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Mixed-State Long-Range Order and Criticality from Measurement and Feedback
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We propose a general framework for using local measurements, local unitaries, and nonlocal classical
communication to construct quantum channels, which can efficiently prepare mixed states with long-
range quantum order or quantum criticality. As an illustration, symmetry-protected topological phases
can be universally converted into mixed states with long-range entanglement, which can undergo phase
transitions with quantum critical correlations of local operators and a logarithmic scaling of the entangle-
ment negativity, despite coexisting with volume-law entropy. Within the same framework, we present two
applications using fermion occupation-number measurement to convert (i) spinful free fermions in one
dimension into a quantum critical mixed state with enhanced algebraic correlations between spins and (ii)
Chern insulators into a mixed state with critical quantum correlations in the bulk. The latter is an example
where mixed-state quantum criticality can emerge from a gapped state of matter in constant depth using
local quantum operations and nonlocal classical communication.
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I. INTRODUCTION

Interacting quantum matter may exhibit long-range
entanglement that is intimately connected to fascinating
phenomena such as fractionalized quasiparticles and criti-
cality. Typically the scope for exploring long-range entan-
glement has been limited to pure states, especially the
ground states of many-body Hamiltonians. However, real-
istic physical systems require a mixed-state description due
to constant exposure to an environment, thus motivating
the consideration of long-range entanglement in many-
body mixed states. In equilibrium, mixed states naturally
arise as finite-temperature Gibbs states; however, long-
range entanglement is typically fragile to thermal fluctu-
ations [1–5]. In contrast, out-of-equilibrium mixed states
offer richer possibilities for stabilizing long-range entan-
glement. For example, there has been substantial recent
progress in characterizing universal properties of vari-
ous nontrivial states of matter, e.g., symmetry-protected
topological (SPT) phases, quantum critical states, and
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topological order, subject to noise channels [6–14]. Sig-
natures of the non-trivial nature of these mixed-states
generally require probing nonlinear observables in the
mixed-state density matrix, e.g., measures of quantum
entanglement.

In this work, we introduce a novel route for realizing
long-range entangled mixed states. We provide a gen-
eral framework for constructing quantum channels, which
allow for the efficient realization of a large class of mixed-
state long-range entanglement, including GHZ, topological
order, and quantum criticality. Specifically, our protocols
generate pure states with certain probabilities, hence defin-
ing a mixed-state ensemble. Importantly, the long-range
order and criticality can be efficiently probed through
observables that are linear in the mixed-state density
matrix.

Our construction (Sec. II, see Fig. 1 for schematic)
relies on three ingredients, namely, local projective mea-
surement, local unitary operations, and nonlocal classical
communication. Starting with an input state, which we
extensively bipartition in two disjoint Hilbert spaces, A
and B, we perform single-site measurements within A.
Based on the measurement outcomes, recorded as classical
data, we perform appropriate unitary feedback consist-
ing of local unitary gates acting on B. We will allow the
local unitary gates to depend on the global classical data,
thus requiring nonlocal classical communication. Such
a two-step protocol generically generates an ensemble
of pure states associated with distinct measurement out-
comes, hence defining a mixed state. The resulting mixed
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FIG. 1. We consider a system with A, B degrees of freedom,
which may correspond to sublattices or charge and spin of
fermions, for example. We devise a depth-2 quantum channel
that can effectively implement a controlled unitary, giving rise
to various long-range quantum orders and criticality on the B
system. The first layer consists of single-site measurements on
A, and the second layer consists of single-site unitaries on B
conditioned on the outcomes {α} in the first layer. This proto-
col outputs a density matrix ρB on B such that ρB(= trA |ψ〉 〈ψ |)
admits a purification |ψ〉 = U |ψ0〉 with U being a controlled uni-
tary U = ∑

α UαPα on an AB composite system; Pα projects A
to a specific product state on A, and Uα is a product of on-site
unitaries acting on B.

state on B (ρB) may exhibit various long-range quantum
orders and quantum criticality coexisting with extensive
classical entropy. We show that ρB admits a purification
that can be obtained by performing a controlled unitary on
the composite AB system. As such, our protocol may be
regarded as implementing a controlled unitary that generi-
cally cannot be realized using finite-depth unitary circuits.
This unitary description also provides a powerful handle
allowing us to characterize ρB by analyzing the parent
Hamiltonian of its purification.

Our framework is inspired by adaptive circuits, where
the choice of the applied local unitary gates depends on
the global measurement outcomes in a way that postmea-
surement pure-state trajectories associated with different
measurement outcomes will be deterministically converted
to the same target pure state. This architecture has provided
a powerful framework that enables the efficient prepara-
tion of a large class of nontrivial pure states, including
gapped topological orders and gapless conformal critical
states in short times [15–25], which are impossible using
any local unitary protocols. The operations required by
adaptive circuits (midcircuit measurements and feedback)
are available in several quantum hardwares, and indeed
the adaptive, finite-depth preparation of certain topological

orders has been realized experimentally in recent works
[26,27]. While our construction of quantum channels uti-
lizes the same ingredients (local quantum operations and
nonlocal classical communication) as in adaptive circuits,
various postmeasurement states generically do not con-
verge in our protocol, thereby leading to a mixed-state
ensemble that exhibits certain long-range quantum order
and quantum criticality despite having extensive entropy.

For the applications discussed in this work, the uni-
tary feedback after local measurements is a product of
onsite unitary operations, and hence, the long-range order
in the resulting ensemble may equivalently be decoded
from postmeasurement pure-state trajectories via appropri-
ate classical postprocessing without unitary feedback (see,
e.g., Refs. [28,29]). However, our protocol can be gen-
eralized, e.g., by extending onsite-unitary feedback to a
finite-depth local unitary circuit, or by considering mul-
tiple rounds of layers of measurement and unitary. In both
cases, it is unclear if the properties of the resulting mixed
state can be efficiently obtained by classical postprocess-
ing based on local measurement data. Furthermore, not all
classical postprocessing can be implemented efficiently as
quantum channels.

In the rest of the Introduction, we provide an overview
of two classes of applications. The first class of examples
takes a SPT order as an input state (Sec. IV). These are
short-range entangled phases that can be prepared from
product states using local unitary in finite time only when
breaking the protecting symmetry [30,31]. We will focus
on SPT phases characterized by decorated domain-wall
constructions [32]. One class of examples are SPT phases
in d-spatial dimensions, which are protected by Z2 p-
form ×Z2 q-form symmetry with p + q = d − 1. This
type of SPT can be diagnosed by the long-range order
in certain nonlocal operators, e.g., string operators in one
dimension (1D) or membrane operators in two dimensions
(2D). Based on these nonlocal operators, we show how
to employ measurement and feedback to prepare a mixed
state with Z2 long-range order coexisting with volume-law
entropy. For instance, Z2 cat-state order and Z2 topologi-
cal order can be prepared in one and two space dimensions
in a mixed state, both of which cannot occur in equilibrium
thermal states.

Notably, the convertibility to a long-range order is a uni-
versal property of the SPT: any pure state in the same SPT
phase always leads to a long-range-ordered (and gener-
ically mixed) state characterized by the same universal
properties that are related to the SPT order. In addition, the
output state is a reduced density matrix of a ground state
of Hamiltonian H that is “dual” to the parent Hamiltonian
H0 of the input SPT. Most interestingly, when H0 is tuned
to criticality, H is critical as well, and the correspond-
ing mixed state possesses a critical entanglement structure
quantified by the entanglement negativity [33–37]. For
example, our protocol in 1D gives rise to a mixed state with
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volume-law scaling of von Neumann entropy, but logarith-
mic scaling of the entanglement negativity with subsystem
size. Such mixed-state quantum criticality presents several
unconventional features as we will discuss in this work.

Our application of converting a Z2 × Z2 SPT to long-
range order is directly inspired by Refs. [15,16,20]. In
particular, Ref. [20] argues that measuring these SPTs will
generically lead to certain long-range order in postmea-
surement pure-state trajectories. While this can be shown
analytically for fixed-point SPTs [15,16], the fate of SPTs
away from fixed points upon measurement was inconclu-
sive [38]. In contrast, our channel-based approach allows
us to show that the emergence of long-range orders in a
mixed state is a universal property that persists through-
out the entire SPT phase. Importantly, these orders can
be efficiently probed through certain linear observables in
the mixed-state ensemble that results from our quantum
channel.

The second class of examples focuses on spinful
fermionic systems (Sec. V). We consider extensive single-
site fermion occupation-number measurement followed by
unitary feedback according to the measurement outcomes.
In contrast to the single-site projective Pauli measurement,
which trivializes the measured qubit, the occupation num-
ber for spinful fermions allows for richer phenomenology
due to the possibility of a residual spin-1/2 degree of free-
dom in the subspace of a singly occupied site. Indeed, it is
known that starting with noninteracting spinful fermions,
performing a Gutzwiller projection (projecting onto single-
occupation subspace) effectively induces interactions that
may lead to various exotic quantum spin liquids in two and
higher spatial dimensions (see Refs. [39,40] for reviews).
The Gutzwiller projection cannot be implemented as a
fermion occupation-number measurement, without postse-
lecting the measurement outcome. In contrast, our scheme
does not rely on postselection; for each postmeasurement
trajectory, we apply a depth-1 local unitary feedback, so
that the mixed state, formed from the ensemble of these
trajectories, exhibits certain nontrivial features. We also
note that the fermion-occupation-number measurement is
readily experimentally available via quantum gas micro-
scopes (see Ref. [41] for a review), which allows for the
implementation of our protocols. Below we briefly sum-
marize two applications, in one and two space dimensions,
respectively.

In 1D, we start from free spinful fermions (Sec. V A)
with nearest-neighbor hopping. In this case, it is known
that spin-spin correlations decay algebraically with the
separation between two sites with an exponent 2. We
devise a protocol that outputs a mixed state with an
enhanced critical correlation characterized by a smaller
exponent, namely, 1. The essential idea is to notice that
there is a long-range string order in the 1D free fermions
[42], and measurement and feedback can convert this hid-
den string order into a truly long-range critical order. The

resulting mixed state that describes correlations in the spin
sector can be regarded as a reduced density matrix by
tracing out the charge sector in a ground state of a par-
ent Hamiltonian that we derive. Notably, this Hamiltonian
describes strongly interacting spinful fermions and there-
fore, our measurement-feedback channel may be viewed
as a novel means to effectively engineer interactions. We
note that our protocol of boosting critical correlations is
also applicable to interacting fermionic systems character-
ized by Luttinger liquids by exploiting their hidden string
order.

The 2D example (Sec. V B) takes Chern insulators (see,
e.g., Ref. [43] for an Introduction) as an input. These are
gapped invertible topological phases, which feature trivial
bulks and nontrivial chiral edge modes on the boundary.
Despite Chern insulators having exponentially decaying
correlations in the bulk, applying a measurement-feedback
channel leads to a mixed state with algebraic correlations.
The essential property we use is a nonlocal membrane
order parameter due to the topological response in Chern
insulating states [44,45]. Such a nonlocal hidden order can
be converted into algebraic decaying spin-spin correlations
in the resulting mixed state using a nonlocal quantum chan-
nel. This, therefore, furnishes a remarkable example where
quantum criticality emerges from a gapped state of matter
via a quantum channel involving local quantum operations
but nonlocal classical communication.

II. NONLOCAL CHANNEL FROM LOCAL
QUANTUM OPERATIONS AND NONLOCAL

CLASSICAL COMMUNICATION

Here we introduce the protocol for constructing quan-
tum channels based on local quantum operations (measure-
ment and unitary) and nonlocal classical communication
(Fig. 1). Given a system with two types of degrees of
freedom A and B initialized in the state ρ0 = |ψ0〉 〈ψ0|,
one performs simultaneous, extensive single-site measure-
ment on every degree of freedom in A. This leads to a
particular pure state |ψα〉 = Pα |ψ0〉/

√〈ψ0| Pα |ψ0〉 with
probability 〈ψ0| Pα |ψ0〉, where α labels the measurement
outcome on A, and Pα is the projector associated with
the measurement. For each postmeasurement state, we
apply a unitary Uα acting on B based on the outcome α.
Note that this requires nonlocal classical communication
since the choice of a local unitary relies on distant mea-
surement outcomes recorded as classical data. The above
measurement-feedback protocol leads to a mixed state

ρ =
∑

α

UαPαρ0PαU†
α . (1)

With an appropriate choice of measurement and unitary
feedback, the subsystem B described by a reduced density
matrix ρB may exhibit various long-range quantum orders
and criticality.
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The aforementioned protocol may be viewed as a way
to effectively implement a controlled unitary acting on the
AB composite system followed by tracing out A. To see
this, we notice that ρB admits a purification |ψ〉 via ρB =
trA |ψ〉 〈ψ |, where |ψ〉 is defined as

|ψ〉 =
∑

α

UαPα |ψ0〉 . (2)

U = ∑
α UαPα takes the form of a controlled unitary with

A being the control and B being the target. U may not be
realized as local unitary circuits, thereby enabling signif-
icant changes in the entanglement structure. In particular,
U provides a nonlocal transformation on operators accord-
ing to Heisenberg evolution. For instance, the expectation
of an operator OB supported on B in the resulting mixed
state ρB amounts to the expectation of the operator U†OBU
in the input pure state |ψ0〉. As such, this nonlocal uni-
tary transformation provides a powerful way to convert
hidden orders in the input state into long-range order or
criticality in the density matrix ρB, as we will illustrate
using various examples. Moreover, this viewpoint of uni-
tary transformation provides a useful way to describe the
output ρB; since the initial state |ψ0〉 and the purified state
|ψ〉 are connected by a unitary U, the structure of ρB can be
characterized based on the Hamiltonian H of |ψ〉 through
H = UH0U†, where H0 is the Hamiltonian of the input
state |ψ0〉.

