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Long-Time Equilibration Can Determine Transient Thermality
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When two initially thermal many-body systems start to interact strongly, their transient states quickly
become non-Gibbsian, even if the systems eventually equilibrate. To see beyond this apparent lack of
structure during the transient regime, we use a refined notion of thermality, which we call g-local. A sys-
tem is g-locally thermal if the states of all its small subsystems are marginals of global thermal states.
We numerically demonstrate for two harmonic lattices that whenever the total system equilibrates in the
long run, each lattice remains g-locally thermal at all times, including the transient regime. This is true
even when the lattices have long-range interactions within them. In all cases, we find that the equilib-
rium is described by the generalized Gibbs ensemble, with three-dimensional lattices requiring special
treatment due to their extended set of conserved charges. We compare our findings with the well-known
two-temperature model. While its standard form is not valid beyond weak coupling, we show that at strong
coupling it can be partially salvaged by adopting the concept of a g-local temperature.
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I. INTRODUCTION

Equilibration and thermalization in closed quantum
many-body systems have received a lot of attention over
the past two decades, leading to tremendous successes
in understanding the conditions under which equilibration
happens [1–4] and the properties of the (sometimes ther-
mal) equilibrium itself [1,3,5–8]. However, only two gen-
eral “expected behaviors” are known about the transient
regime [9]. First, for a small subsystem weakly coupled to
the rest of the large system, one expects Markovianity of
the dynamics [10–12]. Second, when two well-separated
relaxation time scales are present, some observables will
typically show prethermalization [4,13–16]. In this work,
we propose a qualitatively new transient behavior for a
generic physical setting and then provide numerical evi-
dence demonstrating that it indeed occurs in harmonic
lattices.

The setting we consider—generic in mesoscopic and
macroscopic physics—is that of two large quantum many-
body systems, X = A and X = B, of comparable size.
Initially, they do not interact and start uncorrelated, each
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in a global Gibbs state,

τ(TX , HX ) := 1
ZX

e−HX /TX . (1)

Here, HX is the Hamiltonian of X and TX is a tem-
perature in units kB = 1, with ZX := Tr[e−HX /TX ] being
the partition function. Because this (standard) definition
focuses on each whole many-body system, we call it global
thermality.

Then, in a sudden quench, coupling between the two
systems is switched on, as depicted in Fig. 1. The total sys-
tem state ρAB(t) then evolves under the unitary evolution
generated by the postquench constant total Hamiltonian
Htot := HA ⊗ IB + IA ⊗ HB + Hint, where Hint is the inter-
action term and IX is the identity operator on the Hilbert
space of X .

The textbook expectation for weakly coupled macro-
scopic systems A and B is that the evolution progresses
quasistatically and thus each of them retains global ther-
mality [see Eq. (1)] at all times t, while gradual heat
exchange brings the systems to a shared thermal equilib-
rium [17]. In other words, the individual states of A and
B obey ρX (t) ≈ τ(TX (t), HX ), with evolving temperatures
TX (t) such that TA(t), TB(t) → Teq. When the coupling is
such that thermal gradients arise within X , the expectation
is still that each small, localized portion of X maintains a
Gibbs state with respect to its local Hamiltonian [17–20],
at all times. Down to the mesoscopic scale, the assump-
tion of instantaneous (local) thermality is the cornerstone
of the two-temperature model (TTM) in solid-state physics
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FIG. 1. The general setup. Two quantum many-body systems,
X = A and X = B, start noninteracting and uncorrelated, each
in a (global) Gibbs state given by Eq. (1). Then, in a sudden
quench, interaction between them is switched on. As a result,
neither A nor B will generally maintain global thermality dur-
ing the joint postquench unitary evolution. Here, we establish in
what sense a more local notion of thermality may be maintained
during the evolution. The dashed boxes illustrate our scale termi-
nology: “total” refers to AB-wide, “global” to either A or B, and
“local” pertains to small subsystems s within A or B.

[21–24]. It is designed to describe the joint dynamics of
electrons and phonons in a solid after the electrons are
suddenly heated up by radiation. Due to its simplicity, the
TTM has been extensively employed for fitting the results
of experiments and ab initio calculations [23–30].

However, when the coupling between and within the
two global systems is not weak, then neither the assump-
tion of global thermality nor that of local thermality of
each A and B is valid any longer [31–34]. Taking this
general observation as a starting point, in this paper we
ask whether, and in what sense, these many-body systems
may nevertheless keep appearing globally thermal when
observed locally, i.e., on small subsystems.

To answer this, we begin by stating a new framework of
thinking about thermality in Sec. II, which subsumes the
standard definition of thermality, given in Eq. (1). It relies
on both global and local properties of the system and hence
defines a new concept of thermality that we call “g-local.”
Its efficacy is demonstrated on harmonic lattices, a realistic
yet efficiently simulable system [10,11,17,35,36], which
we introduce in Sec. III. By numerically solving their
dynamics, we establish in Sec. IV how well g-local ther-
mality captures the instantaneous states of the coevolving
systems. In Sec. V, we look at the process of equilibration
and discuss the subtleties of constructing the generalized
Gibbs ensemble (GGE) that describes it. We close with a
brief discussion of implications for the validity of the TTM
ansatz in Sec. VI, before concluding in Sec. VII.

Our main result is that if local observables of the total
system AB equilibrate for long times, then A and B each
maintain g-local thermality to a very good approximation
at all times, including the transient regime. Moreover, this
behavior is valid at all coupling strengths, including very
strong coupling. This all-time validity of g-local thermal-
ity is surprising because, in general, the dynamics during
the transient regime is thought to be structureless. The
result thus fleshes out a novel “expected behavior” for the
process of joint equilibration of two large systems.

II. G-LOCAL THERMALITY

Consider a state ρX of a many-body system X and a
small local subsystem s ⊂ X (see Fig. 1). We ask whether
a temperature T exists such that the reduced state ρs =
TrX \s[ρX ] of s obeys

ρs
?= TrX \s[τ(T, HX )], (2)

where the partial trace is taken over all of X except s.
If this condition is obeyed, then we say that X is “g-
locally thermal at s.” The term “g-local” is to emphasize
that while ρs is a local quantity, it contains information
about the global τ(T, HX ) due to non-negligible interac-
tions within X . Furthermore, if X is g-locally thermal at
each small subsystem, then we call X “g-locally thermal.”
If, in addition, T is the same for all of them, then we call X
“uniformly g-locally thermal.” Otherwise, when T varies
depending on the subsystem, we say that X is “g-locally
thermal with a gradient.”

Note that the condition given in Eq. (2) is not to be con-
fused with subsystem s being in a Gibbs state τ(T, Hs) at
T with respect to its local (bare) Hamiltonian Hs. Indeed, it
is well known that ρs can differ significantly from τ(T, Hs)

[8,31–33,37–42]. Instead, partially reduced states of global
Gibbs states,

τMF
s (T) := TrX \s[τ(T, HX )], (3)

are known as “mean-force (Gibbs) states” [7,43–45]. With
this definition, the condition of “g-local thermality of X ”
can be compactly expressed as

ρs
!= τMF

s (T), ∀s ⊂ X , (4)

where the s are small subsystems.
However, in most realistic scenarios, one cannot expect

the equality in Eq. (4) to be exact. Thus, it is sensible to
introduce an effective g-local temperature Teff

s for each sub-
system s ⊂ X as that of the mean force state τMF

s (T) that is
closest to ρs. Namely,

Teff
s := arg min

T
D [

ρs, τMF
s (T)

]
, (5)

where as a measure of distance D between the two states,
we choose the Bures metric [46] (for the definition, see
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Appendix A). The distance

Dmin
s := min

T
D [

ρs, τMF
s (T)

]
(6)

then measures the extent to which ρs deviates from the
optimal mean-force Gibbs state. In what follows, we use
the dual quantity, the fidelity [46],

Fmax
s := [

1 − (Dmin
s )2/2

]2 ≤ 1, (7)

and we call this the degree of g-local thermality of X at s.
The fidelity is 1 if and only if the two states ρs and τMF

s are
equal, in which case Teff

s turns into a proper g-local temper-
ature for s. Therefore, the higher the Fs, the closer the local
system s is to having a well-defined g-local temperature
[see Eq. (5)].

The pair (Teff
s ,Fmax

s ) thus fully characterizes the g-local
thermality of X at subsystem s. If the Teff

s for essentially all
small s ⊂ X are approximately equal to each other and all
Fmax

s ’s are close to 1 (within a chosen error [47]), then ρX
(or X itself) is g-locally thermal, with uniform temperature
Teff

X . In Sec. IV, we use Teff
s and Fmax

s to assess the g-local
thermality of each of the two global systems, A and B, of
comparable size N , during their joint evolution.

Unmistakably, our framework is inspired by the equiva-
lence of ensembles [48–52] and canonical typicality [3,53,
54]. The difference is in how temperature is defined. There,
the effective temperature Teff,can

X is determined by equating
the mean energies, i.e.,

Tr
[
τ
(
Teff,can

X , HX
)
HX

] = Tr[ρX HX ], (8)

and it is shown that Eq. (2) is satisfied for T = Teff,can
X under

certain conditions on HX and ρX . This approach is thus
energy-centric and global: Teff,can

X is the same for all subsys-
tems. In contrast, our framework is state-centric and local:
it directly accesses the marginal state of a subsystem s and
defines Teff

s as the solution of the optimization problem in
Eq. (6). The ability to define a local degree of thermality
and an associated temperature at each subsystem allows
our framework to accommodate systems with a temper-
ature gradient (for an example, see Appendix D), which
is beyond the reach of the typicality-based approaches.
Note that when HX is a sum of local terms and the sys-
tem is g-locally thermal with a uniform g-local temperature
Teff

X , then the two temperatures coincide: Teff,can
X = Teff

X (see
Appendix B).

