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Discrete-modulated (DM) continuous-variable quantum key distribution (CV-QKD) protocols are
promising candidates for commercial implementations of quantum communication networks due to their
experimental simplicity. While tight security analyses in the asymptotic limit exist, proofs in the finite-
size regime are still subject to active research. We present a composable finite-size security proof against
independently and identically distributed collective attacks for a general DM CV-QKD protocol. We intro-
duce a new energy testing theorem to bound the effective dimension of Bob’s system and rigorously prove
security within Renner’s ε-security framework and address the issue of acceptance sets in protocols and
their security proof. We want to highlight that our method also allows for nonunique acceptance statistics,
which is necessary in practise. Finally, we extend and apply a numerical security proof technique to cal-
culate tight lower bounds on the secure key rate. To demonstrate our method, we apply it to a quadrature
phase-shift keying protocol for both untrusted, ideal and trusted, nonideal detectors. The results show that
our security proof method yields secure finite-size key rates under experimentally viable conditions up to
at least 72 km transmission distance.
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I. INTRODUCTION

Quantum key distribution (QKD) [1,2] enables two
remote parties to establish an information-theoretically
secure key, even in the presence of an eavesdropper, which
is known to be impossible by classical means. The gener-
ated key can then be used in cryptographic routines like
the one-time pad. Comprehensive reviews about QKD can
be found in Refs. [3–5]. Depending on the used detection
technology, we distinguish between discrete-variable (DV)
protocols like the famous BB84 [1] and protocols with con-
tinuous variables (CVs) [6]. While the first class relies on
rather expensive components like single-photon detectors,
the latter ones make use of state-of-the-art communication
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infrastructure and employ much cheaper photodiodes to
perform homodyne or heterodyne measurements. In con-
trast to CV QKD being easier to implement compared
to DV QKD, proofs of security for CV QKD are often
more difficult to establish as the physical systems are
described by infinite-dimensional Hilbert spaces. Based on
the modulation type, CV QKD can be further subdivided
into protocols with Gaussian modulation (GM) [7–10]
and discrete modulation (DM) [11–13]. While Gaussian-
modulated protocols have been examined extensively [4,
14–16], for a practically useful security analysis, one has
to take the influence of finite constellations into account
[17]. Furthermore, from a technical perspective, GM proto-
cols put high requirements on the classical error-correction
routine and on the modulation device.

Discrete modulation schemes for CV QKD enjoy imple-
mentation simplicity and compatibility with the existing
telecommunication infrastructures. These features make
them attractive to be deployed in future quantum-secured
networks. While early security proofs for DM CV-QKD
protocols were restricted to idealized cases [11,13] and
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have been lagging behind proofs for Gaussian-modulated
protocols, significant progress has been made in the
asymptotic regime recently [18–21]. Although these anal-
yses serve as an important first step toward a full security
proof against general attacks in the finite-size regime, there
remain challenging gaps to fill in order to complete the
proof. A recent work [22] provides a finite-key analysis of
the binary modulation protocol. This security proof uses
the phase error rate approach that is commonly used in
discrete-variable QKD security proofs, which seems to be
challenging to extend beyond binary modulation. Unfor-
tunately, due to the limitation of the binary modulation
scheme, the key rate obtained is rather limited even for
short distances and large block sizes [23,24]. One expects
that much better performance can be obtained for higher
constellation modulation schemes. Of particular interest is
the quadrature phase-shift keying (QPSK) scheme. Very
recently, a security proof against collective independently
and identically distributed (i.i.d.) attacks for a discrete-
modulated CV-QKD protocol was published [25]. How-
ever, the secure finite-size key rates there converge against
the asymptotic key rates in Ref. [20], which—in contrast
to Refs. [19,21]—are known to be loose for quaternary
modulation.

In this work, we present a finite-size security analy-
sis for discrete-modulated CV-QKD protocols under the
assumption of i.i.d. collective attacks. Although this does
not represent the most general type of attacks, it is believed
that key rates against collective i.i.d. attacks can be related
to key rates against general attacks [26–28], and hence are
optimal up to de Finetti reduction terms. However, as DM
CV-QKD protocols are described in infinite-dimensional
Hilbert spaces and lack the universal rotation symmetry
of CV protocols with Gaussian modulation, these tech-
niques cannot be applied directly. We emphasize that our
proof method is very general and does apply to general
discrete modulation patterns. For illustration purposes, we
demonstrate our proof method for a four-state quadrature
phase-shift keying protocol and calculate secure key rates
using the security proof framework of Refs. [29,30].

While there already exists an extension of this numer-
ical security proof framework to the finite-size regime
[31] for finite-dimensional spaces, we extend and general-
ize this to infinite-dimensional Hilbert spaces, as required
to treat CV-QKD protocols. In our work, we focus on
heterodyne detection and examine only reverse recon-
ciliation, which is known to perform better than direct
reconciliation for long transmission distances. We want to
emphasize that our proof method is not restricted to these
cases and can be adapted to include homodyne measure-
ments as well as direct reconciliation. Our approach does
not assume a priori a finite maximum photon number,
but employs a rigorous treatment of infinite dimensions.
While the work in Ref. [25] exploits the finite detection
range of realistic detectors but assumes perfect detection

efficiency, our approach also takes nonunit detection effi-
ciencies into account and allows trusted detection. Even
though a direct comparison of the obtained key rates is
difficult, we observe that our finite-size key rates con-
verge to the asymptotic key rates given in Ref. [21], while
the finite-size key rates in Ref. [25], based on a Gaus-
sian extremality argument, converge to the asymptotic key
rates in Ref. [20], which, for quaternary modulation, are
known to be loose and clearly lower than the key rates in
Ref. [21]. This leads to clearly higher key rates and sig-
nificantly higher maximum transmission distances for our
proof.

This paper is structured as follows. In Sec. II, we
describe the general DM CV-QKD protocol. In Sec. III,
we introduce the notation for our paper (Sec. III A), dis-
cuss briefly Renner’s ε-security framework (Sec. III B) and
the dimension reduction method (Sec. III C). In Sec. IV
we first outline the idea of our security proof (Sec. IV A),
and then state our energy testing theorem (Sec. IV C) as
well as our acceptance test theorem (Sec. IV D). Finally,
we present our security proof in Sec. IV E. In Sec. V, we
summarize the numerical method we are going to use to
calculate a lower bound on our key rate expression from
the previous section and state the minimization problem
we have to solve. Furthermore, we include a brief expla-
nation of the trusted, nonideal detector model. We present
numerical key rates in Sec. VI for both untrusted, ideal and
trusted, nonideal detectors. For ease of comparison to pre-
vious work, we present most of our findings in the setting
of a “unique acceptance set” as previous works often do.
However, as acceptance sets define on which observations
the protocol does not abort, they are important to evaluate
the expected secure key rates of protocols (see Sec. III B).
Thus, in Sec. VI D 3, we also provide plots of the key rate
for a nonunique acceptance set. Finally, in Sec. VII, we
summarize our results and give an outlook.

II. PROTOCOL DESCRIPTION

In what follows, we describe the discrete-modulated
CV-QKD protocol we consider in the present work, where
NSt ∈ N denotes the number of distinct signal states used
in the protocol and Greek letters put in bra-ket nota-
tion refer to coherent states. We present the prepare-and-
measure version of the protocol. Note that thanks to the
source-replacement scheme [32,33] this is equivalent to
the entanglement-based version of the protocol and we are
free to switch between both versions in case this eases the
security analysis.

(1) State preparation.—Alice prepares one out of
NSt possible coherent states |α〉 with α ∈ {α0, . . . ,
αNSt−1} in her lab according to some discrete prob-
ability distribution and sends it to Bob using the
quantum channel. Alice associates every state with a
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symbol and keeps track of what she sent in a private
register.

(2) Measurement.—Bob receives the signal and per-
forms a heterodyne measurement to determine the
quadratures of the received signal. This can be
described by a positive operator-valued measure
(POVM), for example, {Eγ = |γ 〉〈γ |/π : γ ∈ C}.
After applying this POVM, Bob holds a complex
number yk ∈ C that is stored in his private register.

Steps (1) and (2) are repeated N times.

(3) Energy test.—After completing the state preparation
and measurement phases, Bob performs an energy
test on kT � N rounds by using the measurement
results related to these rounds. If, for most of the
tested signals, the heterodyne detection gave small
measurement results [see Eq. (5) below], the test
passes. This means that most of the weight of the
transmitted signals lies within a finite-dimensional
Hilbert space, except with some small probability
εET. Otherwise, Alice and Bob abort the protocol.
For details about the energy test, we refer the reader
to Sec. IV C.

(4) Acceptance test.— If the energy test was success-
ful, Bob discloses the data from the rounds he used
for the energy test via the classical channel. This
information is used by Alice and Bob to determine
statistical estimators for their observables. If they lie
within the acceptance set, Alice and Bob proceed;
otherwise, they abort the protocol.

(5) Key map.—Bob performs a reverse reconciliation
key map on the remaining n := N − kT rounds to
determine the raw key string z̃. For this purpose,
Bob’s measurement outcomes are discretized to an
element in the set {0, . . . , NSt − 1,⊥}, where sym-
bols mapped to ⊥ are discarded. By choosing a
key map that discards results in certain regions of
the phase space, Bob can perform postselection as
described in Ref. [19].

(6) Error correction.—Alice and Bob publicly commu-
nicate over the classical channel to reconcile their
raw keys x̃ and z̃. After the error-correction phase,
Alice and Bob share a common string except with a
small probability εEC.

(7) Privacy amplification.—Finally, they apply a two-
universal hash function to their common string.
Except with small probability εPA, in the end, Alice
and Bob hold a secret key.

We note that step (4) is often called parameter estima-
tion. However, we want to emphasize that in the finite-
size regime we can never estimate any properties of the
“real” density matrix, but only determine some statistical
quantities based on our observations. First, we define a

so-called acceptance set, which can be imagined as a list of
accepted observations. Based on our measurement results,
we partition the set of all density matrices into two dis-
joint sets. The first one contains density matrices that lead
to accepted statistics with probability less than εAT, i.e.,
the protocol aborts with high probability for those states.
The second set is the complement of the first one and in
what follows, we can restrict our security considerations
to states lying in the latter set, called the “relevant set.”
Based on this construction, we restrict our analysis to states
that are ε secure with ε < εAT. For a more detailed discus-
sion of the idea of acceptance sets, we refer the reader to
Ref. [31, Section II.B], where this notion is discussed for
discrete-variable QKD.

While we present our security proof approach for an
arbitrary number NSt of signal states, we demonstrate
our numerical results for a quadrature phase-shift key-
ing protocol with NSt = 4, where all four states are
arranged equidistant on a circle with radius |α|, αk ∈
{|α|, i|α|,−|α|,−i|α|}, where i denotes the complex unit.
In this case, the key map in step (5) of the protocol
description looks as

z̃k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if − π

4
≤ arg(yk) <

π

4
, ∧ |yk| ≥ �r,

1 if
π

4
≤ arg(yk) <

3π

4
, ∧ |yk| ≥ �r,

2 if
3π

4
≤ arg(yk) <

5π

4
, ∧ |yk| ≥ �r,

3 if
5π

4
≤ arg(yk) <

7π

4
, ∧ |yk| ≥ �r,

⊥, otherwise,

(1)

where �r ≥ 0 is the radial postselection parameter and
arg(z) denotes the polar angle between the vector repre-
senting z and the positive q axis.

III. BACKGROUND

In this section, we set the stage for our security analysis
by giving the necessary background. We summarize the
notation used (Sec. III A), briefly discuss attack types and
ε security (Sec. III B), and summarize the proof method of
dimension reduction (Sec. III C).

A. Notation

We start by clarifying the mathematical terminology and
notation.

1. Miscellaneous notation

In the present work, by H we denote a separable Hilbert
space, where we do not make any assumptions about the
dimension. In particular, H can be infinite dimensional. If
we want to explicitly refer to a finite-dimensional Hilbert
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space, we add a superscript Hn, where n refers to the
highest number state that is still part of the Hilbert space.
Since number states start with the vacuum state |0〉, Hn

contains a maximum of n+ 1 linearly independent vec-
tors; hence, the dimension of Hn is n+ 1. By B(H)

we mean bounded operators on H, while T (H) := {X ∈
B(H) : ||X ||1 <∞} ⊆ B(H) denotes the set of trace-class
operators, where || · ||1 is the Schatten-1 norm, ||A||p :=
p
√

Tr[|A|p ] = (
∑

sk(A))1/p . Note that sk(A) denotes the
kth singular value of A (i.e., the kth eigenvalue of |A| :=√

A†A). If we add the subscript 1, T1(H), we refer to
trace-class operators with norm ≤ 1, while adding the
superscript “+,” T +(H), we denote the set of posi-
tive trace-class operators. By Pos(H) := cone(T +(H))

we denote the positive cone. The set of density opera-
tors on H is given by D(H) := {X ∈ Pos(H) : ||X ||1 = 1}
and by adding the subscript “≤,” we refer to the class of
subnormalized density operators on H, D≤(H) := {X ∈
Pos(H) : ||X ||1 ≤ 1}. Finally, by S1(H) we denote the set
of pure states on H.

We use natural units in the whole manuscript; hence,
the quadrature operators read q̂ := (â† + â)/

√
2 and p̂ :=

i(â† − â)/
√

2, where â and â† are the bosonic ladder oper-
ators defined by their action on number states â†|n〉 =√

n+ 1|n+ 1〉 and â|n〉 = √n|n− 1〉. Then, the commu-
tation relation between the quadratures q and p reads
[q̂, p̂] = 1i. Another important operator will be the dis-
placement operator D̂(β) := exp{βâ† − β∗â}. We denote
displaced quantities by writing the displacement into the
subscript. For example, displaced number states (with
displacement β) will be denoted by |nβ〉 := D̂(β) |n〉.

2. Distance measures

The trace distance and purified distance are two com-
mon distance measures used in this work to quantify the
distance between two quantum states. The trace distance
is given by �(ρ, σ) := 1

2 ||ρ − σ ||1, while the purified
distance is defined as P(ρ, σ) := √1− F∗(ρ, σ), where

F∗(ρ, σ) := sup
H′ : H′⊇H

sup
ρ̄,σ̄∈D(H′)


ρ̄
=ρ, 
σ̄
=σ

F(ρ̄, σ̄ ) (2)

is the generalized fidelity. Here, 
 is the projector onto H
and F(ρ, σ) := (Tr[

√√
ρσ
√

ρ])2 is the traditional fidelity.
The purified distance and the trace distance are related

via the Fuchs–van de Graaf inequalities [34]

�(ρ, σ) ≤ P(ρ, σ) ≤
√

2�(ρ, σ). (3)

3. Smooth min-entropy

Besides the von Neumann entropy, the (smooth) min-
entropy is an important information measure in QKD
security analyses and is used to quantify the uncertainty of

an observer on a quantum state. Therefore, in the present
subsection, we briefly define and introduce this quantity.
For separable Hilbert spaces HA,HB as well as ρAB ∈
D(HA ⊗HB), σB ∈ D(HB), we define the min-entropy of
ρAB relative to σB by

Hmin(ρAB||σB) := − log2 inf{λ ∈ R : λ1A ⊗ σB ≥ ρAB}.

The min-entropy of ρAB given HB is then

Hmin(A|B)ρ := sup
σB∈D(HB)

Hmin(ρAB||σB).

Based on the nonsmoothed version, we introduce the
smooth min-entropy of ρAB relative to σB:

H ε
min(ρAB|σB) := sup

ρ̃∈Bε (ρ)

Hmin(ρ̃AB||σB)

with Bε(ρ) denoting the ε ball around ρ. Depending on the
distance measure used for smoothing, the ε ball reads

Bε
TD(ρ) := {ρ̃ ∈ Pos(HA ⊗HB) : Tr[ρ] ≥ Tr[ρ̃]

∧ ||ρ − ρ̃||1 ≤ Tr[ρ]ε},
Bε

PD(ρ) := {ρ̃ ∈ D≤(HA ⊗HB) : P(ρ, ρ̃) ≤ ε}.

Finally, the smooth min-entropy of ρAB given HB reads

H ε
min(ρAB|B) := sup

σB∈D(HB)

H ε
min(ρAB|σB).

In the remaining text, we are going to indicate the
used smoothing ball in the subscript, so H ε

min(TD) for
trace-distance smoothing and H ε

min(PD) for purified-distance
smoothing.

B. Composable security and the ε-security framework

In this section, we summarize the idea of compos-
able security, Renner’s ε-security framework, and νc

QKD
completeness [35,36]. Usually, we analyze the security of
cryptographic tasks that will be combined with other cryp-
tographic routines to form a large cryptographic protocol.
Therefore, we demand so-called composable security of
cryptographic routines, which means that the security of a
combination of those routines can be given solely relying
on the security of its subprotocols. The definition of com-
posable security compares an ideal secure protocol with the
real protocol and asks if an adversary is able to distinguish
between both protocols when given access to the outputs of
both protocols, but not Alice’s and Bob’s private data. For-
mally, for QKD, this means that the adversary is given two
quantum states, ρideal := (1/|S|)∑s∈S |s〉〈s| ⊗ |s〉〈s| ⊗ ρE
and ρreal := ρSASBE , where the first one is the output of the
ideal protocol and the second one the output of the real
protocol. Here, S is the set of possible keys, SA and SB are
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Alice’s and Bob’s keys, respectively, and ρE denotes Eve’s
state.

