
PRX QUANTUM 4, 040304 (2023)

Thermal Recall: Memory-Assisted Markovian Thermal Processes
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We develop a resource-theoretic framework that allows one to bridge the gap between two approaches
to quantum thermodynamics based on Markovian thermal processes (which model memoryless dynamics)
and thermal operations (which model arbitrarily non-Markovian dynamics). Our approach is built on the
notion of memory-assisted Markovian thermal processes, where memoryless thermodynamic processes
are promoted to non-Markovianity by explicitly modeling ancillary memory systems initialized in ther-
mal equilibrium states. Within this setting, we propose a family of protocols composed of sequences of
elementary two-level thermalizations that approximate all transitions between energy-incoherent states
accessible via thermal operations. We prove that, as the size of the memory increases, these approxi-
mations become arbitrarily good for all transitions in the infinite temperature limit, and for a subset of
transitions in the finite temperature regime. Furthermore, we present solid numerical evidence for the con-
vergence of our protocol to any transition at finite temperatures. We also explain how our framework can
be used to quantify the role played by memory effects in thermodynamic protocols such as work extrac-
tion. Finally, our results show that elementary control over two energy levels at a given time is sufficient
to generate all energy-incoherent transitions accessible via thermal operations if one allows for ancillary
thermal systems.
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I. INTRODUCTION

Information has become ubiquitous in thermodynam-
ics. It all started with Maxwell’s seminal inquiry [1]:
what would happen if we had knowledge of a system’s
state? The ramifications of this hypothesis led to poten-
tial violations of the second law of thermodynamics and
a century-long puzzle [2,3]. Ultimately, it was found that
thermodynamics imposes physical restrictions on infor-
mation processing [4,5], resulting in the development
of frameworks devoted to incorporating information into
thermodynamics [6–11]. A crucial concept at the intersec-
tion between these two fields is memory, a thermodynamic
resource for storing, processing, and erasing informa-
tion. In particular, memory effects can bring numerous
advantages, including enhanced cooling [12], generation
of entanglement [13,14], or improved performance of
heat engines and refrigerators [15–17]. However, realistic
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quantum mechanical systems are open and governed by
nonunitary time evolution, which encompasses the irre-
versible phenomena such as energy dissipation, relaxation
to thermal equilibrium or stationary nonequilibrium states,
and the decay of correlations [18,19]. Hence, assumptions
like weak coupling, large bath size, and fast decaying cor-
relations are commonly made in modeling such systems,
thus neglecting memory effects. This raises the question
of how memoryless processes get modified when system-
bath memory effects become non-negligible, i.e., how to
assess and quantify the role of memory in thermodynamic
processes [20].

The resource theory of thermodynamics [21–24] is a
relatively recent framework allowing one to address foun-
dational questions in thermodynamics. By relying on the
notion of thermal operations [21,22], a set of transforma-
tions that can be carried out without an external source
of work or coherence, it offers a complete set of laws
for characterizing general state transformations under ther-
modynamic constraints. The downsides of this formalism
are twofold. Firstly, it focuses only on snapshots of the
evolution, making it hard to discuss how the processes
are realized in time. Secondly, it may require precise
control over the system and the bath. The first problem
was addressed by developing a hybrid framework that
reconciles resource theory and master equation approaches
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[25,26], where the concept of a Markovian thermal
process was introduced. This new set of operations refines
the notion of thermal operations by encoding all relevant
constraints of a Markovian evolution. The second prob-
lem was partially addressed in Ref. [27] by introducing
the concept of elementary thermal operations, i.e., a sub-
set of transformations that can be decomposed into a series
of thermal operations, each acting only on two energy lev-
els of the system. Such decompositions offer a method to
bypass the need for a complete control over interactions
between the system and the environment, and the approach
was recently generalized to also include catalytic transfor-
mations [28]. While elementary operations require only a
limited control, they still rely on non-Markovian effects,
and so the question of quantifying memory effects in the
resource theory of thermodynamics remains open.

In this work, we make a step towards bridging the
gap between thermal operations and Markovian ther-
mal processes for energy-incoherent states by introduc-
ing and investigating memory-assisted Markovian ther-
mal processes (MeMTPs). These are defined by extend-
ing the Markovian thermal processes framework [25,26]
with ancillary memory systems, allowing one to interpo-
late between memoryless dynamics and the one with full
control. More specifically, we demonstrate that energy-
incoherent states achievable from a given initial state via
thermal operations can be approached arbitrarily well by
repeatedly interacting the main system with a memory that
is initialized in a thermal equilibrium state (and therefore
is thermodynamically resourceless) via an algorithmic pro-
cedure composed of Markovian thermal processes. Physi-
cally, this can be seen as a partial control over the bath
degrees of freedom, where the bath can be thought of as
a large, discrete, collection of smaller thermal units, and
one can control the interactions of the main system with a
small number of thermal subsystems (see Fig. 1).

Following this idea, we introduce a family of memory-
extended Markovian thermodynamic protocols that require
minimal control and are valid for any temperature regime.
In the infinite temperature limit, we prove that our proto-
col can arbitrarily well simulate any state transition that
can be achieved via thermal operations. More precisely,
our first main result states that when memory grows and
the number of interactions goes to infinity, the full set of
states achievable by thermal operations can be reached by
MeMTPs. We also provide analytic expressions for the
convergence rates, which scale either polynomially with
the number of degrees of freedom or exponentially with
the number of memory subsystems. Moreover, based on
strong numerical evidence, we propose a conjecture for
a more accurate approximation of arbitrary state trans-
formation (i.e., converging faster with the growing size
of the memory) through sequences of truncated versions
of our protocol. Our second main result extends these
considerations to the finite-temperature regime. Here, we

first show analytic convergence of our MeMTP protocol
to a particular subset of state transformations that can
be achieved by thermal operations. These include all the
so-called β-swaps, as well as β-cycles, which form a ther-
modynamic equivalent of cyclic permutations. Then, based
on numerical simulations, we conjecture that actually an
arbitrary state reachable via thermal operations can be
obtained using a proper sequence of truncated protocols.

With these results at hand, we then proceed to discussing
their applicability. First, we explain how to assess the role
played by memory in the performance of thermodynamic
protocols by investigating work extraction in the inter-
mediate regime of limited memory. We thus interpolate
between the two extremes of no memory and complete
control, and quantify environmental memory effects with
the amount of extractable work from a given nonequi-
librium state. Second, we consider the task of cooling a
two-level system using a two-dimensional memory char-
acterized by a nontrivial Hamiltonian. This example rep-
resents a minimal model requiring the manipulation of
two two-level systems. Various experimental proposals are
available across distinct platforms suitable for realizing
this specific model. Such platforms encompass quantum
dots [29,30], superconducting circuits [31,32], and atom-
cavity systems [33]. We then clarify that all transitions
achievable via thermal operations can be performed using
a subset of thermal operations that affect only two energy
levels at the same time. This may seem to contradict the
results of Refs. [27,34], where it was proven that thermal
operations constrained to just two energy levels of the sys-
tem are not able to generate all thermodynamically allowed
transitions. We resolve this apparent contradiction by not-
ing that in our case we require the control over two levels
of the joint system-memory state, and not just the system
state. Finally, we discuss the behavior of free energy dur-
ing a non-Markovian evolution, explaining the role of the
memory as a free energy storage.

The paper is structured as follows. First, in Sec. II we
recall the frameworks of thermal operations and Marko-
vian thermal processes. Next, in Sec. III, we introduce the
central notion of this paper, the memory-assisted Marko-
vian thermal processes, and then describe the protocol
that employs thermal memory states to approximate non-
Markovian thermodynamic state transitions with Marko-
vian thermal processes. We then explain how this approxi-
mation convergences to the full set of transitions achiev-
able via thermal operations as the size of the memory
grows. Section IV contains discussion and application of
our results. Finally, in Sec. V, we conclude and provide
outlook for future research.

II. FRAMEWORK

In this work our aim is to investigate how mem-
ory effects affect thermodynamics of a finite-dimensional
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(a) (b) (c) (d) (e)

FIG. 1. Memory-assisted Markovian thermal processes. Schematic representation of the general setting. (a) Initially, the main system
(large blue circle) is coupled to a heat bath at inverse temperature β (small red circles) and their interaction is Markovian, so that the
bath is in thermal equilibrium at each moment in time. (b)–(e) Then, the control is extended to parts of the environment (small blue
circles with blue background) that do not instantaneously thermalize to equilibrium after interactions with the system, and can thus
lead to non-Markovian dynamics of the main system.

quantum system coupled to a heat bath at inverse tempera-
ture β = 1/kBT with kB denoting the Boltzmann constant.
The investigated system of dimension d is described by a
Hamiltonian H = ∑

i Ei |Ei〉〈Ei| and is prepared in an ini-
tial state ρ. The thermal environment, with a Hamiltonian
HE , is assumed to be in a thermal equilibrium state,

γE = e−βHE

tr(e−βHE )
, (1)

and the system together with the heat bath start initially
in an uncorrelated state ρ ⊗ γE . We will limit our consid-
erations to energy-incoherent states ρ, i.e., the ones that
commute with the Hamiltonian, [ρ, H ] = 0. In that case,
the state of the system can be equivalently described by a
probability vector p of eigenvalues of ρ, corresponding to
populations in the energy eigenbasis. The thermal equilib-
rium state of the system, given by Eq. (1) with HE replaced
by H , is then represented by a vector of thermal popula-
tions γ. We will denote the populations of generic input
and output states by bold lowercase letters, p and q, respec-
tively. When referring to the components of these vectors,
we use nonbold symbols with a lower index numbering
the components, e.g., the ith component of p is denoted as
pi. The crucial point now is how the dynamics of the sys-
tem interacting with the thermal bath is modeled. In what
follows, we will review two frameworks, which can be
seen as extreme cases with or without any memory effects
involved.

Thermal Operations (TOs) framework [21,22,24] uses
minimal assumptions on the joint system-bath dynam-
ics by only assuming that the joint system is closed and
thus evolves unitarily, and that this unitary evolution is
energy preserving. Formally, a set of thermal operations
consists of completely positive trace-preserving maps that
transform the state ρ in the following way:

E(ρ) = TrE
[
U (ρ ⊗ γE) U†] , (2)

where U is a joint unitary that commutes with the total
Hamiltonian of the system and the bath

[U, H ⊗ 1E + 1 ⊗ HE] = 0, (3)

and the environmental Hamiltonian HE is arbitrary. Since
there are no further constraints on U, arbitrarily strong cor-
relations can build up between the system and the bath, and
one can expect non-Markovian memory effects to come
into play. At the same time, from the perspective of control
theory, generating an arbitrary TO may require very com-
plex and fine-tuned control over system-bath interactions
[27].

Markovian Thermal Processes (MTPs) framework [25,
26], on the other hand, uses typical assumptions of the the-
ory of open quantum systems (weak coupling, large bath
size, quickly decaying correlations, etc.) [18], to argue that
the system undergoes an open dynamics described by a
Lindblad master equation [35–37],

dρ(t)
dt

= −i[H , ρ(t)] + Lt(ρ(t)). (4)

In the above, [·, ·] denotes the commutator and Lt is the
Lindbladian with the following general form:

Lt(ρ) =
∑

i

ri(t)
[

Li(t)ρLi(t)† − 1
2

{
Li(t)†Li(t), ρ

} ]

,

(5)

with {·, ·} denoting the anticommutator, Li(t) being time-
dependent jump operators, and ri(t) ≥ 0 being time-
dependent non-negative jump rates. Moreover, the thermal
state of the system is a stationary solution of the dynamics,
Lt(γ ) = 0, and the Lindbladian Lt commutes with the gen-
erator of the Hamiltonian dynamics −i[H , ·] for all times
t. Formally, an MTP is then any quantum channel E that
results from integrating Eq. (4) between 0 and τ ≥ 0. Since
the dynamics generated by an MTP arises explicitly from
a Markovian model, there are no memory effects. Also,
as shown in Ref. [25], the universal set of controls that
allows one to generate any incoherent state transforma-
tion achievable via MTPs consists only of two-level partial
thermalizations. These transform the populations of two
energy levels, i and j , in the following way:
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(a) (b) (c)

FIG. 2. Thermal operations versus Markovian thermal pro-
cesses. Sets of states that a three-level system with an equidis-
tant energy spectrum E = (0, 1, 2) and prepared in an energy-
incoherent state p = (0.7, 0.2, 0.1) (depicted by a black dot •)
can be transformed to [green region C+(p)] or transformed from
[blue region C−(p)] by (a) thermal operations and (b) Markovian
thermal processes with respect to inverse temperature β = 0.3. In
(c) we show the overlap of sets of achievable states via TOs (dark
green) and MTPs (light green). The thermal state of the system
is depicted by a black star at the intersection of the dashed lines.

pi → (1 − λ)pi + λ
pi + pj

γi + γj
γi, (6a)

pj → (1 − λ)pj + λ
pi + pj

γi + γj
γj , (6b)

where λ ∈ [0, 1].
The set of states CTO

+ (p) achievable via thermal opera-
tions from a given incoherent initial state p can be fully
characterized using the notion of thermomajorization [22]
(see Appendix A 2 for more details). The so-called future
thermal cone CTO

+ (p) [38] is a convex set that consists
of at most d! extreme points, the construction of which
was given in Lemma 12 of Ref. [27] [see Fig. 2(a) for
an example with a three-level system]. On the other hand,
the set of states CMTP

+ (p) achievable via Markovian ther-
mal processes from a state p was recently characterized
using the notion of continuous thermomajorization [25]
(see Appendix A 3 for an extended discussion). The future
Markovian thermal cone CMTP

+ (p) is not convex [as illus-
trated in Fig. 2(b) for a three-level system], but Theorem 4
of Ref. [25] provides a construction of its extreme points
using sequences of two-level full thermalizations [i.e.,
transformations from Eqs. (6a)–(6b) with λ = 1]. As can
be seen in Fig. 2(c), CMTP

+ (p) ⊂ CTO
+ (p) and the difference

between these two sets of thermodynamically accessible
states arises purely from memory effects.

