
PRX QUANTUM 4, 040305 (2023)

Optimal Protocols for Quantum Metrology with Noisy Measurements
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Measurement noise is a major source of noise in quantum metrology. Here, we explore preprocessing
protocols that apply quantum controls to the quantum sensor state prior to the final noisy measurement
(but after the unknown parameter has been imparted), aiming to maximize the estimation precision. We
define the quantum preprocessing-optimized Fisher information, which determines the ultimate precision
limit for quantum sensors under measurement noise, and conduct a thorough investigation into optimal
preprocessing protocols. First, we formulate the preprocessing optimization problem as a biconvex opti-
mization using the error observable formalism, based on which we prove that unitary controls are optimal
for pure states and derive analytical solutions of the optimal controls in several practically relevant cases.
Then we prove that for classically mixed states (whose eigenvalues encode the unknown parameter) under
commuting-operator measurements, coarse-graining controls are optimal, while unitary controls are sub-
optimal in certain cases. Finally, we demonstrate that in multiprobe systems where noisy measurements
act independently on each probe, the noiseless precision limit can be asymptotically recovered using
global controls for a wide range of quantum states and measurements. Applications to noisy Ramsey
interferometry and thermometry are presented, as well as explicit circuit constructions of optimal controls.
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I. INTRODUCTION

Quantum metrology is one of the pillars of quantum
science and technology [1–5]. This field deals with fun-
damental precision limits of parameter estimation imposed
by quantum physics. Notably, it seeks to use nonclassi-
cal effects to enhance the estimation precision of unknown
parameters in quantum systems, which has led to the devel-
opment of improved sensing protocols in various experi-
mental platforms [6–11]. To characterize the metrological
limit of quantum sensors, the quantum Cramér-Rao bound
(QCRB) [12,13], which is saturable for a large number
of experiments, is conventionally used. It is defined using
the quantum Fisher information (QFI) [14–16], which is
one of the most useful and celebrated tools in quantum
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metrology, with a considerable amount of research focused
on developing better ways to calculate and bound
it [17–22].

Although the QCRB and the QFI apply extensively in
quantum sensing, they are defined assuming that arbi-
trary quantum measurements can be applied on quantum
states to extract information about the unknown param-
eter. However, in actual experimental platforms, such as
nitrogen-vacancy centers [23–29], superconducting qubits
[30], trapped ions [31,32], and more, measurements are
often noisy and time expensive, rendering the sensitivity
of practical quantum devices far from the theoretical lim-
its given by the QCRB. In particular, measurement noise
remains a significant source of noise in quantum sensing
experiments. Other sources of noise, such as system evo-
lution and state preparation, have been studied extensively,
with methods developed to mitigate their effect [17,33–45].

To tackle the effect of measurement noise on quan-
tum metrology, interaction-based readouts were proposed
[46–51] and demonstrated experimentally [52–54], where
bespoke inter-particle interactions that enhance phase esti-
mation precision in spin ensembles are applied before the
noisy measurement step and after the probing step. The
idea of employing unitary controls in a preprocessing man-
ner, i.e., after the unknown parameter has been imparted
but prior to the final measurement, was later formulated
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as the imperfect (or noisy) QFI problem [50,55], where
the preprocessing is optimized over all unitary operations.
Classical postprocessing methods, such as measurement
error mitigation [56–58], can then work in complement to
the quantum preprocessing method for parameter estima-
tion under noisy measurements.

Apart from a few specific cases, such as qubit sensors
with lossy photon detection [55], setting the metrologi-
cal limit under measurement noise by computing imperfect
QFI has been difficult, limiting its practical application. In
this work, we propose a more general measurement opti-
mization scheme, where arbitrary quantum controls (i.e.,
general quantum channels that can be implemented utiliz-
ing unitary gates and ancillas) are applied before the noisy
measurement. The goal is to identify the FI optimized
over all quantum preprocessing channels for general quan-
tum states and measurements, that we call the quantum
preprocessing-optimized FI (QPFI) and quantifies the ulti-
mate power of quantum sensors with measurement noise,
and to obtain the corresponding optimal controls, that can
be applied to achieve the optimal sensitivity in practical
experiments.

We systematically study the QPFI, along with the cor-
responding optimal preprocessing controls in this work.
In Sec. II, we first define the QPFI and review related
concepts. We then introduce the concept of error observ-
ables in Sec. III, and use it to demonstrate that the QPFI
problem can be cast as a biconvex optimization problem
[59]. In turn, this allows us to find analytical conditions
for optimality, and to identify optimal controls saturat-
ing the QPFI in the setting of commuting measurements
applied to pure states (see Sec. IV). The case of classically
mixed states (i.e., states for which the unknown parameter
is encoded in the eigenvalues) is studied in Sec. V. Besides
analytical solutions, we also manage to prove that unitary
controls are optimal for pure states under general measure-
ments, and that coarse-graining controls are optimal for
classically mixed states under commuting-operator mea-
surements, with a counterexample illustrating the nonop-
timality of unitary controls. For general mixed states, we
further prove useful bounds on the QPFI in Sec. VI. In
terms of the asymptotic behavior of identical local mea-
surements acting on multiprobe systems, in Sec. VII, we
identify a sufficient condition for the convergence of the
QPFI to the QFI using an optimal encoding protocol
based on the Holevo-Schumacher-Westmoreland (HSW)
theorem [60,61]. We show that the relevant condition is
satisfied by a generic class of quantum states, including
low-rank states, permutation-invariant states, and Gibbs
states (with an unknown temperature), while previously
only the pure-state case was proven [55].

Our results provide a theoretically accessible precision
bound for quantum metrology under noisy measurements,
along with a roadmap towards preprocessing optimization
in sensing experiments.

II. DEFINITIONS

Given a quantum state ρθ as a function of an unknown
parameter θ , the procedure to estimate θ goes as follows
[see Fig. 1(a)]: (1) perform a quantum measurement {Mi}
on ρθ , which gives a measurement outcome i with prob-
ability pi,θ = Tr(ρθMi); (2) infer the value of θ using an
estimator θ̂ , which is a function of the measurement out-
come i; (3) repeat the above two steps multiple times and
use the average of θ̂ over many trials as the final estimate of
θ . Here, the quantum measurement {Mi} is mathematically
formulated as a positive operator-valued measure (POVM)
[62] that satisfies Mi ≥ 0 and

∑
i Mi = 1 (we use A ≥ 0

to indicate an operator A that is positive semidefinite).
We also assume in this work that ρθ and Mi lie in finite-
dimensional Hilbert spaces, with measurement outcomes
contained in a finite set.

In estimation theory, the Cramér–Rao bound (CRB)
[63–65] provides a lower bound on the estimation error for
any locally unbiased estimator θ̂ at a local point θ0 where

(a)

(b)

(c)

FIG. 1. (a) Standard parameter estimation procedure of a
quantum state ρθ using a quantum measurement {Mi}. The
estimation of θ is through an unbiased estimator θ̂ as a
function of measurement outcomes i. The CRB states �θ̂ ≥
1/
√

NexprF(ρθ , {Mi}). (b) Preprocessing protocols where the
measurement device is fixed, and the quantum control act-
ing before the measurement is optimized over all quantum

channels. The CRB states �θ̂ ≥ 1/
√

NexprFP(ρθ , {Mi}). (c) Pre-
processing protocols where the measurement device is fixed,
and the quantum control acting before the measurement is
optimized over all unitary channels. The CRB states �θ̂ ≥
1/
√

NexprFU(ρθ , {Mi}). Different types of FIs discussed in

this work satisfy F(ρθ , {Mi}) ≤ FU(ρθ , {Mi}) ≤ FP(ρθ , {Mi}) ≤
J (ρθ ) (and each inequality can be strict).
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ρθ is differentiable, satisfying

E[θ̂ |θ0] = θ0, and
∂

∂θ
E[θ̂ |θ ]

∣
∣
∣
∣
θ=θ0

= 1, (1)

where we use E[·|θ ] to denote the conditional expectation
over the probability distribution {pi,θ }. The above condi-
tion indicates that locally unbiased estimators θ̂ provide an
unbiased estimation of θ at the point θ0, which is also pre-
cise up to first order in its neighborhood. Note that in the
following we will implicitly use E[·] to represent E[·|θ ]
and consider locally unbiased estimators at a local point θ .
The CRB states that the estimation error �θ̂ (i.e., the stan-
dard deviation of the estimator θ̂ ) has the following lower
bound:

�θ̂ := (E[(θ̂ − θ)2])
1
2 ≥ 1

√
NexprF(ρθ , {Mi})

, (2)

where Nexpr is the number of experiments performed, and
F(ρθ , {Mi}) is the FI of the probability distribution {pi,θ =
Tr(ρθMi)} [63–65], defined by

F(ρθ , {Mi}) :=
∑

i:Tr(ρθMi) �=0

(Tr(∂θρθMi))
2

Tr(ρθMi)
. (3)

The CRB is often saturable asymptotically (i.e., when
Nexpr →∞) using the maximum-likelihood estimator [63–
65] and therefore the FI, which is inversely proportional to
the variance of the estimator, serves as a good measure of
the degree of sensitivity of {pi,θ } with respect to θ . One
caveat is the CRB applies only to locally unbiased estima-
tors and can be violated by biased estimators. Additionally,
there exist singular cases where maximum-likelihood esti-
mators are no longer necessarily asymptotically unbiased,
e.g., when the support of {pi,θ } varies in the neighborhood
of θ , and the CRB may not apply to them [66]. How-
ever, for self-consistency, this paper will focus only on
optimizing the FI, regardless of the limitations of the CRB.

The QFI of ρθ is the FI maximized over all possible
quantum measurements on ρθ (see Appendix A for further
details) and we will refer to the optimal measurements as
QFI-attainable measurements. Formally, the QFI is defined
by [12–14]

J (ρθ ) = max
{Mi}

F(ρθ , {Mi}), (4)

giving rise to the QCRB

�θ̂ ≥ 1
√

NexprJ (ρθ )
, (5)

which characterizes the ultimate lower bound on the esti-
mation error. Going forward, we will also overload the

notation and write

J ({pi,θ }) :=
∑

i:pi,θ �=0

(∂θpi,θ )
2

pi,θ
, (6)

to denote the FI of a classical probability distribution {pi,θ },
satisfying pi,θ ≥ 0 and

∑
i pi,θ = 1. Note that, from now

on, we will implicitly assume that the summation is taken
over terms with nonzero denominators.

In practice, the optimal measurements achieving the
QFI are not always implementable, restricting the range
of applications of the QCRB. For example, the projective
measurement onto the basis of the symmetric logarith-
mic operators, which is usually a correlated measurement
among multiple probes, is known to be optimal [14], while
quantum measurements in experiments are usually noisy
and not exactly projective. Here, we consider a metro-
logical protocol in which arbitrary quantum controls can
be implemented, after the unknown parameter θ has been
imparted to the quantum sensor state ρθ and before a fixed
quantum measurement is performed [see Fig. 1(b)]. We
call this additional step “preprocessing,” “premeasurement
processing” in full. Note that the idea of implementing pre-
processing quantum controls to improve sensitivity goes
beyond the FI formalism and applies to other figures of
merit of quantum sensors [67]. This model effectively
describes quantum experiments where the measurement
error is dominant, while the gate implementation error and
the state preparation error is relatively small, a noise model
that arises naturally in modern quantum devices such
as nitrogen-vacancy centers [23–26] and superconducting
qubits [30].

To quantify the sensitivity of estimating θ on ρθ with
the measurement {Mi} fixed, we define the FI optimized
over all preprocessing quantum channels, or the quantum
preprocessing-optimized Fisher information (QPFI), to be

FP(ρθ , {Mi}) = sup
E

F(E(ρθ ), {Mi}), (7)

where E is an arbitrary quantum channel (or a CPTP map
[68]). See Appendix B for mathematical properties of the
QPFI. In particular, when the quantum measurement is
fixed, the CRB induced by the QPFI, i.e.,

�θ̂ ≥ 1
√

NexprFP(ρθ , {Mi})
, (8)

provides a practical and tighter Cramér-Rao-type bound,
compared to the QCRB, for parameter estimation under
noisy measurements. We assume in the following discus-
sions that all measurements are nontrivial (i.e., ∃Mi �∝ 1,
for all {Mi}) and ∂θρθ �= 0 so that the QPFI is always
positive.

Unless stated otherwise, we will denote the systems that
ρθ and {Mi} act on by HS and HS′ , respectively, and we
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will refer to HS as the input system and HS′ as the output
system. We do not assume HS ∼= HS′ here. This broader
context is of particular interest when the quantum state
ρθ cannot be directly measured (e.g., readout of supercon-
ducting qubits via a resonator [30] and readout of nuclear
spins via an electron spin in a nitrogen-vacancy center [69–
72]); or when the quantum state is restricted to a subsystem
of the entire system while quantum measurement can be
performed globally.

Note that for generic noisy measurements, the supre-
mum in Eq. (7) is usually attainable, i.e., there exists
an optimal E such that F(E(ρθ ), {Mi}) is maximized (see
Appendix C). However, there exist singular cases where
F(E(ρθ ), {Mi}) has no maximum, due to the singularity
of the FI at the point Tr(E(ρθ )Mi) = 0 (see Sec. IV C for
an example). In such cases, there still exist near-optimal
quantum controls that attain supE F(E(ρθ ), {Mi})− η for
any small η > 0. In fact, we prove in Appendix C the
following.

Theorem 1.—Let M (ε)
i = (1− ε)Mi + εTr(Mi)1/d,

where d = dim(HS′) and 0 < ε < 1. Then

FP(ρθ , {Mi}) = lim
ε→0+

FP(ρθ , {M (ε)
i }), (9)

and the QPFI FP(ρθ , {M (ε)
i }) is attainable for any ε ∈

(0, 1].
In the following, we will focus mostly on the case

where the QPFI is attainable. We will discuss the behavior
of the QPFI, exploring numerical optimization algorithms
and analytical solutions to the optimal controls for certain
practically relevant quantum states and measurements.

We will also examine the FI optimized over all uni-
tary preprocessing channels, which we call the quan-
tum unitary-preprocessing-optimized Fisher information
(QUPFI) [50,55]

FU(ρθ , {Mi}) = sup
U

F(UρθU†, {Mi}), (10)

where U is an arbitrary unitary gate. (Note that our QUPFI
is the same as the imperfect QFI in Ref. [55].) Unlike
the QPFI, we assume HS′ ∼= HS (and do not distinguish
between S′ and S) when we talk about the QUPFI, so that
it is well defined. We note here that Theorem 1 holds for
the QUPFI, as well.

The optimal preprocessing controls that attain the QPFI
and the QUPFI usually depend on θ , whose value should
be roughly known before the experiment. Otherwise, one
might use the two-step method by first using

√
Nexpr states

to obtain a rough estimate θ̃ ≈ θ , and then performing
the optimal controls based on θ̃ on the remaining Nexpr −√

Nexpr states [73–75]. The two-step procedure introduces
a negligible amount of error asymptotically.

Before we proceed, we prove a relation between the
QPFI and the QUPFI that will be useful later.

Proposition 2.—Let HS and HS′ be the input and
output systems of E . Suppose HA1 and HA2 are
ancillary systems such that HA1 ⊗HS ∼= HA2 ⊗HS′ .
If dim(HA1) ≥ dim(HS′)2 [or equivalently, dim(HA2) ≥
dim(HS) dim(HS′)], then

FP
(
(ρθ )S, {(Mi)S′ }

)

= FU
(
(ρθ )S ⊗ |0A1〉 〈0A1 | , {(Mi)S′ ⊗ 1A2}

)
, (11)

where we use subscripts to denote the systems the opera-
tors are acting on.

Proof.—Any quantum channel E(·) =∑rE
i=1 Ki(·)K†

i
from HS to HS′ can be implemented by acting unitarily
on HS and an ancillary system HA1 , and then tracing over
an auxiliary system HA2 , if dim(HA2) ≥ rE (Stinespring’s
dilation [68]). For any quantum channel with the input sys-
tem HS and the output system HS′ , there always exists
a Kraus representation E(·) =∑rE

i=1 Ki(·)K†
i such that

rE ≤ dim(HS′) dim(HS) [68]. Therefore, if dim(HA2) ≥
dim(HS′) dim(HS), the unitary extension should exist.

Let HS ⊗HA1
∼= HS′ ⊗HA2 be the enlarged, iso-

morphic input and output Hilbert spaces, respectively.
If dim(HA1) ≥ dim(HS′)2, then dim(HA2) = dim(HA1)

dim(HS)/dim(HS′) ≥ dim(HS′) dim(HS). Thus, there is a
unitary UE mapping HS ⊗HA1 to HS′ ⊗HA2 such that

E(σ ) = TrA2(UE(σ ⊗ |0〉 〈0|)U†
E). (12)

From Eq. (3), it follows that

F(E(ρθ ), {Mi}) = F(TrA2(UE(ρθ ⊗ |0〉 〈0|)U†
E), {Mi})

= F(UE(ρθ ⊗ |0〉 〈0|)U†
E , {Mi ⊗ 1}),

where we omit the subscripts for simplicity. Note that the
Stinespring’s dilation technique is also useful in relating
the QFI of a mixed state to the QFI of its purification in an
extended Hilbert space [17,18]. Taking the supremum over
E in the above equality, we have

FP(ρθ , {Mi}) ≤ FU(ρθ ⊗ |0〉 〈0| , {Mi ⊗ 1}). (13)

On the other hand, for any U from HS ⊗HA1 to HS′ ⊗
HA2 , TrA2(U((·)⊗ |0〉 〈0|)U†) is a quantum channel from
HS to HS′ , proving the other direction of Eq. (11). �

III. ERROR OBSERVABLE FORMULATION

In this section, we will formalize the optimization of FI
over quantum preprocessing controls as a biconvex opti-
mization problem using the concepts of error observables.
Using this new formulation, the preprocessing optimiza-
tion problem becomes numerically tractable with standard
algorithms for biconvex optimization [59]; and also analyt-
ically tractable for practically relevant quantum states (see
Sec. IV).
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Here, we consider the preprocessing optimization prob-
lem in Eq. (7). On the surface, it may appear from
the definition of FI [Eq. (3)] that the target function
F(E(ρ), {Mi}) is mathematically formidable. To simplify
the target function, we introduce the error observable X
and the squared error observable X2, defined by

X =
∑

i

xiMi, and X2 =
∑

i

x2
i Mi, (14)

where xi is interpreted as the difference between the esti-
mator value θ̂ (i) and the true value θ , i.e. xi = θ̂ (i)− θ .
We assume there are r measurement outcomes and use x
to denote the vector (x1, . . . , xr). The local unbiasedness
conditions [Eq. (1)] for a single-shot measurement then
become

Tr(ρθX ) = 0, and Tr(∂θρθX ) = 1. (15)

It can be verified mathematically (which is essentially a
proof of the CRB) that the minimum of the variance of
the estimator under the local unbiasedness conditions is the
inverse of the FI; that is,

F(ρθ , {Mi})−1 = min
x

Tr(ρθX2), such that Eq. (15). (16)

The problem above is a convex optimization over variables
x, which can be solved using, e.g., the method of Lagrange
multipliers [76]. The optimal solution to x is

xi =
Tr(∂θ ρθMi)
Tr(ρθMi)

∑
j :Tr(ρθMj ) �=0

(Tr(∂θ ρθMj ))2

Tr(ρθMj )

, (17)

when Tr(ρθMi) �= 0, and xi = 0 when Tr(ρθMi) = 0. Note
that the error observable formulation was previously used
to derive the QCRB [77], where the QFI satisfies

J (ρθ )−1 = min
X

Tr(ρθX 2), such that Eq. (15), (18)

and X an arbitrary Hermitian matrix subject to the con-
straints in Eq. (15). This formulation has several useful
applications [78–80]. In particular, an algorithm was pro-
posed in Ref. [55] based on Eq. (18), to optimize the QFI
of quantum channels.

Combining Eqs. (16) and (7), we have that

FP(ρθ , {Mi})−1 = inf
(x,E)

Tr(E(ρθ )X2),

such that Tr(E(ρθ )X ) = 0,

Tr(E(∂θρθ )X ) = 1. (19)

Let HS and HS′ be the input and output systems of E and
let {|k〉S}dim(HS)

k=1 and {|j 〉S′ }dim(HS′ )
j=1 be two sets of orthonor-

mal basis of HS and HS′ , respectively. In the rest of

this section, we use matrix representations of operators
in the above bases. It is convenient to represent a CPTP
map E using a linear operator acting on HS′ ⊗HS. Let
E(·) =∑i Ki(·)K†

i be the Kraus representation of E . Then,
the linear operator 	 =∑i |Ki〉〉〈〈Ki| is usually called the
Choi matrix of E [68], where |
〉〉 :=∑jk(
)jk |j 〉S′ |k〉S and
(
)jk = 〈j |S′ (
) |k〉S. 	 corresponds to a CPTP map if and
only if 	 ≥ 0 and TrS′(	) = 1S. E acting on any den-
sity operator σ can be expressed using 	 through E(σ ) =
TrS((1⊗ σ T)	) [we use (·)T to denote matrix transpose].
Using the Choi matrix representation in Eq. (19), we have
the following.

Theorem 3.—The optimal value of the following bicon-
vex optimization problem gives the inverse of the QPFI.

FP(ρθ , {Mi})−1 = inf
(x,	)

Tr((X2 ⊗ ρT
θ )	),

such that 	 ≥ 0, TrS′(	) = 1S,

Tr((X ⊗ ρT
θ )	) = 0,

Tr((X ⊗ ∂θρ
T
θ )	) = 1. (20)

Equation (20) is a biconvex optimization problem of
variables x and 	. Fixing 	, Eq. (20) is a quadratic pro-
gram with respect to x, and fixing x, Eq. (20) is a semidefi-
nite program with respect to 	; each of which is efficiently
solvable when the system dimensions are moderate and the
domain of variables is compact.