Since we cannot expect any protocol to be perfectly
secure, we aim to limit the ability of anyone to distinguish
between the ideal and real protocols by some small number
ε > 0. The formal security condition then reads

1
2

∣
∣
∣
∣

∣
∣
∣
∣ρSASBE −

(
1
|S|
∑

s∈S
|s〉〈s| ⊗ |s〉〈s|

)

⊗ ρE

∣
∣
∣
∣

∣
∣
∣
∣
1
≤ ε.

So, any distinguisher’s advantage when distinguishing
between the ideal and real protocols is smaller or equal to
1
2 + ε. Taking a closer look at this difference, we observe
that we formalize how much the realistic state differs
from a situation where Alice and Bob share exactly the
same key and Eve is fully decoupled from their sys-
tem. By applying a triangle inequality in the security
definition, these conditions can be considered separately
as εcor correctness and εsec secrecy (see, for example,
Ref. [37, Theorem 4.1]). The εcor-correctness condition,
Pr[sA �= sB] ≤ εcor, describes the situation where the pro-
tocol does not abort and Alice and Bob do not share the
same key, chosen according to the distribution defined by
ρSASB . The εsec-secrecy condition can be written as (1−
pabort)�(ρSAE , (1/|S|)∑s∈S |s〉〈s| ⊗ ρE) ≤ εsec and cap-
tures the situation, where the protocol does not abort and
the shared key is not private, i.e., known to Eve. A more
detailed discussion of composability and ε security can be
found in Ref. [37].

1. Completeness

Lastly, we remark that ε security alone does not imply
that a protocol is practical. This is easy to see. Consider
a protocol that aborts unless it observes a specific set of
statistics q
 ∈ Rm for some m ∈ N, which we later refer
to as “unique acceptance.” Then, in general, one would
expect even if one were sampling from the distribution q
,
the probability of observing q
 would be small for a finite
number of samples. Therefore, the probability of aborting
the protocol will be high. It would follow that even if one
could generate a great deal of key conditioned on nonabort-
ing, the protocol is not very useful because it might almost
always abort. The definition of completeness captures this
notion.

Definition 1.—A QKD protocol is νc
QKD complete if

Pr[Abort|Honest] ≤ νc
QKD,

where Honest means the honest implementation of the
protocol, which is defined by the expected behavior of the
devices and the communication channel. That is, it is νc

QKD
complete only if when Eve “does nothing,” the protocol
accepts except with probability νc

QKD.

C. Dimension reduction method

Proving the security of CV-QKD protocols involves
dealing with optimization problems over infinite-
dimensional Hilbert spaces. However, numerical methods
for key rate calculation can only be applied to finite-
dimensional problems. Assuming an artificial heuristically
argued cutoff is not rigorous enough for a finite-size secu-
rity analysis. The dimension reduction method [21] con-
nects an infinite-dimensional convex optimization problem
to a finite-dimensional problem. In more detail, under
some reasonable requirements for the objective function,
the dimension reduction method tightly lower bounds the
infinite-dimensional convex optimization problem by a
finite-dimensional convex optimization problem and some
penalty term. In what follows, we state the main theorem
(Ref. [21, Theorem 1]) where we used the improved cor-
rection term from Refs. [38,39]. We refer the reader to the
original paper for further details.

Theorem 1 (Dimension reduction).—Let H be a sep-
arable Hilbert space, and let 
 be the projection onto
some finite-dimensional subspace Hfin of H and 
⊥
be the projection onto (Hfin)

⊥. Let ρ∞ ∈ D≤(H) and
ρfin ∈ D≤(Hfin). If f : D≤(H)→ R is uniformly close to
decreasing under projection, that is,

F(σ , 
σ
) ≥ Tr[σ ]− w

=⇒ f (
σ
)− f (σ ) ≤ �(w),

and w ≤ Tr[ρ
⊥], then

f (ρfin)−�(w) ≤ f (ρ∞),

where

�(w) := √w log2(|Z|)+ (1+√w)h
( √

w
1+√w

)

. (4)

Here, |Z| denotes the dimension of the key map and h(·) is
the binary entropy.

Note that the weight w depends on the dimension of
the chosen finite-dimensional Hilbert space, so the cor-
rection term �(w) depends on the chosen subspace Hfin.
Consequently, we aim to choose a subspace such that the
weight can be expected as small as possible. Based on
a model for fibre-based implementations of QKD proto-
cols, it was shown in Ref. [21] that it is advantageous to
project onto a subspace spanned by displaced Fock states
|nγ 〉 = D̂(γ )|n〉. Then, for the ith state, the projection act-
ing on Bob’s Hilbert space reads 
 :=∑nc

n=0 |nβi〉〈nβi |,
where {βi}NSt−1

i=0 is a list of complex numbers, chosen as√
ηαi.

IV. SECURITY PROOF APPROACH

In contrast to discrete-variable QKD and Gaussian-
modulated CV QKD, the security of discrete-modulated
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CV-QKD protocols has so far mainly been analyzed in
the asymptotic limit. Many useful symmetry properties,
simplifications, and tricks for protocols with Gaussian
modulation that help to handle infinite dimensions there
do not apply to discrete-modulated protocols, so we cannot
expect security proofs to have a similar structure. Instead
we apply the numerical security proof framework intro-
duced in Refs. [29,30] to obtain lower bounds on the
secure key rate. Before we can do so, we need to find an
expression for a lower bound on the secure key rate in the
finite-size regime and argue the security of the underlying
protocol.

In contrast to the asymptotic case, in finite-size analyses,
the expectation values of our observables are not known
with certainty. Hence, we need to define an acceptance set
and consider in our security analysis only states that are
more than ε likely to produce a compatible observation.
Therefore, we need to perform a statistical test. Unfortu-
nately, most of the standard (well-scaled) concentration
inequalities only apply for bounded observables, while,
for example, the photon-number operator is unbounded for
infinite-dimensional Hilbert spaces. This is a serious issue,
since the standard dimension reduction method, which one
might want to use to reduce the dimension of the prob-
lem, cannot be applied directly as we need to know the
(finite) expectation values of our (unbounded) observables
to even formulate the finite-dimensional lower bound of
the original optimization. Besides that, we expect addi-
tional correction terms that are suppressed in the limit of
infinitely many rounds, but may become relevant for a
finite number of signals.

Finally, from the perspective of a security proof, we note
that many statements in Renner’s thesis [36] assume finite-
dimensional Hilbert spaces; therefore, we need to carefully
analyze which statements in the ε-security framework we
want to use can be extended to infinite-dimensional Hilbert
spaces. Having listed the difficulties of a DM CV-QKD
security proof, we provide a high-level outline of our proof
in the following section.

A. High-level outline of the security proof

Before we discuss the intricacies of our security proof,
let us present the big picture of our approach. In our proof,
we consider i.i.d. collective attacks. This means that Eve
prepares a fresh ancilla state to interact with each round of
the protocol in an identical manner and then stores them in
a quantum memory. Once Alice and Bob have finally exe-
cuted their protocol, she measures her quantum memory,
encompassing all the ancillae, collectively. In particular,
this means that there are no correlations between different
rounds, enabling us to treat each round equally.

Since Alice’s quantum signals went through the quan-
tum channel, which is under Eve’s control, we do not know
a priori if there is a maximum photon number in the states

Bob receives. Moreover, since the worst-case scenario
occurs when Eve possesses a purification of Bob’s states,
her purifying system is also infinite dimensional. Con-
sequently, we require a security proof that encompasses
infinite-dimensional systems.

Within Renner’s finite-size framework [36], the left-
over hashing lemma tells us that if Alice and Bob apply
a randomly chosen hash function from the family of two-
universal hash functions, the output is secure as long as it
is smaller than Eve’s uncertainty about Alice’s and Bob’s
initial key strings. However, Renner’s initial work assumes
finite-dimensional Hilbert spaces, so we cannot apply his
results directly. To resolve this, we use the leftover hash-
ing lemma against infinite-dimensional side information
(Ref. [40, Proposition 21]) to derive our entropic con-
dition on the key length (Lemma 2 in Appendix C). It
remains to take the effect of classical communication dur-
ing the error-correction phase into account. Thanks to
Lemma 6 in Appendix C, we can separate Eve’s infor-
mation leakage from information reconciliation and from
other sources, and convert the effect of the information
reconciliation term into a leakage term, even if one of the
conditioning systems (Eve’s purifying system) is still infi-
nite dimensional. We then use various properties of the
smooth min-entropy to simplify the expression, giving an
upper bound on the secure key rate. Following the method-
ology of Furrer et al. [41], we establish the asymptotic
equipartition property (AEP) from Renner’s thesis [36] and
extend it to infinite-dimensional quantum side information
(Corollary 2 in Appendix D) [42].

We aim to apply a generalized version of the numeri-
cal security proof framework introduced in Refs. [29,30].
Hence, we have to represent the relevant occurring quan-
tum systems on a computer and solve optimization prob-
lems. We cannot represent infinite-dimensional states or
spaces on a computer. In particular, there is a maximum
practical dimension that can be represented numerically,
which means that the numerical dimension of the prob-
lem cannot grow with the block size. To make our security
proof rigorous, we do not want to simply assume a cut-
off dimension. Thus, we design a method that guarantees
that the analyzed quantum states have high weight in a
low-dimensional (thus, in particular, finite-dimensional)
subspace. In more detail, within the framework of our
acceptance analysis, we develop an energy test (Theorem
2 below) that rigorously bounds the effective dimension.
If the test passes, except with some small probability εET,
most of the weight of the states sent lies within the cho-
sen cutoff space Hnc . The remaining errors due to cutting
off at some finite dimension are handled by the dimen-
sion reduction method [21] (Theorem 1), which allows us
to translate the infinite-dimensional optimization problem
into a finite-dimensional semidefinite program.

It remains to discuss how the acceptance set is
defined. The acceptance analysis guarantees that the state
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generated by Eve’s attack either results in a secure key via
the specified protocol or generates statistics such that the
protocol aborts except with small probability. Now, recall
that the security proof has to be done in infinite dimen-
sions and that the dimension reduction method relates
a well-defined infinite-dimensional optimization problem
with a finite-dimensional one. Thus, the acceptance set has
to be defined on the infinite-dimensional states. Unfor-
tunately, convergence of the sample mean to the true
mean of unbounded random variables is only limited by
Chebyshev’s inequality, which gives slow convergence,
and hence low key rates. Hence, using unbounded observ-
ables would be impractical. To enforce our observables
to be bounded, we introduce a “soft detection limit,” i.e.,
we coarse grain the measurement results, which allows
us to bound our modified observables. We then can use
Hoeffding’s inequality to perform a statistical test, the
acceptance test (Theorem 3 below), and obtain bounds on
the expectations. Mathematically, we distinguish between
two scenarios for both tests. Either the test fails, meaning
that with high probability the observed statistical quantity
does not correspond to a state in our acceptance set, or
the test passes. Hence, after performing both the energy
test and the acceptance test, we know that the actual state
is εET + εAT close to the set we consider in our security
analysis.

Finally, we obtain a semidefinite program that we solve
with an extension of the numerical framework presented in
Refs. [29,30].

B. Bounding observables

As we argued in the previous section, it is crucial for
the security proof that the observables are bounded. To
achieve this, inspired by real detectors, we modify our
detector model such that detectors have a finite detection
range, i.e., possible measurement outcomes are confined
in a finite region M, for example, q, p ∈M = [−M , M ]
of the phase space. We note that this parameter M does not
have to be exactly the physical limit of the real detector
(e.g., the value corresponding to the maximal output of the
analog-to-digital converter) as we simply introduce a “soft
detection limit” that only has to be smaller than the physi-
cal detection limit. This method takes results q and p with
values larger (smaller) than M (−M ) and simply sets them
to M (−M ). We want to highlight that this means that we
do not need to model the exact physical process happen-
ing when strong laser pulses enter the detector, as long as
we set M small enough. Effectively, we introduce an addi-
tional postselection region for measurement results with
absolute value larger than M , which is already included
in our postprocessing framework (see Ref. [19]). For the
time being, it suffices to know that this allows us to bound
every observable X̂ by some x(M ) <∞ and we postpone

the detailed derivation for the observables occurring in the
protocol we used to illustrate our security proof to later.

C. Energy test

One of the first steps in our protocol is to perform an
energy test. The goal of performing an energy test is to
make a probabilistic statement about the maximum energy
of a set of states by testing a subset of the total number of
signals. Before we come to our version, we briefly discuss
issues with existing energy tests [26,43,44] that prevented
us from applying one of those.

The energy test presented in Ref. [26] makes use of the
permutation invariance of the individual rounds in many
QKD protocols. There, the authors performed testing on
some subset of the signals and stated that, except with
some small probability, most of the remaining rounds live
in finite-dimensional Hilbert spaces. However, since there
remain some possibly infinite-dimensional rounds, we can-
not apply this energy test. In contrast, the energy test in
Ref. [43] examines a small subset of all rounds, result-
ing in a statistical statement about the dimension of all
remaining rounds and does not leave back any possibly
infinite-dimensional systems. However, this test requires a
very strong phase-space rotation symmetry that our proto-
col does not satisfy. The approach in Ref. [44] adds a beam
splitter to the experimental setup and therefore performs
testing on some small fraction of every signal. However,
as this comes with additional components, such as a beam
splitter and a second heterodyne measurement setup, it
is experimentally less favorable. Thus, we developed our
own energy test that does not require additional hardware
and does not assume any particular phase-space symmetry.

As outlined in the protocol description, after transmit-
ting N rounds of signals, Alice and Bob perform an energy
test on kT � N modes, i.e., they perform a heterodyne
measurement to determine the quadratures of the chosen
rounds. As we show in Appendix A, this can be used for
the following statement.

Theorem 2 (Noise robust energy test).—Consider sig-
nal states of the form ρ⊗N , and let kT ∈ N, kT � N , be
the number of signals sacrificed for testing and lT ∈ N

be the number of rounds that may not satisfy the testing
condition. Denote by (Y1, . . . , YkT) the absolute values of
the results of the test measurement. Pick a weight w ∈
[0, 1], a photon cutoff number nc, and a testing parameter
βtest satisfying M ≥ βtest > 0, where M > 0 is the finite
detection range of the heterodyne detectors. Define r :=
�(nc + 1, 0)/�(nc + 1, βtest), where �(n, a) is the upper
incomplete gamma function, as well as

Qy :=
(

1− y
y

)

and Pj :=
(

1− j /kT
j /kT

)

.

Finally, let 
⊥ be the projector onto the complement of the
photon cutoff space Hnc . Then, as long as lT/kT < w/r for
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all ρ such that Tr[
⊥ρ] ≥ w,

Pr[|{Yj : Yj < βtest}| ≤ lT]

≤ (lT + 1) 2−kTD(PlT ||Qw/r) =: εET, (5)

where D(·||·) is the Kullback-Leibler divergence.
Proof.—See Appendix A. �
In other words, the energy test tells us that, for all ρ that

satisfy Tr[
⊥ρ] ≥ w, the energy test will fail except with
probability εET.

Note that the theorem only tells us something in the case
in which the energy test passes. If the energy test fails,
we abort the whole protocol and therefore it is (trivially)
secure. Furthermore, as Alice’s lab is assumed to be inac-
cessible to Eve, the test needs to be performed only by
Bob.

D. Acceptance test

After passing the energy test, working in a finite-
dimensional Hilbert space allows us to specify the relevant
set for our observables. This is the set we restrict our secu-
rity analysis to (see our discussion in Sec. II), based on
statistical bounds for the observed values of our observ-
ables. This statistical test replaces the parameter estimation
step in asymptotic security analyses. In particular, for any
given set of observed statistics, the protocol must either
abort or accept. To be secure, the acceptance set is a set of
states such that any state not in the set could only have gen-
erated any of the accepted statistics with probability less
than εAT. The following theorem establishes such a set of
states.

Theorem 3 (Acceptance test).—Let � be the set of Bob’s
observables. Let r ∈ R|�| and t ∈ R

|�|
≥0 , where |�| denotes

the cardinality of �. Define the set of accepted statistics as

O := {v ∈ R
� : for all X ∈ �, |vX − rX | ≤ tX }, (6)

and the corresponding acceptance set as

SAT := {ρ ∈ D(HA ⊗Hnc
B ) : for all X ∈ �,

|Tr[ρX ]− rX | ≤ μX + tX }, (7)

where rX is the X th element of the vector r and likewise
for tX . For every X ∈ �, let

μX :=
√

2x2

mX
ln
(

2
εAT

)

or, if X is a positive semidefinite operator,

μX :=
√

x2

2mX
ln
(

2
εAT

)

,

where x := ‖X ‖∞ and mX is the number of tests for the
observable X . If ρ �∈ SAT then the probability of accepting

the statistics generated by the i.i.d. measurements of ρ⊗n

is bounded above by εAT. That is, the complement of SAT

contains only εAT-filtered states.
Proof.—First, using Hölder’s inequality, for the observ-

able X , we obtain

||X ρ||1 ≤ ||X ||∞||ρ||1 = ||X ||∞ =: x;

therefore, E(X ) = Tr[ρX ] ≤ x. This implies that our mea-
surement results with respect to the observable X lie within
the interval [−x, x] (or [0, x] in case X is positive semidef-
inite). Hence, we can apply Hoeffding’s inequality [45],
which states that

Pr[|X̄ −E[X ]| ≥ μX ] ≤ 2e−2mX μ2
X /(2x)2 =: εX

AT, (8)

where X is the average of the observations, i.e., the empiri-
cal mean. For positive semidefinite X , we replace 2x in the
denominator of the exponent by x. Then, we obtain the μX
given in the theorem statement from basic algebra.

