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We present a numerical method to simulate the dynamics of continuous-variable quantum many-body
systems. Our approach is based on custom neural-network many-body quantum states. We focus on
dynamics of two-dimensional quantum rotors and simulate large experimentally relevant system sizes
by representing a trial state in a continuous basis and using state-of-the-art sampling approaches based on
Hamiltonian Monte Carlo. We demonstrate the method can access quantities like the return probability
and vorticity oscillations after a quantum quench in two-dimensional systems of up to 64 (8 × 8) coupled
rotors. Our approach can be used for accurate nonequilibrium simulations of continuous systems at previ-
ously unexplored system sizes and evolution times, bridging the gap between simulation and experiment.
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I. INTRODUCTION

Nonequilibrium quantum many-body physics has been
at the forefront of condensed matter, atomic physics, and
chemistry research for over a decade [1,2]. The field is
driven by remarkable progress in our ability to coher-
ently control matter at the atomic scale. This control has
resulted in the creation of novel phases of matter, includ-
ing observations of light-induced superconductivity [3],
cavity-enhanced chemical reactions [4], and dynamical
phase transitions [5].

The capacity to precisely control [6–9] modern quan-
tum experiments and hardware is becoming increasingly
limited by numerical simulation of the real-time evolution
of quantum systems. At its core, the problem is related
to fast entanglement growth in systems out of equilib-
rium, which forces one to keep track of all the intricate
correlations that build up in the system. While there has
been considerable progress [10–14], challenges remain, in
particular, if one moves away from one-dimensional spin
models.
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Recently, it has been proposed that methods inspired by
classical and quantum machine learning might alleviate
some of these problems [15–19]. In practice, however, it
has been difficult to achieve reliable results due to numer-
ical instabilities resulting from a combination of Monte
Carlo noise and flatness of the quantum geometry of
modern neural-network wave functions [17,20–23].

In this work, we present an approach for capturing long-
time dynamics of two-dimensional (2D) lattice models
with continuous degrees of freedom, using a combina-
tion of methods that were previously unexplored in the
field of variational simulations—the Hamiltonian Monte
Carlo sampler, a tailored variational ansatz and proper reg-
ularization of the projected dynamics. We focus on the
quantum rotor model with direct applications to arrays
of coupled Josephson junctions and explore previously
unreachable system sizes and evolution times, up to 8 × 8
square lattices.

The paper is organized as follows. First, we introduce
the physics of the quantum rotor model and the varia-
tional wave function. Then, we outline the Hamiltonian
Monte Carlo sampler and its connection to the time-
dependent variational Monte Carlo algorithm. Finally, we
present results for the two-dimensional model, showing
magnetization, vorticity, and the Loschmidt echo converg-
ing to appropriate equilibrium values. Our Monte Carlo
results are substantiated by self-consistency checks when
key hyperparameters are changed and by comparing our
approach to tensor-network calculations in one and two
spatial dimensions.
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II. MODEL AND METHODS

Consider a system of continuous planar rotors, whose
angles θk (with respect to an arbitrary axis) could, for
example, represent superconducting phases of adjacent
Josephson junctions on a lattice � with N sites. We
use the basis |θ〉 ≡ |θ1, . . . , θN 〉 for the Hilbert space H.
We start with an effective Hamiltonian that captures the
relevant physics of superconducting Josephson junctions
[24–26]:

H = gJ
2

∑
k

L2
k − J

∑
〈k,l〉

n̂k · n̂l, (1)

where Lk = −i∂θk and n̂k = (cos θk, sin θk) in the continu-
ous basis |θ〉 of choice. The Hamiltonian in Eq. (1) is often
called the quantum rotor model (QRM). Its equilibrium
properties [27] have been studied using variational Monte
Carlo (VMC) [28] and other quantum Monte Carlo (QMC)
[29] methods. Perhaps most notably, the quantum critical
point separating the disordered and O(2) broken phase has
been predicted at gc ≈ 4.25.

However, as noted in the introduction, real-time evo-
lution properties of the QRM have barely been explored.
This is mainly due to the lack of suitable methods that
can access experimentally relevant times t � J −1, at large
system sizes in two dimensions. The ability to simu-
late relatively large system sizes is not only of the-
oretical interests but has technological applications in
the study of dynamics of arrays of coupled Josephson
junctions [30].

The evolution equation for a state � = �(θ), in the
continuous basis |θ〉, reads

i
∂�

∂t
= −gJ

2

∑
k

∂2�

∂θ2
k

− J
∑
〈k,l〉

cos(θk − θl)�, (2)

with appropriate periodic boundary conditions

�(θ1, . . . , θk + 2π , . . . , θN ) = �(θ1, . . . , θk, . . . , θN ) (3)

for each rotor k. Equation (2) is prohibitively expensive to
solve exactly even for a handful of interacting rotors. The
continuous nature of the |θ〉 basis exacerbates the problem.

A. Variational simulation

We represent a quantum state using a wave function
ψα(θ) where α ∈ CP is a set of P real or complex varia-
tional parameters. Since any |ψ〉 ∈ H admits an expansion
in terms of |θ〉, we define the following un-normalized
variational quantum state (VQS):

|ψα〉 =
∫

dθψα(θ) |θ〉 , (4)

where dθ ≡ dθ1 · · · dθN . The integral is performed over the
cube [−π ,π ]N .

Building on previous work on continuous systems [16],
our simulation of the real-time dynamics of the state given
in Eq. (4) is based on the time-dependent variational Monte
Carlo (t-MVC) method [15,31]. The core assumption that
allows us to approximately solve Eq. (2) is that of time
dependence of parameters α = α(t).

Convolution Convolution 

FIG. 1. Top: the ansatz ψα(θ) architecture used for simulations of two-dimensional QRM systems. It amounts to a two-layer convo-
lutional neural network with an activation function given by Eq. (15). To enforce periodicity and improve expressivity, we precalculate
sines and cosines of input angles, which are treated as different input channels by the CNN. The final layer outputs a single channel
and all of its components are summed into a single complex number (because of complex parameters α ∈ CP) we then interpret as
lnψα(θ). Bottom: an illustration of the Hamiltonian Monte Carlo algorithm. Dummy momentum variables are introduced and sampling
the given N -dimensional probability distribution is rewritten in 2N -dimensional phase space with an artificial effective Hamiltonian
H̃ . Samples are collected as snapshots of solutions of Hamilton’s equations of motion.
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Optimal trajectories α(t) induced by unitary hamiltonian
evolution e−iHt |ψα〉 can conveniently be found by extrem-
izing the time-dependent variational principle (TDVP)
[22] action

C[α] =
∫

dt 〈�α(t)|
(

i
d
dt

− H
)

|�α(t)〉 , (5)

where |�α〉 is a normalized version of state |ψα〉. Optimal
evolution equations read iSα̇ = g, where

Sμν = 〈O†
μOν

〉− 〈O†
μ

〉〈Oν

〉
,

gμ = 〈O†
μH
〉− 〈O†

μ

〉〈
H
〉
,

(6)

with averages 〈·〉 ≡ 〈ψα| · |ψα〉/〈ψα|ψα〉 being performed
at time t [i.e., for α = α(t)]. Operator Oμ is defined
by ∂αμ |ψα〉 = Oμ |ψα〉. We note that the matrix S is
commonly called the quantum geometric tensor (QGT)
[21,23,32] and corresponds to the metric tensor of the
parameter manifold induced by the distance in H between
un-normalized states defined in Eq. (4). In Eqs. 6, we have
chosen our ansatzψα such that it is a holomorphic function
of complex parameters α.