III. ENTANGLEMENT STRUCTURE OF OUTPUT
MIXED STATES

We first discuss general constraints on the entangle-
ment properties of the mixed states generated from such
protocols.

Bound on entanglement: the protocols presented in this
work belong to LOCC, namely, local operations (onsite
measurement and unitaries) and classical communication,
and therefore, mixed-state entanglement cannot increase
under these quantum channels (see Appendix A for proof
based on the entanglement of formation [46], a faithful
entanglement measure for mixed states). This entangle-
ment constraint provides a sharp distinction between the
mixed-state orders that may and may not be realized
within our protocols. For example, starting with an area-
law entangled gapped state in 1D, our finite-depth channels
cannot output a mixed state with log L scaling entangle-
ment. Namely, to output a quantum critical mixed state
in 1D with log L scaling entanglement, the initial state
must be critical with entanglement � O(log L) as well,
and Sec. IV C presents one such example. On the other
hand, if one starts with a gapped, area-law state in 2D, the
entanglement constraint does not rule out the possibility of
realizing quantum critical mixed states (recall gapless con-
formal critical states obey an area law as well), and indeed
this is realized in Sec. V B.

Sufficient conditions for a nontrivial mixed state:
despite the above constraint on the quantity of entangle-
ment, our protocol can produce mixed states ρ that are
long-range entangled in the precise sense that they cannot
be a mixture of trivial pure states [2]. Namely, ρ is long-
range entangled if ρ �= ∑

n pn |φn〉 〈φn|, where each |φn〉 is
a short-range entangled state that can be connected to a
product state using a finite-time local unitary [47].

We prove that ρ cannot be a mixture of short-range
entangled states given the following two conditions (which
will apply to all examples considered in this work). (i)
Global symmetry: there exists a unitary operator S with
unit-norm expectation value, i.e., tr(ρS) = eiθ with θ ∈
R. (ii) Long-range correlations for charged operators:
there exist charged operators O1, O2 (with respect to the
symmetry S) [48], whose correlation tr(ρO1O2) decay
slower than e−d/ξ , with ξ > 0, and d being the spatial
separation between O1 and O2. For example, tr(ρO1O2)

could be constant or follow a power-law decay with the
separation d.

The claim above can be proved by contradiction.
Assume ρ = ∑

n pn |φn〉 〈φn|, i.e., a mixture of short-
range entangled pure states |φn〉. Since tr(ρS) = eiθ ,
it must be that 〈φn|S|φn〉 = eiθ for each |φn〉 [49].
Further, |φn〉 being short-range entangled means the
connected correlation function decays exponentially:
〈φn|O1O2|φn〉 − 〈φn|O1|φn〉〈φn|O2|φn〉 ∼ e−d/ξn [50] with
ξn upper bounded by a finite ξmax. 〈φn|S|φn〉 = eiθ and
the assumption that each operator is charged with respect
to S implies that 〈φn|O1|φn〉 = 〈φn|O2|φn〉 = 0, and thus
〈φn|O1O2|φn〉 ∼ e−d/ξn . Since O1O2 decays exponentially
in each |φn〉, O1O2 must decay exponentially in the mixed-
state ensemble ρ, which contradicts the result that the
decay of tr(ρO1O2) is slower than exponential. As a result,
the initial assumption must be false.

As a demonstration, when the expectation value of a
global Z2 symmetry generator follows 〈S〉 = 〈∏

i Xi
〉 =

1 in the mixed state, ZiZj having nonzero expectation
value as the separation d → ∞ implies a nontrivial mixed
state with the GHZ-type order. Such an example will
be presented in Sec. IV A. If ZiZj instead decays alge-
braically, the corresponding nontrivial mixed state exhibits
a quantum criticality with several unconventional proper-
ties, which will be discussed in Sec. IV C. One may also
generalize S and charged operators Oj to stringlike oper-
ators, which can witness mixed-state topological order in
two space dimensions (see Appendix C for details).

IV. MIXED-STATE LONG-RANGE ORDER BY
MEASURING SPT PHASES

In this section, we apply the general framework dis-
cussed in Sec. II to convert SPT phases characterized
by decorated domain-wall construction [32] to mixed-
state long-range orders. We will illustrate the main idea

030318-4



MIXED-STATE LONG-RANGE ORDER. . . PRX QUANTUM 4, 030318 (2023)

using 1D Z2 × Z2 SPT. More general types of SPTs with
distinct symmetries or higher-space dimensions and the
corresponding emergent long-range order will be briefly
outlined in Sec. IV D (with more details in the Appendix).

We also note that Refs. [28,29] discussed a protocol that
can convert certain SPTs to a mixed-state ensemble with
hidden long-range orders that can be decoded via nonlin-
ear observables or classical postprocessing. However, the
specific protocol is different from ours, and thus the type
of long-range order that can be stabilized also differs. For
example, our setup can realize GHZ-type order in 1D and
Z2 topological order in 2D, both of which are absent in
those works. More technically, the protocol discussed in
Refs. [28,29] amounts to introducing thermal fluctuations,
which is a qualitatively different perturbation than the ones
we consider.

A. Measuring 1D SPT

We consider a 1D lattice with periodic boundary con-
ditions, and the lattice sites are labeled with the order-
ing (a, 1), (b, 1), (a, 2), (b, 2), . . . , (a, L), (b, L). The cluster
state Hamiltonian is defined as −∑L

i=1(Za,iXb,iZa,i+1 +
Zb,iXa,i+1Zb,i+1). The ground state exhibits an SPT order
protected by the global Z2 × Z2 symmetry generated by∏L

i=1 Xa,i on A sublattice and
∏L

i=1 Xb,i on B sublattice.
Under symmetric local perturbations without gap closing,
the SPT order is robust in the ground state |ψ0〉, and can
be diagnosed by the long-range string order (see, e.g.,
Ref. [51])

〈ψ0| Zb,i

( j∏

k=i+1

Xa,k

)

Zb,j |ψ0〉 = c (3)

with 0 < c ≤ 1 as |i − j | → ∞ [52].
Now we show that based on the long-range string

order, one can prepare a mixed state with GHZ-like Z2
symmetry-breaking order using measurement and unitary
feedback in constant depth.

To start, we measure Pauli X for every site in A sub-
lattice and denote the measurement outcome of Xa,i by
αi. Defining α = {αi} as the collection of outcomes, one
obtains a postmeasurement state Pα |ψ0〉/

√〈ψ0| Pα |ψ0〉
with probability pα = 〈ψ0| Pα |ψ0〉 and projector Pα ≡∏

i(1 + αiXa,i)/2. Without recording the outcome, the
system is described by a mixed state, i.e., an ensem-
ble of pure states corresponding to distinct measure-
ment outcomes:

∑
α Pαρ0Pα with ρ0 = |ψ0〉 〈ψ0|. This

measurement-induced ensemble lacks any long-range
order. For instance, the two-point functions on B sublat-
tice with respect to the mixed state is 〈ψ0| Zb,iZbj |ψ0〉,
which is nothing but the two-point functions with respect
to the initial SPT, therefore decaying exponentially with
the separation.

In contrast, applying unitary feedback based on the
measurement outcomes leads to a nontrivial mixed state.
The essential idea is to choose a unitary such that the two-
point ZbZb operator evaluated in the mixed state amounts
to the string operator ZbXa · · · XaZb in the input SPT,
thereby taking a nonzero expectation value.

First, for a postmeasurement pure state with outcome α,
we apply a unitary Uα on B sublattice:

Uα =
∏

i

X
1−∏i

j =1,2,... αj
2

b,i . (4)

In other words, Xb,i, a Pauli X on B sublattice, is
applied when there is an odd number of outcome −1
from the site (a, 1) to the site (a, i). It follows that Zb,i
conjugated by Uα will acquire a 1 (−1) sign if there
are even (odd) number of −1 measurement outcomes
from the site (a, 1) to the site (a, i). Correspondingly,
one finds U†

αZb,iZb,j Uα = Zb,i

(∏j
k=i+1 αk

)
Zb,j . The over-

all measurement and unitary operation lead to the mixed
state ρ = ∑

α UαPαρ0PαU†
α . The long-range order can be

diagnosed by the two-point ZZ correlation on B sublattice:

tr[ρZb,iZb,j ] =
∑

α

〈ψ0| PαU†
αZb,iZb,j UαPα |ψ0〉

=
∑

α

〈ψ0| PαZb,i

( j∏

k=i+1

αk

)

Zb,j Pα |ψ0〉

= 〈ψ0| Zb,i

( j∏

k=i+1

Xa,k

)

Zb,j |ψ0〉 , (5)

where we have used the fact that the measurement out-
come αk can be replaced with Xa,k due to the projector Pα ,
and

∑
α Pα = 1. Therefore, the two-point function in ρ is

exactly the string order in the initial SPT order state, and
hence

〈
Zb,iZb,j

〉 = c = O(1) > 0. As discussed in Sec. III,
this nondecaying two-point function together with the Z2
symmetry on B sublattice, i.e.,

〈∏
i Xb,i

〉 = 1, indicates that
ρB(= trAρ) is a nontrivial mixed state with a GHZ-type
quantum long-range order. Importantly, since the string
order is a universal property of the input SPT, which is
robust under any finite-time symmetry-preserving local
unitary evolution, the convertibility to GHZ-type order is
a universal property of the input SPT phase.

B. Duality transformation

As discussed in our general framework (Sec. II), our
protocol can be viewed as realizing a controlled unitary
U = ∑

α PαUα acting on the AB composite system fol-
lowed by tracing out A. Specifically, starting from the
input |ψ0〉 with the Hamiltonian H0, there exists a purifica-
tion |ψ〉 of the output state ρB(= trA |ψ〉 〈ψ |) with |ψ〉 =
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FIG. 2. Starting with an input |ψ0〉, which undergoes a transition from a Z2 × Z2 SPT order in the AB composite system to two
independent GHZ-type symmetry breaking orders in A, B respectively, a measurement-feedback protocol leads to a density matrix on
B (i.e., ρB), which undergoes a transition from a GHZ-type order to a trivial mixed state. ρB admits a purification |ψ〉 that can be
obtained from the input state |ψ0〉 via a controlled unitary U = ∑

α UαPα , and the Hamiltonian of |ψ〉 can be derived based on the
transformation rules [Eq. (6)]. The purification therefore provides a useful handle to characterize the structure of the output density
matrix ρB.

U |ψ0〉. This allows us to derive the parent Hamiltonian H
of |ψ〉 through H = UH0U†, so the structure of the output
mixed state ρB can be characterized. Figure 2 provides a
summary for this subsection.

With U = ∑
α PαUα [Uα defined in Eq. (4)], one derives

the transformation rule for operators under the conjugation
of U (see Appendix B 1 for details).

Xa,i → Xa,i, Xb,i → Xb,i,

Za,iZa,i+1 → Za,iXb,iZa,i+1,

Zb,iZb,i+1 → Zb,iXa,i+1Zb,i+1. (6)

Pauli X is invariant since U is diagonal in X basis. On the
other hand, neighboring ZZ on one sublattice is attached
with a Pauli X on another sublattice in between two Pauli
Zs. This is quite intuitive since the unitary feedback is
designed to transform the product of two Pauli Zs on
one sublattice with a sign that depends on the product
of measurement outcomes (on another lattice) between
these two Pauli Zs. We also note that the above duality
mapping can be understood as implementing a Kramers-
Wannier (KW) duality conjugated by a unitary UCZ (=∏

CZ(a,i),(b,i)CZ(b,i),(a,i+1)) that prepares a Z2 × Z2 cluster
SPT [53]. This is dubbed twisted gauging in Ref. [54],
which is in contrast to the gauging via Kramers-Wannier
duality.

The above duality mapping provides a powerful tool to
characterize the structure of the output mixed state; as an
application, we consider the ground state of the following
Hamiltonian as an input:

H0 = −
∑

i

Za,iXb,iZa,i+1 −
∑

i

Zb,iXa,i+1Zb,i+1

− g
∑

i

Za,iZa,i+1 − g
∑

i

Zb,iZb,i+1. (7)

The phase diagram of H0 can be completely determined.
To see this, by conjugating a product of controlled-Z gate:

UCZ = ∏
CZ(a,i),(b,i)CZ(b,i),(a,i+1), one obtains

−
∑

i

Xb,i −
∑

i

Xa,i

− g
∑

i

Za,iZa,i+1 − g
∑

i

Zb,iZb,i+1, (8)

i.e., two decoupled Ising chains on two sublattices, where
|g| < 1 and |g| > 1 correspond to trivial phase and spon-
taneous symmetry breaking (SSB) phase with GHZ Z2
orders on A sublattice and B sublattice. This implies the
ground state of H0 belongs to SPT and SSB phase with
GHZ order for |g| < 1 and |g| > 1, respectively.

Using the transformation rule in Eq. (6), one finds the
measurement-feedback channel leads to a mixed state ρB
on B sublattice, which is a reduced density matrix of the
ground state |ψ〉 of the following Hamiltonian:

H = −
∑

i

Za,iZa,i+1 −
∑

i

Zb,iZb,i+1

− g
∑

i

Za,iXb,iZa,i+1 − g
∑

i

Zb,iXa,i+1Zb,i+1. (9)

Comparing Eqs. (7) and (9), one finds they are dual to
each other, and the phase of H can be determined anal-
ogously: A and B sublattices individually exhibit a GHZ
order for |g| < 1, and the A

⋃
B together exhibits SPT

order for |g| > 1. Consequently, ρB possesses a mixed-
state GHZ order for |g| < 1, and ρB becomes a trivial
mixed state for |g| > 1 (since the subsystem of the SPT
gives a trivial mixed state). In addition, since |ψ〉 can be
obtained by applying extensive controlled-Z gates across
A, B sublattices (i.e., UCZ = ∏

CZ(a,i),(b,i)CZ(b,i),(a,i+1)) on
two decoupled Ising chains on A/B sublattice, one expects
ρB = trA |ψ〉 〈ψ | has volume-law entropy for any nonzero
g (UCZ acts trivially at g = 0). This is indeed the
case based on our exact diagonalization calculation (see
Appendix B 2).
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While here we consider only one type of perturba-
tion to illustrate the utility of the duality approach, in
Appendix B 3 we discuss other types of perturbation,
including independently tunable perturbation strength in
Za,iZa,i+1, Zb,iZb,i+1 as well as onsite Pauli-X perturbation.
Interestingly, when perturbing the fixed-point SPT using
onsite Pauli X s, the corresponding output ρB is exactly the
(pure) ground state of the transverse-field Ising chain in the
symmetry-broken phase in the subspace with

∏
i Xb,i = 1.