Lastly, when the size of the system X is finite, then
Eq. (2) will hold for a system in a canonically typical state
only approximately, with the correction going to zero as
Ns/NX → 0, where Ns and NX are the numbers of sites
in s and X , respectively. Similarly, in our framework, we
expect Dmin

s to also have a positive contribution stemming
from the small parameter Ns/NX in realistic scenarios. This

FIG. 2. A schematic of the model. Systems A (red) and B
(blue) are here modeled as one-dimensional (1D) (top row) or
two-dimensional (2D) (bottom row) harmonic lattices. Each site
(circles) denotes a local oscillator of frequency ωX that is cou-
pled to its neighbors with strength gX (solid lines) [cf. Eq. (9)].
While only nearest-neighbor interactions are depicted, our results
apply also to long-range interacting systems. Intersystem cou-
pling (dashed green lines) with strength λ occurs either only
at the system edges—as shown in the left column [edge–edge
(EE) coupling], or at all sites—as shown on the right column
[full-body (FB) coupling] [see Eq. (11)]. In all panels, example
subsystems a and b are depicted, at which the g-local thermality
of each, A and B, is assessed in Sec. IV.

finite-size contribution will likely be a highly complex
function of Ns/NX [54,55] and the line between “small”
and “big” subsystems will be drawn by this system- and
situation-dependent contribution and one’s error tolerance.
Importantly, the finite-size effect will in general not be the
only factor contributing to Dmin

s .

III. SETUP AND MODEL

As mentioned in Sec. I, our setup consists of two large
many-body systems, A and B, coevolving after an inter-
action between them is switched on. To be able to solve
the dynamics of the total system AB and demonstrate the
occurrence (or absence) of g-local thermality of each, A
and B, we choose harmonic lattices. Despite their sim-
plicity, these systems are routinely used to approximate
various physical systems [10,11,17,35,36]. At the same
time, the dynamics of the Gaussian states in these systems
admit a numerically efficient phase-space representation
[56–58], allowing us to directly simulate few-hundred-
particle lattices.

Each global system is a one-dimensional (1D) or two-
dimensional (2D) translation-invariant open-ended lattice
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(see Fig. 2), with Hamiltonian

HX =
∑

ν

[
ω2

X q2
X ,ν

2
+ p2

X ,ν

2

]
+

∑

ν,ν′
Gν,ν′

X qX ,ν qX ,ν′ , (9)

where ν enumerates the sites in lattice X , ωX is the on-
site frequency of each site, and all masses are set to 1. The
intrasystem coupling function, Gν,ν′

X , depends only on the
distance between the sites ν and ν ′. Our numerical samples
below explore lattices with coupling functions of the form

Gν,ν′
X = gX

dist(ν, ν ′)α
, (10)

where dist(ν, ν ′) is the Manhattan distance between the
sites ν and ν ′ and α > 0 quantifies the range of interac-
tions. Nearest-neighbor interactions correspond to α = ∞
(and couple only sites with dist(ν, ν ′) = 1).

We recall that A and B are large and of comparable size.
Therefore, for simplicity of presentation, we choose the lat-
tices A and B to have the same size and shape, with N 
 1
denoting the number of sites in each of them. The oppo-
site limit, where one of the systems is much smaller than
the other—say, NA � NB—is well understood in harmonic
systems. A then simply thermalizes with B, in the sense
that its state tends to TrB[τ(TB, HAB)] (save for finite-size
effects) [59,60].

For the interaction term between A and B, Hint, we con-
sider two types of coupling: edge–edge (EE) and full-body
(FB), shown in Fig. 2 for 1D and 2D lattices. For example,
the FB interaction has the form

H (FB)

int = λ
∑

ν

qA,ν qB,ν , (11)

where λ is the intersystem coupling strength and ν runs
over all corresponding sites in A and B (see the right col-
umn of Fig. 2). Given the form of Eqs. (9) and (11), the
natural dimensionless coupling constants are gX /ω2

X and
λ/(ωAωB).

For the initial state, we take the uncorrelated state

ρAB(0) = τ(TA, HA) ⊗ τ(TB, HB) (12)

and the evolution of the joint system AB is generated by
the total Hamiltonian Htot. The Gaussian theory that under-
pins the simulation of harmonic systems has been reviewed
in, e.g., Refs. [56–58]. We give a brief account of the
main quantities and formulas used in our simulations in
Appendix C. Using these methods, we numerically solve
the dynamics of [1D,EE], [1D,FB], [2D,EE], and [2D,FB]
lattices for a representative selection of the full range of
parameter values for which the spectrum of Htot is bounded
from below [61].

eq rec
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transient regime long-time regime
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-
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rr
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FIG. 3. An illustration of the main result. Our main result is
that if local equilibration occurs at long times, i.e., ρs(t) ≈ ρ

eq
s

for all small subsystems s ⊂ AB for t ∈ [teq, trec] (see Sec. V),
then A and B are g-locally thermal at any time t, also in the tran-
sient regime (see Sec. IV). Namely, ρs(t) ≈ τMF

s

(
Teff

s (t)
)
, where

Teff
s (t) is a time-dependent g-local temperature of subsystem s

(see Sec. II). Remarkably, this result characterizes the transient
regime and links it with the long-time equilibration behavior of
the system.

Our direct simulation of the dynamics of the total system
AB gives us access to ρA(t) and ρB(t), which allows us to
analyze the g-local thermality of A and B at all times during
their joint postquench evolution.

IV. ALL-TIME G-LOCAL THERMALITY

We have performed a large number of numerical exper-
iments spanning the full parameter range and established
the following. G-local thermality of A and B is guaran-
teed at all times, including transient times, whenever all
local observables of AB equilibrate dynamically at long
times (for further details on this requirement, see Sec. V).
This behavior occurs for all intralattice coupling strengths
gX and interaction ranges α and interlattice couplings λ.
This is the first main result of the paper. An illustration of
this relation between long-time and transient behavior is
shown in Fig. 3. A detailed account on how we perform the
numerical proof, as well as the numerical evidence itself,
can be found in Appendix E.

An immediate practical consequence of this result is that
if an experimenter monitoring a small region of the system
notes that g-local thermality is violated at that location,
then they can predict with certainty that the system will
not ever equilibrate as a whole.

An example illustration of the above general result is
given by Fig. 4. It shows the fidelities and effective tem-
peratures for the case where A and B are both open-end
1D chains of 200 sites with long-range interactions within
them (α = 0.5), which are coupled via a full-body (FB)
interaction Hamiltonian (see Fig. 2). The plots in Fig. 4
are for subsystem a consisting of two consecutive sites in
the middle of chain A and, similarly, for b in B. Figure 4(a)
shows the degree of g-local thermality of A at a (red) and of
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(a)

(b)

FIG. 4. The g-local thermality of A at a and B at b. (a) The
fidelity Fmax

s [see Eq. (7)], which measures the degree of g-
local thermality of A at s = a (red) and of B at s = b (blue), as
a function of time t. The inset zooms into the fidelity at early
times. (b) The corresponding effective g-local temperatures Teff

s
defined in Eq. (5). The inset shows the normalized difference δ =
(Teff,can

X − Teff
X )/Teff

X between the g-local and effective canonical
[see Eq. (8)] temperatures. The fidelities are close to 1, indicating
that both A and B are g-locally thermal at a and b, respectively,
with very good precision at all times during the evolution. Note
that subsystems a and b settle to slightly different g-local temper-
atures. This plot is for a and b each consisting of two consecutive
sites situated at the centers of the 1D chains A and B, respec-
tively. The chains are NA = NB = 200 long and interact through
full-body (FB) coupling. Each chain features long-range inter-
actions, with the decay rate α = 1/2 [cf. Eq. (10)]. The rest of
the Hamiltonian parameters are ωA = 2 and gA/ω2

A = 0.2 for A
and ωB = 1.5 and gB/ω2

B = 0.3 for B, and the interchain cou-
pling is λ/(ωAωB) = 0.5. The initial temperatures are TA = 0.1
and TB = 1. The vertical dashed lines in both panels (a) and (b)
indicate the instance at which Fig. 6 is plotted.

B at b (blue), as defined in Eq. (7). As we can see, they are
close to 1 at all times, demonstrating the g-local thermal-
ity of A at a and B at b. The corresponding time-evolving
effective g-local temperatures Teff

a and Teff
b of the small sub-

systems a (red) and b (blue) are shown in Fig. 4(b). These
g-local temperatures slowly converge in time, while oscil-
lating about each other. The apparent symmetric nature
of these oscillations is due to the fact that the interaction
energy remains small for the chosen set of parameters (see
Sec. VI with Fig. 10 and the discussion in Appendix B).

To appreciate the nontriviality of the high values of the
fidelity in Fig. 4, note that λ = 0.5 ωAωB corresponds to
quite strong coupling. Indeed, it is close to the maximal
coupling strength (λmax ≈ 0.695 ωAωB), consistent with

(a)

(b)

FIG. 5. The global non-Gibbsianity of A and B. (a) The fidelity
Fmax

X of the state ρX (t) of many-body system X = A, B with the
closest global Gibbs state [see Eq. (1)] as a function of time t.
Starting from a global Gibbs state for which the fidelity is 1,
the state of X deviates increasingly from Gibbs form with an
increasing interaction time between A and B. The interchain cou-
pling for this panel is λ/(ωAωB) = 0.5, as in Fig. 4. (b) The
fidelity Fmax

X of the state ρX (t0) at a fixed moment of time t0
as a function of the coupling strength λ, for λ ∈ [0, λmax], where
λmax ≈ 0.695ωAωB is the largest value allowed for |λ| in this con-
figuration. The time

√
ωAωB t0 = 106 [the vertical dashed line in

(a)] is chosen so as to allow AB to evolve considerably away
from its initial state. The dashed line shows the coupling strength
at which (a) is plotted. Both panels (a) and (b) are for the same
[1D, FB] configuration, with all other parameters being the same
as in Fig. 4.

the requirement that Htot must be bounded from below,
with all the other parameters fixed. Moreover, λ/gA =
1.875 and λ/gB ≈ 2.222, which means that the coupling
strongly perturbs all the nodes of both A and B. Nonethe-
less, both A and B maintain a high degree of g-local
thermality (≥ 0.98) at all times. For comparison, for the
not-much-larger λ = 0.65 ωAωB, Fmax

a and Fmax
b get as

low as 0.93 and 0.884, respectively, during the evolution.
Moreover, the all-time high degree of g-local thermal-

ity of A and B in Fig. 4 is in stark contrast to the quick
loss of global thermality by them, especially at higher cou-
pling strengths. Similarly to Eqs. (6) and (7), we quantify
the degree of global thermality of system X as Fmax

X (t) :=
maxT F [ρX (t), τ(T, HX )]. Figure 5 shows the result for the
same [1D, FB] system as in Fig. 4. We see that the degree
of global thermality in Fig. 5 quickly drops from 1 to
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(a)

(b)

FIG. 6. The g-local thermality with site number ν. (a) The
degree of g-local thermality Fmax

s [see Eq. (7)] of A at two-site
subsystem s = a (red) and of B at s = b (blue), respectively. (b)
The corresponding effective temperatures Teff

s [see Eq. (5)] as a
function of the site number ν. Here, ν = 1, . . . , N − 1 labels all
subsystems consisting of two neighboring sites in A and B. The
fidelities are very close to 1 for all ν. Furthermore, all subsys-
tems s located away from the edges, i.e., those “inside the bulk,”
give essentially the same g-local temperature Teff

s . Together, these
two plots show that both A and B are uniformly g-locally thermal
at all two-site subsystems. The “slider” (black dot) at the bot-
tom indicates the position of subsystem s in X at which Fig. 4 is
plotted. We highlight that this is just one representative snapshot
of the g-local properties of A and B at any particular moment
in time; here,

√
ωAωB t0 = 106. We observe qualitatively the

same plots for any small subsystem size (see Fig. 7) and at other
time points (with varying temperatures; see Fig. 4). All other
parameters are as in Figs. 5 and 4.