Since quantum averages over an exponentially large
Hilbert space H in the TDVP Eq. (6) cannot be computed
exactly, Markov chain Monte Carlo (MCMC) sampling
methods are often employed [33,34]. In VMC calculations,
it is common to rewrite quantum averages, such as those
in Eq. (6), as expressions amenable to estimation through
sampling. For example, in the case of the Hamiltonian H ,
we obtain the local energy EL:

〈H 〉 = 〈ψα| H |ψα〉
〈ψα|ψα〉 =

∫
dθpα(θ)EL(θ) (7)

where

pα(θ) ∝ |ψα(θ)|2 and EL(θ) = 〈θ | H |ψα〉
〈θ |ψα〉 . (8)

For more details about the specific sampling algorithm
employed in this work, we refer the reader to Sec. II B and
Appendix A 1.

After computing the matrix S and the vector g at time t,
one can formally define α̇ = −i S−1g and use any ordinary
differential equation (ODE) integrator (see Appendix A 3)
to obtain the next set of parameters, at time t + δt. How-
ever, the inverse is often ill defined.

One reason is that Monte Carlo estimates of matrix ele-
ments are noisy. Noise accumulates to render the matrix
singular by making a small eigenvalues vanish. There-
fore, quickly and efficiently obtaining many uncorrelated
samples from p(θ , t) ∝ |ψα(t)(θ)|2 is crucial. The other
reason is that the specific choice of ψα introduces redun-
dancy between different parameters, producing linearly

dependent or vanishing rows and columns in S. Therefore,
choosing an efficiently parameterized trial wave function
is equally important. In practice, adding more parameters
to the wave function can sometimes unexpectedly reduce
accuracy by making S ill conditioned.

In order to move forward with the algorithm, regulariza-
tion schemes must be used. For ground-state optimization
tasks, simply replacing S → S + ε1, for some small posi-
tive constant ε, often suffices to diminish the effect of small
eigenvalues.

However, in this work, we regularize the S matrix
by diagonalization S = U�U† at each time step. Having
obtained eigenvalues σ 2

μ such that � = diag(σ 2
1 , . . . , σ 2

P),
we define the pseudoinverse as S−1 ≈ U�̃−1U† with

�̃−1
μν = 1/σ 2

μ

1 + (λ2/σ 2
μ

)6 δμν . (9)

We heuristically find that the smooth cutoff with a hyper-
parameter λ2 in Eq. (9) is superior to traditional pseu-
doinverses when using adaptive integrators for updating
parameters α. For more details on regularization, see
Appendix A 2.

After calculating averages in Eq. (6) and appropriately
regularizing the QGT inverse S−1, one can use any external
ODE integrator to perform time stepping in the top-level
equation α̇ = −i S−1g. In this work, we use the embed-
ded Bogacki-Shampine adaptive solver RK3(2) from the
Runge-Kutta family [35–37].

B. Hamiltonian Monte Carlo

Hilbert-space averages defined in Eq. (6) cannot be eval-
uated analytically for an arbitrary ψα . To perform this
task in an efficient and scalable way, we employ Hamilto-
nian Monte Carlo (HMC) [38,39] to obtain samples from
the distribution p(θ , t) at each time step t. We make this
choice because HMC offers a systematic way of mak-
ing large steps in MCMC proposals while still keeping
acceptance probabilities high, unlike more conventional
approaches like random-walk Metropolis. This results in
a Markov chain with considerably lower autocorrelation
times, allowing for treatments of larger systems with less
overall runtime spent on sampling.

For a generic probability distribution p(θ), HMC aug-
ments the configuration space with artificial momentum
variables π = (π1, . . . ,πN ) ∼ N (0, M ):

p(θ) ∝
∫

dπ exp
{
−1

2
π�M−1π + ln p(θ)

}
(10)

for some choice of a positive-definite mass matrix M .
Interpreting the exponent in Eq. (10) as an effective clas-
sical Hamiltonian βH̃(θ , π) inducing a Boltzmann weight
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e−βH̃ , Monte Carlo updates can be defined through numer-
ical integration of relevant Hamilton’s equations. Owing
to insights from statistical physics, we know that a large
number of particles in equilibrium following classical
equations of motion have precisely this desired Boltzmann
distribution.

Given θ(0), π(0) and a small step size ε, a common
choice is the leapfrog integrator:

π(τ + ε/2) = π(τ )− ε

2
∂V
∂θ
(θ(τ )),

θ(τ + ε) = θ(τ )+ εM−1π(τ + ε/2),

π(τ + ε) = π(τ + ε/2)− ε

2
∂V
∂θ
(θ(τ + ε)),

(11)

where V(θ) = − ln p(θ) and τ is the fictitious HMC time
variable, unrelated to t in Eq. (5). This specific integrator is
chosen because of its symplectic [37,38] property—it con-
serves energy and probability exactly, allowing for large
jumps in the θ space while keeping high acceptance prob-
abilities. We note that higher-order symplectic integrators
can be used as well.

After integrating for L steps, the new configuration
(θ(Lε), π(Lε)) is proposed as the next sample in the
Markov chain. It is common to apply the Metropolis-
Hastings accept-reject step [33,34] despite the fact that the
new configuration has the same energy (probability) as the
initial one. This is done to offset the effects of unwanted
numerical errors in the leapfrog scheme, usually improving
overall performance for many samples [38,39].

Equations (11) simulate a swarm of effective classical
particles whose positions and momenta follow the desired
joint Boltzmann distribution in Eq. (10). Discarding all π

samples is equivalent to marginalizing the distribution in
Eq. (10). In practice, randomness is injected by sampling
the normal distribution π(0) ∼ N (0, M ) each time initial
conditions are required for numerical integration.

Choosing the mass matrix M , the time step ε and the
integration length L carefully is crucial for efficient explo-
ration of the configuration space. In this work, we chose to
set M and ε automatically, by using heuristically proven
[39–41] algorithms operating samples from an extended
warmup phase for each Markov chain individually. Inte-
gration length L was treated as a hyperparameter. For more
details and specific values, see Appendix A 1.

C. The trial wave function

In this work, we use a variant of the standard convolu-
tional neural-network (CNN) architecture [42,43] to model
ψα(θ). Our approach is built on those of Refs [17,44].