A recap of majorization, thermomajorization, and con-
tinuous thermomajorization, three notions needed to fully
understand the convertibility of states under TOs and
MTPs, is presented in Appendix A. We will refrain from
restating it here. Instead, we provide a summary in Fig. 3,
illustrating the existence of a given thermodynamic trans-
formation and its conditions as expressed by these partial
order relations.

FIG. 3. Interpolating between extreme regimes. Arrows
between distributions represent the existence of specific ther-
modynamic transformations, whose existence is determined by
partial-order relations: thermomajorization 	β for thermal oper-
ations and continuous thermomajorization 	β for Markovian
thermal processes. Our results demonstrate that the gap between
these two frameworks can be bridged with the use memory-
assisted MTPs employing ancillary memory systems of growing
dimension N and prepared in thermal states.

III. BRIDGING THE GAP WITH MEMORY

We begin this section by explaining the main building
block of this work, namely the notion of memory-assisted
Markovian thermal processes. Then, we demonstrate how
energy-incoherent states achievable from a given initial
state p via thermal operations [i.e., any q ∈ CTO

+ (p)] can be
approached arbitrarily well using memory-assisted Marko-
vian thermal processes with large enough memory. We will
start by simplifying the problem and showing that it is suf-
ficient to consider only the achievability of the extreme
points of CTO

+ (p). Next, we will introduce MeMTP pro-
tocols that will serve us to approach extreme points of
CTO

+ (p) using MTPs acting on the system and memory
state, p ⊗ γM . Finally, we will analyze the performance of
these protocols, i.e., we will show how well they approxi-
mate the desired transformations as the size of the memory
N grows. Due to structural differences, we will do this sep-
arately for the infinite temperature limit and the case of
finite temperatures.

A. Memory-assisted Markovian thermal processes

In this work we want to interpolate between the two
extreme regimes of arbitrarily strong and no memory
effects described by TO and MTP frameworks. We will
achieve this by focusing on the more restrictive MTP
framework and extending it by explicitly modeling mem-
ory effects by bringing ancillary systems in thermal states,
that will be discarded at the end. More precisely, we con-
sider MTPs acting on a composite system consisting of
the main d-dimensional system in a state ρ and an N -
dimensional memory system prepared in its thermal state
γM [i.e., given by Eq. (1) with HE replaced by the Hamil-
tonian HM of the memory system, which can be arbitrary].
The thermality of the ancillary system M is crucial, as
this way we ensure that no extra thermodynamic resources
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are brought in unaccounted, and the only role played by
M is to bring extra dimensions that can act as a mem-
ory. As already explained in the introduction, this can also
be viewed as having control over the small N -dimensional
part of the bath. Formally, we define the following set of
quantum channels.

Definition 1 (Memory-assisted MTPs).—A quantum
channel E is called a memory-assisted Markovian ther-
mal process (MeMTP) with memory of size N , if it can
be written as

E(ρ) = TrM [EMTP(ρ ⊗ γM )], (7)

where EMTP is a Markovian thermal process acting on the
original system extended by an N -dimensional ancillary
system M prepared in a thermal state γM .

As already mentioned, in this work we will focus
on transformations between energy-incoherent states. Our
aim is to show that the sets of states achievable from a
given p via memory-assisted MTPs interpolate between
CMTP

+ (p) (for N = 1) and CTO
+ (p) (for N → ∞). The illus-

tration of the growing strength of memory effects captured
by our framework is presented in Fig. 3. As a final note,
observe that this framework can be formally related to a
particular kind of catalytic transformations [23,39]. This is
because the ancillary memory system can always be ther-
malized at the end of the process and this way be brought
to the initial state.

B. Simplification to extreme points

We start by recalling the following notion that is crucial
for our analysis.

Definition 2 (β-ordering).—Let p be an arbitrary
energy-incoherent state of a d-dimensional system, and
γ denote the corresponding thermal Gibbs state. The β-
ordering of p is defined as the permutation πp that arranges
the vector (p1/γ1, . . . , pd/γd) in a nonincreasing order, i.e.,

pβ =
(

p
π−1

p (1)
, . . . , p

π−1
p (d)

)
. (8)

The d-dimensional matrix representation of πp will be
denoted by �p, i.e., �pp = pβ .

The future thermal cone CTO
+ (p) is a polytope with at

most d! extreme points, one for each possible β-order π

[27]. We will denote them by pπ (in particular, it means
that pπp = p). Now, we will use two crucial observations.
First, in Ref. [27] it was shown that

q ∈ CTO
+ (p) ⇒ q ∈ CTO

+ (pπq), (9)

meaning that all states with a β-order π that can be
achieved from p via thermal operations can also be
achieved starting from pπ . And second, it was shown in

Ref. [25] that
[
q ∈ CTO

+ (p) and πq = πp
] ⇒ q ∈ CMTP

+ (p), (10)

meaning that within the same β-order as the initial state,
the subsets of states achievable via TOs and via MTPs do
coincide. As a result, if one can construct memory-assisted
MTPs that reach all the extreme points of CTO

+ (p), then one
can also get to every state in CTO

+ (p) via MeMTPs. This
is done by simply first transforming p to a given extreme
point pπ of CTO

+ (p), and then using MTPs to get from pπ

to every state with a β-order π in CTO
+ (p).

Note that the upper index on probability distributions
serves a dual purpose. First, it is used to denote the β-
ordered version of the state. For example, pβ represents
the β-ordered counterpart of p. Second, an upper index π

is used to denote particular extreme points of the state’s
future. More precisely, pπ represents the extreme point
of the future of p, with β-order given by π . Notably, πp
represents the β-order of the state p.

In order to quantify how well a given state in CTO
+ (p) can

be approximated, we will use the total variation distance
defined by

δ(p, q) := 1
2

d∑

i=1

|pi − qi|. (11)

From the discussion above, it should be clear that if we can
construct MeMTP protocols approximating every extreme
point with an error at most ε, then

∀q ∈ CTO
+ (p) : min

P∈MeMTP
δ(P(p), q) ≤ ε. (12)

A particular subset of extreme points of CTO
+ (p) that we

will investigate in more detail is given by those extreme
states that can be achieved via sequences of β-swaps. A
β-swap �

β
ij can be seen as a thermodynamic analogue of a

population swap between levels i and j [27]:

�
β
ij :=

[
1 − e−β(Ej −Ei) 1

e−β(Ej −Ei) 0

]

⊕ 1\(ij ), (13)

with Ei ≤ Ej and 1\(ij ) denoting the (d − 2) × (d − 2)

identity matrix on the subspace of all energy levels except
i, j . Note that in the infinite temperature limit (β = 0), the
above recovers a transposition on levels i and j , which we
will simply denote by �ij . In this limiting case, all extreme
points of CTO

+ (p) can be obtained by sequences of transpo-
sitions (that is because an extreme point in that case is of
the form �p for a permutation matrix �, and every � can
be constructed from transpositions).

For finite temperatures, a β-swap transforms p into the
extreme point pπ if the β-orders πp and π differ only by a
transposition of adjacent elements [27,38]. In other words,
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it happens for �
β
ij when πp(i) = πp(j ) ± 1. More gener-

ally, a sequence of β-swaps with nonoverlapping supports
will also produce an extreme point of CTO

+ (p), and so
a total number of extreme points that can be achieved
by sequences of β-swaps for dimension d (including the
starting point) is given by F(d + 1), where F(k) is the
kth Fibonacci number [40]. Finally, we will also make
use of the notion of β-cycles that we now define. For a
state p, consider a k-dimensional subset of energy lev-
els i1, . . . , ik neighboring in the β-order, i.e., πp(ij +1) =
πp(ij ) + 1. Denote by π a cyclic permutation on this
subset, i.e., either π(ij ) = ij +1 mod k, or π(ij ) = ij −1 mod k.
Then, a thermal operation mapping p to its extreme point
pπ ′

is called a β-cycle, if �′ = ��p (here �, �′, and �p
denote matrix representations of permutations π , π ′, and
πp). To emphasize that a given β-cycle acts on k levels,
we will sometimes refer to it as a β-k cycle.

To summarize the notion used, we denote a specific per-
mutation as lowercase letter π , which acts on integers.
Its matrix representation is represented by capital �, and,
in particular, the transposition of elements i and j has its
matrix counterpart �ij . We use the upper index β, e.g.,
�β , when referring to an extreme operation that permutes
the β-order of the state by a permutation π .

C. Memory-assisted protocols

The basic building blocks of all our protocols are given
by two-level elementary thermalizations that are formally
defined as follows.

Definition 3 (Two-level thermalizations).—Consider a
system in a state p with the corresponding thermal state
γ. Then, an MTP transformation

{pi, pj } →
{

pi + pj

γi + γj
γi,

pi + pj

γi + γj
γj

}

(14)

is called a two-level thermalization between levels i and j ,
and the corresponding matrix acting on probability vectors
will be denoted by Tij . Moreover, if πp(i) = πp(j ) ± 1,
then Tij is called a neighbor thermalization.

Let us note that the importance of neighbor thermal-
izations and the reason we employ them in our proto-
cols stems from the fact that their sequences produce the
extreme points of the Markovian thermal cone CMTP

+ [25].
Intuitively, one can expect that in order to approximate
extreme states of CTO

+ (p) using MeMTPs, one should get
to the extreme points of CMTP

+ (p ⊗ γM ), and these can
be achieved by neighbor thermalizations of the composite
system-memory state.

Before delving into the full details of our protocol
for approximating β-swaps, let us start with a high-level
description to provide some insight into our investigation.
We begin with the simplest case of a two-level system and
a two-dimensional memory, drawing an analogy between

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 4. Simplest example using connected vessels’ analogy.
Continuous (thermo)majorization on d-level probability vectors
is equivalent to a task of redistributing the content of d-ordered
vessels that are connected pairwise. Adding a memory in a Gibbs
state is then akin to multiplying glasses—one empty and one
full glass become N pairs of full and empty glasses. The pro-
cess involves five steps, read from top to bottom and left to
right, which represent the simplest protocol that allows shifting
more than half of the liquid from full to empty glasses. The final
distribution after the protocol is applied is (3/8, 5/8).

continuous (thermo)majorization and connected vessels
(see Fig. 4 for a schematic representation). Considering
two vessels—one filled with liquid and one empty—the
most one can do when they are connected is to equalize
the levels of the liquid between them. However, by adher-
ing to the simple schematic provided in Fig. 4, it is possible
to exceed this intuitively unbeatable limit. The sequence
in Fig. 4 should be read from panels (a) to (f), in a top-
down and left-to-right manner. We begin with four vessels:
two are half-filled and two are empty. We can connect
these vessels in pairs, thus equalizing the fluid levels. The
first two steps involve connecting the half-filled vessels
sequentially to the first empty vessel. Likewise, the next
two steps connect both initially half-filled vessels to the
second empty one. The final step, which involves equaliz-
ing the fluid levels in pairs, is analogous to thermalizing
the memory. An astute reader can confirm that 5/8 of the
total fluid ends up in the vessels that were initially empty,
thereby surpassing the 1/2 limit.

We now describe our proposition for a MeMTP proto-
col approximating the β-swap �

β
ij between the ith and j th

energy levels of the main system. It involves a sequence
of N 2 two-level thermalizations of the state of the com-
posite system (see Fig. 5), which includes the main sys-
tem and a memory starting at thermal equilibrium, i.e.,
a state p ⊗ γM . In particular, we focus on the popula-
tions [p ⊗ γM ]N (i−1)+1, . . . , [p ⊗ γM ]Ni corresponding to
the ith level of the main system and similarly for the
j th level. The protocol can be split into a sequence of N
rounds R(ij )

k with k = 1, . . . , N consisting of N steps each
(shaded area in Fig. 5). In the kth round, we select the entry
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FIG. 5. β-swap protocol. A two-level subsystem of a generi-
cally d-dimensional system, represented by blue and red squares,
is extended by an N -dimensional memory represented by gray
squares. The composite 2N -dimensional system undergoes N
rounds of processing, where the kth round involves N sequential
two-level thermalizations of the first N entries with the (N + k)th
entry (represented by the shaded color around the squares). After
the final thermalization step, the memory can be discarded.

[p ⊗ γM ]N (i−1)+k and thermalize it sequentially with all the
levels corresponding to the level j of the main system:

R(ij )
k (p ⊗ γM ) :=

(
N∏

l=1

T(i−1)N+k, (j −1)N+l

)
(
p ⊗ γM

)
.

(15)

Note that if πp(i) = πp(j ) ± 1 (i.e., the β-orders of p
and �

β
ij p differ by a transposition of adjacent elements),

then all thermalizations performed are neighbor thermal-
izations. Using the above, we can now define the action of
the truncated protocol P̃ (ij ):

P̃ (ij )(p ⊗ γM ) := R(ij )
N ◦ . . . ◦ R(ij )

1 (p ⊗ γM ). (16)

The final step is to decouple the main system from
the memory using a full thermalization T of the memory
system M , which acts on a general joint state Q as

T (Q) = q ⊗ γM , qi =
N∑

j =1

QN (i−1)+j . (17)

Thus, the full protocol approximating a β-swap �
β
ij is

given by

P (ij )(p ⊗ γM ) = T ◦ P̃ (ij )(p ⊗ γM ). (18)

Putting the whole protocol in simple words—we take
all “full” levels, connect them to the first “empty” level
sequentially, and then repeat the process for all the empty
levels.