Note that the domain of x is unbounded in Eq. (20). In
practice, one may impose a bounded domain on x so that
the minimum of Eq. (20) always exists. For cases where
the QPFI is attainable, the optimal value of the bounded
version will be equal to the one of Eq. (20) when the size of
the bounded domain is sufficiently large. For singular cases
where the QPFI is not attainable, the optimal value of the
bounded version will approach the one of Eq. (20) with an
arbitrarily small error as the size of the domain increases.
We describe an algorithm called the global optimization
algorithm [81] in Appendix D that can solve the bounded
version of Eq. (20).

Finally, we note that Theorem 3 does not directly gen-
eralize to the case of QUPFI because the Choi matrices of
unitary operators do not form a convex set. On the other
hand, besides the set of quantum channels, our approach is
also useful in optimizing the FI over other sets of quantum
controls when the constraints on their Choi matrices can
be represented using semidefinite constraints, e.g., the set
of quantum channels that act only on a subsystem of the
entire system.

IV. PURE STATES

In this section, we consider the special case where
ρθ = ψθ = |ψθ 〉 〈ψθ | is pure, which is most common in
sensing experiments. We first consider the optimization of
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the FI over the error vector x and the unitary control U,
and obtain two necessary conditions for the optimality of
(x, U). We use these conditions to prove equality between
the QPFI and the QUPFI for pure states, showing that uni-
tary controls are optimal for such states (when HS ∼= HS′).
We also obtain an analytical expression of the QPFI for
binary measurements (i.e., measurements with only two
outcomes), and a semianalytical expression and analyti-
cal bounds for general commuting-operator measurements
(i.e., measurements {Mi} that satisfy [Mi, Mj ] = 0 for all
i, j ). In particular, we prove that the optimal control is
given by rotating the pure state and its derivative into a
two-dimensional subspace spanned by two of the common
eigenstates of the commuting-operator measurements.

A. Necessary conditions for optimal controls

Proposition 2 shows that the optimization for the QPFI
can be reduced to an optimization for the QUPFI using the
ancillary system. Thus, here we first focus on the following
optimization problem over the unitary control:

FU(ρθ , {Mi})−1 = inf
(x,U)

Tr(UρθU†X2), (21)

such that Tr(UρθU†X ) = 0, (22)

Tr(U∂θρθU†X ) = 1. (23)

We obtain necessary conditions for the optimality of (x, U)
that will be useful later.

Lemma 4.—If (x, U) is an optimal point for Eq. (21), it
must satisfy

Tr(U∂θρθU†X )

Tr(UρθU†X2)
[X2, UρθU†] = 2[X , U∂θρθU†]. (24)

In particular, suppose ρθ = |ψθ 〉 〈ψθ | is pure. Let

|ψ⊥
θ 〉 := 1√

n
(1− |ψθ 〉 〈ψθ |) |∂θψθ 〉 , (25)

|φ〉 := U |ψθ 〉 , |φ⊥〉 := U |ψ⊥
θ 〉 , (26)

where the normalization factor n = 〈∂θψθ | (1− |ψθ 〉 〈ψθ |)
|∂θψθ 〉. Then Eq. (24) is equivalent to the following two
conditions:

(1) X |φ〉 = 1/(2
√

n) |φ⊥〉.
(2)

(〈φ|X2|φ〉X 2 − 〈φ|X 2|φ〉X2
) |φ〉 = 0.

Proof.—Assume (x, U) satisfies the constraints Eqs. (22)
and (23). Then for any unitary operator V such that
Tr(U∂θρθU†V†XV) �= 0,

(
x− Tr(UρθU†V†XV)1

Tr(U∂θρθU†V†XV)
, VU

)

(27)

also satisfies the constraints Eqs. (22) and (23), where 1 is
a r-dimensional vector of which each element is 1. We call

the transformation above a “V transformation” on (x, U).
After a V transformation, the target function becomes

Tr(UρθU†V†X2V)− Tr(UρθU†V†XV)2

Tr(U∂θρθU†V†XV)2 , (28)

which shall be no smaller than Tr(UρθU†X2) when (x, U)
is optimal. Let V = e−idG where dG is an arbitrary infinites-
imally small Hermitian matrix. The first-order derivative
of Eq. (28) with respect to dG must be zero, which then
implies Eq. (24). Specifically, to simplify the notation,
let ρ̃ := UρθU† and ˙̃ρ := U∂ρθU†. Then the difference
between the target function after and before the V trans-
formation must be zero up to the first order of dG, i.e.,

Tr(ρ̃X2)+ Tr(ρ̃(−i[dG, X2]))
(

Tr( ˙̃ρX )+ Tr( ˙̃ρ(−i[dG, X ]))
)2 =

Tr(ρ̃X2)

(Tr( ˙̃ρX ))2
, (29)

⇒ Tr( ˙̃ρX )2

Tr(ρ̃X2)
− 2iTr( ˙̃ρX )Tr( ˙̃ρ[dG, X ])

Tr(ρ̃X2)

+ iTr( ˙̃ρX )2Tr(ρ̃[dG, X2])
Tr(ρ̃X2)2 = Tr( ˙̃ρX )2

Tr(ρ̃X2)
, (30)

⇒ −2Tr(dG[X , ˙̃ρ])+ Tr( ˙̃ρX )Tr(dG[X2, ρ̃])
Tr(ρ̃X2)

= 0,

(31)

⇒ Tr( ˙̃ρX )[X2, ρ̃]
Tr(ρ̃X2)

= 2[X , ˙̃ρ], (32)

where in the first step we take the inverse of both sides
and ignore higher-order terms, in the second step we muti-
ply both sides by −iTr(ρX2), and in the last step we use
the fact that if an operator A satisfies Tr(dGA) = 0 for any
Hermitian dG, then A = 0.

For pure states, Eq. (24) can be further simplified. Using
the definitions of |φ〉 and |φ⊥〉, we have UρθU† = |φ〉 〈φ|
and

U∂θρθU† = U |∂θψθ 〉 〈ψθ |U†+h.c.

= (|∂θψθ 〉 − |ψθ 〉 〈ψθ |∂θψθ 〉 〈ψθ |)+ h.c.

= √
n(|φ⊥〉 〈φ| + |φ〉 〈φ⊥|), (33)

where h.c. stands for the Hermitian conjugate and we use
∂θ 〈ψθ |ψθ 〉 = 〈∂θψθ |ψθ 〉 + 〈ψθ |∂θψθ 〉 = 0 in the second
step. Equation (24) becomes

|u〉 〈φ| − |φ〉 〈u| + |v〉 〈φ⊥| − |φ⊥〉 〈v| = 0, (34)

where |u〉 = X |φ⊥〉 − (Re[〈φ|X |φ⊥〉]/〈φ|X2|φ〉)X2 |φ〉
and |v〉 = X |φ〉. Equation (34) is equivalent to |u〉 , |v〉 ∈
span{|φ〉 , |φ⊥〉}, 〈φ|u〉 , 〈φ⊥|v〉 ∈ R, and 〈φ|v〉 = 〈u|φ⊥〉.
Combining these conditions with the local unbiasedness
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constraints 〈φ|X |φ〉 = 0 and 2
√

nRe[〈φ|X |φ⊥〉] = 1, the
two conditions in Lemma 4 are then proven. Specif-
ically, we first use 〈φ|v〉 = 〈φ|X |φ〉 = 0 and |v〉 ∈
span{|φ〉 , |φ⊥〉} to derive that X |φ〉 ∝ |φ⊥〉. Then using
〈φ⊥|v〉 ∈ R and 2

√
nRe[〈φ|X |φ⊥〉] = 1, we derive Con-

dition (1). To derive Condition (2), we first use
〈u|φ⊥〉 = 〈φ|v〉 = 0 to derive that |u〉 ∝ |φ〉 and then
2
√

nRe[〈φ|X |φ⊥〉] = 1 and Condition (2) to derive that
〈φ|u〉 = 〈φ|X |φ⊥〉 − Re[〈φ|X |φ⊥〉]/〈φ|X2|φ〉 〈φ|X2|φ〉 =

1
2
√

n
− 1

2
√

n
= 0. Then we have |u〉 = 0, combining |u〉 ∝

|φ〉 and 〈φ|u〉 = 0. Note that |u〉 = 0 is equivalent to Con-
dition (2) after multiplying both sides by 〈φ|X2|φ〉/2

√
n.

Finally, we note that from Condition (1) and Condition
(2), the necessary condition in Eq. (24) can be recov-
ered straightforwardly, proving the equivalence between
Eq. (24) and Conditions (1) and (2) for pure states. �

As a sanity check, consider the special case where {Mi =
|i〉 〈i|}dim(HS′ )

i=1 is a projection onto an orthonormal basis
of HS′ . Then we have X2 = X 2, so Condition (2) is triv-
ially satisfied. Furthermore, choose (x, U) such that the
error observable X = 1/2

√
n(|φ⊥〉 〈φ| + |φ〉 〈φ⊥|), so that

Condition (1) is satisfied. Moreover, the variance of the
estimation is

〈φ|X2|φ〉 = 〈φ|X 2|φ〉 = 1
4n

= J (ρθ )−1, (35)

implying that the QFI is achievable using the above pro-
jective measurement, since J (ρθ ) = 4n for pure states
[14,82]. For general quantum measurements, the QUPFI
might be strictly smaller than the QFI, in which case for
the optimal choice of (x, U),

1
FU(ρθ , {Mi}) = 〈φ|X2|φ〉 > 〈φ|X 2|φ〉 = 1

J (ρθ )
. (36)

It is interesting to note that X2 ≥ X 2, for general POVM
measurements. This follows directly from writing

X2 − X 2 =
∑

i

(xi − X )Mi(xi − X ), (37)

and noting that each term in the above sum is positive
semidefinite.

B. Unitary controls are optimal

Using the definitions of |φ〉 and |φ⊥〉 in Eq. (26), we
observe that Eq. (21) can be rewritten as

FU(ψθ , {Mi})−1 = inf
(x,|φ〉,|φ⊥〉)

〈φ|X2|φ〉 ,

such that 〈φ|φ⊥〉 = 0, 〈φ|X |φ〉 = 0,

Re[〈φ|X |φ⊥〉] = 1/(2
√

n),
(38)

where ψθ = |ψθ 〉 〈ψθ | is pure. Here |φ〉 and |φ⊥〉 are
two arbitrary normal vectors that are orthogonal. From
Eq. (38), changing |φ〉 to |φ〉 /(2√n) makes it clear that
FU(ρθ , {Mi}) can be written as the product of

J (ψθ) = 4n (39)

and a state-independent constant. We have

FU(ψθ , {Mi}) = γ ({Mi})J (ψθ), (40)

where

γ ({Mi})−1 = inf
(x,|φ〉,|φ⊥〉)

〈φ|X2|φ〉 ,

such that 〈φ|φ⊥〉 = 0, 〈φ|X |φ〉 = 0,

Re[〈φ|X |φ⊥〉] = 1. (41)

Or more explicitly,

γ ({Mi}) = sup
|φ〉,|φ⊥〉

∑

i

Re[〈φ|Mi|φ⊥〉]2/〈φ|Mi|φ〉. (42)

[Note that going from Eqs. (41) and (42), we need only to
optimize the target function over x with a fixed (|φ〉 , |φ⊥〉)
and use standard methods for quadratic programming, e.g.,
Lagrange multipliers [76].] Note that Eqs. (40) and (42)
were also proven using a different method in Ref. [55].
γ ({Mi}) is the normalized QUPFI for any pure states with
unit QFIs and it is a function of {Mi} that lies in [0, 1],
which is the ratio between the QUPFI and the QFI for any
pure states. It is independent of the exact ψθ and can fully
characterize the power of quantum measurements in terms
of estimation on pure states.

Note that Eq. (40) decomposes the QUPFI into the prod-
uct of the QFI, as a function of states, and the normalized
QUPFI, as a function of measurements. This result is use-
ful when experimentalists have control over input states in
sensing processes. It implies when a pure input state ψ0
undergoes unitary evolution Uθ , the optimal choices of the
input state that maximizes the output FI are identical in
situations with or without measurement noise.

Using Condition (1) in Lemma 4, we now prove that uni-
tary controls are always optimal, that is, the QPFI is equal
to the QUPFI when HS ∼= HS′ . We have the following
theorem.

Theorem 5.—Consider a pure state ψθ and a quantum
measurement {Mi} acting on the same system. Unitary pre-
processing controls are always optimal among quantum
preprocessing controls for optimizing the FI, i.e.,

FP(ψθ , {Mi}) = FU(ψθ , {Mi}). (43)

Or equivalently,

γ ({Mi}) = γ ({Mi ⊗ 1A}), (44)

where A is an ancillary system of an arbitary size.
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Proof.—We first consider the situation where the QUPFI
is attainable, that is, there always exists an (x, U) such that
the infimum in Eq. (21) is attainable. Using Condition (1)
in Lemma 4, we can rewrite Eq. (38) as

FU(ψθ , {Mi})−1 = min
(x,|φ〉)

〈φ|X2|φ〉 ,

such that 〈φ|X |φ〉 = 0,

〈φ|X 2|φ〉 = 1/(4n), (45)

where n = J (ψθ)/4. Let dim(HA) ≥ dim(HS′)2 = d2.
J (ψθ) = J (ψθ ⊗ |0A〉 〈0A|) and Proposition 2 imply

FP(ψθ , {Mi})−1 = FU(ψθ ⊗ |0A〉 〈0A| , {Mi ⊗ 1A})−1

= min
(x,|φ〉)

〈φ|X2 ⊗ 1A|φ〉 ,

such that 〈φ|X ⊗ 1A|φ〉 = 0,

〈φ|X 2 ⊗ 1A|φ〉 = 1/(4n). (46)

It is equivalent to the optimization problem

min
(x,σ)

Tr(σX2),

such that Tr(σX ) = 0, Tr(σX 2) = 1/(4n), (47)

where σ is an arbitrary density operator and corresponds
to TrA(|φ〉 〈φ|). We will show below that for any σ ∗ that
is optimal for Eq. (47), there exists an optimal pure state
solution |φ∗∗〉 〈φ∗∗| for Eq. (47). Then the optimal values
of Eqs. (45) and (47) must be the same, proving Eq. (43).

Assume (x∗, σ ∗) is optimal for Eq. (47). Without
loss of generality, we assume supp(σ ∗) ⊆ supp((X ∗)2),
because otherwise σ ∗ projected onto the support of (X ∗)2

is another optimal solution because the constraints in
Eq. (47) are invariant and the target function is no larger
after the projection. We now show there exists another
optimal solution (x∗∗, |φ∗∗〉 〈φ∗∗|). First, note that X ∗ =∑

i x∗i Mi and X ∗
2 =∑i(x

∗
i )

2Mi satisfy Tr(σ ∗X ∗) = 0 and
Tr(σ ∗(X ∗)2) = 1/(4n) from Eq. (47), and

γ ({Mi ⊗ 1A})X ∗
2 � = (X ∗)2�, (48)

where � is the projection onto the support of σ ∗. Note that
Eq. (48) is true because

(i) 〈φ| (X ∗)2 |φ〉/〈φ| X ∗
2 |φ〉 = FU(ψθ , {Mi ⊗ 1A})/

4n = γ ({Mi ⊗ 1A}), from Condition (1) in
Lemma 4 and

(ii) 〈φ|X ∗
2 |φ〉(X ∗)2� = 〈φ|(X ∗)2|φ〉X ∗

2 � = 0 from
Condition (2) in Lemma 4.

Let σ ∗ =∑d
k=1 μk |k〉 〈k|, where {|i〉}d′i=1 is orthonormal in

HS. We claim that we can always choose

|φ∗∗〉 =
d∑

k=1

eiϕk
√
μk |k〉 , (49)

such that 〈φ∗∗|X ∗|φ∗∗〉 = 0, by picking a suitable {ϕk}dk=1.
To see this, observe that

〈φ∗∗|X ∗|φ∗∗〉 =
∑

k �=k′
ei(ϕk−ϕk′ )√μkμk′ 〈k|X ∗ |k′〉 , (50)

is a real, continuous function f (ϕ1, . . . ,ϕd) of {ϕk}dk=1 ∈
R

d, where we omitted the sum over k = k′ terms because
Tr(σ ∗X ∗) = 0 implies that it vanishes. Note that for
any fixed {ϕk}dk=1, the sum of all 2d terms f (ϕ1 ±
π/2, . . . ,ϕd ± π/2) is zero, implying that one, or more, of
these terms is zero, or that some are negative and others are
positive. In the latter case, the continuity of f (ϕ1, . . . ,ϕd)

implies that its image must include zero. Therefore, we can
pick a {ϕk}dk=1 such that f (ϕ1, . . . ,ϕd) = 0, based on which
the |φ∗∗〉 defined by Eq. (49) satisfies 〈φ∗∗|X ∗|φ∗∗〉 = 0.
Furthermore, we choose

x∗∗ =
√

1
4n 〈φ∗∗|(X ∗)2|φ∗∗〉 x∗, (51)

so that 〈φ∗∗| (X ∗∗)2 |φ∗∗〉 = 1/ (4n). Note that 〈φ∗∗|(X ∗)2|
φ∗∗〉 is always positive and thus the above denomi-
nator is positive because we assumed (X ∗)2 is posi-
tive definite on supp(σ ∗). We have now proved that
(x∗∗, |φ∗∗〉 〈φ∗∗|) satisfies the constraints in Eq. (47).
Moreover, noting that γ ({Mi ⊗ 1A})X ∗∗

2 � = (X ∗∗)2�,
the value of the target function 〈φ∗∗|X ∗∗

2 |φ∗∗〉 =
〈φ∗∗| (X ∗∗)2 |φ∗∗〉/γ ({Mi ⊗ 1A}) = 1/4nγ ({Mi ⊗ 1A}) =
FP(ψθ , {Mi})−1 is also optimal. Therefore, (x∗∗, |φ∗∗〉
〈φ∗∗|) is an optimal solution for both Eqs. (45) and (47),
proving Eq. (43).

When the QPFI of Eq. (21) is not attainable, we take
M (ε)

i = (1− ε)Mi + εTr(Mi)1/d and using Theorem 1,
we have

FP(ψθ , {Mi}) = lim
ε→0+

FP(ψθ , {M (ε)
i })

= lim
ε→0+

FU(ψθ , {M (ε)
i }) = FU(ψθ , {Mi}),

(52)

where in the second step we use the equality between the
QPFI and the QUPFI in the case where the QUPFI is
attainable.

So far, we have proven that Eq. (44) is true when
dim(HA) ≥ dim(HS′)2, due to Proposition 2 and the equal-
ity between the QPFI and the QUPFI. It also holds
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for any HA′ such that dim(HA′) ≤ dim(HS′)2 because
we have γ ({Mi ⊗ 1A}) ≥ γ ({Mi ⊗ 1A′ }) ≥ γ ({Mi}) by
definition. �

C. Analytical solution for binary measurements

Here we provide an analytical solution to the QPFI
and the corresponding optimal preprocessing control using
Proposition 2 for binary measurements where r = 2.

1. Measurement on a qubit

We first consider the simplest case where the measure-
ment is on a single qubit. Let X = x1M1 + x2M2 where
M1 = M and M2 = 1−M . Without loss of generality, we
assume

M = m1 |1〉 〈1| + m2 |2〉 〈2| , (53)

for some m1, m2 ∈ [0, 1], where {|1〉 , |2〉} is an orthonor-
mal basis. Moreover, we assume m1 > m2 and 1− m1 ≥
m2. [When m1 = m2, we must have γ ({Mi}) = 0 because
the measurement outcome does not depend on θ .] Here m2
and 1− m1 can be interpreted as the error probabilities that
state |2〉 is mistaken for |1〉, and state |1〉 is mistaken for
|2〉, respectively.

Consider first the case where 1 > m1 > m2 > 0, that
is, the error probabilities are both nonzero. We show in
Appendix E 1 that all solutions that satisfy the two neces-
sary conditions in Lemma 4 give the same optimal FI. One
optimal solution to the preprocessed state is

|φ∗〉 = √p∗ |1〉 +
√

1− p∗ |2〉 , (54)

|φ⊥∗〉 =
√

1− p∗ |1〉 −√p∗ |2〉 , (55)

where

p∗ =
√

m2(1− m2)√
m1(1− m1)+

√
m2(1− m2)

. (56)

Here the optimal unitary control U∗ can be chosen as any
unitary such that Eq. (26) is true for Eqs. (54) and (55).
[In the following, we will only use (|φ∗〉 , |φ⊥∗〉) to rep-
resent the optimal preprocessing unitary with the implicit
assumption that U∗ can be chosen as any unitary rotat-
ing (|ψθ 〉 , |ψ⊥

θ 〉) to (|φ∗〉 , |φ⊥∗〉).] Note that the symme-
try transformations |φ⊥∗〉 �→ − |φ⊥∗〉, |1〉 �→ eiω |1〉 and
|2〉 �→ eiω′ |2〉 for any ω,ω′ ∈ R will generate alternative
optimal solutions, and they all provide the same optimal
normalized FI:

γ ({Mi}) = 1− (√m1m2 +
√
(1− m1) (1− m2)

)2. (57)

Note that this result was obtained also in Ref. [55] using
a different method based on the Bloch-sphere representa-
tion. Here

√
1− γ ({Mi}) is exactly equal to the fidelity

between two binary probability distributions (m1, 1− m1)

and (m2, 1− m2).
Take the symmetric binary measurement as an example,

where m1 = 1− m, m2 = m, and m < 1/2, and m repre-
sents the probability of a bit-flip error in the measurement.
Then we have p∗ = 1/2 (as expected from the bit-flip sym-
metry), and γ ({Mi}) = 1− 4m(1− m), which is equal to 1
in the noiseless case, and drops to 0 when m → 1/2.