� 0.05, which is a clear indication that the global state is
not Gibbsian [62].

Lastly, we find that for most parameter choices for
which the total system AB does not locally equilibrate at
long times (purple box in Fig. 3), the global systems A and
B do not develop stable g-local thermality. However, there
do exist parameter values for which AB does not equili-
brate but A and B do still maintain g-local thermality at all
times.

Now moving on from the specific two-site subsystems
located in the respective centers of the chains, the plots
in Fig. 6 show that 1D chains A and B are g-locally
thermal with respect to all two-site subsystems ν along
the chains. Moreover, “inside the bulk,” i.e., away from
the edges inward, all two-site subsystems share the same
temperature. Both A and B are thus uniformly g-locally
thermal.

(a)

(b)

FIG. 7. The g-local thermality with subsystem size Ns. (a) The
degree of g-local thermality [see Eq. (7)] of X at an Ns-site sub-
system s for Ns = 1, 2, . . . . All subsystems s are centered within
X and all the other parameters are as in Figs. 5–6. The plot is
taken at the instance

√
ωAωB t0 = 106. Fmax

s is high (≥ 0.98) up
to subsystem sizes Na = 4 and Nb = 3 for these 1D chains of
NA = NB = 200. (b) The effective g-local temperatures Teff

s [see
Eq. (5)] versus Ns. These values can be considered trustworthy
only up to Na = 4 and Nb = 3, respectively. Interestingly, we find
that they do not change significantly as the subsystem size goes
beyond Ns = 4.

Of course, as the size of the subsystem s grows, the
degree to which the system X is g-locally thermal at
s, Fmax

s , must decrease, reaching very low values as Ns
approaches NX (see Fig. 5, which plots the fidelity for
Ns = NX ). The decrease of Fmax

s with Ns is shown in
Fig. 7, where the center of subsystem s is fixed at the
center of X . The plot is a snapshot of the system taken
at the same instance

√
ωAωB t0 ≈ 106 as in Fig. 6. The

presented behavior is representative for all times. We see
that Fmax

s ≥ 0.98 for Na ≤ 4 and Nb ≤ 3. The effective
g-local temperatures Teff

s for all values of Ns are approxi-
mately equal. For larger values of time as well as for larger
sizes of the global systems, both curves in Fig. 7 become
flatter. However, they do not become entirely flat in the
NX → ∞ limit for all times. Thus, although A and B are
indeed g-locally thermal to a good approximation at all
times for NX 
 1, Eq. (4) does not become exact in the
thermodynamic limit (at least not for all times).

The g-local thermality that we observe is not limited to
the [1D, FB] case. We find qualitatively identical behav-
ior for the other three topological configurations [1D, EE],
[2D, EE], and [2D, FB] (see Fig. 1). To provide represen-
tative evidence, in Fig. 8 we show the time dependence
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(a)

(b)

FIG. 8. The g-local thermality for [2D, FB]. The analogue of
Fig. 4 for a [2D, FB] system (bottom-right corner of Fig. 2).
A and B are 26 × 26 2D lattices, with nearest-neighbor cou-
pling within them [α = ∞ in Eq. (10)]) and full-body coupling
between them. The subsystems a and b are two-site subsys-
tems located centrally in A and B, respectively. On panel (a), we
observe very high degrees of g-local thermality in both A and B
for all times. Moreover, on panel (b), we see a faster tempera-
ture stabilization than in Fig. 4(b). The inset shows the relative
temperature difference δ between Teff

X and Teff,can
X . Similarly to the

1D case, the subsystems a and b settle to slightly different g-local
temperatures. Here, the Hamiltonian parameters are ωA = 2 and
gA/ω2

A = 0.15 for A and ωB = 1.5 and gB/ω2
B = 0.2 for B and the

interchain coupling is λ/(ωAωB) = 0.23. The initial temperatures
are TA = 0.1 and TB = 1.

of the fidelities and effective g-local temperatures for cen-
tral two-site subsystems a and b for the [2D, FB] case.
There, A and B are 2D lattices of dimension 26 × 26 (i.e.,
N = 676) with full-body interaction. These [2D, FB] plots
show qualitative similarity to those for the [1D, FB] case,
shown in Fig. 4, with slightly better convergence compared
to the 1D case. Both Figs. 4 and 8 illustrate the important
possibility of the g-local temperatures of A and B not con-
verging to the same value (cf. Sec. VI). This behavior can
occur both in strong- and weak-coupling regimes.

For the [1D, EE] and [2D, EE] configurations, we find
that, while both A and B remain g-locally thermal, the sys-
tems expectedly exhibit gradients of local temperatures.
We discuss this in Appendix D.

A. Independence from typicality

Finally, the novelty and unexpectedness of our all-time
g-local thermality result is emphasized by the fact that it
applies to systems and situations well beyond the scope

of all known results in canonical typicality and ensem-
ble equivalence. Indeed, the most general result in that
direction is the stronger ensemble equivalence proven by
Brandão and Cramer [50] for lattices with short-range
interactions. There, it is shown that if τ

(
Teff,can

X , HX
)

has
exponentially decaying correlations and ρX is not too far
from τ

(
Teff,can

X , HX
)
, then ρs approaches τMF

s

(
Teff,can

X

)
in

the thermodynamic limit for most small subsystems s. In
our language, this means that ρX is g-locally thermal with
uniform g-local temperature Teff

X = Teff,can
X . While the con-

ditions under which this result applies are fairly restrictive,
especially when dealing with dynamical states, it implies
that our result for FB-coupled nearest-neighbor lattices
could be expected to some extent. And, indeed, in the bot-
tom inset of Fig. 8, we see that the difference between
Teff

X and Teff,can
X remains fairly small at all times. However,

long-range interacting systems, as well as situations with
temperature gradient, are beyond the scope of Ref. [50]
(and all other works on canonical typicality and ensemble
equivalence known to us). Sure enough, we find a signifi-
cant discrepancy between Teff

X and Teff,can
X in Figs. 4 and 11,

signaling that the results of Ref. [50] do not hold. The
persistent g-local thermality that we observe, on the other
hand, applies to all these systems and situations, which
strongly suggests that it is a fundamentally different phe-
nomenon from ensemble equivalence. We provide further
context and a more detailed discussion in Appendix F.

V. EQUILIBRATION AND THE GENERALIZED
GIBBS ENSEMBLE

Recall that all-time g-local thermality of A and B is guar-
anteed whenever all local states of AB equilibrate at long
times. Here, we first discuss the details of this requirement
and then describe how the equilibrium state relates to the
generalized Gibbs ensemble (GGE).

The definition of “local equilibration” [3,63] of the total
system AB is that the reduced state ρs(t) = TrAB\s[ρAB(t)]
of each small subsystem s of AB reaches an ε neighborhood
of some ρ

eq
s within some finite time teq(ε) and thereafter

stays in it. Typically, teq(ε) will depend only weakly on
the size of AB, as long as AB is large enough. Note though
that, in general, the larger the relative size Ns/NAB of s,
the larger the ε one has to tolerate (see also the related
discussion at the end of Sec. II).

On the other hand, for a finite system of size NAB,
there is always an upper time limit, the recurrence time
trec, at which the local equilibration behavior is disrupted
and information starts flowing back from AB\s into the
subsystem s. This time scale is typically a monotonically
increasing function of NAB. Hence, “local equilibration” of
AB refers to being in equilibrium in the full time-interval
[teq, trec] [64]. Numerically, we confirm local equilibration
by directly calculating ρs(t) from t = 0 to some large tmax
and plotting the distance D[ρs(t), ρGGE

s ] against t. When
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(a)

(b)

[
]

[
]

FIG. 9. Equilibration and time scales. (a) The equilibration
of a two-site subsystem a in the center of A for the [1D, FB]
configuration with α = 1.75 and all the other parameters as in
Fig. 8. Here, the normal-frequency spectrum is nondegenerate
and therefore the equilibrium state ρ

eq
a equals ρGGE

a , with the
latter defined in Eq. (14). Due to the finite size of AB, equili-
bration never occurs exactly—one usually fixes a small ε > 0
and considers the system equilibrated once D[ρa(t), ρeq] ≤ ε.
We choose ε = 0.02 here and find that s is in equilibrium for
t ∈ [teq, trec]. For times larger than the “recurrence time” trec, AB
deviates from local equilibrium. This trec grows with the size of
AB. (b) The equilibration of a two-site subsystem at the center of
A for the [2D, FB] configuration with α = 1 and all the other
parameters as in Fig. 8. The equilibrium is still described by
the GGE, but one that is complemented with the additional con-
served charges present in this configuration due to degeneracies
in the normal-mode spectrum.

this distance goes below some small ε and stays there
for a substantial portion of the time, then we conclude
that ρ

eq
s = ρGGE

s (for a more precise characterization, see
Appendix E 2). This procedure is done for all small s.

Representative results are shown in Fig. 9 for the [1D,
FB] and [2D, FB] configurations. We emphasize again that
when such local equilibration of AB occurs at long times,
t > teq, then g-local thermality of A and B holds at all
times, including the transient time interval [0, teq].