We will also employ more general protocols that aim
at approximating the transformation of the initial state p
into an extreme state of CTO

+ (p) given by pπ ′
. Denote

matrix representations of β-orders of these states by �p
and �′ = ��p for some permutation matrix �. More-
over, let us decompose � into neighbor transpositions with
respect to p, i.e., we write � = �imjm . . . �i1j1 with every
consecutive transposition �ik jk changing the β-order of the
state �ik−1jk−1 . . . �i1j1p only by a transposition of adjacent
elements. Then, we define the following two protocols to
approximate pπ ′

:

P� := P (imjm) ◦ · · · ◦ P (i1j1), (19a)

P̃� := T ◦ P̃ (imjm) ◦ · · · ◦ P̃ (i1j1). (19b)

Note that, by construction, all two-level thermalizations
performed in the above protocols are neighbor thermaliza-
tions.

Let us summarize the notation that we introduced for
the protocols. Rounds of the protocol for approximating a
swap between levels i and j of the main system are denoted
by R(ij ). Similarly, a full protocol with and without final
thermalization is denoted by P (ij ) and P̃ (ij ), respectively.
Final thermalization is denoted by T .

As a last remark, it should be noted that the protocol
discussed in this section is not unique. Alternative proto-
cols achieving equivalent β-swap approximations can be
found in Appendix F. Additionally, we provide a compari-
son of the convergence rates of different algorithms toward
a specified target state.

D. Achieving extreme points of CTO+ for β = 0

We are now ready to state our main results concerning
the power of memory-assisted Markovian thermal pro-
cesses in the infinite temperature limit. Let us recall that
we focus on a d-level system and an N -dimensional mem-
ory in energy-incoherent states represented by probability
distributions p and γM . Since β = 0, the thermal state of
the memory is described by a uniform distribution ηM
with every entry equal to 1/N . We start with the following
lemma, the proof of which can be found in Appendix C
(with the necessary background on the mathematical tools
used presented in Appendix B).

Lemma 1 (Memory-assisted transposition).—In the infi-
nite temperature limit, β = 0, and for an N -dimensional
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memory, the MeMTP protocol P (ij ) acts as

P (ij )(p ⊗ ηM ) = q ⊗ ηM , (20)

with

q = (
�ij + ε(1 − �ij )

)
p, (21)

and ε given by

ε = (πN )−1/2 + o(N−1/2)
N→∞−→ 0. (22)

It is well known that any permutation of d elements
can be decomposed into a product of at most d trans-
positions or

(d
2

)
neighbor transpositions. Therefore, by

employing Lemma 1, we can demonstrate that an arbitrary
permutation can be achieved using a composition of our
approximate protocols.

Theorem 1 (Memory-assisted permutation).—In the infi-
nite temperature limit, β = 0, and for an N -dimensional
memory, � can be approximated by the MeMTP protocol
P� as follows:

P�(p ⊗ ηM ) = q ⊗ ηM , (23)

where

q = (
� + ε� + o(N−1/2)

)
p

N→∞→ �p, (24)

with ε = (πN )−1/2 and the operator � defined in terms
of transpositions appearing in the definition of P� in Eq.
(19a):

� =
m∑

l=1

(
m∏

k=l+1

�ik jk

)

(1 − �iljl)

(
l−1∏

k=1

�ik jk

)

. (25)

Proof.—From the definition of P� and Lemma 1 we get

q = [�imjm + ε(1 − �imjm)] . . . [�i1j1 + ε(1 − �i1j1)]p.
(26)

Clearly, the leading term is given by �p, whereas the
next leading term, proportional to ε, is given by ε�p. All
higher-order terms scale at least as ε2, so are of the order
o(N−1/2). �

The above theorem can then be directly used to obtain
the bound on how close one can get from a given p to
any state q ∈ CTO

+ (p) using MeMTPs with N -dimensional
memory. We explain how to derive such a bound for
a given p in Appendix D, whereas below we present a
weaker, but much simpler, bound that is independent of
p.

Corollary 1.—Consider states p and q ∈ CTO
+ (p). Then,

in the infinite temperature limit, β = 0, and for an N -
dimensional memory, there exists a MeMTP protocol P
such that

P(p ⊗ ηM ) = q′ ⊗ ηM , (27)

with

δ(q′, q) ≤ d(d − 1)

2
√

πN
+ o(N−1/2). (28)

Proof.—First, define � as a permutation that changes
the β-order of p to that of q. In other words, the β-order of
�p is πq. Then, using Theorem 1, we have that

P�(p ⊗ ηM ) = r ⊗ ηM (29)

with

δ(r, �p) � 1

2
√

πN

d∑

i=1

|(�p)i| � m√
πN

� d(d − 1)

2
√

πN
,

(30)

where � and � denote the equalities and inequalities up to
o(N−1/2). In the above, we have used the triangle inequal-
ity and the fact that one can always decompose � into
at most d(d − 1)/2 neighbor transpositions. Next, from
Eq. (10), we know that there exists an MTP protocol P ′
mapping �p to q. Using the contractiveness of the total
variation distance under stochastic processing, we then
have

δ(P ′(r), q) = δ(P ′(r),P ′(�p)) ≤ δ(r, �p) � d(d − 1)

2
√

πN
.

(31)

We thus conclude that by choosing P = (P ′ ⊗ IM ) ◦ P�,
Eqs. (27)–(28) are satisfied. �

Furthermore, we present the following conjecture for a
better approximation of arbitrary permutations.

Conjecture 1 (Improved convergence).—In the infinite
temperature limit, β = 0, and for an N -dimensional mem-
ory, P̃� gives a better approximation of a permutation �

than P�:

δ
(
�p, q̃

) ≤ δ (�p, q) , (32)

where q̃ and q are defined via

P̃�(p ⊗ ηM )= q̃ ⊗ ηM , P�(p ⊗ ηM )= q ⊗ ηM . (33)

The conjecture is solidified by strong numerical evi-
dence (see Fig. 6 for an example considering d = 6).
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FIG. 6. Convergence rates at infinite temperature. Log-log plot
of the total variation distance δ between the extreme points
pπ ∈ C(TO)

+ (p) and the states obtained from p via the algorithm
P� (left panel) and P̃� (right panel), as a function of the memory
size N . Here, p = (0.37, 0.24, 0.16, 0.11, 0.07, 0.05), β = 0, and
different colors correspond to families of extreme points pπ with
different convergence rates (from bottom to top pπ is obtained
from p via a β-6 cycle, a composition of a β-6 cycle with a β-5
cycle, and so on). All convergences behave as O(N−1/2) as given
in Eq. (28), which can be seen by the comparison with the func-
tion 0.4/

√
N (dashed black line), with multiplicative advantage

for P̃� over P�.

We note that the convergence is better, but the overall
character of O(N−1/2) is still preserved. More specif-
ically, we observe that for permutations given by β-k
cycles with k ≤ d, there is no advantage to removing the
intermediate thermalizations (i.e., no advantage of P̃�

over P�). The advantage already appears for a compo-
sition of β-d-cycle with β-(d − 1) cycle, leading to the
β-order (d, d − 1, 1, . . . , d − 2) (here, without loss of gen-
erality, we assumed that the initial β-order is given by
(1, 2, . . . , d)). In general, the advantage grows with the
number of composed β-cycles (see Fig. 6, where different
colours and markers correspond to different length com-
positions of β-cycles). In particular, we verified that for a
permutation (16)(25)(34), which is composed of β-cycles
of length 6 through 2 [or 15 = (6

2

)
neighbor transposi-

tions], both P� and P̃� converge to the actual extreme
point �p. Surprisingly, we find that all the other possible
permutations fall within the convergence advantage class
of one of the aforementioned β-cycle compositions. This
includes, in particular, the cases when the last β cycle in
the sequence is incomplete, i.e., it is shortened by the final
subsequence of β-swaps of any length.

E. Achieving extreme points of CTO+ for β �= 0

Our second main result concerns the power of memory-
assisted Markovian thermal processes at finite tempera-
tures. We start with the following generalization of Lemma
1, the proof of which can be found in Appendix C.

Theorem 2 (Memory-assisted β-swap).—For a finite
temperature, β �= 0, and for an N -dimensional memory
described by a trivial Hamiltonian (so that its thermal state
is ηM ), �

β
ij can be approximated by the MeMTP protocol

P (ij ) as follows:

P (ij )(p ⊗ ηM ) = q ⊗ ηM , (34)

with

δ(q, �β
ij p) = (4�i�j )

N

(�i − �j )2

[ |pi�j − pj �i|
(N + 1)

√
πN

+ o(N−3/2)

]

,

(35)

where we have used �i = γi/(γi + γj ) and likewise for �j .
By using the above theorem, one can approximate with

arbitrary precision a total of F(d + 1) extreme points
achievable by a composition of nonoverlapping β-swaps
[recall that F(k) is the kth Fibonacci number]. However,
since F(d + 1) ≤ d! for d ≥ 3, not all extreme points of
CTO

+ (p) can be obtained this way. Nevertheless, we conjec-
ture that using MeMTP protocols P̃� that are composed
of blocks imitating β-swaps, just without intermediate
thermalizations, one can reach all the extreme points of
CTO

+ (p).
Conjecture 2 (Extreme points of CTO

+ ).—Consider a state
p and the extreme point of CTO

+ (p) given by pπ ′
, with

matrix representations of β-orders of these states satisfy-
ing �′ = ��p for some permutation �. Then, for a finite
temperature, β �= 0, and for an N -dimensional memory
described by a trivial Hamiltonian (so that its thermal state
is ηM ), the MeMTP protocol P̃� acts as

P̃�(p ⊗ ηM ) = q ⊗ ηM , (36)

with

δ(q, pπ ′
)

N→∞−→ 0. (37)

The conjecture is solidified by the following two pieces
of evidence, which utilize the truncated protocols P̃�.
First, we provide an analytical proof for convergence of the
truncated protocols to a subset of extreme points beyond
the ones achievable with simple β-swaps.

Theorem 3 (Memory-assisted β-3-cycle).—Consider a
state p with entries i1, i2, i3 being neighbors in the β-order
[i.e., πp(i1) = πp(i2) + 1 = πp(i3) + 2], and the extreme
point of CTO

+ (p) given by pπ ′
, with matrix representations

of β-orders of these states satisfying �′ = ��p for � =
�i1i3�i2i3 . Then, for a finite temperature, β �= 0, and for an
N -dimensional memory described by a trivial Hamiltonian
(so that its thermal state is ηM ), the MeMTP protocol P̃�
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acts as

P̃�(p ⊗ ηM ) = q ⊗ ηM (38)

with

δ(q, pπ ′
)

N→∞→ 0. (39)

The proof of the above theorem can be found in
Appendix E, and potentially the same proving techniques
can be applied to higher-order cycles. This would then pro-
vide a general method for simulating β-cycles, as well
as any combinations of nonoverlapping β-cycles, with
arbitrary precision through MeMTPs.

The second piece of evidence is based on extensive
numerical simulations demonstrating convergence to arbi-
trary extreme points beyond both β-swaps and aforemen-
tioned β-cycles. Let us consider any state p and a set of
permutations defined by a recurrence formula

�̃ij :=
( j∏

k=1

�πp(k), πp(k+1)

)

�̃i−1, d+1−i (40)

with 1 ≤ j ≤ d − i and assuming the starting condition
�̃0d = 1. Note that �̃1,d−1 represents a full β-d-cycle,
�̃i,d+1−i a composition of i β-cycles of length from d to
d + 1 − i, and finally �̃d,1 is a permutation, which fully
reverses the β-order of p. For each such permutation, we
have considered the action of the protocol P̃�̃ij (p) and
its convergence to the respective extreme point pπ with
� = �̃ij �p (recall that � is a matrix representation of π ).
In each case, we have observed the convergence of the
form from Eq. (37) that is better than N−1/2. Results for an
exemplary state in dimension d = 6 are presented in Fig. 7,
where a total of 15 different curves are shown to lie below
the N−1/2 limit and diverging from it.

Finally, based on Theorem 2, the proof of Theorem 3,
and numerical evidence, one can reasonably strengthen
Conjecture 2 to make the following statement on the
convergence:

δ(q, pπ ′
) = O

(
e−A(�)N

N 3/2

)

, (41)

where A(�) = O(1) is a permutation-dependent exponent.

IV. DISCUSSION AND APPLICATIONS

In Sec. III, we demonstrated a method of achiev-
ing an arbitrary state from the future cone of TO using
MeMTPs through MTP operations acting upon the sys-
tem extended by memory, initiated in the thermal state
γ . In the following sections, we will apply our protocol
to study information-based quantum thermodynamic pro-
cesses, such as work extraction and cooling. Next, we

FIG. 7. Convergence rates at finite temperature. Log-log plot
of the total variation distance δ between the states obtained from
p via the algorithm P̃�̃ij and the corresponding extreme points
pπ ∈ C(TO)

+ (p), as a function of the memory size N . Here, p =
(0.37, 0.24, 0.16, 0.11, 0.07, 0.05), β = 0.1, and different colors
correspond to extreme points pπ with matrix representation of the
β-order π given by � = �̃ij �p. For all curves, the convergence
is better than O(N−1/2) in agreement with Eq. (41), as can be
seen by the comparison with the limiting line 1/

√
πN for β = 0

(dot-dashed black line).

revisit the question of the sufficiency of two-level con-
trol for TOs. Finally, we provide a brief discussion of
the behavior of the free energy and correlations with the
progression of our protocol. This sheds light on how non-
Markovian effects arise in the memory-assisted protocol.

A. Work extraction

Generally, definitions of work rely either on the control
and manipulation of external parameters that determine the
system’s Hamiltonian [41,42] or on the assumption that
work is a random variable and a controlled Hamiltonian
evolution is employed to determine the work statistics [43–
46]. In contrast, the resource-theoretic approach avoids
the presence of any external agent and does not involve
changes to the Hamiltonian. Furthermore, this framework
differs from traditional approaches by shifting the focus
from average and higher moments of the work distribution
to the single-shot regime. In this regime, the question is
posed as to what is the maximum amount of work that can
be extracted while allowing for a probability of failure ε.

