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We show that the effect of a Gaussian bosonic environment linearly coupled to a quantum system can be
simulated by a stochastic Lindblad master equation characterized by a set of ancillary bosonic modes ini-
tially at zero temperature and classical stochastic fields. We test the method for Ohmic environments with
exponential and polynomial cut-offs against, respectively, the hierarchical equations of motion and the
deterministic pseudomode model, with respect to which the number of ancillary quantum degrees of free-
dom is reduced. For a subset of rational spectral densities, all parameters are explicitly specified without
the need for any fitting procedure, thereby simplifying the modeling strategy. Interestingly, the classical
fields in this decomposition must sometimes be imaginary valued, which can have counterintuitive effects
on the system properties, which we demonstrate by showing that they can decrease the entropy of the
system, in contrast to real-valued fields.
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Most quantum systems are inherently open [1,2], i.e.,
their dynamics depends on the interaction with an external
environment. A typical example is when the system is in
contact with a continuum of degrees of freedom constitut-
ing a thermal bath. The system dynamics can take quali-
tatively different forms depending on the characteristics of
the bath and on the system-bath interaction. For example,
under the Born-Markov approximation, the reduced sys-
tem dynamics can be described by a Lindblad equation
[3,4] or by a more general nonsecular Redfield equation
[5], depending on the presence of near-degeneracies (com-
pared with the broadening) in the system’s spectrum [6–9].
In regimes where a coherent exchange of information with
the bath occurs, more general master equations (possibly
nonlocal in time) are required to correctly account for these
memory effects [1,10,11].

Within this general landscape, a wide range of physical
environments can be represented by Gaussian baths (such
as those made out of bosonic and fermionic degrees of
freedom at thermal equilibrium) linearly interacting with
the system. In this case, the effects of the bath on the
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system are fully characterized by the properties of corre-
lation functions involving the bath operators that mediate
the interaction. As a consequence, the regimes mentioned
above can now all be described by properties of these cor-
relation functions, which also bear information about the
nonclassicality of the system dynamics [12,13].

Intuitively, when the correlations decay faster than the
characteristic time associated with the system, the regime
is Markovian and the effects of the bath on the system
can be modeled by master equations local in time and
written in Lindblad form. In the opposite case, the bath
response time is slow enough to allow the system and
the bath to coherently exchange energy before its eventual
dissipation into the continuum. Several approaches have
been developed to analyze this non-Markovian regime [1,
2,14], such as generalized master equations derived from
the Feynmann-Vernon influence functional formalism
[15–23], the hierarchical equations of motion (HEOM)
[24–34], the reaction coordinate method [35–40], the
polaron transformation [41–56], collisional methods [57–
60], cascaded networks [61–69], and the pseudomode
model [70–84]. These methods are also nonperturbative in
the interaction strength, thereby allowing one to model the
correct system-bath hybridization properties of the steady
state.

Among the methods listed above, the pseudomode
model consists in replacing the continuum of environ-
mental degrees of freedom with a discrete set of effec-
tive dissipative quantum harmonic modes. These modes
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FIG. 1. The stochastic pseudomode model. (a) A system S
interacts with a physical bath made out of a continuum of envi-
ronmental modes. (b) The continuum can be approximated by a
discrete set of leaky quantum pseudomodes; see Eq. (4). (c) The
subset of the quantum pseudomodes that generate classical cor-
relations can be replaced [see Eq. (16)] by the stochastic classical
field defined in Eq. (14).

are designed to approximate the original bath correlation
function as a discrete sum of decaying exponentials, simi-
larly to the HEOM method. As shown in Refs. [80,84], the
domain of this ansatz can be further enlarged by allow-
ing some of the model parameters to take unphysical
values. Depending on the correlation function, different
regimes might allow a more efficient representation in
terms of pseudomodes. For example, in certain bath mod-
els at zero temperature [80], the continuum of Matsubara
frequencies implies correlations decaying polynomially in
time, thereby posing a possible challenge from a simula-
tion standpoint [10,85,86] as the number of pseudomodes
required necessarily ends up scaling with the simulation
time. While this issue is often not evident in practical
applications, it emerges when vanishing spectral proper-
ties of the system need to be resolved, such as in the
low-temperature Kondo regime.

Alongside these fully deterministic methods, stochas-
tic techniques have also been used to describe the effects
of a quantum environment by driving the dynamics with
classical noise. This was originally implemented in the
context of Markovian [87–93] and non-Markovian [94–97]
quantum state diffusion. To deepen the analysis of mem-
ory kernels, this formalism was adapted to Liouville space
[98–102], and later further generalized to also include
fermionic baths [103–105]. The difficulty of averaging
over correlated stochastic processes led to the development
of hybrid techniques involving the HEOM [33,106–110],
classical and semiclassical optimizations [111–113], and
piecewise ensemble averaging [114].

Here we introduce a hybrid approach to reproduce non-
Markovian effects in open quantum systems in the context

of the pseudomode model, i.e., using ancillary quantum
harmonic modes alongside a single stochastic classical
drive, see Fig. 1. The system reduced dynamics can be
computed by solving a Lindblad-like master equation that
does not involve memory kernels (as in pure quantum state
diffusion) and it does not require multiple cross-correlated
stochastic processes (as in the purely stochastic Liouville
space approaches).