C. Mixed-state quantum criticality

Our protocol can also output a mixed state with volume-
law entropy coexisting with critical (algebraic) long-
range order. This occurs when applying our measurement-
feedback channel to a critical state, i.e., the ground state
of H0 in Eq. (7) at g = 1. In this case, the output will be
a mixed state ρB on B sublattice by tracing out A sublat-
tice for the ground state |ψ〉 of H in Eq. (9) at g = 1 [55],
where |ψ〉 reads

|ψ〉 = UCZ |CFT〉A ⊗ |CFT〉B . (10)

|CFT〉A/B denotes the ground state of a transverse-field
Ising chain (on A/B sublattice) at a critical point,
characterized by the 1+1D Ising CFT, and UCZ =∏

CZ(a,i),(b,i)CZ(b,i),(a,i+1). The corresponding mixed state
ρB = trA |ψ〉 〈ψ | exhibits quantum criticality diagnosed by
certain operators. For example, since UCZ commutes with
Pauli Zs, the two-point ZZ function is given by the sin-
gle Ising critical chain, which exhibits an algebraic decay:〈
Zb,iZb,j

〉 = 〈CFT|B Zb,iZb,j |CFTB〉 ∼ 1/|i − j |η with η =
1/4 being a critical exponent in 1+1D Ising CFT. On
the other hand, the disorder operator Xb,iXb,i+1 · · · Xb,j also
exhibits an algebraic decay:

〈
Xb,i · · · Xb,j

〉

= 〈CFT|A 〈CFT|B U†
CZXb,i · · · Xb,j UCZ |CFT〉A |CFT〉B

= 〈CFT|A 〈CFT|B Za,iXb,i · · · Xb,j Za,j +1 |CFT〉A |CFT〉B

= 〈
Za,iZa,j +1

〉
CFT,A

〈
Xb,i · · · Xb,j

〉
CFT,B

∼ 1
|i − j |2η , (11)

where we used the Kramers-Wannier duality to convert
Xb,iXb,i+1 · · · Xb,j to Zb,iZb,j +1. Importantly, we note that the
disorder operator is distinct from a single pure CFT, where
Xb,iXb,i+1 · · · Xb,j ∼ 1/|i − j |η.

The mixed state ρB exhibits genuine quantum criticality.
Specifically, based on the two conditions, i.e., algebraic
decay in ZZ two-point function and

∏
i Xb,i = 1, ρB can-

not be an ensemble of short-range entangled pure states
as discussed in Sec. III. To better characterize the entan-
glement signature for the mixed-state quantum criticality,

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

log ( L
π sin(πx

L ))

0.6

0.7
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E
N

L= 8,α = 0.14837
L= 10,α = 0.14767
L= 12,α = 0.14678
L= 14,α = 0.14611
L= 8,α = 0.32464
L= 10,α = 0.31146
L= 12,α = 0.30266
L= 14,α = 0.29628

FIG. 3. Entanglement negativity EN between two complemen-
tary segments of sizes x and L − x on B sublattice. Data denoted
by circles are for the critical mixed state resulting from mea-
surement and feedback on the SPT critical point [equivalently,
ρB = trA |ψ〉 〈ψ | with |ψ〉 defined in Eq. (10)]. The linear fit of
the data indicates ρB has an entanglement structure like that of
a 1+1D CFT. As a comparison, triangles correspond to the pure
1+1D Ising critical state |CFT〉B on B.

we bipartition B sublattice into two intervals B1 and B2,
and quantify their entanglement using entanglement neg-
ativity EN [33–37], an entanglement measure of mixed
states: EN (ρB) = ln

(
||ρTB1

B ||1
)

, where the upper script TB1

denotes the partial transpose with respect to the subsystem
B1 and || · ||1 denotes the trace norm. Using exact diago-
nalization (ED), we find (see Fig. 3) negativity follows a
universal scaling form as in the 1+1D CFT [56,57]:

EN (x, L) = α ln
(

L
π

sin
(πx

L

))

+ β, (12)

where x, L are the sizes of the subsystem B1 and the entire B
sublattice, and α ≈ 0.15. As a comparison, the finite-size
numerics for a pure critical Ising chain reports α ≈ 0.30
[58]. This indicates that the amount of long-range entan-
glement on B sublattice decreases when coupling to A
sublattice. Since the prefactor α is generically a universal
number that relates to the number of low-energy degrees of
freedom, one interpretation is that coupling between A, B
sublattices diminishes the low-energy degrees of freedom
that carry long-distance entanglement on B sublattice. This
is also consistent with the fact that the disorder operator
decays faster after coupling to A sublattice [Eq. (11)].

Finally, we remark that our protocol of converting hid-
den order is also applicable when the input state is mixed.
One immediate application is that when the input pure
SPT is subject to a symmetry-preserving noise chan-
nel, in which case the string order survives, the output
of our measurement-feedback channel will remain long-
range ordered. In addition, with the critical state [g = 1
in Eq. (7)] under a noise channel as an input, the output
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mixed state exhibits a log scaling of bipartite entanglement
negativity [as in Eq. (12)] while the log-scaling prefactor
decreases continuously as increasing the noise rate. See
Appendix B 4 for a detailed discussion.

D. Generalization to other mixed-state long-range
order

Here we briefly summarize several classes of mixed-
state long-range order that can be realized based on our
general framework. In all these examples, we derive an
exact duality between the Hamiltonian of the input SPT
and the Hamiltonian of a purified state whose sublattice
encodes the long-range order, which allows us to establish
the correspondence between phase diagram of the input
state and that of the output state.

Z2 topological order in higher-space dimensions: our
protocol can be straightforwardly generalized by consid-
ering input states as Z2 p-form ×Z2 q-form SPTs in d-
space dimension with p + q = d − 1. Using measurement-
feedback channels, one can prepare a mixed state with
Z2 topological order at d ≥ 2 space dimensions. In
Appendix C we detail the realization of mixed-state Z2
topological order in 2d.

Z2 fermionic topological order: another straightfor-
ward application is the preparation of mixed states with
Z2 fermionic topological order. This can be achieved by
taking Z2 × Z

f
2 SPTs [20,59–62] as input, where the first

Z2 symmetry acts on qubits and the second Z
f
2 is the

parity symmetry on fermions. Based on certain nonlo-
cal hidden orders in these SPTs, we devise a protocol
that outputs fermionic mixed states with long-range order.
In Appendix D we present the protocol that realizes the
fermionic mixed state in 1D with the same long-range
order as in the topological phase of the 1D Kitaev chain.
In Appendix E we present the protocol that realizes the
fermionic mixed states in 2D with intrinsic topological
order.

V. MIXED-STATE QUANTUM CRITICALITY BY
MEASURING FERMIONS

In this section, we construct quantum channels based
on fermion occupation number measurement in spinful
fermions. This is naturally motivated by Gutzwiller projec-
tion [63], a standard approach to construct exotic states of
matter by projecting spinful noninteracting fermions into
the subspace of single occupation number per lattice site,
yielding a spin-1/2 wave function. For example, Gutzwiller
projecting free fermions at half-filling in 1D leads to a
critical ground state of the Haldane-Shastry model [64,
65], a long-range interacting Heisenberg antiferromagnet
with 1/r2 exchange coupling. In 2D, certain spin liquids
with topological order can be constructed similarly (see

Refs. [39,40] for reviews). More broadly, Gutzwiller pro-
jection may be viewed as an application of parton construc-
tion [66], a well-known approach to constructing nontrivial
states by imposing certain constraints on noninteracting
particles.

Gutzwiller projection and parton construction provides
inspiration for using measurement to implement the pro-
jection. Indeed, Ref. [23] has presented a protocol to
prepare the ground state of the Kitaev honeycomb model
[67], where notably, the desired projection can be achieved
by measuring fermions and applying a depth-1 local uni-
tary feedback. However, beyond this specific model, start-
ing with a generic state, postmeasurement states with
unwanted measurement outcomes may not converge to the
same target Gutzwiller projected state using finite-depth
unitaries. This presents a difficulty in realizing Gutzwiller
projection with measurement-based protocols. Here our
framework avoids this conundrum. We will show that
occupation-number measurement followed by appropri-
ate unitary feedback enables the realization of nontrivial
mixed states with certain long-distance quantum corre-
lations. A field-theoretic understanding of the resulting
mixed states and their correlations will be presented in
forthcoming work [68].

A. Measuring 1D fermion

Taking 1D spinful free fermions as input, below we
will present a finite-depth protocol for realizing quantum-
critical mixed states with critical correlations distinct from
the input states.

Consider noninteracting, spinful fermions on a 1D lat-
tice, where the annihilation fermion operators at site i are
denoted by ci,s, c†

i,s with site indices i = 1, 2, . . . , L and
spin indices s =↑, ↓, we define a tight-binding Hamil-
tonian H = −∑

i,s(c
†
i+1,sci,s + h.c.), whose ground state

|ψ0〉 takes the following form:
∏

k c†
k,↑

∏
k c†

k,↓ |0〉 with k
being the momentum indices. |ψ0〉 exhibits an algebraic
correlation between spins:

〈
Sz

i Sz
j

〉
∼ 1
(j − i)2

, (13)

with the spin operator Sz
i = 1

2 [ni,↑ − ni,↓], and ni = ni,↑ +
ni,↓ is the number operator at site i.

Interestingly, by decorating with a fermion parity string,
the spin-spin correlation decays slower (see Ref. [42] for
details):

〈

Sz
i

j −1∏

l=i+1

(−1)nlSz
j

〉

∼ 1
j − i

. (14)

In other words, the fermion-parity string reveals a more
ordered, long-range correlation that is hidden in free
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fermions. Conceptually the insertion of the fermion string
has the effect of removing the charge fluctuations, thereby
enhancing the order in the spin sector. The physics is akin
to the spin-1 Affleck-Kennedy-Lieb-Tasaki (AKLT) chain
[69] (belonging to the Haldane SPT phase [70]), where the
ground state is a superposition of a class of product states
that have a staggered pattern of +1 and −1 with an arbi-
trary number of 0s in between, e.g. · · · + 00 − 0 + 000 −
+ · · · . While the two-point function Sz

i Sz
j decays exponen-

tially due to the position disorder of 0, inserting the string
∏j −1

l=i+1(−1)S
z
l in between Sz

i and Sz
j effectively removes

the disorder, thereby revealing the hidden antiferromag-
netic order [71]. The process of removing certain disorders
by inserting string operators is dubbed the squeezed-space
construction in Ref. [42].

More technically, the string order may be understood as
the following: the free-fermion state consists of two decou-
pled fermion chains with opposite spin flavors: |ψ0〉 =
|ψ0〉↑ ⊗ |ψ0〉↓. Each fermion chain exhibits a string order
c†

i,s
∏j −1

l=i+1(−1)nl,scj ,s ∼ 1/
√|j − i| with s ∈ {↑, ↓} [72].

Considering a product of two string operators, one finds
S†

i
∏j −1

l=i+1(−1)nlS−
j ∼ 1/j − i, where S±

i is the spin raising
and lowering operator. Using the spin rotational symmetry,
one then recovers the string order in Eq. (14).

Given the above free-fermion state |ψ0〉, measur-
ing the fermion occupation number at each site gives
the outcome n = {n1, n2, . . . , nL} with each ni ∈ {0, 1, 2}.
Correspondingly, the postmeasurement state becomes
Pn |ψ0〉/

√〈ψ0| Pn |ψ0〉 with probability pn = 〈ψ0| Pn |ψ0〉.
The measurement-only protocol leads to a mixed state
ρm = ∑

n Pnρ0Pn, i.e., an ensemble of pure states corre-
sponding to distinct measurement outcomes. Since spin
operators commute with fermion number operators, the
spin-spin correlation remains unchanged: tr

[
ρmSz

i Sz
j

]
=

〈ψ0| Sz
i Sz

j |ψ0〉 ∼ 1/(j − i)2.
Now we show that with appropriate unitary feedback,

one can obtain a mixed state with enhanced long-range cor-
relation. Specifically, the string order of the original input
state |ψ0〉 will be transformed into spin-spin correlation
with Sz

i Sz
j ∼ 1/j − i in the resulting mixed state. This is

in strong contrast to Sz
i Sz

j ∼ 1/(j − i)2 in the case without
unitary feedback.

The protocol is as follows. First, we measure the fermion
occupation number on every site. For each postmeasure-
ment state with an outcome labeled by n, we apply a local
unitary Un. This depth-2 protocol leads to a mixed state:
ρ = ∑

n UnPnρ0PnU†
n. Now we look for the unitary Un

that transforms Sz
i to Sz

i (−1)
∑

j ≤i nj for all i. This can be
achieved by choosing

Un =
L∏

i=1

(Sx
i

)∑
j ≤i nj , (15)

where Sx
i is a spin-flip operator: Sx

i = 2Sx
i = c†

i,↑ci,↓ +
c†

i,↓ci,↑ in the subspace of ni = 1, and Sx
i = 1 (i.e., it acts

trivially) in the subspace of ni = 0, 2. In other words, the
operator Sx

i is applied at site i when there is an odd number
of fermions in the interval [1, i].