The so-called ε-deterministic work extraction, which
typically involves an out-of-equilibrium system S, a ther-
mal bath at inverse temperature β, and a battery B ini-
tially in an energy eigenstate E0 [22,47,48]. The aim is to
increase the energy of B by an amount W by exciting it
from E0 to E1 = E0 + W with a success probability 1 − ε.
The optimal error ε for a given W can be obtained via
thermomajorization condition for transformations given by
thermal operations [22] and through continuous thermo-
majorization relations when transformations are given by
Markovian thermal processes [26]. Our framework allows
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MeMTP

FIG. 8. ε-deterministic work extraction with MeMTPs. Trans-
formation error ε as a function of the work W extracted from
a two-level system with energy splitting � prepared in a ther-
mal state at temperature 1/βS smaller than the environmental
temperature 1/β with parameters βS� = 2 and β� = 1. System-
environment interactions are modeled by TOs (dashed black
curve), MTPs (dashed red curve), and memory-assisted Marko-
vian thermal process with a memory of size 2, 4 , 8, 16, 32, 64,
and 128, respectively.

one to interpolate between the two extremes by including
a memory system with varying dimension N .

Consider a two-level system S and a two-level bat-
tery B with energy levels (0, �) and (0, W), respectively.
Assume that the initial state of the joint system is given
by pSB = p ⊗ (1, 0). One can then select the extreme point
pπ ′

SB ∈ CTO
+ (pSB) from the future thermal cone of the com-

posite system for which the following relation is satisfied
with the minimum value of εTO:

γ ⊗ (εTO, 1 − εTO) ∈ CTO
+ (pπ ′

SB). (42)

In other words, pπ ′
SB is an intermediate state from which

one can achieve minimal error for extracting W work
from p via any thermal operation. We can now define
� as a permutation that maps the matrix representation
of the initial β-order of pSB to the final β-order of pπ ′

SB.
Then, by using the algorithm P̃�, we can transform pSB

into a state qSB that approximates pπ ′
SB. Finally, due to

Eq. (10), we can use standard thermomajorization to find
the minimal value of εN for which the state qSB can be
transformed to γ ⊗ (εN , 1 − εN ) via MTPs. Note that εN
then corresponds to the probability of failure of extract-
ing work W from p using a memory of size N . Numerical
simulations of this procedure (see Fig. 8) show that as
N grows, εN decreases, allowing us to conjecture that
limN→∞ εN = εTO. However, note that the convergence is
not uniform: it is the slowest around W = 0 and the kink
at W = 1/β log

(
1 + e−β�

)
. Nevertheless, Fig. 8 clearly

shows that even a small size memory can significantly
improve the quality of the extracted work.

FIG. 9. Energy-level structure. Schematic diagram of a two-
level system, consisting of a main system and a memory with
energy gaps ES and EM , respectively. The energy gap of the com-
posite system is such that it can be selectively coupled to the
thermal bath.

B. Cooling a two-level system using a two-dimensional
memory with nontrivial Hamiltonian

As a second application of our findings, we consider
the task of cooling a two-level system with the aid of a
two-dimensional memory. The setup involves a two-level
system with energy gap ES, extended by a memory sys-
tem with energy gap EM . The joint system’s energy-level
structure is depicted in Fig. 9. We assume that the differ-
ence between energy gaps is such that it allows one to
selectively couple with the bath, i.e., ES − EM �= EM . This
enables us to separately address transitions |01〉 ↔ |10〉,
|00〉 ↔ |11〉 together with two coupled pairs of the form
|0i〉 ↔ |1i〉 and |i0〉 ↔ |i1〉. We will refer to these opera-
tions thermalizing these levels as operations 1, 2, 3, and 4,
respectively.

Let us now assume, for simplicity, that the system starts
in an excited state extended by Gibbs memory, p ⊗ γM
with pi = δi1. If we consider the main system alone with
access only to MTPs, one can cool it down only to the
ambient temperature. In this case, the system will reach
thermal equilibrium, and the resulting distribution is given
by

γS =
(

1
1 + e−βES

,
e−βES

1 + e−βES

)

. (43)

However, by implementing our protocol, which can be
realized as a sequence of operations, 1 → 2 → 3 → 4
and discarding (thermalizing) the memory, we arrive at
P(p ⊗ γM ) = q ⊗ γM with

q =

⎡

⎢
⎢
⎢
⎣

eβEM +eβ(EM +ES)+eβ(2EM +ES)+eβ(EM +2ES)+eβES
(

eβES +1
)(

eβ(EM −ES)+1
)(

eβ(EM +ES)+1
)

eβEM +eβ(2EM +ES)+eβES
(

eβES +1
)(

eβEM +eβES
)(

eβ(EM +ES)+1
)

⎤

⎥
⎥
⎥
⎦

.

(44)
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The distance of this state from the Gibbs state γS at ambient
temperature in terms of the 1-norm is given by

‖q − γS‖1 = 1
(
e−βES + 1

)
[cosh (βEM ) + cosh (βES)]

,

(45)

which is positive for every nonzero value of EM and ES.
This means that despite nontriviality of the memory’s
spectrum, our simple memory-extended protocol achieves
a cooling advantage over Markovian processes.

C. Two-level control is sufficient for thermal
operations

In Ref. [27] it has been proved that there exist thermo-
dynamic state transformations that cannot be decomposed
into the so-called elementary thermal operations, i.e., ther-
mal operations acting only on two levels of the system
at the same time. Then, in Ref. [34], for any dimension
d, an explicit final state q ∈ CTO

+ (p) was given such that
it cannot be achieved (even approximately) starting from
the ground state p = (1, 0, . . . , 0) using convex combina-
tions of sequences of elementary thermal operations. More
precisely, given the energy spectrum of the system with
Ei+1 ≥ Ei, this final state is given by

q =
(

1 −
d∑

i=2

e−βEi , e−βE2 , . . . , e−βEd

)

(46)

with β ≥ βcrit such that 1 − ∑d
i=2 e−βcritEi = 0. It was then

proven by the authors of Ref. [34] that there exists ε > 0
such that any q′ achievable from p satisfies δ(q, q′) ≥ ε.

Given the above, one might conclude that being able to
selectively couple to the bath just two energy levels at once
is highly restrictive and does not allow one to induce all the
transitions possible via general thermal operations. This
conclusion, however, would be incorrect, as the restriction
arises only when one is limited to coupling only two lev-
els of the system at a given time. As we have seen in this
paper, when one is allowed to bring an auxiliary N -level
system in a thermal equilibrium state γM , then the ability
to selectively couple to the bath just two energy levels of
the joint system allows one to induce all transitions of the
main system possible via thermal operations as N → ∞.
Crucially, the operation

E(ρ) = ρ ⊗ γM (47)

is a thermal operation for every N . Thus, E followed by
a sequence of elementary thermal operations on the joint
system, followed by discarding the system M at the end,
can induce any energy-incoherent state transition of the
system possible via general thermal operations. In other
words, elementary control over two energy levels at a

FIG. 10. Convergence to states inaccessible via elementary
thermal operations. Log-log plot of the total variation distance
δ between the state q from Eq. (46) and the state obtained
from p = (1, 0, . . . , 0) via the algorithm P̃�q , as a function of
the memory size N . Left: systems with energy spectra Ei = i
with d = 3, . . . , 10 (bottom to top) and for β = 1.1 log(2) >

βcrit. For all presented dimensions the convergence is better than
1/(2

√
N ) (black dashed line). Right: systems with energy spectra

(0, E1, E2, 1) taken from a grid with interval � = 1/64 (translu-
cent blue lines) for β = 1.1 × βcrit. The red lines represent the
extreme cases of convergence, while the thick blue line is the
average convergence. Note that the top red line almost agrees
with 1/(2

√
N ) (black dashed line), which well approximates the

expected convergence for β = 0 and agrees with the fact that it
is obtained for almost completely degenerate levels.

given time is sufficient to generate all thermodynamically
possible transitions if we allow ancillary thermal systems.

We illustrate the above with the following numerical
examples, showing that our MeMTP protocol P̃�q (which
consists of only two-level operations) is able to transform p
into q′ that approximates q arbitrarily well [i.e., δ(q′, q) →
0 as N → ∞]. In order to focus attention, we chose a
constant β = 1.1 × βcrit. First, we considered systems of
varying dimension d, up to dmax = 80, and fixed the energy
structure to Ei = i, corresponding to quantum harmonic
oscillator. We observed that the convergence for all these
dimensions scales according to the predictions from Con-
jecture 2, which can be seen in the left panel of Fig. 10 for
d = 3, . . . , 10 and memory sizes up to N = 28. Moreover,
in order to ascertain that the convergence does not depend
on the energy structure of the system, we fixed d = 4 and
considered energy levels (0, E1, E2, 1) with E1 < E2 taken
from a grid with spacing �E = 2−6, resulting in 1953 uni-
formly distributed points. For each of these points, we have
considered the protocol with memory size up to N = 28.
As demonstrated in the right panel of Fig. 10, it turns
out again that the convergence, independently from the
energy structure, is better than 1/

√
N , in accordance with

Conjecture 2.

D. Nonequilibrium free energy evolution

To understand how non-Markovian effects arise in
the memory-assisted protocol, we will now examine the
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 11. Evolution of nonequilibrium free energies and correlations. Nonequilibrium free energies of the main system [(a),(e)], the
memory [(b),(f)], and the joint system [(c),(g)], as well as the mutual information between the system and memory [(d),(h)], as a
function of the step number n of the protocol P (ij ). Here, the composite system consists of a three-level system initialized in a state
p = (0.7, 0.2, 0.1) and a 16-dimensional degenerate memory prepared in a thermal (maximally mixed) state, and the plots are presented
for two inverse temperatures, β = 0 and β = 0.5.

evolution of the system and memory during the protocol
P (ij ). More precisely, let us denote the joint state of the
system and memory after the nth two-level thermaliza-
tion step of the protocol by p(n)

SM . Similarly, let p(n) and
p(n)

M denote the reduced states of the system and memory
after the nth step. Then, in the spirit of the analysis per-
formed for elementary thermal operations in Ref. [28], we
will examine the behavior of the following entropic quan-
tities. First, we will look at the relative entropy between
p(n) and the thermal state of the system γ,

D
(
p(n)‖γ) =

d∑

i=1

p (n)
i log

p (n)
i

γi
, (48)

which is a thermodynamic monotone, as it decreases under
(Markovian) thermal operations, and is directly related to
the nonequilibrium free energy [49]. We will also look
into the behavior of the analogous quantities for the joint
system and the memory system. Moreover, to track the cor-
relations that build up between the system and memory,
we will investigate the mutual information between them,
which is given by D(p(n)

SM‖p(n) ⊗ p(n)
M ).

We use a three-level system and a 16-dimensional mem-
ory as an illustrative example. We consider the joint system
undergoing a β-swap protocol P (ij ) for β = 0 and β = 0.5.
As shown in Figs. 11(a) and 11(e), the nonequilibrium free
energy of the main system initially decreases to a mini-
mum, and then increases until it reaches a level that closely
approximates the target state (a swap or β-swap). It is
important to note that this observed increase is only pos-
sible because of the presence of the memory system. In

contrast, note that the global nonequilibrium free energy
decreases after each step, as depicted in Figs. 11(c) and
11(g). However, during the process, a fraction of the main
system’s nonequilibrium free energy is transferred to the
memory, which acts as a free energy storage. As such, it
later enables the system to increase its local free energy
again, hence allowing it to achieve the final state. More
interestingly, the free energy of the memory, presented in
Figs. 11(b) and 11(f), exhibits a comblike structure con-
sisting of d − 1 teeth with (d + 1) steps each. Specifically,
within the kth tooth, the first d − k steps increase the free
energy, while the remaining k steps decrease it. Note that
as long as the memory is not thermalized, its nonequilib-
rium free energy does not go to zero. However, for β = 0,
it approaches a value very close to zero, but there are still
correlations between the memory and the system, which
are illustrated in Figs. 11(d) and 11(e).

V. CONCLUSIONS AND OUTLOOK

In this paper, we proposed a novel approach to investi-
gate memory effects in thermodynamics by introducing the
concept of memory-assisted Markovian thermal processes.
These were defined by extending the framework of Marko-
vian thermal processes with ancillary memory systems
brought in thermal equilibrium states. Our construction
allowed us to interpolate between the regime of memory-
less dynamics and the one with full control over all degrees
of freedom of the system and the bath. Using a family
of protocols composed of Markovian thermal processes,
we demonstrated that energy-incoherent states achievable
from a given initial state via thermal operations could be
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approximated arbitrarily well via our algorithmic proce-
dure employing memory. Furthermore, we analyzed the
convergence of our protocols in the infinite memory limit,
finding polynomial and exponential convergence rates for
infinite and finite temperatures, respectively. In the infi-
nite temperature limit, we provided analytic convergence
to the entire set of states accessible via thermal operations.
For finite temperatures, we proved the convergence to a
subset of accessible states and, based on extensive numer-
ical evidence, we conjectured that a modified version of
our protocol can realise arbitrary transitions achievable
via thermal operations with an exponential convergence
rate that grows with memory size. Our model-independent
approach can be seen as a significant step forward in
understanding ultimate limits of the Markovian evolution
in general, which should be contrasted with the model-
specific approaches to the so-called Markovian embedding
[50–52]. On the other hand, it may be seen as far less gen-
eral than the approach taken in Ref. [53], where our work
would correspond to a step towards simulating arbitrary
evolution with Markov-Stinespring curves.

Our framework should be contrasted with previous
investigations into the embeddability of Markov chains
into continuous Markov processes via hidden states [54–
56]. These approaches consider a system with a set of
“visible states,” which are occupied and subjected to oper-
ations, along with “hidden states” that enable an embed-
ding of operations that would otherwise be unfeasible.
These hidden states could correspond to unpopulated lev-
els within the main system—an option that remains viable
for implementing our protocols. Alternatively, we could
choose to extend the system by introducing a memory
initialized in a specific energy state r with populations
ri = δij for some j . Nevertheless, this approach carries two
caveats. The first involves the cost associated with bring-
ing the nonequilibrium state r into play, as opposed to a
Gibbs state. The second pertains to the catalytic nature of
the operation—whether operations of the form p ⊗ r →
q ⊗ r, where r is retrievable, can indeed expand the space
of accessible states q.