Let us now comment on the nature of the equilibrium
state itself. For an integrable system (the total system AB
in our case), whenever local equilibration takes place, it is
generically described by the so-called generalized Gibbs
ensemble (GGE) [2,3,6,14,16,65–72]. For systems with
quadratic Hamiltonians (bosonic and fermionic alike), the
GGE is determined only by quadratic conserved charges
[68,73,74]. Whenever all the normal frequencies of the
system are different from each other, the Hamiltonians of

the normal modes, which are conserved, constitute a basis
in the algebra of conserved charges. Thus, when all NAB
normal frequencies 
k of the interacting harmonic lattice
AB are distinct, the GGE takes the form

ρGGE
AB := e−∑

κ βκ hκ

Tr[e−∑
κ βκ hκ ]

, (13)

where hκ := 
κ(Q2
κ + P2

κ)/2 are the normal-mode Hamil-
tonians (Qκ and Pκ being the normal-mode coordinates) of
AB. By definition, the total postquench Hamiltonian can be
written as Htot = ∑NAB

κ=1 hκ (see Appendix C).
The state given in Eq. (13) describes the equilibrium in

the sense that [64,68]

teq ≤ t ≤ trec : ρs(t) ≈ TrAB\s
[
ρGGE

AB

]
:= ρGGE

s , (14)

where the approximate equality sign indicates that there
will generally be a finite-size correction ε. In Eq. (13),
1/βκ are the “generalized temperatures” that stem from the
fact that the operators hκ are conserved in the dynamics.
They are determined through the initial expectation values

Tr
[
hκ ρGGE

AB

] = Tr[hκ ρAB(0)], κ = 1, . . . , NAB (15)

(for an explicit formula, see Eq. (C21)). Figure 9(a) shows
local convergence to this GGE for the [1D, FB] configura-
tion.

When the spectrum of normal frequencies has degenera-
cies, the operators hκ no longer span the complete algebra
of conserved charges [69,73,74]. More specifically, each
pair 
k = 
j (k �= j ) adds the conserved charge Ikj =

k(QkQj + PkPj ). Together with hκ’s, these now span the
complete algebra of conserved charges. Therefore, in order
to correctly describe the local equilibrium of the system,
the GGE needs to be complemented accordingly: ρGGE

AB ∝
e−∑

βκ hκ−∑
βkj Ikj [69,73,74]. Similarly to Eq. (15), the βkj’s

are determined from Tr[Ikj ρ
GGE
AB ] = Tr[Ikj ρAB(0)]. Due to

the presence of degeneracies, the decomposition of HAB
into normal modes is not unique. Conveniently, one can
always choose a set of normal modes (Q̃κ , P̃κ) such that
all Tr[̃Ikj ρAB(0)] = 0, which in turn leads to β̃kj = 0 [73].
With such a choice of normal modes, the GGE again takes
the form given in Eq. (13), now depending on the charges
Ĩkj only indirectly, through the conditions Tr[̃Ikj ρAB(0)] =
0. We follow this procedure in our numerics whenever the
system has a degenerate normal frequency spectrum.

In our numerical experiments, only the [2D, FB] con-
figuration yields degenerate normal frequency spectra. In
all other configurations, the spectrum is always nondegen-
erate. This might be related to the fact that [2D, FB] is
the only configuration for which AB is effectively three
dimensional (3D) (cf. Fig. 2).

That the local equilibrium of harmonic systems is
described by the GGE has been established in the literature

030321-8



LONG-TIME EQUILIBRATION CAN DETERMINE... PRX QUANTUM 4, 030321 (2023)

for the following two scenarios: (i) the normal frequency
spectrum must be nondegenerate but the range of interac-
tions can be arbitrary [68]; and (ii) the normal frequency
spectrum can be degenerate but the interactions must be
of finite range or decaying exponentially [69,73,74]. Sure
enough, our numerics confirm that the GGE describes the
equilibrium for [1D, EE], [1D, FB], and [2D, EE] ∀α (the
hκ ’s are sufficient) and for [2D, FB] with α = ∞ (the Ikj ’s
have to be accounted for).

However, the [2D, FB] configuration with α < 2, where
the normal-frequency spectrum is degenerate and the inter-
actions are of long range, is not covered by any of the
known results about harmonic systems. For this case, we
establish that the equilibrium is still described by the GGE
that accounts for the charges Ikj . Figure 9(b) illustrates
such a situation on the example of a [2D, FB] lattice with
long-range interactions (α = 1).

VI. TWO-TEMPERATURE MODEL AND
G-LOCALITY

Let us now discuss the implications of g-local thermal-
ity for the two-temperature model (TTM) in the strong-
coupling regime. The TTM is widely used in solid-state
physics [21–26,75,76] to describe a setting similar to ours.
Namely, it concerns the joint thermalization of two macro-
scopic systems that start at different temperatures. Usually
one of the systems—say, A—is a free-electron gas while
the other, B, is a crystal lattice. However, the TTM is not
specific to those systems and can be formulated generally,
based on two assumptions.

First, the TTM posits that each system, A and B, can be
described by a thermal state at all times. In our notation,
that would mean that the reduced states must be global
Gibbs states throughout, ρA(t) = τ(TA(t), HA) and ρB(t) =
τ(TB(t), HB), where the temperatures TA(t) and TB(t) vary
in time. The second assumption made by the TTM (and
many of its generalizations) concerns the energy exchange
between A and B. It assumes that the energy exchange is
governed by a rate equation, with rates given by a Fourier-
like law [21–27,76]. In Appendix G, we write this rate
equation explicitly and show that its validity is equiva-
lent to the assumption that the temperatures of the systems,
TA(t) and TB(t), are differentiable functions of time that
converge monotonically. Thus, the second assumption can
be neatly summarized as “TA(t) and TB(t) monotonically
approach the same value Teq.” The standard regime of
validity of the TTM is when A and B interact relatively
weakly, whereas at strong couplings it is known to break
down [28].

Two key applications of the TTM are noteworthy here.
First, it allows us to determine the equilibrium temperature

Teq [21–23,29,30,77] which is fixed by energy conserva-
tion, i.e.,

〈HA〉TA + 〈HB〉TB = 〈HA〉Teq + 〈HB〉Teq , (16)

where 〈HX 〉T := Tr[HX τ(T, HX )] and TX is the initial tem-
perature of X . The lack of accounting for the energy stored
in the interaction Hint is a manifestation of the weak-
coupling assumption. Second, the rate equation allows us
to infer the temporal changes of the temperatures and ener-
gies of the interacting systems A and B [22]. This has
been used to understand the ablation of metals follow-
ing ultrashort pulses [78] and to characterize the ultrafast
heat transport between electrons and phonons in multilay-
ers [29]. Extensions to a three-temperature model which
includes their interaction with spins have proven useful in
the study of ultrafast demagnetization processes [79–81].

Based on our findings for harmonic lattices, we can
now comment on the validity of the TTM beyond the
weak-coupling limit for which it was originally intended.
The electron–phonon setting of the original TTM cor-
responds to the FB coupling scenario in our setup. In
Fig. 5, we see that both A and B move away from Gibbs
states very quickly, even at fairly weak couplings. Hence,
they have no well-defined global temperatures. This break-
down of all-time global Gibbsianity beyond the regime of
extremely weak coupling is not unexpected [28,81,82].

What is perhaps surprising is that here we find that it
is possible to associate g-local temperatures [see Eq. (5)]
with A and B at all times (see Figs. 4 and 8). In this sense,
the first assumption of the TTM can be rescued at strong
coupling. Moreover, our finding that all-time g-local ther-
mality also holds in the presence of temperature gradients
(see Appendix D) opens up the possibility of upgrading
even the more general diffusive TTM [22,26,30,83] to the
strong-coupling regime. The latter posits “local thermal
equilibrium” within each lattice, i.e., that each small local-
ized subsystem of the lattice is in a Gibbs state with respect
to its own bare Hamiltonian [19,30]. Of course, when there
is strong coupling within the lattice, the local thermality
hypothesis breaks down, whereas the g-local thermality is
maintained.

Regarding the second assumption of the TTM, we find
that its main proposition no longer holds for harmonic lat-
tices, even for the extended notion of g-local temperatures.
This is evidenced by Figs. 4 and 8, which clearly show that
Teff

A (t) − Teff
B (t) is not monotonic in t. Therefore, beyond the

weak-coupling limit, no TTM-type rate equation exists that
would describe the time evolution of Teff

A and Teff
B . This is

so despite the fact that heat capacities are well defined for
both A and B because they are g-locally thermal (see the
discussion in Appendix B).

Nevertheless, we find that the predictive power of
Eq. (16) is partially retained for harmonic lattices. Indeed,
although Teff

A and Teff
B may, in general, converge to two
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FIG. 10. Energy flows. The heat flows to each global system,
Q̇X := d Tr[HX ρX ]/dt, and the interaction energy flow, Ėint, as
functions of time. All parameters are as in Fig. 9(a). Note that
the direction of the heat flow from A → B and from B → A is
oscillatory. Moreover, due to the eventual equilibration of the
whole system, all energy flows slowly converge to near-zero val-
ues as time goes on beyond what is shown in the plot. This plot
represents generic behavior for all four geometries in Fig 2. The
vertical dashed line is chosen at

√
ωAωB tbf ≈ 137.87, where heat

back flow occurs: A has a lower temperature than B but loses heat
(Q̇A < 0) while B receives heat (Q̇B > 0).

different values (see Figs. 4 and 8), Eq. (16) remains fairly
accurate, with Teq substituted by Teff,eq

A and Teff,eq
B (for a

detailed discussion on this, see Appendix H).
Lastly, we note that, together with the nonmonotonic

convergence of temperatures, the alternating direction of
the heat flow shown in Fig. 10 witnesses (but does not
necessitate [84]) the non-Markovian nature of the dynam-
ics that each system X is undergoing under the influence
of the other. Moreover, in contrast to the predictions of
the TTM, energy may sometimes flow from cold to hot, a
phenomenon sometimes referred to as “back flow of heat.”

VII. DISCUSSION AND OUTLOOK

To summarize, going beyond the too restrictive demand
of global thermality, we introduce the notions of g-local
thermality and the associated g-local temperatures. These
characterize local subsystems while also making reference
to global Gibbs states of the many-body system. We evi-
dence the power of these concepts on the example of a
pair of harmonic lattices with varying spatial dimensions
and topologies of couplings. We find compelling numeri-
cal evidence that persistent g-local thermality of A and B
at transient times is a necessary condition for AB to ther-
malize at long times. This is true even though A and B
themselves venture far from being globally thermal and it
applies to lattices A and B with both short- and long-range
interactions within them, as well as arbitrary coupling
strengths between them. This finding adds a new “expected
behavior” to the short list of known results for the transient
regime in the dynamics of interacting quantum many-body

systems. Furthermore, for the equilibrium state itself, we
find that it is described by the GGE for all configurations
and interaction ranges. This includes the peculiar case of
2D lattices with full-body coupling (rendering AB three-
dimensional), for which the normal-frequency spectrum is
degenerate. Such systems have an extended algebra of con-
served charges, and the GGE has to be constructed taking
all those charges into account.