Specifically, we set

lnψα(θ) = 1√
2KN

2K∑
c=1

∑
k

[
wc

D ∗ hc
D−1(θ)

]
k , (12)

where ∗ denotes a convolution over lattice indices k and
c = 1, . . . , 2K is the channel index. Features hc

D−1(θ) are
the output of D − 1-layer CNN defined by

hc
d(θ) = fd

(
bc

d +
2K∑

c′=1

wcc′
d ∗ hc′

d−1(θ),

)
(13)

with an elementwise nonlinear activation function fd,
biases bd, and weights wd at layer d. We include all weights
and biases into the set of trainable parameters α and use
automatic differentiation (AD) techniques to obtain all
derivatives Oμ required for evaluation of Eqs. (6). For
CNN inputs h0, we concatenate the following features:

h0 =
{
(cos nθk, sin nθk)

∣∣∣ n = 1, . . . , K
}

(14)

along the channel axis, as illustrated on Fig. 1. This con-
struction allows us to include a limited number of higher
Fourier modes a priori, improving ansatz expressivity in
a controlled way. In this work, we set D = 2, K = 4 for
larger two-dimensional (8 × 8) experiments and K = 1 for
smaller systems.

To maintain analytic dependence on parameters α, we
restrict the CNN nonlinearities fd to polynomial functions.
The Taylor expansion of the logarithm of the zeroth-order
modified Bessel function of the first kind is used:

ln I0(z) = z2

4
− z4

64
+ z6

576
+ O(z8). (15)

This particular activation function choice is motivated by
the appearance of I0 in the version of the restricted Boltz-
mann machine (RBM) adapted to the QRM in Ref. [28].
This approach has the advantage of maintaining the holo-
morphic dependence of ψα on α and preserving the form
of Eqs. (6).

In this work, we focus on a simple two-layer CNN
ansatz to control the number of parameters P. In addi-
tion nontrivially affecting the QGT inverse (see Sec. II A),
the cost to diagonalize the QGT in order to regularize
the inverse in Eq. (9) grows as O(P3). Heuristically, we
also find that introducing more parameters α requires more
Monte Carlo samples to correctly resolve the relevant aver-
ages in Eq. (6) and does not significantly contribute to
simulation accuracy in our case. A systematic investiga-
tion of larger neural-network architecture details is left for
future work.
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III. RESULTS

In this section, we study dynamical properties of several
observables of the QRM, focusing on the two-dimensional
model. A series of benchmarks in one and two dimensions
can be found in Sec. III A.

We simulate the effects instantaneous quenches of the
coupling constant g in Eq. (1). Specifically, we initialize
parameters α of the ansatz ψα illustrated on Fig. 1 to the
ground state of the QRM Hamiltonian with g = gi using
imaginary-time variational Monte Carlo (VMC) [31,43]
methods. We then simulate real-time dynamics under g =
gf . In this work, we focus on quenches from the ordered
phase to the disordered: gi < gc < gf .

In Fig. 2, we choose a square 8 × 8 lattice, tracking the
dynamics of the potential energy density

εp(t) = − J
N

〈∑
〈k,l〉

n̂k · n̂l

〉

t

(16)

and the average magnetization magnitude M

M (t) = 1
N

〈∣∣∣∣∣
∑

k

n̂k

∣∣∣∣∣
〉

t

, (17)

along with its x, y components defined by M =
N−1∑

k

〈
n̂k
〉
t. Averages 〈·〉t are performed with respect to

the ansatz state at time t. In addition, corresponding cir-
cular variances were defined as Var(θk) = −2 ln

∣∣〈n̂k
〉
t

∣∣ and
averaged over the lattice index k.

These observables were chosen as a proxy for ther-
malization. Across a wide range of quenches we observe

convergence to their respective equilibrium values at g =
gf , see Fig. 2. We observe two distinct dynamical regimes
in relation to the quantum critical point gc ≈ 4.25, when
gi < gc. For small quenches (left column of Fig. 2) we
see the expected outcome—slower equilibriation with only
small fluctuations in the direction of the magnetization.
However, for moderate to large quenches in Fig. 2, we
observe a (transient) demagnetization of the sample and
convergence to a new equilibrium state.

In addition, we define a measure of average vorticity

v(A) = 1
|A|
∫

A
da · ∇ × n̂ = 1

|A|
∮
∂A

d� · n̂ (18)

over a surface A with edge ∂A on the lattice. Using Stokes’
theorem, we rewrite the expression as a contour integral
over ∂A in the positive direction. On Fig. 3 (right panel),
we plot v(A) averaged over all n� square �× � surfaces:
v� = n−1

�

∑
|A|=�2 v(A). As expected, we find almost zero

vorticity for quenches in the ordered phase, while larger
fluctuations are generated for quenches across the critical
point. We postpone a detailed analysis for future work.

Aside from local observables, such as energy and mag-
netization, one also has access to global observables such
as the Loschmidt echo. The latter has some interest-
ing properties in the context of dynamical phase transi-
tions [45] and quantum chaos [46]. The Loschmidt echo
expresses the quantum state overlap between the initial
state and some time-evolved state. In general, the fidelity
F(�,�) between two generic normalized quantum states
� and � is defined as F(�,�) = |〈�|�〉|2. For real-
time evolution, we expect the fidelity F(�(t = 0),�(t))

FIG. 2. Results for different quenches from initial value gi = 3 on a two-dimensional 8 × 8 square lattice. Left: potential energy,
magnetization, and angular variance as functions of real time. For the small quench to gf = 4.5, we observe the expected behavior with
slower approach to the new ordered equilibrium state. Convergence is similar to adiabatic change. The moderate quench to gf = 6.0
exhibits a sharp increase in rotor angle variance is accompanied by a single flip (right panel) in the average magnetization at t ≈ J −1.
For the large quench to gf = 9.0, many rotor flips occur after the first one, indicating much more detailed exploration of the underlying
Hilbert space. Convergence to the new equilibrium starts taking place only for t � 5J −1. Right: a parametric plot of the mean rotor
direction. We observe a more thorough exploration of the magnetization sphere for larger quenches.
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FIG. 3. Fidelity and vorticity as functions of time. Left: time-dependent many-body fidelity F(t) defined in Eq. (19), for a number
of quenches. For trajectories quenching to values of gf in the same equilibrium phase, we see convergence to nonzero values at late
times. Conversely, trajectories with gf > gc converge to F(t → ∞) = 0. Additionally, τ1/2 (the time it takes for fidelity to decrease
by 50%) is shown to scale linearly with g in agreement with the appropriate uncertainty relation �E�t ≥ 1/2. Right: the onset of
vorticity [defined in Eq. (18)] for three quenches of increasing magnitude.

to decay as a function of time t, for any given initial state
|�(t = 0)〉.