Under the transformation by Un, the spin-spin correlator

becomes U†
nSz

i Sz
j Un = −Sz

i (−1)
∑j −1

l=i+1 nlSz
j , which acquires

a sign that depends on the number of fermions between
sites i and j . A straightforward calculation shows that

tr
[
ρSz

i Sz
j

]
=

∑

n

〈ψ0| PnU†
nSz

i Sz
j UnPn |ψ0〉

= − 〈ψ0| Sz
i (−1)

∑j −1
l=i+1 nj Sz

j |ψ0〉

∼ 1
j − i

. (16)

Therefore, the hidden string order of the input state |ψ0〉
is converted to a critical correlation shared among spins in
the output mixed state ρ. In particular, the reduced den-
sity matrix of ρ that describes spins, obtained by tracing
out charge fluctuations, can be purified into a ground state
of a local Hamiltonian that describes interacting spinful
fermions (see Appendix F).

One may also consider the spin-spin correlation in
other orientations. The global SU(2) spin-rotation sym-
metry of the input state |ψ0〉 implies 〈ψ0| Sνi Sνj |ψ0〉 ∼
1/(j − i)2 and 〈ψ0| Sνi

∏j −1
l=i+1(−1)nlSνj |ψ0〉 ∼ 1/(j − i)

for ν = x, y, z. Since the feedback unitary consists of Sx
i ,

which anticommutes with Sy
i , the channel also boosts the

correlation in y component, i.e., Sy
i Sy

j is enhanced from
1/(j − i)2 to (1/j − i) in the resulting mixed state. On the
other hand, correlation in x component remains 1/(j − i)2

since the spin operator in x component transforms trivially
under the unitary feedback.

The mixed state arising from our protocol is nontriv-
ial in the sense that it cannot be written as a mixture
of short-range entangled states. To see this, we first note
that due to the global spin-flip symmetry of the input
state, i.e.,

∏
i Sx

i |ψ0〉 = |ψ0〉, the output mixed state ρ will
have

∏
i Sx

i = 1 in the expectation value as well (since
this operator commutes with both measurement opera-
tors and unitary correction). Based on the algebraic decay
Sz

i Sz
j and

∏
i Sx

i = 1, one can again use the proof tech-
nique in Sec. III to show that ρ cannot be a mixture of
short-range entangled states. This, in turn, suggests certain
long-distance entanglement in the mixed state. Specifi-
cally, in light of the well-known log L entanglement scaling
of the input free fermions in 1D, the output state will
likely exhibit a log L scaling mixed-state entanglement
(e.g., quantified by entanglement negativity).

When considering interactions in the input state, our
protocol continues to generate critical mixed states. As
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shown in Ref. [42], given interacting fermions described
by a Luttinger liquid with the Luttinger parameters
Ks and Kc corresponding to the stiffness of spins and
charges, with repulsive charge interaction (implying
0 < Kc < 1) and global SU(2) spin-rotation symmetry
(implying Ks = 1), the leading-order spin-spin correlation
behaves as Sz

i Sz
j ∼ 1/(j − i)Kc+Ks and the string opera-

tor behaves as Sz
i
∏j −1

l=i+1(−1)nlSz
j ∼ 1/(j − i)Ks . Using the

same measurement-feedback channel, one can then trans-
form this string order to a critical spin-spin correlation
Sz

i Sz
j ∼ 1/(j − i)Ks in the resulting mixed state, which is

in contrast to the initial exponent Kc + Ks.

B. Measuring Chern insulators

Here, we show that starting with a two-dimensional
gapped state with short-range correlations in the bulk, mea-
surement and feedback can remarkably lead to a mixed
state with long-range critical correlations.

Our starting point is the Chern insulator, a gapped state
of matter, which features integer-value quantized Hall con-
ductance and gapless edge states. Despite the short-range
correlation in the bulk, i.e., exponential decay of two-point
functions, there exists a nonlocal operator whose corre-
lation decays algebraically. Denoting a fermion creation
operator by c†(x) with x = (x, y) being the space coor-
dinate, one defines a dressed fermion creation operator
c̃†(x) = η(x)c†(x), where η(x) is a nonlocal operator:

η(x) = ei
∫

d2x′c†(x′)c(x′)arg(x−x′), (17)

with arg(x) being the polar angle of x.
In a Chern insulator |ν = 1〉 with associated Hall con-

ductance σH = ν(e2/h), the dressed operators exhibit a
critical correlation [45]:

〈ν = 1| c̃(x)c̃†(x′) |ν = 1〉 ∼ 1
|x − x′|α , (18)

where α is a nonuniversal constant related to the U(1)
response of Chern insulators.

As discussed in Ref. [45], η(x) can be understood as
the operator associated with the infinitesimal time evolu-
tion given by inserting a 2+1D U(1) monopole, and the
algebraic long-range order results from the topological
response to such monopole insertion in a Chern insulator.
Note that the above critical order presents an off-diagonal
long-range order (ODLRO), which was first discovered by
Girvin and MacDonald [44] in fractional quantum Hall
states at filling fraction ν = 1/m. In particular, these quan-
tum Hall states may be understood as a condensate of
composite bosons by attaching fluxes to fermions, so the
bare fermions need to be dressed by an appropriate nonlo-
cal operator Eq. (17) in order to reveal the hidden ODLRO.
For quantum Hall states described by Laughlin’s wave
function at ν = 1, α is analytically found to be 1/2 [44].

|ψ0〉↑

|ψ0〉↓

S+(x)S−(x′) ∼ 1
|x − x′|2α

Single-site measurement & unitary

FIG. 4. Spin-up and spin-down fermions are initialized in
Chern insulating states with opposite Chern numbers. Such an
initial state can be converted to a mixed state with algebraic
correlations in the bulk through a two-step protocol consist-
ing of single-site fermion occupation-number measurement and
unitary.

Below we will discuss a protocol that realizes a critical
mixed state with algebraic two-point correlations based on
the hidden order in Chern insulators (see Fig. 4). To start,
we consider an initial state |ψ0〉 = |ψ0〉↑ ⊗ |ψ0〉↓, where
|ψ0〉↑ is the Chern insulator with ν = 1 consisting of spin-
up fermions, and |ψ0〉↓ is the Chern insulator with ν = −1
consisting of spin-down fermions. As a result, spin-up
and spin-down fermions, respectively, exhibit an algebraic
hidden order:

〈ψ0|s c̃s(x)c̃†
s (x

′) |ψ0〉s ∼ 1
|x − x′|α , (19)

where s = 1, −1 for spin-up and spin-down fermions, and
the dressed fermion operators are c̃†

s (x) = ηs(x)c
†
s (x), with

ηs(x) = eis
∫

d2x′c†
s (x′)cs(x′)arg(x−x′). (20)

Note the opposite sign in the exponent is due to the oppo-
site sign of Chern numbers for spin-up and spin-down
fermions.

The hidden critical order in the Chern insulators can
be detected through spin-raising and lowering operators
S+(x) = c†

↑(x)c↓(x) and S−(x) = c†
↓(x)c↑(x) by dressing

them with the appropriate nonlocal operators. Specifically,
let n̂↑(x), n̂↓(x) be the number operator of spin-up and -
down fermions, and define φ̂(x) = ∫

d2x′n̂(x)arg(x − x′)
with n̂(x) = n̂↑(x)+ n̂↓(x). Then the nonlocal operator
eiφ̂(x)S+(x)S−(x′)e−iφ̂(x′) exhibits an algebraic decay:

〈ψ0| eiφ̂(x)S+(x)S−(x′)e−iφ̂(x′) |ψ0〉
= 〈ψ0| c̃†

↑(x)c̃↓(x)c̃
†
↓(x

′)c̃↑(x′) |ψ0〉
= − 〈ψ0|↑ c̃↑(x′)c̃†

↑(x) |ψ0〉↑ 〈ψ0|↓ c̃↓(x)c̃
†
↓(x

′) |ψ0〉↓
∼ 1

|x − x′|2α . (21)

Now we show how to convert this hidden nonlocal order
to a critical order in the two-point function S+(x)S−(x′)
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using measurement and feedback. In particular, since the
nonlocal order in the input state is a universal property of
the Chern insulator phase, our protocol will always give
rise to a state with critical correlations as long as the input
state is in the same phase of matter. Starting with the input
state |ψ0〉, we measure the fermion occupation number on
every site and then provide unitary feedback. The resulting
density matrix takes the form:

ρ =
∑

n

UnPn |ψ0〉 〈ψ0| PnU†
n, (22)

where Pn is the projector to a definite fermion number
configuration, and Un is the unitary feedback

Un =
∏

x

e−iφn(x)Sz(x) (23)

with Sz(x) = 1
2 (n̂↑(x)− n̂↓(x)) and the phase φn(x) =∫

d2x′n(x)arg(x − x′) depending on the measurement out-
come. The resulting density matrix ρ exhibits a critical
two-point correlation inherited from the nonlocal hidden
order of the input |ψ0〉:

tr
[
ρS+(x)S−(x′)

]

= 〈ψ0| eiφ̂(x)S+(x)S−(x′)e−iφ̂(x′) |ψ0〉 ∼ 1
|x − x′|2α .

(24)

To see this, one first notes that the spin operators under
the transformation by Un will be dressed by an appropriate
phase, namely,

U†
nS+(x)Un = eiφn(x)S+(x),

U†
nS−(x)Un = e−iφn(x)S−(x). (25)

This implies PnU†
nS+(x)S−(x′)UnPn = Pneiφ̂(x)S+(x)

S−(x′)e−iφ̂(x′), where the phase φn(x) has been promoted to
an operator φ̂(x) under the projector Pn. Using this result,
it is then straightforward to derive Eq. (24) with the density
matrix in Eq. (22).

Similarly, one may compute S−(x)S+(x′), which
turns out to be equal to S+(x)S−(x′) in the operator
expectation value, hence decaying algebraically. These
two results together imply Sx(x)Sx(x′)+ Sy(x)Sy(x′) =
1
2 (S

+(x)S−(x′)+ S−(x)S+(x′)) ∼ 1/|x − x′|2α , where
Sx(x) = 1

2 (S
+(x)+ S−(x)), Sy(x) = (S+(x)− S−(x))/(2i),

i.e., the spin operator in x and y component. In particular,
since the initial input state |ψ0〉 satisfies

∏
x Sz(x) |ψ0〉 =

|ψ0〉, where Sz(x) is the π rotation about z axis, the
expectation value of Sz(x) is one in the resulting mixed
state. With the proof technique used in Sec. III, Sz(x) = 1
together with algebraic decay of Sx(x)Sx(x′)+ Sy(x)Sy(x′)
indicate that the critical mixed state ρ cannot be a mixture
of short-range entangled state.

VI. SUMMARY AND DISCUSSION

In this work, we present a general framework for real-
izing mixed-state quantum order and quantum criticality
using finite-depth quantum channels consisting of local
measurement, local unitary feedback, and nonlocal clas-
sical communication. As an illustration, our protocol uni-
versally converts certain SPT phases to mixed states with
long-range (topological) orders. In addition, when the
input SPT is tuned to a critical point, our protocol outputs
a quantum critical mixed state diagnosed by volume-law
classical entropy, algebraic decay of correlations, as well
as logarithmically scaling bipartite mixed-state entangle-
ment. Within the same theoretical framework, we also
show how to transform the correlation exponent in con-
stant depth by considering 1D spinful free fermions. More
interestingly, our protocol can convert Chern insulators to
a mixed state with an algebraically decaying correlation in
the bulk. This furnishes a notable example where mixed-
state quantum criticality can emerge from gapped states of
matter in finite depth.

Our work motivates several questions that are worth fur-
ther exploration. First, while we provide several examples
of realizing nontrivial mixed states with critical correla-
tions, a deeper understanding of the entanglement structure
of these novel mixed-state quantum criticality is lack-
ing. Second, since this work focuses only on the utility
of depth-2 protocols with onsite measurement and onsite
unitary feedback, it would be interesting to generalize
the current protocol, which may enable the realization of
more types of exotic mixed-state orders and criticality.
For instance, the onsite unitary feedback may be gener-
alized to finite-depth local unitary circuits, and the current
depth-2 protocols may be extended to multiple rounds of
measurement and unitary layers.

Finally, it remains unclear what are the limitations of
local measurement, local unitary, and nonlocal classical
communication for realizing nontrivial quantum orders
and criticality. Answering this question would provide
sharp distinctions between the states that can and cannot be
realized in finite depth. While entanglement provides one
such constraint as discussed in Sec. III, it would be desir-
able to explore the limitations from various aspects in the
future (see Refs. [25,73] for progress along this direction).
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APPENDIX A: CONSTRAINTS ON MIXED-STATE
ENTANGLEMENT

Here we first review the basic notion of entanglement
of formation, which we will use to constrain the entangle-
ment structure of output states from finite-depth quantum
channels.

Entanglement of formation: given a density matrix ρCC
acting on the bipartite Hilbert space HC ⊗ HC, the
entanglement between C and C can be quantified via
entanglement of formation Ef [46], which is defined as fol-
lows: one may decompose a density matrix into a convex
sum of pure states, i.e., ρCC = ∑

i pi |ψi〉 〈ψi| with pi ≥ 0
and

∑
i pi = 1. Then Ef ≡ Min

{∑
i piSC(trC |ψi〉 〈ψi|)

}
,

where SC(ρC) is the von Neumann entropy of ρC. Namely,
Ef is the average of bipartite entanglement entropy min-
imized over all possible ways of decomposing ρ as a
mixture of pure states. When ρCC is pure, Ef reduces to
the von Neumann entanglement entropy. To demonstrate
the idea of entanglement of formation, one may con-
sider two qubits in a maximally mixed state, i.e., ρ = I/4
with I being the identity operator. Certainly, the mixed
state canbe written as a uniform mixture of four Bell
states (|00〉 ± |11〉)/√2, (|01〉 ± |10〉)/√2, so the average
entanglement is log 2. However, the mixed state can also
be written as a uniform mixture of four product states,
|00〉 , |01〉 , |10〉 , |11〉, in which case one achieves the min-
imal average entanglement entropy, i.e., zero. Therefore,
Ef = 0 for this maximally mixed state.