These results open up several new directions. As a
first step, many-body systems other than harmonic lat-
tices may be tested numerically for the presence of g-local
thermality. Further ahead, analytical arguments might be
constructed that can prove the presence of transient g-
local thermality given long-term equilibration for either
harmonic lattices or more general many-body systems.
Finally, experiments with atoms in optical lattices or
trapped ions may in the future test the link between tran-
sient g-local thermality and long-time equilibration [14–
16,65,70,72,85–88].

In general, g-local thermality naturally fits into the
framework of quantum thermometry [89,90] and strong-
coupling thermodynamics [7,40–42]. Performing spatially
local thermometry [89–93] measures the g-local tempera-
ture of a system irrespective of whether the system state is
globally thermal or g-locally thermal (see Appendix B).
Such measured records give an operational meaning to
g-local temperatures. Moreover, when dealing with many-
body systems with local Hamiltonians, all energetic quan-
tities are already determined by local states. Thus, those
strong-coupling thermodynamics results that are derived
under the assumption of global thermality [44,94–98],
will naturally extend to g-locally thermal systems. Fur-
thermore, all-time g-local thermality may enable hydro-
dynamic treatment of nonequilibrium transport at strong
coupling not only in the steady state [99,100] but also in
the transient regime. G-local thermality may also be useful
in the study of local transfer in systems with noncom-
muting conserved charges [101,102]. Lastly, maintained
g-local thermality might lead to a type of Markovianity and
local detailed balance for some observables [103] under
certain conditions.

Part of the motivation for this work is to provide a
microscopic justification of the TTM that is often used to
interpret transient heat dynamics in condensed-matter sys-
tems. The TTM assumes that both systems remain globally
thermal during the interaction, an assumption that gener-
ally fails when the coupling is not weak. For our model
system, we see that some of the features of the TTM
can be carried over into the strong-coupling regime, by
updating the restrictive global thermality assumption to g-
local thermality. However, at strong couplings, we see that
the g-local temperatures of A and B relax in an oscilla-
tory fashion and that their difference may remain nonzero.
This behavior is clearly incompatible with a rate-equation
ansatz for heat exchange typically applied within the TTM.
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Nonetheless, the maintenance of g-local thermality and
the ability to write a simple (approximate) energy con-
dition for the equilibrium (g-local) temperatures akin to
Eq. (16) provides a substantial generalization of the TTM
to the strong-coupling regime. The phenomenology that
we find for harmonic lattices may admittedly not be fully
transposed to “hot electrons” exchanging heat with a “cold
crystal lattice.” The approach we propose is, however, flex-
ible enough to capture both kinds of subsystems that one
typically encounters in condensed-matter physics: either
localized in a limited spatial domain or defined by a certain
set of (coarse-grained) physical observables.
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APPENDIX A: FIDELITY AND BURES DISTANCE

In the definition given in Eq. (5), one can in principle
use any metric to define the effective temperature. With
any choice of metric, the resulting effective temperature
will coincide with the true g-local temperature whenever
the system is g-locally thermal exactly.

Since our model is Gaussian (see Appendix C), it is
convenient to work with the Bures metric. It is defined as
[46]

D(ρ1, ρ2) := [
2(1 −

√
F(ρ1, ρ2))

]1/2, (A1)

where

F(ρ1, ρ2) :=
(

Tr
√

ρ
1/2
1 ρ2 ρ

1/2
1

)2
(A2)

is the quantum fidelity [46]. The reason for this preference
in our case is that the fidelity can be explicitly calculated
for Gaussian multimode states through their covariance
matrices [104–106] [see Eqs. (C18)–(C20)].

APPENDIX B: G-LOCAL THERMALITY AND
LOCAL OBSERVABLES

Let us show that by using only local observables
one cannot differentiate between standard (globally) ther-
mal and uniformly g-locally thermal states of many-body
systems.

An observable O living in the Hilbert space of a lattice
system X is called local if it can be written as

O =
∑

s⊂X

Os, (B1)

with each Os acting nontrivially only on some spatially
localized subsystem s containing at most k sites, for some
fixed k. This means that one can write Os = Ôs ⊗ IX \s,
where Ôs is some operator living in the Hilbert space
of s.

Now, if the state of X , ρX , is g-locally thermal at each s,
with uniform g-local temperature T, then

〈O〉 := TrX [OρX ]

=
∑

s

TrX

[(
Ôs ⊗ IX \s

)
ρX

]

=
∑

s

Trs

[
Ôs ρs

]

(∗)=
∑

s

Trs

[
Ôs TrX \s

[
τ(T, HX )

]]

=
∑

s

TrX

[(
Ôs ⊗ IX \s

)
τ(T, HX )

]

= TrX [O τ(T, HX )] , (B2)

where in step (∗) the g-locality condition in Eq. (2) is used.
In particular, this means that if HX is local, then the

effective canonical temperature Teff,can
X of X , defined in

Eq. (8), coincides with T. Indeed, in view of Eq. (B2),
we have Tr[ρX HX ] = Tr[HX τ(T, HX )]. Moreover, if we
define the “g-local” heat capacity of X as d Tr[HX ρX ]/dT,
then it will be equal to the heat capacity of X if it were in
a global thermal state at temperature T.

Note that in some cases it might happen that ρX is
g-locally thermal also at small but spatially delocalized
subsystems containing at most k sites. Then, the equality
Teff,can

X = Teff
X will hold even if HX is a long-range but at

most k-body interacting Hamiltonian.
Finally, we note that the effective canonical temperature

Teff,can
X has found some use in nonequilibrium thermody-

namics [107–109] and that the equality Teff,can
X = Teff

X for g-
locally thermal systems provides Teff,can

X with an additional
thermodynamic meaning.

APPENDIX C: A SUMMARY OF HARMONIC
SYSTEMS

As described in Sec. III, our model system is a harmonic
lattice. Namely, it is a collection of linearly coupled oscil-
lators, so all the Hamiltonians are quadratic. The tools for
simulating and calculating many physical and information-
theoretical quantities for such systems are well known and
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are thoroughly described in, e.g., Refs. [56–58]. Here, we
give a brief account of the main notions and formulas
necessary for our purposes.

The position and momentum coordinates of a system
of N oscillators are conveniently collected into a column
vector in the phase space

x =
(

q
p

)
, (C1)

with a total of 2N components,

q = (q1, . . . , qN )T, p = (p1, . . . , pN )T.

We call this phase-space basis the “q-p” basis. In this
basis and in units where � = 1, the canonical commutation
relations are written as

[xk, xj ] = iϒk,j , (C2)

where the antisymmetric matrix ϒ has the symplectic
form:

ϒ =
(

0 I
−I 0

)
, (C3)

in which I is the N × N identity matrix and 0 is the N ×
N zero matrix. [A relation similar to Eq. (C2) applies in
classical mechanics but with the Poisson bracket instead
of the commutator.]

In terms of the phase-space coordinates x, the Hamilto-
nian is a quadratic form

H = 1
2

xTFx, (C4)

where we call the symmetric matrix F the “Hamilto-
nian matrix.” When there is no momentum–momentum
coupling in the system, F takes the form

F = V ⊕ I, (C5)

where V corresponds to the “potential energy” part of the
Hamiltonian and the identity I specifies the kinetic energy
(after scaling out the oscillator masses).

Two harmonic systems A and B can be combined by
forming the direct sum of their phase spaces, with the joint
Hamiltonian matrix

FAB = VAB ⊕ IAB, (C6)

where

VAB = VA ⊕ VB + Vint. (C7)

Here, the interaction potential Vint represents Hint that
couples A and B [see, e.g., Eq. (11)].

Due to a theorem by Williamson [110], any Hamiltonian
matrix can be symplectically diagonalized. Namely, there
exists a symplectic transformation matrix S such that

STFS = 
 ⊕ 
, (C8)

where the diagonal matrix 
 = diag(
1, . . . , 
N ) col-
lects the normal-mode frequencies of the system. Recall
that symplectic is any matrix that leaves the canonical
commutation relation in Eq. (C2) invariant: STϒS = ϒ .

The same matrix S switches from the q-p basis to the
normal-mode basis:

x = SX, (C9)

where X = (Q1, . . . , QN , P1, . . . , PN )T collects the posi-
tions and momenta of the normal modes. In the normal-
mode basis, the Hamiltonian is a sum of noninteracting
oscillators:

H =
∑

j


j

[Q2
j

2
+ P2

j

2

]
. (C10)

The initial state ρ(0) given in Eq. (12) is a tensor prod-
uct of Gibbs states of quadratic Hamiltonians; therefore,
it is Gaussian. Hence, there is no net displacement of the
phase-space coordinates, 〈x〉t := Tr[ρ(t) x] = 0, and, since
the Hamiltonian is quadratic at all times, the state ρ(t) also
remains Gaussian at all times [58].

Gaussian states are uniquely determined by the covari-
ance matrix [58]

σjk = 1
2

Tr
[
ρ (xj xk + xkxj )

]
, (C11)

where the curly brackets denote the anticommutator. Con-
veniently, the covariance matrix of any subsystem (in
our case, it can be A or B or some small subsystem of
sites) is simply the corresponding sub-block of σ , which
determines its reduced state.

Whenever the system is in a Gibbs state [i.e., ρ =
τ(T, H); see Eq. (1)], the covariance matrix in the normal-
mode basis,

�jk = 1
2

Tr
[
τ(T, H) (Xj Xk + XkXj )

]
, (C12)

is diagonal and given by [58]

� = R ⊕ R, (C13)

where R = diag(R1, . . . , RN ), with

Rj = 1
2

coth

j

2T
. (C14)
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Due to Eq. (C9), the covariance matrix in the “original”
q-p basis x is then

σ = S�ST. (C15)

Noting that the covariance matrix for a tensor product
ρA ⊗ ρB is a direct sum, σA ⊕ σB, we can thus construct
the covariance matrix of the initial state given in Eq. (12).