We also explained how our results can be employed
to quantitatively assess the role of memory for the per-
formance of thermodynamic protocols. In this context,
we discussed the dependence on the memory size of
the amount and quality of work extracted from a given
nonequilibrium state. In addition, we introduced a minimal
model designed to cool a two-level system below ambi-
ent temperature using a two-dimensional memory. How-
ever, the method can be used as well to investigate other
thermodynamic protocols, such as information erasure or
thermodynamically free encoding of information [57]. Fur-
thermore, we revealed that all transitions accessible via
thermal operations can be accomplished using a restricted
set of thermal operations that exclusively affect only two
energy levels (of the system extended by a memory) at any

given time. These findings carry important implications,
not only for the development of efficient thermodynamic
protocols, such as optimal cooling and Landauer erasure,
but also for the exploration of novel avenues of research
focused on characterizing memory effects in thermody-
namics. Finally, we also commented on the role played by
the memory system as a free energy storage that enables
non-Markovian effects.

Our results offer many possibilities for generalization
and further research. First, one can try proving that the
future thermal cone for memory-assisted Markovian ther-
mal processes agrees with that of thermal operations in the
limit of infinite memory, limN→∞ C+

MeMTP = C+
TO, as sug-

gested by Conjecture 2. This can be built upon the proofs
for β-swaps (Theorem 2) and β-3-cycles (Theorem 3) pre-
sented in this work. Second, one may also attempt to show
that the convergence of the proposed protocols P� and
P̃� is optimal with respect to the memory size. In other
words, one could investigate the upper bound on the power
of memory-assisted Markovian thermal processes with a
given size of memory N . Third, from a more practical point
of view, it may be worthwhile to explore MeMTPs involv-
ing finite and infinite memory with nontrivial energy-level
structure. The practical relevance of this direction can be
understood by considering the introduction of nondegener-
ate splitting of the levels for the full system, which would
allow the level pairs to be addressed independently.

In addition to the above, there are also less clear-cut
goals for future efforts, such as expanding the studies
beyond energy-incoherent states into the full range of
quantum states. Furthermore, while our work focused on
a single main system, an interesting avenue for future
work could be to investigate many noninteracting subsys-
tems. This extension could shed light on the combined
consequences of finite-size and memory effects, provid-
ing valuable insights into the behavior of larger, more
complex systems. Specifically, characterizing such effects
could help to identify strategies for improving the effi-
ciency of thermodynamic protocols in practical applica-
tions. Finally, one can also consider memory composed
of many equivalent systems (such as a multiqubit mem-
ory), and analyze the potential challenges arising from
energy-level degeneration in such a setting.

Finally, the feasibility of the introduced algorithm can
be studied from a control perspective, following the
approaches outlined in Ref. [58,59]. The first approach
introduces the notion of a space-time trade-off, which
refers to the minimal amount of memory and time steps
required to classically implement a given process. The sec-
ond approach deals with control complexity, defining it as
the number of levels a given operation nontrivially acts
versus the time steps needed to implement that process.
Our algorithm has specific time and memory requirements,
namely N -dimensional memory and N 2 time steps. Fur-
thermore, it is limited to the simplest two-level processes
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at any given time, meaning its control complexity is as low
as possible. Nonetheless, future work might explore vari-
ations of our protocol (or any of the variants presented in
Appendix F). Such explorations could focus on enabling
parallelization of certain steps by expanding available
memory, thereby illustrating the space-time trade-off.
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APPENDIX A: THERMODYNAMIC EVOLUTION
OF ENERGY-INCOHERENT STATES

This work focuses on energy-incoherent states that can
be represented by d-dimensional probability vectors of
their eigenvalues, and their evolution is described by
stochastic matrices. As a result, this specificity allows one
to replace density operators and quantum channels with
probability vectors and stochastic matrices, respectively.
Consequently, given two states, ρ and σ , with eigenvalues
p and q, the existence of a thermal operation between ρ

and σ is equivalent to the existence of a Gibbs-preserving
stochastic matrix between p and q [21,22]. Surprisingly,
determining whether a given state p can be transformed
into a target state q reduces to checking a finite list of
conditions expressed by a partial-order relation between
the initial and target state. In the infinite-temperature limit,
these rules are encoded by the majorization relation [61],
and in the finite temperature case by thermomajoriza-
tion [22,62]. If one further constrains the evolution to be
Markovian, then the aforementioned rules are expressed by
the notion of continuous thermomajorization [24]. In this
Appendix, we review and summarize well-known results
concerning these partial order relations.

1. Majorization

To formulate the solution underlying the thermody-
namic evolution of energy-incoherent states under thermal
operation, we first need to recall the concept of majoriza-
tion [61] (see also Ref. [24] for a detailed discussion).

Definition 4 (Majorization).—Given two d-dimensional
probability distributions p and q, we say that p majorizes
q, and denote it by p 	 q, if and only if the following
condition holds:

k∑

i=1

p↓
i ≥

k∑

i=1

q↓
i for all k ∈ {1 . . . d}, (A1)

where p↓ denotes the vector p rearranged in a nonincreas-
ing order.

Equivalently, the majorization relation between distribu-
tions can be expressed in terms of the majorization curve.
Given a distribution p, we define a piecewise linear curve
fp(x) in R

2. This curve is obtained by joining the origin

(0, 0) and the points
(∑k

i=1 ηi,
∑k

i=1 p↓
i

)
, for each k in

the set {1, . . . , d}. Then, p majorizes q if, and only if, the
majorization curve fp(x) of p is always above that of q:

p 	 q ⇐⇒ ∀x ∈ [0, 1] : fp(x) ≥ fq(x) . (A2)

Majorization can be interpreted as a formalization of the
notion of disorder with respect to the uniform distribution
η. Note that the uniform state η is majorized by any other
distribution, while every distribution is majorized by the
sharp state s = (1, 0, . . . , 0). Furthermore, if p 	 q, then
all Rényi entropies associated with p are smaller than those
of q [63].

The most general transformation between two probabil-
ity distributions, p and q, is accomplished by a stochastic
matrix, where � fulfills �ij ≥ 0 and

∑
i �ij = 1. In the

infinite-temperature limit, thermodynamic transformations
are accomplished by stochastic matrices that preserve the
uniform distribution η. Mathematically, this means that �

is bistochastic, i.e., it additionally satisfies
∑

j �ij = 1. As
every bistochastic matrix can be written as a convex com-
bination of permutation matrices, this implies that the set
of d × d bistochastic matrices is a convex polytope with
d! vertices, one for each permutation in Sd. Finally, since
the existence of a bistochastic matrix connecting p to q
is equivalent to p 	 q, we conclude that the set of states
CTO

+ (p) achievable via thermal operations from a given
incoherent initial state p is given by

CTO
+ (p) = conv [{�p ,Sd � π �→ �}] , (A3)

where � denotes a permutation matrix corresponding to
the permutation π with d elements, and conv[S] the convex
hull of the set S. A detailed discussion about the construc-
tion of the future CTO

+ and its properties can be found in
Sec. III of Ref. [38].

2. Thermomajorization

Thermomajorization is a measure of disorder relative to
the thermal distribution γ. Mathematically, given γ, we say
that p thermomajorize q, and denote by p 	β q, if there
exists a stochastic matrix �β , which leaves the vector γ

invariant and maps p onto q.
The starting point of defining the thermodynamic equiv-

alent of the majorization is done by presenting the concept
of β-ordering (see Definition 2), and then introducing the
notion of thermomajorization curves [22]. Recall that the
β-ordering of p is defined by a permutation πp that sorts
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FIG. 12. Thermomajorization curve. For three different states
p, q, and c, with a thermal Gibbs state γ ∝ (1, e−β , e−2β), and
β > 0, we plot their thermomajorization curves f β

p (x) (black
curve), f β

q (x) (dashed red curve), and f β
c (x) (dot green curve),

respectively. While p thermomajorizes q [since f β
p (x) is never

below f β
q (x)], both states are incomparable with c, as their

thermomajorization curves cross with f β
c (x).

pi/γi in a nonincreasing order. The β-ordered version of p,
denoted as pβ , is obtained by arranging the elements of p
according to the permutation πp

pβ =
(

p
π−1

p (1)
, . . . , p

π−1
p (d)

)
. (A4)

A thermomajorization curve is defined as a piecewise lin-
ear curve composed of linear segments connecting the
point (0, 0) and the points defined by consecutive subsums
of the β-ordered form of the probability pβ and the Gibbs
state γβ ,

(
k∑

i=1

γ
β

i ,
k∑

i=1

p β
i

)

:=
(

k∑

i=1

γ
π−1

p (i),
k∑

i=1

p
π−1

p (i)

)

, (A5)

for k ∈ {1, . . . , d}. Thus, given two d-dimensional proba-
bility distributions p and q, and a fixed inverse temperature
β, we say that p thermomajorizes q and denote it as
p 	β q, if the thermomajorization curve f β

p is above f β
q

everywhere, i.e.,

p 	β q ⇐⇒ ∀x ∈ [0, 1] : f β
p (x) ≥ f β

q (x). (A6)

See Fig. 12 for an example considering a three-level
system.

For finite temperatures, general thermodynamic trans-
formations between two probability distributions, p and
q, are accomplished by stochastic matrices preserving the
Gibbs state, i.e., matrices � such that �γ = γ, which are
commonly referred to as Gibbs-preserving (GP) matrices
in the literature. As the rules governing state transforma-
tions are no longer described by a majorization relation,
but instead by thermomajorization, the characterization of

the future thermal cone is no longer given by Eq. (A3).
Nevertheless, the set of Gibbs-preserving matrices is still
a convex set, and the extreme points of the future thermal
cone can be obtained by the following lemma.

Lemma 2 (Lemma 12 of Ref. [27]).—Given p, consider
the following distributions pπ ∈ CTO

+ (p) constructed for
each permutation π ∈ §d. For i ∈ {1, . . . , d},

(i) let xπ
i = ∑i

j =0 e−βE
π−1(j ) and yπ

i = f β
p

(
xπ

i

)
;

(ii) define pπ
i := yπ

π(i) − yπ
π(i)−1, with y0 := 0.

Then, all extreme points of CTO
+ (p) have the form pπ for

some π . In particular, this implies that CTO
+ (p) has at most

d! extremal points.
The above lemma allows one to characterize the future

thermal cone of p by constructing states pπ for each π ∈
Sd, and taking their convex hull.

3. Continuous thermomajorization

If we enforce that the transformation is Markovian, the
conditions are captured by the notion of continuous ther-
momajorization [25]. Formally, one asks if there exists a
continuous path within the probability simplex that con-
nects these two distributions, such that the preceding dis-
tribution is thermomajorized by the succeeding one at any
two points along this path. Such a notion is defined as
follows.

Definition 5 (Continuous thermomajorization).—A dis-
tribution p continuously thermomajorizes q, denoted p 	β

q, if there exists a continuous path of probability distribu-
tions r(t) for t ∈ [0, tf ) such that

(i) r(0) = p,
(ii) ∀ t1, t2 ∈ [0, tf ) : t1 ≤ t2 ⇒ r(t1) 	β r(t2),

(iii) r(tf ) = q.

The path r(t) is called thermomajorizing trajectory from p
to q.

Let us make a few comments about the above definition.
Firstly, it is worth noting that when β = 0 and the ther-
mal state is replaced by the uniform fixed point, γ =
η, the above definition corresponds to a continuous ver-
sion of standard majorization, denoted by 	. Secondly,
determining whether a given initial state continuously ther-
momajorizes a target state is a difficult problem, and unlike
the other variants of majorization presented so far, there is
no continuous thermomajorization curve for this type of
majorization that would facilitate a quick check. Never-
theless, the necessary and sufficient conditions are known
[24]. These comprise a complete set of entropy produc-
tion inequalities that can be reduced to a finitely verifiable
set of constraints. Lastly, the notion of continuous ther-
momajorization encapsulates all constrains of memoryless
thermal processes on population dynamics.
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APPENDIX B: REGULARIZED INCOMPLETE β

FUNCTION

The content of this Appendix is based on Refs. [64,65].

1. Definition and properties

The finite-size corrections to a β-swap and its composi-
tions are determined by the cumulative distribution func-
tion (CDF) known as the regularized incomplete β func-
tion. This function is closely related to the well-known β

function B(a, b) and is widely used in deriving our results.
To provide the necessary background and present its key
properties, we first recall the definition and properties of
the β function:

B(a, b) =
∫ 1

0
ta−1(1 − t)b−1dt, (B1)

with a, b ∈ C. The β function relates to the γ function in
the following way:

B(a, b) = �(a)�(b)

�(a + b)
. (B2)

The incomplete β function Bx(a, b) is defined by changing
the upper limit of integration in Eq. (B1) to an arbitrary
variable, i.e.,

Bx(a, b) =
∫ x

0
ta−1(1 − t)b−1dt. (B3)

Finally, we define the regularized incomplete β function
Ix(a, b) (regularized β function for short) by normalizing
the incomplete β function,

Ix(a, b) = Bx(a, b)

B(a, b)
. (B4)

We present plots of the regularized β function for a few
selected values of x in Fig. 13.

Throughout this work, we assume that a, b > 0 and 0 ≤
x ≤ 1. It is easily noted that I0(a, b) = 0, I1(a, b) = 1, and
I0(a, b) ≤ Ix(a, b) ≤ I1(a, b), thus making it a proper CDF.
Furthermore, for a, b ∈ Z, Ix(a, b) can be written in terms
of a binomial function

Ix(a, b) = (1 − x)b
∞∑

j =a

(
b + j − 1

j

)

xj . (B5)

From this equation, by using the geometric series and its
derivatives, one can conclude that

Ix(0, b) = 1. (B6)

(a) (b)

FIG. 13. Regularized β function. Plots of the regularized
incomplete β function as a function of (a) a and (b) b.