Bounds on entanglement: in the main text, we construct
quantum channels from LOCC, i.e., single-site measure-
ment, single-site unitaries, and classical communication.
As such, the mixed-state entanglement quantified by Ef
must be nonincreasing under such quantum channels. To
see this, starting with a state ρ0 = |ψ0〉 〈ψ0|, performing
single-site measurement followed by single-site unitaries
leads to a mixed state ρ, a mixture of pure states |ψα〉 =
UαPα |ψ0〉/

√〈ψ0| Pα |ψ0〉 with corresponding probability
pα = 〈ψ0| Pα |ψ〉. Being an entanglement measure, Ef
cannot increase on average under LOCC [46,74], indicat-
ing Ef (ρ0) ≥ ∑

α pαEf (|ψα〉) = ∑
α pαSC(trC |ψα〉 〈ψα|).

Meanwhile, one has
∑

α pαSC(trC |ψα〉 〈ψα|) ≥ Ef (ρ =∑
α pα |ψα〉 〈ψα|) because Ef is the average entanglement

entropy minimized over all possible pure state realizations.
As a result, one finds Ef (ρ0) ≥ Ef (ρ).

When generalizing onsite unitary operations to mul-
tisite, geometrically local unitary gates, the protocol no
longer belongs to LOCC, and mixed-state entanglement

may increase. To bound the entanglement growth, one
may consider the Renyi-n entanglement of formation [75]
defined as Rn ≡ Min

{∑
i piS

(n)
C (trC |ψi〉 〈ψi|)

}
, where S(n)C

is the Renyi-n entropy. Starting with a pure state, after
a finite-depth protocol with local measurement and uni-
tary gates (acting on O(1) number of neighboring sites),
one obtains an ensemble ρ of pure-state trajectories |ψα〉
with probability pα . For each pure-state trajectory |ψα〉,
the increase of Renyi-0 entanglement S(0)C (trC |ψα〉 〈ψα|),
also dubbed max entropy or Hartley entropy, is upper
bounded by D|∂A|, where D is the depth of the channel
and |∂A| is the bipartition boundary area. This is because
Hartley entropy is simply bounded by the number of local
measurements and unitary gates that act on the boundary.
Therefore, the increase of Renyi-0 entanglement of forma-
tion R0 is also bounded by the area law. One immediate
consequence is that if one starts with a pure product state
(i.e., with R0 = 0), then after a finite-depth channel, the
Renyi entanglement of formation of any Renyi index will
follow an area law since Rn ≤ R0 for any n > 0.

APPENDIX B: MEASURING 1D SPT

1. Derivation of operator duality

Here we derive the transformation rules for operators
under the controlled unitary U = ∑

α PαUα . Uα is the uni-

tary feedback defined as Uα = ∏
i X

(1−∏i
j =1,2,... αj )/2

b,i . Pα is a
projector defined as Pα = |α〉 〈α|, which projects A sublat-
tice to a product state in Pauli-X basis. Below we provide
two distinct approaches for derivation.

Operator-based approach: first, the controlled unitary

can be written as U = ∏
i X

(1−∏i
j =1 Xa,j )/2

b,i . Since U is
diagonal in the Pauli-X basis, Pauli-X operators are
invariant under the conjugation by U. Next, we consider
UZb,iZb,i+1U† (note that Pauli Zs come in pairs due to the
global Z2 symmetry). This operator can be simplified as
uZb,iZb,i+1u†, where

u = X
1−∏i

j =1 Xa,j
2

b,i X
1−∏i+1

j =1 Xa,j
2

b,i+1 . (B1)

In the subspace that
∏i

j =1 Xa,j = 1, one finds UZb,iZb,i+1

U† = X
(1−Xa,i+1)/2

b,i+1 Zb,iZb,i+1X
(1−Xa,i+1)/2

b,i+1 . For Xa,i+1 = 1,
one has UZb,iZb,i+1U† = Zb,iZb,i+1 while for Xa,i+1 =
−1 one has UZb,iZb,i+1U† = −Zb,iZb,i+1. Combining the
cases of Xa,i+1 = ±1 leads to the result UZb,iZb,i+1U† =
Zb,iXa,i+1Zb,i+1. Similarly, one finds UZa,iZa,i+1U† =
Za,iXb,iZa,i+1.

Here we remark that as we see in the main text, the

controlled unitary U = ∏
i X

(1−∏i
j =1 Xa,j )/2

b,i maps a Z2 × Z2
SPT to two Z2 symmetry-breaking (GHZ) ordered states
on A and B sublattices. This is akin to the Kennedy-Tasaki
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transformation [76,77], which transforms a Haldane spin-1
chain [70] with Z2 × Z2 SPT order to two spontaneous Z2
symmetry-breaking orders. Indeed, Kennedy-Tasaki trans-
formation can also be realized as a controlled unitary [78],
which therefore fits into our general framework. In partic-
ular, we can take a Haldane spin-1 chain in the Z2 × Z2
SPT phase, and perform a layer of onsite measurement fol-
lowed by a layer of onsite unitaries to realize a mixed state
with Z2 GHZ-like order.

Wave-function based approach: starting with a global
Z2 × Z2 symmetric input state |ψ0〉, in Pauli-X basis |ψ0〉
can be written as

|ψ0〉 =
′∑

α,β

(−1)χ(α,β)ψ(α,β) |α,β〉 . (B2)

α = {αi = ±1},β = {βi = ±1} denote the product state in
Pauli-X basis in the sublattice A and sublattice B. The Z2
symmetry on each sublattice implies that the allowed α,β
must satisfy

∏
i αi = ∏

i βi = 1. We use �′ to denote that
only those α,β that satisfy this constraint are considered.

Due to the symmetry, αi = −1 must come in pairs,
which can be regarded as the two endpoints of a string.
Correspondingly, various α configurations can be under-
stood as various A strings in A sublattice, and similarly, β
configurations can be represented by B strings in B sublat-
tice. Within the string representations, χ is the number of
times that A strings intersect (braid) with B strings. When
|ψ0〉 is a fixed-point cluster SPT with ZXZ stabilizers,
ψ(α,β) is a constant independent of α,β (see Fig. 5).

Given Eq. (B2), measuring Pauli X on A sublat-
tice projects A sublattice to a particular α configu-
ration: Pα |ψ0〉 = |α〉 ⊗ ∑′

β(−1)χ(α,β)ψ(α,β) |β〉. After

+ · · ·

− +

+=

|ψ0〉 =
′∑

α,β

(−1)χ(α,β)|α, β〉

FIG. 5. 1D fixed-point Z2 × Z2 SPT (with parent Hamiltonian
H0 = −∑

i Za,iXb,iZa,i+1 − ∑
i Zb,iXa,i+1Zb,i+1) as a condensate

of two types of strings with a braiding sign structure in the Pauli-
X basis. A product state |α,β〉 in X basis with

∏
i αi = ∏

i β = 1
corresponds to a configuration of blue strings and red strings
whose endpoints indicate αi = −1 and βi = −1, respectively.
The braiding number χ(α,β) counts the number of times that
two types of strings intersect.

the measurement, applying the unitary feedback Uα(=
∏

i X
(1−∏i

j =1,2,... αj )/2
b,i ) removes the braiding phase: UαPα

|ψ0〉 = |α〉 ⊗ ∑′
β ψ(α,β) |β〉. It follows that the output

state on B sublattice reads

ρB = trA

(
∑

α

UαPα |ψ0〉 〈ψ0| PαU†
α

)

=
′∑

β,β ′
|β〉 〈β ′|

′∑

α

ψ(α,β)ψ∗(α,β ′). (B3)

ρB is simply the reduced density matrix on B of the
following pure state:

|ψ〉 =
′∑

α,β

ψ(α,β) |α,β〉 . (B4)

One consequence is that the entropy of the mixed state
ρB results from the entanglement entropy between A and
B in |ψ〉, i.e., it is the residual quantum fluctuation when
removing the braiding phase in the initial input SPT |ψ0〉.

Comparing Eqs. (B2) and (B4), it is obvious that |ψ〉 =
U |ψ0〉 with U is a diagonal matrix whose entries encode
the braiding phase:

U =
′∑

α,β

|α,β〉 〈α,β| (−1)χ(α,β). (B5)

Although U is not unitary in the entire Hilbert space, it is
unitary in the symmetric subspace specified by

∏
i Xa,i =∏

i Xb,i = 1. Note that this form of unitary has appeared
in the literature [79] as a way to reveal the hidden long-
range order of certain SPTs. We also note that in the
symmetric subspace, U is the same as the controlled

unitary
∑

α PαUα = ∏
i X

(1−∏i
j =1 Xa,j )/2

b,i discussed in the
operator-based approach.

With U = ∑′
α,β(−1)χ(α,β) |α,β〉 〈α,β|, one can derive

the parent Hamiltonian of |ψ〉 from H = UH0U†, where
the following symmetry constraint is further imposed on
H :

∏
i Xa,i = ∏

i Xb,i = 1 [80].
Now we present the derivation of operator mapping:

UZb,iZb,i+1U†

=
′∑

α′,β ′,α,β

|α′,β ′〉 〈α,β|

〈α′,β ′| (−1)χ(α
′,β ′)Zb,iZb,i+1(−1)χ(α,β) |α,β〉 . (B6)

While Zb,iZb,i+1 has no effect on |α〉 (i.e., α′ = α), this
operator makes the transition from β to β ′, where β

and β ′ only differ in the site (b, i) and site (b, i + 1).
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It is not hard to find that the product of the braiding
phase (−1)χ(α

′,β ′)(−1)χ(α,β), i.e., the braiding sign change
induced by Zb,iZb,i+1 is simply equal to αi+1. In other
words, 〈α′,β ′| (−1)χ(α

′,β ′)Zb,iZb,i+1(−1)χ(α,β) |α,β〉

= 〈α′,β ′| Zb,iαi+1Zb,i+1 |α,β〉
= 〈α′,β ′| Zb,iXa,i+1Zb,i+1 |α,β〉 . (B7)

Therefore, one finds Zb,iZb,i+1 → Zb,iXa,i+1Zb,i+1. With a
similar calculation, one finds Za,iZa,i+1 → Za,iXb,iZa,i+1.

2. Numerical data on volume-law entropy

Here we report the data on von Neumann entropy of the
mixed state ρB from the ground state of H [Eq. (9)]. The
entropy is defined as S(ρB) = −trB

[
ρB ln(ρB)

]
. The ED

calculation for various system sizes is shown in Fig. 6. Our
data suggest that S(ρB) scales linearly with L, i.e., volume-
law scaling, for any nonzero g. In particular, this means
that at the critical point g = 1, B sublattice is a mixed state
with volume-law classical entropy coexisting with critical
long-range entanglement.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
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FIG. 6. von Neumann entropy S of the mixed state ρB(=
trA |ψ〉 〈ψ |) with |ψ〉 being the ground state of H in Eq. (9).
Upper panel: S as a function of the tuning parameter g. Lower
panel: the scaling of S with the system size L of sublattice B. We
find S scales linearly with L for any nonzero g.

3. Other nonfixed-point SPT as input

Here we consider various types of symmetric pertur-
bation on the fixed-point Z2 × Z2 SPT, and discuss the
structure of the corresponding output state.

On-site X perturbation: here the input is the ground state
of the following Hamiltonian:

H0 = −
∑

i

Za,iXb,iZa,i+1 −
∑

i

Zb,iXa,i+1Zb,i+1

− g
∑

i

(Xa,i + Xb,i). (B8)

The ground state of H0 belongs to Z2 × Z2 SPT for
g < 1, and belongs to a trivial phase for g > 1 [81,
82]. Using the transformation rule in Eq. (6), one
obtains a Hamiltonian of two decoupled transverse-field
Ising chain: H = HA + HB, where HA = −∑

i Za,iZa,i+1 −
g

∑
i Xa,i and HB = −∑

i Zb,iZb,i+1 − g
∑

i Xb,i. The state
ρB from the measurement-feedback channel is the reduced
density matrix of the ground state of H by tracing out
A. Since A and B are decoupled, ρB is in fact a pure
state, namely, the ground state of the transverse-field Ising
chain, whose long-range order exists for |g| < 1 (i.e., the
regime where the input state is an SPT). In particular, ρB
being pure means that all postmeasurement state trajecto-
ries are transformed to the same state on B with the unitary
feedback.

Two-body ZZ perturbation: here the input is the ground
state of the Hamiltonian with independently tunable two-
body ZZ perturbation on A and B sublattices:

H0 = −
∑

i

Za,iXb,iZa,i+1 −
∑

i

Zb,iXa,i+1Zb,i+1

− gA

∑

i

Za,iZa,i+1 − gB

∑

i

Zb,iZb,i+1. (B9)

The measurement-feedback channel will prepare a state ρB
on B sublattice with the parent Hamiltonian:

H = −
∑

i

Za,iZa,i+1 −
∑

i

Zb,iZb,i+1

− gA

∑

i

Za,iXb,iZa,i+1 − gB

∑

i

Zb,iXa,i+1Zb,i+1.