As for calculating the dynamics of the system, they
can be derived immediately from the Heisenberg equa-
tions of motion for x that the evolution of the covariance
matrix under a quadratic Hamiltonian is a symplectic
transformation [58,111]:

σ(t) = E(t)σ (0)E(t)T, (C16)

where E(t) is a symplectic matrix. Moreover, E(t) is
explicitly expressed through the matrix F given in Eq. (C4)
[112,113]. When the Hamiltonian is time independent, F is
constant and

E(t) = eϒFt. (C17)

Furthermore, to find effective g-local temperatures through
Eq. (5), we need to calculate the fidelity given in Eq. (7).
For two N -mode Gaussian states, ρ1 and ρ2, with respec-
tive covariance matrices σ1 and σ2 and identical average
coordinates (which are zero in our case), the fidelity is
given by [106]

F(ρ1, ρ2) =
[

M
det(σ1 + σ2)

]1/4

, (C18)

where

M = det
[

2
(√

I + 1
4
(Cϒ)−2 + I

)
C

]
, (C19)

in which I and ϒ are the (2N ) × (2N ) identity matrix and
the symplectic form [Eq. (C3)], respectively. The matrix C
is defined as

C = −ϒ(σ1 + σ2)
−1

(ϒ

4
+ σ2ϒσ1

)
. (C20)

Lastly, let us find the generalized inverse temperatures
βκ in the GGE for harmonic systems. These are deter-
mined from Eq. (15). Since all the charges hκ live in
nonoverlapping Hilbert spaces, we have

Tr
[
hκρ

GGE
AB

] = Tr
[
hκe−βκ hκ

]

Tr
[
e−βκ hκ

] = 
κ

2
coth

βκ
κ

2
.

Thus, equating this to 〈hκ〉 = Tr[hκρAB(0)]), we find that

βκ = 2

κ

arctanh

k

2 〈hκ〉 . (C21)

(a)

(b)

FIG. 11. The g-local thermality of A at a and B at b. (a) Simi-
larly to Fig. 4, the fidelity Fmax

s [see Eq. (7)] of A at s = a (red)
and of B at s = b (blue) as a function of time t. For each X , the
single-site subsystem s is located at the center of the lattice X . A
and B are connected at ν = 1. The inset zooms into the fidelity
at early times. The fidelities remain very close to 1 (the smallest
Fmax

s being 0.999979), indicating that both A and B are g-locally
thermal at a and b, respectively, with extremely good precision
at all times during the evolution. (b) The corresponding effective
temperatures Teff

s [see Eq. (5)]. The inset is for δ—the relative
discrepancy between the effective g-local and canonical temper-
atures. It is large in the transient regime, signaling a significant
temperature gradient in the system (cf. Fig. 12). This plot is for
A and B both having only nearest-neighbor interactions within
them (α = ∞). All other parameters are the same as in Fig. 4.
The vertical dashed line indicates the instance at which Fig. 12 is
plotted.

APPENDIX D: G-LOCAL THERMALITY FOR
EDGE–EDGE COUPLED LATTICES

EE coupling is present when the interaction Hamiltonian
is of the form

H (EE)

int = λ
∑

ν∈edge

qA,νqB,ν , (D1)

where ν runs over the sites located on the interacting edge
of each lattice (for an illustration. see the left column of
Fig. 2).

For example, when A and B are 1D, the edge consists
of a single site. For such a configuration, with A and B
featuring nearest-neighbor interactions, the dynamics of
the fidelity Fmax

s and effective g-local temperature Teff
s of

a single-site subsystem s located at the center of X are
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(a)

(b)

FIG. 12. The g-local thermality with site number ν. (a) Simi-
larly to Fig. 6, the fidelity Fmax

s [see Eq. (7)] of A at single-site
subsystem s = a (red) and of B at s = b (blue), respectively, as a
function of the site number ν. (b) The corresponding effective
temperatures Teff

s [see Eq. (5)] as a function of the site num-
ber ν. Here, ν labels all single-site subsystems s in X , with
ν = 1, . . . , N . We see that the fidelities Fmax

s are very close to
1 for all ν (the smallest Fmax

s being 0.996439). However, in
contrast to the [1D, FB] case shown in Fig. 6, the g-local tem-
peratures Teff

s change with s—there is a (g-local) temperature
gradient in the system. The “slider” (black dot) at the bottom
indicates the position of the subsystem s in X at which Fig. 11
is plotted. Here,

√
ωAωB t0 ≈ 389.71 and all other parameters are

as in Fig. 11.

plotted in Fig. 11. Similarly to the case of FB coupling dis-
cussed in Sec. IV, we see that s remains g-locally thermal
at all times to a good approximation.

We also note in Fig. 11(b) that the effective tempera-
ture of s remains unchanged for some time. This happens
because the speed of sound in each system is finite and
therefore it takes a finite amount of time for the perturba-
tion caused by switching on the coupling at the edge to
reach the center of the chain (where s is located).

For this very reason, there is also a temperature gradient
within each lattice X in the transient regime, before the
total system equilibrates. A snapshot of that is presented
in Fig. 12, where the fidelity Fmax

s and effective g-local
temperature Teff

s are plotted as a function of the position of
a single-site subsystem s that slides along the chain (just
as in Fig. 6). Here, we see that while all s are g-locally
thermal to an excellent approximation, their temperature
now depends on the position of s. Due to this gradient, the
effective canonical temperature given in Eq. (8) becomes
inadequate, as is emphasized in the inset of Fig. 11(b).

Expectedly, at those times when there is a tempera-
ture gradient in the lattices, the decay of Fmax

s with Ns
is faster as compared with the FB case. Moreover, even
small (e.g., Ns = 2) but delocalized subsystems s (i.e.,
when s = {ν1, ν2} with, e.g., ν1 = 50 and ν2 = 150), are no
longer g-locally thermal. This contrasts with the [1D, FB]
and [2D, FB] cases, where all small subsystems, localized
or not, are g-locally thermal to a good approximation.

APPENDIX E: NUMERICAL DEMONSTRATION
OF THE MAIN RESULT

In this appendix, we numerically demonstrate the valid-
ity of our main result laid out in Sec. IV (and illustrated in
Fig. 3). It states that g-local thermality of A and B is guar-
anteed at all times, including during the transient, when-
ever all local observables of AB equilibrate dynamically at
long times.

We first describe the parameter space and then discuss
the relevant figures of merit and show pertinent results of
our simulations.

1. Parametrization

A natural dimensionless parametrization of the sys-
tem and its dynamics can be achieved as follows. First,
we recall that we work in the natural units where � =
kB = 1 and the masses of all the oscillators are set to 1.
Therefore, the transformation q̃ = q

√
ω, p̃ = p/

√
ω ren-

ders q̃ and p̃ dimensionless while preserving the canonical
commutation relations. In these terms,

HX = ωX hX (q̃ν , p̃ν , g̃X , α), (E1)

where the dimensionless operator function hX of the
dimensionless quantities (q̃ν , p̃ν , g̃X , α), with

g̃X := gX /ω2
X , (E2)

is given by

hX = 1
2

∑

ν

(
q̃2

ν + p̃2
ν

) +
∑

ν �=ν′
G̃ν,ν′

X q̃X ,ν q̃X ,ν′ . (E3)

Here, by natural extension of Eq. (10),

G̃ν,ν′
X := g̃X

dist(ν, ν ′)α
. (E4)

Introducing the dimensionless lattice–lattice coupling

λ̃ := λ/(ωAωB) (E5)

and

μ :=
√

ωA/ωB, (E6)
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we obtain the total Hamiltonian

Htot = √
ωAωB htot, (E7)

where, for e.g., the FB coupling, the dimensionless opera-
tor htot is

htot = μhA + μ−1hB + λ̃
∑

ν

q̃A,ν q̃B,ν . (E8)

As mentioned in Sec. III, in the five-dimensional system-
parameter space with coordinates (μ, α, λ̃, g̃A, g̃B), the set
of allowed system parameters is determined by the condi-
tion that the operator htot is unbounded from below.

Lastly, the evolution in dimensionless time

t̃ := t
√

ωAωB (E9)

is generated by

U = e−i t̃ htot (E10)

and defining the dimensionless temperatures as

T̃X := TX /ωX , (E11)

we can express the initial state given in Eq. (12) in terms
of dimensionless quantities:

ρAB(0) ∝ e−hA/̃TA ⊗ e−hB/̃TB . (E12)

2. Relevant quantities and data

Although we formulate our all-time g-local thermality
result in a “discrete” true–false language (see Fig. 3), there
is more quantitative structure to the dependence of the
degree of g-local thermality on the degree of long-time
equilibration. To properly showcase this relationship, we
need a quantification of both phenomena.

First, we pick a long enough time interval [0, t̃m] over
which we observe the system. Then, since we already have
a well-defined measure of g-local thermality at an instant
of time t̃ and subsystem s, Fmax

s (t̃ ), we use it to introduce a
measure of all-time (AT) g-local thermality at s, defined as

FAT
s = min

t̃∈[0, t̃m]
Fmax

s (t̃ ). (E13)

To quantify the degree to which the system locally equi-
librates as per the definition in Sec. V, we employ the
fact that, if equilibration occurs, then it is described by the
GGE in the thermodynamic limit (see Sec. V). The main
quantifier here is the longest “equilibrium interval” dur-
ing the [0, t̃m] period. By an equilibrium interval, we mean
any [t̃ eq

i , t̃ eq
f ] such that D[ρs(t̃ ), ρGGE

s ] ≤ ε ∀t̃ ∈ [t̃ eq
i , t̃ eq

f ].

The figure of merit that we use is the ratio of the longest
equilibrium interval,

τ eq
s := max

[t̃ eq
i , t̃ eq

f ]⊂[0, t̃m]
(t̃ eq

f − t̃ eq
i ), (E14)

to the total duration of observation:

req
s = τ

eq
s

t̃m
. (E15)

In parallel with req
s , we use the average distance from

equilibrium,

〈Ds〉 = 1
t̃m

∫ t̃m

0
dt̃D[ρs(t̃ ), ρGGE

s ], (E16)

to quantify the local equilibration.
The quantity 〈Ds〉 cannot be used alone to “measure”

equilibration, as even a very small value of 〈Ds〉 does
not exclude frequent ε-surpassing peaks of D[ρs(t̃ ), ρGGE

s ].
Similarly, used alone, req

s indicates the time that Ds unin-
terruptedly spends under ε but does not tell us how much
lower than ε it typically gets. So, although req

s and 〈Ds〉 are
not independent (e.g., if req

s = 1, then necessarily 〈Ds〉 ≤
ε), only when considering them together does one get
a complete picture of how well AB locally equilibrates
at s—one needs a small 〈Ds〉 and a large req

s to ensure
equilibration.