In contrast to the mathematical auxiliary degrees of free-
dom present in HEOM-related studies, this effective master
equation provides a rather intuitive interpretation where
the system is directly coupled to one or more leaky modes
and to a classical stochastic field. The effective nature of
this model does not grant a physical meaning for this inter-
pretation and, depending on the decomposition, either the
leaky modes or the classical field can be unphysical in
the sense they depend on imaginary-valued non-Hermitian
parameters. However, at the same time, it allows us explore
wider (unphysical) regimes for the ancillary degrees of
freedom that can improve the optimization of the model,

We show that this hybrid approach can be introduced
as a consequence of a classical-quantum decomposition of
the environmental effects on the system (i.e., not directly
as a physical description of the properties of the bath),
which, in the Gaussian case, translates into defining the
corresponding (classical or quantum) contributions to the
bath correlation function. Interestingly, this decomposition
is not unique but it can be chosen to optimize the model.
For example, this feature leads to the possibility to ini-
tialize the ancillary harmonic quantum degrees of freedom
in their vacuum state, for any temperature of the original
bath. This directly allows a further, practical, optimization
of the Hilbert space dimension due to a smaller Fock space
construction.

In addition, in the case where the environment can be
described as a sum of underdamped spectral densities, the
corresponding stochastic pseudomode model requires only
a single, physical, zero-temperature quantum degree of
freedom per spectral density. This is in stark contrast with
the fully deterministic pseudomode model, where further
quantum degrees of freedom are needed to fit the Mat-
subara part of the correlation. This leads to advantages in
modeling certain open quantum systems, such as when the
system is coupled to multiple baths at different tempera-
tures. In this case, we show that the possibility to encode
all collective temperature effects into a single field substan-
tially optimizes the simulation resources with respect to the
fully deterministic pseudomode model. We demonstrate
this with a practical example where a system is coupled
to multiple baths at different temperatures.

Importantly, for the general case we analytically deter-
mine an expression for the number of pseudomodes for
rational spectral densities for which the model is defined
without free parameters (i.e., without requiring any fitting)
for all temperatures. For nonrational spectral densities, a
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fitting procedure is still required to optimize the number of
pseudomodes.

Finally, we also demonstrate the unusual feature that, for
a zero-temperature bath, the imaginary nature of the classi-
cal fields can increase the order in the system, as described
by its von Neumann entropy (which can be understood as
the system-environment entanglement entropy at zero tem-
perature). This is contrast to real-valued classical fields,
which are expected to increase the disorder of the system
state.

This article is organized as follows. In Sec. I we
introduce the pseudomode model in its fully quantized,
deterministic version. In Sec. II we introduce a quantum-
classical decomposition of the environmental correlation
function, which we then use in Sec. III to define a stochas-
tic version of the pseudomode model. In Sec. III A we
further analyze the bias and stochastic sources of errors
in the model, and in Sec. III B we present a variant of
the model with the advantage of allowing all quantum
modes to be initially at zero temperature. In Sec. IV
we show that all parameters of the model can be com-
puted analytically for spectral densities that can be written
as a specific class of rational functions. In Sec. V we
consider two specific examples of spectral densities. In
Sec. V A we test the stochastic method against the fully
quantized, deterministic pseudomode model for the case
of underdamped Brownian spectral densities. In Sec. V B
we consider Ohmic spectral densities with an exponential
cut-off that are outside the rational domain, thereby not
allowing a full analytical analysis. In Sec. VI we apply the
hybrid formalism to describe a system coupled to multi-
ple baths at different initial temperatures. In Sec. VII we
analyze the effects of unphysical stochastic fields on the
von Neumann entropy of the system. Each section in the
main text is accompanied by a corresponding one in the
appendixes, where we describe all technical details.

I. PSEUDOMODE MODEL

In this section, we review the pseudomode model and
introduce the main notation used throughout this article.
We consider a system S coupled to a bosonic environment
B as described by the Hamiltonian (� = 1)

H = HS + HI + HB, (1)

where HS is the system Hamiltonian and HB =∑k ωkb†
kbk

characterizes the energy ωk of each environmental mode
bk. We suppose the system-environment coupling to be in
the form HI = sX , where s is a system operator and X =∑

k gk(bk + b†
k) is a linear interaction operator (in terms of

the real coupling strengths gk ∈ R). When the environment
is initially in thermal equilibrium at inverse temperature β,
the dynamics of the reduced system density matrix ρS(t)

can be written as

ρS(t) = T e−F(t,s,C(t))ρS(0). (2)

Here the superoperator F(t, s, C(t)), whose explicit form
is shown in Appendix A, depends only on the system cou-
pling operator s and the free correlation function of the
environmental interaction operator

C(t) = 〈X (t2)X (t1)〉

=
∫ ∞

0
dω

J (ω)

π
[coth(βω/2) cos(ωt) − i sin(ωt)] ,

(3)

where t = t2 − t1, and where we introduced the spec-
tral density J (ω) = π

∑
k g2

k δ(ω − ωk). Here X (t) =
U†

B(t)XUB(t) is the bath coupling operator in the Heisen-
berg picture of the free bath [in terms of UB(t) = e−iHBt],
and the expectation value is taken with respect to a thermal
state ρB = exp[−β

∑
k ωkb†

kbk]/Zβ at inverse temperature
β, with Zβ enforcing unit trace.