(B10)

H0 and H are dual to each other, and their phase diagrams
are presented in Fig. 7. Interestingly, one notices that with
the measurement-feedback channel acting on a gapless
state, we can prepare a noncritical mixed state with long-
range order. To see this, we consider gB = 1 and gA < 1. In
this case, H0 exhibits the gapless SPT order [83] since the
Z2 charges on A are used to decorate the domain walls in B
sublattice that is tuned to a critical point between a trivial

030318-14



MIXED-STATE LONG-RANGE ORDER. . . PRX QUANTUM 4, 030318 (2023)

H0 H

gA

gB

A:Trivial

B:SSB
A:SSB

B:SSB

SPT

0 1

1
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B:Trivial
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gB

A:Trivial

B:SSB

A:SSB

B:SSB

SPT

0 1

1

A:SSB

B:Trivial

FIG. 7. Phase diagram of H0 and H defined in Eqs. (B9)
and (B10). Taking the ground state of H0 as an input, the
measurement-feedback channel prepares a mixed state on B sub-
lattice, which is the reduced density matrix of the ground state
of H .

phase and a Z2 SSB phase. It follows that by measuring
the gapped degrees of freedom on A followed by unitary
feedback, one obtains mixed state ρB on B sublattice that
exhibits a Z2 SSB order.

More generally, one may consider an input state of
the form |ψ0〉 = U |ψA〉A |ψB〉B with U = ∏

CZ(a,i),(b,i)
CZ(b,i),(a,i+1) being a product of controlled-Z that entangles
A and B sublattices. The measurement-feedback protocol
will always lead to a mixed state on B with long-range
order, as long as |ψ0〉 satisfies the following two condi-
tions (in particular |ψ0〉 does not need to be an SPT): (1)
|ψA〉 is trivial, where domain walls condense (i.e., the prod-
uct of X along an open string takes a nonzero expectation
value c). (2) The input state on B sublattice, i.e., |ψB〉, is
invariant under the global Z2 symmetry:

∏
i∈B Xi |ψB〉B =

|ψB〉B (e.g., |ψB〉 can be trivial, spontaneously breaking the
symmetry, or critical). The first condition implies that a
long-range string operator 〈ψ0| ZBXAXA · · · XAZB |ψ0〉 = c;
measuring XA on A sublattice followed by a unitary feed-
back acting on B leads to a mixed state ρB on B with a
long-range ZZ two-point function. (2) The second condi-
tion implies that tr[ρ

∏
i∈B Xi] = 1. As a result, combining

these two conditions already guaranteed the existence of
long-range order in the mixed state ρB. Practically speak-
ing, it is of best interest of our protocol to consider |ψB〉B
as a trivial state (in which case |ψ0〉 is an SPT), since it fur-
nishes an example of obtaining long-range order only after
implementing the protocol.

4. SPT under decoherence as input

In the main text, we discussed a measurement-feedback
channel that transforms the string order of the input pure
SPT to a long-range order. Specifically, the main result is

tr[ρZb,iZb,j ] = tr[ρ0Zb,i

( j∏

k=i+1

Xa,k

)

Zb,j ], (B11)

where ρ0 = |ψ0〉 〈ψ0| is the input state. In fact, with a
straightforward derivation, one finds the equation holds
true for arbitrary input density matrix ρ0. Namely, ρ0 needs
not be a pure state. As an application, the input state ρ0 may
be a mixed state obtained by subjecting an SPT to certain
decoherence channels. If the string order is robust under
the channel, the output state of our protocol will remain
long-range ordered. Below we will first discuss the deco-
hered SPTs and the corresponding emergent long-range
order. We will then discuss the fate of those decohered
SPTs when tuned to criticality.

First, we consider a dephasing channel in Pauli-X
basis. A local channel is given by Ei : ρ → (1 − p)ρ +
pXiρXi = ∑

σ=0,1 pσK†
σ ρKσ with Kσ = X σi

i , and pσ =
p , 1 − p for σ = 1, 0 respectively. This can be understood
as applying Xi operator with probability p , so p = 1/2
corresponds to maximal dephasing. We consider the local
channels on every lattice site, so the overall dephasing
channel E is the composition of the local noise channels:
E = E1 ◦ E2 ◦ · · · ◦ E2L, and

E[ρ] =
∑

σ

P(σ )K†
σρKσ , (B12)

where σ = {σi}, P(σ ) = ∏2L
i=1 pσi , and Kσ = ∏2L

i=1 X σi
i .

Given a pure SPT, ρSPT = |φ〉 〈φ|, the dephasing channel
leads to ρ0 = E[ρSPT], and an operator O with respect to
ρ0 becomes

〈O〉ρ0
=

∑

σ

P(σ ) 〈φ| Kσ OK†
σ |φ〉 . (B13)

One immediate consequence is that if [O, Kσ ] = 0,
then 〈O〉ρ0

= 〈φ| O |φ〉, i.e., the expectation value of O
remains invariant under the dephasing channel. Therefore,〈∏L

i=1 Xb,i

〉

ρ0
= 1 as in |φ〉. On the other hand, for the string

operator S ≡ Zb,i

(∏j
k=i+1 Xa,k

)
Zb,j , since only Zb,i and

Zb,j may anticommute with the noise operator Kσ , 〈S〉ρ0
can be simplified as

∑

σb,iσb,j

pσb,ipσb,j 〈φ| X
σb,i

b,i X
σb,j

b,j SX
σb,i

b,i X
σb,j

b,j |φ〉 . (B14)

Since the string operator S conjugated by X
σb,i

b,i X
σb,j

b,j
acquires a +1, −1 sign when σb,i = σb,j , σb,i �= σb,j ,
respectively, one finds

〈S〉ρ0
= [

Prob.(σb,i = σb,j )− Prob.(σb,i �= σb,j )
]

× 〈φ|S |φ〉
= (1 − 2p)2 〈φ|S |φ〉 . (B15)

Therefore, under the X -dephasing channel, the string order
survives for any nonmaximal dephasing (i.e., p < 1/2).
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Given this dephased SPT mixed state, one can then use
the measurement-feedback channel to obtain a mixed state
with GHZ-like long-range order.

If one instead considers the symmetry-breaking dephas-
ing channel based on Pauli-Z noise, with a similar cal-
culation, one finds the resulting dephased state cannot
have both ZBXA · · · XAZB ∼ O(1) and

∏
i Xb,i = 1. Specif-

ically, due to the Pauli-Z noise on A sublattice, one finds
ZBXA · · · XAZB ∼ (1 − 2p)|S|, i.e., exponentially decaying
with the length of the string |S| for any nonzero dephas-
ing. On the other hand, the Pauli-Z noise on B sublattice
results in

∏
i Xb,i = (1 − 2p)L, i.e., exponentially decaying

with sublattice size of B for any nonzero dephasing. As a
result, the measurement-feedback channel cannot lead to a
mixed state with the GHZ-like long-range order based on
such dephased state.

At criticality: when |φ〉 is tuned to a critical point [e.g.,
g = 1 in Eq. (7)], the string operator exhibits critical
order Zb,i(

∏j
k=i+1 Xa,k)Zb,j ∼ 1/|i − j |η. Under the Pauli-

X dephasing, with a similar analysis as above, one obtains
a mixed state ρ0 with

〈
Zb,i(

∏j
k=i+1 Xa,k)Zb,j

〉

ρ0
= (1 −

2p)2
〈
Zb,i(

∏j
k=i+1 Xa,k)Zb,j

〉

SPT
∼ 1/|i − j |η. Therefore,

the measurement-feedback channel discussed in Sec. IV A
gives rise to a mixed state ρB with the critical correla-
tion Zb,iZb,j ∼ 1/|i − j |η. On the other hand, the disorder
operator Xb,iXb,i+1 · · · Xb,j commutes with both the dephas-
ing channel and the measurement-feedback channel, and
therefore,

〈
Xb,iXb,i+1 · · · Xb,j

〉
ρ0

= 〈
Xb,iXb,i+1 · · · Xb,j

〉
SPT ∼

1/|i − j |2η. The algebraic order in these operators suggests
that ρB exhibits critical scaling of entanglement. This is
verified with our ED calculation, where the bipartite entan-
glement negativity follows the universal scaling form as in
a 1+1D CFT (see Fig. 8 upper panel):

EN (α,β) = α ln
(

L
π

sin
(πx

L

))

+ β. (B16)

In particular, the prefactor α decreases as increasing the
strength of dephasing.

Another natural question is, given an input dephased
SPT ρ0, what are the typical entanglement structures of the
postmeasurement (mixed) state trajectories right after mea-
suring A sublattice? To address this question, we numeri-
cally compute the entanglement negativity averaged over
these trajectories. As indicated by Fig. 8 lower panel, this
quantity also exhibits the critical scaling in entanglement,
indicating the pattern of critical entanglement in ρB may
be attributed to the postmeasurement state trajectories that
constitute the ensemble. Note that for a given dephas-
ing strength p , the trajectory-average negativity is always
smaller than the negativity in ρB. This is consistent with
the intuition that some of the long-distance entanglement
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FIG. 8. Entanglement negativity EN between two complemen-
tary segments of size x and L − x on B sublattice for the mixed
state ρB. The input state is a mixed state ρ0 obtained by acting the
input SPT ψ0 with a decoherence channel. Upper panel: negativ-
ity of ρB obtained by the measurement-feedback channel. Lower
panel: negativity averaged over mixed-state trajectories obtained
by measuring A sublattice for the input dephased SPT ρ0.

is diminished by classical fluctuations in the ensemble of
those trajectories.

APPENDIX C: MIXED STATE WITH
TOPOLOGICAL ORDER FROM MEASURING 2D

SPT

Here we discuss a finite-depth protocol that con-
verts higher dimensional SPTs to mixed-state topological
orders. In particular, we will consider the input state as a
2D SPT protected by the Z2 0-form × Z2 1-form symme-
try, in which case the resulting mixed state exhibits a Z2
topological order.

Consider a 2D lattice with every vertex v and every edge
e accommodating a qubit, the fixed-point SPT Hamiltonian
reads

H0 = −
∑

v

Xv
∏

e�v
Ze −

∑

e

Xe

∏

v∈e

Zv. (C1)

The first term is a product of a Pauli X on vertex v and four
neighboring Pauli Zs on edges, and the second term is a
product of a Pauli X on edge e and two neighboring Pauli
Zs on vertices. This Hamiltonian can be obtained from a
trivial paramagnet −∑

v Xv − ∑
e Xe by a depth-1 unitary

circuit UCZ = ∏
〈v,e〉 CZv,e, i.e., a product of controlled-Z
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gates, each of which acts on a pair of neighboring ver-
tex and edge. The ground state is the 2D cluster state,
a nontrivial SPT protected by Z2 0-form × Z2 1-form
symmetry, where the Z2 0-form symmetry is given by∏
v Xv on vertices and the Z2 1-form symmetry is given

by
∏

e∈γ Xe acting on edges along any closed loop γ

(including noncontractible ones).
The nontrivial SPT order can be diagnosed by the mem-

brane operator Mγ̃ = ∏
e∈γ̃ Ze

∏
v∈Aγ̃

Xv , where γ̃ is a loop
in the dual lattice, and v ∈ Aγ̃ denotes all vertices (in the
primary lattice) in the area enclosed by the loop γ̃ . For
instance,

Mγ̃ =

γ̃ (C2)

For the fixed-point SPT,
〈
Mγ̃

〉 = 1 for any loops γ̃ . Away
from the fixed-point limit, Mγ̃ exhibits a long-range corre-
lation in the form of a perimeter law:

〈
Mγ̃

〉 ∼ e−c|γ̃ |. This
follows from the decorated domain-wall description of this
type of SPT; starting with a trivial paramagnet of Ising
spins on vertices, the Z2 domain walls condense, imply-
ing the perimeter law of a domain-wall creation operator∏
v∈Aγ̃

Xv ∼ e−c|γ̃ |, where γ̃ is a closed loop in the dual
lattice [84]. We then introduce Z2 charge on edges to
decorate the domain walls by applying UCZ. This leads
to an SPT with Mγ̃ = ∏

e∈γ̃ Ze
∏
v∈Aγ̃

Xv ∼ e−c|γ̃ | because
Mγ̃ is obtained by conjugating the domain-wall operator∏
v∈Aγ̃

Xv with UCZ.
Now we can utilize the presence of long-range mem-

brane order to devise a protocol for preparing a mixed
state with Z2 topological order. Given an SPT |ψ0〉,
one measures Xv on all vertices with outcome α = {αv}.
For each postmeasurement state trajectory with outcome
α, one applies a corresponding local unitary Uα acting
on edges. This two-step protocol leads to the ensem-
ble ρ = ∑

α UαPαρ0PαU†
α . Using a unitary Uα such that

U†
α

∏
e∈γ̃ ZeUα = ∏

e∈γ̃ Ze

(∏
v∈Aγ̃

αv

)
, (i.e., the dual loop

operator acquires a sign that depends on the measure-
ment outcome enclosed by the loop), the expectation
value of loop operators

∏
e∈γ̃ Ze in ρ will exactly equal

the expectation value of the membrane operator Mγ̃ =∏
e∈γ̃ Ze

∏
v∈Aγ̃

Xv with respect to the initial input SPT,
which exhibits a perimeter-law scaling. In addition, since
the symmetry sector is fixed with

∏
e∈γ Xe = 1, the perime-

ter law scaling indicates a Z2 topological order on edges
in the output mixed state, as in the deconfined phase of a
2+1D Z2 gauge theory.

Here we discuss the choice of Uα . Due to the global Z2
symmetry on vertices in the input SPT |ψ0〉, the measure-
ment outcomes on vertices satisfy

∏
v αv = 1, i.e., the −1

outcomes will occur in pairs. It turns out Uα is consist-
ing of string operators of Pauli X s on edges; each string is
deformable and connects two αv = −1 outcomes on ver-
tices. Physically, the αv = −1 outcomes may be regarded
as e particles in the Z2 topological order, and Uα is the
string operator that annihilates those anyon excitations.