In the case of perfect projective measurements where
1 = m1 > m2 = 0, we show in Appendix E 1 that the QPFI
is equal to the QFI and is attainable for any 0 < p∗ < 1.
The case where 1 > m1 > m2 = 0 is singular, in the sense
that the QPFI is no longer attainable but only approach-
able. It corresponds to the situation where one type of error
(|2〉 mistaken for |1〉) is zero, while the other (|1〉 mistaken
for |2〉) is nonzero. In this case, we have γ ({Mi}) = m1
using Eq. (57) and Theorem 1.

2. Measurement on a qudit

Next, we consider the general case where the measure-
ment is on a qudit and we assume dim(HS′) = d ≥ 2.
Without loss of generality, we assume

M =
d∑

j=1

mj |j 〉 〈j | , (58)

where {|j 〉}dj=1 is an orthonormal basis of HS′ . We also
assume mi ≥ mj for all i ≤ j without loss of generality.
Here we assume 1 > m1 > md > 0, which guarantees the
attainability of the QPFI (see Lemma 15 in Appendix C)
and the nontriviality of quantum measurements. (The sin-
gular cases where m1 = 1 or md = 0 can be derived using
Theorem 1.) We show in Appendix E 2 that the optimal
solution to |φ〉 is supported on basis states corresponding
to at most two different values of mi and the problem is
simplified to selecting the optimal basis states and applying
the qubit-case results. We show that

|φ∗〉 = √p∗ |1〉 +
√

1− p∗ |d〉 , (59)

|φ⊥∗〉 =
√

1− p∗ |1〉 −√p∗ |d〉 , (60)

is an optimal solution, where

p∗ =
√

md(1− md)√
m1(1− m1)+

√
md(1− md)

. (61)

The normalized QPFI is given by

γ ({Mi}) = 1− (√m1md +
√
(1− m1) (1− md)

)2. (62)

Viewing {(mi, 1− mi)}di=1 as d binary probability distri-
butions, the optimal strategy is always to select the two
probability distributions that have the minimum fidelity
(i.e., the largest distance) between each other.
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D. Semianalytical solution and analytical bounds for
commuting-operator measurements

Here we consider commuting-operator measurements,
where all measurement operators commute, which is
among the most common types of measurements in quan-
tum sensing experiments, e.g., projective measurements
affected by detection errors.

Assume dim(HS′) = d ≥ 2. Without loss of generality,
we assume

Mi =
d∑

j=1

m(i)
j |j 〉 〈j | , (63)

where {|j 〉}dj=1 is an orthonormal basis of HS′ and
∑r

i=1 m(i)
j = 1 for all j. Again, we assume m(i)

j > 0 for all
i, j to exclude the singular cases where the QPFI is not
attainable.

In order to find the optimal control, we first prove the
following theorem, which states that the optimal |φ〉 can be
restricted to a two-dimensional subspace spanned by two
basis states, i.e., the optimal unitary controls rotate the pure
state and its derivative to a subspace spanned by two of the
eigenstates of the commuting-operator measurement.

Theorem 6.—For commuting-operator measurements
[Eq. (63)], there always exists an optimal solution
to (|φ〉 , |φ⊥〉) such that |φ〉 = √

p |k〉 + √1− p |l〉 and
|φ⊥〉 = √

1− p |k〉 − √p |l〉 for two basis states |k〉 and |l〉
and 0 < p < 1.

The proof is provided in Appendix F 1. Then we see
that the normalized QPFI for commuting-operator mea-
surements will be

γ ({Mi}) = max
1≤k<l≤d

γkl({Mi}), (64)

using Theorem 6, where

γkl({Mi}) = γ ({Mi}|span{|k〉,|l〉}), (65)

and {Mi}|span{|k〉,|l〉} is the quantum measurement restricted
in the subspace spanned by |k〉 and |l〉.

We show in Appendix F 2 that

γkl({Mi}) =
∑

i

p∗kl(1− p∗kl)(m
(i)
k − m(i)

l )
2

p∗klm
(i)
k + (1− p∗kl)m

(i)
l

, (66)

where p∗kl ∈ (0, 1) is the unique solution to

r∑

i=1

m(i)
k (m

(i)
k − m(i)

l )
2

(
m(i)

k + 1−pkl
pkl

m(i)
l

)2 =
r∑

i=1

m(i)
l (m

(i)
k − m(i)

l )
2

( pkl
1−pkl

m(i)
k + m(i)

l

)2 (67)

and the corresponding optimal preprocessed state in
span{|k〉 , |l〉} is

|φ∗kl〉 =
√

p∗kl |k〉 +
√

1− p∗kl |l〉 , (68)

|φ⊥∗kl 〉 =
√

1− p∗kl |k〉 −
√

p∗kl |l〉 . (69)

(The symmetry transformations |φ⊥∗〉 �→ − |φ⊥∗〉, |k〉 �→
eiω |k〉 and |l〉 �→ eiω′ |l〉 for any ω,ω′ ∈ R will generate
alternative optimal solutions.) The optimal preprocessed
state (|φ∗〉 , |φ⊥∗〉) in the entire Hilbert space that achieves
Eq. (64) is chosen as (|φ∗kl〉 , |φ⊥∗kl 〉) for (k, l) that maximizes
γkl({Mi}).

For the special case where r = 2, the problem reduces
to the binary measurement problem discussed in Sec. IV C
and p∗kl can be found analytically. In general, however, the
analytical solution to p∗kl might not exist since it is a root of
a high degree polynomial [Eq. (67)] and numerical meth-
ods are needed. Nonetheless, a simple analytical upper
bound on γ ({Mi}) can still be obtained, as shown in the
following theorem (see a detailed proof in Appendix F 3).

Theorem 7.—For commuting-operator measurements
[Eq. (63)], the normalized QPFI γ ({Mi}) satisfies

γ ({Mi}) ≤ 1−min
kl

(
∑

i

√

m(i)
k m(i)

l

)2

. (70)

When there exists a (k, l) that minimizes
∑

i

√
m(i)

k m(i)
l such

that the set
{
m(i)

k /m(i)
l , 1 ≤ i ≤ r

}
contains at most two

elements, the inequality is tight.
To derive lower bounds on γ ({Mi}), one could replace

p∗kl with any 0 ≤ p ≤ 1 in the expression Eq. (66). For
example, taking p = 1/2, we have (as also shown in
Ref. [55])

γ ({Mi}) ≥ max
kl

∑

i

(m(i)
k − m(i)

l )
2

2(m(i)
k + m(i)

l )
(71)

≥ 1−min
kl

∑

i

√

m(i)
k m(i)

l , (72)

where we use m(i)
k + m(i)

l ≤ (

√
m(i)

k +
√

m(i)
l )

2. Combining
the upper and lower bounds, we observe that γ ({Mi}) ≈ 1

when
∑

i

√
m(i)

k m(i)
l ≈ 0. It means that the QPFI will be

close to the QFI when there exist two basis states |k〉 and
|l〉 such that the fidelity between two probability distribu-
tions {m(i)

k } and {m(i)
l } is close to zero (meaning that they

are almost perfectly distinguishable).
The upper bound in Eq. (70) is saturated when the mea-

surement is binary. Another physical example is lossy pho-
todetection. The probability of detecting i photons given a
Fock state of k (i ≤ k) photons is m(i)

k = (ki
)
(1− η)iηk−i,

where 1− η is the quantum efficiency of the photodetec-
tor. Assuming the maximal number of photons is N , it is
simple to see that the optimal basis states are Fock states
|0〉, |N 〉. Since m(0)

0 = 1, only m(0)
0 /m(0)

N is nonvanishing

040305-10



OPTIMAL PROTOCOLS FOR QUANTUM METROLOGY. . . PRX QUANTUM 4, 040305 (2023)

and thus γ ({Mi}) saturates the upper bound: γ ({Mi}) =
1− ηN . [Technically, we need to assume all m(i)

k > 0 to
avoid the singularity issue, but the above statement holds
because the value of γ ({Mi}) can be calculated by first
adding a small perturbation to the detection errors (like in
Theorem 1) and then taking the limit as the perturbation
vanishes.]

Finally, note that although Theorems 6 and 7 do not
directly tell us how to choose the two optimal basis
states, such a choice may sometimes be obvious. For
example, consider a n-qubit system (span{|1〉 , |2〉})⊗n

measured by {M ,1−M }⊗n (independently on each sub-
system) and M = (1− m) |1〉 〈1| + m |2〉 〈2|. Then using
Theorem 6, due to the bit-flip symmetry and the fact
that tracing out some parts of the quantum state will not
increase its QPFI, it is clear that rotating (|ψθ 〉 , |ψ⊥

θ 〉)
into span{|1〉⊗n , |2〉⊗n}, or any other basis states, e.g.,
{|121 · · · 1〉 , |212 · · · 2〉} that are distinct on each qubit,
must be an optimal choice. In general, it remains open if
there is a simple criterion to help us select the optimal k
and l besides a direct calculation of Eq. (66) [or sometimes
Eq. (70)] for different k and l.

V. CLASSICALLY MIXED STATES

In this section, we consider another type of quantum
states, which we called classically mixed states, with
commuting-operator measurements. A classically mixed
state is a state, which commutes with its derivative, e.g.,
Gibbs states whose temperature is to be estimated [83]. In
this section, we use the following form of classically mixed
states:

ζθ =
D∑

i=1

λi,θ |i〉 〈i| , (73)

where D = dim(HS), λi,θ are functions of θ (we will drop
the subscript θ for conciseness), {|i〉} is an orthonormal
basis of HS that is independent of θ and we use ζθ to repre-
sent classically mixed states. Note that the QFI of Eq. (73)
J (ζθ ) =

∑D
i=1(∂θλi)

2/λi is equal to the FI J ({λi}) of the
classical distribution {λi}Di=1. Also, note that we assume in
this section, without loss of generality, that the commuting-
operator measurement {Mi} and the classically mixed state
ζθ share the same eigenstates {|i〉}max{d,D}

i=1 , as it is always
possible to apply a unitary rotation in the preprocessing
control so that they are aligned.

We first show that optimizing the FI over quantum
channels is equivalent to finding optimal stochastic matri-
ces (which describes the transitions of a classical Markov
chain) for the classical preprocessing optimization prob-
lem. Then we prove that the optimal control always cor-
responds to a stochastic matrix that has only elements 0
or 1, which we call a coarse-graining stochastic matrix.
It implies that the QPFI is always attainable, and that

the QPFI can in some cases be strictly larger than the
QUPFI. Finally, we closely examine the case of a binary
measurement on a single qubit.

A. Optimization over stochastic matrices

Lemma 8.—Consider classically mixed states Eq. (73)
and commuting-operator measurements Eq. (63). Then

FP(ζθ , {Mi}) = sup
P∈Sd,D

J ({m(i)TPλθ }), (74)

and when d = D,

FU(ζθ , {Mi}) ≤ sup
P∈S

db
D,D

J ({m(i)TPλθ }), (75)

where Sd,D represents the set of d × D stochastic matrices
of which every column vector sums up to one and S

db
D,D

represents the set of D × D doubly stochastic matrices of
which every column and row vector sums up to one, m(i)

is a column vector whose entries are m(i)
j , λθ is a column

vector whose entries are λi.
Proof.—Let E(·) =∑j Kj (·)K†

j be an arbitrary quantum
channel, then we have

Tr(MiE(ζθ )) = m(i)TPλθ , (76)

where the matrix P satisfies P�k =
∑

j

∣
∣〈�|Kj |k〉

∣
∣2 =

∑
j |(Kj )�k|2 , which implies

J ({Tr(MiE(ζθ ))}) = J ({m(i)TPλθ }). (77)

We must have
∑

� P�k =
∑

�j 〈k|K†
j |�〉 〈�|Kj |k〉 =

〈k|k〉 = 1, because
∑

j K†
j Kj = 1. Thus, P is a stochastic

matrix. For any quantum channel, there exists a stochastic
matrix such that Eq. (76) holds true, proving the left-
hand side is no larger than the right-hand side in Eq. (74).
Moreover, when E(·) = U(·)U† is a unitary channel, P�k =
|U�k|2 must be doubly stochastic, implying Eq. (75).

On the other hand, for any stochastic matrix P, we
define K(�,k) =

√
P�k |�〉 〈k| for 1 ≤ � ≤ d and 1 ≤ k ≤ D.

Then we have
∑

�k K†
(�,k)K(�,k) =

∑
�k P�k |k〉 〈k| = 1. And

E(·) =∑(�,k) K(�,k)(·)K†
(�,k) is then a quantum channel. For

any stochastic matrix, there exists a quantum channel such
that Eq. (76) holds true, proving the left-hand side is no
smaller than the right-hand side in Eq. (74). �

We show in Lemma 8 that the problem of optimizing
preprocessing quantum controls on classically mixed states
with commuting-operator measurements is equivalent to a
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classical version of preprocessing optimization where

FP(λθ , {m(i)}) := sup
P∈Sd,D

J ({m(i)TPλθ }) (78)

represents the classical FI with respect to a classical
distribution λθ and a noisy measurement m(i) satisfy-
ing

∑
i m(i) = 1 (1 is a vector with all elements equal

to 1), optimized over any stochastic mapping described
by stochastic matrices. In particular, for perfect mea-
surements where (m(i))j = δij , FP(λθ , {m(i)}) = J (λθ ) =∑D

i=1(∂θλi)
2/λi is the classical FI. Note that Theorem 10

presented later implies that the supremum of the FI over
stochastic matrices is always attainable using some P ∈
Sd,D and it means we are allowed to replace supP∈Sd,D

by
maxP∈Sd,D in the definition [Eq. (78)].

B. Coarse-graining controls are optimal

We first consider the classical case and prove Eq. (78)
can always be attained using some d × D stochastic matrix
P where every element of P is either 0 or 1. We call
this type of stochastic matrix a coarse-graining stochastic
matrix in the sense that P sums up one or multiple entries
of λθ to one entry in Pλθ , which is a coarse graining of
measurement outcomes.

Lemma 9.—Given a classical probability distribution
λθ ∈ R

D and a measurement {m(i)} ⊆ R
d (satisfying∑

i m(i) = 1). When FP(λθ , {m(i)}) is attainable, there
exists a d × D coarse-graining stochastic matrix P such
that,

FP(λθ , {m(i)}) = J ({m(i)TPλθ }). (79)

Proof.—Suppose FP(λθ , {m(i)}) is attainable and P∗ is
an optimal solution. We will show that there exists an
optimal solution P whose every column vector contains
one (and only) element equal to 1. If P∗ does not sat-
isfy this condition, without loss of generality, assume
P∗11 = t∗1 and P∗21 = a∗1 − t∗1 where 0 < t∗1 < a∗1 ≤ 1. Let
P(t1) be a stochastic matrix function of t1 ∈ [0, a∗1] where
P(t1)11 = t1, P(t1)21 = a∗1 − t1 and P(t1)�k = (P∗)�k for
(�, k) �= (1, 1), (2, 1). We have the FI equal to

f (t1) =
∑

i

(∂θ (m(i)TP(t1)λθ ))2

m(i)TP(t1)λθ

=
∑

i

(
(m(i)

1 − m(i)
2 )∂θλ1t1 + b∗(i)

)2

(m(i)
1 − m(i)

2 )λ1t1 + a∗(i)
,

where a∗(i) and b∗(i) are constants, independent of t1. The
second-order derivative of f (t1) is

∂2f (t1)
∂t21

=
∑

i

2
(
m(i)

1 − m(i)
2

)2(a∗(i)∂θλ1 − b∗(i)λ1
)2

(
(m(i)

1 − m(i)
2 )λ1t1 + a∗(i)

)3 ,

(80)

which is always non-negative. Therefore, f (t1) is a convex
function and always attains its maximum at the boundary
t1 = 0 or t1 = a∗1. Repeat this argument many times, one
can show that there exists an optimal solution P such that
there is only one positive entry in every column. �

Note that it is not necessarily true that the opti-
mal coarse-graining stochastic matrix that maximizes
J ({m(i)TPλθ }) is a full-rank matrix. Consider the fol-
lowing example. Let d = D = 3, r = 2, λθ = (cos2 θ ,
1
2 sin2 θ , 1

2 sin2 θ), m(1) = (1, 1
2 , 0), and m(2) = (0, 1

2 , 1).
Then it is clear that the following stochastic matrix is
optimal:

P∗ =
⎛

⎝
1 0 0
0 0 0
0 1 1

⎞

⎠ , (81)

because J ({m(i)TP∗λθ }) = J (λθ ) = 4. However, it can be
verified by enumeration that J ({m(i)TPλθ }) ≤ 3, whenever
P is a permutation matrix, showing the nonoptimality of
the full-rank stochastic matrices.

Using Lemma 8, we can show a similar result to Lemma
9 in the quantum case, that is, coarse-graining channels
are optimal quantum controls.

Theorem 10.—Consider classically mixed states Eq. (73)
and commuting-operator measurements Eq. (63). The
QPFI is always attainable using the following type of quan-
tum channels, which we call coarse-graining channels:

E(·) =
∑

�k

P�k |�〉 〈k| (·) |k〉 〈�| , (82)

where P�k is a d × D stochastic matrix satisfying
∑

� P�k =
1 and P�k = 0 or 1.

Proof.—By definition, there exists a sequence of chan-
nels (E1, . . . , En, . . .) such that limn→∞ F(En(ζθ ), {Mi}) =
FP(ζθ , {Mi}). According to Eq. (77) in the proof of
Lemma 8 and the arguments in Lemma 9, for every
En there exists a channel Ẽn of the form Eq. (82)
such that F(En(ζθ ), {Mi}) ≤ F(Ẽn(ζθ ), {Mi}). Therefore,
limn→∞ F(Ẽn(ζθ ), {Mi}) = FP(ζθ , {Mi}). Since there are
finite number of channels of the form Eq. (82), there must
exist a E∗ = Ẽn for some n such that

F(E∗(ζθ ), {Mi}) = FP(ζθ , {Mi}), (83)

proving the attainability of the QPFI. �
Theorem 10 also implies that there is a gap between the

QUPFI and the QPFI for general quantum states, unlike for
pure states where the QUPFI is equal to the QPFI.

Theorem 11.—There exists a classically mixed state ζθ
and a commuting-operator measurement {Mi} such that

FU(ζθ , {Mi}) < FP(ζθ , {Mi}). (84)
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Proof.—Consider the example discussed below Lemma
9 and here we fix θ = π/4. Theorem 10 implies that for
ζθ = cos2 θ |1〉 〈1| + 1

2 sin2 θ |2〉 〈2| + 1
2 sin2 θ |3〉 〈3|,

J (ζθ ) = FP(ζθ , {Mi}) = 4, (85)

where M1 = |1〉 〈1| + 1
2 |2〉 〈2| and M2 = 1

2 |2〉 〈2| + |3〉
〈3|. In general, given any stochastic matrix P, the proba-
bilities for measurement outcomes 1 and 2 must have the
form

p1 = m(1)TPλθ = a cos2 θ + b sin2 θ , (86)

p2 = m(2)TPλθ = (1− a) cos2 θ + (1− b) sin2 θ , (87)

for some 0 ≤ a, b ≤ 1. Moreover, J ({p1, p2}) = 4(a−
b)2/(2− (a+ b))/(a+ b). And J ({p1, p2}) = J (ζθ ) if and
only if (a, b) = (1, 0) or (0, 1). Noting that the situa-
tion where (a, b) = (1, 0) or (0, 1) is not possible if P is
doubly stochastic. Applying Lemma 8, Eq. (84) is then
proven. �

The intuition behind this type of gap between the
QPFI and the QUPFI stems from the fact that nonuni-
tary operations, e.g., the coarse-graining channel, have
the power of reducing the rank of quantum states, while
unitary operations do not. Consequently, when certain
conditions are met: (i) the noisy measurement under con-
sideration is noiseless in a lower-dimensional subspace,
e.g., span{|1〉 , |3〉} in the example above and (ii) the rank of
the quantum state can be compressed without reducing its
QFI, e.g., collapsing span{|2〉 , |3〉} into span{|3〉}, nonuni-
tary preprocessing operations can achieve the optimal QFI.
In contrast, relying solely on unitary preprocessing for
high-rank states results in unavoidable measurement noise
and suboptimal performance.

Finally, we note that although the implementation
of general quantum preprocessing channels can some-
times be challenging with the requirement of preparing a
clean ancillary system that occurs in Stinespring’s dila-
tion (see Proposition 2), the resources needed to per-
form coarse-graining channels can be reduced in many
cases. Firstly, the ancilla size required to perform coarse-
graining channels is, in principle, smaller than d2 that
is required in general cases. In fact, any coarse-graining
channel defined by Eq. (82) can be simulated using a
d-dimensional ancilla, e.g., by first performing a uni-
tary operation on HS ⊗HA1 that maps |k〉S |0〉A1

�→
|k〉S |ι(k)〉A1

for all k, where ι(k) corresponds to the index
of the row such that Pι(k)k = 1, and then discarding the
probe system HS. Secondly, the coarse-graining chan-
nel can also be performed on certain quantum states by
resetting some parts of the system with no additional ancil-
las in some cases. For example, consider a two-qubit
quantum state ζθ = cos2 θ |00〉 〈00| + 1

2 sin2 θ |10〉 〈10| +
1
2 sin2 θ |11〉 〈11| and measurement operators M0 = |00〉

〈00| + 1
2 |01〉 〈01| + 1

2 |10〉 〈10| and M1 = |11〉 〈11| +
1
2 |01〉 〈01| + 1

2 |10〉 〈10|. The coarse-graining channel
mapping |00〉 �→ |00〉, |10〉 �→ |11〉, and |11〉 �→ |11〉 is
optimal and it can be performed by first resetting the sec-
ond qubit to |0〉 and then applying a CNOT gate that maps
|00〉 �→ |00〉 and |10〉 �→ |11〉. Note that resetting qubits is
usually considered much less noisy than measuring ones,
e.g., in nitrogen-vacancy centers [27,28].