The formal expression in Eq. (2) is not easily evalu-
ated as it includes environmental memory effects encoded
in the time ordering of the double time integral in the
exponential. However, the expression for the superoperator
F(t, s, C(t)) suggests the possibility to define approxima-
tion schemes in which the environment is replaced by a
fictitious one whose two-point free correlation function
and system coupling operator match the original ones. In
particular, the pseudomode model introduces an environ-
ment made out of lossy harmonic modes that are purely
mathematical entities as they have no direct relation to the
original environmental modes. Even more, as noted in Ref.
[80], since we focus only on the reduced system dynamics,
the domain of the parameters in the model can be fur-
ther enlarged to unphysical values, thereby allowing more
flexibility in optimizing the approximation.

Specifically, the pseudomode model consists in approx-
imating the reduced system dynamics of the original open
quantum system in Eq. (1) as

ρS(t) � TrPMρ(t), (4)

where ρ(t) is the density matrix in an enlarged Hilbert
space H = HS ⊗ HPM, where HS and HPM = ⊗NPM

j =1 Hj
represent the Hilbert spaces of the system and the pseu-
domodes, respectively (in which Hj is the space of the
j th pseudomode). The dynamics in this enlarged space is
computed through the Lindblad equation

ρ̇(t) = −i[HPM, ρ(t)] +
NPM∑
j =1

Dj [ρ(t)], (5)
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where

HPM = HS +
NPM∑
j =1

(
λj Xj s + �j a†

j aj

)
, (6)

with Xj = aj + a†
j in terms of the bosonic pseudomode aj

and where λj , �j ∈ C are formal interaction strengths and
energies. We note that when these parameters are allowed
to be complex, the original Lindblad equation does not
acquire any complex conjugation as one would expect in
non-Hermitian systems [115–118]. For this reason, this
equation was dubbed the “pseudo-Schrödinger equation”
in Ref. [80]. Each pseudomode undergoes nonunitary
dynamics as described by the dissipators

Dj [·] = 	j [(1 + nj )(2aj · a†
j −a†

j aj · − · a†
j aj )

+ nj (2a†
j · aj − aj a†

j · − · aj a†
j )]. (7)

The initial condition for Eq. (5) is given by ρ(0) =
ρS(0)

∏
j exp

[
−βj �j a†

j aj

]
/Zj , where Zj = 1/(1 − exp

[−βj �j ]) in terms of the temperaturelike parameters βj ∈
C. Importantly, the nonunitary dynamics in the system-
pseudomode (S-PM) space described in Eq. (5) is equiv-
alent to that of an open quantum system in which each
pseudomode interacts with quantum white noise residual
environments; see Appendix B. The Gaussianity of this
formal open quantum system implies that the quality of the
approximation in Eq. (4) depends on the accuracy to which
the correlation of the pseudomodes’ coupling operators
matches the original one. More specifically, the pseudo-
mode model parameters are optimized to minimize the
following approximation:

C(t) �
NPM∑
j =1

λ2
j 〈Xj (t)Xj (0)〉

=
NPM∑
j =0

λ2
j e−	j |t|[(1 + nj )e−i�j t + nj ei�j t] (8)

for all t ∈ R [119] and where nj = 1/(exp[β�j ] − 1). In
general, physical correlations of the original model include
nonexponential decay at long times, which implies the
above approximation can become an exact equality only
in the limit NPM → ∞.

In summary, the pseudomode model allows one to
replace the original continuum of environmental modes
with a discrete set of unphysical modes. This allows one to
compute the reduced system dynamics nonperturbatively
in the system-environment coupling by solving a Lindblad-
like differential equation. We stress that while Lindblad
master equations are usually derived under some pertur-
bative approximation, Eq. (5) does not rely on such an

assumption. As shown in Appenidix B (see also Refs.
[79,80]), Lindblad dissipation exactly corresponds to an
open quantum system whose correlation function is a
sum of decaying exponentials, i.e., to the ansatz on the
right-hand side of Eq. (8). As a consequence, the only
approximation made by the pseudomode model is in the
bias error between this ansatz and the original correlation
[left-hand side of Eq. (8)].

In this context, we now introduce a hybrid model in
which classical stochastic fields are used alongside quan-
tum pseudomodes. This allows to lift the constraint on
the ansatz given in Eq. (8) to further reduce, on aver-
age, the bias error. For spectral densities that can be
written as a rational function, this error becomes negli-
gible. This comes at the cost of introducing stochastic
errors whose magnitude scale inversely with the square
root of the number of realizations used in the averaging.
This highlights a qualitative difference in the requirements
of the computational resources. By our replacing some
of the original quantum modes with classical fields, the
dimension of the Hilbert space of the effective model is
reduced at the cost of the additional time required for the
averaging.