Moreover,

(1 − x)b
n∑

j =a

(
b + j − 1

j

)

xj = Ix(a, b) − Ix(n + 1, b).

(B7)

If a = 1, then Ix(1, b) = 1 − (1 − x)b and Eq. (B5) simpli-
fies to

(1 − x)b
n∑

j =1

(
b + j − 1

j

)

xj = 1 − (1 − x)b − Ix(n + 1, b).

(B8)

The next two useful properties of Ix(a, b) are the symmetry
relation

Ix(a, b) = 1 − I1−x(b, a), (B9)

and the relation for an equal argument,

Ix(a, a) = 1
2

I4x(1−x)

(

a,
1
2

)

, (B10)

when 0 ≤ x ≤ 1/2. Finally, there are two recurrence rela-
tions, which allow one to shift either of the arguments of
the function by one,

Ix(a, b) = Ix(a + 1, b) + xa(1 − x)b

aB(a, b)
, (B11a)

Ix(a, b) = Ix(a, b + 1) − xa(1 − x)b

aB(a, b)
, (B11b)

Ix(a, b) = Ix(a + 1, b − 1) + xa(1 − x)b−1

aB(a, b)
, (B11c)

Ix(a, b) = Ix(a − 1, b + 1) − xa−1(1 − x)b

aB(a, b)
. (B11d)
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2. General relations involving the γ function

Next, let us present general relations and properties of
the γ function that are extensively used in our proofs. First,
recall that for every positive integer n

�(n) = (n − 1)! (B12)

Using the above, one can derive a simple formula for the
following expression that appears when dealing with the
regularized beta function:

1
nB(n, n)

= �(2n)

n�(n)2 = �(2n)

n�(n)2

2n
2n

= 1
2

(
2n
n

)

. (B13)

Other important functional equation for the γ function is
the Legendre duplication formula:

�(n)�

(

n + 1
2

)

= 21−2n√π�(2n). (B14)

The factorial terms can be approximated using Stirling’s
approximation

n! =
√

2πn
(n

e

)n (
1 + O(n−1)

)
. (B15)

3. Asymptotic analysis

We will be interested in the asymptotic behavior of the
regularized β function. So, in this section, we introduce
important relations and identities that will be useful for
proving our main theorems. Let us begin by considering
the regularized β function Ix(a, b), where x and b are fixed.
For a → ∞, we have the following asymptotic expansion:

Ix(a, b) = �(a + b)xa(1 − x)b−1

×
[ n−1∑

k=0

1
�(a + k + 1)�(b − k)

(
x

1 − x

)k

+ O
(

1
�(a + n + 1)

)]

. (B16)

Note that the O term vanishes in the limit only if n ≥ b.
Furthermore, for each n = 0, 1, 2, . . . If b = 1, 2, 3, . . ., and
n > b, the O term can be omitted, as the result is exact. In
this work, Eq. (B16) will be expanded up to the second
order. Specifically, for the values of a = N , b = 1/2, we

have the following equation:

Ix(N ,
1
2
) � xN

√
1 − x

[
�(N + 1

2 )

�(N + 1)�( 1
2 )

+ �(N + 1
2 )

�(N + 2)�(− 1
2 )

(
x

1 − x

)]

= xN

√
1 − x

(2N )!
4N (N !)2

[

1 − x
2(N + 1)(1 − x)

]

,

(B17)

where � symbol hides the terms of the order O(xN /N 2).
Next, we will consider sums of the regularized β func-

tions over the second argument and their limit as a → ∞.
We start with

a∑

i=1

Ix(a, i + 1) =
a∑

i=1

Bx(a, i + 1)�(a + 1 + i)
�(a)�(i + 1)

=
a∑

i=1

(a + i)!
(a − 1)!i!

∫ x

0
dt ta−1(1 − t)i

=
∫ x

0
dt

a∑

i=1

(
a + i

i

)

ta−1(1 − t)i, (B18)

where we have used definitions of the β function and the γ

function for integer arguments. Using Eq. (B7), the above
expression can be recast as

a∑

i=1

Ix(a, i + 1) =
∫ x

0

dt
t2

[Ix(1, a − 1)

− I1−x(a − 1, a − 1)]

=
∫ x

0

dt
t2

[
1
2

I4x(1−x)

(

a − 1,
1
2

)

−Ix(a − 1, 1)] (B19)

for 0 ≤ x ≤ 1/2.
Finally, using the asymptotic expansion from Eq. (B16),

we get
∫ x

0
dt

{

−ta−3 + 1
2x2

[
�(a − 1/2)

�(a + 1)

[4x(1 − x)]a−1

√
1 − 4x(1 − x)

+ O
(

(4x(1 − x))a−1�(a − 1/2)

�(a + 1)

)]}

.

(B20)

Thus, we see that this term vanishes in the limit of a → ∞,
and we find that the following sum vanishes in the limit:

lim
a→∞

a∑

i=1

Ix(a, i + 1) = 0. (B21)
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Moreover, we will need the following sum:

N∑

i=1

Ix(N + 1 − i, N ) =
N∑

i=1

Bx(N + 1 − i, N )

B(N + 1 − i, N )

=
N∑

i=1

N�(2N + 1 − i)
N�(N + 1 − i)�(N )

∫ x

0
dt tN−i(1 − t)N−1×

×
∫ x

0
dtN (1 − t)N−1

N∑

i=1

(
2N − i
N − i

)

tN−i

=
∫ x

0
dtN

(1 − t)N−1

(1 − t)N+1 (1 − t)N+1

×
N−1∑

j =0

(
(N + 1) + j − 1

j

)

tj

=
∫ x

0
dt

N
(1 − t)2

(

I1−x(0, N + 1) − I1−x(N , N + 1)

)

=
∫ x

0
dt

N
(1 − t)2

(

1 − I1−x(N , N ) − tN (1 − t)N

NB(N , N )

)

= N
∫ x

0
dt

1
(1 − t)2 = N

x
1 − x

. (B22)

APPENDIX C: PROOFS OF LEMMA 1 AND
THEOREM 2

To prove Lemma 1 and Theorem 2, we will consider
a composite system consisting of the main d-dimensional
system and an N -dimensional memory system. Without
loss of generality, we can assume that the main system is
a two-level system with i = 1 and j = 2, whose state is
described by unnormalized probability vector. We begin by
deriving an expression that describes how the composite
system evolves under the memory-assisted protocol P (12).
Next, to gain insight into the behavior of the joint system
as the memory size grows, we will prove the asymptotic
result. Finally, in the last subsection, we will show how
this result implies the desired convergence rates.

1. Dynamics induced by two-level thermalizations

Consider a two-level system, described by a Hamilto-
nian H = E1 |E1〉〈E1| + E2 |E2〉〈E2| and initially prepared
in an energy-incoherent state p = (b, c), together with
a memory system, described by a trivial Hamiltonian
HM = 0 and prepared in a maximally mixed state ηM =
(1, . . . , 1)/N . The joint state r := p ⊗ ηM of the composite
system is then given by

r(0) ≡ r = 1
N

(
b, . . . , b
︸ ︷︷ ︸

N times

| c, . . . , c
︸ ︷︷ ︸

N times

)
, (C1)

whereas the joint thermal distribution � := γ ⊗ ηM is
given by

� = 1
N (e−βE1 + e−βE2)

× [e−βE1 , . . . , e−βE1 |e−βE2 , . . . , e−βE2]

= 1
N

(γ1, . . . , γ1|γ2, . . . , γ2). (C2)

For the sake of brevity, we introduce the rescaled Gibbs
factors, which will be used extensively in the proofs:

�ij = γi

γi + γj
. (C3)

Under a series of two-level thermalizations, the joint state
of the composite system at the kth round is given by

Rk(r(k−1))≡ r(k) =
(
b(k)

1 , . . . , b(k)
N | c(N )

1 , . . . , c(N )

k , c, . . . , c
)

,

(C4)

where b(k)
j and c(N )

j satisfy the following recurrence rela-
tions:

b(k)
j = �

j
21

(
�12

�21
c + �12

j∑

i=1

b(k−1)
i � −i

21

)

, (C5)

c(N )
j = � N

21c + � N+1
21

N∑

i=1

b(j −1)

i � −i
21 , (C6)

with b(0)
j = b. Equations (C5) and (C6) can be understood

by noting that during the kth round of two-level thermal-
izations, an additional c is added to the previous (k − 1)th
entry and the resulting state is again thermalized. By iter-
ating this process for the first k rounds, we can derive a
closed-form expression for the entries b(k)

j and c(N )
j :

b(k)
j = �12�

j −1
21 c

k−1∑

i=0

(
j + i − 1

i

)

�i
12

+ b�k
12

j∑

i=1

(
j + k − 1 − i

k − 1

)

�
j −i
21 , (C7)

c(N )
j = c�N

21

j −1∑

i=0

(
N + i − 1

i

)

�i
12

+ b�21�
j
12

N−1∑

i=0

(
i + j

j

)

�i
21. (C8)
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After N 2 rounds of two-level thermalizations, the compos-
ite final state r(N ) is given by

P̃ (12)(r) ≡ r(N ) = q ⊗ ηM

= 1
N

[

b(N )

1 , . . . , b(N )
N

∣
∣
∣
∣ c(N )

1 , . . . , c(N )
N

]

. (C9)

2. Infinite memory limit

To date, we have obtained a closed-form expression
describing the action of the truncated protocol P̃ (12). In
order to prove Lemma 1 and Theorem 2, the next step con-
sists of decoupling the main system from memory using a
full thermalization T :

P (12)(p ⊗ γM ) = T ◦ P̃ (12)(p ⊗ γM ). (C10)

Since we are initially focused on demonstrating the asymp-
totic results, our aim is to show that as N approaches
infinity, we achieve a β-swap:

lim
N→∞

∑N
i=1 b(N )

i

N
= c + b(1 − e−β(E2−E1)), (C11a)

lim
N→∞

∑N
i=1 c(N )

i

N
= be−β(E2−E1). (C11b)

To prove the limits in Eqs. (C11a) and (C11b), we will
begin by using the conservation of probability,

lim
N→∞

N∑

i=1

b(N )
i

N
+ lim

N→∞

N∑

i=1

c(N )
i

N
= b + c. (C12)

This allows us to express the first limit as a function of the
second:

lim
N→∞

N∑

i=1

b(N )
i

N
= b + c − lim

N→∞

N∑

i=1

c(N )
i

N
. (C13)

We will now examine the nontrivial term on the right-hand
side of Eq. (C13). We start by using Eq. (B7) to rewrite
the first term of c(N )

j appearing in Eq. (C8) in terms of the
regularized β function

c(N )
j

∣
∣
∣
∣b=0
c=1

= �N
21

j −1∑

i=0

(
N + i − 1

i

)

�i
12

= [I�12(0, N ) − I�12(j , N )]

= I�21(N , j ), (C14)

where we also used Eq. (B9) to invert the arguments of
the regularized β function. Thus, using Eq. (B21), we

conclude that

lim
N→∞

1
N

N∑

i=1

c(N )
j

∣
∣
∣
∣b=0
c=1

= lim
N→∞

1
N

N∑

i=1

I�21(N , i) = 0.

(C15)

Taking into account the second term of c(N )
j appearing in

Eq. (C8), one can immediately evaluate the sum

lim
N→∞

c(N )
j

∣
∣
∣
∣b=1
c=0

= �21�
j
12

∞∑

i=0

(
i + k

k

)

�i
21 = �21

�12
, (C16)

and therefore obtain that

lim
N→∞

∑N
i=1 c(N )

i

N
= be−β(E2−E1). (C17)

Substituting this result to Eq. (C13), we prove that

lim
N→∞

∑N
i=1 b(N )

i

N
= c + b[1 − e−β(E2−E1)]. (C18)

As a result, in the limit of N → ∞, the protocol P (12)

achieves a β-swap.