Next we show that if |�| = 1 with a unique element X̂
then SAT only has εAT-filtered states in its complement.
For this case, we denote the set SAT

X̂ . Let vX̂ ∈ R be the

empirical mean of this unique observable, e.g., vX̂ := X̂
for X̂ ∈ �. Then it follows by Hoeffding’s inequality that,
except with probability εX̂

AT, |vX̂ − Tr[ρX̂ ]| < μX̂ , where
ρ is the state from which we are i.i.d. sampling. Now we
show that every state not in SAT

X̂ is εAT filtered. Let σ �∈
SAT

X̂ . Then,

Pr[Accept AT|σ ]

= Pr[|Tr[σ X̂ ]− rX̂ | > μX̂ + tX̂ ∧ |vX̂ − rX̂ | ≤ tX̂ ],

which follows from the definition of SAT
X̂ and the definition

of the accepted statistics (6). Now note the implication

|Tr[σ X̂ ]− rX̂ | > μX̂ + tX̂ ∧ |vX̂ − rX̂ | ≤ tX̂

=⇒ |Tr[σ X̂ ]− vX̂ | > μX̂ ,

which follows from the triangle inequality:

|Tr[σ X̂ ]− rX̂ | = |Tr[σ X̂ ]− vX̂ + vX̂ − rX̂ |
≤ |Tr[σ X̂ ]− vX̂ | + |vX̂ − rX̂ |.

Therefore, combining these points,

Pr[Accept AT|σ ] ≤ Pr[|Tr[σ X̂ ]− vX̂ | > μX̂ ] = εX̂
AT.

Thus, we have shown in the one-parameter case, the set
SAT

X̂ only has εX̂
AT-filtered states in its complement.

All that is left to do is to lift from the one-parameter case
to the many-parameter case. We want to do this without
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using a union bound. To do this, we first set the ε parameter
to be the same for every observable, i.e., for all X , X ′ ∈ �,
εX

AT = εX ′
AT =: εAT. Then we note that SAT =⋂X ∈� SAT

X .
It is known that if one takes the intersection of sets, each
of which only has ε-filtered states in the complement, then
the intersection also only contains ε-filtered states in the
complement (Ref. [31, Theorem 5]). Thus, as we estab-
lished the filtering property for the single observable case,
and SAT is the intersection of single observable cases, we
know that if σ �∈ SAT then σ is εAT filtered. This is what
we wanted to establish, so this completes the proof. �

Before moving forward, we note that the reason we
need the vector t ∈ R

�
≥0 is not for security, but rather for

the completeness of the protocol. Indeed, if t = 0 then
we would filter all states that do not result in statistics r
except with probability εAT. This has often been the case
considered in previous works implicitly and we call this
setting the unique acceptance set following terminology
from Ref. [31]. However, we note that the probability of
obtaining the statistics r is in general close to zero, so
the protocol defined via a unique acceptance set aborts
almost all of the time. For this reason, a good key length in
the unique acceptance setting is in some sense not useful.
Thus, we use t to draw a “box” of accepted statistics around
some ideal statistics r. This will of course decrease the key
rate, but it will increase the completeness, thereby making
the protocol practical. Indeed, we can show the following
result.

Proposition 1.—Let r be defined via rX := Tr[σX ],
where σ is the state after the honest implementation of
the channel. Let lT, kT be the same as in Theorem 2, and
let V1 be defined as in the proof of Theorem 2. Then,
assuming that 1− Tr[V1σ ] < (lT + 1)/kT, the protocol is
(νc

ET + νc
AT + νc

EC)-complete, where εc
EC is a parameter of

the chosen error correcting code and

νc
ET := (kT − lT − 1)2−kTD(PlT+1||Qσ ),

νc
AT := 2

∑

X ∈�

e−2mX t2X /(4‖X ‖2∞),

where mX is the number of tests of observable X .
Proof.—See Appendix F. �
We note that if tX = 0 for any X then the protocol is

always 1-complete by these bounds, which we do not want.
To summarize, the above theorem tells us that states

whose expected values deviate too far from r in terms
of μX and tX , and hence are not part of the acceptance
set SAT, will only be accepted by our testing procedure
with very low probability. Thus, at the cost of introduc-
ing a small probability of error εAT, the remaining security
analysis focuses on states in SAT. Additionally, via smart
choices of parameter t, the theorem allows us to tune the
success probability of the protocol.

E. Finite-size security proof

After having finished all preparations, we now estab-
lish the security proof of the present CV-QKD protocol
against i.i.d. collective attacks. We state our main result,
the security statement against i.i.d. collective attacks, in
the following theorem and prove it afterwards.

Theorem 4 (Security statement against i.i.d. collective
attacks).—Let HA and HB be separable Hilbert spaces, and
let εET, εAT, ε̄, εEC, εPA > 0. The objective QKD protocol is
εEC +max{ 1

2εPA + ε̄, εET + εAT} secure against i.i.d. col-
lective attacks, given that, in case the protocol does not
abort, the secure key length is chosen to satisfy

�

N
≤ n

N

[
min

ρ∈SE&A
H(X |E′)ρ − δ(ε̄)−�(w)

]
− δEC

leak

− 2
N

log2

(
1

εPA

)

, (9)

where δEC
leak takes the classical error-correction cost

into account, �(w) is given in Eq. (4), δ(ε) :=
2 log2(rank(ρX )+ 3)

√
log2(2/ε)/n and SE&A is defined

below.
Proof.—According to our assumption, after complet-

ing N rounds of the quantum phase in the present QKD
protocol, Alice and Bob share the state ρ⊗N

AB ∈ D((HA ⊗
HB)⊗N ). Alice and Bob choose randomly kT of those
rounds for testing, where they first perform the energy test,
followed by the acceptance test. Recall the notion of ε-
securely filtered states; an input state σ is called ε-securely
filtered if the probability that the corresponding statistical
test does not abort on σ is less than ε. This allows us to
define

SET := {σ ∈ D≤(HA ⊗HB ⊗HE) : purification of ρAB

∧ TrE[σ ] is not εET-securely filtered in the ET}.
Analogously, as a subset of all states that have not been fil-
tered by the energy test, we define the set of states that have
not been filtered by the acceptance test with probability
greater than 1− εAT:

SE&A := {σ ∈ SET : TrE[σ ] is not

εAT-securely filtered in the AT}.
This set combines the results of Theorems 2 and 3. In what
follows, when we refer to “passing the testing,” we mean
that both tests pass successfully.

Because of the nature of statistical testing, in our secu-
rity analysis we never know the actual state Bob receives,
but only decide to proceed or abort the protocol, based on
if the received state lies within a predefined set. Therefore,
we split the security argument into two cases:

(1) the input state σ is in set SE&A,
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(2) the input state σ is not in set SE&A.

Denote by � the event that Alice’s and Bob’s testing suc-
ceeds, i.e., the tests pass. Note that if we write a state
conditioned on an event, we do not imply that this state
was renormalized.

To ease notation, we define the map EQKD := Ekey ◦
EAT ◦ EET, representing the action of the QKD protocol,
where EET and EAT denote the quantum channels repre-
senting the energy test and the acceptance test and Ekey is
the map denoting the classical postprocessing.

Let ρABE = σ⊗N be an arbitrary i.i.d. input state and
ρSASBE′ := EQKD(ρABE). Here E′ denotes Eve’s register E,
including all information she gathered from the classical
communication between Alice and Bob. This state can
either pass or fail the testing. Note that the protocol is triv-
ially secure if the testing procedure aborts the protocol. For
the difference between ρSASBE′ and a uniformly distributed
key that is fully decoupled from Eve, we obtain

1
2 ||ρSASBE′ − πSASB ⊗ ρE′ ||1
= (1− Pr[�]) · 0+ 1

2 ||ρSASBE′|� − πSASB ⊗ ρE′|�||1
≤ 1

2 ||ρSASBE′|� − ρSASBE′|�∧SA=SB ||1
+ 1

2 ||ρSASBE′|�∧SA=SB − πSASB ⊗ ρE′|�||1
≤ εEC + 1

2 ||ρSASBE′|�∧SA=SB − πSASB ⊗ ρE′|�||1,

where, for the second inequality, we inserted the definition
of εEC. The last term can be simplified further, taking
into account that the input was assumed to be i.i.d. and
therefore the two cases

(1) the test passes and the input is in set SE&A

and

(2) the test passes and the input is not in SE&A

are mutually exclusive. We obtain

1
2 ||ρSASBE′|�∧SA=SB − πSASB ⊗ ρE′|�||1
≤ max

{
Pr[A] 1

2 ||ρSAE′|� − πSA ⊗ ρE′|�||1,

Pr[Ac] 1
2 ||ρSAE′|� − πSA ⊗ ρE′|�||1

}
,

where A := {σ⊗n : σ ∈ SE&A} and, following the argu-
ment in the proof of Theorem 3.2.5 of Ref. [46], we
dropped the register SB since we condition on SA = SB,
which means that the ideal output and the conditioned out-
put have perfectly correlated classical registers, and hence
contain redundant information. The second term in the
maximum is upper bounded by

Pr[Ac] 1
2 ||ρSAE′|� − πSA ⊗ ρE′|�||1 ≤ Pr[� | σ⊗n /∈ SE&A]

≤ εET + εAT,

where the first inequality uses the fact that the distinguisha-
bility given that Alice and Bob accept the testing is upper
bounded by the probability of passing the test, and, for the
second inequality, we used Theorems 2 and 3 which define
set SE&A.

It remains to upper bound the first term in the maximum,
which refers to the case where σ ∈ SE&A and describes
the fact that Alice’s and Bob’s shared key is only partially
secret. This problem is addressed by performing privacy
amplification, which is characterized by the leftover hash-
ing lemma [36, Lemma 5.6.1]. We use the version that
applies to infinite-dimensional side information (Lemma
2). In Lemma 2, we set εsec = εPA/2+ 2ε′ and ε′ = ε̄/2.
Then, for any input σ⊗n with σ ∈ SE&A, the output will
satisfy

1
2 ||ρSAE′|� − πSA ⊗ ρE′|�||1
≤ 1

2 ||ρSASBE′|� − πSASB ⊗ ρE′|�||1
≤ 1

2εPA + 2ε′

= 1
2εPA + ε̄,

as long as we choose

� ≤ min
σ∈SE&A

H ε̄
min(X |E′C)EQKD(σ⊗n) − 2 log2

(
1

εPA

)

. (10)

Register C denotes the information reconciliation tran-
script. Therefore, putting things together, we obtain

1
2 ||ρSASBE′ − πSASB ⊗ ρE′ ||1
≤ εEC +max

{ 1
2εPA + ε̄, εET + εAT

} =: ε.

Lemma 6 in Appendix C extends a statement in Ref. [36,
Lemma 6.4.1] to infinite-dimensional side information and
allows us to remove the classical register C containing the
transcript of the information reconciliation procedure from
the smooth min-entropy at the cost of leakEC bits,

� ≤ min
σ∈SE&A

H ε̄
min(X |E′)EQKD(σ⊗n) − 2 log2

(
1

εPA

)

− leakEC.

(11)

Finally, we use Corollary 2 in Appendix D, which is
our version of the asymptotic equipartition property [36,
Corollary 3.3.7], to rewrite the smooth min-entropy in
terms of the von Neumann entropy:

� ≤ n
[

min
σ∈SE&A

H(X |E′)EQKD(σ⊗n) − δ(ε̄)
]

− 2 log2

(
1

εPA

)

− leakEC. (12)
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While this completes our finite-size analysis, we want
to optimize over finite-dimensional (in more detail: low-
dimensional) states. Our energy test (Theorem 2) guar-
antees that any state that is not εET filtered has at most
weight w outside the cutoff space (defined by parameter nc
in the energy test), and hence satisfies Tr[ρ
nc] = 1− w.
Using Theorem 1, we can relate the values of our objective
function on inputs from an infinite-dimensional Hilbert
space to its values on projections onto a finite-dimensional
subspace Hnc by taking an additional weight-dependent
correction term �(w) [see Eq. (4)] into account. Hence,
we arrive at

� ≤ n
[

min
σ∈SE&A

H(X |E′)EQKD(σ⊗n) − δ(ε̄)−�(w)
]

− 2 log2

(
1

εPA

)

− leakEC. (13)

Finally, we divide both sides by N , the total number of
signals sent, and obtain

�

N
≤ n

N

[
min

σ∈SE&A
H(X |E′)EQKD(σ⊗n) − δ(ε̄)−�(w)

]

− 2
N

log2

(
1

εPA

)

− δEC
leak, (14)

where we have defined δEC
leak := leakEC/N (see Sec. V D).

Hence, the key we obtain is εsec = max
{ 1

2εPA + ε̄, εET+
εAT} secret and εcor = εEC correct, so ε := εsec + εcor
secure, which completes the proof. �

V. NUMERICAL SECURITY PROOF METHOD

Having derived the secure key rate formula and having
transformed it into a finite-dimensional optimization prob-
lem, it remains to calculate lower bounds on the secure key
rate numerically. It turns out that the optimization problem
in Eq. (14) is a semidefinite program with convex, nonlin-
ear objective function f : D(Hnc)→ R, σ �→ H(X |E′)σ .
Since we are interested in finding a reliable lower bound on
the secure key rate, it does not suffice to find an approxi-
mate solution to this minimization problem. Therefore, we
apply the numerical method developed in Refs. [29,30],
which we are going to summarize briefly in what follows.

A. Idea of the numerical method

The idea of the numerical method is to split the prob-
lem into two steps. In the first step, the nonlinear problem
is solved approximately, for example by an iterative first-
order algorithm like the Frank-Wolfe algorithm [47]. We
end up with an approximate solution ρstep 1 on the mini-
mization problem. This is, however, not a reliable lower
bound on the secure key rate. Therefore, we apply step
2, which helps us to transform this suboptimal solution

into a reliable lower bound, using a linearization and
semidefinite programming (SDP) duality theory. We cal-
culate ∇f (ρstep 1), the gradient of our objective function at
the approximate minimum from step 1, and use a relaxation
theorem to formulate an expanded, linearized semidefinite
program. This can be seen as lower bounding the (con-
vex) objective function by a hyperplane, tangent at ρstep 1.
To take numerical imprecisions into account, the feasi-
ble set is enlarged by some small εnum. Then the dual
of this expanded SDP is solved numerically. Because of
results from duality theory in semidefinite programming,
every feasible point of this dual SDP is a lower bound on
the initial optimization problem. Consequently, we obtain
a reliable lower bound on the optimization problem in
Eq. (14), and hence a reliable lower bound on the secure
key rate.

B. Infinite-dimensional, asymptotic optimization

In this section, we summarize the details of the formu-
lation of the used numerical method for a DM-CV QKD
protocol in the asymptotic limit for infinite-dimensional
Hilbert spaces, following Refs. [19,21]. Even though we
treat a more general case, this will be helpful for under-
standing the formulation of the optimization problem in
the finite-size regime.

As outlined in the protocol description, in the prepare-
and-measure picture, Alice chooses one out of NSt coherent
states �i ∈ {α0, . . . , αNSt−1} with probability pi and sends
it to Bob. This can be modeled as Alice preparing the pure
state

|�〉AA′ =
NSt−1∑

i=0

√
pi |i〉 ⊗ |�i〉 , (15)

where Alice keeps register A and sends register A′ to Bob
via the quantum channel EA′→B,

ρAB = (idA ⊗ EA′→B)(|�〉 〈�|), (16)

which is under Eve’s control. We denote the joint state
of Alice, Bob, and Eve by ρABE . As Eve cannot access
Alice’s lab in the source replacement scheme, prepare-
and-measure schemes are subject to the constraint ρA :=
∑NSt−1

i,j=0
√pipj 〈�j |�i〉|i〉〈j |A.

We model the postprocessing steps and the key map con-
ducted by Alice and Bob as quantum channel � that stores
the resulting key in the classical register Z,

�(ρABE) :=
NSt−1∑

z=0

|z〉〈z|Z ⊗ TrAB[ρABE(1A ⊗ Rz
B ⊗ 1E)],

(17)
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Standard key map

Modified key map

(a)

(b)

FIG. 1. Sketch of the key map in phase space in (a) the stan-
dard setting for the ideal protocol and (b) the modified setting
with confined measurement (see Sec. V F and the discussion in
Appendix B 3). The symbol “⊥” denotes results that are dis-
carded, while the shaded areas illustrate which points in phase
space are associated with which symbol.

where Rz
B is the so-called region operator, describing the

key map on Bob’s side (see Fig. 1),

Rz
B := 1

π

∫ ∞

�r

∫ (2z+1)π/NSt

(2z−1)π/NSt

r|reiφ〉〈reiφ| dφ dr. (18)

In the asymptotic limit, the secure key rate is given by
the Devetak-Winter formula [48]. Taking realistic error
correction into account, this leads to the expression

R∞ = min
ρABE∈S∞

H(Z|E)�(ρABE) − δEC
leak, (19)

where S∞ denotes the feasible set of the optimization
to find secure key rates in the asymptotic limit. In what
follows, we provide details about this set.