II. QUANTUM-CLASSICAL DECOMPOSITION OF
THE CORRELATION FUNCTION

In this section, we introduce a nonunique decomposition
of the bath correlation function in terms of a quantum part
and a classical part. By using a spectral expansion, we can
reproduce the latter contribution using classical stochastic
noise.

We start by noting that the correlation in Eq. (3) can be
decomposed into two contributions with different symme-
tries under time reversal, i.e.,

C(t) = Cs(t) + Cas(t), (9)

where

Cs(t) = 1
π

∫ ∞

0
dω J (ω) coth(βω/2) cos(ωt)),

Cas(t) = − i
π

∫ ∞

0
dω J (ω) sin(ωt) (10)

are the symmetric and antisymmetric contributions,
respectively. To provide a more general setup, we consider
the slightly different decomposition

C(t) = Cclass(t) + CQ(t), (11)

in terms of a “classical” component and a “quantum”
component defined as Cclass(t) = Cs(t) + fs(t) and CQ(t) =
Cas(t) − fs(t), respectively. Here fs(t) is a generic symmet-
ric function that makes this decomposition nonunique. As
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we will show, it is possible to take advantage of this feature
so as to simplify the description of the quantum degrees of
freedom of the pseudomode model. Importantly, the quan-
tum component of the correlation does not have, in general,
any particular symmetry under time reversal (i.e., it can
be any linear combination of symmetric and antisymmet-
ric functions), while the classical part is symmetric. This
feature allows us to interpret the classical contribution to
the correlation as originating from stochastic noise. This
can be seen by explicitly writing the following spectral
representation of the classical correlation (interpreted as a
function in L2([−T, T]), with T ∈ R):

Cclass(t) = c0 + 2
∞∑

n=1

cn cos[nπ t/T], (12)

where

cn = 1
2T

∫ T

−T
dτ cos(nπτ/T)Cclass(t), (13)

which denotes the inner product between the classical cor-
relation and the sinusoidal functional basis in L2([−T, T]).
Given this expansion, we can further define a stochastic
field as

ξ(t) = √
c0ξ0 +

Nξ∑
n=1

√
2cn[ξn cos(nπ t/T)

+ ξ−n sin(nπ t/T)], (14)

where Nξ ∈ N is a truncation parameter and ξn, n =
−Nξ , . . . , Nξ , are independent Gaussian random variables
with zero mean and unit variance. This spectral represen-
tation is designed to allow the correlation of the stochastic
field to be equivalent to the classical contribution Cclass(t),
i.e.,

CE

class(t) ≡ E[ξ(t2)ξ(t1)] = c0 + 2
Nξ∑

n=1

cn cos[nπ t/T]

→ Cclass(t), (15)

in the limit Nξ → ∞; here E[·] denotes the average over
the Gaussian random variables ξn. It is interesting to note
that the presence of the (antisymmetric) sine function in
the expression for ξ(t) is essential to reproduce a stationary
correlation; see Appendix C 2 for more details.

In summary, the procedure to define the stochastic
process can be outlined as follows:

(1) We decompose the classical part of the correlation
function into Fourier components as described in
Eq. (12). This involves the computation of Nξ + 1
coefficients given explicitly in Eq. (13).

(2) We then extract 2Nξ + 1 Gaussian random numbers
ξn, which can be, together with the coefficients com-
puted as described above, directly used in Eq. (14)
to compute the stochastic field.

(3) The field in Eq. (14) can then be used to solve
the stochastic Schrödinger equation in Eq. (16)
presented in Sec. III.

Equation (16) defines a stochastic pseudomode model in
which classical stochastic noise is used alongside quantum
pseudomodes to reduce both the dimension of the effective
Hilbert space and the bias errors in the approximation of
the original correlation function. Furthermore, it is possible
to take advantage of the nonuniqueness of the representa-
tion in Eq. (11) to allow all quantum degrees of freedom
to be initially at zero temperature. We show this in the
following section.

III. A STOCHASTIC PSEUDOMODE MODEL

In this section, we introduce a hybrid pseudomode
model in which classical stochastic fields and quantum
pseudomodes are used together to simulate different con-
tributions to the original bath, see Fig. 1.

We define the following stochastic pseudomode model:

ρ̇ξ (t) = −i[H ξ
PM, ρξ (t)] +

NPM∑
j =0

Dj [ρξ (t)]ρ(t), (16)

defined for times t ∈ [0, Tdynamics], with Tdynamics ≤ T and
where the Hamiltonian

H ξ
PM = HS +

NPM∑
j =1

(
λj Xj s + �j a†

j aj

)
+ sξ(t) (17)

depends on NPM pseudomodes aj [having frequency �j

and interaction operator λj Xj = λj (aj + a†
j )] and an extra

classical Gaussian stationary stochastic field ξ(t) defined
by Eq. (14). Both the pseudomodes and the classical
field interact with the system through the system opera-
tor s. The pseudomodes are initially in a “thermal” state,
so that ρ(0) = ρS(0)exp[−∑j βj �j a†

j aj ]/Zj , where Zj =
1/(1 − exp[−βj �j ]), where βj ∈ C. The classical and
quantum degrees of freedom are designed to reproduce,
respectively, the classical part and the quantum part of the
original correlation function, i.e.,