3. Finite memory convergence rates

To complete the proofs of Lemma 1 and Theorem 2,
we will now analyze what the approximation error is for
a finite size of the memory N . This will tell us how
quickly the initial state convergences to a β-swap as a
function of N . First, we define two functions governing
the convergence

E := 1
N

N∑

i=1

c(N )
i

∣
∣
∣
∣
c=1,b=0

= �N
21

N

N∑

i=1

i−1∑

j =0

(
N + j − 1

j

)

�
j
12,

(C19a)

F := 1
N

N∑

j =1

b(N )
j

∣
∣
∣
∣
c=0,b=1

= �N
12

N

N∑

j =1

j∑

i=1

×
(

j + N − 1 − i
N − 1

)

�
j −i
21 , (C19b)

which allow us to write the final state of the system as

q = b
(

F

1 − F

)

+ c
(

1 − E

E

)

. (C20)

Next, we will asymptotically expand Eq. (C19a). The start-
ing point is to reduce the double sum into one, then convert
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the binomial sums into regularized β functions and use its
properties given by Eqs. (B11c), (B10), and (B13):

E = �N
21

N

N∑

i=1

(N − i + 1)

(
N + i − 2

i − 1

)

�i−1
12

= �N
21

N−1∑

i=0

(
N + i − 1

i

)

�i
12 − �N

N

N−1∑

i=1

i
(

N + i − 1
i

)

�i
12

= I�21(N , N ) − �12

�21
I�21(N + 1, N − 1)

= (1 − �12

�21
)I�21(N , N ) + �12

�21

�N
21�

N−1
12

NB(N , N )

= 1
�21

[(�21 − �12)
1
2

I4�21�12

(

N ,
1
2

)

+ (�21�12)
N

N
�(2N )

�(N )2 ]. (C21)

Now we expand Eq. (C21) up to second order using Eq.
(B17). Recall that such an expansion is an approxima-
tion up to terms of the order O(xN /N 2) (where x will
be given by 4�21�12), which will be dropped since our
final approximation will be up to the order o(xN /N 3/2) or
o(1/N 1/2) for finite and infinite temperatures, respectively.
Then, the γ functions appearing in the expansions are sim-
plified using Eqs. (B14) and (B13). Finally, using Stirling’s
approximation [Eq. (B15)], we arrive at

E = (4�21�12)
N

2�21
√

πN

[
(�21 − �12)√
1 − 4�21�12

− (�21 − �12)(4�21�12)

2(1 − 4�21�12)3/2(N + 1)

+ 1 + o
(
N−1)

]

[1 + O(N−1)]. (C22)

As the last step, we simplify the above expression for
�12 > 1/2 (finite temperature case) by using the fact that
�12 = 1 − �21, to arrive at

E

∣
∣
∣
∣
�12> 1

2

= (4�12�21)
N
[

�12

(�12 − �21)2
√

πN (N + 1)

+o
(
N−3/2)] . (C23)

The infinite-temperature limit, β = 0, is similarly analyzed
by using Eq. (C21) and plugging �12 = �21 = 1/2. In this
case, the scaling is slightly different and is given by

E

∣
∣
∣
∣
�12= 1

2

= 1√
πN

+ o
(
N−1/2) . (C24)

The other half of estimating the convergence rate stems
from considering Eq. (C19b). Proceeding in the same

manner as before, we rewrite it as

F = �N
12

N

N∑

k=1

(N − k + 1)

(
N + k − 2

N − 1

)

�k−1
21

= �N
12

N−1∑

k=0

(
N + k − 1

k

)

�k
21

− �N
12

N

N−1∑

k=1

k
(

N + k − 1
k

)

�k
21

= [1 − I�21(N , N )] − �21

�12
[1 − I�21(N − 1, N + 1)]

= [1 − I�21(N , N )] − �21

�12
[

1 − I�21(N , N ) − (�21�12)
N

�21NB(N , N )

]

= (�12 − �21)

�12

[

1 − I4�12�12

(

N ,
1
2

)]

+ (4�21�12)
N

2�12

1√
πN

. (C25)

Again, we expand Eq. (C25) up to second order using
Eq. (B17). Then, the γ functions appearing in the expan-
sions are simplified using Eq. (B14), the remaining ones
are simplified by using Eq. (B13). Finally, using Stirling’s
approximation [Eq. (B15)], we arrive at

F =
(

�12 − �21

2�12

)[

2 − (4�21�12)
N

√
1 − 4�21�12

1√
πN

×
(

1 − 4�21�12

2(N + 1)(1 − 4�21�12)

)]

+ (4�21�12)
N

2�12

[
1√
πN

+ o(N−3/2)

]

. (C26)

For �12 > 1/2 (finite-temperature case), we use the fact
that �12 = 1 − �21, to simplify the above as

F � �12 − �21

�12︸ ︷︷ ︸
=1−e−β(E2−E1)

+�21
(4�12�21)

N

(N + 1)
√

πN (�12 − �21)2
︸ ︷︷ ︸

≡G

,

(C27)

where � hides the o terms. The infinite-temperature limit,
β = 0, is obtained by using Eq. (C25) and plugging �12 =
�21 = 1/2. This yields the following convergence:

F

∣
∣
∣
∣
�12= 1

2

= 1√
πN

+ o
(
N−1/2) , (C28)

with the expression for G modified to (πN )−1/2.
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As a final step to prove Lemma 1 and Theorem 2, we
calculate explicitly the state of the primary system after
the protocol P (12). This is done by substituting the results
for E and F to Eq. (C20), yielding

q =
(

1 − e−βE 1
e−βE 0

)(
b
c

)

+ (bG − cE)

(
1

−1

)

= �
β

12p + (bG − cE)

(
1

−1

)

. (C29)

Thus, the distance between q and the target �
β

12p is given
by

δ(�
β

12p, q) = |bG − cE|. (C30)

For β = 0 case, the above gives

δ(�
β

12p, q) = |b − c|√
πN

+ o
(
N−1/2) , (C31)

whereas β �= 0 case, it gives

δ(�
β

12p, q) = (4�12�21)
N
[ |b�21 − c�12|
(�12 − �21)2

√
πN (N + 1)

+ o(N−3/2)

]

. (C32)

These prove Lemma 1 and Theorem 2 after going to
the notation used therein, i.e., b → p1, c → p2, �12 → �1,
and �21 → �2. �

APPENDIX D: STRENGTHENING COROLLARY 1

Corollary 1 deals with a very general approach to bound-
ing the distance between the target state pπ and its approx-
imation obtained from p via the MeMTP protocol P�.
However, it can be improved by taking into account the
set of indices on which the permutation acts.

Corollary 2.—Consider states p and q ∈ CTO
+ (p). Then,

in the infinite-temperature limit, β = 0, and for an N -
dimensional memory, there exists a MeMTP protocol P
such that

P(p ⊗ ηM ) = q′ ⊗ ηM , (D1)

with

δ(q′, q) ≤ 1

2
√

πN

∑

k,l
k �=l

|pik − pil | + o(N−1/2) =: ε, (D2)

where i1, . . . , id′ ⊂ 1, . . . , d is a subset of indices neighbor-
ing in the β-order, πp(ij ) + 1 = πp(ij +1), such that �q =∏

i=1 �jiki with ji, ki ∈ i1, . . . , id′ .

Proof.—First, we consider a target state to be an extreme
point pπ∗

such that the β-order �p∗ ≡ �∗ can be decom-
posed into the maximal number of d′(d′ − 1)/2 neighbor
swaps on the levels i1 through id′ . Taking explicitly Eq.
(25) from Theorem 1, one finds that

δ
(

pπ∗
, r∗

)
= 1

2
√

πN

∑

k,l
k �=l

|pik − pil | + o(N−1/2), (D3)

where for convenience we used P�∗
(p ⊗ ηM ) = r∗ ⊗ ηM .

We note that the above expression in fact provides a
general upper bound for any permutation � on the afore-
mentioned subset of d′ levels—defining P�(p ⊗ ηM ) =
r ⊗ ηM we find that

δ (�p, r) ≤ ε. (D4)

Now, there are two cases to be considered. First, take a
state q that is in the future of the approximation point r,
q ∈ CMTP

+ (r), from which it follows that

∃O ∈ MTP : δ (q,O(r)) = 0. (D5)

Otherwise, q is not in the future cone of r. In this case, we
first note that there exists a ball B(r, ε′) � �p with radius
ε′ ≤ ε with respect to δ(·, ·). Thanks to the planarity of the
boundaries ∂CMTP

+ (r) and ∂CMTP
+ (�p) when restricted to a

fixed β-order, we can consider the extreme case

q ∈ ∂CMTP
+ (�p) ⇒ ∃r′ ∈ ∂CMTP

+ (r) : δ(q, r′) ≤ ε′ ≤ ε

(D6)

and the same argument applies for any q ∈ CMTP
+ (�p)\

CMTP
+ (r), thus concluding the proof. �
The bound presented in Corollary 2 can be further

improved by taking into account the possibility of dividing
the set i1, . . . , id′ into subsets that are not mixed at any step
when considering the decomposition of �q into neighbor
transpositions. Finally, we point out that, in agreement with
Eq. (D5), there will exist such states q that are attainable
exactly, and moreover, their volume will increase together
with the size of memory N .

APPENDIX E: PROOF OF THEOREM 3

To prove Theorem 3, we will consider a compos-
ite system consisting of the main d-dimensional system
and an N -dimensional memory system. Without loss of
generality, we can simply assume that the main system
has three levels with i1 = 1, i2 = 2, and i3 = 3, and its
state is described by an unnormalized probability vec-
tor p = (a, b, c). The Hamiltonian is then given by H =
∑3

i=1 Ei |Ei〉〈Ei|, while the memory system is described by
a trivial Hamiltonian HM = 0 and prepared in a maximally
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mixed state ηM = (1/N , . . . , 1/N ). The joint state of the
composite system, r := p ⊗ ηM , is then given by

r(0) ≡ r = 1
N

(
a, . . . , a
︸ ︷︷ ︸

N times

| b, . . . , b
︸ ︷︷ ︸

N times

| c, . . . , c
︸ ︷︷ ︸

N times

)
, (E1)

and the joint thermal state is given by

� = 1
ZN

[e−βE1 , . . . , e−βE1 |
× e−βE2 , . . . , e−βE2 |e−βE3 , . . . , e−βE3]

= 1
N

(γ1, . . . , γ1|γ2, . . . , γ2|γ3, . . . , γ3), (E2)

where Z = ∑3
i=1 e−βEi .

As before, the starting point consists of understanding
how the joint state of the composite system changes under
the action of the composite protocol P̃ (13)

N ◦ P̃ (23)
N , whose

action is summarized in two steps:

(i) Two-level thermalization between second and third
energy levels.

(ii) Two-level thermalization between first and third
energy levels.

The final state r(N ) is then given by

P̃�(r) ≡ r(N ) = q ⊗ ηM

= 1
N

[

a(N )

1 , . . . , a(N )
N

∣
∣
∣
∣ b(N )

1 , . . . , b(N )
N

∣
∣
∣
∣ c(N )

1 , . . . , c(N )
N

]

,

(E3)

where � = ��23��23 . Note that due to probability conser-
vation, characterizing the second and third entries of Eq.
(E3) is sufficient.

After the first protocol P̃23, the second energy level
remains “untouched” and, as a result, its entries are given
by Eq. (C7) [with �12 and �21 replaced by �23 and �32,
respectively, as defined in Eq. (C3)]. The other two entries
are obtained in a similar way as Eqs. (C5)–(C6). The action
of the protocol generates a recurrence formula that allows
us to write the last entry c(N )

k as

c(N )

k = a�k−1
13

N∑

i=1

(
N + k − 1 − i

k − 1

)

�N+1−i
31

+ �N
31

N−1∑

l=0

�l
13

(
N + l − 1

l

)

ck−l,

(E4)

where ck is given by

ck = c�N
32

k−1∑

i=0

(
N + i − 1

i

)

�i
23 + b�32�

k
23

N−1∑

i=0

(
i + k

k

)

�i
32.

(E5)

Since, without loss of generality, we assumed that p has β-
ordering (123), the proof boils down to demonstrating that
P̃�(r) sends p to the following extreme point:

p(321) =
[

a + �32

�23
b − a

�31

�13
, c + b

(

1 − �32

�23

)

,
�31

�13
a
]

.

(E6)

Therefore, we need to prove the following limits:

lim
N→∞

1
N

N∑

i=1

b(N )
i = c + b

(

1 − �32

�23

)

, (E7a)

lim
N→∞

1
N

N∑

i=1

c(N )
i = a

�31

�13
. (E7b)

1. Proof of limit (E7a)

We start by recalling that b(N )
j is given by

b(N )
j = c

�23

�32
�

j
32

N−1∑

i=0

(
j + i − 1

i

)

�i
23

+ b�N
23

j∑

i=1

(
j + N − 1 − i

N − 1

)

�
j −i
32 . (E8)

Comparing Eqs. (E8) and the right-hand side of Eq. (E7a),
we see that in order to prove Eq. (E7a), we need to prove
the following two limits:

lim
N→∞

N∑

j =1

b(N )
j

N

∣
∣
∣
∣b=0
c=1

= lim
N→∞

�23

�32

1
N

N∑

j =1

�
j
32

×
N−1∑

i=0

(
j + i − 1

i

)

�i
23 = 1 (E9)

and

lim
N→∞

N∑

j =1

b(N )
j

N

∣
∣
∣
∣b=1
c=0

= lim
N→∞

�N
23

1
N

N∑

j =1

�
j
32

×
j∑

i=1

(
j + N − 1 − i

N − 1

)

�−i
32 = (1 − �32

�23
). (E10)
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We begin by proving Eq. (E9). First, we rewrite this
expression as

N∑

j =1

b(N )
j

N

∣
∣
∣
∣b=1
c=0

= 1
N

�23

�32

N−1∑

i=0

�i
23

N∑

j =1

�
j
32

(
j + i − 1

i

)

= 1
N

�23

N−1∑

i=0

�i
23

N−1∑

j =0

�
j
32

(
j + i

i

)

. (E11)

We can evaluate the second sum in Eq. (E11) as follows:

N−1∑

j =0

�
j
32

(
j + i

i

)

= (�23)
−i−1

(

1 − B�32(N , i + 1)

B(N , i + 1)

)

= (�23)
−i−1[1 − I�23(N , i + 1)].

Thus, substituting Eq. (E12) into Eq. (E11), we obtain

N∑

j =1

b(N )
j

N

∣
∣
∣
∣b=1
c=0

= 1 − 1
N

N−1∑

i=0

I�32(N , i + 1). (E12)

Using Eq. (B21), we conclude that the second term in Eq.
(E12) vanishes in the limit of N → ∞, and therefore

lim
n→∞

N∑

j =1

b(N )
j

∣
∣
∣
∣b=0
c=1

= 1, (E13)

so that we have proved Eq. (E9).
To prove Eq. (E10), we begin by manipulating it so that

we can express it in a simpler form:

N∑

j =1

b(N )
j

N

∣
∣
∣
∣b=1
c=0

= �N
23

N

N∑

j =1

�
j
32

j∑

i=1

(
N + j − 1 − i

N − 1

)

�−i
32

= �N
23

N

N−1∑

j =0

(N − j )
(

N + j − 1
j

)

�
j
32

= �N
23

N−1∑

j =0

(
N + j − 1

j

)

�
j
32

− �N
23

N

N−1∑

j =0

j
(

N + j − 1
j

)

�
j
32. (E14)

Applying Eq. (B7) to transform the first term of Eq. (E14)
into a difference of regularized β functions, and then using

its asymptotic expansion, we obtain

�N
23

N−1∑

j =0

(
N + j − 1

j

)

�
j
32 = I�32(0, N ) − I�32(N , N ) � 1.