C. Binary measurement on a single qubit

With Theorem 10, in principle, one can find the QPFI
for classically mixed states and commuting-operator mea-
surements by exhausting all channels of the form Eq. (82)
which is contained in a finite set. However, since the
number of coarse-graining stochastic matrices is large, the
exhaustion procedure will be too costly. Here we closely
examine a special case where a classically mixed state is
measured by a binary measurement on a single qubit. The
time to exhausting all coarse-graining matrices is exponen-
tially large with respect to the state dimension D. We will
show that the time to find a solution can be reduced to a
linear complexity by narrowing down the possible forms
of the optimal controls.

To be specific, consider the binary measurement
M1 = M = m1 |1〉 〈1| + m2 |2〉 〈2|, M2 = 1−M (assum-
ing m2 ≤ min{m1, 1− m1}), and ζθ =

∑D
i=1 λi |i〉 〈i|. Then

using Lemma 8, we first have FP(ζθ , {Mi}) = maxt f (t)
where

f (t) := J ({pθ (t), 1− pθ (t)}), (88)

and

pθ (t) := m2 + (m1 − m2)tTλθ , (89)

and t is a column vector in [0, 1]D, corresponding to the
first row of the stochastic matrix P in the proof of Lemma
8. (Note that although from Theorem 10, it is possible to
restrict t to {0, 1}D, and we keep the generality of t by
allowing it to be in [0, 1]D for later use.)

Without loss of generality, we can arrange the order of
the positive elements in λθ such that

(∂θλi)/λi ≥ (∂θλj )/λj , ∀i < j and λi,j > 0. (90)

Then we assert that

FP(ζθ , {Mi}) = max
i∈[1,D−1]

max{f (1≤i), f (1≥i)}, (91)

where 1≤i represents the vector whose the first i elements
are equal to 1 and the rest are zero. 1≥i+1 = 1− 1≤i.

Now we prove Eq. (91). Choose an optimal t∗ ∈ [0, 1]D

that maximizes f (t). We prove Eq. (91) in each of the
following three cases:
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(i) t∗T∂θλθ = 0. Then the QPFI is zero and Eq. (91) is
trivial.

(ii) t∗T∂θλθ > 0. If there exists i < j such that t∗i < 1,
t∗j > 0 and λi,j > 0. Then define t∗∗i = t∗i + ε/λi and
t∗∗j = t∗j − ε/λj where ε = min{(1− t∗i )λi, t∗j λj } and
t∗∗k �=i,j = t∗k �=i,j. Then we have either t∗∗i = 1 or t∗∗j = 0.
Moreover, we have f (t∗∗) ≥ f (t∗) because t∗Tλθ =
t∗∗Tλθ and t∗T∂θλθ ≤ t∗∗T∂θλθ . Then t∗∗ is also opti-
mal. Repeating this procedure, we can always find
an optimal t of the form (1 · · · 1 t 0 · · · 0) for some
t ∈ [0, 1]. 	(1) ≤ J (ρ(n)θ ) ≤ eo(n). Using the same
convexity argument as in the proof of Lemma 9,
we can further show t can be taken to be 1 or 0.
Equation (91) is proven.

(iii) t∗T∂θλθ < 0. If there exists i < j such that t∗i > 0,
t∗j < 1 and λi,j > 0. Then define t∗∗i = t∗i − ε/λi and
t∗∗j = t∗j + ε/λj where ε = min{(1− t∗j )λj , t∗i λi} and
t∗∗k �=i,j = t∗k �=i,j . Moreover, we have f (t∗∗) ≥ f (t∗)
because t∗Tλθ = t∗∗Tλθ and t∗T∂θλθ ≥ t∗∗T∂θλθ .
Then t∗∗ is also optimal. Repeating this proce-
dure, we can always find an optimal t of the form
(0 · · · 0 t 1 · · · 1) for some t ∈ [0, 1]. Using the same
convexity argument as in the proof of Lemma 9,
we can further show t can be taken to be 1 or 0.
Equation (91) is proven.

VI. GENERAL QUANTUM STATES

In Secs. IV and V, we have obtained fruitful results
on preprocessing optimization for pure states and classi-
cally mixed states. Here, we consider the QPFI for general
mixed states and derive useful upper and lower bounds on
them.

A. Upper bound

Theorem 12.—Given any density operator ρθ and quan-
tum measurement {Mi}, we have

FP(ρθ , {Mi}) ≤ γ ({Mi})J (ρθ ). (92)

Proof.—Suppose HA1 and HA2 are ancillary sys-
tems such that HA1 ⊗HS ∼= HA2 ⊗HS′ and dim(HA1) ≥
dim(HS′)2, where HS and HS′ are the systems ρθ and {Mi}
act on. We also define an additional environmental system
HE satisfying dim(HE) = dim(HS). Letψθ = |ψθ 〉 〈ψθ |ES
denote the purifications of ρθ in HE ⊗HS. Using the
purification-based definition of QFI [17,18], we have

J (ρθ ) = min
ψθ :ρθ=TrE(ψθ )

J (ψθ). (93)

Choose ψ∗
θ to be the optimal purification ψ∗

θ that mini-
mizes J (ψθ) such that J (ρθ ) = J (ψ∗

θ ). Then

FP(ρθ , {Mi})
= FU

(
ρθ ⊗ |0〉 〈0|A1

, {Mi ⊗ 1A2}
)

(94)

≤ FU(ψ∗
θ ⊗ |0〉 〈0|A1

, {1E ⊗Mi ⊗ 1A2}) (95)

= γ ({1E ⊗Mi ⊗ 1A2})J (ψ∗
θ ⊗ |0〉 〈0|A1

) (96)

= γ ({Mi})J (ρθ ), (97)

where we use Proposition 2, Eq. (40) and Theorem 5. �
Theorem 12 provides an upper bound on the QPFI for

general quantum states. In particular, it shows the ratio
between the QPFI and the QFI is always upper bounded
by a state-independent constant γ ({Mi}), which is attain-
able when the state is pure and gives rise to the following
CRB for general quantum states under noisy measurement
{Mi}:

�θ̂ ≥ 1
√

Nexprγ ({Mi})J (ρθ )
. (98)

B. Lower bound

Lemma 13.—Consider a density operator ρθ and quan-
tum measurement {Mi}. Assume {Ti} is a QFI-attainable
measurement, i.e., F(ρθ , {Ti}) = J (ρθ ). Let the quantum-
classical channel T (·) =∑i Tr((·)Ti) |i〉 〈i|C where {|i〉C}
is an orthonormal basis of an auxiliary system HC. Then

FP(ρθ , {Mi}) ≥ FP(T (ρθ ), {Mi}). (99)

The proof Lemma 13 is straightforward—it immediately
follows from the definition of the QPFI. The equality holds
true when {Mi} is a projection onto an orthonormal basis of
HS′ , i.e., {Mi = |i〉 〈i|}dim(HS′ )

i=1 .
Note that the equality in Lemma 13 also holds when ρθ

is a classically mixed state and the QFI-attainable measure-
ment is chosen to be the projective measurement onto the
basis of HS so that T (ρθ ) = ρθ . For general mixed states,
since T (ρθ ) is a classically mixed state, the results in
Sec. V can be applied here to analyze FP(T (ρθ ), {Mi}) and
derive lower bounds for general mixed states. For example,
one can divide the measurement operators into two subsets,
restrict the measurement in a two-dimensional subspace,
and then use our previous result of the binary measure-
ment on a qubit for classically mixed states to derive an
efficiently computable lower bound on the QPFI.

Note that unlike the upper bound (Theorem 12), there
are no constant lower bounds independent of ρθ on the
ratio between FP(ρθ , {Mi}) and J (ρθ ). For example, con-
sider the single qubit case where ρθ = cos2 θ |1〉 〈1| +
sin2 θ |2〉 〈2|, M1 = (1− m) |1〉 〈1| + m |2〉 〈2|, and M2 =
1−M1 (0 < m < 1/2). We have, from Sec. V C, that

FP(ρθ , {Mi}) = 4(1− 2m)2 sin(2θ)2

1− (1− 2m) cos(2θ)2 , (100)
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which tends to zero as θ → 0 [and the optimal prepro-
cessing is identity when θ ∈ (0,π/4)]. On the other hand,
J (ρθ ) = 4 is a constant, showing that FP(ρθ , {Mi})/J (ρθ )
has no state-independent constant lower bounds.

VII. GLOBAL PREPROCESSING: ASYMPTOTIC
LIMITS

In this section, we consider the power of global quan-
tum preprocessing in the asymptotic limit (see Fig. 2). We
consider a multipartite system HS = H⊗n and HS′ = H′⊗n

where dimH = D and dimH′ = d, a set of quantum states
ρ
(n)
θ in H⊗n, and quantum measurements {Mi}⊗n that can

be written as tensor products of identical measurements on
each subsystem H′. Arbitrary (and usually global) prepro-
cessing quantum channels E are applied before the noisy
measurement. We will show that for a generic class of
quantum states, the QPFI can reach the QFI asymptotically
for large n. Note that the QPFI is in general not achiev-
able [55] when E can act only locally and independently
on each subsystem.

A. Attaining the QFI with noisy measurements

Theorem 14.—Given a set of quantum states {ρ(n)θ }n
where ρ

(n)
θ is a function of θ and acts on H⊗n for each

n, we have

lim
n→∞

FP(ρ
(n)
θ , {Mi}⊗n)

J (ρ(n)θ )
= 1, (101)

if for each ρ(n)θ the following are true:

FIG. 2. A quantum state ρ
(n)
θ in an n-partite system is esti-

mated using n identical noisy measurements acting on each
subsystem, described by {Mi}⊗n. The QPFI can approach the
QFI in the asymptotic limit n →∞ if the sufficient condition in
Theorem 14 is satisfied. The optimal control is the composition
of a quantum-classical channel Tn(·) =

∑rn
i=1 Tr

(
(·)T(n)

i

) |ei〉 〈ei|
where the measurement {T(n)

i } is asymptotically QFI attainable,
and an encoding channel �E chosen as the optimal encoding
channel for M⊗n from the HSW theorem. Note that the decod-
ing channel �D from the HSW theorem only needs to be used in
a classical postprocessing manner.

(a) There exists a quantum measurement {T(n)
i } whose

number of measurement outcomes is rn such that

lim
n→∞

F(ρ(n)θ , {T(n)
i })

J (ρ(n)θ )
= 1, and lim

n→∞
log rn

n
< C(M),

(102)

where log is the binary logarithm and C(M) is the
classical capacity of the quantum-classical channel
M(·) =∑i Tr

(
(·)Mi

) |i〉 〈i|C ({|i〉C} is an orthonor-
mal basis of an auxiliary system HC).

(b) The regularity conditions are satisfied:

(1) When ∂θλi �= 0, λi = 1/eo(n), where λi :=
Tr(ρ(n)θ T(n)

i ) and {T(n)
i } is defined above.

(2) 	(1) ≤ J (ρ(n)θ ) ≤ eo(n).

Theorem 14 provides a sufficient condition to attain the
QFI using noisy measurements in the asymptotic limit n →
∞. We will first provide a proof of Theorem 14, and return
to the physical understandings of the sufficient condition
later. Readers who are not interested in the technical details
can skip the technical proof and advance to the discussion
part.

In the proof, we will make use of a quantum-classical
channel Tn defined using {T(n)

i }, and an encoding channel
�E , such that F(�E ◦ Tn(ρ

(n)
θ ), {Mi}⊗n) approaches J (ρ(n)θ )

asymptotically (see Fig. 2). Intuitively speaking, the first
step Tn is to simulate the (asymptotically) QFI-attainable
measurement {T(n)

i } on ρ
(n)
θ to transform it into a classi-

cally mixed state Tn(ρ) such that J (Tn(ρ
(n)
θ )) = J (ρ(n)θ ).

The second step is to choose a suitable encoding channel
�E such that the classical information in Tn(ρ

(n)
θ ) is fully

preserved under M⊗n, i.e., J (M⊗n ◦�E ◦ Tn(ρ
(n)
θ )) ≈

J (Tn(ρ
(n)
θ )), leading to the asymptotic attainability of the

QFI. Here �E , along with a corresponding deconding
channel�D, is chosen such that�E ◦M⊗n ◦�D is asymp-
totically equal to a completely dephasing channel with a
transmission rate approximately equal to C(M), which is
guaranteed to exist using the HSW theorem [60,61].

Proof of Theorem 14.—We first choose an α such
that limn→∞ log rn/n < α < C(M). According to the
definition of the classical capacity of quantum channels
[68], for any ε > 0, there exists an n0 such that for any
n > n0, there exist an encoding channel �E and a decoding
channel �D such that

‖�D ◦M⊗n ◦�E −D⊗�αn�
2 ‖�≤ε, (103)

where D2 is a completely dephasing qubit chan-
nel acting on qubit Hilbert space HB, i.e. D2(·) =
|0〉 〈0| (·) |0〉 〈0| + |1〉 〈1| (·) |1〉 〈1| and ‖·‖� is the diamond
norm of a quantum channel [68] defined by ‖�‖� =
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max{‖(�⊗ 1)(X )‖1 , ‖X ‖1 ≤ 1} (� and 1 act on systems
of the same dimension, and ‖·‖1 denotes the trace norm).
Moreover, ε = e−	(n) (see a proof in Appendix G). For any
operator σ , we have

∥
∥�D ◦M⊗n ◦�E(σ )−D⊗�αn�

2 (σ )
∥
∥

1 ≤ ε ‖σ‖1 . (104)

We also assume n0 is large enough such that for any n >
n0, rn ≤ 2�αn�.

Let Tn(·) :=∑rn
i=1 Tr

(
(·)T(n)

i

) |ei〉 〈ei| where we choose
{|ei〉}rn

i=1 to be a subset of the computational basis in
H⊗�αn�

B . Without loss of generality, we assume λi =
Tr(ρ(n)θ T(n)

i ) > 0 for all i (we can always exclude the terms
that are equal to zero), then Tn(ρ

(n)
θ ) :=∑rn

i=1 λi |ei〉 〈ei|
and

F(ρ(n)θ , {T(n)
i }) ≥ F(�E ◦ Tn(ρ

(n)
θ ), {Mi}⊗n)

= J (M⊗n ◦�E ◦ Tn(ρ
(n)
θ ))

≥ J (�D ◦M⊗n ◦�E ◦ Tn(ρ
(n)
θ )), (105)

where we use the monotonicity of the QFI in the first
and third inequalities and J ({pi,θ }) = J (

∑
i pi,θ |i〉 〈i|) for

any classical probability distribution {pi,θ } in the second
equality. Then we have

J (�D ◦M⊗n ◦�E ◦ Tn(ρ
(n)
θ ))

F(ρ(n)θ , {T(n)
i })

≤ 1. (106)

Next we aim to show J (�D ◦M⊗n ◦�E ◦ Tn(ρ
(n)
θ ))/

F(ρ(n)θ , {T(n)
i }) is lower bounded by a constant that

approaches 1 for large n. First, assume n > n0, we have

J (D⊗�αn�
2 ◦ Tn(ρ

(n)
θ ))

= J (Tn(ρ
(n)
θ )) = F(ρ(n)θ , {T(n)

i }) =
rn∑

i=1

(∂θλi)
2

λi
, (107)

where we use D⊗�αn�
2 (|ei〉 〈ei|) = |ei〉 〈ei| in the first equal-

ity. On the other hand, consider

J (D′ ◦�D ◦M⊗n ◦�E ◦ Tn(ρ
(n)
θ ))

=:
rn∑

i=1

(∂θηi)
2

ηi
≤ J (�D ◦M⊗n ◦�E ◦ Tn(ρ

(n)
θ )),

(108)

where D′(·) =∑i |ei〉 〈ei| (·) |ei〉 〈ei|, ηi = λi + δi, and
δi = 〈ei|(�D ◦M⊗n ◦�E −D⊗�αn�

2 ) ◦ Tn(ρ
(n)
θ )|ei〉. We

will also assume n is large enough such that δi < λi, which
is possible due to Eq. (104) and the regularity condition
(1).

Then we have

rn∑

i=1

(∂θηi)
2

ηi
=

rn∑

i=1

(∂θλi + ∂θδi)
2

λi + δi

=
rn∑

i=1

(∂θλi + ∂θδi)
2
(

1
λi
− δi

λ2
i (1+ ξi)2

)

≥
rn∑

i=1

(
(∂θλi)

2 + 2∂θλi∂θδi
) 1
λi

(

1− |δi|
λi

)

≥ F(ρ(n)θ , {T(n)
i })−

rn∑

i=1

(∂θλi)
2

λ2
i

|δi| −
rn∑

i=1

2 |∂θλi∂θδi|
λi

≥ F(ρ(n)θ , {T(n)
i })

− ε max
i

(
(∂θλi)

2

λ2
i

+ 2
∣
∣
∣
∣
∂θλi

λi

∣
∣
∣
∣J (ρ

(n)
θ )1/2

)

. (109)

In the second equality above, we use the Taylor expansion
1/1+ δi/λi = 1− δi/λi/(1+ ξi)

2 for some ξi ∈ [0, δi/λi].
In the last inequality above, we use Eq. (104) to derive that
∑

i |δi| ≤ ε‖ρ(n)θ ‖1 = ε and

∑

i

∣
∣∂θδi

∣
∣ ≤ ε‖∂θTn(ρ

(n)
θ )‖1

≤ εJ (Tn(ρ
(n)
θ ))1/2 ≤ εJ (ρ(n)θ )1/2. (110)

Here we use the inequality ‖∂θζθ‖1 ≤ J (ζθ )1/2 for any
classically mixed state ζθ =

∑
i μi |i〉 〈i|, which is true

because (
∑

i |∂θμi|)2 ≤∑i(∂θμi)
2/μi from the Cauchy-

Schwarz inequality. Note that it also holds that ‖∂θσθ‖1 ≤
J (σθ )1/2 for general mixed states σθ [84,85].

Finally, from the monotonicity of the QFI [i.e.,
∑

i (∂θλi)
2/λi ≤ J (ρ(n)θ )] and the regularity conditions (1)

and (2), we have

max
i

(∂θλi)
2

λ2
i

+ 2
∣
∣
∣
∣
∂θλi

λi

∣
∣
∣
∣ ‖∂θρ‖1 ≤ J (ρ(n)θ )eo(n). (111)

Taking the limit n →∞ in Eq. (109), from ε = e−	(n) and
Eq. (111), we have

lim
n→∞

1

F(ρ(n)θ , r{T(n)
i })

rn∑

i=1

∂θη
2
i

ηi
≥ 1. (112)

Combining Eqs. (106), (108), and (112), we have

lim
n→∞

J (�D ◦M⊗n ◦�E ◦ Tn(ρ
(n)
θ ))

F(ρ(n)θ , {T(n)
i })

= 1. (113)
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Since limn→∞ F(ρ(n)θ , {T(n)
i })/J (ρ(n)θ ) = 1 and

FP(ρ
(n)
θ , {Mi}⊗n) ≥ F(�E ◦ Tn(ρ

(n)
θ ), {Mi}⊗n)

≥ J (�D ◦M⊗n ◦�E ◦ Tn(ρ
(n)
θ )),

(114)

we must have

lim
n→∞

FP

(
ρ
(n)
θ , {Mi}⊗n

)

J (ρ(n)θ )
= 1, (115)

proving the theorem. �

B. Discussion

Here we discuss the intuitions behind the sufficient con-
dition in Theorem 14 and describe the relevant situations
where it is satisfied. We will see that the sufficient condi-
tion is satisfied for a generic class of quantum states ρ(n)θ

and noisy measurements {Mi}.
Let us first explain the meaning of the condition

Eq. (102). It states that there exists an (asymptotically)
QFI-attainable measurement for ρ(n)θ that has a small num-
ber of measurement outcomes. Specifically, the number of
measurement outcomes rn should be smaller than 2C(M)n

(asymptotically) where C(M) is the classical capacity of
the quantum measurement {Mi} under consideration, i.e.,
Theorem 14 applies when

log rn < C(M)n+ o(n). (116)

The requirement [Eq. (116)] is satisfied by many prac-
tically relevant quantum states and measurements. In
fact, whenever the classical capacity of M is positive,
rn = eo(n) is a sufficient (but not necessary) condition of
Eq. (116). Below we provide several typical examples
where the QFI-attainable measurement with a subexpo-
nential number of outcomes exists. See Appendix A for
additional details.

(1) Low-rank states. For pure states, it was known that
there exist two-outcome QFI-attainable measure-
ments [14]. (Note that Ref. [55] contains another
proof of Theorem 14 when ρ

(n)
θ is pure.) More

generally, any ρ
(n)
θ that is supported on a sub-

space with a subexponential dimension also has a
QFI-attainable measurement with a subexponential
number of outcomes.