CE

class(t) = E[ξ(t2)ξ(t1)] � Cclass(t),

CQ(t) �
NPM∑
j =0

λ2
j 〈Xj (t2)Xj (t1)〉

=
NPM∑
j =0

λ2
j e−	j |t|[(1 + nj )e−i�j t + nj ei�j t], (18)
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where t = t2 − t1 and nj = 1/(exp[β�j ] − 1). Here the
first equation is a version of Eq. (15) for finite Nξ , while
the second equation corresponds to the pseudomode repre-
sentation of the correlation function as given in Eq. (8). We
note that, within the pseudomode model defined by Eq. (4),
it is not possible to reproduce this quantum part with-
out introducing either some complex conjugation (which,
in turn, would lead to different higher-order statistics),
Liouville space generalizations [98–102] or noncommut-
ing variables (i.e., quantum degrees of freedom, as done
in here). Under the approximations in Eq. (18), it is pos-
sible to write the following stochastic version of the main
pseudomode equation:

ρS(t) � E

[
ρ

ξ

S (t)
]

, (19)

where we defined ρ
ξ

S (t) = TrPMρξ (t). An exact evalua-
tion of this expectation value requires knowledge of ρ

ξ

S (t)
for all ξ(t), which is, in general, not available. However,
for any system observable O, we can define the empirical
average

Oξ (t; Nstoch) = 1
Nstoch

Nstoch∑
j =1

Oξj (t) (20)

in terms of the quantity

Oξj (t) = TrS

[
Oρ

ξj
S (t)

]
, (21)

where the label j = 1, . . . , Nstoch in the field ξj character-
izes one of the different Nstoch realizations of the noise.
With use of Eq. (19), it is clear that this random variable
has the correct expectation value, i.e.,

O(t) ≡ E
[
Oξ (t; Nstoch)

] � TrS [OρS(t)] ≡ Otrue. (22)

The model described by Eqs. (16) and (19) constitutes
the main result of this work. It defines the dynamics of
the reduced density matrix of an open quantum system in
terms of a set of NPM quantum pseudomodes and a stochas-
tic field ξ(t) [explicitly defined in Eq. (14)] that reproduce
the physical effects of the original bath related to, respec-
tively, the quantum and classical contributions of the full
bath correlation [see Eq. (18)]. As the statistics of the
classical field can encode any time-symmetric functional
dependence [see Eq.(15)], this method can model corre-
lations that are not limited by the decaying-exponential
ansatz in Eq. (8). In parallel, this model also allows one to
increase the accuracy of a deterministic model whenever
this is prevented by the impossibility to further increase
the Hilbert space dimension. Ultimately, the introduction
of randomness in the model requires a characterization of
the variance of the result, which we analyze in the next
section.

A. Bias and stochastic errors

We start this section by analyzing Eq. (18) in some
more detail. There is a conceptual difference between the
approximations made in the two lines in Eq. (18). On the
quantum side [second line in Eq. (18)], the approxima-
tion consists in writing the correlation as a finite sum of
decaying exponentials, and its accuracy can be increased
only by considering more pseudomodes or, in other words,
by increasing the dimension of the Hilbert space. On
the classical side [first line in Eq. (18)], the approxima-
tion error is gauged by the cut-off parameter Nξ (which
can, in principle, be tuned to increase the accuracy). At
the same time, the presence of stochastic noise in the
Schrödinger equation in Eq. (16) means that all observ-
ables are now random variables whose statistics should be
further analyzed.

To quantify these sources of inaccuracy in more detail,
we can define the following measure for the total error on
the observable O:

�O(t) = E[|Oξ (t; Nstoch) − Otrue(t)|]. (23)

Using the triangle inequality, we can obtain an upper
bound on this error as

�O(t) ≤ �stochO(t) + �biasO(t), (24)

where

�stochO(t) = E[|Oξ (t; Nstoch) − O(t)|],
�biasO(t) = |O(t) − Otrue(t)| (25)

are the stochastic and bias errors, respectively. As shown
in Ref. [77] and in Appendix C 1 a, the bias error can be
upper bounded by a quantity that scales asymptotically as
an exponential in

�C =
∫ T

0
dt2
∫ t2

0
dt1|Cerr(t2, t1)|, (26)

where

Cerr(t2, t1) = Cclass(t2 − t1) + CQ(t2 − t1) − C(t2 − t1)
(27)

is the approximation error of the original correlation func-
tion. As mentioned above, in general, the quality of this
approximation can be improved by increasing the cut-off
Nξ (for the classical contribution) and the number NPM
of pseudomodes (for the quantum contribution). For the
models in which the quantum part can be modeled exactly
with a finite number of pseudomodes (see Sec. IV), the
bias error in the correlation is due to only the finiteness of
the spectral expansion of the classical field and can always
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be reduced. Specifically, the bias is simply given by the
difference between Eq. (12) and Eq. (15) and corresponds
to 2