(E15)

Next, we consider the second term in Eq. (E14), which can
be directly evaluated as

−�N
23

N

N−1∑

j =0

j
(

N + j − 1
j

)

�
j
32

= −�32

�23
�N+1

23

N−2∑

j =−1

(
(N + 1) + j − 1

j

)

�
j
32

= −�32

�23
[(I�32(0, N + 1) − I�32(N − 1, N + 1)]

� −�32

�23
, (E16)

where in the last line we used the asymptotic expansion of
Ix(a, b) to approximate the difference between regularized
beta functions. Collecting all the terms, we conclude that
the limit is given by

lim
N→∞

N∑

j =1

b(N )
j

N

∣
∣
∣
∣b=1
c=0

= 1 − �32

�23
. (E17)

Therefore, combining the above with Eq. (E13), we get the
desired limit:

lim
N→∞

1
N

N∑

j =1

b(N )
j

N
= c + b (1 − �32

�23
). (E18)

2. Proof of limit (E7b)

As before, in order to prove Eq. (E7b), we will also need
to prove two other limits. Recall that c(N )

j is given by

c(N )
j = a�

j −1
13

N∑

i=1

(
N + j − 1 − i

j − 1

)

�N+1−i
31

+ �N
31

N−1∑

l=0

�l
13

(
N + l − 1

l

)

cj −l, (E19)

with

cj = c�N
32

j −1∑

i=0

(
N + i − 1

i

)

�i
23 + b�32�

j
23

×
N−1∑

i=0

(
i + j

j

)

�i
32. (E20)
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Since cj −l does not depend on a, the problem reduces to
showing that

lim
N→∞

1
N

N∑

j =1

c(N )
j

∣
∣
∣
∣ a=1
b,c=0

= lim
N→∞

1
N

N∑

j =1

�
j
13

×
N∑

i=1

(
N + j − i

j

)

�N+1−i
31 = �31

�13
, (E21)

and

lim
N→∞

1
N

N∑

j =1

c(N )
j

∣
∣
∣
∣
a=0

= lim
N→∞

1
N

N∑

j =1

�N
31

×
N−1∑

l=0

�l
13

(
N + l − 1

l

)

cj −l = 0.

(E22)

Let us start by proving Eq. (E21). First, we manipulate
c(N )

j and rewrite it in terms of the incomplete β function
as follows:

c(N )
j

∣
∣
∣
∣ a=1
b,c=0

= �
j −1
13

N∑

i=1

(
N + j − 1 − i

j − 1

)

�N+1−i
31

=
N∑

i=1

[(I�13(0, N + 1 − i) − I�13(N , N + 1 − i)]

=
N∑

i=1

I�31(N + 1 − i, N ). (E23)

Using Eq. (B22), we obtain

N∑

i=1

I�31(N + 1 − i, N ) = N
�31

�13
. (E24)

Thus, collecting all the terms, we get the desired limit

lim
N→∞

1
N

N∑

j =1

c(N )
j

∣
∣
∣
∣ a=1
b,c=0

= �31

�13
. (E25)

The final step is to show that the remaining limit from Eq.
(E22) is zero, namely

lim
N→∞

1
N

�N
31

N∑

k=1

N−1∑

l=0

�l
13ck−l = 0. (E26)

Since ck−l has two contributions, one needs to show that
both limits go to zero. Treating each separately, we first

write the first term of Eq. (E20) in terms of the incomplete
beta function,

ck

∣
∣
∣
∣
c=1,b=0

= �N
32

k−1∑

i=0

(
N + i − 1

i

)

�i
23 = I�32(N , k) ≤ 1,

(E27)

where the upper bound comes from the incomplete beta
function being a CDF. Thus,

N∑

k=1

�N
31

N

N−1∑

l=0

�l
13

(
N + l − 1

l

)

ck−l

∣
∣
∣
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c=1,b=0

≤
N∑

k=1

�N
31

N

N−1∑

l=0

�l
13

(
N + l − 1

l

)

= I�31(N , N ), (E28)

and this term goes to zero for �31 ≤ 1/2. This can be seen
from the asymptotic expansion of I�31(N , N ).

Finally, we need to show that the second term of Eq.
(E20) is zero. To do so, we first rewrite the second term as

N∑

k=1

c(N )

k

∣
∣
∣
∣ b=1
a,c=0

= 1
N

�N
31
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l
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k=l+1
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∣
∣
∣
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b=1

= 1
N
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31
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�l
13

(
N + l − 1

l

) N−l∑
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∣
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(E29)

Notice that the above expression can be bounded by

N∑

k=1

c(N )

k

∣
∣
∣
∣ b=1
a,c=0

≤ 1
N

(

�N
31

N−1∑

l=0

�l
13

(
N + l − 1

l

))

×
(

N∑

k=1

ck

∣
∣
∣
∣c=0
b=1

)

,

and the right-hand side of Eq. (E30) can be expressed in
terms of the regularized β function as follows:

1
N

�N
31

N−1∑

l=0

�l
13

(
N + l − 1

l

)(
N∑

k=1

ck

∣
∣
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)
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1
N
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�k
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(
i + k

k

)
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32
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= �32
1
N

I�31(N , N )

N∑

k=1

�k
23�

−1−k
23

[1 − I�32(N , k + 1)]

= �32

�23

1
N

I�31(N , N )

(
1
N

N∑

k=1

I�23(k + 1, N )

)

.

(E30)

Now, note that the first term goes to zero when �31 < 1/2,
whereas the second term is also bounded by one as

1
N

N∑

k=1

I�23(k + 1, N ) ≤ 1
N

N∑

k=1

1 = 1. (E31)

Since

0 ≤ lim
N→∞

N∑

k=1

1
N

c(N )

k

∣
∣
∣
∣ b=1
a,c=0

≤ 0, (E32)

we conclude that the resulting limit is zero. Therefore,
combining Eqs. (E28) and (E32),

lim
N→∞

1
N

�N
31

N∑

k=1

N−1∑

l=0

�l
13ck−l = 0. (E33)

Collecting together Eqs. (E18), (E25), and (E33) we con-
clude that Theorem 3 is proved. �

APPENDIX F: ALTERNATIVE PROTOCOLS
REALIZING EQUIVALENT β-SWAP

APPROXIMATION

Let us revisit the truncated protocol P̃ (ij ) with d-
dimensional memory as introduced in Sec. III, where it
was defined in Eq. (16). This protocol is composed of d2

two-level elementary thermalizations, denoted as Tkl. Each
thermalization Tkl can be represented as a point (k, l) on
a plane, and an algorithm can be represented as an arrow
pointing from the previous thermalization to the next one.
For instance, we present below the diagram of P̃ for d = 7:

Visually, it is obvious that we iterate through an entire
column before shifting to the next one. In other words,

all the “filled” levels are used sequentially to fill up the
first “empty” level, and the same process is repeated for
all the subsequent “empty” levels. After investigating the
following two algorithms:

The generalization of the Blue algorithm can be summa-
rized in the following way, starting with i = 1:

(i) Iterate through ith column, starting from the first
unvisited point.

(ii) Iterate through ith row, starting from the first unvis-
ited point.

(iii) Set i → i + 1 and go back to step 1 if any unvisited
point remains.

The Red algorithm can be most easily understood as
the reverse of the Blue algorithm. Instead of decreas-
ing the length of vertical and horizontal stretches, they
are gradually increased in the Red algorithm. This allows
the Red algorithm to be recursively implemented, taking
into account gradually more and more levels of mem-
ory, as indicated by dashed lines. The protocol for d-
dimensional memory is implemented by extending the d −
1-dimensional version with an additional row and column.

We furthermore investigated the Cyan family, which
mimics the Blue algorithm and can be defined in the
following manner:

(i) Iterate through row or column, starting from the first
unvisited point.

(ii) Repeat step 1. until no unvisited points remain.

Moreover, we considered Orange family related to the
Cyan family with an analogous reversal as between Blue
and Red.
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No. steps

FIG. 14. Convergence to the target state q = (0, 1) of different
algorithms acting on the state p = (1, 0) extended by memory
with dimension d = 30. Note that all algorithms. Note that all
algorithms finish at the same value of ‖p − q‖1.

For these algorithms, we find the following properties we
have observed from explicit implementation for a range of
dimensions and inverse temperatures β, but we have not
been able to prove them analytically:

(i) All of the aforementioned algorithms acting on an
initial state p ⊗ γd result in the same state as P̃(p ⊗
γd).

(ii) Blue and Red algorithms are slowest and fastest
algorithms, respective, according to the conver-
gence to the β-swap with respect to the 1-norm.

(iii) Each algorithm in the Cyan and Orange family pro-
vide slower and faster convergence than the original
algorithm P̃ , respectively.

The statement reinforces the claims mentioned earlier and
explains that the 1-norm between the intermediate states of
the system and the target state (the β-swapped counterpart
of p with β = 0) is plotted for simplicity (see Fig. 14). The
memory dimension is specified as d = 30.
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[17] K. Ptaszyński, Non-Markovian thermal operations
boosting the performance of quantum heat engines, Phys.
Rev. E 106, 014114 (2022).

[18] H.-P. Breuer, F. Petruccione et al., The Theory of Open
Quantum Systems (Oxford University Press on Demand,
Oxford, UK, 2002).

[19] A. Rivas and S. F. Huelga, Open Quantum Systems
(Springer, Heidelberg, Germany, 2012).

[20] Á. Rivas, S. F. Huelga, and M. B. Plenio, Quan-
tum non-Markovianity: Characterization, quantification
and detection, Rep. Prog. Phys. 77, 094001 (2014).

[21] D. Janzing, P. Wocjan, R. Zeier, R. Geiss, and T. Beth,
Thermodynamic cost of reliability and low temperatures:
Tightening Landauer’s principle and the second law, Int. J.
Theor. Phys. 39, 2717 (2000).

[22] M. Horodecki and J. Oppenheim, Fundamental limitations
for quantum and nanoscale thermodynamics, Nat. Com-
mun. 4, 2059 (2013).

[23] F. G. S. L. Brandão, M. Horodecki, N. H. Y. Ng, J.
Oppenheim, and S. Wehner, The second laws of quantum
thermodynamics, Proc. Natl. Acad. Sci. U.S.A. 112, 3275
(2015).

[24] M. Lostaglio, An introductory review of the resource theory
approach to thermodynamics, Rep. Prog. Phys. 82, 114001
(2019).

[25] M. Lostaglio and K. Korzekwa, Continuous thermoma-
jorization and a complete set of laws for Markovian thermal
processes, Phys. Rev. A 106, 012426 (2022).

040304-27

https://doi.org/10.1007/BF01341281
https://doi.org/10.1063/1.1699951
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1007/BF02084158
https://doi.org/10.1103/RevModPhys.81.1
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1007/978-4-431-54168-4
https://doi.org/10.1088/1751-8113/49/14/143001
https://doi.org/10.1007/978-3-319-99046-0
https://doi.org/10.1103/PhysRevApplied.14.054005
https://doi.org/10.1103/PhysRevA.99.020301
https://doi.org/10.1103/PhysRevA.99.062327
https://doi.org/10.1103/PhysRevA.99.052106
https://doi.org/10.1103/PhysRevA.102.012217
https://doi.org/10.1103/PhysRevE.106.014114
https://doi.org/10.1088/0034-4885/77/9/094001
https://doi.org/10.1023/A:1026422630734
https://doi.org/10.1038/ncomms3059
https://doi.org/10.1073/pnas.1411728112
https://doi.org/10.1088/1361-6633/ab46e5
https://doi.org/10.1103/PhysRevA.106.012426


CZARTOWSKI, DE OLIVEIRA JUNIOR, and KORZEKWA PRX QUANTUM 4, 040304 (2023)

[26] K. Korzekwa and M. Lostaglio, Optimizing thermalization,
Phys. Rev. Lett. 129, 040602 (2022).

[27] M. Lostaglio, Á. M. Alhambra, and C. Perry, Elementary
thermal operations, Quantum 2, 52 (2018).

[28] J. Son and N. H. Y. Ng, arXiv:2209.15213 (2022).
[29] D. Venturelli, R. Fazio, and V. Giovannetti, Minimal self-

contained quantum refrigeration machine based on four
quantum dots, Phys. Rev. Lett. 110, 256801 (2013).

[30] P. A. Erdman, B. Bhandari, R. Fazio, J. P. Pekola, and
F. Taddei, Absorption refrigerators based on Coulomb-
coupled single-electron systems, Phys. Rev. B 98, 045433
(2018).

[31] P. P. Hofer, M. Perarnau-Llobet, J. B. Brask, R. Silva, M.
Huber, and N. Brunner, Autonomous quantum refrigerator
in a circuit QED architecture based on a Josephson junction,
Phys. Rev. B 94, 235420 (2016).

[32] Y.-X. Chen and S.-W. Li, Quantum refrigerator driven by
current noise, EPL 97, 40003 (2012).

[33] M. T. Mitchison, M. Huber, J. Prior, M. P. Woods, and M.
B. Plenio, Realising a quantum absorption refrigerator with
an atom-cavity system, Quantum Sci. Technol. 1, 015001
(2016).

[34] P. Mazurek and M. Horodecki, Decomposability and con-
vex structure of thermal processes, New J. Phys. 20, 053040
(2018).

[35] A. Kossakowski, On quantum statistical mechanics of non-
Hamiltonian systems, Rep. Math. Phys. 3, 247 (1972).

[36] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Com-
pletely positive dynamical semigroups of N-level systems,
J. Math. Phys. 17, 821 (1976).

[37] G. Lindblad, On the generators of quantum dynamical
semigroups, Commun. Math. Phys. 48, 119 (1976).

[38] A. de Oliveira Junior, J. Czartowski, K. Życzkowski, and
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