Nontrivialness of the mixed state: now we show that the
1-form symmetry

∏
e∈γ Xe = 1 together with the perimeter

law of the Wilson loop in the dual lattice
∏

e∈γ̃ Ze ∼ e−c|γ̃ |
implies that the mixed state on edges (ρB) is nontriv-
ial; it cannot be a mixture of short-range entangled pure
states. This can be proved by contradiction, as discussed
in Sec. III. We first assume ρB = ∑

n pn |n〉 〈n|, where each
|n〉 is a trivial short-range entangled state that can be con-
nected to a product state using a finite-depth local unitary.
We define two Wilson loop operators WZ(γ̃i) = ∏

e∈γ̃i
Ze

for i = 1, 2, where γ̃1, γ̃2 are noncontractible loops around
the vertical direction, and they are horizontally separated
by a scale O(d), see Fig. 9. For each |n〉, the connected cor-
relator is 〈n| WZ(γ̃1)WZ(γ̃2)|n〉c = 〈n| WZ(γ̃1)WZ(γ̃2)|n〉 −
〈n| WZ(γ̃1)|n〉 〈n| WZ(γ̃1)|n〉. Due to the 1-form symme-
try WX (γ ) = ∏

e∈γ Xe = 1 with γ winding around torus
horizontally, 〈n| WZ(γ̃i)|n〉 = 0 for both i = 1, 2. On the
other hand, the connected correlator in the trivial state
|n〉 decays exponentially with d [85], and correspondingly
〈n| WZ(γ̃1)WZ(γ̃2)|n〉 decays with the separation d as well.
This in turn implies the WZ(γ̃1)WZ(γ̃2) decays with d in
the ensemble of |n〉, which contradicts the perimeter law
scaling WZ(γ̃1)WZ(γ̃2) ∼ e−αL, which does not decay with

O(d)

L

WZ(γ̃1) WZ(γ̃2)

WX(γ)

FIG. 9. On a 2D lattice of size L × L on the surface of a 2-
torus (by imposing periodic boundary conditions), the perimeter
law decay of the Wilson loops in the dual lattice and the 1-form
symmetry in the primary lattice together imply a nontrivial mixed
state.
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d in the output mixed state. Therefore, the assumption that
ρB is a mixture of trivial states must be false.

Structure of mixed state topological order: here we
discuss the structure of the topologically ordered mixed
state using a wave-function perspective. This allows us
to derive a duality transformation that facilitates the char-
acterization of the phase diagram of the mixed state as
varying the input state.

First, we express the input state in Pauli-X basis:

|ψ0〉 =
′∑

α,β

(−1)χ(α,β)ψ(α,β) |α,β〉 (C3)

α = {αv} and β = {βe} denote the configurations in X
basis for qubits on vertices and edges, respectively.

∑′
α,β

denotes summing all symmetry-allowed α,β configura-
tions: the global symmetry on vertices implies αv = −1
occurs in pairs, so every allowed α configuration corre-
sponds to the configuration of open strings whose end
points label the location of αv = −1. On the other hand,
the 1-form symmetry on edges indicates the edge with
βe = −1 must form a closed loop in the dual lattice, which
equivalently can be regarded as the boundary of an open
membrane. χ(α,β) is the number of times that the α

strings pierce through the β membranes. When |ψ0〉 is
a fixed-point SPT, ψ(α,β) is independent of α,β (see
Fig. 10).

With the input state |ψ0〉, measuring vertices (A sub-
lattice) projects to a particular α configuration, and the
follow-up unitary correction Uα removes the braiding
phase. One then finds the measurement-feedback protocol
leads to a mixed state ρB on the edges (B sublattice), which
is the reduced density matrix (by tracing out A sublattice)

+ · · ·

− +

+=

|ψ0〉 =
′∑

α,β

(−1)χ(α,β)|α, β〉

FIG. 10. Wave function of the Z2 × Z2 fixed-point SPT, i.e.,
the ground state of H0 = − ∑

v Xv
∏

e�v Ze − ∑
e Xe

∏
v∈e Zv .

The fixed-point state is understood as a condensate of open blue
strings and open red membranes with a nontrivial braiding sign
structure in Pauli-X basis. The wave function (−1)χ(α,β) takes
the value 1 (−1) corresponding to the even (odd) number of times
that blue strings pierce through red membranes.

of the following state:

|ψ〉 =
′∑

α,β

ψ(α,β) |α,β〉 . (C4)

Therefore, the input state and the purification of the out-
put ρB can be connected through |ψ〉 = U |ψ0〉, where
U = ∑′

α,β |α,β〉 〈α,β| (−1)χ(α,β) is unitary in the sym-
metric subspace. Under the conjugation of U, operators
transform as

Xv → Xv, Xe → Xe,
∏

e�v
Ze → Xv

∏

e�v
Ze,

∏

v∈e

Zv → Xe

∏

v∈e

Zv. (C5)

This allows us to derive the parent Hamiltonian H of
|ψ〉 from the Hamiltonian H0 of the input state via H =
UH0U†. Also, note that |ψ〉 lives in the subspace given
by 0-form symmetry

∏
v Xv = 1 and Z2 1-form symmetry∏

e∈γ Xe = 1 (acting on edges along any closed loop γ ),
these two constraints need to be further imposed in H .

As an application, we may consider perturbing the fixed-
point SPT by onsite Pauli X s: H0 = −∑

v Xv
∏

e�v Ze −∑
e Xe

∏
v∈e Zv − g

∑
e Xe − g

∑
v Xv , the corresponding

H is the decoupled Ising model on vertices and 2D toric
code, both of which are subject to the onsite transverse
field: H = −∑

v

∏
e�v Ze − ∑

e
∏
v∈e Zv − g

∑
e Xe − g∑

v Xv , where the constraints
∏
v Xv = 1 and

∏
e∈γ Xe = 1

are further imposed. Therefore, the measurement-feedback
protocol leads to a pure state ρB on edges with Z2 topologi-
cal order. This also indicates all possible postmeasurement
states by measuring the input state SPT |ψ0〉 are determin-
istically converted to the same pure state with topological
order.

To discuss a nontrivial mixed-state topological order on
edges, we consider the following form of input Hamilto-
nian:

H0 = −
∑

v

Xv
∏

e�v
Ze −

∑

e

Xe

∏

v∈e

Zv

− g
∑

v

∏

e�v
Ze − g

∑

e

∏

v∈e

Zv. (C6)

Using the transformation rule in Eq. (C5), one finds the
corresponding H

H = −
∑

v

∏

e�v
Ze −

∑

e

∏

v∈e

Zv

− g
∑

v

Xv
∏

e�v
Ze − g

∑

e

Xe

∏

v∈e

Zv, (C7)

where the 0-form symmetry (
∏
v Xv = 1) and 1-form sym-

metry (
∏

e∈γ Xe = 1) are further imposed. To understand
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the phase diagram for the mixed state ρB defined on edges,
we transform H by UCZ = ∏

〈v,e〉 CZv,e. This leads to

−
∑

v

∏

e�v
Ze −

∑

e

∏

v∈e

Zv − g
∑

v

Xv − g
∑

e

Xe, (C8)

i.e., a transverse-field Ising model on vertices and
transverse-field toric code on edges. Their phase diagrams
are well understood: the global Ising symmetry breaking
order persists to g = gIsing ≈ 3.04438 [86], above which
the state on vertices become trivial. On the other hand,
using the (Kramer-Wannier) duality between transverse-
field Ising and transverse-field toric code, the topological
order persists up to g = gtoric = 1/gIsing ≈ 0.32847, above
which the state on edges become trivial. As a result, start-
ing with the ground state |ψ0〉 of Eq. (C6) for g < gtoric (the
regime where |ψ0〉 is an SPT), the measurement-feedback
channel gives a mixed state ρB on edges with Z2 topolog-
ical order. Similar to the discussion in 1D, one expects ρB
to have volume-law entropy due to the coupling between
A, B sublattices in Eq. (C7).

Finally, we note that mixed-state topological order
encoded in ρB may be diagnosed by entanglement nega-
tivity, an entanglement measure for mixed states. In par-
ticular, one expects a long-range entanglement structure
that manifests in the universal subleading contribution in
negativity as discussed in Refs. [4,5,11].

APPENDIX D: FERMIONIC MIXED STATE WITH
KITAEV TOPOLOGICAL ORDER IN 1D

Here we discuss the finite-depth preparation of a mixed
state in 1D that exhibits a topological order of the Kitave
Majorana chain [87,88] by taking a Z2 × Z

f
2 SPT |ψ0〉

[20,59–62] as an input. Here we closely follow Ref. [20]
to construct the fixed-point SPT, and then we will consider
certain symmetric perturbation and apply measurement
and unitary feedback to prepare a nontrivial fermionic
topological mixed state.

To start, we consider a 1D lattice of size 2L initialized
in a product state, see Fig. 11(a): every odd site accom-
modates a qubit initiated in the |+〉 state, and every even
site accommodates a fermion initiated in the empty state,
i.e., parity operator P = −iγ γ ′ = 1 − 2c†c = 1 with left
Majorana and right Majorana defined as γ = c + c†, γ ′ =
−i(c − c†). Define a Majorana hopping operator S2n =
iγ ′

2n−2γ2n, we define a controlled gate

CS2n−1 = |↑〉 〈↑| + |↓〉 〈↓| S2n; (D1)

the Majorana hops from the site 2n − 2 to site 2n only
when the qubit at 2n − 1 is in the spin-down state. Using

γ′

γ

γ′γ γ′γ

γ′γ γ′γ

γ′γ γ′γ

γ′

γ
γ′

γ

γ′

γ
γ′

γ
γ′

γ

γ′γ γ′γ γ′γ(a)

(b)

FIG. 11. (a) 1D lattice with every odd site accommodating
a qubit and every even site accommodating two Majorana
fermions. Given an initial 0-form Z2 × Z

f
2 SPT, measurement

and unitary feedback lead to a fermionic mixed state with the
topological phase of the Kitaev chain. (b) 2D lattice with every
vertex accommodating a qubit and every edge accommodating
two Majorana fermions. Given an initial Z2 0-form ×Z

f
2 1-form

SPT, measurement and unitary feedback leads to a fermionic
mixed state with Z2 topological order.

CS gate, one introduces a depth-1 local unitary circuit

USPT =
L∏

n=1

CS2n−1. (D2)

Applying USPT on the initial product state will then lead
to the Z2 × Z

f
2 fixed-point SPT |ψ0〉. Equivalently, |ψ0〉 is

uniquely specified by the stabilizers

USPTX2n−1U†
SPT = iγ ′

2n−2X2n−1γ2n

USPTP2nU†
SPT = Z2n−1P2nZ2n+1. (D3)

The SPT |ψ0〉 is protected by the Z2 × Z
f
2 symmetry,

where Z2 action is given by the product of Xn on odd
sites, and Z

f
2 action is given by the product of Pn on

even sites. The state has long-range string order diagnosed
by iγ ′

2n−2X2n−1γ2niγ ′
2nX2n+1γ2n+2 · · · iγ ′

2m−2X2m−1γ2m = 1
(this is simply the product of stabilizers). Being a nontriv-
ial SPT, the string order is robust under weak symmetric
perturbations, and it approaches a finite constant c with
0 < c < 1 in the limit |m − n| → ∞.

Given a nonfixed point SPT, as in the discussion for 1D
Z2 × Z2 bosonic SPT, we measure Pauli X s on all spins on
odd sites and record the outcome α = {αi|odd i}. For each
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postmeasurement state, one applies unitary feedback, i.e.,
a product of on-site fermionic parity operators:

Uα =
L∏

n=1

P
1−∏n

m=1,2,... α2m−1
2

2n , (D4)

namely, a parity operator at site 2n is applied when
there is an odd number of −1 outcomes among
α1,α3, . . . ,α2n−1. With this, one obtains a mixed
state of Majorana fermions with the long-range order
iγ ′

2n−2γ2niγ ′
2nγ2n+2 · · · iγ ′

2m−2γ2m = c, which is a universal
feature in the topological phase of a 1D Kitaev chain [87].

Wave-function perspective. It is useful to discuss the
above result from the wave-function perspective. As in the
Z2 × Z2 fixed-point bosonic SPT, the Z2 × Z

f
2 fixed-point

SPT can also be understood as the condensate of strings
with a braiding structure. Specifically, the fixed point |ψ0〉
can be written as

|ψ0〉 =
′∑

α,β

(−1)χ(α,β) |α,β〉 , (D5)

where α = {αi ∈ {±1}} denotes the product state in Pauli-
X basis for qubits and β = {βi ∈ {±1}} denotes the
product state basis with definite fermion parity on even
sites [89]. The Z2 symmetry and Z

f
2 symmetry implies∏

odd i αi = 1 and
∏

even i βi = 1, respectively. As αi comes
in pairs, an α configuration may be represented by open
strings (A strings) whose boundary points label αi = −1.
Similarly one can define B strings to represent product state
basis β for fermions. χ(α,β) is the number of times that A
strings and B strings intersect.

Away from the fixed point, one can write |ψ0〉 =∑′
α,β(−1)χ(α,β)ψ(α,β) |α,β〉 and the corresponding

measurement-feedback channel gives the mixed states of
fermion ρB, which is the reduced density matrix of |ψ〉 =∑′

α,β ψ(α,β) |α,β〉 by tracing out qubits on odd sites.
|ψ〉 and |ψ0〉 can be connected by the unitary U =∑′
α,β |α,β〉 〈α,β| (−1)χ(α,β) [90], which has the action

that

X2n−1 → X2n−1, P2n → P2n,

Z2n−1Z2n+1 → Z2n−1P2nZ2n+1,

γ ′
2n−2γ2n → γ ′

2n−2X2n−1γ2n. (D6)

As an application, we consider the initial Hamilto-
nian H0 = −∑

n(iγ
′
2n−2X2n−1γ2n + Z2n−1P2nZ2n+1)− g∑

n(iγ
′
2n−2γ2n + Z2n−1Z2n+1). To understand the phase

diagram, we may use the depth-1 unitary circuit
[Eq. (D2)] and find UH0U† = −∑

n(X2n−1 + P2n)−
g

∑
n(iγ

′
2n−2γ2n + Z2n−1Z2n+1), which is a transverse-field

Ising chain on odd sites, and fermionic Kitaev chain on
even sites. Consequently, for |g| < 1, both sublattices are

trivial, while for |g| > 1, odd sites exhibit a Z2 symmetry-
breaking order and even sites belong to the topological
phase of Kitaev chain. This implies the ground state of
H0 exhibits the Z2 × Z

f
2 SPT order for |g| < 1, and for

|g| > 1, odd sites exhibit Z2 symmetry-breaking order and
even sites belong to the fermionic topological phase.