∑∞
n=Nξ +1 cn cos[nπ t/T], so �bias → 0 in the Nξ → ∞

limit.
By analyzing the properties of the random variables

involved (see Appendix C 1 b for specific details), we can
also bound the stochastic error by a quantity that scales
as O(1/

√
Nstoch). However, as with the bias, the explicit

form of this bound asymptotically scales exponentially in
time (see Appendix C 1 b), effectively limiting its practical-
ity. However, it is possible to further provide an alternative
empirical bound in the form

�2
stochO(t) ≤ σ 2

Oξ (t;Nstoch)
(28)

in terms of the variance of the empirical average
Oξ (t; Nstoch). This variance can be further estimated as

σ 2
Oξ (t;Nstoch)

=

∑
j [Oξj (t)]2

Nstoch
−
[∑

j Oξj (t)

Nstoch

]2

Nstoch
(29)

up to terms of order O(1/N 3/2
noise), thereby allowing a

numerical estimate. Similarly, it is possible to define an
empirical average to estimate the expected correlation in
Eq. (15) as

Cemp
class(t2, t1) = 1

Nstoch

Nstoch∑
j =1

ξj (t2)ξj (t1), (30)

whose expectation value E[Cemp
class(t2, t1)] = CE

class(t2, t1),
and whose variance satisfies the bound σ 2

emp ≤ [|C(0)|2 +
|C(t2 − t1)|2]/Nstoch.

In summary, for all models in which the bias error in
reproducing the correlation function is negligible, we can
estimate the value of an observable O(t) by using a sin-
gle realization of the empirical average in Eq. (20), which
requires us to solve the dynamics of the system Nstoch
times and whose variance can be estimated with Eq. (29).
We note that, by use of the stochastic formalism pre-
sented here, reaching a regime with negligible bias error
is possible. For all models (with rational spectral densi-
ties) presented in Sec. IV in which the quantum part of the
correlation can be exactly reproduced with use of a finite
number of pseudomodes, the bias error can be made arbi-
trary small by simply increasing the number Nξ of classical
spectral components of the field in Eq. (15).

B. A zero-temperature stochastic pseudomode

The stochastic pseudomode model presented in the pre-
vious section is valid for any decomposition of the cor-
relation function into a classical part and a quantum part

as described in Eq. (11). In this section, we show that it
is possible to take advantage of the nonuniqueness of this
decomposition so as to define all the quantum degrees of
freedom initially at zero temperature. This is consistent
with the general intuition that “quantumness” is required
to generate zero-temperature effects (or, more precisely, to
generate the asymmetric tuning of absorption and emission
rates required to model detailed balance at finite temper-
atures), while stochastic noise can be used to reproduce
classical statistical uncertainty.

To achieve this, we follow the straightforward strategy
of adapting the pseudomode ansatz to the antisymmet-
ric part of the correlation. We then use this ansatz to
characterize a symmetric function fs(t), leading to a quan-
tum correlation compatible with a zero-temperature model.
Explicitly, our starting point is the (unique) decomposi-
tion in Eq. (9) of the correlation function into a symmetric
part and an antisymmetric part. Given its symmetries, and
compatibly with the pseudomode ansatz, we assume the
following expansion for the antisymmetric contribution in
terms of the parameters aj , bj , cj ∈ C, j = 1, . . . , NPM:

Cas(t) =
NPM∑
j =1

aj sin(bj t)e−cj |t|. (31)

We note that this is assumption does not imply more
restrictions than those required by the pseudomode model
as it writes the antisymmetric contribution as a sum of
decaying sines. The ansatz is also compatible with a wide
range of spectral densities; see Sec. IV. We can now define

fs(t) = −i
NPM∑
j =1

aj cos(bj t)e−c|t|, (32)

which, inserted in Eq. (11), leads to the following classical
and quantum contributions:

Cclass(t) = Cs(t) + fs(t),

CQ(t) = Cas(t) − fs(t) =
NPM∑
j =1

iaj e−ibj te−cj |t|, (33)

where we used Eqs. (31) and (32). Comparing this expres-
sion with Eq. (18), we can appreciate the presence of only
zero-temperature pseudomodes, i.e., nj = 0 for all j . More
specifically, the parameters of the pseudomode model are
λ2

j = iaj , �j = bj , and 	j = cj . It is interesting to explic-
itly note that the pseudomodes j are physical for bj , cj ∈
R and for imaginary aj (compatibly with the imaginary
nature of the antisymmetric correlation). We also explicitly
note that Eq. (32) is not uniquely defined as, for example,
an overall sign in Eq. (31) can be encoded in either aj or
bj .
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We conclude by mentioning that the procedure pre-
sented in this section is not the only possible one as any of
the quantum-classical decompositions described in Sec. II
can be more appropriate to model a specific environment.
We show this in Appendix D 3, where, in the case of a
pure dephasing environment, the decomposition is chosen
by our imposing fs(t) = 0 [instead of Eq. (32)] in Eq. (9).