(2) Symmetric states. The second example with a
QFI-attainable measurement with a subexponential
number of outcomes is symmetric (permutation-
invariant) states (e.g., tensor products of n identical
mixed states). According to the Schur-Weyl dual-
ity [86,87], HS = (CD)⊗n can be decomposed as

⊕
ν(Hν(U(D))⊗Hν(Sn)), where Hν(U(D)) and

Hν(Sn) are irreducible representation spaces of the
unitary group U(D) and the permutation group Sn

with index ν. Any symmetric state ρ
(n)
θ can be

written as

ρ
(n)
θ =

⊕

ν

(

pνρ(n)ν ⊗ 1ν
dim(Hν(Sn))

)

, (117)

where ρ(n)ν are mixed states acting on Hν(U(D)) and
pν satisfies

∑
ν pν = 1 (both of which can be func-

tions of θ ). Then a QFI-attainable measurement with
a subexponential number of outcomes {⊕ν(Ti)ν ⊗
1ν} of ρ(n)θ can be constructed from a QFI-attainable
measurement {⊕ν(Ti)ν} of

⊕
ν pνρ(n)ν . Let us esti-

mate the number of measurement outcomes: ν cor-
responds to Young diagrams (i.e., partitions of n
into D parts), implying the number of different
indices ν is O(nD−1). For any ν, dim(Hν(U(D))
is equal to the number of semistandard Young
tableaux, which is at most O(nD(D−1)/2) according
to the Weyl dimension formula [88]. The number
of measurement outcomes is thus upper bounded by∑

ν dim(Hν(U(D)) = O(n(D−1)(D/2+1)).
(3) Gibbs states. For classically mixed states ρ(n)θ , the

projection onto the eigenstates of ρ(n)θ is QFI attain-
able but has exponentially many measurement out-
comes. However, we argue that in many cases, a
subexponential number of projections onto direct
sums of eigenspaces are sufficient to attain the QFI
up to the leading order, so that Theorem 14 applies.
For instance, consider the Gibbs state

ρ
(n)
θ = 1

∑
ν e−θEν

∑

ν

e−θEν |ν〉 〈ν| , (118)

where {|ν〉} are energy eigenstates with eigenvalues
{Eν} and θ is the inverse temperature to be esti-
mated. The QFI is equal to the variance of energy,
i.e.,

J (ρ(n)θ ) =
∑

ν

pνE2
ν −

(∑

ν

pνEν

)2

, (119)

where pν = e−θEν /
∑

ν e−θEν . Assume the energy
eigenvalues lie in [0, Ê), where Ê = �(n) (which is
a standard assumption in condensed-matter systems)
and divide them into intervals {Ik = [Ek, Ek+1)}n2

k=1,
such that E0 = 0, En = Ê and Ek+1 − Ek = �E =
Ê/n2. Consider the projections {�k}nk=1 onto the
direct sums of eigenspaces corresponding to all
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eigenvalues in Ik. The FI is

F(ρ(n)θ , {�k}) =
n∑

k=1

pkE2
k −

(∑

ν

pνEν

)2

, (120)

where pk =
∑

ν:Eν∈Ik
pν and Ek = 1/pk

∑
ν:Eν∈Ik

pν
Eν . Then we have J (ρ(n)θ )− F(ρ(n)θ , {�k}) ≤

∑
k pk

(E2
k+1 − E2

k ) ≤ 2Ê�E = �(1). Combining with the
regularity condition (2), it implies that F(ρ(n)θ , {�k})
is equal to J (ρ(n)θ ) up to the leading order.

Next, let us explain the intuitions behind the regularity
conditions:

(1) Regularity condition (1) states that when the proba-
bility of obtaining measurement outcome i depends
on θ (i.e., ∂θλi �= 0), it must be no smaller than an
inverse of a subexponential function of n, that is, the
probability to detect i cannot be exponentially small.
This is also a practically reasonable assumption as
we would want to exclude the singular cases where
an exponentially small signal provides a nontrivial
contribution to the QFI.

(2) Regularity condition (2) requires that the QFI of
ρ
(n)
θ does not decrease with n asymptotically, which

should be satisfied in any practically relevant cases.
It also requires the QFI to be subexponential,
which is a natural assumption in quantum sensing
experiments [note that the Heisenberg limit implies
J (ρ(n)θ ) = O(n2)].

Lastly, we briefly comment on the resources required to
implement optimal preprocessing controls. First, the total
number of ancillary qubits required to implement the
desired preprocessing channel �E ◦ Tn is at most O(n),
because in general log(Dnrn) ancillary qubits are suffi-
cient to implement the QFI-attainable q-c channel Tn and
another log(Dnrn) ancillary qubits are sufficient to imple-
ment the encoding channel �E . The gate complexity to
implement Tn is expected to depend on the structure of the
quantum state ρ(n)θ . For example, for symmetric states, the
Schur transform, efficiently implementable [89], can be an
important step in Tn. Unitary gates that are used in align-
ing the output basis of Tn to the input basis of the encoding
channel �E should also be taken into consideration. For
example, in the special case where ρn is a low-rank classi-
cally mixed state, Tn should be a rotation that matches ρn
eigenstates to the input basis of�E . The gate complexity to
implement the optimal encoding channel�E is high in gen-
eral. However, when rn is subexponential (as we discussed
above), the encoding channel does not need to be capacity
achieving as it needs only to reliably transmit an exponen-
tially small amount of information, potentially making it
relatively easier to implement (the details are left for future

discussion). For example, when rn = 2, a simple repetition
code mapping |0〉 to |0〉⊗n and |1〉 to |1〉⊗n will be optimal.
Finally, note that although we have shown that �E ◦ Tn is
optimal, other simpler optimal preprocessing channels may
still exist. For example, for pure states, unitary controls are
optimal according to Theorem 5, requiring no ancillas; and
a design of an optimal preprocessing unitary is presented
in Ref. [55].

C. Examples

Lastly, we present three simple but natural examples
with powerful global preprocessing controls that can be
efficiently implemented using O(log2 n)-depth circuits,
assuming arbitrary two-qubit gates and all-to-all con-
nectivity (see details in Appendix H). In these three
examples, we always assume H = H′ = span{|0〉 , |1〉}
are qubit systems and the quantum measurement is
{Mi} = {M0, M1}, where M0 = (1− m) |0〉 〈0| + m |1〉 〈1|
(0 < m < 1/2), and M1 = 1−M0.

In the first two examples, our preprocessing circuits
manage to achieve a FI that is asymptotically equal to
the QFI for any noise rate m. In the third example, our
preprocessing circuit achieves a FI that is asymptotically
equal to 2/π of the QFI, which still beats local con-
trols in the noise regime m ≥ 0.1011. The guideline to
design these circuits is to convert the quantum state to a
two-level state in span{|0〉⊗n , |1〉⊗n} whose probability (or
amplitude) distribution encodes θ . Then a majority voting
postprocessing method can be used to estimate θ with a
vanishingly small measurement error. Specifically, in the
majority voting postprocessing method, we partition the
measurement outcomes from measuring the two-level state
using {M0, M1}⊗n, which are represented by n-bit strings in
{0, 1}n, into two sets depending on whether the Hamming
weight of the string is larger than �n/2�. The FI of this
binary probability distribution achieves the desired value
asymptotically.

The first example is phase sensing using GHZ states [5],
where

|ψ(n)
θ 〉 = einθ |0〉⊗n + e−inθ |1〉⊗n

√
2

, (121)

and an optimal preprocessing circuit UG that achieves

F(UGψ
(n)
θ (UG)†, {Mi}⊗n)

n→∞−−−→ J (ψ(n)
θ ) = 4n2 (122)

is shown in Fig. 3(a), mapping |ψ(n)
θ 〉 to

cos(nθ) |0〉⊗n + i sin(nθ) |1〉⊗n . (123)

The majority voting postprocessing method gives an opti-
mal estimator of θ .
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H
(a)

H e−iθ0X

DSH e−iθ0X

H e−iθ0X

(b)

Ssorting |0

|0

(c)

FIG. 3. Examples of preprocessing circuits (UG or EG). (a)
Phase sensing using GHZ states. The optimal circuit is com-
posed of two C(NOT)n−1 gates, which, conditioning on the first
qubit being |1〉, performs X ⊗n−1 (X is the Pauli-X gate) on the
remaining n− 1 qubits, and a Hadamard gate H acting on the
first qubit between them. The circuit depth is O(log n). (b) Phase
sensing using product states. The optimal circuit is composed of a
global H gate and a global Pauli-X rotation, a desymmetrization
gate DS that maps W state 1/

√
n(|10 · · · 0〉 + |010 · · · 0〉 + · · · +

|0 · · · 01〉) to |10 · · · 0〉 and |0 · · · 0〉 to |0 · · · 0〉, and a C(NOT)n−1

gate. The circuit depth is O(log n). (c) Phase sensing using classi-
cally mixed states. Ssorting is a sorting channel with circuit depth
O(log2 n), that uses O(n log2 n) ancillary qubits and outputs one
qubit in state Eq. (129). It first sorts the bit string and then swaps
the first qubit with the �n sin2 θ0�th qubit. (The D-shape detectors
mean the qubits are completely discarded.).

The second example is phase sensing using product
pure states (usually known as Ramsey interferometry [90]),
where

|ψ(n)
θ 〉 =

(
eiθ |0〉 + e−iθ |1〉√

2

)⊗n

, (124)

and an optimal preprocessing circuit of depth O(log n) that
achieves

F(UGψ
(n)
θ (UG)†, {Mi}⊗n)

n→∞−−−→ J (ψ(n)
θ ) = 4n (125)

is shown in Fig. 3(b). Here we assume θ0 is a rough esti-
mate of θ such that |θ − θ0| � 1/

√
n. The first step is

to implement global Hadamard gates and Pauli-X rota-
tions such that |ψ(n)

θ 〉 is mapped to (e−iθ0X )⊗nH⊗n |ψ(n)
θ 〉 =

(cos(θ − θ0) |0〉 + i sin(θ − θ0) |1〉)⊗n. The second step is
to apply a desymmetrization gate DS and a C(NOT)n−1 gate
such that the state is approximately mapped to

cos(
√

n(θ − θ0)) |0〉⊗n + i sin(
√

n(θ − θ0)) |1〉⊗n , (126)

with an error O(n(θ − θ0)
2). The majority voting postpro-

cessing method gives an optimal estimator of θ .

The third example is phase sensing using classically
mixed states [which can be seen as Eq. (124) after global
Hadamard gates and completely dephasing noise], where

ρ
(n)
θ = (cos2 θ |0〉 〈0| + sin2 θ |1〉 〈1|)⊗n

. (127)

We assume θ ∈ (0+ ε,π/4− ε) for some constant ε > 0.
We show a preprocessing channel EG [in Fig. 3(c)] of
circuit depth O(log2 n) that achieves

F(EG(ρ
(n)
θ ), {Mi}⊗n)

n→∞−−−→ 8
π

n = 2
π

J (ρ(n)θ ). (128)

After a sorting channel Ssorting and discarding all qubits
except the first qubit, the first qubit is in state

pθ |0〉 〈0| + (1− pθ ) |1〉 〈1| , (129)

where pθ is the probability that after flipping n coins whose
probability of getting heads are sin2 θ , the number of heads
are smaller than or equal to �n sin2 θ0� (θ0 is a rough
estimate of θ satisfying |θ − θ0| � 1/

√
n). A FI asymp-

totically equal to (8/π)n can then be achieved using a
C(NOT)n−1 gate with n− 1 ancillas initialized in |0〉⊗n−1

and the majority voting postprocessing method.
Note that ρ(n)θ is a symmetric state. According to the

discussion in Sec. VII B, the QPFI should be asymptoti-
cally equal to the QFI, but whether there exists an efficient
implementation of the optimal preprocessing circuits is
unknown. Here we demonstrate the advantage of global
controls by providing an efficient but suboptimal circuit
in Fig. 3(c). The first part (Ssorting) of our circuit can be
viewed as the optimal quantum-classical channel Tn in
Theorem 14. The second part that encodes one qubit into
n qubits is, however, suboptimal. [In order to faithfully
transmit all probability distribution information, the encod-
ing channel in the second part needs to encode log(n+ 1)
qubits into n qubits.]

Nonetheless, our circuit in Fig. 3(c) is superior to any
local preprocessing controls in the noise regime where

m ≥ 1
2
− 1√

2π
≈ 0.101. (130)

This can be proven noting that the optimal FI achievable
using arbitrary local channels satisfies

max
E=E1⊗E2⊗···⊗En

F(E(ρ(n)θ ), {Mi}⊗n)

= FP(ρ
(1)
θ , {Mi})n ≤ (1− 2m)2n, (131)

from Eq. (100). Thus it is always smaller than (8/π)n
when m ≥ 1

2 − 1/
√

2π . Specially, when m → 1
2 , the linear

constant of the locally optimized FI is vanishingly small,
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while the suboptimal global one is still above a positive
number.

VIII. CONCLUSIONS AND OUTLOOK

We conducted a systematic study of the preprocessing
optimization problem for noisy quantum measurements
in quantum metrology. The QPFI (i.e., the FI of noisy
measurement statistics optimized over all preprocessing
quantum channels), that we defined and investigated in
depth, sets an ultimate precision bound for noisy measure-
ment of quantum states. Our results provide, in many cases,
both numerically and analytically, approaches to identify-
ing the optimal preprocessing controls that will be of great
importance in alleviating the effect of measurement noise
in quantum sensing experiments.

We also considered, specifically, the asymptotic limit
of the QPFI in multiprobe systems with individual mea-
surement on each probe. We proved the convergence of
the QPFI to the QFI when there exists an (asymptotically)
QFI-attainable measurement with a sufficiently small num-
ber of measurement outcomes, by establishing a connec-
tion to the classical channel capacity theorem. It would be
interesting to explore, in future works, if the number of
outcomes for QFI-attainable measurements can be easily
bounded given a quantum state.

Although we have discussed only two types of quan-
tum preprocessing controls, CPTP maps and unitary maps,
our biconvex formulation might be generalized to cover
other more restricted types of quantum controls. We also
narrowed the analytical forms of optimal controls for pure
states and classically mixed states down to rotations onto
the span of two basis states and coarse-graining channels,
respectively, but it remains open whether a simple method
exists to help us determine the exact operations.

Finally, there are a few important directions to extend
our results to, e.g., incorporating the state preparation
optimization into the QPFI optimization problem, con-
sidering the preprocessing optimization in multiparameter
estimation where the incompatibility of optimal prepro-
cessings for different parameters might become an issue,
and finding optimal preprocessings for other information
processing tasks beyond quantum metrology, such as state
tomography and discrimination.
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APPENDIX A: QFI-ATTAINABLE
MEASUREMENTS

In this Appendix, we provide several simple facts about
the QFI-attainable measurements for quantum states, that
will be useful in the main text.

(1) Necessary and sufficient condition [14]. Given a
quantum state ρθ , {Mi} attains the QFI if and only
if

∀i = 1, . . . , r, ∃ci ∈ R, such that

M 1/2
i ρ

1/2
θ = ciM

1/2
i Lθρ

1/2
θ , (A1)

where Lθ is the symmetric logarithmic deriva-
tive (SLD) operator, which is a Herminian oper-
ator defined by ∂θρθ = 1

2 (Lθρθ + ρθLθ ) and the
QFI J (ρθ ) = Tr(ρθL2

θ ). (Note that although the
definition of Lθ is not unique when ρθ is not full
rank, one can chose an arbitrary one and the QFI
and the necessary and sufficient condition will be
invariant.) Clearly, the necessary and sufficient con-
dition Eq. (A1) is satisfied when the measurement is
chosen as the rank-one projection onto eigenstates
of Lθ .

(2) Low-rank states. If ρθ and ∂θρθ are supported on
a D′-dimensional subspace of HS (D′ ≤ D) (which
should be true when ρθ is supported on a �D′/2�-
dimensional subspace), there exists a SLD Lθ sup-
ported on the D′-dimensional subspace. Moreover,
let Lθ =

∑D′
i=1 �i |i〉 〈i| where �i > 0 and {|i〉} is an

orthonormal basis for the D′-dimensional subspace,
it can be verified that {Mi}D′i=1 (that has D′ measure-
ment outcomes) is QFI-attainable when Mi = |i〉 〈i|
for i = 1, . . . , D′ − 1 and MD′ = 1−∑D′

i=1 Mi. That
means, a state of a subexponential rank must have
a QFI-attainable measurement with a subexponen-
tial number of measurement outcomes. In particular,
for pure states, binary measurements are sufficient to
attain the QFI.

(3) Classically mixed states. For classically mixed
states ρθ =

∑D
i=1 λi |i〉 〈i|, the SLD is also diagonal

in the basis {|i〉}. It implies that the rank-one projec-
tion onto the basis is QFI attainable for classically
mixed states.

(4) Block-diagonal states. More generally, consider
block-diagonal states ρθ =

⊕
pν,θρν,θ , where ρν,θ

are supported on different orthogonal subspaces.
The SLD can also be block diagonal, implying that
there exists a QFI-attainable measurement of the
form {⊕ν(Ti)ν}, whose number of measurement
outcomes is at most the rank of ρθ , where {(Ti)ν}
is a quantum measurement for each fixed ν.
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APPENDIX B: MATHEMATICAL PROPERTIES
OF THE QPFI

Here we briefly discuss the mathematical properties
of the QPFI. We will always assume quantum measure-
ments are nontrivial in this Appendix (i.e., ∃Mi �∝ 1 for all
{Mi}).

(1) Faithfulness. The QPFI is faithful, that means,

FP(ρθ , {Mi}) ≥ 0, (B1)

and the equality holds if and only if ∂θρθ =
0. The non-negativity follows from the faithful-
ness of the classical FI. In order to see when
∂θρθ �= 0, FP(ρθ , {Mi}) > 0, we use Lemma 13
in Sec. VI. Assume ∂θρθ �= 0. FP(ρθ , {Mi}) >
FP(T (ρθ ), {Mi}), where T (ρθ ) is a classically
mixed state that satisfies J (T (ρθ )) = J (ρθ ) > 0
(from the faithfulness of the QFI). Consider the
following simplification of measurements: dividing
{Mi} into two subsets and restricting them in a two-
dimensional subspace such that the measurement
becomes a nontrivial binary measurement on a qubit
{M̃ ,1− M̃ }. Then we see that FP(T (ρθ ), {Mi}) ≥
FP(T (ρθ ), {M̃ ,1− M̃ }) > 0 from the exact expres-
sion of the QPFI in Eq. (91).

(2) QFI as an upper bound. The QPFI is always no
larger than the QFI. Note that

F(E(ρθ ), {Mi}) = F(ρθ , {E†(Mi)}) ≤ J (ρθ ), (B2)

where E† is the dual map of E and the second
inequality follows from the definition of the QFI
and the fact that {E†(Mi)} is still a POVM when E
is a CPTP map. Taking the supremum over E on
both sides in the above inequality, we have proved
FP(ρθ , {Mi}) ≤ J (ρθ ).

(3) Monotonicity. The QPFI is monotonic, i.e., FP

(ρθ , {Mi}) ≥ FP(E(ρθ ), {Mi}) for any CPTP map

E by definition. Or equivalently, FP(ρθ , {Mi}) ≥
FP(ρθ , {E†(Mi)}) where E† is the dual map of E .

(4) Convexity. The QPFI is convex in quantum states
when {Mi} is fixed. That is, for p ∈ (0, 1) indepen-
dent of θ ,

FP(pρθ + (1− p)σθ , {Mi})
= sup

E
F(E(pρθ + (1− p)σθ , {Mi}) (B3)

≤ sup
E

pF(E(ρθ ), {Mi})+ (1− p)F(E(σθ ), {Mi})
(B4)

≤ pFP(ρθ , {Mi})+ (1− p)FP(σθ , {Mi}), (B5)

where we use the convexity of the classical FI in the
second step. Similarly, we also have

FP(ρθ , {pMi + (1− p)M ′
i })

≤ pFP(ρθ , {Mi})+ (1− p)FP(ρθ , {M ′
i }). (B6)

(5) Additivity. When quantum states under consider-
ation are pure, the QPFI is additive because of
Eq. (40) and the additivity of the QFI, i.e., FP(ψθ ⊗
ψ ′
θ , {Mi}) = FP(ψθ , {Mi})+ FP(ψ ′

θ , {Mi}) when ψθ

and ψ ′
θ are pure.

For general mixed states, there is no general
inequality relation between FP(ρθ ⊗ σθ , {Mi}) and
FP(ρθ , {Mi})+ FP(σθ , {Mi}). Consider the simple
example where one (or two identical) qubit state
ρθ = cos2 θ |1〉 〈1| + sin2 θ |2〉 〈2| (θ ∈ (0,π/2)), is
measured using the binary measurement on a qubit:
M1 = (1− m) |1〉 〈1| + m |2〉 〈2| and M2 = 1−M1
(0 < m < 1/2). We have, from Eq. (91), that

FP(ρθ , {Mi}) = 4(1− 2m)2 sin(2θ)2

1− (1− 2m) cos(2θ)2 , (B7)

and

FP(ρθ ⊗ ρθ , {Mi}) = max
{ 16(1− 2m)2 cos(θ)6 sin(θ)2

(1− m)m+ (1− 2m)2(cos θ)4(1− (cos θ)4)
,

16(1− 2m)2 sin(θ)2 cos(θ)6

(1− m)m+ (1− 2m)2(sin θ)4(1− (sin θ)4)

}
.

(B8)

Consider the limit m → 0, we have FP(ρθ ⊗
ρθ , {Mi}) < 2FP(ρθ , {Mi}) (which is expected
because {Mi} when m = 0 is QFI attainable for
ρθ and the QFI is additive). On the other hand,
one can immediately find cases where FP(ρθ ⊗
ρθ , {Mi}) > 2FP(ρθ , {Mi}), e.g., when m = 0.1 and

θ = π/8. For any fixed m > 0, there is a threshold
of θ above which the sign of FP(ρθ ⊗ ρθ , {Mi})−
2FP(ρθ , {Mi}) changes from positive to negative.