For ease of notation, we denote the objective function
by f (ρ). Set S∞ is defined by constraints due to Bob’s
measurements as well as by additional requirements on the
quantum state shared between Alice and Bob. As outlined
above, we assume that Alice’s lab is inaccessible to Eve so
that her share of the state cannot change during the key-
generation process. Next, we take Bob’s measurements
into account. We generically denote Bob’s measurement
operators by �̂j and the corresponding expected values by
γj , where j ∈ {1, . . . , Nmeas} with Nmeas being the number
of different measurement operators Bob applies. Addition-
ally, as we optimize over a set of valid density matrices,
we require the trace to be equal to one and demand pos-
itive semidefiniteness. Then, the generic structure of the
optimization problem reads

min f (ρ)

subject to TrB[ρ] = ρA,

Tr[�̂j ρ] = 〈γi〉,
Tr[ρ] = 1,

ρ ≥ 0,

where j runs from 1 to the number of constraints we
introduce. Hence, S∞ reads

S∞ := {ρ ∈ D(HAB) : TrB[ρ] = ρA, Tr[�̂j ρ] = γj },

where, to ease the notation, we included the con-
straint Tr[ρ] = 1 into our set of measurement-induced
constraints, by defining �̂0 := 1 and the corresponding
expected value by γ0 := 1. Consequently, we redefine the
index set for j as {0, . . . , Nmeas}.

As outlined in the protocol description, Bob performs
a heterodyne measurement so that he has access to the
moments of the received signals. We follow the approach
in Ref. [21] to use the photon-number operator n̂ and its
square n̂2 as Bob’s observables and then express our con-
straints in the displaced number basis since these combina-
tions turned out to give good estimation of the weight when
we applied the dimension reduction method. Therefore,
�j ∈ {1, |i〉 〈i| ⊗ n̂βi , |i〉 〈i| ⊗ n̂2

βi
} and γj ∈ {1, 〈n̂βi〉, 〈n̂2

βi
〉}

for i ∈ {0, . . . , NSt − 1}.
As f is a convex function and the feasible set S∞ is con-

vex, we have a convex optimization problem, which can
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be solved using the numerical security proof framework in
Refs. [29,30].

C. Finite-size optimization problem

Note that the objective function of the optimization in
the asymptotic limit (19) is the same as for the finite-size
problem (14), while the feasible sets differ. Furthermore,
there are additional correction terms for the finite-size ver-
sion of the key rate formula. However, as these terms are
constant with respect to the performed optimization, they
do not influence the structure of the SDP.

In the finite-size regime, we do not know the expected
values of our observables with certainty. As outlined in
the protocol description, we fix some small εAT > 0 and
a testing ratio rtest ∈ (0, 1) such that k := rtest N and per-
form testing on k randomly selected rounds. According to
Theorem 3, we obtain bounds μj that define our acceptance
set. Therefore, our actual optimization problem reads

α :=min f (ρ) (20a)

subject to TrB[ρ] = ρA, (20b)

|Tr[�̂j ρ]− γj | ≤ μj , (20c)

Tr[ρ] = 1, (20d)

ρ ≥0, (20e)

for j ∈ {1, . . . , 2NSt}. Note that the constraints TrB[ρ] =
ρA and Tr[ρ] = 1 are not subject to finite-size effects.

It is shown in Appendix E that finally, after applying
the dimension reduction method, and various steps to bring
the SDP to a more favorable form, we obtain the (primal)
optimization problem

β := min f (ρ̄) (21a)

such that Tr[P]+ Tr[N ] ≤ 2
√

w, (21b)

P ≥ TrB[ρ]− ρA, (21c)

N ≥ −(TrB[ρ̄]− ρA), (21d)

Tr[(|j 〉〈j | ⊗ n̂βj )ρ̄] ≥ μj + 〈n̂βj 〉
− w||n̂βj ||∞, (21e)

Tr[(|j 〉〈j | ⊗ n̂βj )ρ̄] ≤ μj + 〈n̂βj 〉, (21f)

Tr[(|j 〉〈j | ⊗ n̂βj )ρ̄] ≥ −μj + 〈n̂βj 〉
− w||n̂βj ||∞, (21g)

Tr[(|j 〉〈j | ⊗ n̂βj )ρ̄] ≤ −μj + 〈n̂βj 〉,
(21h)

Tr[(|j 〉〈j | ⊗ n̂2
βj

)ρ̄] ≥ μj + 〈n̂2
βj
〉

− w||n̂2
βj
||∞, (21i)

Tr[(|j 〉〈j | ⊗ n̂2
βj

)ρ̄] ≤ μj + 〈n̂2
βj
〉, (21j)

Tr[(|j 〉〈j | ⊗ n̂2
βj

)ρ̄] ≥ −μj + 〈n̂2
βj
〉 − w||n̂2

βj
||∞, (21k)

Tr[(|j 〉〈j | ⊗ n̂2
βj

)ρ̄] ≤ −μj + 〈n̂2
βj
〉, (21l)

1− w ≤ Tr[ρ] ≤ 1, (21m)

ρ̄, P, N ≥ 0, (21n)

where j ∈ {0, . . . , NSt − 1} and aj and bj denote the j th
entry of vectors �a and �b, respectively. It remains to solve
this SDP numerically to obtain lower bounds on the secure
key rate. In the present work, we use the technique intro-
duced in Ref. [30], where secure key rates are obtained
via the two-step process described in Sec. V A. For the
reader’s convenience, we derive the corresponding dual
problem in Appendix E.

D. Error correction

In this subsection, we briefly explain the information-
reconciliation leakage term. In the case one is able to
carry out the information reconciliation procedure in the
Slepian-Wolf limit [49], the EC leakage term reads

δEC := H(Y|X ) = H(Y)− I(X : Y).

Here, X and Y represent Alice’s and Bob’s key strings.
Since we cannot expect to perform error correction in the
optimal limit, we assume only a fraction 0 < β ≤ 1 of
the mutual information between Alice’s and Bob’s key
strings can be used. Hence, I(X : Y) in the formula above
is replaced by βI(X : Y). Therefore,

δEC �→ δ
β

EC := H(Y)− βI(X : Y)

= H(Y)− β[H(Y)− H(Y|X )]

= (1− β)H(Y)+ βH(Y|X ).

Finally, the total leakage term is the sum of the correction
term we just derived and the verification term. We obtain
[31]

leakEC ≤ nδ
β

EC + log2

(
2

εEC

)

. (22)

As the present protocol allows postselection, not all signals
might be used for signal generation. Hence, not all signals
have to undergo the information reconciliation procedure.
Therefore, we replace leakEC �→ ppassleakEC, where ppass
is the probability that a round passes the postselection
routine.

E. Trusted, nonideal detector approach

So far, it has been assumed that Bob’s detectors are ideal
(i.e., 100% detection efficiency and no electronic noise)
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and we therefore dedicated all noise to Eve. In real-world
implementations, detectors are noisy and have detection
efficiency smaller than one. The trusted, nonideal detector
model introduced in Ref. [50] enables us to include realis-
tic detectors in our key rate calculations and allows us to
trust those parts of the noise that come from Bob’s detec-
tion devices. This assumption is reasonable since Bob’s
detectors are located in his lab, and hence assumed to be
inaccessible to Eve.

The idea of the model is to introduce an additional beam
splitter in front of every perfect homodyne detector that
measures either the q or p quadrature. The transmission
is chosen to be equal to the detector efficiencies ηq and
ηp . At the second input port of both of those beam split-
ters, the signal is mixed with a thermal state with mean
photon numbers n̄i = νel,i/2(1− ηi) for i ∈ {q, p}. There-
fore, the output signals experience electronic noise νel,q
and νel,p , respectively. Finally, two ideal homodyne detec-
tors are used to perform the measurement. For more details
regarding the trusted, nonideal detector we refer the reader
to Ref. [50]. A sketch of the trusted detector scheme can
be found in Ref. [50, Figure 2].

F. Bounding the detection range

As outlined in Sec. IV B, we ensure fast convergence of
our acceptance test by constraining the observables to the
detection range of the heterodyne detector. In line with the
discussion in Ref. [21], in the ideal (nonrestricted) detector
model, operators X̂ can be represented as

X̂ =
∫

ζ∈C

fX (ζ )
1
π
|ζ 〉 〈ζ | d2ζ , (23)

where fX̂ (ζ ) is some scalar-valued function and (1/π) |ζ 〉
〈ζ | is the POVM corresponding to an ideal heterodyne
measurement. Its noisy counterpart reads

[X̂ ]′ =
∫

ζ∈C

fX̂ (ζ )Gζ d2ζ , (24)

where Gζ is the nonideal, trusted detector POVM
derived in Ref. [50]. In order to restrict the measure-
ment results to the interval M = [−M , M ]2, we need
to modify function fX̂ . This involves partitioning the
phase space into distinct regions and replacing fX (ζ )

with gX (ζ ). Define Q̃1 := R+ ×R+ \M, Q̃2 := R− ×
R+ \M, Q̃3 := R− ×R− \M, and Q̃4 := R+ ×R− \
M. Function gX̂ (ζ ) takes into consideration the finite

detection range that has been proposed,

gX̂ (ζx, ζy)

:=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

fX̂ (ζx, ζy) if (ζx, ζy) ∈M,
fX̂ (min{ζx, M }, min{ζx, M }) if (ζx, ζy) ∈ Q̃1,
fX̂ (max{ζx,−M }, min{ζx, M }) if (ζx, ζy) ∈ Q̃2,
fX̂ (max{ζx,−M }, max{ζx,−M }) if (ζx, ζy) ∈ Q̃3,
fX̂ (min{ζx, M }, max{ζx,−M }) if (ζx, ζy) ∈ Q̃4,

(25)

where ζx denotes the real part of ζ , while ζy denotes the
imaginary part of ζ . In the current protocol, we perform
measurements of n̂ and n̂2 in the displaced number basis.
We derive expressions for the observations of [n̂]′b and
[n̂2]′b, which are the bounded and noisy equivalents of n̂
and n̂2, in Appendix B.

With our observables now being bounded, we can read-
ily observe that we obtain xn̂ = M 2 − 1

2 and xn̂2 = M 4 −
1
2 M 2 for the constants involved in Theorem 3.

VI. RESULTS

A. Quadrature phase-shift keying protocol

To provide numerical key rates, we restrict our proof
for general discrete-modulated CV-QKD protocols to the
special case of NSt = 4 signal states arranged on a circle
in the phase space, a so-called quadrature phase-shift key-
ing protocol. Therefore, in every round, Alice prepares one
of the states {|α〉, |iα〉, | − α〉, | − iα〉} with equal probabil-
ity, where α ∈ R is arbitrary but fixed. Bob then performs
heterodyne detection on the states he receives. While our
security proof works for both direct and reverse reconcilia-
tions, we proceed with reverse reconciliation that is known
to outperform direct reconciliation for CV-QKD protocols
in the long-distance regime. Therefore, Bob performs the
key map and assigns symbols to his measurement results,
depending on which area of phase space the measurement
outcomes lie. This includes the option of performing posts-
election to increase the key rate. For more details regarding
the protocol, we refer the reader to Ref. [19, Protocol 2].
Since our description of the numerical method in Sec. V A
was general, the expressions there apply to the present
special case if we choose NSt = 4.

B. Choice of the weight

In our security proof, the weight w = Tr[ρ
⊥] plays a
twofold role. On the one hand, it appears as a parameter in
the energy test, while on the other hand, it determines the
size of the correction term �(w) arising from the dimen-
sion reduction method. While the asymptotic dimension
reduction method gives a bound on the weight via another
semidefinite program, in our case w is chosen freely dur-
ing the energy test. This means that, in principle, one
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could choose the weight arbitrarily small, resulting in a
negligible correction term without corrupting our secu-
rity statement (possibly resulting in a large εET). However,
since the energy test only makes a statement in the case
when the test passes and aborts otherwise (in which case it
is trivially secure), this comes at the cost of a high fail-
ure rate of the energy test, and hence ultimately a low
average key rate. Therefore, the choice of the weight w
is a balancing act between aiming for a low correction
term and making the energy test pass with high proba-
bility. In order to ensure that, we required that the energy
test passes with high probability in the honest implemen-
tation, i.e., when Eve is passive. Therefore, we modeled
the quantum channel connecting Alice and Bob as a noisy
and lossy Gaussian channel with excess noise ξ and trans-
mittance η and calculated the expected weight wexp outside
the cutoff space. Then, one possible choice for the weight
is w ≥ wexp. We want to highlight that this was a choice
motivated by practicality and is not a requirement of the
security proof. Alternatively, we may fix εET and just solve
the expression for εET obtained from the energy testing
theorem (Theorem 2) for w to obtain wε . In practice, we
introduce a minimal weight wmin and choose the weight
w := max{wexp, wε , wmin} to make sure that it is both com-
patible with the chosen εET and large enough such that
the energy test passes with high probability on the honest
implementation.

C. Details about the implementation

Before we come to our numerical results, we briefly dis-
cuss our choice of parameters and some technical details.
To demonstrate the performance of the chosen quadrature
phase-shift keying protocol under our finite-size security
proof, we simulate the expectation values [see Eqs. (20)
and optimization problems derived thereof] obtained from
an experiment by modeling Alice’s coherent states pass-
ing a noisy and lossy Gaussian channel with excess noise
ξ and channel transmittance η. The excess noise is under-
stood as preparation noise on Alice’s side so that it is taken
to be fixed at the input of the channel. Hence, Bob expe-
riences the effective noise ηξ . Note that we measure the
noise in the shot noise units. Within the whole work, our
transmittance model as a function of the transmission dis-
tance L is η = 10−0.02L. This corresponds to a transmission
of −0.2 dB/km that is a common value for optical fibres at
the telecom wavelength.

While the total number of transmitted signals N , as well
as the testing ratio kT/N varies, we fix lT/kT (see Theorem
2) to be 10−8 and M = 5. Furthermore, we fix the ε param-
eters to be εEC = 1

5 × 10−10, εPA = 1
5 × 10−10, ε̄ = 7

10 ×
10−10, εAT = 7

10 × 10−10, and εET = 1
10 × 10−10 such that

the total security parameter (see Theorem 4) is ε = 10−10.
We emphasize that our security proof is independent of the

choice of parameters and that those values are chosen for
demonstration purposes only.

We applied the numerical framework in Refs. [29,30]
to find a lower bound on the minimization problem in
Eqs. (21), where the coding was carried out in MATLAB®,
version R2020a. The semidefinite programs were modeled
using CVX [51,52], where we used the MOSEK solver
(version 9.1.9) [53] to solve the semidefinite programs.

D. Simulation results

We present plots of the obtained secure key rates for
various parameter choices. If not mentioned otherwise,
we fix the preparation noise ξ = 0.01 and in all plots,
we assume that an error-correction code with efficiency
β = 0.95 is used, which is achievable with the latest low-
density parity-check codes. We note that it is not entirely
clear if constant β is also achievable for wide ranges of
SNR. However, our security proof method is indepen-
dent of the particular β and, for illustration purposes, we
fixed it to 0.95, in accordance with common values used
in the literature. If we do not state a particular value for
the amplitude α and the postselection parameter �r, the
corresponding curves have been obtained after optimizing
over α and �r via a coarse-grained search. We chose the
cutoff-space dimension nc = 20, which turned out to be a
sound compromise between numerical feasibility (calcula-
tion time) and impact on the obtained key rates (see the
role of the cutoff number in the security proof in Sec. IV).

In the first two subsections, we present plots in the
unique-acceptance scenario (see Sec. IV D), which is stan-
dard in the literature and allows for comparison. We start
by discussing our results for untrusted, ideal detectors
(so ηd = 1 and νel = 0), which is followed by results for
trusted, nonideal detectors (ηd < 1 and νel > 0). However,
as elaborated on after Theorem 3, in the unique-acceptance
scenario, practical protocols will abort with probability
close to 1. Therefore, in the final section, we briefly dis-
cuss the non-unique-acceptance scenario and present key
rates for this practical and realistic case.

1. Untrusted, ideal detectors

In what follows, we present our results for untrusted,
ideal detectors. The key rates shown are measured in bits
per channel use and the plotted asymptotic key rate curves
are generated with the method described in Ref. [21].

Figure 2 shows the obtained secure key rates over the
total number of signals sent N . We fixed the transmission
distance to be 10 km, the coherent state amplitude α =
0.85, and the radial postselection parameter �r = 0.45,
while we varied the testing ratios. As one can see, we
obtain secure key rates for N ≥ 5× 108 for rtest = 40%.
Furthermore, our secure key rates approach the asymp-
totic limit from Ref. [21] for N →∞ and low testing
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FIG. 2. Secure key rates over the total number of signals sent
N for L = 10 km, α = 0.85, �r = 0.45 for ideal, untrusted
detectors.

ratios. This shows that our analysis is tight in the asymp-
totic limit. We note that we had to adapt the asymptotic
key rate curve in Fig. 2 compared to Ref. [21] because
of different weights, and hence different correction terms
�(w). The reason behind this is as follows. The weight
in the asymptotic regime without testing is determined by
solving an additional SDP, and is hence fundamentally dif-
ferent than in our analysis including an energy test (see
also the discussion in Sec. VI B). Our statistical approach
allows us to work with smaller weights, and hence smaller
correction terms. In order to make the key rate curves com-
parable, one therefore has to readjust the asymptotic curves
in Ref. [21] by the weight correction.