IV. STOCHASTIC PSEUDOMODE MODEL FOR
RATIONAL SPECTRAL DENSITIES

In this section, we analyze the stochastic pseudomode
method to model Gaussian environments characterized by
rational spectral densities. More specifically, we consider
spectral densities that can be written as

Jr(ω) = p(ω)

q(ω)
, (34)

where p and q are polynomials such that the order of
the denominator is strictly higher than the order of the
numerator and such that the zeros of the denominator
are different from the zeros of the numerator. We fur-
ther assume that Jr(ω) ∈ R for ω ∈ R, that Jr(−ω) =
−Jr(ω), and that all poles of Jr(ω) are simple and not
located on the real axis. Since these spectral densities
are real on the real axis, their poles come in conju-
gate pairs. Furthermore, antisymmetry implies that the
poles come either in imaginary conjugate pairs (labeled
by ki = 1, . . . , Ni) such as (ωki , ω

R
−ki

) for Re[ωki] = 0 and
Im[ωki] > 0 or in quadruples (labeled with kq = 1, . . . , Nq)
as (ωkq , ω−kq , −ωkq , −ω−kq) for Re[ωkq] > 0. Here we
used the notation ωk = ω̄−k. We can explicitly note that
the total number of poles Npoles = 2Ni + 4Nq.

With use of this notation, the antisymmetric part of the
correlation in Eq. (10) reads

Cas(t) = −2isg(t)
Nq∑

kq=1

RR
kq

cos(ωR
kq

t)e
−ωI

kq
|t|

+ 2i
Nq∑

kq=1

RI
kq

sin(ωR
kq

t)e
−ωI

kq
|t|

− isg(t)
Ni∑

ki=1

RR
ki

cos(ωR
ki

t)e−ωI
ki

|t|, (35)

where Rk = Res[Jr(ω); ωk] denotes the residue of the spec-
tral density at the simple pole ωk ∈ C. Furthermore, we
defined sg(t) = t/|t| for t �= 0, and we used the labels R
and I to denote the real and imaginary parts of a parame-
ter, respectively. We note that the sign function appearing
in this expression makes a direct comparison with the
ansatz in Eq. (31) not immediately obvious. However,

it is possible to make progress by weakening the mean-
ing of the correlation function to a distribution. Since we
are ultimately interested in computing the reduced den-
sity matrix of the system, the correlation in Eq. (3) always
appear inside definite integrals in time, thereby effectively
defining it as a functional over the system’s observables,
i.e., a distribution. This conceptual observation is not just
abstract as it allows us to concretely modify the expression
on the right-hand side of Eq. (35) on any zero-measure sub-
space of the real axis (by simply reinterpreting the equal
sign in the distribution space). These considerations allow
us to write Eq. (35) (omitting the time dependence on the
right-hand side) in terms of an arbitrary energy parameter
W that is supposed to be much bigger than any frequency
that can be associated with the system:

Cas = 2
Nq∑

kq=1

{
iRI

kq
sin(ωR

kq
t)e

−ωI
kq

|t|

+ RR
kq

sin

[−i(W − ωI
kq

) + 2ωR
kc

2
t

]
e
−(W+ωI

kq
)|t|/2

+ RR
kq

sin

[−i(W − ωI
kq

) − 2ωR
kc

2
t

]
e
−(W+ωI

kq
)|t|/2

}

+ 2
Ni∑

ki=1

RR
ki

sin

[−i(W − ωI
ki
)

2
t

]
e−(W+ωI

ki
)|t|/2.

(36)

This expression allows a direct comparison with the ansatz
in Eq. (31) and ultimately implies that NPM = 3Nq +
Ni zero-temperature pseudomodes are needed to exactly
reproduce the antisymmetric part of the correlation for
this class of spectral densities. We note that, in practice,
a smaller number of pseudomodes can be considered at the
price of downgrading Eq. (31) to a best-fit approximation.
While the analytical expression for the antisymmetric con-
tribution to the correlation function above allows us to give
an upper bound on the number of pseudomodes, a simi-
lar analytical expression for the symmetric part is not as
useful as the expansion in Eq. (12) can always be com-
puted numerically. Nonetheless, such an expression can be
obtained, and it explicitly reads (for β ∈ R)

Cs = −2
∑

kq

[Rβ,R
kq

sin (ωR
kq

|t|) + Rβ,I
kq

cos (ωR
kq

t)]e
−ωI

kq
|t|

−
Ni∑

ki=1

Rβ,I
ki

e−ωI
ki

|t| + 2i
β

∑
k>0

J (ωM
k )e−|ωM

k ||t|, (37)

where kq = 1, . . . , Nq and Rβ

k = Rk coth(βωk/2), and in
terms of the Matsubara poles ωM

k = 2π ik/β (k > 0)
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Time (1/�) Time (1/�)

Time (1/�)Time (1/�)

(a) (b)

(d)(c)