Finally, we can consider multiple states under
multiple measurements. We have, by definition,
FP(ρθ ⊗ σθ , {Mi} ⊗ {M ′

i })≥FP(ρθ , {Mi})+ FP(σθ ,

040305-21



ZHOU, MICHALAKIS, and GEFEN PRX QUANTUM 4, 040305 (2023)

{M ′
i }) and the inequality can be strict (see the con-

vergence to the QFI in the asymptotic limit in
Sec. VII).

APPENDIX C: ATTAINABILITY OF THE QPFI

Here we prove several results that are related to the
attainability of the QPFI and the QUPFI.

We first show the existence of the optimal controls (or
unitaries) for generic noisy measurement that has nonzero
noise in all subspaces.

Lemma 15.—For arbitrary quantum states ρθ and noisy
measurements {Mi} such that mini λmin(Mi) > 0, the supre-
mums in Eqs. (7) and (10) are attainable. Here λmin(·)
represents the minimum eigenvalue of an operator.

Proof.—By definition, there exists a sequence of quan-
tum channels (E1, . . . , En, . . .) such that

F(En(ρθ ), {Mi}) ≥ FP(ρθ , {Mi})− ηn, (C1)

where limn→∞ ηn = 0. Since the set of quantum chan-
nels is bounded and closed, there exists a limiting point
of (E1, . . . , En, . . .) that we denote by E . Without loss of
generality, we assume the sequence converges and E =
limn→∞ En. And

lim
n→∞F(En(ρθ ), {Mi}) = lim

n→∞

∑

i

(Tr(En(∂θρθ )Mi))
2

Tr(En(ρθ )Mi)

(C2)

=
∑

i

limn→∞(Tr(En(∂θρθ )Mi))
2

limn→∞ Tr(En(ρθ )Mi)

(C3)

=
∑

i

(Tr(E(∂θρθ )Mi))
2

Tr(E(ρθ )Mi)

= F(E(ρθ ), {Mi}), (C4)

where we use Tr(En(ρθ )Mi) > mini λmin(Mi) > 0 for all
n. Then we must have F(E(ρθ ), {Mi}) ≥ FP(ρθ , {Mi})
using Eq. (C1). Since F(E(ρθ ), {Mi}) ≤ FP(ρθ , {Mi}) by
definition, we have

F(E(ρθ ), {Mi}) = FP(ρθ , {Mi}), (C5)

proving the existence of the optimal channels. The exis-
tence of the optimal unitaries can also be proven analo-
gously. �

As a corollary of Lemma 15, we show that for any mea-
surement whose QPFI (or QUPFI) may not be attainable,
there always exists a measurement in its neighborhood
such that its QPFI (or QUPFI) is attainable and close to
that of the original measurement.

Lemma 16.—For any quantum state ρθ , quantum mea-
surement {Mi} and η > 0, there always exists {M (ε)

i } and a

constant c > 0 such that the corresponding QPFI and the
QUPFI are attainable, and when ε < c,

FP(ρθ , {M (ε)
i }) ≥ FP(ρθ , {Mi})− η, (C6)

FU(ρθ , {M (ε)
i }) ≥ FU(ρθ , {Mi})− η. (C7)

Proof.—Assume FP(ρθ , {Mi})− η ≥ FU(ρθ , {Mi})−
η > 0. By definition, we can pick E and U such that

F(E(ρθ ), {Mi}) ≥ FP(ρθ , {Mi})− η/2, (C8)

F(UρθU†, {Mi}) ≥ FU(ρθ , {Mi})− η/2. (C9)

Let

c′ = min
{

min
i:Tr(E(ρθ )Mi) �=0

Tr(E(ρθ )Mi)

Tr(Mi)
,

min
i:Tr(U(ρθ )U†Mi) �=0

Tr(U(ρθ )U†Mi)

Tr(Mi)

}
, (C10)

define [assuming d = dim(HS′)]

M (ε)
i = (1− ε)Mi + εTr(Mi)

1

d
, (C11)

and assume ε is small enough such that

1− ε − ε

dc′
(1− ε) >

FU(ρθ , {Mi})− η

FU(ρθ , {Mi})− η/2
. (C12)

Note that a similar construction of ρ(ε), instead of M (ε)
i ,

was used in Ref. [91] to remove singularity of the QFI.
Using Lemma 15, it is clear that the QPFI and the QUPFI
for {M (ε)

i } are attainable. Furthermore, we have

FP(ρθ , {M (ε)
i })

≥
∑

i:Tr(E(ρθ )M (ε)
i ) �=0

(Tr(E(∂θρθ )M (ε)
i ))2

Tr(E(ρθ )M (ε)
i )

≥
∑

i:Tr(E(ρθ )Mi) �=0

(1− ε)2(Tr(E(∂θρθ )Mi))
2

(1− ε)Tr(E(ρθ )Mi)+ Tr(Mi)ε/r

(C13)

≥
∑

i:Tr(E(ρθ )Mi) �=0

(Tr(E(∂θρθ )Mi))
2

Tr(E(ρθ )Mi)

(
1− ε − ε

dc′
(1− ε)

)

(C14)

≥ F(E(ρθ ), {Mi}) FU(ρθ , {Mi})− η

FU(ρθ , {Mi})− η/2

≥ FP(ρθ , {Mi})− η, (C15)

proving Eq. (C6). Equation (C7) is also true, similarly.
When FP(ρθ , {Mi})− η ≤ 0 or FU(ρθ , {Mi})− η ≤ 0, the
results also follow trivially. �

040305-22



OPTIMAL PROTOCOLS FOR QUANTUM METROLOGY. . . PRX QUANTUM 4, 040305 (2023)

Finally, we are ready to provide a proof of Theorem 1,
which shows a way to calculate the QPFI by considering
the limit of the QPFI for a set of generic noisy measure-
ments in its neighborhood. (Note that the theorem stated
below also holds for the QUPFI.)

Theorem 1.—Let M (ε)
i = (1− ε)Mi + εTr(Mi)1/d,

where d = dim(HS′) and 0 < ε < 1. Then

FP(ρθ , {Mi}) = lim
ε→0+

FP(ρθ , {M (ε)
i }), (C9)

and the QPFI FP(ρθ , {M (ε)
i }) is attainable for any ε ∈

(0, 1].
Proof.—For any η > 0, following Lemma 16, we have

FP(ρθ , {Mi}) ≤ FP(ρθ , {M (ε)
i })+ η, (C16)

when ε is small enough, where M (ε)
i = (1− ε)Mi +

εTr(Mi)1/d. Take the limit ε → 0+ on both sides, we
have FP(ρθ , {Mi}) ≤ lim infε→0+ FP(ρθ , {M (ε)

i })+ η for
any η > 0, implying

FP(ρθ , {Mi}) ≤ lim inf
ε→0+

FP(ρθ , {M (ε)
i }). (C17)

On the other hand, consider a quantum channel for 0 <
ε < 1,

Eε(σ ) = (1− ε)σ + εTr(σ )
1

d
, (C18)

Then we have Tr(Eε(σ )Mi) = Tr(σE†
ε (Mi)) = Tr(σM (ε)

i )

for any σ . By definition, we have

FP(ρθ , {Mi}) = sup
E

F(E(ρθ ), {Mi})

≥ sup
E

F(Eε(E(ρθ )), {Mi})

= FP(ρθ , {E†
ε (Mi)}) = FP(ρθ , {M (ε)

i }).
(C19)

Take the limit ε → 0+ on both sides, we have

FP(ρθ , {Mi}) ≥ lim sup
ε→0+

FP(ρθ , {M (ε)
i }). (C20)

The theorem then follows from Eqs. (C17) and (C20). �

APPENDIX D: GLOBAL OPTIMIZATION
ALGORITHM FOR BICONVEX OPTIMIZATION

PROBLEMS

In Sec. III, we showed that the QPFI can be
obtained from the following biconvex optimization prob-
lem [Eq. (20)]:

FP(ρθ , {Mi})−1 = inf
(x,	)

Tr((X2 ⊗ ρT
θ )	), (D1)

such that 	 ≥ 0,

TrS′(	)=1S, Tr((X ⊗ ρT
θ )	)= 0,

Tr((X ⊗ ∂θρ
T
θ )	) = 1.

The constraints on 	 guarantee any feasible 	 is contained
in a convex compact set R2 [the absolute value of each
entry of 	 should not be larger than dim(HS)]. We could
also set a convex compact region R1 on x, so that the fol-
lowing optimization problem generates the same optimal
value as Eq. (20):

min
(x,	)

Tr((X2 ⊗ ρT
θ )	),

such that 	 ≥ 0,

TrS′(	) = 1S, Tr((X ⊗ ρT
θ )	) = 0,

Tr((X ⊗ ∂θρ
T
θ )	) = 1,

x ∈ R1, 	 ∈ R2. (D2)

As discussed in Sec. III, this is possible when the size of
R1 is suffciently large, in normal cases when the infimum
in Eq. (20) is attainable. Otherwise, the optimal value of
Eq. (D2) can still approach that of Eq. (20) for sufficiently
large size of R1.

Here we describe the global optimization algorithm
[81] for Eq. (D2) that is guaranteed to converge to the
global optimum of Eq. (D2) in finite steps. One may seek
[59] for a general survey on algorithms from biconvex
optimization.

We first rewrite Eq. (D2) as

min
(x,	)∈R1×R2

f (x,	),

such that 	 ≥ 0, ∀i, hi(x,	) = 0, (D3)

where f (x,	) is the biconvex target function and hi(x,	)
are biaffine functions. The global optimization algorithm
finds the global optimum of Eq. (D2) by solving a set of
primal problems and relaxed dual problems, which gener-
ate upper and lower bounds on the optimum, respectively.
The upper and lower bounds converge to the global opti-
mum up to a small error in finite steps. The algorithm is
described as follows.
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Step 1: Initialization.
Define initial upper and lower bounds (f U, f L) on the

global optimum, where f U and −f L can be chosen as two
very large numbers. Set the counter K = 1. Set a conver-
gence tolerance parameter ε. Choose a starting point x1.
Define three empty sets Kfeas (set of feasible problems),
Kinfeas (set of infeasible problems), S (set of candidates of
lower bound).

Step 2: Primal problem.

(1) Consider the primal problem for x = xK if it is feasible
(that is, if there exists some 	 ∈ R2 that satisfies the
constraints):

P(xK) = min
	∈R2

f (xK ,	),

such that 	 ≥ 0, ∀i, hi(xK ,	) = 0. (D4)

The strong duality theorem [76] indicates that P(xK)

can be solved through

P(xK) = max
y,Z≥0

min
	∈R2

L(xK ,	, y, Z), (D5)

where the Lagrange function

L(x,	, y, Z) := f (x,	)+
∑

i

yihi(x,	)− Tr(	Z),

(D6)

Z is a semidefinite positive matrix acting on HS′ ⊗HS
and y is a vector of real numbers.

Solve Eq. (D5) and store the optimal values
(	K , yK , ZK). Set f U = min{f U, P(xK)} and Kfeas =
Kfeas ∪ {K}.

(2) If Eq. (D4) is infeasible, solve the relaxed primal
problem for x = xK instead:

δ(xK) = min
	∈R2,α≥0

α,

such that 	+ α1S′S ≥ 0, ∀i, hi(xK ,	) = 0.
(D7)

The strong duality theorem implies

δ(xK) = max
y,Z≥0

min
	∈R2,α≥0

α +
∑

i

yihi(x,	)

− Tr((	+ α1S′S)Z)

= max
y,Z≥0,Tr(Z)≤1

min
	∈R2

L1(xK ,	, y, Z), (D8)

where the Lagrange function L1(x,	, y, Z) :=∑i yihi
(x,	)− Tr(	Z).

Solve Eq. (D8) and store the optimal values
(	K , yK , ZK). Let Kinfeas = Kinfeas ∪ {K}.

Step 3: Determine the current region of x.
Suppose 	 is parameterized by a vector of real num-

bers 	i. Since 	 is contained in a compact set, 	i has
upper and lower bounds that we denote by 	U

i and 	L
i .

Consider the partial derivatives of the Lagrange func-
tions defined by gk

i (x) := ∂/∂	iL(x,	, yk, Zk)|	k for k ∈
Kfeas and gk

i (x) := ∂/∂	iL1(x,	, yk, Zk)|	k for k ∈ Kinfeas.
Define the set of indices for connected variables Ik :=
{i|gk

i (x) is a nontrivial function of x} = {i|gk
i (x) = 0, ∀x}

(the last equality follows from the KKT conditions
[76]) and 	i is called a connected variable of the
Lagrange functions if i ∈ Ik. We can also define
the linearized Lagrange functions L(x,	, yk, Zk)|lin

	k :=
L(x,	k, yk, Zk)+∑i∈Ik

gk
i (x)(	i −	k

i ) and L1(x,	, yk,
Zk)|lin

	k := L1(x,	k, yk, Zk)+∑i∈Ik
gk

i (x)(	i −	k
i ). The

linearized functions L(x,	, yk, Zk)|lin
	k and L1(x,	, yk,

Zk)|lin
	k are functions of the connected variables only and

independent of 	i if i /∈ Ik.
Let Bk := i∈Ik {	L

i ,	U
i } be the set of combinations of

upper and lower bounds on 	i for all i ∈ Ik. We abuse
the notation a bit and use 	 ∈ Bk to denote the case
where the part of connected variables 	Ik in 	 is con-
tained in Bk and the other part is arbitrary. We will
see that the other part is irrelevant in our calculations
and can be ignored. In this sense, there are in total
2|Ik | number of 	 ∈ Bk, which is finite. We also define
R(k,	) to be a region of x as a function of 	 ∈ Bk

defined by

R(k,	) := {x|∀i ∈ Ik gk
i (x) ≤	i 0}, (D9)

where “≤	i” represents “≤” if 	i = 	U
i , and “≥” if

	i = 	L
i .

Let B(k,K) = {	 ∈ Bk|xK ∈ R(k,	)}. The relaxed
dual problem in the next step will be solved in the region
of x that is contained in

⋂K−1
k=1

⋂
	∈B(k,K) R(k,	).

Step 4: Relaxed dual problem.
Determine the set of indices for connected variables

IK . Note that for any k, L(x,	, yk, Zk)|lin
	k is a function of

the connected variables only and is fixed if the connected
variables 	Ik of 	 is fixed. Therefore, we will also write
L(x,	, yk, Zk)|lin

	k = L(x,	Ik , yk, Zk)|lin
	k .

For each 	
 ∈ BK = i∈IK {	L
i ,	U

i } (there are 2|IK | dif-
ferent 	
 in total), solve the following relaxed dual
problem:
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min
x∈R1,μ

μ

such that
μ ≥ L(x,	, yk, Zk)|lin

	k ,
x ∈ R(k,	),

}

∀ 	 ∈ B(k,K), 1 ≤ k ≤ K − 1, k ∈ Kfeas,

0 ≥ L1(x,	, yk, Zk)|lin
	k ,

x ∈ R(k,	),

}

∀ 	 ∈ B(k,K), 1 ≤ k ≤ K − 1, k ∈ Kinfeas,

μ ≥ L(x,	
, yK , ZK)|lin
	K ,

x ∈ R(k,	
),

}

K ∈ Kfeas,

0 ≥ L1(x,	
, yK , ZK)|lin
	K ,

x ∈ R(k,	
),

}

K ∈ Kinfeas. (D10)

For each 	
, store the solution (μ
, x
) of Eq. (D10) in S.
Step 5: Select a new lower bound and determine

xK+1.
From the set S, select the minimum μmin and the cor-

responding xmin. Set f L = μmin and xK+1 = xmin. Delete
(μmin, xmin) from the set of candidates of lower bound S.

Step 6: Check for convergence.
Check if f L > f U − ε, if yes, STOP; otherwise, set

K = K + 1 and return to Step 2.

The global optimization algorithm described above works
in a branch-and-bound way where x is partitioned into dif-
ferent regions and different candidates of lower bounds
of the global optimum are explored in each iteration. The
subproblems that are solved in each iteration are semidef-
inite programs [Eqs. (D5) and (D8)] and quadratically
constrained quadratic programs [Eq. (D10)], which can
be solved efficiently (for a moderate system dimension)
using algorithms for convex optimization [76]. The run-
ning time of the entire algorithm depends largely on the
number of subproblems that are solved in each iteration,

which is exponential in the number of connected variables.
Methods that can reduce this complexity were discussed in
Ref. [81].

APPENDIX E: BINARY MEASUREMENTS ON
PURE STATES

1. Measurement on a qubit

Here consider a binary measurement on a single qubit
where X = x1M1 + x2M2, M1 = M and M2 = 1−M .
Without loss of generality, we assume

M =
(

m1 0
0 m2

)

, m1, m2 ∈ [0, 1] and m1 > m2. (E1)

Our goal is to find (x, U) such that the two necessary
conditions in Lemma 4 are satisfied.

Let |φ〉 = √
p |1〉 + √

1− p |2〉 where 0 ≤ p ≤ 1 (any
additional phases in the amplitudes of |φ〉 do not change
the results). Condition (1) translates into

(√
p

√
1− p

)
(

x1m1 + x2(1− m1) 0
0 x1m2 + x2(1− m2)

)( √
p√

1− p

)

= 0, (E2)

(√
p

√
1− p

)
(
(x1m1 + x2(1− m1))

2 0
0 (x1m2 + x2(1− m2))

2

)( √
p√

1− p

)

= 1
4n

, (E3)

and Condition (2) is trivially true when p = 0, 1, otherwise translates into

〈φ|X 2|φ〉
〈φ|X2|φ〉 =

(x1m1 + x2(1− m1))
2

x2
1m1 + x2

2(1− m1)
= (x1m2 + x2(1− m2))

2

x2
1m2 + x2

2(1− m2)
= γ ({Mi}) ≤ 1, (E4)

where we use

FU(ψθ , {Mi})−1 = 〈φ|X2|φ〉 = 〈φ|X2|φ〉
〈φ|X 2|φ〉 · 〈φ|X

2|φ〉 = (γ ({Mi})J (ψθ))
−1, (E5)

and J (ψθ) = 4n.
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Solving the system of equations [Eqs. (E2)–(E5)], we
find the following results.

(1) When 1 > m1 > m2 > 0, according to Lemma 15,
the QPFI is attainable. Moreover, the only solution
satisfying the necessary conditions [Eqs. (E2)–(E5)]
is

x2

x1
= −

√
m1m2

(1− m1)(1− m2)
, (E6)

p =
√

m2(1− m2)√
m1(1− m1)+

√
m2(1− m2)

, (E7)

which must be the optimal solution. It gives

γ ({Mi}) = 1− (√m1m2 +
√
(1− m1) (1− m2)

)2.
(E8)

(2) When 1 = m1 > m2 = 0, we must have X 2 = X2,
implying γ ({Mi}) = 1. The QFI is achievable as
long as a solution to px1 + (1− p)x2 = 0 and px2

1 +
(1− p)x2

2 = 1/(4n) exists, which means that any
0 < p < 1 is optimal.

(3) When 1 > m1 > m2 = 0, the necessary conditions
[Eqs. (E2)–(E5)] have no solutions. Thus, this is a
singular case where the QPFI is not attainable. And
we have from Theorem 1 that

γ ({Mi}) = lim
ε→0+

γ ({M (ε)
i }) (E9)

= lim
ε→0+

(
1− ε

2

)
m1 + ε

2
−
(

1− ε

2

)
m1ε − 2

√
ε

2

(
1− ε

2

) (
1− ε

2

)
m1

(
1−

(
1− ε

2

)
m1

)
= m1. (E10)

2. Measurement on a qudit

Now consider a d-dimensional system with d > 2 and
a binary measurement M1 = M and M2 = 1−M on it
where

M =

⎛

⎜
⎜
⎝

m1
m2

. . .
md

⎞

⎟
⎟
⎠ , (E11)

and 1 > m1 ≥ · · · ≥ md > 0.
Let |φ〉 =∑d

i=1 φi |i〉. We now show that the support of
|φ〉: supp{|φ〉} = {i : φi �= 0} must correspond to at most
two different values of mi when |φ〉 is optimal. We prove
this by contradiction. Without loss of generality, assume∣
∣φ1,2,3

∣
∣ > 0 and m1 > m2 > m3. Condition (2) implies that

〈1|X 2|1〉
〈1|X2|1〉 =

〈2|X 2|2〉
〈2|X2|2〉 =

〈3|X 2|3〉
〈3|X2|3〉 , (E12)

⇒ (x1m1 + x2(1− m1))
2

x2
1m1 + x2

2(1− m1)
= (x1m2 + x2(1− m2))

2

x2
1m2 + x2

2(1− m2)
= (x1m3 + x2(1− m3))

2

x2
1m3 + x2

2(1− m3)
, (E13)

⇒ −
√

m1m2

(1− m1)(1− m2)
= −

√
m1m3

(1− m1)(1− m3)
= −

√
m2m3

(1− m2)(1− m3)
, (E14)

which contradicts m1 > m2 > m3. Thus, we conclude that the support of |φ〉 must correspond to at most two different
values of mi.

Therefore, we have

γ ({Mi}) = max
1≤k≤l≤d

γkl({Mi}) = max
kl

1− (√mkml +
√
(1− mk)(1− ml)

)2. (E15)

In fact, assume m1 ≥ m2 ≥ · · · ≥ md, we must have

γ ({Mi}) = 1− (√m1md +
√
(1− m1) (1− md)

)2. (E16)
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The reason is that when mk ≥ ml, increasing mk or decreas-
ing ml while the other element is fixed will only increases
γkl({Mi}). We see that by computing the derivative of
γkl({Mi}) with respect to mk. We have

∂

∂mk
γkl({Mi}) = 1− 2ml −

√
(1− ml)ml√
(1− mk)mk

(1− 2mk) ≥ 0,

(E17)

when mk ≥ ml because 1− 2ml/
√
(1− ml)ml =√

1− ml/ml −
√

ml/1− ml ≥ 1− 2mk/
√
(1− mk)mk.