Next, we consider the performance of our secure key
rates as a function of the transmission distance for a dif-
ferent number of total rounds N in Fig. 3. We fix the
testing ratio to rtest = 10%. Again, we note that, for the
asymptotic key rates, we do not effectively sacrifice signals
for testing. Hence, the asymptotic key rates are concep-
tionally different to the finite-size key rates in the plot
and would correspond to finite-size key rates with a test-
ing ratio equal to 0%. This explains the tiny difference in
key rates between the asymptotic reference curve and the
finite-size key rates for low transmission distances.

Our observations from Fig. 2 indicate that it is unlikely
positive key rates are obtained for N smaller than N =
5× 108 at L = 10 km. Therefore we start our investiga-
tion at N = 109 in Fig. 3, where we have hope to surpass
L = 10 km significantly and go up to N = 1012, which
is the largest N we assume is achievable in experiments
with state-of-the-art lasers and heterodyne detectors in a
practical amount of time. Note that we optimized over the
coherent state amplitude α and the postselection parameter
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FIG. 3. Secure key rates over transmission distance L for dif-
ferent total number of signals N . We optimized the coherent state
amplitude α and the radial postselection parameter �r and fixed
the testing ratio to rtest = 10%. All curves correspond to ideal,
untrusted detectors.

�r via a coarse-grained search. We observe positive key
rates up to 22 km for N = 109, up to 38.5 km for N = 1010,
up to 56 km for N = 1011, and up to 70 km for N = 1012.

It remains to discuss how much we can improve our
results by varying the testing ratio rtest. In Fig. 4, we fix
N = 1012, optimize over α and �r via a coarse-grained
search, and examine the impact of testing ratios between
5% and 60%. As expected, it turns out that, for low trans-
mission distances, low testing ratios are advantageous,
while the maximal achievable transmission distance can be
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FIG. 4. Secure key rates over transmission distance L for
fixed N = 1012, optimized coherent state amplitude α and radial
postselection parameter �r, and different testing ratios rtest.

040306-16



FINITE-SIZE SECURITY. . . PRX QUANTUM 4, 040306 (2023)

improved significantly by increasing the fraction of signals
used for testing. This is because, for high transmission dis-
tances, the expectation values in our constraints become
small, and hence (for the same testing as for lower dis-
tances) their uncertainties become relatively large. Higher
testing counteracts this effect and increases the secure key
rates. Sacrificing 60% of the signals for testing increases
the maximal achievable transmission distance from 66 km
(for 5% testing) to 77 km.

2. Trusted, nonideal detectors

Next, we present our results for the case of trusted, non-
ideal detectors. For demonstration purposes, we choose
ηd = 0.72 and νel = 0.04, and emphasize that our analy-
sis is not restricted to this choice. We again fix the excess
noise to ξ = 0.01. Note that this means that the curves
for trusted, nonideal detectors have a higher total noise
level compared to the curves for untrusted, ideal detec-
tors in the previous section. Again, we add asymptotic
key rate curves, derived following the method presented
in Ref. [21], for comparison. As in the untrusted, nonideal
case, our key rates are tight, i.e., for low testing ratio rtest
and a high number of rounds N , the obtained finite-size
key rates converge to the asymptotic limit.

We examine the performance of our security proof for
different total numbers of rounds, while we fix the testing
ratio at 10% and optimize over the coherent state ampli-
tude α and the radial postselection parameter �r via a
coarse-grained search. The resulting key rate curves can
be seen in Fig. 5. We see that, as expected, the secure key
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FIG. 5. Secure key rates over transmission distance L for a
trusted, nonideal detector with νel = 0.04 and ηd = 0.72. We plot
key rates for different total numbers of signals N , optimized the
coherent state amplitude α and the radial postselection parameter
�r, and fixed the testing ratio rtest = 10%.

rates are lower than for the untrusted, ideal detector, but
the maximal achievable transmission distances decrease
only moderately compared to the untrusted detector with
the same excess noise level. We observe positive key rates
up to 22 km (compared to 24 km for untrusted, ideal detec-
tors) for N = 109 signals, we obtain non-negative key rates
up to 39 km (compared to 41 km) for N = 1010, up to
55 km (compared to 58 km) for N = 1011, and up to 67
km (compared to 71 km) for N = 1012.

In Fig. 6, we plot the obtained secure key rates as
a function of the transmission distance L for different
testing ratios, while we fix N = 1012 and optimize over
the coherent state amplitude α and the radial postse-
lection parameter �r. As expected, the obtained secure
key rates are lower than those for the untrusted, ideal
detector.

However, for an excess noise level of ξ = 0.01, it turns
out that the maximal achievable transmission distances do
not differ significantly in the trusted detector scenario. For
example, when the testing rate is 60% of the signals, the
maximal achievable transmission distance for the trusted,
nonideal detector is 72 km, while in the untrusted, ideal
detector case we obtained 77 km. For a testing ratio of
5%, the maximal achievable transmission distance differs
by only 3 km. The achieved secure key rates in the nonideal
detector case are merely lower. Therefore, even for realis-
tic detectors, our method yields practically relevant secure
finite-size key rates. We note that this moderate perfor-
mance difference between key rates using ideal, untrusted
detectors and noisy, trusted detectors has already been
observed for the asymptotic case in Ref. [38, Section 5.3].
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FIG. 6. Secure key rates over transmission distance L for a
trusted, nonideal detector with νel = 0.04 and ηd = 0.72. We
fixed N = 1012, optimized the coherent state amplitude α and the
postselection parameter �r, and examined different testing ratios
rtest.
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The reason behind this is that Bob’s noisy observables can
be related to his ideal observables by linear combinations.
Hence, effectively, the feasible set remains unchanged,
while only the objective function changes due to different
POVM elements for the noisy, nonideal heterodyne detec-
tor. The error-correction cost, however, is slightly higher,
which explains the observed drop in the secure key rate.

3. Nonunique acceptance

While it is common in the literature to discuss secure
key rates in the unique-acceptance (UA) scenario (where
t in Theorem 3 is set to zero), we want to emphasize
that the acceptance test of such protocols basically always
fails, even in the absence of eavesdroppers. Consequently,
although these protocols can achieve high key rates when
successful, the expected key rate per key generation round
is generally low in practice. Therefore, we turn our atten-
tion to the more practical scenario of nonunique accep-
tance (non-UA), where t > 0. Our goal is to investigate the
relationship between the secure key rate and acceptance
probability, which leads to a more useful presentation of
secure key rates in practical settings.

Therefore, recall the following results from Sec. IV D
to gain insights into how the choice of t influences the
secure key rate and the acceptance probability. According
to Eq. (7), the acceptance set grows larger when we choose
t > 0. Consequently, the optimization performed when
solving the key rate finding problem is carried out over
a larger set, resulting in lower secure key rates compared
to the unique-acceptance scenario. However, Proposition
1 provides bounds on the failure probability of the energy
test, acceptance test, and the entire QKD protocol (through
the union bound). Intuitively, as the sample size increases,
we can choose a smaller t. Hence, for illustration purposes,
we set tX = tFμX for different values of tF ≥ 0, as this
yields

Pr[AT Aborts|Honest] ≤ 2|�|
(εAT

2

)t2F/4
,

where � denotes the set of observables used in the protocol
and X ∈ �. We want to highlight that this is only a choice
and might not be optimal. Further optimizations are left
for future work. Furthermore, for the second expression in
Proposition 1, we use D

(
PlT+1||Qσ

) ≥ D(PlT+1||Qw/r) and
obtain

Pr[ET Aborts|Honest]

≤ (kT − lT − 1)

(
1− (lT + 1)/kT

1− w/r

)kT−lT−1

×
(

(lT + 1)/kT

w/r

)lT+1

,

where lT, kT, w, and r are from Theorem 2. While this
bound is sufficient for illustration purposes, we want to
note that it is quite loose and we leave tighter bounds for
future work.

To summarize, we have observed that different choices
of t simultaneously impact the acceptance set, and hence
the secure key rate, and the acceptance probability. Conse-
quently, in the nonunique acceptance scenario, direct com-
parisons of the secure key rate for different t values do not
provide meaningful insights, as the expected secure key
rate (weighted by the success probability) can vary signif-
icantly. Therefore, in this subsection, we introduce a slight
modification in how we present our results. Instead of plot-
ting the secure finite-size key rate in bits per channel use,
denoted as �/N , which we obtained from our security proof
and have used thus far, we now plot the expected secure
key rate per channel use (1− νc

QKD)�/N on the y axis.
Thereby, the acceptance probability is calculated assuming
that the adversary behaves honestly. We believe that this
revised representation of secure key rates better captures
the practical relevance, describing the usable and accessi-
ble secure key rate in implementations of the investigated
protocol. Our intention is to encourage the community to
adopt similar reporting methods in future work.

We are now prepared to present and discuss the key
rate plots for the nonunique acceptance scenario. Simi-
lar to previous sections, we set εEC = 1

5 × 10−10 and keep
M = 5 fixed. In what follows, we mainly use the more
natural quantity psucc := 1− νc

QKD, which is the “success
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FIG. 7. Comparison of different expected nonunique accep-
tance key rates (left y axis) over the total number of signals sent
for untrusted, ideal detectors and L = 10 km, α = 0.85, �r =
0.45, and rtest = 2.5%. As explained in the main text, we plot the
expected key rate (1− νc

QKD)�/N for the nonunique acceptance
curves (tF ∈ 0.760, 0.832, 1.110). For comparison, we also plot
the unique acceptance key rates, tF = 0 and the asymptotic key
rate (both right y axis), known from Fig. 2.
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probability on honest runs” of the analyzed protocol. First,
in Fig. 7, we examine the impact of different parame-
ters, specifically tF (and consequently different acceptance
probabilities), on the expected secure key rate. To maintain
consistency with Fig. 2, we set L = 10 km, α = 0.85, �r =
0.45, and rtest = 2.5%. We investigate three values of tF ,
namely, 0.760, 0.832, 1.110, which correspond to success
probabilities exceeding 50%, 75%, and 99%, respectively.
For comparison, we plot the unweighted unique accep-
tance (tF = 0) key rates, along with the asymptotic secure
key rate provided in Fig. 2. Notably, as N grows large, the
expected secure key rates for tF = 1.110, corresponding to
a protocol success probability of 99%, closely resemble the
nonunique acceptance key rates and the asymptotic secure
key rate. This observation underscores the tightness of our
key rates even in the nonunique acceptance case.

Next, in Fig. 8, we analyze the impact of the
nonunique acceptance scenario on the achievable trans-
mission distance. We set N = 1012 and rtest = 10% and
optimize over α as well as the postselection param-
eter �r. We consider four values of tF , specifically
tF ∈ 0.760, 0.832, 1.110, 1.270, which correspond to suc-
cess probabilities exceeding 50%, 75%, 99%, and 99.9%
respectively. Additionally, we plot the unique acceptance
key rates (tF = 0) and the asymptotic secure key rates from
Fig. 3 for comparison.

We observe that the expected secure key rates for short
to medium transmission distances are close to the unique
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FIG. 8. Secure nonunique acceptance key rates over transmis-
sion distance L for untrusted, ideal detectors. We fixed N = 1012

and the testing ratio rtest = 10% and optimized the coherent
state amplitude α as well as the postselection parameter �r. As
explained in the main text, for nonunique acceptance curves (tF ∈
0.760, 0.832, 1.110, 1.270), we plot the expected secure key rate
(1− νc

QKD)�/N , while we report secure key rates for unique
acceptance curves (tF = 0 and asymptotic). Thus, dotted curves
refer to the left, while the dash-dot and solid curves refer to the
right y axis.

acceptance key rate, particularly for tF = 1.110 and tF =
1.270. While the expected secure key rates for low to
medium transmission distances are close to the unique
acceptance key rate, in particular for tF = 1.110 and tF =
1.270, the achievable transmission distances drop slightly
to 61 km for tF = 1.270, 62 km for tF = 1.110, 63 km for
tF = 0.832 and 64.5 km for tF = 0.714, from 70 km in the
unique acceptance case.

This demonstrates that, at the expense of lower expected
secure key rates, it is possible to increase the maxi-
mum achievable transmission distance towards those of
the unique acceptance key rate. We expect that a tighter
bound on Pr[AT Aborts|Honest] would close this small
remaining gap, allowing for smaller values of tF with equal
success probabilities, as our current bound overestimates
the protocol failure probability. This, in turn, would result
in higher key rates and increased achievable transmission
distances.

VII. CONCLUSION

In our work, we established a composable security proof
against i.i.d. collective attacks in the finite-size regime. We
tackled the problem of infinite dimensions by introducing
a new energy test (Theorem 2) to bound the weight outside
a finite-dimensional subspace and applying the dimension
reduction method [21] to take the influence of the weight
correction term into account. Furthermore, we argued that
in the finite-size regime acceptance testing is the suit-
able statistical treatment, rather than parameter estimation,
known from asymptotic security analyses. We rigorously
extended the ε security proof method of Ref. [36] to handle
infinite-dimensional side information and finally extended
the numerical security proof framework in Refs. [29,30] to
obtain tight lower bounds on the finite-size key rates for a
general DM CV-QKD protocol. Furthermore, our security
analysis is capable of taking detector imperfections and
limitations into account and offers the opportunity to trust
Bob’s detection devices.

For illustration, we apply our security proof method to
a four-state phase-shift keying protocol and calculate the
achievable secure key rates in various scenarios. However,
we emphasize that our approach is not limited to four sig-
nal states or phase-shift keying modulation but applies to
general discrete modulation patterns. We show that, under
experimentally viable conditions, one can obtain positive
finite-size key rates up to at least 73 km transmission dis-
tance for moderate to low noise. Through a comprehensive
and detailed analysis of the success probability in an honest
implementation, we are able to provide a clear and thor-
ough examination of DM CV-QKD protocols. This enables
us to report expected secure key rates, rather than solely
focusing on achievable secure key rates in cases where the
protocol does not abort. Additionally, it allows us to dis-
cuss the three crucial aspects of DM CV-QKD protocols,
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namely, security, key rate, and success probability, together
in a coherent manner.

Let us take this opportunity to discuss an alternative
composable finite-size security proof for DM CV-QKD
protocols against i.i.d. collective attacks given in Ref. [25].
The authors of that work used a proof method based on the
extremality of Gaussian states and developed an interesting
way to leverage the finite detection range of realistic detec-
tors to bound the dimension of the problem. While our
work also considers the finite detection range of realistic
detectors, we want to highlight that the weight, and hence
the bound for the cutoff space, comes from the energy test
and does not directly rely on the detection limit. This gives
us additional flexibility and allows us to achieve small
weights and a smaller impact of the detection limit on the
secure key rate. However, despite this shared aspect, the
security argument is very different, making a direct com-
parison of the obtained key rates is not straightforward. It
was already shown in Ref. [19] that the asymptotic key
rates obtained using the framework of Refs. [29,30] yield
significantly better lower bounds than those in Ref. [18],
which is another numerical approach employing Gaus-
sian extremality. Lupo and Ouyang [25] compared their
QPSK key rates with the analytical key rates given in
Ref. [20], which are known to not be tight for four sig-
nal states (and known to be lower than the key rates of
Ref. [19]). As our key rates converge for large block sizes
against the asymptotic key rates given in Ref. [19], one
can nevertheless conclude that our method achieves clearly
higher secure key rates than the recently published finite-
size security analysis in Ref. [25]. Additionally, our work
also takes the success probability of the examined proto-
col into account, allowing us to report practically relevant
expected secure key rates. However, a direct comparison
of both methods to achieve bounded operators, and hence
finite-dimensional problems, using the same security proof
framework and similar assumptions on the detectors and
taking the success probabilities of the different statistical
testing procedure into account, would be interesting in the
future.

While we prove security against i.i.d. collective attacks,
which are assumed to be optimal up to de Finetti correc-
tion terms that are massive in the small block length limit,
a rigorous security proof against general attacks remains
an open question. One issue is that known energy tests on
almost i.i.d. states do not bound the weight outside a cut-
off space in a way that is useful to apply our numerical
method. Furthermore, we require a chain rule for smooth
min-entropies to remove an infinite-dimensional register,
which is not straightforward. This is even a technical issue
that applies to the work of Renner and Cirac [26]. How-
ever, assuming a photon-number cutoff, our method is
able to handle coherent attacks as well, applying methods
developed in Ref. [31]. Therefore, a rigorous general attack
security analysis for general DM CV-QKD protocols needs

to solve multiple open problems; hence, a generalization to
coherent attacks is left for future work.
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APPENDIX A: PROOF OF THE ENERGY
TESTING THEOREM

In this appendix, we prove our energy testing theorem
(Theorem 2) for both ideal detectors and trusted, nonideal
detectors. We begin with the proof for ideal detectors.

Proof.—We start by proving an operator inequality
related to heterodyne measurements, similarly to Lemma
III.2 of Ref. [26] for homodyne detection. We define the
operators

W1 := 
(q̂2+p̂2−1)/2≥nc , (A1)

V1 := 1
π

∫

|α|2≥β2
test

|α〉〈α| dμα , (A2)

where W1 is the projector onto the span of the eigenvectors
of the operator (q̂2 + p̂2 − 1)/2 corresponding to (gener-
alized) eigenvalues greater or equal to nc, and V1 describes
our test measurement, where the heterodyne detection
gives outcomes with amplitudes greater than or equal to
βtest. Defining W0 := 1−W1 and V0 := 1− V1, it can be
easily seen that {V0, V1} and {W0, W1} form POVMs.