Regarding the choice of t̃m, we note that although ver-
ifying equilibration is in general an undecidable problem
[114], the situation in quadratic harmonic systems is more
predictable. Indeed, as discussed in Sec. V, if equilibra-
tion occurs, then the equilibrium is described by the GGE.
Moreover, it has been shown in Ref. [74] that if the interac-
tions in the system are of short range, then the equilibration
time does not depend on the system size and the recurrence
time grows linearly with the size. For systems with long-
range interactions, our numerical experiments show that
the pattern is similar—if the system equilibrates, it does
so relatively quickly; and if it does not, then local states
show no tendency to converge at long times. For the plots
in Figs. 13–15, we find t̃m = 10 000 to be sufficiently long,
yet not too long for recurrences to significantly affect the
picture.

In terms of the above-introduced quantities, the claim in
our main result is as follows (for a recap, see Fig. 3). If req

s
is small or 〈Ds〉 is large (i.e., poor equilibration), then FAT

s
can be anything. If req

s is close to 1 and 〈Ds〉 is small (i.e.,
good equilibration), then FAT

s has to be close to 1.
This is indeed what we see numerically. We have

explored the full parameter range by both randomly sam-
pling the parameters (μ, α, λ̃, g̃A, g̃B, T̃A, T̃B) and deliber-
ately choosing values at the boundaries of the set of
allowed parameters (determined by the condition that the
total Hamiltonian is nonnegative; see Appendix E 1).
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(a) (b)

(c) (d)

FIG. 13. The degrees of all-time g-local thermality and long-
time equilibration versus λ̃: (a) μ = 0.0625; (b) μ = 0.5; (c)
μ = 1.0; (d) μ = 2.0. Each panel shows FAT

s (solid line), req
s

(dashed line), and 〈Ds〉 (dotted line) as functions of λ̃. The
different colors correspond to different values of α. The upper
horizontal line is at 0.97 and represents the threshold value of
FAT

s above which we say that the system is g-locally thermal
at all times. The lower horizontal line is the ε = 0.02 thresh-
old for 〈Ds〉. The configuration is [1D, FB] and the plots are for
the central two-node subsystem of A. The other parameters are
NA = NB = 200, g̃A = 0.2, g̃A = 0.3, T̃A = 0.1, and T̃B = 1. The
μ = 1 (ωA = ωB) case is distinctive in that the equal frequencies
result in resonant oscillations that give rise to periodic spikes in
D[ρs(t), ρGGE

s ], resulting in poor equilibration. Nonetheless, the
system experiences all-time g-local thermality to a good extent.
Viewing the plot from λ̃ = 0, we see that the quality of equilibra-
tion deteriorates much faster than the degree of all-time g-local
thermality as λ̃ approaches ±̃λmax—the maximal value of |̃λ| for
which Htot is bounded from below.

Since the parameter space is seven-dimensional (not
counting NA, NB, and the configuration of lattice-lattice
interaction) and therefore impossible to draw, we present
our results in two-dimensional cross sections.

In our numerical experiments, we found that there
are three “dangerous” parameter regimes. The first is

Long-time local

equilibration

TRUE FALSE

All-time

g-local

thermality

TRUE

FALSE

(a) (b)

(c) (d)

FIG. 14. The all-time g-local thermality and long-time local
equilibration versus λ̃ and μ. Each panel shows whether or not
all-time g-local thermality and long-time equilibration occur, as
per the color and shape coding in the table, as a function of λ̃ and
μ. The panels are for four different values of α: (a) α = 0.01;
(b) α = 0.50; (c) α = 1.00; (d) α = 2.00. All other parameters
are fixed to the same values as in Fig. 13. The orange lines
are at ±̃λmax, marking the boundary of the set of all (̃λ, μ) for
which Htot is bounded from below. Here, the TRUE threshold
for all-time g-local thermality is chosen to be FAT

s ≥ 0.97 for
all subsystems s of size 2. For long-time equilibration, the TRUE
threshold is min

|s|=2
req

s ≥ 0.8 and max
|s|=2

〈Ds〉 ≤ ε = 0.02. We see that

all combinations occur except the �, in accordance with the
claim in the main text (see also Fig. 3). The table shows the shape
and color coding of the four logical possibilities for observing
or not observing all-time g-local thermality and long-time local
equilibration used in the plot.

strong A/B frequency imbalance: μ � 1 or μ 
 1. The
other parameter that has a significant effect on the g-
local-thermality–equilibration relation is α—the range of
intralattice interactions. Indeed, as we see in Appendix F,
canonical-typicality–based results become inapplicable for
small values of α, making the regime of small α’s also
dangerous. The third is the regime of strong lattice–lattice
coupling, which also bears the potential to be dangerous,
as both A and B lose their dynamic individuality when λ̃ is
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(a) (b)

(c) (d)

FIG. 15. The all-time g-local thermality and long-time local
equilibration versus g̃A and g̃B.) Each panel shows whether or
not all-time g-local thermality and long-time equilibration occur,
as per the color and shape coding in the table in Fig. 14, as
a function of g̃A and g̃B: (a)–(d) are for four different sets of
parameters (α, μ, λ̃, T̃A, T̃B), as shown at the top of each panel. As
previously, NA = NB = 200 and the configuration is [1D, FB]. In
each panel, the orange border outlines the set of all (̃gA, g̃B) such
that Htot is bounded from below. As in Fig. 14, here the TRUE
threshold for all-time g-local thermality is min

|s|=2
FAT

s ≥ 0.97 and

for long-time equilibration, the TRUE threshold is min
|s|=2

req
s ≥ 0.8

and max
|s|=2

〈Ds〉 ≤ ε = 0.02. We see that all combinations occur

except the �, in accordance with the claim illustrated in Fig. 3.
The lack of all-time g-local thermality and equilibration in (c)
and (d) is consistent with Fig. 13: in both (c) and (d), λ̃/̃λmax is
close to 1.

large, especially in the FB coupling configuration. There-
fore, our emphasis in the numerical exposition below will
be on cross sections of μ, α, and λ̃. Note that large λ̃ means
that |̃λ| is close to λ̃max, which is the maximal value of |̃λ|
(with all other parameters fixed) for which Htot is bounded
from below.

The most insight is provided by Fig. 13, where we
plot the degrees of all-time g-local thermality (FAT

s ) and
equilibration (req

s and 〈Ds〉) as functions of λ̃, for differ-
ent (extremal and not) values of α and μ. There, we see
that the quality of equilibration deteriorates significantly
faster than the degree of all-time g-local thermality as |̃λ|
approaches its maximum (̃λmax). This confirms our claim
and, in a way, makes the relation between all-time g-local
thermality and long-time equilibration more quantitative.

A different cross section of the (μ, α, λ̃) subset is pre-
sented in Fig. 14. There, we plot all-time g-local thermality
and long-time local equilibration in a discrete fashion:
occurs (TRUE) or does not occur (FALSE). The four log-
ical possibilities are presented in the table in Fig. 14, with
corresponding color and shape coding. Now, the claim of
our main result, as formulated in Sec. IV and summarized
in Fig. 3, is that the combination [all-time g-local thermal-
ity = FALSE] and [long-time local equilibration = TRUE],
encoded as �, never occurs. And, indeed, we see no � in
Fig. 14.

Figure 15 is another TRUE–FALSE plot, this time
across four g̃A-̃gB planes, each corresponding to a panel of
the plot. The values of the parameters fixing the planes are
presented above the panels. In Fig. 15(a), we have A with
much larger initial energy and heat capacity (ωA = 16 ωB
and TA = 48 TB) and so, expectedly, the evolution does
not perturb it much, so its g-local thermality is largely
maintained even at the edge of the parameter space. In
Fig. 15(b), A has a much smaller heat capacity than B
(ωA = ωB/25) and starts at a similar temperature with
B (TA ≈ 1.33TB), so we see more diversity of options.
In Figs. 15(c) and 15(d), the respective λ̃’s are close to
their maximal values and so, as could be anticipated from
Fig. 13, we observe that neither all-time g-local thermality
nor long-time local equilibration occur to a high enough
degree.

We observe the picture described above over all cross
sections of the parameter set, for all configurations and
spatial dimensions. We take this as compelling numerical
proof of our main result.

APPENDIX F: COMPARISON WITH ENSEMBLE
EQUIVALENCE

By the stronger equivalence of ensembles, we mean Ref.
[50, Proposition 2]. In a slightly simplified form derived
in Ref. [55] (Lemma 2), it states the following. Say, X
is a d-dimensional (hyper)cubic lattice with N = nd sites.
Each site contains a quantum system described by a finite-
dimensional Hilbert space, with the dimension being the
same for all sites. The Hamiltonian is of finite range
(i.e., local, as per the definition in Appendix B): HX =∑

ν∈X hν , with hν acting only on sites ν ′ with dist(ν, ν ′) ≤
k. Now, let τX be a state with exponentially decaying
correlations and fix some 0 < c < 1/(d + 2). If

S(ρX ‖τX ) = o
(
N

1−c(d+2)
d+1

)
, (F1)

where S(ρ‖τ) := Tr[ρ(ln ρ − ln τ)] is the relative entropy,
then [50,55]

Es∈Cl ‖ρs − τs‖1 = O
(
N−c/2), (F2)
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where ‖O‖1 := Tr
√

OTO is the trace norm, Cl is the set
of all subhypercubes s of X with side length

l = o
(
n

1−c
d+1

)
(F3)

and Es∈Cl denotes arithmetic averaging over Cl. Namely,

Es∈Cl ‖ρs − τs‖1 := 1
Kl

∑

s∈Cl

‖ρs − τs‖1, (F4)

where Kl is the size of Cl (i.e., the amount of subhyper-
cubes s in it). Here, the big O and small o are as per
the standard asymptotic notation and, as in the main text,
ρs := TrX \s[ρX ].