To evaluate this quantity using Monte Carlo sampling
of unnormalized ansatz wave functions ψ(θ , t) = ψα(t)(θ),
we rewrite the fidelity definition as

F(t) =
〈
ψ(θ , t)
ψ(θ , 0)

〉
θ∼|ψ(·,0)|2

〈
ψ(θ , 0)
ψ(θ , t)

〉
θ∼|ψ(·,t)|2

, (19)

following Refs [47,48]. The expression in Eq. (19) is man-
ifestly independent of the normalization factor. In practice,
we take the real part of Eq. (19) to discard the small
nonzero imaginary part coming from finite-sample esti-
mates of the two factors. In addition, we calculate and store
both factors in log space to preserve accuracy and maintain
numerical stability.

As expected, we find that that the return probability (or
fidelity in short) decays quickly with time, as illustrated
in Fig. 3 (left panel). For smaller quenches, the fidelity
shoots back up to a nonzero value suggesting a finite over-
lap between the initial state the long time “equilibrium”
state after the quench. The latter may be interpreted as a
signature of quenching between two Hamiltonians in the
ordered phase.

As a measure of the fidelity decay, we introduce another
time scale τ1/2 defined as the time needed for the fidelity
to decrease by 50%. We observe that τ1/2 has increased
linearly with the quench gf . This result matches basic
estimates given by the second-order short-time expansion
of F(t) and uncertainty relation �E�t ≥ 1/2. Therefore,
fidelity decay time can be lower bounded by �E−1, esti-
mated using samples from the initial state ψα(0) [49].
Reference points from this calculation are presented in
Fig. 3 (left, inset). This comparison demonstrates that
the t-MVC method can be used to estimate quantities of
experimental interest for system sizes unreachable by other
wave-function-based methods.

A. Benchmarks

To substantiate our results, we perform a series
of benchmarks and compare results to tensor-network
simulations for a one- and two-dimensional versions
of the model. In particular, we benchmark the results
with the time-evolving block decimation (TEBD) [50,51]
algorithm. For all benchmarks, states were initialized to
the coherent superposition of all basis states |ψ(0)〉 ∝∫

dθ |θ〉 by explicitly setting the final convolution kernel
wc

D [Eq. (12)] to zero. All presented tensor-network sim-
ulations have been performed with a fixed singular value
cutoff. Convergence within the matrix product state (MPS)
variational manifold has been confirmed by repeating sim-
ulations with larger cutoff values.

We organize numerical benchmarks as follows. First, we
compare t-MVC results with TEBD for an extended one-
dimensional and a smaller two-dimensional system. Practi-
cal error estimates are defined. Then, we turn to examining
effects of key hyperparameters in the t-MVC approach and
show evidence of self-consistent convergence.

Following Refs [17,52], we use the following figure of
merit:

r(t) = D (ψ(t + δt), e−iHδtψ(t)
)

D (ψ(t), e−iHδtψ(t)
) , (20)

where |ψ(t)〉 = |ψα(t)〉. In Eq. (20), D(·, ·) represents the
Fubini-Study distance on the Hilbert space H. We estimate
r2(t) at each time t using HMC samples from the ansatz
(see Ref. [17] and Appendix D). Intuitively, r2(t)measures
an appropriately normalized measure of deviation between
the full state e−iHδt |ψ(t)〉 after one time step δt and its
projection onto the variational manifold |ψα(t+δt)〉. We plot
the integrated error

R2(t) =
∫ t

0
r2(s) ds (21)
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FIG. 4. One- and two-dimensional benchmarks and comparison with tensor-network data. Evolution was performed starting from
a coherent superposition state |ψ(0)〉 ∝ ∫ dθ |θ〉. Results are compared with the TEBD tensor-network algorithm evolving a matrix
product state (MPS) in the conjugate angular-momentum eigenbasis (see Sec. III A and Appendix B). Left: a one-dimensional bench-
mark on a chain with N = 64 rotors and open boundary conditions. Center: a two-dimensional benchmark of the t-MVC method on
a 4 × 4 lattice and open boundary conditions. We note that disagreement between t-MVC and TEBD results appears as the maximum
bond dimension χmax is reached. Singular value cutoff of 10−12 was used. Right: the growing number of MPS parameters PMPS asso-
ciated with the increasing bond dimension χ is plotted in units of the number of the CNN parameter count PCNN as a function of time.
One- and two-dimensional cases are compared. A cutoff of χmax = 1000 was reached in the 2D system for the singular value cutoff
of 10−9.

to reflect error propagation through time as accurately as
possible. We remark that the integrated-squared error in
Eq. (21) should be interpreted an upper bound on the
square of the integrated error R(t) = ∫ t

0 r(s) ds due to the
triangle inequality.

In Fig. 4 (left), we show that this algorithm performs
well on a one-dimensional system of N = 64 rotors where
the growth of the so-called bond dimension χ is lim-
ited. Convergence to appropriate equilibrium values is
reached for both methods with good agreement at inter-
mediate times for the dynamics of potential energy den-
sity εp(t) and the Loschmidt echo F(t). The integrated
residual R2(t) grows more rapidly for lower values of g.
This is expected because the initial state ψ(0) has lower
energy for larger values of g in the QRM hamiltonian,
Eq. (1), representing a more typical state in the disordered
phase.

In contrast to the one-dimensional (1D) case, in Fig. 4
(center), we observe that the TEBD method exponen-
tially grows the MPS bond dimension χ past the cutoff
χmax = 1000 at relatively short times. We plot the number
of parameters PMPS in the MPS as a function of time in the
right panel of Fig. 4, in units of the number of parameters
PCNN in the CNN ansatz presented in this work. We see
qualitative agreement between the two methods for early
times, before χ grows to the point where further simulation
is numerically prohibitively expensive.

In Fig. 5 we show evidence that the variance of observ-
ables is controllable through the most important Monte
Carlo (HMC) hyperparameters while the bias is mostly
controlled by different regularizations of the S-matrix
inverse [Eq. (6)]. In the top panel of Fig. 5, we see that
the standard deviation of the estimator for total magnetiza-
tion M (t) scales with the number of HMC samples Ns in an
expected way: σM ∝ N−1/2

s for three different times during
the evolution.

In addition, we report that heuristically varying the num-
ber of leapfrog integration steps L increases estimator
variances the most around segments of trajectories with
higher curvature, as evidenced by the middle panel of
Fig. 5. Intuitively, in the limit of L → 1 and small leapfrog
step sizes ε, HMC approaches random-walk Metropolis
sampling (see Ref. [39] and Appendix A 1), which suffers
from lower acceptance rates and longer mixing times in
cases of sharply peaked target distributions. We observe
that even a moderate increase to L ≈ 10 accompanied by
automatic hyperparameter tuning described in Sec. II B
considerably reduces variance.