Recall that the photon-number operator is defined as
n̂ = 1

2 (q̂2 + p̂2 − 1). One observes W1 :=∑n≥nc
|n〉〈n|

and, using 〈γ eiθ |n〉 = e−γ 2/2γ ne−iθn/
√

n! (see, for exam-
ple, Ref. [54, p. 37]), it can be seen that V1 =∑

n∈N
�(n+ 1, βtest)|n〉〈n|/�(n+ 1, 0). Therefore, com-

paring the coefficients of V1 and W1 and recall-
ing that, for a fixed first argument, the incomplete
gamma function is monotonically decreasing in its
second argument, we conclude that 〈n|W1|n〉 ≤ 1 ≤
�(nc + 1, 0)〈n|V1|n〉/�(nc + 1, βtest) for all n ∈ N. Hence,
we find that

W1 ≤ �(nc + 1, 0)

�(nc + 1, βtest)
V1. (A3)

To ease notation, we define rideal(nc, βtest) := �(nc + 1, 0)/

�(nc + 1, βtest). The operator W0 is the projector onto
the cutoff space Hnc and W1 projects onto the
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orthogonal complement of the cutoff space. There-
fore, w = E [W1] = Tr [ρW1] ≤ rideal(nc, βtest)Tr [ρV1] =
rideal(nc, βtest)E [V1]. Hence,
w/rideal(nc, βtest) ≤ E [V1]. To ease notation, we use the
short notation r := rideal. As it will turn out in the end, we
actually do not need to distinguish between two different r
for ideal and nonideal detectors.

For our analysis, we consider an arbitrary density matrix
ρ, whose weight outside a cutoff space of dimension nc can
be either larger or smaller than some chosen real number
w ∈ [0, 1]:

(1) ρ is such that Tr[ρW1] < w;
(2) ρ is such that Tr[ρW1] ≥ w.

In the first case, the energy test accepts on a state which lies
indeed with the acceptance set of the energy test. In that
case, we can proceed with our security analysis. In the sec-
ond case, the energy test accepts on a state that does not lie
within the acceptance set of the energy test. We now need
to make sure that this happens only with small probability
εET.

Note that, for fixed ρ, Born’s rule induces a probability
distribution in the probability space over outcomes; hence,
the i.i.d. testing of it induces a probability distribution over
the sequences. The fundamental error, denoted εET,fund, in
the i.i.d. setting for our test strategy is the maximum prob-
ability of obtaining a sequence that passes the test even
though the expected weight for the prototype ρ is greater
than or equal to w. We denote this probability for a fixed
prototype as Pr [|{Yi : Yi ≤ βT}| ≤ lT | ρ]. The maximum
probability is then obtained by maximizing this probabil-
ity over all such prototypical ρ. Therefore, we derive the
upper bound

εET,fund := max
ρ∈D(H)

Pr[|{Yi : Yi ≤ βT}| ≤ lT |Tr[ρW1] ≥ w]

= max
ρ∈D(H) : Tr[ρW1]≥w

Pr[|{Yi : Yi ≤ βT}| ≤ lT | ρ]

≤ max
ρ∈D(H) : Tr[ρV1]≥w

r

Pr[|{Yi : Yi ≤ βT}| ≤ lT | ρ].

While the first line defines εET,fund, for the second line, we
recall that according to our testing strategy, we only have
to deal with ρ with expected weight larger than or equal to
w, which allows us to rewrite the first line by including this
condition into the set we maximize over. Density matrices
ρ with expected weight smaller than w are not relevant in
this part of our analysis.

Finally, for the inequality in the last step, recall from the
first part of the proof that W1 ≤ rV1; hence,

{ρ ∈ D(H) : Tr[ρW1] ≥ w}
⊆ {ρ ∈ D(H) : rTr[ρV1] ≥ w}.

Now let �fkT ∈ {0, 1}kT be a vector containing “0” if V0 was
realized and “1” if V1 was realized, i.e., for each of the
test rounds, we write “0” if the measurement result of the
heterodyne measurement was within a circle of radius βT
in the phase space and “1” otherwise and define fkT be the
type induced by �fkT . Furthermore, define

Q̃w/r :=
{(

1− y
y

)

: y ∈
[

w
r

, 1
]}

and

Pj :=
(

1− j /kT
j /kT

)

.

Then, the set we are maximizing over reads
{

ρ ∈ D(H) :
(

Tr[ρV0]
Tr[ρV1]

)

∈ Q̃w/r

}

.

Recalling that V0 = 1− V1, we introduce

Qρ :=
(

1− Tr[ρV1]
Tr[ρV1]

)

.

We observe that

Pr[|{Yi : Y2
i ≤ β2

T}| = j | ρ] = Pr[fkT = Pj | ρ],

which is given by the product of the size of the correspond-
ing type class and its probability

Pr[fkT = Pj | ρ] = |T(Pj )|QkT
ρ , (A4)

where |T(Pj )| denotes the size of type class Pj and by QkT
ρ

we denote the product distribution QkT
ρ := 


kT
j=0Qρ .

Next, we use two theorems from Ref. [55]. The first
one, Theorem 11.1.2 of Ref. [55], tells us that, for n i.i.d.
random variables X1, . . . , Xn drawn according to Q(x), the
probability of a certain n sequence �x only depends on
its type P�x, Qn(�x) = 2−n(H(P�x)+D(P�x ||Q)). The second one,
Theorem 11.1.3 of Ref. [55], gives an upper bound for the
size of a type class of type P ∈ Pn (so a type with denom-
inator n), |T(P)| ≤ 2nH(P). Applying both to Eq. (A4)
yields

Pr[fkT = Pj | ρ] ≤ 2−kTD(Pj ||Qρ), (A5)

where D is the Kullback-Leibler divergence. Collecting
what we found so far, we arrive at

εET,fund ≤ max
ρ∈D(H) : Tr[ρV1]≥w/r

lT∑

j=0

2−kTD(Pj ||Qρ).

We assume that lT/kT < w/r; hence,

Qw/r :=
(

1− w/r
w/r

)

will always be the closest to each of the Pj among all
y ∈ [w/r, 1]. Furthermore, choosing j = lT minimizes the
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relative entropy between Pj and Qw/r:

D(Pj ||Qρ) ≥ D(Pj ||Qw/r) ≥ D(PlT ||Qw/r)

for all j ≤ lT and all y ∈
[

w
r

, 1
]

.

Therefore, we conclude that

εET,fund ≤ max
ρ∈D(H) : Tr[ρV1]≥w

r

lT∑

j=0

2−kTD(Pj ||Qρ)

≤
lT∑

j=0

2−kTD(PlT ||Qw/r)

= (lT + 1)2−kTD(PlT ||Qw/r)

=: εET.

This completes the proof. �
It remains to prove the energy testing theorem for

trusted, nonideal detectors. The second part of the proof
follows the same arguments as the proof for ideal detectors.
However, the measurement operator for trusted, nonideal
detectors differs from the measurement operator V1 for the
ideal detector. Therefore, it remains to show that the mea-
surement operator for the trusted, nonideal case dominates
W1 as well [possibly with another constant r(nc, βtest)].

Proof.—According to Ref. [50], the POVM elements
for the trusted, nonideal heterodyne measurement with

efficiency ηd and electronic noise νel are given by

Gy = 1
ηdπ

D̂
(

y√
ηd

)

ρ̂th(nd)D̂†
(

y√
ηd

)

, (A6)

where nd := (1− ηd + νel)/ηd. Therefore, the modified
measurement operator is Ṽ1 := ∫y2≥β2

test
Gy dμy . We use

Eqs. (6.13) and (6.14) of Ref. [56] to express Gy in the
number basis. For simplification, we define

Cn,m := 1
πηd(m− n)/2+ 1

√
n!
m!

nn
d

(1+ nd)m+1 ,

a := 1/ηd(1+ nd), and b := ηdnd(1+ nd), and obtain, for
n ≤ m,

〈n|Gy |m〉 = Cn,me−a|y|2(y∗)m−nL(m−n)
n

(

− |y|
2

b

)

, (A7)

where

Lα
k (x) =

k∑

j=0

(−1)j
(

k + α

k − j

)
xj

j !
(A8)

is the generalized Laguerre polynomial of degree k and
with parameter α [57]. The following calculation is a spe-
cial case of the derivations in Appendix F of Ref. [58] and
Appendix 5.1 of Ref. [59]:

Ṽ1 =
∫

y2≥β2
test

Gy dμy =
∑

m,n

Cn,m|n〉〈n|
∫

y2≥β2
test

ym−n+1e−ay2
L(m−n)

n

(

− y2

b

)

dy
∫ 2π

θ=0
e−iθ dθ

=
∑

m,n

Cn,m|n〉〈m|
∫

y2≥β2
test

ym−n+1e−ay2
L(m−n)

n

(

− y2

b

)

dy2πδn,m

= 2π
∑

n

Cn,n|n〉〈n|
∫

y2≥β2
test

ye−ay2
Ln

(

− y2

b

)

dy

= π
∑

n

Cn,n|n〉〈n|
∫

z≥βtest

e−azLn

(

− z
b

)

dz

= π
∑

n

Cn,n|n〉〈n|
n∑

j=0

(
n

n− j

)
1

aj+1bj

�(j + 1, aβtest)

�(j + 1)
.

Note that we substituted y2 �→ z for the fifth equality and that we used the definition of the Laguerre polynomials to
obtain the last line. Inserting Cn,n and simplifying the obtained expression yields

Ṽ1 =
∑

n

(
nd

1+ nd

)n n∑

j=0

(
n
j

)(
1
nd

)j
�(j + 1, aβtest)

�(j + 1)
|n〉〈n|.
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We define and simplify

U :=
nc−1∑

n=0

(
nd

1+ nd

)n n∑

j=0

(
n
j

)(
1
nd

)j
�(j + 1, aβtest)

�(j + 1)
|n〉〈n| + �(nc + 1, βtest)

�(nc + 1)

∞∑

n=nc

(
nd

1+ nd

)n n∑

j=0

(
n
j

)(
1
nd

)j

|n〉〈n|

=
nc−1∑

n=0

(
nd

1+ nd

)n n∑

j=0

(
n
j

)(
1
nd

)j
�(j + 1, aβtest)

�(j + 1)
|n〉〈n| + �(nc + 1, βtest)

�(nc + 1)

∞∑

n=nc

(
nd

1+ nd

)n( 1
nd
+ 1
)n

|n〉〈n|

=
nc−1∑

n=0

(
nd

1+ nd

)n n∑

j=0

(
n
j

)(
1
nd

)j
�(j + 1, aβtest)

�(j + 1)
|n〉〈n| + �(nc + 1, βtest)

�(nc + 1)

∞∑

n=nc

|n〉〈n|.

Note that the quotient �(j + 1, aβtest)/�(j + 1) is mono-
tonically increasing in j ; therefore, for all j ≥ nc,
�(nc + 1, aβtest)/�(nc + 1) ≤ �(j + 1, aβtest)/�(j + 1).
Hence, U ≤ Ṽ1. Based on the structure of W1, we
observe that W1 ≤ �(nc + 1)U/�(nc + 1, βtest). Defining
rnonideal(βtest) := �(nc + 1)/�(nc + 1, aβtest) and combin-
ing our operator relations, we obtain

W ≤ rnonideal(βtest)U ≤ rnonideal(βtest)Ṽ1. (A9)

The rest of the proof is identical to the ideal case. �

APPENDIX B: BOUNDED MEASUREMENTS

Here, we discuss how bounded measurements affect
observations as well as the energy test and the key map.
First, we discuss modifications of the observables.

1. Observables

In this section, we derive [n̂]′r and [n̂2]′r, the noisy and
restricted observables used in the present protocol. We start

by writing n̂ and n̂2 in antinormal ordering and replacing
the ladder operators â ↔ ζ and â† ↔ ζ ∗ to obtain

fn̂ = |ζ |2 − 1, (B1)

fn̂2 = |ζ |4 − 3|ζ |2 + 1. (B2)

We now adopt the approach described in Ref. [21,
Appendix D], but replace fn̂ by gn̂ and fn̂2 by gn̂2 .
While fn̂(ζx, ζy) coincides with gn̂(ζx, ζy) for (ζx, ζy) ∈
[−M , M ]2, we have gn̂ = M 2 + ζ 2

y − 1 for |ζx| ≥ M and
ζy ∈ [−M , M ]. Furthermore, for ζx, ζy ≥ M , we obtain
gn̂(ζx, ζy) = 2M 2 − 1. Similar results can be derived for
the other regions, and the same principle applies to gn̂2 .
Following the method in Ref. [21, Appendix D] for this
modified setup yields [applying an asymptotic expansion
(as M is large compared to the other appearing quanti-
ties) and keeping leading correction terms] the following
expression for the Q function (up to prefactor 1/π ) of the
restricted, noisy, trusted operators:

〈α| [n̂β]′r |α〉 = ηd|γ |2
(

1− 1√
πM̃

e−M̃2
)

+ ηdc2
(

1− 2M̃ + 2M̃ 2√π + 2
√

π

πM̃
e−M̃2

)

+ 2ηdc
M̃ 2√πηd + 1√

πM̃
e−M̃2 − 1

(

1− 2√
πM̃

e−M̃2
)

+O(e−2M̃2
), (B3)

〈α| [n̂2
β]′r |α〉 = η2

d

[

1− 1√
πM̃

e−M̃2
]

|γ |4 + η2
d

[

4c2
(

1− 8M̃ 2 + 8m̃+ 1

4
√

πM̃
e−M̃2

)

− 3c2

ηd

(

1− 9c2 + 4M̃ 2

6
√

πM̃c2

)

e−M̃2
]

|γ |2

+ 2η2
dc2
(

1− 13
√

π − 3M̃ − 4M̃ 2√πc2

8πM̃

)

e−M̃2 − 3ηdc2
(

1− 3− c2

2
√

πM̃

)

e−M̃2

+ 1
(

1− η2
dc4M̃ 4 + 3ηdc2M̃ 2 − 3+ 2η2

d√
πM̃η2

d

)

e−M̃2 +O(e−2M̃2
), (B4)
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where M̃ := M/
√

ηdc, c2 := 1+ n̄ = 1+ (1− ηd + νel)/

ηd = (1+ νel)/ηd, and γ := α − β/
√

ηd. We observe that,
when M is chosen to be sufficiently large, the neglected
terms become extremely small, often (depending on the
particular choice of M ) even below the level of machine
precision. It is important to highlight that the numerical
method we employ to obtain accurate lower bounds on
the secure key rate [29,30] accounts for small violations of
constraints and finite-precision errors in the representation
of operators, which may have a magnitude of ε′. Therefore,
as long as we ensure that the neglected terms remain below
this threshold, the resulting lower bounds remain reliable.
For more details about handling numerical imprecisions
in the used security proof framework, we refer the reader
to Ref. [30, Section 3.3]. This shows that the effect of
restricting our measurement to only a finite detection range
has negligible impact on our implementation. Furthermore,

note that,

〈α| [n̂β]′r |α〉
M̃→∞→ 〈α| [n̂β]′ |α〉 ,

〈α| [n̂2
β]′r |α〉

M̃→∞→ 〈α| [n̂2
β]′ |α〉 ,

i.e., as expected, we recover the results for the unbounded
(noisy, nonideal) measurement from Ref. [21].

By the uniqueness of the Q function, we then obtain

[n̂β]′r � A(M̃ )n̂β/
√

ηd + B(M̃ )1, (B5)

[n̂2
β]′r � C(M̃ )n̂2

β/
√

ηd
+ D(M̃ )n̂β/

√
ηd + E(M̃ )1, (B6)

where

A(M̃ ) := ηd

(

1− 1√
πM̃

e−M̃2
)

,

B(M̃ ) := ηdc2
(

1− 2M̃ + 2M̃ 2√π + 2
√

π

πM̃
e−M̃2

)

+ 2ηdc
M̃ 2√πηd + 1√

πM̃
e−M̃2 − 1

(

1− 2√
πM̃

e−M̃2
)

,

C(M̃ ) := η2
d

(

1− 1√
πM̃

e−M̃2
)

,

D(M̃ ) := η2
d

[

4c2
(

1− 8M̃ 2 + 8m̃+ 1

4
√

πM̃
e−M̃2

)

− 3c2

ηd

(

1− 9c2 + 4M̃ 2

6
√

πM̃c2

)

e−M̃2 −
(

1− 1√
πM̃

e−M̃2
)]

,

E(M̃ ) := 2η2
dc2
(

1− 13
√

π − 3M̃ − 4M̃ 2√πc2

8πM̃

)

e−M̃2 − 3ηdc2
(

1− 3− c2

2
√

πM̃

)

e−M̃2

+ 1
(

1− η2
dc4M̃ 4 + 3ηdc2M̃ 2 − 3+ 2η2

d√
πM̃η2

d

)

e−M̃2 +O(e−2M̃2
),

and, again, the restricted operators converge to the unrestricted operators given in Ref. [21] for M̃ →∞.