In simple terms, this lemma means that if τX has expo-
nentially decaying correlations and ρX is not very far from
it in terms of the relative entropy [Eq. (F1)], then ρX is
locally close to τX , in trace norm, for almost all small
subsystems [Eq. (F2)]. Here, “small” refers to any subsys-
tem the diameter of which is o

(
n(1−c)/(d+1)

)
[Eq. (F3)]; of

course, any fixed size is o
(
n(1−c)/(d+1)

)
in the thermody-

namic limit.
To translate Eq. (F2) into a statement about the Bures

distance, note that, in view of the Fuchs–van de Graaf
inequality [115], D[ρ, τ ]2 ≤ ‖ρ − τ‖1. Therefore,

Es∈Cl D[ρs, τs] = 1
Kl

∑

s∈Cl

1 · D[ρs, τs]

(∗)≤ 1
Kl

√∑

s∈Cl

12
√∑

s∈Cl

D[ρs, τs]2

≤
√√√√

1
Kl

∑

s∈Cl

‖ρs − τs‖1,

where the step (∗) is due to the Cauchy–Schwarz inequal-
ity. Hence, in view of Eq. (F2), we find that

Es∈Cl D[ρs, τs] = O
(
N−c/4). (F5)

Coming back to our setup, let ρX (t) be the state of the
lattice X at the moment of time t and let Teff,can

X (t) be its
effective canonical temperature, as per the definition in
Eq. (8). Also, let

τ
eff,can
X (t) := τ

(
Teff,can

X (t), HX
)

(F6)

be the Gibbs state corresponding to it. Now, observing that,
due to Eq. (8),

S
(
ρX (t)

∥∥ τ
eff,can
X (t)

) = S
(
τ

eff,can
X (t)

) − S(ρX (t)),

where S(ρ) is the von Neumann entropy, and keeping in
mind Eqs. (F5) and (2), we can state the following conse-
quence of Refs. [50, Proposition 2] and [55, Lemma 2].

Corollary 1 (of Proposition 2 of Ref. [50]).—If τ
eff,can
X (t)

has exponentially decaying correlations and

S
(
τ

eff,can
X (t)

) − S(ρX (t)) = o
(
N

1−c(d+2)
d+1

)
, (F7)

then ρX (t) is g-locally thermal at (almost) uniform tem-
perature Teff,can

X (t), up to a correction ∝ N−c/4. The g-local
thermality of X is at the level of subsystems of diameter
l = o

(
n(1−c)/(d+1)

)
[Eq. (F3)].

This result provides a background against which we
can assess how “expected” the all-time g-local thermality
result in Sec. IV is for short-range Hamiltonians. Indeed,
when HX is finite ranged and gapped, τ(T, HX ) has expo-
nentially decaying correlations at any T [116]. So, the first
condition of Corollary 1 is satisfied.

The validity of the second condition is, in general, much
harder to assess a priori. But given that the entropy differ-
ence in Eq. (F7) is zero at t = 0 in our setting, it would not
be too surprising if it were to remain small enough to never
violate Eq. (F7) during the evolution. This is so especially
when Hint is invariant under translations in X (e.g., FB cou-
pling), since in that case, one expects that both τ

eff,can
X (t)

and ρX (t) will remain translationally invariant (except for
the edges) at all times.

We emphasize that Corollary 1 has no bearing on the
degree of validity of the condition given in Eq. (F7). Thus,
it does not prove all-time g-local thermality of X when
HX is short ranged and gapped and Hint is translationally
invariant. However, Corollary 1 does show that it is not
unexpected that we do observe all-time g-local thermality
for such systems. In fact, when A and B are FB-coupled
2D lattices with nearest-neighbor interactions, we see in
the bottom inset of Fig. 8 that g-local thermality is accom-
panied by Teff

X (t) ≈ Teff,can
X at all times. This suggests (but

does not prove) that Corollary 1 applies in this case.
The situation changes, even for short-ranged HX , when

Hint is not translationally invariant; e.g., in the case of EE
coupling. Then, due to the gradients of energy (and tem-
perature), the condition in Eq. (F7) becomes unlikely to be
satisfied at all times. By directly looking at Es∈Cl D[ρs, τs],
we indeed see that Eq. (F5) is violated. Let us consider, for
concreteness, the [1D, EE] case for which Fig. 12 is plot-
ted. Each single-site subsystem is almost exactly g-locally
thermal, so, noting that C1 is simply the set of all sites of
X , we can write

Es∈C1 D[ρs, τs] = 1
N

N∑

ν=1

D[
τMF
ν

(
Teff

ν

)
, τMF

ν

(
Teff,can

X

)]
.

And since almost half of the sites of A are at Teff
ν ≈ 0.5 and

the other approximately 25% are at Teff
ν ≈ 0.1, there exists

some ζ > 0 such that
∑N

ν=1 D
[
τMF
ν

(
Teff

ν

)
, τMF

ν

(
Teff,can

X

)] ≥
Nζ . Hence, Es∈C1 D[ρs, τs] ≥ ζ and therefore Eq. (F5)
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cannot hold for N 
 1. Thus, Corollary 1 does not apply.
Nonetheless, both A and B remain g-locally thermal at all
times, with very high accuracy, as Figs. 11 and 12 clearly
illustrate.

Even further from the scope of Ref. [50], and conse-
quently of Corollary 1, are lattices with long-range interac-
tions. In such systems, ensemble equivalence is known to
generally fail [117,118]. It is, however, worth noting that,
in Ref. [52], it is proven that, for long-range interacting
systems, microcanonical and canonical ensembles become
equivalent at high temperatures. However: (i) that result is
only for microcanonical and canonical states, not for gen-
eral states like Proposition 2 of Ref. [50], so it cannot be
used in our scenario; and (ii) for the values of interaction
range α ≤ d, the threshold temperature above which the
ensemble equivalence is established in Ref. [52] diverges
with N . In contrast, our all-time g-local thermality result
holds for long-range interacting systems with arbitrary α

(Figs. 4 and 6 illustrate that for α = 0.5).
That the ensemble equivalence fails, whereas all-time g-

local thermality persists, in the above two situations is a
clear indication that the two phenomena are fundamentally
different and independent from one another.

Lastly, we note that the results of Ref. [50], and there-
fore of Corollary 1, are proven only for lattices of systems
with finite Hilbert-space dimension. In our case, however,
the on-site Hilbert-space dimension is infinite. This is not
a problem at finite temperatures—the on-site oscillators
can be approximated by finite systems by simply cutting
off the nearly unpopulated high-energy states. However,
the higher the temperatures, the higher the cut-off dimen-
sion has to be. And while the increase of the on-site
Hilbert-space dimension significantly weakens the bounds
established in Ref. [50], interestingly, going to higher tem-
peratures does not affect the precision of all-time g-local
thermality in all the systems that we tested.

APPENDIX G: RATE EQUATION IN TTM

According to the TTM [21–27,76], the energy exchange
between two coevolving systems is given by the equation

dEA

dt
= −(TA − TB) k(TA, TB),

dEB

dt
= −(TB − TA) k(TA, TB),

(G1)

where the thermal conductance k(TA, TB) is positive pro-
vided that heat flows from hot to cold.

Introducing the heat capacities for A and B, respectively,
as CA(TA) and CB(TB), we find the time-evolution equation
for the temperatures (recalling that the TTM assumes that

A and B are thermal at all times):

dTA

dt
= −(TA − TB)

k(TA, TB)

CA(TA)
,

dTB

dt
= −(TB − TA)

k(TA, TB)

CB(TB)
.

(G2)

Keeping in mind that CA and CB are positive quantities, we
introduce

J (TA, TB) := k(TA, TB)
[ 1

CA(TA)
+ 1

CB(TB)

]
≥ 0, (G3)

and obtain

d(TA − TB)

dt
= −(TA − TB)J (TA, TB). (G4)

This leads us to

TA(t) − TB(t) = [TA(0) − TB(0)] e− ∫ t
0 ds J (TA(s),TB(s)),

(G5)

which indeed proves that |TA(t) − TB(t)| monotonically
decreases as the term in the exponent monotonically grows
due to J remaining positive at all times.

In fact, the reverse statement is also true: any two mono-
tonically converging differentiable functions TA(t) and
TB(t) are a solution to a rate equation of the form shown in
Eq. (G2). To see this, we note that one can “reverse engi-
neer” Eq. (G5) to obtain the function J (TA(t), TB(t)), by
taking the derivative of TA(t) − TB(t). Next, since the heat
capacities CA(TA) and CB(TB) are given, Eq. (G3) can be
solved for k(TA(t), TB(t)). By construction, the solution of
Eq. (G2) with the thus-obtained k(TA, TB) yields the given
functions TA(t) and TB(t). Admittedly, this procedure is not
useful in practical situations; it is presented here merely to
prove the existence of a rate equation.

To summarize, the rate equation in Eq. (G1) and the
monotonicity of the convergence of TA and TB are equiva-
lent statements. Thus, the second postulate of the TTM can
be equivalently rephrased as “the temperatures of the two
systems approach each other monotonically in time.”

APPENDIX H: ENERGY OF INTERACTION AT
EQUILIBRIUM

Here, we compare the share of Hint in the total energy
at equilibrium with the precision to which Eq. (16) is
satisfied.

The former is given by

R := 〈Hint〉eq

〈HA〉eq + 〈HB〉eq , (H1)

where 〈Hint〉eq = Tr[Hintρ
GGE
AB ], with the other two aver-

ages defined analogously. The “precision” of Eq. (16) is
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FIG. 16. The role of interaction energy at equilibrium. The
plot shows that while, at long times, Hint stores a significant
amount of energy (green line), its effect on the validity of Eq. (16)
remains largely negligible even at strong couplings (orange line).
Here, R [Eq. (H1)] measures the share of Hint in the energy bal-
ance at equilibrium and C [Eq. (H2)] quantifies the precision to
which Eq. (16) is satisfied (with general Teq

A and Teq
B ). We see that

C � 1 holds as long as the system equilibrates and the choice of
λ ≤ 0.6 |λmax| here ensures that it does. All other parameters are
the same as in Fig. 10.

quantified by

C := 1 −
〈HA〉

Teff,eq
A

+ 〈HB〉
Teff,eq

A

〈HA〉TA + 〈HB〉TB

, (H2)

with all the averages defined as in Eq. (16).
We numerically observe that C � 1 even for large val-

ues of λ, provided that AB equilibrates at long times. This
is contrasted with the fact that 〈Hint〉eq can be significant as
compared to 〈HA〉eq + 〈HB〉eq. These aspects are illustrated
in Fig. 16, where we see that C ≤ 0.1 (in fact, remain-
ing much lower than 0.1 up until λ/λmax ≈ 0.3), whereas
R grows almost linearly with λ, becoming as large as
approximately 0.5.

Lastly, note that, when Teff,eq
A �= Teff,eq

B , Eq. (16) will
not be enough to determine both of these equilibrium
temperatures.
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