With the measurement-feedback channel, one obtains a
state ρB of fermions, which is the reduced density matrix
of the ground state |ψ〉 of H :

H = −
∑

n

(iγ ′
2n−2γ2n + Z2n−1Z2n+1)

− g
∑

n

(iγ ′
2n−2X2n−1γ2n + Z2n−1P2nZ2n+1). (D7)

H is exactly dual to H0. As a result, the measurement-
feedback channel acting on the pure state of the SPT phase
(Kitaev topological phase) leads to the Kitaev topological
phase (trivial phase) in the mixed state defined on even
sites. Note that for |ψ0〉 belonging to the Kitaev topologi-
cal phase, |ψ〉 is a nontrivial SPT, but tracing out odd sites
leads to a trivial reduced density matrix on even sites.

APPENDIX E: FERMIONIC MIXED STATE WITH
TOPOLOGICAL ORDER IN 2D

One may generalize the discussion above to higher
space dimensions, which allows for the existence of (non-
invertible) topological order in fermionic systems [91].

Consider a 2D lattice with every vertex accommodat-
ing a qubit and every edge accommodating two Majorana
fermions [see Fig. 11(b)], we can construct a fixed-point
SPT with Z2 0-form × Z

f
2 1-form symmetry as follows.

We introduce Majorana hopping operators Sv,→ which take
the form iγ ′γ , where γ ′, γ are the Majoranas in the left and
right of the vertex v. Similarly, the operators Sv,↑ take the
form iγ ′γ , where γ ′, γ are the Majoranas right above and
below the vertex v. Using the Majorana hopping operators,
one defines a controlled gate

CSv = |↑〉 〈↑| + |↓〉 〈↓| Sv,→Sv,↑. (E1)

Starting with a product state, where qubits are in |+〉 and
fermions are in product states with definite fermion parity
P = 1, simultaneously applying CSv on all vertices leads
to the SPT |ψ0〉, which is uniquely specified by the stabi-
lizers ZPeZ (the product of a fermion parity on the edge
e and two Pauli Z on two vertices on the boundary of e),
and X2n−1γ

′γ ′γ γ (i.e., the product of and a Pauli X at the
vertex v and four Majoranas around v counterclockwise).
The SPT is protected by a Z

f
2 1-form symmetry (

∏
e∈C Pe,

i.e., the product of fermion parity along any loops) and
Z2 0-form symmetry (

∏
v Xv). In particular, the nontriv-

ialness of the SPT manifests in the membrane operator
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MC̃ = ∏
e∈C̃ γ̃

∏
v∈AC̃

Xv =1, where
∏

e∈C̃ γ̃ is the product
of Majoranas (γ̃ could be γ or γ ′) along a loop in the
dual lattice, and

∏
v∈AC̃

Xv is the product of Xv in the area

enclosed by the loop C̃. For instance,

C̃ =

X X X

X X X

X X X

γ̃

γ̃

γ̃

γ̃

γ̃

γ̃

γ̃ γ̃ γ̃

γ̃ γ̃ γ̃

.

(E2)

For nonfixed-point SPT, the membrane operator will sur-
vive in the form of a perimeter law

〈
MC̃

〉 ∼ e−μ|C̃|. With the
protocol of first measuring Xv on every vertex, followed
by a unitary correction, one obtains an output mixed state
ρ with tr[ρ

∏
e∈C̃ γ̃ ] ∼ e−μ|C̃|. This perimeter law of the

loop in the dual lattice together with the 1-form symme-
try

∏
e∈C Pe = 1, which inherits from the input SPT, in the

primary lattice indicates a topological order consisting of
Majorana fermions. When the input SPT is a fixed-point
state, the output reduces to a pure state, which is exactly
a ground state of the Majorana surface code discussed in
Ref. [92].

APPENDIX F: PURIFICATION OF THE MIXED
STATE FROM MEASURING 1D FREE FERMIONS

In Sec. V A we discussed a measurement-feedback pro-
tocol that leads to a mixed state ρ with an enhanced
spin-spin correlation. Here we discuss the structure of ρ,
and in particular, by unveiling a novel braiding structure
between “spin” and “charge” in the initial input state |ψ0〉,
ρ can be purified as a ground state of a local Hamiltonian
H , which we derive below.

To begin with, instead of using the conventional
occupation-number basis, we will consider the basis
that manifests the structure of “spin” and “charge.”
For simplicity, let us first consider the i’th lattice site
as an example. This single site is ssociated to a 4-
dim Hilbert space spanned by |0〉 , |↑〉 = c†

i,↑ |0〉 , |↓〉 =
c†

i,↓ |0〉 , |↑↓〉 = c†
i,↑c†

i,↓ |0〉. In the 2-dim subspace with
single-fermion occupation number, i.e., spanned by
|↑〉 , |↓〉, one can define two orthonormal states (|↑〉 ±
|↓〉)/√2 as the symmetric and antisymmetric superpo-
sition of spin up and spin down, i.e., the eigenstates
of the spin-flip operator Sx

i = 2Sx
i . Therefore, denoting

the fermion occupation number as ni = ni,↑ + ni,↓, one
can define the complete basis states |ni = 0〉, |ni = 2〉,
|ni = 1,βi = 1〉, |ni = 1,βi = −1〉, where β = ±1 corre-
sponds to the eigenvalues of the spin-flip operator Sx

i .
As a more compact notation, the basis may be defined as
|ni,βi〉 with ni ∈ {0, 1, 2} and βi ∈ {±1}, and importantly,

βi degree of freedom exists only when ni = 1. Gener-
alizing the discussion to all lattice sites, one constructs
the basis [93] |n,β〉 with n ≡ {ni},β ≡ {βi}, and the input
fermionic pure state may be written as

|ψ0〉 =
′∑

n,β

(−1)χ(n,β)ψ(n,β) |n,β〉 . (F1)

Since βi exists only when ni = 1, the β configuration must
be consistent with fermion number configuration n. Alter-
natively, this consistency condition can be imposed on the
wave function so that ψ(n,β) = 0 when β is not consis-
tent with n. In addition to the above consistency condition,
for the summation

∑′
n,β , the allowed n,β must respect the

global Z2 × Z2 symmetry as a consequence of the equal
number of up-spins and down-spins in |ψ0〉. The first Z2
corresponds the fermion parity symmetry: the total fermion
number N must be even since N = N↑ + N↓ = 2N↑. This
implies configuration n must satisfy

∏
i(−1)ni = 1, so the

number of lattice sites with a single occupation number
(odd fermion parity) must be even. The second Z2 cor-
responds to the global spin flip given by

∏
i Sx

i , so the
product of βi (at the site with ni = 1) must be one. This
means βi = −1 comes in pairs. Since both ni = 1 (odd
fermion parity) and βi = −1 come in pairs, with the order-
ing n1,β1, n2,β2, . . . along a 1D line, one can use strings
to label the configurations of ni = 1,βi = −1, and define a
braiding sign structure between charge n and spin β, as in
the bosonic Z2 × Z2 SPT discussed in Appendix B 1.

Given Eq. (F1), measuring global fermion occupation
number gives Pn |ψ0〉 = ∑′

β(−1)χ(n,β)ψ(n,β) |n,β〉. As

one can check, the unitary feedback Un = ∏L
i=1

(Sx
i

)∑
j ≤i nj

[Eq. (15)] removes the braiding sign: UnPn |ψ0〉 =∑′
β ψ(n,β) |n,β〉, and therefore, the resulting mixed state

is

ρ =
′∑

n

UnPn |ψ0〉 〈ψ0| PnU†
n

=
′∑

β,β ′

[ ′∑

n

ψ(n,β)ψ(n,β ′)

]

|n,β〉 〈n,β ′| . (F2)

Since only the spin sector carries long-range correlation,
one may consider the reduced density matrix in the spin
sector by tracing out the charge sector, which leads to
ρs = ∑′

β,β ′
[∑′

n ψ(n,β)ψ(n,β ′)
] |β〉 〈β ′|. This is nothing

but the reduced density matrix of

|ψ〉 =
′∑

n,β

ψ(n,β) |n,β〉 . (F3)
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To better characterize the structure of |ψ〉, one can
derive its parent Hamiltonian. This is achieved by find-
ing the unitary U such that |ψ〉 = U |ψ0〉. Then the par-
ent Hamiltonian H of |ψ〉 can be obtained by H =
UH0U†, where H0 is the parent Hamiltonian of the spinful
free fermion state |ψ0〉, namely, H0 = −∑

i,σ (c
†
i+1,σ ci,σ +

h.c.). By comparing |ψ0〉 [Eq. (F1)] and |ψ〉 [Eq. (F3)], U
may be chosen as

U =
′∑

n,β

|n,β〉 〈n,β| (−1)χ(n,β). (F4)

U is diagonal in the basis |n,β〉 with the diagonal entries
encoding the braiding phases. While U is not a unitary
in the entire Hilbert space, it is a unitary in the restricted
Hilbert space with the Z2 × Z2 symmetry. Alternatively, U
may be written as U = ∏L

i=1

(Sx
i

)∑
j ≤i n̂j , which is the same

as Eq. (F4) in the symmetric subspace. We note that n̂j is
a number operator instead of a c number. U allows us to
derive the parent Hamiltonian of |ψ〉 through H = UH0U†:

H = −
∑

i,σ

[
c†

i+1,σ ci,σPni+ni+1 �=2

+ c†
i+1,σ ci,−σPni+ni+1=2Pni=1

− c†
i+1,σ ci,−σPni+ni+1=2Pni=2

]
+ h.c., (F5)

where P is a projector with a subscript that labels the
subspace it projects to, and the constraint

∏
i(−1)ni =∏

i Sx
i = 1 is further imposed on H .

Below we present the derivation of H : consider the term
c†

i+1,↑ci,↑, it transforms as Uc†
i+1,↑ci,↑U†. To proceed, we

compute the matrix entries of this matrix:

〈n′,β ′| Uc†
i+1,↑ci,↑U† |n,β〉

= 〈n′,β ′| (−1)χ(n
′,β ′)c†

i+1,↑ci,↑(−1)χ(n,β) |n,β〉 . (F6)

Since the fermion hops from ith site to i + 1th site, there
are only four possible cases for obtaining nonvanishing
values: (ni, ni+1) = (2, 1), (ni, ni+1) = (1, 0), (ni, ni+1) =
(2, 0), (ni, ni+1) = (1, 1). Below we separately discuss
these cases.

Case (a) (ni, ni+1) = (2, 1): in this case, one finds
the fermion hopping does not change the braiding
phase, namely, (−1)χ(n

′,β ′)(−1)χ(n
′,β ′) = 1. Therefore,

〈n′,β ′| (−1)χ(n
′,β ′)c†

i+1,↑ci,↑(−1)χ(n,β) |n,β〉 = 〈n′,β ′| c†
i+1,↑

ci,↑ |n,β〉. Alternatively, one can replace the braiding
phase (−1)χ(n,β) with the operator

∏L
i=1

(
Sx

i

)∑
j ≤i n̂j , and go

through the algebra to derive the same result.
Case (b) (ni, ni+1) = (1, 0): as in case (a), in this case,

one finds the fermion hopping does not change the braid-
ing phase as well. Therefore, 〈n′,β ′| (−1)χ(n

′,β ′)c†
i+1,↑ci,↑

(−1)χ(n,β) |n,β〉 = 〈n′,β ′| c†
i+1,↑ci,↑ |n,β〉.

Case (c) (ni, ni+1) = (2, 0): in this case, after the
fermion hopping, both ith site and i + 1th site contain a
single fermion. It follows that the braiding sign will change
when β ′

i = −1. Therefore, 〈n′,β ′| (−1)χ(n
′,β ′)c†

i+1,↑ci,↑
(−1)χ(n,β) |n,β〉 = 〈n′,β ′|β ′

i c
†
i+1,↑ci,↑ |n,β〉 = 〈n′,β ′|Sx

i

c†
i+1,↑ci,↑ |n,β〉. Writing Sx

i = c†
i,↑ci,↓ + c†

i,↓ci,↑, the result
can be simplified as 〈n′,β ′| (−1)χ(n

′,β ′)c†
i+1,↑ci,↑(−1)χ(n,β)

|n,β〉 = 〈n′,β ′| (−c†
i+1,↑ci,↓) |n,β〉.

Case (d) (ni, ni+1) = (1, 1): in this case, the braid-
ing sign will change if before hopping, βi = −1.
Therefore, 〈n′,β ′| (−1)χ(n

′,β ′)c†
i+1,↑ci,↑(−1)χ(n,β) |n,β〉 =

〈n′,β ′| c†
i+1,↑ci,↑βi |n,β〉 = 〈n′,β ′| c†

i+1,↑ci,↑Sx
i |n,β〉. Using

the representation Sx
i = c†

i,↑ci,↓ + c†
i,↓ci,↑, one finds 〈n′,β ′|

(−1)χ(n
′,β ′) c†

i+1,↑ ci,↑(−1)χ(n,β) |n,β〉 = 〈n′,β ′| c†
i+1,↑ci,↓

|n,β〉.
By combining the discussion on these four cases, one

obtains the parent Hamiltonian in Eq. (F5).
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