APPENDIX F: COMMUTING-OPERATOR
MEASUREMENTS ON PURE STATES

We take one step further from binary measurements and
consider the commuting-operator measurements where

Mi =

⎛

⎜
⎜
⎜
⎝

m(i)
1

m(i)
2

. . .
m(i)

d

⎞

⎟
⎟
⎟
⎠

, (F1)

and
∑

i Mi = 1. We also assume m(i)
j > 0 for all i, j .

1. Proof of Theorem 6

We first prove Theorem 6:
Theorem 6.—For commuting-operator measurements

[Eq. (63)], there always exists an optimal solution
to (|φ〉 , |φ⊥〉) such that |φ〉 = √

p |k〉 + √1− p |l〉 and
|φ⊥〉 = √

1− p |k〉 − √p |l〉 for two basis states |k〉 and |l〉
and 0 < p < 1.

Proof.—Assume (x, |φ〉) satisfies Condition (2) in
Lemma 4, where we write xi = y(x + ai), x �= 0 and the
support of |φ〉 contains |1〉 and |2〉. Then according to
Condition (2), we must have

(x + 〈a〉1)2

x2 + 2 〈a〉1 x + 〈a2〉1
= (x + 〈a〉2)2

x2 + 2 〈a〉2 x + 〈a2〉2
= 〈φ|X 2|φ〉
〈φ|X2|φ〉 , (F2)

where 〈a〉j =
∑

i aim
(i)
j and 〈a2〉j =

∑
i a2

i m(i)
j . We also

define 〈�a2〉j = 〈a2〉j − 〈a〉2j .
Assume 〈a〉1 > 〈a〉2, we have the following possible

solutions of Eq. (F2).

(1) When 〈�a2〉1 = 〈�a2〉2,

x = −1
2
(〈a〉1 + 〈a〉2), and

〈φ|X2|φ〉
〈φ|X 2|φ〉 = 1+

(√
〈�a2〉1 +

√
〈�a2〉2

〈a〉1 − 〈a〉2

)2

. (F3)

(2) When 〈�a2〉1 − 〈�a2〉2 �= 0, we have either

x = −〈a〉2 〈�a2〉1 + 〈a〉1 〈�a2〉2 − (〈a〉1 − 〈a〉2)
√
〈�a2〉1 〈�a2〉2

〈�a2〉1 − 〈�a2〉2
(F4)

and

〈φ|X2|φ〉
〈φ|X 2|φ〉 = 1+

(√
〈�a2〉1 +

√
〈�a2〉2

〈a〉1 − 〈a〉2

)2

, (F5)

or

x = −〈a〉2 〈�a2〉1 + 〈a〉1 〈�a2〉2 + (〈a〉1 − 〈a〉2)
√
〈�a2〉1 〈�a2〉2

〈�a2〉1 − 〈�a2〉2
(F6)

and

〈φ|X2|φ〉
〈φ|X 2|φ〉 = 1+

(√
〈�a2〉1 −

√
〈�a2〉2

〈a〉1 − 〈a〉2

)2

. (F7)
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Next we show that there always is an optimal solution such
that its support contains only two elements. Without loss of
generality, assume |φ∗〉 =∑d

i=1 φ
∗
i |i〉 is an optimal solu-

tion (which is guaranteed to exist thanks to Lemma 15).
The corresponding error vector x∗ is written as x∗i =
y∗(x∗ + a∗i ). We have from Condition (1) in Lemma 4
that

∑d
i=1 |φ∗i |2y∗(x∗ + 〈a∗〉i) = 0 and

∑d
i=1 |φ∗i |2(y∗(x∗ +〈a∗〉i))2 = 1/(4n). Clearly, we must have some i �= j ,

such that
∣
∣
∣φ∗i,j

∣
∣
∣ > 0, 〈a∗〉i �= 〈a∗〉j and (x∗ + 〈a∗〉i)(x∗ +

〈a∗〉j ) < 0. Without loss of generality, we assume i =
1, j = 2 and 〈a∗〉1 > 〈a∗〉2. Then (x∗, |φ∗〉) must satisfy
either Eqs. (F3) or (F4) and (F5) from the previous dis-
cussion. [Note that if Eqs. (F6) and (F7) cannot be true
because (x∗ + 〈a∗〉i)(x∗ + 〈a∗〉j ) < 0.]

We then assert that |φ∗∗〉 = √
p |1〉 + √1− p |2〉 (0 ≤

p ≤ 1) is also an optimal solution, when p satisfies

(√
p

√
1− p

)
(

x∗ + 〈a∗〉1 0
0 x∗ + 〈a∗〉2

)

×
( √

p√
1− p

)

= 0. (F8)

Using Eqs. (F3)–(F5), it is easy to see that

p =
√
〈�(a∗)2〉2√

〈�(a∗)2〉2 +
√
〈�(a∗)2〉1

. (F9)

We take x∗∗i = y∗∗(x∗ + a∗i ), where y∗∗ is solved from

(√
p

√
1− p

)
(
(x∗ + 〈a∗〉1)2 0

0 (x∗ + 〈a∗〉2)2

)

×
( √

p√
1− p

)

= 1
4n(y∗∗)2 . (F10)

Both equations are derived from Condition (1). Now we
have a new solution (x∗∗, |φ∗∗〉) such that y∗∗ and |φ∗∗〉
are solved by the equations above. Note that we still let
a∗∗i = a∗i and x∗∗ = x∗. The new solution have the same
FI as the original, i.e., 〈φ|X2|φ〉 does not change, because
〈φ|X2|φ〉 / 〈φ|X 2|φ〉 is independent of y [due to Eqs. (F3)
and (F5)] and 〈φ|X 2|φ〉 = 1/(4n) is invariant. The new
solution is thus supported on a two-dimensional subspace
spanned by {|1〉 , |2〉}, proving Theorem 6. �

2. Optimal solution for commuting-operator
measurements

Now we proceed to compute general γ ({Mi}) for
commuting-operator measurements. First, consider the
optimization for measurements restricted in a two-
dimensional subspace spanned by |k〉 , |l〉 for some k �= l,
i.e.,

(Mi)kl = m(i)
k |k〉 〈k| + m(i)

l |l〉 〈l| , (F11)

and
∑

i(Mi)kl = 1span{|k〉,|l〉}.

Let (x∗, |φ∗〉) be an optimal solution when |φ〉 , |φ⊥〉 are restricted in span{|k〉 , |l〉} and |φ∗〉 = √
pkl |k〉 +

√
1− pkl |l〉

(we also assume 〈a∗〉k > 〈a∗〉l). Using Eq. (17), we see that the optimal a∗i

y∗(x∗ + a∗i ) = x∗i =
y∗

γkl({Mi})
〈φ∗|MiX ∗|φ∗〉
〈φ∗|Mi|φ∗〉 = y∗

γkl({Mi})
pklm

(i)
k (x

∗ + 〈a∗〉k)+ (1− pkl)m
(i)
l (x

∗ + 〈a∗〉l)
pklm

(i)
k + (1− pkl)m

(i)
l

= pkly∗(x∗ + 〈a∗〉k)
γkl({Mi})

m(i)
k − m(i)

l

pklm
(i)
k + (1− pkl)m

(i)
l

, (F12)

where we use

〈φ∗|X ∗|φ∗〉 = pkly∗(x∗ + 〈a∗〉k)+ (1− pkl)y∗(x∗ + 〈a∗〉l) = 0, (F13)

in the last step. From Eq. (F12), we have,

(y∗)2((x∗)2 + 2 〈a∗〉k x∗ + 〈(a∗)2〉k) =
(

pkly∗(x∗ + 〈a∗〉k)
γkl({Mi})

)2∑

i

(m(i)
k − m(i)

l )
2m(i)

k

(pklm
(i)
k + (1− pkl)m

(i)
l )

2
, (F14)

(y∗)2((x∗)2 + 2 〈a∗〉l x∗ + 〈(a∗)2〉l) =
(

pkly∗(x∗ + 〈a∗〉k)
γkl({Mi})

)2∑

i

(m(i)
k − m(i)

l )
2m(i)

l

(pklm
(i)
k + (1− pkl)m

(i)
l )

2
. (F15)

According to Condition (2),

(x∗)2 + 2 〈a∗〉k x∗ + 〈(a∗)2〉k
(x∗ + 〈a∗〉k)2 = (x∗)2 + 2 〈a∗〉l x∗ + 〈(a∗)2〉l

(x∗ + 〈a∗〉l)2 . (F16)
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From Eqs. (F13)–(F16), we have

p2
kl

(
∑

i

(m(i)
k − m(i)

l )
2m(i)

k

(pklm
(i)
k + (1− pkl)m

(i)
l )

2

)

= (1− pkl)
2

(
∑

i

(m(i)
k − m(i)

l )
2m(i)

l

(pklm
(i)
k + (1− pkl)m

(i)
l )

2

)

, (F17)

It will give us a unique solution to pkl because the left-hand side is a monotonically increasing function in [0,
∑

i(m
(i)
k −

m(i)
l )

2] of pkl ∈ [0, 1] and the right-hand side is a monotonically decreasing function in [0,
∑

i(m
(i)
k − m(i)

l )
2] of pkl ∈ [0, 1].

However, a simple analytical solution to pkl from Eq. (F17) might not exist because it is a root of a high degree polynomial.
Then we have

γkl({Mi}) =
∑

i

(Re[〈φ∗|Mi|φ⊥∗〉])2

〈φ∗|Mi|φ∗〉 =
∑

i

p∗kl(1− p∗kl)(m
(i)
k − m(i)

l )
2

p∗klm
(i)
k + (1− p∗kl)m

(i)
l

, (F18)

where p∗kl is the unique solution to Eq. (F17).
Finally,

γ ({Mi}) = max
kl

γkl({Mi}), (F19)

using Theorem 6. Note that although Eq. (F17) might only be solvable numerically in practice for a multiple-outcome
measurement. Our solution for pure states and commuting-operator measurements still has a huge simplification compared
to the original biconvex problem for general states and measurements.

3. Proof of Theorem 7

Here we prove a simple upper bound on the normalized QPFI:
Theorem 7.—For commuting-operator measurements [Eq. (63)], the normalized QPFI γ ({Mi}) satisfies

γ ({Mi}) ≤ 1−min
kl

(
∑

i

√

m(i)
k m(i)

l

)2

. (F70)

When there exists a (k, l) that minimizes
∑

i

√
m(i)

k m(i)
l such that the set

{
m(i)

k /m(i)
l , 1 ≤ i ≤ r

}
contains at most two

elements, the inequality is tight.
Proof.—From the discussions in Appendices F 1 and F 2, we have that

γ ({Mi}) = max
kl

(

max
0≤p≤1

∑

i

p(1− p)(m(i)
k − m(i)

l )
2

pm(i)
k + (1− p)m(i)

l

)

= max
kl

∑

i

p∗kl(1− p∗kl)(m
(i)
k − m(i)

l )
2

p∗klm
(i)
k + (1− p∗kl)m

(i)
l

. (F20)

Equation (70) is then proven, noting that for any p ∈ [0, 1],

∑

i

p(1− p)(m(i)
k − m(i)

l )
2

pm(i)
k + (1− p)m(i)

l

− 1 (F21)

=
∑

i

p(1− p)(m(i)
k − m(i)

l )
2 − (pm(i)

k + (1− p)m(i)
l )

2

pm(i)
k + (1− p)m(i)

l

(F22)

=
∑

i

(1− 2p)(pm(i)
k

2 − (1− p)m(i)
l

2
)− 4p(1− p)m(i)

k m(i)
l

pm(i)
k + (1− p)m(i)

l

(F23)

=
∑

i

(1− 2p)
(
(pm(i)

k + (1− p)m(i)
l )(m

(i)
k − m(i)

l )− (2p − 1)m(i)
k m(i)

l

)
− 4p(1− p)m(i)

k m(i)
l

pm(i)
k + (1− p)m(i)

l

(F24)
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= −
(
∑

i

m(i)
k m(i)

l

pm(i)
k + (1− p)m(i)

l

)(
∑

i

pm(i)
k + (1− p)m(i)

l

)

≤ −
(
∑

i

√

m(i)
k m(i)

l

)2

, (F25)

where in the first equality we use
∑

i pm(i)
k + (1− p)m(i)

l = 1, in the last equality we multiply the expression by a factor
of 1 =∑i pm(i)

k + (1− p)m(i)
l , and the last inequality follows from Cauchy-Schwarz.

Assume (k, l) minimizes
∑

i

√
m(i)

k m(i)
l . Then the equality above holds when ∃p , such that for any i, j ,

m(i)
k m(i)

l

(pm(i)
k + (1− p)m(i)

l )
2
= m(j )

k m(j )
l

(pm(j )
k + (1− p)m(j )

l )2
. (F26)

When there are at most two different i and j (i.e., r = 2), such a p always exists, and the upper bound is tight [which also
follows directly from Eq. (62)]. In general, when the set

{
m(i)

k

m(i)
l

, 1 ≤ i ≤ r

}

(F27)

contains at most two distinct elements, the upper bound is tight and the optimal preprocessed state can be chosen as

|φ∗〉 =
√

p∗kl |k〉 +
√

1− p∗kl |l〉 , |φ⊥∗〉 =
√

1− p∗kl |1〉 −
√

p∗kl |l〉 , (F28)

where
{
m(i)

k /m(i)
l , 1 ≤ i ≤ r

} = {mkl,1, mkl,2} and p∗kl = 1/1+√mkl,1mkl,2. Note that in this case
{
m(i)

k /m(i)
l , 1 ≤ i ≤ r

}

must contain at least two distinct elements—otherwise, {Mi} must be trivial.
Alternatively, we can also prove Eq. (70) directly from its original definition [Eq. (42)] without using Theorem 6. We

have

γ ({Mi}) = max
〈φ|φ〉=1, 〈φ⊥|φ⊥〉=1,

〈φ|φ⊥〉=0

∑

i

(Re[〈φ|Mi|φ⊥〉])2

〈φ|Mi|φ〉 = max∑
k a2

k=1,
∑

k b2
k≤1,

∑
k akbk=0

∑

i

(∑
k m(i)

k akbk

)2

∑
k m(i)

k a2
k

, (F29)

where ak = 〈k|φ〉 (which we assume to be real, without loss of generality) and bk = Re[〈k|φ⊥〉] for all 1 ≤ k ≤ d. Clearly,
the maximum is reached at

∑
k b2

k = 1. For any {ak} and {bk} satisfying
∑

k a2
k = 1,

∑
k b2

k = 1 and
∑

k akbk = 0, we have

∑

i

(∑
k m(i)

k akbk

)2

∑
k m(i)

k a2
k

=
∑

i

∑
k(m

(i)
k )

2a2
kb2

k +
∑

k �=l m(i)
k m(i)

l akbkalbl
∑

k m(i)
k a2

k

(F30)

=
∑

i

(∑
k m(i)

k a2
k

) (∑
l m(i)

l b2
l

)
+ 1

2

∑
k �=l m(i)

k m(i)
l (2akbkalbl − a2

kb2
l − a2

l b2
k)

∑
k m(i)

k a2
k

(F31)

= 1− 1
2

∑

k �=l

(akbl − albk)
2
∑

i

m(i)
k m(i)

l
∑

k m(i)
k a2

k

(F32)

≤ 1−min
k �=l

(
∑

i

m(i)
k m(i)

l
∑

k m(i)
k a2

k

)⎛

⎝
∑

i,k

m(i)
k a2

k

⎞

⎠ ≤ 1−min
kl

(
∑

i

√

m(i)
k m(i)

l

)2

, (F33)

where we use
∑

i,l m(i)
l b2

l = 1 in the second step, along with the identities
∑

k a2
k =

∑
l b2

l = 1, and
∑

k akbk = 0 to
simplify 1

2

∑
k �=l(akbl − albk)

2 = 1
2 (
∑

kl a2
kb2

l + a2
l b2

k − 2akbkalbl) = 1 in the third step, which allows us to minimize
the remaining expression, multiplying by 1 =∑i,k m(i)

k a2
k to leverage the Cauchy-Schwarz inequality in the last step.

Equation (70) is then proven. �
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APPENDIX G: CLASSICAL CAPACITY OF
QUANTUM CHANNELS

In this section, we prove the following lemma, which is
generally known to be true in quantum information theory
(see, e.g., Ref. [92]):

Lemma 17.—Consider a quantum channel �, its clas-
sical channel capacity C(�) and a constant α satisfying
0 < α < C(�). Then for all but finitely many positive
integers n, there exist channels �E and �D, such that

‖�D ◦�⊗n ◦�E −D⊗�αn�
2 ‖�≤e−βn,

for some β > 0, with D2 and ‖‖� defined in the proof of
Theorem 14.

Lemma 17 essentially states that, fixing any α that is
smaller than the classical channel capacity of �, in the
large n limit, �⊗n with suitable encoding and decoding
channels can be used to transmit classical binary informa-
tion reliably at a rate α with an exponentially small error
with respect to n. The proof of Lemma 17 follows almost
exactly from the proof of the HSW theorem [60,61], with
a slight refinement in the error analysis using Hoeffding’s
inequality, i.e.,

Lemma 18.—(Hoeffding’s inequality [93]). Let X1, . . . , Xn
be independent random variables such that 0 ≤ Xi ≤ 1 for
i = 1, . . . , n. Then for any ε > 0,

Yn = X1 + · · · + Xn

n
satisfies

Pr (|Yn − E [Yn]| ≥ ε) ≤ 2e−2nε2
, (G1)

to show that the error is exponentially small. Therefore,
we will only provide the error analysis part for the proof of
Lemma 17 that is different from the standard proof of the
HSW theorem and skip the steps that can readily be found
in standard quantum information theory textbooks [68,94].

Following the proof of Theorem 8.27 in Ref. [68], it
is clear that in order to prove Lemma 17, it is sufficient
to prove the following lemma (which is a refinement of
Theorem 8.26 in Ref. [68]):

Lemma 19.—Let η = (p(a), σa) be an ensemble of quan-
tum states satisfying

∑
a p(a) = 1, where σa are density

operators and a ∈ � (� is an alphabet whose order is equal
to the square of the dimension of the system the σa act on).
Let

α < χ(η) := H
(∑

a∈�
p(a)σa

)
−
∑

a∈�
p(a)H(σa), (G2)

where H(σa) is the von Neumann entropy of σa and
m = �αn�. For all but finite number of n, there exists a
function f : {0, 1}m → �n and a quantum measurement

{Mb}b∈{0,1}m such that

Tr(Mbσf (b)) > 1− e−βn, (G3)

for every b = b1 · · · bm ∈ {0, 1}m, σf (b) = σf (b)1 ⊗ · · ·
σf (b)n and some β > 0.

Proof.—Choose a sufficiently small ε such that α <

χ(η)− 3ε. Following the proof of Theorem 8.26 in
Ref. [68], there exists a function f : {0, 1}m → �n and a
quantum measurement {Mb}b∈{0,1}m such that

Tr(Mbσf (b)) > 1− δ, (G4)

for every b = b1 · · · bm ∈ {0, 1}m where

δ = 4
(

3− 2Tr(�σ⊗n)−
∑

a∈�n

p(a1) · · · p(an)Tr(!aσa)

)

+ 2m+4−n(χ(η)−2ε). (G5)

Here a = a1 · · · an ∈ �n, σ =∑a∈� p(a)σa, σa = σa1 ⊗· · · ⊗ σam , � is the projection onto the ε-typical sub-
space with respect to σ , !a is the projection onto the
ε-typical subspace conditioned on a = a1 · · · an. Specifi-
cally, let σ =∑a p ′(a) |ua〉 〈ua| where {|ua〉 , a ∈ �} is an
orthonormal basis and p(a)σa =

∑
c∈" p(a, c) |uac〉 〈uac|

where {|uac〉 , a ∈ "} is an orthonormal basis for each a ∈
�. Let p(a) =∑c∈" p(a, c) and H(p(a)) be the Shannon
entropy of p(a). Then the definitions of � and !a are

� =
∑

a∈Tε

|ua1〉 〈ua1 | ⊗ · · · ⊗ |uan〉 〈uan | , (G6)

!a =
∑

c∈Ka,ε

|ua1c1〉 〈ua1c1 | ⊗ · · · ⊗ |uancn〉 〈uancn | , (G7)

where Tε is the set of a satisfying 2−n(H (p ′(a))+ε) <
p ′(a1) · · · p ′(an) < 2−n(H(p ′(a))−ε) and Ka,ε is the set of c
satisfying 2−n(H(p(a,c))−H(p(a))+ε) < p(a1, c1) · · · p(an, cn)/

p(a1) · · · p(an) < 2−n(H(p(a,c))−H(p(a))−ε) for any a satisfy-
ing p(a1) · · · p(an) > 0. We have

Tr(�σ⊗n) =
∑

a∈Tε

p ′(a1) · · · p ′(an), (G8)

∑

a∈�n

Tr(!aσa) =
∑

a∈�n

∑

c∈Ka,ε

p(a1, c1) · · · p(an, cn). (G9)

Define two random variables X : � → [0, xupp] and Y :
� × " → [0, yupp], where xupp = maxa:p ′(a) �=0 − log(p ′(a))
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and yupp = maxa,b:p(a,c) �=0 − log(p(a, c))+ log(p(a)), as

X (a) = − log(p ′(a)) if p ′(a) > 0, and 0 otherwise,
(G10)

Y(a, b) = − log(p(a, c))+ log(p(a)) if p(a, c) > 0,

and 0 otherwise. (G11)

Let X1, . . . , Xn be n independent random variables each
identically distributed to X . Using the Hoeffding inequal-
ity, we have

Pr
(∣
∣
∣
∣
X1 + · · · + Xn

n
− H(p ′(a))

∣
∣
∣
∣ ≥ ε

)

≤ 2 exp
(
−2nε2/x2

upp

)
. (G12)

On the other hand, according to the definition of Tε, we
have

Pr
(∣
∣
∣
∣
X1 + · · · + Xn

n
− H(p ′(a))

∣
∣
∣
∣ ≥ ε

)

= 1−
∑

a∈Tε

p ′(a1) · · · p ′(an). (G13)

It implies Tr(�σ⊗n) ≥ 1− 2 exp
(
−2nε2/x2

upp

)
using

Eq. (G8). Similarly, using the Hoeffding inequal-
ity for independent random variables distributed to
Y and Eq. (G9), we have

∑
a∈�n Tr(!aσa) ≥ 1−

2 exp
(
−2nε2/y2

upp

)
. Plugging in these bounds in Eq. (G5),

we have

δ ≤ 16e−2nε2/x2
upp + 8e−2nε2/y2

upp + 24−nε, (G14)

proving the lemma. �

APPENDIX H: EXAMPLES OF GLOBAL
PREPROCESSING CONTROLS

1. Achievable FIs

We first calculate the asymptotic limits of the achievable
FI using circuits shown in Fig. 3.