2. Energy test

After having clarified our observables, we can proceed
with the energy test. Therefore, let us review the purpose
of the energy test. When performing the energy test, we
take some fraction of all rounds and check if q2 + p2 is
smaller or larger than some arbitrary but fixed value β2

test.
As long as we choose βtest ≤ M , this binary measurement
is not affected by the finite detection range (note that we do
not need to know the exact value, but only need to know
if it is smaller than our testing parameter), as can be seen
from the definition of the measurement operator V1, i.e.

V1 := 1
π

∫

|α|2≥β2
test

|α〉〈α| dμα . (B7)

here for the ideal heterodyne measurement POVM, but the
same applies if we replace (1/π) |α〉 〈α| by Gα . Comparing
to Eq. (23) in the ideal case or to Eq. (24) for the non-
ideal detector, we see that fV1 = 1. As a result, the integral
remains the same even for the bounded operator. Summing
up, the energy test remains completely unaffected by this
modification, providing we select a value for M that is not
smaller than βtest.

3. Modified key map

As we only want to use unambiguous measurement
results, we restrict our key regions to the area between the
postselection circle in the middle of the phase space and
the detection-range bound at M . For z = 0 and z = 2, we
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obtain

Rz
B := 1

π

∫ (2z+1)π/NSt

(2z−1)π/NSt

∫ r/cos(θ)

�r

r|reiφ〉〈reiφ| dφ dr, (B8)

and for z = 1 and z = 3, we obtain

Rz
B := 1

π

∫ (2z+1)π/NSt

(2z−1)π/NSt

∫ r/sin(θ)

�r

r|reiφ〉〈reiφ| dφ dr. (B9)

We note that this integral cannot be computed analytically
anymore, which increases the computation time exten-
sively. One possible solution is to slightly modify the key
map by discarding not only results lying outside M =
[−M , M ]2 but outside a circle with radius M . Then the
region operators read

Rz
B := 1

π

∫ M

�r

∫ (2z+1)π/NSt

(2z−1)π/NSt

r|reiφ〉〈reiφ| dφ dr, (B10)

which can be calculated analytically. Although we increase
the region corresponding to ⊥, as the removed areas are
close to the corners of [−M , M ]2, we do not expect a
significant impact on the key rate, while speeding up the
calculation considerably. Thus, we modify the key map
accordingly for our simulations.

APPENDIX C: TECHNICAL LEMMAS

In this appendix, we present the technical lemmas we
use in the security proof to generalize existing finite-
dimensional statements to their infinite-dimensional coun-
terparts.

Proposition 2 (Relation between ε balls).—For ρ ∈
D≤(H), we have Bε

PD(ρ) ⊆ B2ε
TD(ρ) ⊆ B

√
2ε

PD (ρ).
Proof.—Consider ρ ∈ D≤(H) and σ ∈ Bε

PD(ρ).
For the first inclusion, by one of the Fuchs–van de Graaf

inequalities [Eq. (3)], we have �(ρ, σ) ≤ P(ρ, σ) ≤ ε;
hence, if σ ∈ Bε

PD(ρ), we have 2�(ρ, σ) ≤ 2ε. Thus, due
to the definition of the trace-distance ball (without a factor
1
2 ), every σ ∈ Bε

PD(ρ) is contained in B2ε
TD(ρ).

For the second inclusion, assume that σ ∈ B2ε
TD(ρ).

Then, by the other Fuchs–van de Graaf inequality in
Eq. (3), we have P(ρ, σ) ≤ √2�(ρ, σ) ≤ √2ε. Hence, if
σ ∈ B2ε

TD(ρ), it is also contained in B
√

2ε
PD . �

Lemma 1 (Data-processing inequality for the trace
distance under completely positive, trace-nonincreasing
maps).—Let H be a separable Hilbert space, let ρ, σ be
compact, self-adjoint trace-class-1 operators over the sep-
arable Hilbert space H, and let E be a completely positive,
trace-nonincreasing (CPTNI) map. Then,

||E(ρ)− E(σ )||1 ≤ ||ρ − σ ||1.

Proof.—Consider ρ, σ compact, self-adjoint, and trace-
class operators, as in the statement. Then, trivially, ρ − σ

is self-adjoint as well. Furthermore, compact operators
form a vector space, so ρ − σ is compact, too.

Now we may apply the spectral theorem for compact,
self-adjoint operators on ρ − σ and find an orthonormal
basis diagonalizing ρ − σ . Let P be the positive part and
Q the negative part of the diagonal form of ρ − σ , ρ −
σ = U(P + Q)U†, where P ⊥ Q. Note that we found P, Q
diagonal, P ⊥ Q with ||ρ − σ ||1 = ||P + Q||1.

Since E is a CPTNI map, we can find a Kraus representa-
tion E(τ ) =∑i KiτK†

i , where
∑

i K†
i Ki = 1. Substituting

τ = UDU†, where D is the diagonal form and U the
corresponding transformation, we obtain

E(τ ) = E(UτU†) =
∑

i

KiUDU†K†
i =

∑

i

KiUD(KiU)†

=
∑

i

K̃iDK̃†
i .

Note that we defined K̃i := KiU and observe that

∑

i

K̃†
i K̃iK̃

†
i =

∑

i

(KiU)†KiU

= U†
(∑

i

K†
i Ki

)

U = U†U = 1.

Define the new channel Ẽ(τ ) =∑i K̃iτ K̃†
i . Finally, we

conclude that

||E(ρ)− E(σ )||1 = ||E(ρ − σ)||1
= ||Ẽ(P + Q)||1
= ||Ẽ(P)+ Ẽ(Q)||1
≤ ||Ẽ(P)||1 + ||Ẽ(Q)||1
= Tr[Ẽ(P)]+ Tr[Ẽ(Q)]

≤ Tr[P]+ Tr[Q]

= Tr[P + Q]

= ||P + Q||1
= ||ρ − σ ||1,

which proves the claim. �
Lemma 2 (Leftover hashing lemma against infinite-di-

mensional side information).—Let ρXE ∈ D≤(�∞X ⊗HE),
where X is finite. Let K and X be finite sets with
|K | = 2� ≤ |X |, and let {F ,PF } be a family of two-
universal {X , K}-hash functions. Let ε′ > 0 and εPA :=
2(εsec − 2ε′), where εsec ≥ 2ε′ + 1

2

√

2�−Hε′
min(PD)

(X |E)ρ in
the case of purified-distance smoothing and εsec ≥ 2ε′ +
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1
2

√

2�−H2ε′
min(TD)

(X |E)ρ in the case of trace-distance smooth-
ing. Then,

1
2 ||ρF(x)EF − πk ⊗ ρEF ||1

≤ 2ε′ + 1
2

√

2�−Hε′
min(PD)

(X |E)ρ ≤ εsec.

This implies that, for the purified-distance smoothing
ball, if

� ≤ H ε′
min(PD)(X |E)ρ − 2 log2

(
1

εPA

)

,

or, for the trace-distance smoothing ball, if

� ≤ H 2ε′
min(TD)(X |E)ρ − 2 log2

(
1

εPA

)

,

the obtained key is εsec secure.
Proof.—We start the proof with Ref. [40, Proposi-

tion 21] for the case |K | = 2� since we are interested in
bit strings. Then, Proposition 21 states that, for X , K , two
sets of finite cardinality with |K | = 2� ≤ |X |, {F ,PF },
a family of two-universal {X , K}-hash functions, ρXE =
(ρx

E)x∈X ∈ D≤(�∞X ⊗ME), and ε′ > 0,

EF ||(Tf ⊗ idE)(ρXE)− πK ⊗ ρE||1

≤
√

2�−Hε′
min(X |E)ρ + 4ε′

holds. Here EF denotes the expectation with respect to
PF , Tf is the map applying the hash function and πK =
(1/|K |)∑s∈K |s〉〈s|. Note that K denotes the alphabet the
hash function map into and that Ref. [40] uses the purified
distance in the smooth min-entropy definition.

First, we rewrite the left-hand side,

EF ||(Tf ⊗ idE)(ρXE)− πk ⊗ ρE||1
=
∑

f

p(f )||(Tf ⊗ idE)(ρXE)− πK ⊗ ρE||1

=
∥
∥
∥
∥

∑

f

p(f )[(Tf ⊗ idE)(ρXE)− πK ⊗ ρE]⊗ |f 〉〈f |
∥
∥
∥
∥

1

= ||ρF(X )EF − πK ⊗ ρEF ||1.

We replace the left-hand side of the original statement with
what we just derived and divide by 2 to obtain a statement

in the trace distance:

1
2 ||ρF(X )EF − πk ⊗ ρEF ||1

≤ 2ε′ + 1
2

√

2�−Hε′
min(PD)

(X |E)ρ ≤ εsec.

Let εPA := 2(εsec − 2ε′) > 0. Then, we derive

2�−Hε′
min(PD)

(X |E)ρ ≤ ε2
PA = 4(εsec − 2ε′)2

=⇒ � ≤ H ε′
min(PD)(X |E)ρ − 2 log2

(
1

εPA

)

,

where F ∈ F . This gives us the statement in purified-
distance smoothing. By Proposition 2, we yield the pro-
posed statement in trace-distance smoothing. �

Lemma 3 (Chain rule for smooth min-entropies).—Let
HA,HB,HC be separable Hilbert spaces with |HB| = n.
Then, for smoothing in the trace distance,

H ε
min(TD)(AB|C)ρ − log2(n) ≤ H ε

min(TD)(A|BC)ρ

and, for smoothing in the purified distance,

H ε
min(PD)(AB|C)ρ − log2(n) ≤ H ε

min(PD)(A|BC)ρ ,

Proof.—The proof in purified-distance smoothing can be
found in Ref. [60, Lemma 4.5.6] and it is straightforward
to show that the proof given there works for trace-distance
smoothing as well. �

Lemma 4 (Strong subadditivity of smooth min-en-
tropy).—Let HA,HB, and HC be separable Hilbert
spaces, and let ρ ∈ D≤(HA ⊗HB ⊗HC). Then, for either
smoothing ball,

H ε
min(TD)(A|BC)ρ ≤ H ε

min(TD)(A|B)ρ ,

H ε
min(PD)(A|BC)ρ ≤ H ε

min(PD)(A|B)ρ .

Proof.—The proof for the trace distance follows from
Lemma 3.2.7 of Ref. [36], which states the strong subaddi-
tivity for finite-dimensional Hilbert spaces, since this proof
only relies on Lemma 3.1.7 of Ref. [36] (its proof is identi-
cal for separable Hilbert spaces) and the fact that the trace
distance is monotonic under CPTNI maps (which we have
established in Lemma 1). Therefore, it remains to prove the
statement in purified distance smoothing.

Consider the map E(ωB) := ωB ⊗ 1C. By the data-
processing inequality [60, Proposition 4.5.1] for E :
MC →MB and ω ∈ D≤(MAB), where M stands for a
von Neumann algebra and E∗ denotes the dual map of E ,
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we obtain

H ε
min(PD)(A|B)ω ≤ H ε

min(PD)(A|C)idA⊗E∗(ω). (C1)

Letting MB := B(HB)⊗ B(HC) and MC = B(HB) and
ω = ρ, we obtain

H ε
min(PD)(A|BC)ρ ≤ H ε

min(PD)(A|B)idAB⊗TrC[ρ]

= H ε
min(PD)(A|B)ρAB . (C2)

This completes the proof in the purified distance. �
Lemma 5 (Conditioning on a classical register).—Let

HA and HB be separable Hilbert spaces, and let Z be a clas-
sical register. Consider ρABZ ∈ D≤(HA ⊗HB ⊗ �∞Z ). Then
we have

H ε
min(TD)(AB|Z)ρ ≥ inf

z∈(λz)z
H ε

min(TD)(A|B)ρz
AB

(C3)

in the trace distance and

H ε
min(PD)(AB|Z)ρ ≥ inf

z∈(λz)z
H ε2/2

min(PD)(A|B)ρz
AB

(C4)

in the purified distance.
Proof.—Since Z is a classical register, the z are mutu-

ally orthogonal. By the definition of the min-entropy (see
Sec. III A 3) we have, for all z,

λTr[ρz
AB]
∑

z

1A ⊗ |z〉〈z| −
∑

z

ρz
AB ⊗ |z〉〈z| ≥ 0

⇐⇒ λTr[ρz
AB]1A − ρz

AB ≥ 0.

Therefore, again recalling the definition of the min-
entropy, we obtain

Hmin(TD)(A|BZ) = inf
z

Hmin(TD)(A|B)ρz
AB

. (C5)

Using the definition of smoothed min-entropies, we know
that, for every δ > 0 and every z ∈ Z, there exists ρ̃z

AB ∈
Bε

TD(ρz
AB) such that

Hmin(TD)(ρ̃
z
AB||ρz

B) = inf
z

Hmin(TD)(ρ
z
AB||ρz

B)− δ,

for example, if we let ρ̃z
AB be the optimizer for the smooth

min-entropy. Then, defining ρ̃ABZ :=∑z ρ̃z
AB, we obtain,

from Eq. (C5),

Hmin(TD)(ρ̃ABZ ||ρBZ) = inf
z

Hmin(TD)(ρ̃
z
AB||ρz

B)

≥ H ε
min(TD)(ρ

z
AB||ρz

B)− δ.

It remains to show that ρ̃ABZ is in the smoothing ball of
ρABZ . We use the trace-distance ball, where ρ̃ABZ is guar-
anteed to be a subnormalized state. Therefore, following

Ref. [36], we first prove Eq. (C3):

||ρ̃ABZ − ρABZ ||1 = inf
z
||ρ̃z

AB − ρz
AB||1 ≤

∑

z

Tr[ρz
AB]ε ≤ ε.

This concludes the proof in trace-distance smoothing.
Using Proposition 2, we obtain Eq. (C4). �

Lemma 6 (Removing a classical communication regis-
ter).—Let HC,HE′ , and HX be separable Hilbert spaces,
and let dim(HC) <∞ and dim(HX ) <∞, where X is
the raw key and C the transcript of the communication
between Alice and Bob. Let ρ ∈ D(HX ⊗HE′ ⊗HC),
and let ρXE′ ∈ D(HX ⊗HE′) be the state after tracing out
register C. Then, for smoothing in the trace distance,

H ε
min(TD)(X |E′C)ρ ≥ H ε

min(TD)(X |E′)ρ − leakEC.

Proof.—This proof follows closely the proof of Lemma
2 of Ref. [61]. We define Y to be the other party’s local
information used during information reconciliation and
start with the left-hand side of the statement,

H ε
min(TD)(X |E′C)ρ

≥ H ε
min(TD)(XC|E′)ρ − log2(|C|)

≥ H ε
min(TD)(X |E′)ρ + Hmin(TD)(C|XE′)ρ − log2(|C|)

≥ H ε
min(TD)(X |E′)ρ + Hmin(TD)(C|XYE′)ρ − log2(|C|)

≥ H ε
min(TD)(X |E′)ρ + Hmin(TD)(C|XYE′)ρ − log2(|C|).

The first inequality follows from the chain rule for smooth-
min entropies (Lemma 3) and the second inequality is an
extension of Lemma 3.2.10 of Ref. [36] for an infinite-
dimensional register C → E′. We remark that proving
this extension requires extending the min-entropy part of
[36, Lemma 3.1.8], which we achieved in Lemma 5 and
Renner achieved in [36, Lemma 3.1.1], where the proof for
the infinite-dimensional case is identical to the proof given
there. The third line is obtained by the strong subadditiv-
ity property of the smooth min-entropy (Lemma 4) and the
last inequality comes from the fact that E′ ↔ (X , E′)↔ C
forms a Markov chain since C is computed by Alice and
Bob as a function of XY. Finally, since log2(|C|) stands for
the number of all possible information-reconciliation tran-
scripts, we may replace it with the actual leakage leakEC
giving the number of bits needed to implement the used
information-reconciliation scheme. �

APPENDIX D: GENERALIZATION OF THE
ASYMPTOTIC EQUIPARTITION PROPERTY

In this appendix, we generalize the asymptotic equipar-
tition property [36, Corollary 3.3.7] to infinite dimensions.
The proof there requires an ordering on the eigenvalues as
well as the Birkhoff–von Neumann theorem, so it needs
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some care to generalize the AEP statement to infinite
dimensions. We note that the fully quantum asymptotic
equipartition property was extended to infinite dimensions
in Refs. [41,60,62,63]. However, as noted in Ref. [31], this
version is harder to apply numerically. The basic idea of
our proof relies on the fact that the infinite-dimensional
min-entropy can be converged via projections [41]. Before
we come to the actual proof, it requires some preparations.

We start by extending the definition of the max-relative
entropy to infinite dimensions.

Definition 2 (Infinite-dimensional max-relative
entropy).—Let HA be a Hilbert space, and let P, Q ∈
Pos(HA). Then the max-relative entropy is defined by

Dmax(P||Q) = inf{λ : P ≤ 2λQ}.

Next, we prove that Dmax is a Rényi divergence, just as
in finite dimensions.

Proposition 3.—For the max-relative entropy, as defined
in Eq. (2), the following statements holds

(1) Normalization: Dmax(aP||bQ) = Dmax(P||Q)+
log2(a)− log2(b).

(2) Dominance: for P, Q, Q′ ∈ Pos(HA) and Q ≤ Q′,
we have Dmax(P||Q) ≥ Dmax(P||Q′).