Finally, we explore the effects of S-matrix regularization
[Eq. (9)]. In practice, we set λ2 itself in an adaptive manner
each iteration:

λ2 = λ2(σ 2
1 , . . . , σ 2

P) = max
(

ac, rc × max
μ
(σ 2
μ)

)
(22)
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FIG. 5. Effects of key hyperparameters on magnetization
measurements. All experiments were performed on a one-
dimensional chain with N = 32. Top: effects on magnetization
estimates by varying the number of HMC samples Ns. Errors
were estimated using bootstrap resampling independently at dif-
ferent times show expected scaling σM ∝ N−1/2

s in all cases.
Middle: variance change in magnetization estimates by vary-
ing the number of leapfrog integrator steps L between HMC
proposals. In the L → 1 limit, HMC approaches the random-
walk Metropolis sampler. Bottom: bias increase associated with
changing the λ2 cutoff parameter in Eq. (9).

depending on the S-matrix spectrum. In the bottom panel
of Fig. 5, we see that, for a fixed ac = 10−5, increasing rc
leads to increasing the estimator bias. Excluding relevant
eigenvalues from participating in time evolution through
Eq. (9) can lead to a failure to capture parts of relevant
physics.

Overall, both t-MVC and TEBD algorithms predict
similar dynamical behavior of the potential energy den-
sity [Eq. (16)] and the fidelity [Eq. (19)], as shown on
Fig. 4. However, the number of parameters in the MPS
grows exponentially due to entropy buildup during time
evolution. Tensor-network real-time evolution algorithms
[53,54] based on MPS or two-dimensional architectures
such as projected entangled pair states (PEPS) [12,55]
face several challenges to extend to late times and higher
dimensions. Incorporating continuous degrees of freedom
exacerbates the problem—tensor network algorithms are
limited to using the locally truncated eigenbasis of the
angular-momentum operator Lk in the QRM Hamilto-
nian in Eq. (1), in contrast to the t-MVC method (see
Appendix B).

IV. CONCLUSION

We present a method to approximate unitary dynam-
ics of continuous-variable quantum many-body systems,
based on custom neural-network quantum states. The
approach employs Hamiltonian Monte Carlo sampling and
custom regularization of the quantum geometric tensor.
The method was benchmarked on quench dynamics of
two-dimensional quantum rotors. We indicated that our
calculations are able to access nonlocal quantities like
the return probability. Good agreement was found with
tensor-network-based TEBD simulations for the case of
one-dimensional systems of comparable size. Finally, we
showed evidence that the method is controlled by a hand-
ful of key hyperparameters. Our approach paves the way
for accurate nonequilibrium simulations of continuous
systems at previously unexplored system sizes and evo-
lution times, bridging the gap between simulation and
experiment.

ACKNOWLEDGMENTS

M.M. acknowledges insightful discussions with Fil-
ippo Vicentini about t-MVC regularization, Bob Carpenter
about the role of circular geometry in Monte Carlo sam-
pling and Hamiltonian Monte Carlo details. In addition,
discussions with Sandro Sorella about the infinite vari-
ance problem and James Stokes about different ansatze
were very helpful for fine tuning simulations. M.M. also
acknowledges support from the CCQ graduate fellowship
in computational quantum physics. The Flatiron Institute is
a division of the Simons Foundation. D.S. was supported
by AFOSR Grant No. FA9550-21-1-0236 and NSF Grant
No. OAC-2118310.

SOFTWARE LIBRARIES

The code used in this work has been packaged into
an installable library and is publicly available to repro-
duce any results in this work or explore new ones:
github.com/Matematija/continuous-vmc.

It was built on JAX [56] for array manipulations, auto-
matic differentiation for sampling and optimization and
GPU support, Flax [57] for neural-network construction
and manipulation and NumPy [58] and SciPy [59] for CPU
array manipulations. Matplotlib [60] was used to produce
figures.

APPENDIX A: SIMULATION DETAILS

In this Appendix, we mention some of the details of
numerical simulations performed in this work that have
not been discussed in the main text. We also clearly
state different hyperparameters and their observed effect on
performance and numerical stability.
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1. Hamiltonian Monte Carlo details

As noted in the main text, the Hamiltonian Monte Carlo
(HMC) algorithm used in this work has many important
hyperparameters. To define the proposal, we must specify
the following: the leapfrog integration length L, leapfrog
step size ε, and the mass matrix M . We fix L heuristically
and adaptively set M and ε during an extended warmup
phase for each Markov chain independently. We assume
that the mass matrix is diagonal M = diag(m1, . . . , mN ).

Before any samples are collected for evaluation of
Eq. (6), each chain is run for Nw steps. Following the pop-
ular software package Stan [61], we subdivide the warmup
period into Np + 2 phases (windows), each of which is one
of two types:

(a) Fast: samples are collected and only step size ε
is adapted using the online optimization algorithm
in Ref. [40]. Mass matrix remains unchanged. Fast
windows are used to efficiently initialize the chain
by moving it towards a typical set of highly probable
samples.

(b) Slow: samples are collected and both step size ε
and the mass matrix M are estimated. Step size
is estimated the same way as in the fast window.
Mass matrix elements are estimated as the variance
of corresponding variables: mk = Var(θk) using the
appropriate formula for the variance of periodic
random variables presented in the main text, Sec. III.

After initializing each θk ∼ Uniform(−π ,π), we begin
the warmup phase with a single fast window of length
Nw/12, followed by five fast windows. The first fast
window is Nw/36 steps long with each subsequent slow
window doubling in size. Finally, we end the warmup

by running an additional fast window for the remaining
Nw/18 steps. After each window, the HMC transition ker-
nel (the leapfrog ODE solver) is updated with adapted
values for ε and M (for slow windows). After the final fast
window, all hyperparameters are locked in and actual col-
lection of the Ns for Eq. (6) begins. The full list of relevant
hyperparameters can be found in Table I.

We use automatic differentiation (using JAX [56]) to
obtain numerically exact gradients ∇θ ln p(θ , t) of needed
to run the leapfrog integrator. To avoid loss of accuracy or
numerical instabilities through exponentiation, we employ
the following identity:

ln p(θ , t) = ln
∣∣ψα(t)(θ)∣∣2 = 2Re

{
lnψα(t)(θ)

}
, (A1)

when the logarithm of the wave function is parameterized
instead of the wave function itself.

For completeness, we note that a common precaution
against leapfrog integration getting stuck in regions of high
curvature used in this work. Instead of fixing the inte-
gration length to a specific value L = L0, it is randomly
chosen between (1 − γ )L0 and (1 + γ )L0 each time the
integrator is called, with a new hyperparameter 0 ≤ γ < 1.
This jittering of trajectory lengths can help HMC walkers
move away from regions of high curvature if they get stuck
[38,39,61].

Finally, to collect more independent samples by utilizing
modern massively parallel GPU hardware, we run Nc such
chains in parallel, each one warmed up independently.

Finally, we note that the HMC proposal outlined in
Eq. (11) approaches the RWM update:

θ ′ = θ +
√
� z; z ∼ N (0,1), (A2)

TABLE I. The list of relevant hyperparameters for the Hamiltonian Monte Carlo algorithm with their values used in this work.

Symbol Name Value Domain Description

ε Step size Dynamically
adapted

R The leapfrog integrator step size.