The first example is phase sensing using GHZ states.
The initial state is

|ψ(n)
θ 〉 = einθ |0〉⊗n + e−inθ |1〉⊗n

√
2

. (H1)

The optimal circuit UG is composed of a C(NOT)n−1 gate,
a Hadamard gate and another C(NOT)n−1 gate. The final
state is

|ψ(n),final
θ 〉 = UG |ψ(n)

θ 〉 = cos(nθ) |0〉⊗n + i sin(nθ) |1〉⊗n .
(H2)

The noisy measurement is {Mi}⊗n = {M0, M1}⊗n where
M0 = (1− m) |0〉 〈0| + m |1〉 〈1| (0 < m < 1/2) and M1 =

1−M0. The probability of getting a measurement result
b ∈ {0, 1}n is

Pr(b) = Pr(b1b2 · · · bn) = cos(nθ)2m|b|(1− m)n−|b|

+ sin(nθ)2mn−|b|(1− m)|b|, (H3)

where |b| is the weight of b. We divide the measurement
outcomes into two sets where the outcome is 1 when |b|
is larger than �n/2� and the outcome is 0 when |b| is
smaller than or equal to �n/2�. We call this a majority
voting postprocessing method. Let

M0,mj =
∑

|b|≤�n/2�
Mb1 ⊗ · · · ⊗Mbn , and

M1,mj = 1−M0,mj =
∑

|b|>�n/2�
Mb1 ⊗ · · · ⊗Mbn . (H4)

Then the probability of getting outcome 0 is

Pr(0)mj = Tr(ψ(n),final
θ M0,mj)

= cos(nθ)2Pr
(

Yn ≤ �n/2�
n

)

+ sin(nθ)2Pr
(

Yn > 1− �n/2�
n

)

. (H5)

Here we let X1, . . . , Xn be independent identically dis-
tributed (IID) random variables such that Xi = 0 with
probability 1− m and Xi = 1 with probability m and Yn =
(X1 + · · · + Xn)/n. According to the Hoeffding’s inequal-
ity (Lemma 18),

Pr (|Yn − m| > ε) ≤ 2e−2nε2
. (H6)

For a sufficiently large n, we have �n/2�/n− m = 	(1),
and

1− 2e−2n(�n/2�/n−m)2 ≤ Pr
(

Yn ≤ �n/2�
n

)

≤ 1, (H7)

0 ≤ Pr
(

Yn > 1− �n/2�
n

)

≤ 2e−2n(1−�n/2�/n−m)2 . (H8)

Without loss of generality, we assume that π/6n ≤ θ ≤
π/3n. Otherwise, we can always first find a rough estimate
of θ0 such that |θ − θ0| ≤ π/12n and then insert a Pauli-X
rotation e−inθ0X after the Hadamard gate, such that the final
state becomes

cos(n(θ − θ0)) |0〉⊗n + i sin(n(θ − θ0)) |1〉⊗n , (H9)

and π/6n ≤ θ − θ0 ≤ π/3n. Then one can estimate θ − θ0
using the majority voting post-processing method.
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Assuming π/6n ≤ θ ≤ π/3n, the achievable FI is

F(ψ(n),final
θ , {M0,mj, M1,mj})

= (∂θPr(0)mj)
2

Pr(0)mj(1− Pr(0)mj)
(H10)

= 4n2

1+ (2−bn)bn−a2
n

a2
n sin2(2nθ)

+ (2−2bnan) cos(2nθ)
a2

n sin2(2nθ)

, (H11)

where an = Pr (Yn ≤ �n/2�/n)− Pr (Yn > 1− �n/2�/n)
and bn = Pr (Yn ≤ �n/2�/n)+ Pr (Yn > 1− �n/2�/n).
Noting that sin2(2nθ) ∈ [3/4, 1], limn→∞ an = limn→∞
bn = 1, we have

F(ψ(n),final
θ , {M0,mj, M1,mj}) n→∞−−−→ 4n2. (H12)

To illustrate the importance of global preprocessing con-
trols, we also compute the FI when we measure ψ(n)

θ using
a noisy local Pauli-X operator measurement, which is
equivalent to applying a transversal Hadamard gate H⊗n

as the preprocessing control. Let M ′
0 = (1− m) |+〉 〈+| +

m |−〉 〈−| and M ′
1 = m |+〉 〈+| + (1− m) |−〉 〈−|, where

|±〉 = |0〉 ± |1〉/√2 is the basis of Pauli-X operator. We
have

F(ψ(n)
θ , {M ′

0, M ′
1}⊗n) = F(H⊗nψ

(n)
θ H⊗n, {Mi}⊗n) (H13)

= (∂θpodd)
2

podd
+ (∂θpeven)

2

peven

= 4n2 sin(2nθ)2

sin(2nθ)2 − 1+ (1− 2m)−2n ,

(H14)

where podd (or peven) is the probability of obtaining mea-
surement outcomes that form an odd (or even) parity bit
string, and

podd = 1
2
(
1+ (1− 2m)n) sin2 nθ

+ 1
2
(
1− (1− 2m)n) cos2 nθ , (H15)

peven = 1
2
(
1− (1− 2m)n) sin2 nθ

+ 1
2
(
1+ (1− 2m)n) cos2 nθ . (H16)

Note that when m = 0, the FI F(H⊗nψ
(n)
θ H⊗n, {Mi}⊗n) =

4n2 is equal to the QFI. However, when m > 0, the FI
F(H⊗nψ

(n)
θ H⊗n, {Mi}⊗n) = e−	(n) is exponentially small,

demonstrating the necessity of performing global prepro-
cessing controls. In general, it was illustrated in Ref. [55]
that in the presence of noisy measurements, Heisenberg
scaling cannot be achieved with local control.

The second example is phase sensing using product
states, where

|ψ(n)
θ 〉 =

(
eiθ |0〉 + e−iθ |1〉√

2

)⊗n

. (H17)

The optimal circuit is composed of a global Hadamard
gate, a global Pauli-X rotation of angle θ0/2, a desym-
metrization gate DS and a C(NOT)n−1 gate. Here θ0 is
chosen such that 1/n < |θ − θ0| � 1/

√
n (assuming n is

large enough). After the first two gates, the quantum state
becomes

(cos(θ − θ0) |0〉 + i sin(θ − θ0) |1〉)⊗n . (H18)

The desymmetrization gate DS is a unitary gate such that

|0〉⊗n �→ |0〉⊗n , |W〉 = 1√
n
(|10 · · · 0〉 + |010 · · · 0〉

+ · · · + |0 · · · 01〉) �→ |10 · · · 0〉 .
(H19)

After DS and C(NOT)n−1 gates, the final quantum state is

|ψ(n),final
θ 〉 = cosn(θ − θ0) |0〉⊗n + i

√
n sin(θ − θ0)

× cosn−1(θ − θ0) |1〉⊗n + · · · , (H20)

where we omit in “· · · ” a state perpendicular to |0〉⊗n and
|1〉⊗n whose norm is of magnitude O(n(θ − θ0)

2). Using
the majority voting method as in the first example, we have

Pr(0)mj = Tr(ψ(n),final
θ M0,mj) = cos2n(θ − θ0)Pr

(

Yn ≤ �n/2�
n

)

(H21)

+ n sin(θ − θ0)
2 cos2(n−1)(θ − θ0)Pr

(

Yn > 1− �n/2�
n

)

+ O(n2(θ − θ0)
4), (H22)

Pr(1)mj = Tr(ψ(n),final
θ M1,mj) = cos2n(θ − θ0)Pr

(

Yn >
�n/2�

n

)

(H23)

+ n sin(θ − θ0)
2 cos2(n−1)(θ − θ0)Pr

(

Yn ≤ 1− �n/2�
n

)

+ O(n2(θ − θ0)
4). (H24)
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For a sufficiently large n, we have �n/2�/n− m = 	(1), and the achievable FI is

F(ψ(n),final
θ , {M0,mj, M1,mj}) = (∂θPr(0)mj)

2

Pr(0)mj(1− Pr(0)mj)
(H25)

= (2n sin(θ − θ0) cos2n−1(θ − θ0)+ e−	(n) + O(n2(θ − θ0)
3))2

n cos4n−2(θ − θ0) sin(θ − θ0)2 + e−	(n) + O(n2(θ − θ0)4)
. (H26)

Note that the first terms in the numerator and the denom-
inator must be dominant terms because we have assumed
|θ − θ0| � 1/n. Therefore, we have,

F(ψ(n),final
θ , {M0,mj, M1,mj}) n→∞−−−→ 4n. (H27)

The third example is phase sensing using classically mixed
states, where

ρ
(n)
θ = (cos2 θ |0〉 〈0| + sin2 θ |1〉 〈1|)⊗n

. (H28)

Our preprocessing circuit is composed of a sorting channel
Ssorting, discarding n− 1 qubits and preparing |0〉⊗n−1 and
a C(NOT)n−1 gate. In particular, the sorting channel Ssorting
first performs a sorting network such that

|b1b2 · · · bn〉 �→ |1|b|0n−|b|〉 , (H29)

where b ∈ {0, 1}n. The second step of the sorting channel is
to swap the first qubit with the �n sin2 θ0�th qubit, where θ0
is chosen such that |θ − θ0| � 1/

√
n, i.e., |θ − θ0|

√
n =

o(1). Note that Ssorting is not a unitary channel. It can
be viewed as an optimal quantum-classical channel as
in Theorem 14 that converts the state into a (n+ 1)-
level quantum system with no sensitivity loss. We will

later specify a circuit implementation of Ssorting using
O(n log2 n) ancillary qubits.

After discarding all but the first probe qubit, we have

pθ |0〉 〈0| + (1− pθ ) |1〉 〈1| , (H30)

where pθ = Pr(Yθn ≤ �n sin2 θ0�/n) is the probability that
after flipping n biased coins whose head probability is
sin2 θ , the number of heads are smaller than or equal to
�n sin2 θ0�. Here we let X θ

1 , . . . , X θ
n be IID random vari-

ables such that X θ
i = 0 with probability cos2(θ) and X θ

i =
1 with probability sin2(θ) and Yθn = (X θ

1 + · · · + X θ
n )/n. In

particular, we use the Berry-Esseen theorem, which states
the following.

Lemma 20.—(Berry-Esseen theorem [95,96]). Let
B1, . . . , Bn be IID random variables such that E[Bi] = 0,
E[B2

i ] = σ 2 > 0, and E[|Bi|3] <∞. Fn is the cumula-
tive distribution function of An

√
n/σ , where An = (B1 +

B2 + · · · + Bn)/n and � is the cumulative distribution
function of the standard normal distribution, i.e., �(x) =
∫ x
−∞
(

1/
√

2π
)
/e−(1/2)y2

dy. Then for all x and n,

|Fn(x)−�(x)| ≤ C
σ 3
√

n
(H31)

for some constant C.

Then we have

pθ = Pr
(
Yθn ≤ �n sin2 θ0�/n

) = Fn

⎛

⎝

√
n
(
�n sin2 θ0�

n − sin2 θ
)

|cos(θ) sin(θ)|

⎞

⎠ (H32)

= �

⎛

⎝

√
n
(
�n sin2 θ0�

n − sin2 θ
)

|cos(θ) sin(θ)|

⎞

⎠+ O
(

1√
n

)

= 1
2
+ o (1) , (H33)

where we use �(0) = 1/2 and �n sin2 θ0�/n− sin2 θ = o(1/
√

n). On the other hand,

∂θpθ = ∂θ Pr
(
Yθn ≤ �n sin2 θ0�/n

)
(H34)

= ∂θ
∑

0≤nh≤�n sin2 θ0�

(
n
nh

)

sin2nh θ cos2(n−nh) θ (H35)
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=
∑

0≤nh≤�n sin2 θ0�

(
n
nh

)
(
2nh sin2nh−1 θ cos2(n−nh)+1 θ − 2(n− nh) sin2nh+1 θ cos2(n−nh)−1 θ

)
(H36)

= −2n
(

n− 1
�n sin2 θ0�

)

sin2�n sin2 θ0�+1 θ cos2(n−�n sin2 θ0�)−1 θ , (H37)

and asymptotically we have (using ! to mean asymptotically equivalence),

∂θpθ ! − 2n√
2π

(n− 1)n− 1
2

�n sin2 θ0��n sin2 θ0�+ 1
2 (n− 1− �n sin2 θ0�)n− 1

2−�n sin2 θ0�
(H38)

! − 2
√

n√
2π

(
(n− 1) sin2 θ

(n− 1) sin2 θ + cn

)(n−1) sin2 θ+cn (
(n− 1) cos2 θ

(n− 1) cos2 θ − cn

)(n−1) cos2 θ−cn

(H39)

= − 2
√

n√
2π

exp
(

− ((n− 1) sin2 θ + cn
)

ln
(

1+ cn

(n− 1) sin2 θ

)

− ((n− 1) cos2 θ − cn
)

ln
(

1− cn

(n− 1) cos2 θ

))

(H40)

= − 2
√

n√
2π

exp
(

− 2c2
n

(n− 1) sin2(2θ)
+ O

(
c3

n

n2

))

! − 2
√

n√
2π

, (H41)

where we use Stirling’s formula [97] in the first step, use cn := −(n− 1) sin2 θ + �n sin2 θ0� in the second step, use the
Taylor expansion ln(1+ x) = x − x2/2+ O(x3) and cn = o(

√
n) in the last step.

After resetting the discard qubits to be |0〉⊗n−1 and performing the C(NOT)n−1 gate, we have

ρ
(n),final
θ = pθ |0〉⊗n 〈0|⊗n + (1− pθ ) |1〉⊗n 〈1|⊗n . (H42)

Using the majority voting method, we have

Pr(0)mj = Tr(ρ(n),final
θ M0,mj) = pθPr

(

Yn ≤ �n/2�
n

)

+ (1− pθ )Pr
(

Yn > 1− �n/2�
n

)

, (H43)

Pr(1)mj = Tr(ρ(n),final
θ M1,mj) = pθPr

(

Yn >
�n/2�

n

)

+ (1− pθ )Pr
(

Yn ≤ 1− �n/2�
n

)

. (H44)

For a sufficiently large n, we have �n/2�/n− m = 	(1),
and the achievable FI is

F(ρ(n),final
θ , {M0,mj, M1,mj})

= (∂θPr(0)mj)
2

Pr(0)mj(1− Pr(0)mj)
(H45)

= (∂θpθ + e−	(n))2

(pθ + e−	(n))(1− pθ + e−	(n))
. (H46)

Therefore, we have,

F(ρ(n),final
θ , {M0,mj, M1,mj}) n→∞−−−→ 8

π
n. (H47)

Note that the reason that the QFI is not achieved here lies in
the second step where all but one probe qubit are discarded.

If, instead, we can perfectly encode the entire (n+ 1)-level
system that we obtain in the first step to a n-qubit state
that is immune to measurement errors, the QFI will be
achieved.

2. Gate complexity

Finally, we discuss the gate complexities of imple-
menting C(NOT)n−1, DS, and Ssorting. We will show that,
assuming arbitrary two-qubit gates and all-to-all connec-
tivity, the C(NOT)n−1 and the desymmetrization gate DS
can be implemented using O(n) gates in depth O(log n).
The Ssorting channel can be implemented using O(n log2 n)
gates and O(n log2 n) ancillary qubits in depth O(log2 n).

We first investigate the implementation of C(NOT)n−1

gates and DS gates. Note that in experimental platforms
like Rydberg atoms where long-range interactions are
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available, the C(NOT)n−1 gate can be implemented in a
single step [98]. However, we focus on the standard quan-
tum circuit model here where only two-qubit gates are
allowed.

Reference [99] included detailed quantum circuits for
C(NOT)n−1 gates and DS gates using O(n) gates in depth
O(log n). For completeness, we briefly discuss these cir-
cuits here, in the case where n = 2k.

To implement C(NOT)n−1, one starts with a Hadamard
gate on the first qubit, and then implement C1(NOT)2 (which
means a CNOT gate where the control qubit is the first qubit
and the target qubit is the second) in the first step, C1(NOT)3
and C2(NOT)4 in the second step, and so on. The circuit con-
tinues in the same way. In the final step, i.e., the kth step,
Cl(NOT)2k−1+l for l = 1, 2, . . . , 2k−1 are implemented. One
can verify the above O(log n)-depth circuit implements a
C(NOT)n−1 gate using O(n) single- or two-qubit gates.

To implement DS, one can equivalently consider the cir-
cuit implementation of DS† and then conjugate and reverse
the orders of each gate. DS† is a gate that prepares W states,
where

|10 · · · 0〉 �→ 1√
n

( |10 · · · 0〉 + |010 · · · 0〉 + · · ·

+ |0 · · · 01〉 ), |00 · · · 0〉 �→ |00 · · · 0〉 .
(H48)

To implement DS†, one starts with a Pauli-X gate on the
first qubit, then performs a two-qubit gate that is a com-
position of a C1H2 (controlled-Hadamard) gate and then
a C2NOT1 gate (again, we use subscripts l to denote the
lth qubit) in the first step. C1H3 + C3NOT1 and C2H4 +
C4NOT2 in the second step, and so on. The circuit continues

in the same way. In the final step, i.e., the kth step,
ClH2k−1+l + C2k−1+lNOTl for l = 1, 2, . . . , 2k−1 are imple-
mented. One can verify the above O(log n)-depth circuit
implements a DS† gate using O(n) single- or two-qubit
gates.

Finally, we discuss the implementation of Ssorting which
can be decomposed into a sorting network that implements

|b1b2 · · · bn〉 �→ |1|b|0n−|b|〉 , (H49)

for b ∈ {0, 1}n and a SWAP gate that swaps the first qubit
with the �n sin2 θ0�th qubit. Now we discuss the implemen-
tation of the sorting network [Eq. (H49)], which directly
follows from a classical sorting network because our input
state is a classically mixed state and the sorting channel is
incoherent. To be specific, we define a comparator to be a
two-qubit quantum channel such that

|ij 〉 �→
{
|ij 〉 when i ≥ j ,
|ji〉 when j > i.

(H50)

It can be implemented using a unitary gate acting on two
probe qubits and one ancillary qubit such that

|ij 〉 |0〉 �→
{
|ij 〉 |0〉 when i ≥ j ,
|ji〉 |1〉 when j > i,

(H51)

and discarding the ancillary qubit afterwards. Our sorting
network [Eq. (H49)] then follows from a classical sorting
network, replacing all its classical comparators with the
two-qubit sorting channels described above.

Here we use a classical sorting network called a bitonic
sorter [100] that uses O(n log2 n) comparators in depth

Input: arr: the array to be sort.
Output: arr: the sorted array in descending order.
1: arr = BitonicSort(arr,“descending”)
2: function BitonicSort(arr, direction)
3: n = the length of arr
4: if n > 1 then
5: BitonicSort(arr[1:n/2],“ascending”)
6: BitonicSort(arr[n/2+1:n],“descending”)
7: Merge(arr, direction)
8: end if
9: end function

10: function Merge(arr, direction)
11: n = the length of arr
12: if n > 1 then
13: for i = 1, 2, . . . , n/2 do
14: Exchange arr[i] and arr[i+n/2] if they are not in the right order
15: end for
16: Merge(arr[1:n/2], direction)
17: Merge(arr[n/2+1:n], direction)
18: end if
19: end function

ALGORITHM 1. Bitonic sort algorithm.
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O(log2 n). Note that it is also possible to construct sorting
networks of depth O(log n) [and size O(n log2 n)] [101],
although the linear constant is large, making it impractical.
We briefly summarize the bitonic sort algorithm in the fol-
lowing pseudocode. Note that here we assume n = 2k (we
can always add more qubits in prepared in |0〉 to make n a
power of 2).

The bitonic sort algorithm can be divided into two
steps: (1) forming a bitonic sequence; (2) sorting a bitonic
sequence. A bitonic sequence of length n is defined to be a
sequence b where there is an index i such that (b1, . . . , bi)

is monotonically nondecreasing, and (bi+1, . . . , bn) is
monotonically nonincreasing, or a sequence that can be
cyclically shifted into the above sequence. MERGE(arr,
direction) sorts a bitonic sequence arr in the required
order. It can be proven that the MERGE function contains
O(log n) parallel computing steps; and the BITONICSORT
function contains O(log2 n) parallel computing steps. As
a result, one can see that the bitonic sorter uses O(n log2 n)
comparators in depth O(log2 n).
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