Proof.—We prove the two points separately.

(1) Let λ∗ := Dmax(P||Q) and λ := Dmax(aP||bQ). We
show two directions.
≥ Using the definition of the max-relative

entropy yields aP ≤ 2λbQ, which implies that P ≤
2λbQ/a. According to the definition, λ∗ is the infi-
mum of all μ such that P ≤ 2μQ; hence, 2λ∗ ≤
2λb/a. Taking the logarithm and rearranging yields
λ ≥ λ∗ + log2(a)− log2(b), which concludes the
first direction.
≤ Using the max-relative entropy yields P ≤

2λ∗Q. This is equivalent to aP ≤ 2λ∗abQ/b.
According to the definition, λ is the infimum of all
μ such that aP ≤ 2μbQ; hence, 2λ ≤ 2λ∗a/b. Tak-
ing the logarithm and rearranging yields λ ≤ λ∗ +
log2(a)− log2(b).

(2) Again, for λ∗ := Dmax(P||Q), we have P ≤ 2λ∗Q.
Since Q ≤ Q′, we have P ≤ 2λ∗Q ≤ 2λ∗Q′. So, λ∗
is feasible for Dmax(P||Q′). Hence, it is an upper
bound.

This proves the claim. �
Defining Hmin(ρAB||σB) = −Dmax(ρAB||1A ⊗ σB) gives

us the following corollary.
Corollary 1.—Let ρ ∈ Pos(HA ⊗HB) and σ , σ ′ ∈

Pos(HA) such that σ ≤ σ ′. Then the following statements
hold.

(1) Normalization: Hmin(aρ||bσ) = Hmin(ρ||σ)−
log2(a)+ log2(b).

(2) Dominance: Hmin(ρ||σ) ≤ Hmin(ρ||σ ′).
Definition 3.—Let HA and HB be separable Hilbert

spaces, and let ρ ∈ Pos(HA ⊗HB) and σ ∈ Pos(HB). For
ε ∈ (0,

√
Tr[ρ]), the smooth min-entropy is given by

H ε
min(TD)(ρ||σ) := sup

ρ̃∈Bε
TD(ρ)

Hmin(TD)(ρ̃||σ).

Note that this coincides with the definition given in the
main text (Sec. III A). Next, we want to generalize Lemma
2 of Ref. [41]. Therefore, we introduce sequences of pro-
jectors {
k}k∈N onto finite-dimensional subspaces U ⊆ H
of the relevant Hilbert space H that converge to the iden-
tity 1H with respect to || · ||1. Then we define a sequence
of non-normalized projected states as ρ̂k := 
kρ̂
k. For a
more detailed description, we refer the reader to Ref. [41,
Section II]. We note that the following could be trivially
further generalized to a continuity claim for the smoothed
max-relative entropy.

Lemma 7.—Let ρB ∈ D(HA ⊗HB), and let {ρ̂k
AB}∞k=1 be

a sequence of normalized projected states converging to
ρAB in the || · ||1-norm. Let σB ∈ D(HB) and {σ̂ k

B}∞k=1 be a
sequence of normalized projected states that converge to
σB. For any fixed t ∈ (0, 1), there exists k0 ∈ N such that,
for all k ≥ k0, we have

H ε
min(TD)(ρB||σB)≥H tε

min(TD)(ρ̂
k
AB||σ̂ k

B)+ log2(Tr[
k
Bσ
k

B]).

Proof.—For fixed σ , the statement can be established by
showing that, for all k ≥ k0, Btε

TD(ρ̂k
AB) ⊆ Bε

TD(ρAB), where
the proof is then identical to the proof of Lemma 2 of
Ref. [41]. Therefore, we take this result as established, so
there exists k0 such that

H ε
min(TD)(ρAB||σ) ≥ H ε

min(TD)(ρ̂
k
AB||σ) for all k ≥ k0.

(D1)

We are using this result and Corollary 1 to prove the
general case. We deduce that

H tε
min(TD)(ρ̂

k
AB||σ̂ k

B)

= H tε
min(TD)

(

ρ̂k
AB

∥
∥
∥
∥

σ k
B

Tr[
k
Bσ
k

B]

)

= H tε
min(TD)(ρ̂

k
AB||σ k

B)+ log2

(
1

Tr[
k
Bσ
k

B]

)

,

where we applied the normalization property in Corollary
1 for the second equality. Then, using the dominance prop-
erty in Corollary 1 and noting that σ ≥ 
k

Bσ
k
B = σ k, we
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obtain

H tε
min(TD)(ρ̂

k
AB||σ k

B) ≤ H tε
min(TD)(ρ̂

k
AB||σB).

Putting things together, we have

H tε
min(TD)(ρ̂

k
AB||σ̂ k

B) ≤ H tε
min(TD)(ρ̂

k
AB||σB)

− log2(Tr[
k
Bσ
k

B]).

Thanks to Eq. (D1) we know already that there exists such
a k0 to bound H ε

min(TD)(ρ̂
k
AB||σ). This completes the proof.

�
In the next lemma, we extend Renner’s AEP [36,

Theorem 3.3.6] to infinite-dimensional side information.
Note that we cannot generalize register A to infinite dimen-
sions, as the correction term is a function of the dimension
of this register. However, this generalization is not required
for QKD anyways.

Lemma 8.—Let HA and HB be separable Hilbert spaces,
where HA is finite dimensional, dim(HA) <∞. Let ρAB ∈
D(HA ⊗HB) and n ∈ N. Then, for any ε ∈ (0, 1),

1
n

H ε
min(TD)(ρ

⊗n
AB ||σ⊗n

B )

≥ H(AB)ρ − H(B)ρ − D(ρB||σB)− δ,

where δ = 2 log2(rank(ρA)+ Tr[ρ2
B(1A ⊗ σ−1

B )+ 2)])√
log2(1/ε)/n+ 1. In terms of purified distance, we

replace ε �→ √
ε.

Proof.—We follow the proof of [41, Proposition 8].
Let

(

k

A, 
k
B

)
be sequences of projectors such that ∀k′ ≥

k : 
k
A ≤ 
k′

A that converges to the identity in the weak
operator topology and similarly for the projectors in B.
Then, the n-fold projectors

((

k

A

)⊗n ,
(

k

B

)⊗n
)

satisfy
these conditions as well.

Fix t ∈ (0, 1). Then, by Lemma 7 there ∃k0 ∈ N such
that ∀k ≥ k0

H ε
min(TD)

(
ρ⊗n

AB

∣
∣
∣
∣σ⊗n

B

) ≥ H tε
min(TD)

((
ρ̂AB
)⊗n
∣
∣
∣

∣
∣
∣
(
σ̂B
)⊗n
)

− n log2
(
Tr[
kσ
k]

)

holds. We used that the trace is multiplicative over tensor
products. Next, since we are working on projections, we

can apply [36, Theorem 3.3.6] and obtain

1
n

H ε
min(TD)

(
ρ⊗n

AB

∣
∣
∣
∣σ⊗n

B

)

≥ H
(
ρ̂k

AB

)− H
(
ρ̂k

B

)− D
(
ρ̂k

B

∣
∣
∣
∣σ̂ k

B

)− δ(tε)

− log2
(
Tr[
kσ
k]

)
. (D2)

When we take the limit of k →∞ the left-hand side
doesn’t change, while the right-hand side, by our assump-
tions on the projections, recovers the true states. The
log-term drops, as log2 (Tr[σ ]) = log2(1) = 0. Hence, we
obtain

1
n

H ε
min(TD)

(
ρ⊗n

AB

∣
∣
∣
∣σ⊗n

B

) ≥ H (ρAB)− H (ρB)

− D (ρB||σB)− δ(tε).

Finally, taking the limit t → 1 completes the proof. �
We obtain the final result of this section, the generalized

Asymptotic Equipartition Property, as a corollary.
Corollary 2 (Asymptotic equipartition property).—Let

HX and HE be separable Hilbert spaces, where HX is
finite-dimensional. Let ρXE be a classical-quantum state.

Then, for smoothing in terms of trace distance

1
n

H ε
min(TD)(X |E)ρ⊗n

XE
≥ H(X |E)− δ(ε),

where δ(ε) := 2 log2(rank(ρX )+ 3)
√

log2(2/ε)/n. For
smoothing in terms of purified distance, every ε needs to
be replaced by

√
ε.

Proof.—The proof is now identical to that of Corollary
3.3.7 of Ref. [36], where we omit the simplifications at
the end of the proof. The purified-distance bound can be
obtained by Proposition 2. �

APPENDIX E: DERIVATION OF THE
FINITE-DIMENSIONAL OPTIMIZATION

PROBLEM

In this appendix, we motivate and derive the primal and
dual semidefinite programs we have to solve in order to
obtain a lower bound on the secure key rate. Our start-
ing point is the infinite-dimensional optimization problem,
given in Eqs. (20), which we obtain based on Bob’s obser-
vations. By introducing slack variables, the inequality
constraints can be turned into equality constraints:

min f (ρ)

subject to TrB[ρ] = ρA,

|Tr[�̂j ρ]− γj | ≤ μj ,

Tr[ρ] = 1,

ρ ≥ 0

⇐⇒

min f (ρ)

subject to TrB[ρ] = ρA,

Tr[�̂j ρ] ≤ μj + γj ,

− Tr[�̂j ρ] ≤ μj − γj ,

Tr[ρ] = 1, ρ ≥ 0.
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Next, we apply the dimension reduction method [21] and
obtain the expanded finite-dimensional optimization

min f (ρ)

subject to 1
2 ||TrB[ρ̄]− ρA||1 ≤

√
w,

μj + γj − w||�̂j ||∞ ≤ Tr[�̂j ρ] ≤ μj + γj ,

1− w ≤ Tr[ρ] ≤ 1,

ρ ≥ 0,

where we replaced the infinite dimensional ρ by the finite
dimensional ρ and used the improved bound

√
w for the

trace-norm constraint from Ref. [38, p. 59]. Furthermore,
we can rewrite the trace-norm constraint (see, for example,
Ref. [64]). We obtain

min f (ρ) (E1a)

subject to Tr[P]+ Tr[N ] ≤ 2
√

w, (E1b)

P ≥ TrB[ρ]− ρA, (E1c)

N ≥ −(TrB[ρ]− ρA), (E1d)

Tr[�̂j ρ] ≤ μj + γj , (E1e)

Tr[−�̂j ρ] ≤ μj − γj + w||�̂j ||∞, (E1f)

1− w ≤ Tr[ρ] ≤ 1, (E1g)

ρ, N , P ≥ 0. (E1h)

The numerical method in Ref. [30] lower bounds the
minimum of the objective function as follows. Let ρ∗

minimize f over the feasible set S . Then, we have

f (ρ∗) ≥ f (ρ)+ Tr[(ρ∗ − ρ)∇f (ρ]

≥ f (ρ)+min
σ∈S

Tr[(σ − ρ)∇f (ρ]

= f (ρ)− Tr[ρ∇f (ρ])−min
σ∈S

Tr[σ∇f (ρ)].

Therefore, in what follows, we consider this linearized
problem. The feasible set is given by the constraints in
Eqs. (E1). Furthermore, for ease of notation, we denote
all measurement operators by the label �̂ and call the
right-hand sides of the constraints related to measurements
Eq. (E1e) and the trace condition Eq. (E1j) λj to obtain a
more abstract form of our optimization problem. Then, the
problem reads

min 〈∇f (ρ), σ 〉
subject to λk − Tr[�̂kσ ] ≥ 0,

2
√

w− Tr[P]− Tr[N ] ≥ 0,

P − TrB[σ ]+ ρA ≥ 0,

N + TrB[ρ]− ρA ≥ 0,

ρ, N , P ≥ 0.

The standard forms of the semidefinite programs are as
follows.

(P) For the primal problem,

α := inf 〈X , H1〉H1

subject to N (X )− H2 ∈ K2,

X ∈ K1.

(D) For the dual problem,

β := sup 〈Y, H2〉H2

subject to H1 −N ∗(X ) ∈ K∗1,

Y ∈ K∗2.

Note that K1 denotes the cone

K1 :=
⎧
⎨

⎩

⎛

⎝
x1
x2
x3

⎞

⎠ : x1, x2, x3 ∈ H1 ∧ x1, x2, x3 ≥ 0

⎫
⎬

⎭
,

where K∗1 denotes the dual cone of K1 and 〈·, ·〉H1 and
〈·, ·〉H2 are the inner products on the Hilbert spaces H1 and
H2, where the optimization problems are set. In our case,
we have K∗1 = K1 and the first inner product is the Hilbert-
Schmidt inner product over the Hilbert space of bounded
linear operators and the second inner product is the inner
product induced by the componentwise inner products of
Hilbert spaces of the constituents of Y. Here H1, H2, and
N are known, while X is the primal optimization variable
and Y is the optimization variable in the dual problem.

For the present problem, we identify

X = (σ ⊕ P ⊕ N ),

H1 = (∇f (ρ)⊕ 0⊕ 0),

H2 = −(−λ1 ⊕ · · · ⊕ λ6NSt ⊕ 2
√

w⊕ ρA ⊕−ρA),

Y = (y1 ⊕ · · · ⊕ y6NSt ⊕ s⊕ τ ⊕�),

where we interpret scalars as 1× 1 matrices, as well as the
linear map

N (X ) = N (X1 ⊕ X2 ⊕ X3)

= (−Tr[X1�̂1]⊕ · · · ⊕ −Tr[X1�̂6NSt ]

⊕−Tr[X2]⊕−Tr[X3]⊕ X2

− TrB[X1]⊕ X3 − TrB[X1]).
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It remains to find the dual (adjoint) of N , defined by
〈Y,N (X )〉H2 = 〈N ∗(Y), X 〉H1 . One can show that

N ∗(y1 ⊕ · · · ⊕ y6NSt ⊕ s⊕ τ ⊕�)

=
((

−
6NSt∑

j=1

yj �̂j − τ ⊗ IB −�⊗ IB

)

⊕ (−s · I + τ)⊕ (−s · I +�)

)

.

Therefore, the dual problem reads

−max �y · �λ+ 2
√

ws+ Tr[ρAτ ]− Tr[ρA�]

subject to ∇f (ρ)+
6NSt∑

j=1

yj �̂j + τ ⊗ IB −�⊗ IB ≥ 0,

s · I − τ ≥ 0,

s · I +� ≥ 0,

�y ≥ 0, s ≥ 0, τ , � ≥ 0.

Finally, we apply the relaxation in Ref. [30] to take numer-
ical imprecisions into account. This adds εnum to the vector
�v as well as to 2

√
w. Therefore, as claimed, we finally

obtain the dual.

APPENDIX F: COMPLETENESS

Proof of Proposition 1.—First, we show why the com-
pleteness may be decomposed into multiple epsilon
terms. This has also been explained in other work [65].
By the definition of completeness of a QKD protocol
(Definition 1),

Pr[Abort|Honest]

= Pr[ET Abort ∪ AT Abort ∪ EC Abort|Honest]

≤ Pr[ET Abort|Honest]+ Pr[AT Abort|Honest]

+ Pr[EC Abort|Honest],

where we have used the fact that the energy test, accep-
tance test, and error correction are the steps in the protocol
that might abort and then applied the union bound. We take
Honest to mean the input at the step conditioned on the
previous inputs passing on the honest input. We take the
honest input to be the state σ⊗n := (EHonest(ρ))⊗n, where
ρ is the state the devices effectively prepare and EHonest
is the assumed memoryless noisy channel when there is
no eavesdropper. We can then take each of these condi-
tional probabilities and define a notion of ε completeness
for these subprotocols in the same manner as for the whole
protocol (Definition 1). The completeness of error correc-
tion is a choice of the error correcting code, so we leave

this as an input parameter of the protocol, εc
EC. Thus we

are only interested in bounding the other two probabilities.
For the energy test, it is very similar to what was done in

Appendix A, so we follow the notation from that section.
First,

Pr[ET Abort|Honest] = Pr[|{Yi : Yi ≤ βT}| > lT|σ ]

=
kT∑

j=lT+1

Pr[fkT = Pj |σ ]

≤
kT∑

j=lT+1

2−kTD(Pj ||Qσ ),

where we first used the definition of when the proto-
col aborts, then decomposed it into the types, and finally
applied Eq. (A5) using

Qσ :=
(

1− Tr[σV1]
Tr[σV1]

)

.

Finally, this sum may be tedious to calculate, so we make
an assumption to simplify the calculation. We assume that
1− Tr[V1σ ] < (lT + 1)/kT. This means that every j >

lT + 1 term can only lead to a larger relative divergence
term than the lT + 1 term. It follows that we have

Pr[ET Abort|Honest] ≤
kT∑

j=lT+1

2−kTD(Pj ||Qσ )

≤ (kT − lT − 1)2−kTD(PlT+1||Qσ )

=: εc
ET.

This completes the explanation for the energy test.
For the acceptance test,

Pr[AT Abort|Honest] = Pr[there exists X ∈ � :

|vX − rX | > tX |σ ]

≤
∑

X ∈�

Pr[|vX − rX | > tX |σ ]

≤ 2
∑

X ∈�

e−2mX t2X /(4‖X ‖2∞)

=: εc
AT,

where we have used the definition of the accepted obser-
vations (O in Theorem 3), the union bound, and then
Hoeffding’s inequality. Combining these terms completes
the proof. �
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