M Mass matrix Dynamically
adapted

RN 2
The covariance (metric) tensor of the dummy

momentum variables π .
L (Average) integration length 20 N The number of leapfrog steps taken before proposing a

sample. (If γ > 0, we relabel L → L0.)
γ Jitter 0.2 [0, 1〉 Randomness for L during sampling—it is drawn

uniformly between (1 − γ )L0 and (1 + γ )L0.
ε0 Initial step size 0.1 R A guess for the value of ε to refine during the warmup

phase.
δ Target acceptance rate 0.8 [0, 1] Target acceptance rate used for optimization of ε by

algorithm in Ref. [40].
Nw Length of warmup phase 800 N Total number of MC samples used for extended

warmup.
Np Number of slow windows 5 N Total number of slow adaptation windows during

warmup.
Ns Number of samples 2000 N Total number of samples (per chain).
Nc Number of chains 20 N Total number of independent Markov chains.
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in the limit of few leapfrog integrator steps: L → 1.
Indeed, for L = 1 and small step sizes ε, Eq. (11) becomes

θ ′ = θ(ε) = θ(0)+ εM−1π(ε/2) = θ(0)+ εM−1π(0)

− ε2

2
M−1 ∂V

∂θ
(θ(0))

= θ(0)+ εM−1π(0)+ O(ε2), (A3)

where M−1 is equivalent in effect to the
√
� matrix and

π(0) ∼ N (0, M−1) by construction in Eq. (10).

2. Numerical regularization schemes

After evaluating the averages in Eq. (6) at time t, one
needs to solve the linear system i Sα̇ = g to obtain α̇

needed to progress to time t + δt. Since the S matrix is
singular in most cases of interest, a robust regularization
scheme is needed. As pointed out in the main text, replac-
ing S → S + ε1 is often enough in the case of ground-state
searches (imaginary-time evolution). We remark that this
is equivalent to the L2-regularized least-squares solution
of i Lα̇ = h.

α̇ = argminα̇∈CP
{‖i L α̇ − h‖2

2 + ε‖α̇‖2
2

}
, (A4)

where L†L = S is the Cholesky decomposition of the S
matrix (assuming S is positive definite), L†h = g, and
‖ · ‖2 is the standard euclidean 2-norm on CP.

As outlined in the main text, we instead adopt a regu-
larization scheme based on the spectrum of the S matrix,
S = U�U†, where � = diag(σ 2

1 , . . . , σ 2
P). Our definition

of the pseudoinverse is S−1 ≈ U�̃−1U† with

�̃−1
μν = f (σ 2

μ)
δμν

σ 2
μ

and f (σ 2) = 1

1 + (λ2/σ 2
)6 . (A5)

In the limit of λ2 → 0, we recover the actual matrix
inverse. As opposed to the more traditional choice of the
step function f (σ 2) = θ(σ 2 − λ2), we find that choosing

a smooth functional form for f (σ 2) in Eq. (A5) makes the
adaptive time stepping in the top-level integration routine
(see Appendix A 3) more stable.

As noted in the main text, we set λ2 to

λ2 = λ2(σ 2
1 , . . . , σ 2

P) = max
(

ac, rc × max
μ
(σ 2
μ)

)
, (A6)

each iteration, with ac = 10−4 and rc = 10−2 chosen for
2D calculations and ac = 10−5 and rc = 10−4 for 1D
benchmarks. To track potential over regularization and as
a measure of ansatz expressivity, we define the effective
rank ρ(S) =∑μ f (σ 2

μ). Intuitively, since 0 < f (σ 2) < 1
for all eigenvalues σ 2, ρ(S) can be interpreted as the effec-
tive number of eigenvalues that have not been set to zero
by the regularization function f . In other words, it corre-
sponds to the number of parameters in α that get updated
at time t.

We plot ρ(S) as a function of time on Fig. 6 for some
simulated quenches. In all cases, we see that the effective
rank increases rapidly to ρ ∼ 1 at intermediate times that,
for larger quenches, correspond to rapid oscillations and
onset of vorticity. In those cases, it is natural to interpret
this regime as almost all parameters α being important to
capture the relevant physics. At later times, ρ converges
to values below 10%, indicating equilibration and less
oscillatory behavior.

For completeness, we mention that alternative regu-
larization techniques have been explored as well. For
example, the method of Schmitt and Heyl in Ref. [17],
based on the SNR for each eigenvalue in σ 2, represents a
computationally and physically well-motivated approach.
However, it did not bring any measurable performance
improvement in our case.

3. The time-dependent variational principle and ODE
integrators

To make use of the TDVP action in Eq. (5) in the
main text, to propagate the variational parameters forward

FIG. 6. Some ODE integrator and regularization details. Left: the effective rank of the S matrix ρ(S) as a function of time, reflecting
the internal dimensionality of the parameter manifold α, as discussed in Appendix A 2. Center: time steps δt taken by the adaptive
ODE integrator of choice. Right: approximate conservation of energy as a function of time, for different quenches.

040302-10



VARIATIONAL QUANTUM DYNAMICS... PRX QUANTUM 4, 040302 (2023)

in time, one must construct the corresponding Euler-Lagrange equations. To this end, we first manipulate the action into
a more transparent form:

δC[α] = δ

∫
dt 〈�α(t)|

(
i

d
dt

− H
)

|�α(t)〉 (A7)

= δ

∫
dt
{

i
2

〈ψα(t)|ψ̇α(t)〉 − 〈ψ̇α(t)|ψα(t)〉
〈ψα(t)|ψα(t)〉 − 〈ψα(t)| H |ψα(t)〉

〈ψα(t)|ψα(t)〉
}

(A8)

= −δ
∫

dt
∫

dθ

∣∣〈θ |ψα(t)〉
∣∣2

〈ψα(t)|ψα(t)〉

{
Im
∑
μ

Oμ(θ , t)α̇μ(t)+ EL(θ , t)

}
(A9)

∝
∫

dt
∑
μ

{
i
∑
ν

Sμν(t)α̇ν(t)− gμ(t)

}
δαμ(t)− c.c., (A10)

where we used definitions of Sμν , gμ, and EL from Eqs. (7)
and (6), respectively, as well as α̇ = dα/dt. The explicit
form of log-derivative operators Oμ introduced in the main
text is

Oμ(θ , t) = ∂

∂αμ
lnψα(t)(θ) (A11)

in the |θ〉 basis. We note that the expression in Eq. (A9)
and the definitions of S and g in Eq. (A10) change form
if ψα(θ) cannot be interpreted as a holomorphic func-
tion of α. The reader is referred to Ref. [22] for detailed
derivations.

We implement and experiment with a number of differ-
ent Runge-Kutta [37] (RK) ODE solvers. Heuristically, we
notice that higher-order adaptive embedded solvers do help
offset the effects of imperfect Monte Carlo estimates of S
and g in two ways:

(a) Adaptive solvers are naturally higher-order because
of an embedded lower-order method. Using an
adaptive solver can locally adjust the time step δt,
usually drastically reducing the overall number of
time steps required.

