s4
x〉

3〈s2
x〉2 , with sx = 1

L2

∑
i

σ x
i , (D1)

for the 2D Ising model, Eq. (31). Due to the inability of
the TTN state with a small bond dimension of χ = 30 to
faithfully represent the ground state in the vicinity of the
critical point, the calculation of the Binder cumulant U
yields erroneous results. Consequently, the curves of U for
different linear system sizes L do not exhibit a clear cross-
ing behavior near the critical point (Fig. 14). For instance,
while the curves for L = 4 and 5 intersect at h = 2.98, the
intersection for L = 7 and 8 occurs around h = 3.14. As
such, if one attempts to perform finite-size scaling on the
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Binder cumulant data, the resulting critical point and the
correlation-length critical exponent ν will be erroneous.
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