(b) The solution at t + δt is constructed as a linear com-
bination of solutions estimated on a fixed set of
points within the interval [t, t + δt]. Any leftover
errors in these intermediate estimates have a higher
probability of canceling out.

In this work, we choose the adaptive third-order method
with an embedded second order method using the
Bogacki-Shampine [35–37,62] pair of formulas. It bal-
ances being low-enough order to avoid wasting computa-
tional resources with still being high-enough order to allow
for adaptive time-stepping.

For quenches shown in Fig. 2, we show variations in
δt in Fig. 6 (center panel). We note that the time stepping
varies more in regions of higher curvature (kinetic energy,

shorter times) and for larger quenches, successfully adjust-
ing to conserve energy in all cases (Fig. 6 right). For longer
times, on the order of thermalization in observed quenches,
variations are reduced and δt approximately converges to a
constant value.

APPENDIX B: TENSOR-NETWORK
CALCULATIONS

In this Appendix we present the details of tensor-
network calculations performed in this work. First, we lay
out some of the conventions and formalism involved with
treating the QRM in the discrete eigenbasis of the angular
momentum operator Lk. This basis is useful for attack-
ing the model with tensor-network methods or perturba-
tion theory. Finally, we report the dependence of results
reported in the main text on two different cutoffs—one in
singular value magnitude and one in local basis size.

1. Angular momentum basis

In the |θ〉 basis, we have Lk = −i∂k (where we adopt the
convention ∂k ≡ ∂θk ). Therefore,

−i
∂

∂θ
〈θ |m〉 = m 〈θ |m〉 =⇒ 〈θ |m〉 = e−imθ

√
2π

; m ∈ Z,

(B1)

which is identical to eigenfunctions for a particle on a
circle at each lattice site—we have a product basis basis
|m〉 = |m1, . . . , mN 〉. The Hamiltonian given in Eq. (1)
then reads

〈m′| H |m〉 = gJ
2

∑
k

m2
k − J

∑
〈k,l〉

〈m′| n̂k · n̂l |m〉 . (B2)
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After inserting the identity 1 = ∫ dθ |θ〉 〈θ | into the second
term and simple integration, we obtain

〈m′
k, m′

l| n̂k · n̂l |mk, ml〉

= 1
2

(
δm′

k ,mk+1δm′
l,ml−1 + δm′

k ,mk−1δm′
l,ml+1

)
, (B3)

where δ·· is the Kronecker δ symbol. The structure of
Eq. (B3) suggests rewriting the original Hamiltonian as

H = gJ
2

∑
k

L2
k − J

2

∑
〈k,l〉

(
L+

k L−
l + L+

l L−
k

)
, (B4)

where

L+
k ≡

∑
mk∈Z

|mk + 1〉 〈mk|

and L−
k ≡

∑
mk∈Z

|mk − 1〉 〈mk| so that [L+
k , L−

k ] = 0,

(B5)

for all k ∈ �. To perform tensor-network calculations,
we truncate local basis states to {|−M 〉 , . . . , |M 〉} so that
L+ |M 〉 = L− |−M 〉 = 0. Namely, we set,

L+ →

⎛
⎜⎜⎜⎜⎝

0 1
0 1

. . .
0 1

0

⎞
⎟⎟⎟⎟⎠ ,

L− →

⎛
⎜⎜⎜⎜⎝

0
1 0

1
. . . 0

1 0

⎞
⎟⎟⎟⎟⎠ (B6)

to build a matrix product operator (MPO) representa-
tion of the Hamiltonian. We use M = 5 throughout. For
use in real-time evolution through the TEBD algorithm
in Sec. III A in the main text, we initialize the trial
wave function as a matrix product state (MPS) [63] (see
Appendix C 2). We exploit

|ψ(t = 0)〉 ∝
∫

dθ |θ〉 =
∏
i∈�

|mi = 0〉 (B7)

to match the initial state given in the main text in Sec. III A
by initializing the corresponding MPS to have bond dimen-
sion χ = 1.

2. Convergence and cutoffs

To reinforce TEBD results as a benchmark in two
dimensions, we further study the dependence of obtained
results on the singular value cutoff c and the local basis
truncation parameter M defined in Appendix B 1. In both
cases, we perform a series of calculations on a 4 × 4 sys-
tem for a set of different cutoffs and for two different
values of the coupling constant g in the QRM Hamiltonian
[Eq. (1)].

In the case of the singular value cutoff c, we look at
a range of values between 10−4 and 10−11 in Fig. 7.
We observe that plotted curves seem to converge only
for c ≤ 10−9. Satisfactory energy conservation is reached
for c ≈ 10−9 as well as convergence of measured observ-
ables, except for the highest value c = 10−4. In that case,
almost all singular values are discarded, extinguishing any
nontrivial dynamics. Any further decrease in c has the
undesirable side-effect of rapidly growing the MPS bond
dimension χ , making longer simulations prohibitively
expensive.

We explore a range of values for the local basis
truncation parameter M as well (see Fig. 8). For both

FIG. 7. TEBD results for a range of different values of singular value cutoffs c. We plot time evolution of potential energy density
εp , fidelity F as well as bond dimension χ growth. Additionally, we show energy conservation (or lack thereof). The initial state is
set to the one described in Eq. (B7) in all cases. Two independent sets of calculations were performed under the QRM Hamiltonian
[Eq. (1)] with g = 5.6 (top row) and g = 8.0 (bottom row).
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FIG. 8. TEBD results for a range of different choices of truncated local bases (M ). We plot the same observables for the same initial
state as in Fig. 7. Similarly, two independent sets of calculations were performed with g = 2.0 and c = 10−7 (top row) as well as
g = 5.6 and c = 10−9 (bottom row).

reference values of the coupling constant g, we observe
fast convergence towards self-consistent time evolution.
These results indicate lower sensitivity to values of M , as
long as they lie above a threshold of M � 3 (M = 5 was
used in the main text). Therefore, for short to intermedi-
ate time evolution, Jt ∼ 1 − 10, we expect the numerical
cost of increased bond dimensions to remain dominated by
singular value cutoff c.

In all cases, bond dimensions χ increase quickly and
saturate at the cutoff value χmax, as is characteristic of
MPS-based calculations in two dimensions. Therefore, to
estimate any additional errors coming from the choice of
χmax (set to 103 in the main text), we perform an addi-
tional set of independent calculations for a range of values,
at g = 8.0. Results are presented in Fig. 9 where we plot
estimated errors in reference observables. We discover that
the relevant errors can be neglected for values as low
as χmax ≈ 600, at least for intermediate times. Reference
observables quickly converge to the desired precision in
this case.

APPENDIX C: VARIATIONAL QUANTUM STATES
ON A CIRCLE

In order to perform numerically efficient t-MVC
iterations described in Sec. II A, we need to keep the

parameter count in ψα relatively low (order 102–104 on
modern GPU hardware). The reason for this constraint
is the regularization scheme we employ to stabilize the
QGT inverse in Eq. (6)—each iteration requires us to diag-
onalize the P × P Hermitian matrix S, which becomes
prohibitively expensive and memory consuming for large
parameter counts P. We note that iterative solvers such as
the conjugate gradient can formally help push the limit
of tractable P by several orders of magnitude. However,
that speedup comes at the cost of having to rely on weaker
regularization schemes that do not require the full QGT
spectrum. In this Appendix, we describe different ansatzes
(trial wave functions) considered in our simulations.

1. The Jastrow wave function

The Jastrow wave function is defined as

lnψα(θ) = 1
2

∑
ij

wij n̂i · n̂j = 1
2

∑
ij

wij cos(θi − θj ),

(C1)

where α = {wij } is a symmetric matrix of variational
parameters. The advantage of a simple Jastrow ansatz
is the fact that the QGT given in Eq. (6) is never

FIG. 9. Convergence of TEBD calculations with respect to the cutoff bond dimension value χmax. We perform independent calcula-
tions for a fixed set of times, plot reference observable values obtained at different saturated bond dimensions. Plotted errors are defined
as the difference between the value at bond dimension χ and the value at bond dimension χ = 1000: δA = A(χ)− A(χ = 1000)where
A = εp in the left panel and A = F in the middle panel.
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ill conditioned. However, Jastrow expressivity is lim-
ited compared to deeper neural-network quantum state
parametrizations.

2. Matrix product states

Using notation and conventions laid out in Appendix B,
one can write down a traditional MPS ansatz in the discrete
angular momentum basis |m〉:

ψα(θ) =
M∑

m1=−M

· · ·
M∑

mN =−M

cm1···mN e−i
∑

i miθi ;

cm1···mN =
χ1∑

l1=1

· · ·
χN∑

lN =1

Am1
l1

Am2
l1l2

· · · AmN−1
lN−2lN−1

AmN
lN−1

.

(C2)

In one spatial dimension and for ground-state searches
(imaginary time evolution), this trial wave-function form is
the most accurate due to the density matrix renormalization
group algorithm (DMRG) [63] algorithm. Expressivity is
controlled by bond dimensions χi and the basis truncation
parameter M .

3. The (circular) restricted Boltzmann machine

The circular restricted Boltzmann machine (RBM) [28]
is defined as

ψα(θ) ∝
∫

dμ(ĥ) exp

⎧⎨
⎩
∑

j

aj · n̂j +
∑

k

bk · ĥk

+
∑

jk

wjkn̂j · ĥk

⎫⎬
⎭ (C3)

where α = {aj , bk, wjk} are variational parameters and
dμ(ĥ) is the relevant measure for hidden units ĥk. It is
natural to choose hidden units to have the same intrinsic
Hilbert space as visible rotors n̂j . Therefore, for the O(2)
quantum rotor model, we choose

ĥk = (cosφk, sinφk)

so that dμ(ĥ) = dφ = dφi dφ2 . . . dφNh , (C4)

up to an overall multiplicative constant. We note that the
number hidden units Nh is a hyperparameter and can be
increased to control ansatz expressivity.

After performing the integrals in Eq. (C3), one obtains
the following closed-form expression:

lnψα(θ) =
N∑

j =1

aj · n̂j +
Nh∑

k=1

ln I0

⎛
⎝
√∑

l

(xk)
2
l

⎞
⎠ , (C5)

where (xk)l stands for the lth component of vector xk =
bk +∑j wjkn̂j and I0 is the zeroth-order modified Bessel
function of the first kind.

Instead of a full dense matrix, we can restrict the gen-
eral linear map n̂j �→∑

j wjkn̂j to a convolution, assuming
that underlying rotors are arranged in a square lattice. This
restriction cuts P down by approximately an order of mag-
nitude while not sacrificing any measurable accuracy in
ground-state optimization tasks.

4. Activation functions

In order to define an analytic ansatz ψα with no hidden
sigularities, care must be taken when choosing activation
functions for complex-valued inputs. Informally, singular-
ities often appear in one of the following two ways, when
using holomorphic activations:

(a) A well-behaved function (or its derivatives) on the
real axis has singularities on the imaginary axis.
This is the case for tanh and ln I0 from Eq. (C3),
for example.

(b) An otherwise well-behaved function has a branch
cut that is crossed during time evolution. Side effects
include sudden jumps in conserved quantities during
real-time evolution. This is the case for ln I0 from
Eq. (C3) and similar functions involving logarithms
and/or roots.

There are two solutions to this problem. As noted in the
main text, one can restrict themselves to (higher-order)
polynomial activations, which are analytic everywhere and
have no branch cuts. Inspired by Eq. (C3), we use Taylor
expansions of ln I0 and its gradient:

ln I0(z) = z2

4
− z4

64
+ z6

576
+ O(z8) and

I1(z)
I0(z)

= z
2

− z3

16
+ z5

96
+ O(z7). (C6)

This approach has the advantage of maintaining the holo-
morphic dependence of ψα on α and preserving the form
of Eq. (6). We note that if the effect of isolated singularities
is not as important, Padé approximants often provide better
approximations of target functions (and better ground-state
energies) while still eliminating branch cuts.

The second option is abandoning holomorphicity in
parameters α and applying well-behaved real activations
to real and imaginary parts of the input separately. In that
case, Eq. (6) must be corrected. We refer interested read-
ers to the excellent overview of subtleties associated with
complex parameters in Ref. [22].
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APPENDIX D: THE R2 PERFORMANCE METRIC

In the main text, we define a measure of time-dependent
integration error in Eq (20), following Refs [17,52]. The
Fubini-Study distance D(·, ·) on the Hilbert space H
defined as

D(ψ ,φ) = cos−1
(√

F(ψ ,φ)
)

= cos−1

⎛
⎝
√

|〈ψ |φ〉|2
〈ψ |ψ〉 〈φ|ψ〉

⎞
⎠.

(D1)

Using a consistent Taylor expansion in the limit of
δt � J −1,

e−iHδt = 1 − iHδt + O(δt2) (D2)

|ψ(t + δt)〉 =
(

1 + δt
∑
μ

α̇μOμ

)
|ψα(t)〉 + O(δt2),

(D3)

authors in Ref. [17] rewrite Eq. (20) as

r2(t) = 1 − 1
VartH

∑
μν

S−1
μν g∗

μgν + O(δt2). (D4)

In Eq. (D4), we used notation from Eq. (6) in the main text
with

VartH = 〈H 2〉
t − 〈H 〉2

t ≈ 〈|EL − 〈EL〉|2
〉
t. (D5)

Finally, the R2 figure of merit is constructed as a time inte-
gral of r2: R2(t) = ∫ t

0 r2(s)ds. We note that r2(t) and R2(t)
are readily available for estimation through Monte Carlo
sampling.
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