FIG. 2. Correlations for the Brownian spectral density at zero temperature. In (a),(b) we plot the symmetric [Eq. (44)] and anti-
symmetric [Eq. (43)] contributions to the correlation. In (c),(d) we plot the classical [Eq. (46)] and quantum [Eq. (45)] contributions,
which are obtained by subtracting or adding the symmetric function given in Eq. (32)]. At zero temperature, the classical part of the
correlation Cclass(t) shown in (c) consists of the Matsubara contribution; see Eq. (47). In (c), we further show the empirical average
Cemp

class(t) [dashed green line; see Eq. (30)] of the correlation function, its expected value CE

class(t) [dashed red line; see Eq. (15)], and its
variance [in light green; see Eq. (C72)]. As the number Nstoch of samples increases, the stochastic reconstruction (green) averages to
its expected value (red), which, in turn, tends to the exact numerical expression as the number Nξ of spectral components in the fields
in Eq. (14) approaches infinity. In (d), the quantum contribution CQ(t) is modeled by a single exponential function and it does not have
any definite symmetry under time reversal. Here the parameters are the same as those used in Fig. 3(a); specifically, Nξ = 1000 and
Nstoch = 100.

of coth(βω/2). By using the prescriptions described in
Sec. III B, we can use Eq. (33) to compute the quan-
tum and classical contributions to the correlations CQ(t) =
Cas(t) − fs(t) as

CQ(t) = −2
Nq∑

kq=1

{
RI

kq
e
−iωR

kq
t
e
−ωI

kq
|t|

+ iRR
kq

e
−i[ωR

kq
−i(W−ωI

kq
)/2]t

e
−(W+ωI

kq
)|t|/2

+ i RR
kq

e
−i[−ωR

kq
−i(W−ωI

kq
)/2]t

e
−(W+ωI

kq
)|t|/2
}

+ 2i
Ni∑

ki=1

RR
ki

e−i[−i(W−ωI
ki

)/2]te−(W+ωI
ki

)|t|/2 (38)

and

Cclass = i
Nq∑

kq=1

[�Rkq eiωkq |t| − �′Rkq e−iω̄kq |t|]

+ i
Ni∑

ki=1

�Rki eiωki |t| + 2i
β

∑
k>0

J (ωM
k )e−|ωM

k ||t| (39)

in terms of the quantities �Rkx = Rβ

kx
− Rkx and �′Rkx =

R̄β

kx
+ Rkx (x = q, i). The quantum correlation corresponds

to a decomposition like the one presented in Eq. (18),
which can be modeled by pseudomodes initially at zero
temperature. On the other hand, the explicit expression for
the classical correlation can further be used to explicitly
compute the coefficients for the spectral decomposition of
the field ξ in Eq. (14) as

cn = i
Nq∑

kq=1

[�Rkq L(iωkq) − �′Rkq Ln(−iω̄kq)]

+ i
Ni∑

ki=1

�Rki Ln(iωki) + 2i
β

∑
k>0

J (ωM
k )Ln(−|ωM

k |),

(40)

where

Ln(ω) = (eωTeinπ − 1)
ωT

(ωT)2 + (nπ)2 . (41)

V. EXAMPLES

In this section, we exemplify the model by considering
two specific choices of spectral densities. First, we test the
stochastic method against the fully quantized, determinis-
tic pseudomode model using an underdamped Brownian
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Time (1/ωs)Time (1/ωs)

Frequency (ωs)
Frequency (ωs)

(a) (b)

FIG. 3. Dynamics of a two-level system with Hamiltonian HS = (ωs/2)σz and coupling operator s = σx strongly coupled to a bath
with a narrow and broad Brownian spectral density (insets) at zero temperature. As the blue line, the evolution follows a standard
pseudomode model in which all degrees of freedom are quantized (one mode for the quantum contribution and two modes for the
classical one). The dashed black line represents evolution without the contribution from the Matsubara correlation. As the dashed red
line, the evolution of the empirical average in Eq. (20) for Nstoch = 100 is evaluated with the stochastic pseudomode model involving
a single harmonic oscillator to model the quantum contribution. The horizontal dashed gray line represents the value of the observable
for the ground state of a Rabi model with Hamiltonian HB and zero fields. In (b), the failure to reach this value can be interpreted as
due to hybridization with residual modes in the environment (as a consequence of the broad resonance), which are correctly taken into
account by both the standard pseudomode model and the stochastic pseudomode model; see Ref. [80] for more details about the effects
of the Matsubara terms in the deterministic pseudomode model. In (a), the parameters are ω0 = ωs, γ = 0.05ωs, λ = (0.2/

√
2π)ω

3/2
s ,

Nξ = 1000, and Nstoch = 100. In (b), the parameters are ω0 = ωs, γ = ωs, λ = (1/
√

2π)ω
3/2
s , Nξ = 100, and Nstoch = 1000. To further

highlight the different hybridization properties of the two cases, we used different initial conditions for the two-level system [excited
state in (a) and ground state in (b)].

spectral density. We then focus on an Ohmic spectral den-
sity with exponential cut-off which lies outside the domain
of rational spectral densities analyzed analytically in the
previous sections.

A. Underdamped Brownian spectral density

The spectral density

J B(ω) = γ λ2ω

(ω2 − ω2
0)

2 + γ 2ω2
, (42)

defined in terms of the frequency parameters ω0 and γ <

2ω0 and an overall strength λ (having dimension of fre-
quency to the power 3/2), describes a structured environ-
ment characterized by an underdamped resonance having

frequency � =
√

ω2
0 − 	2 and a broadening 	 = γ /2. It

has the form described in Sec. IV of a rational function
with a Ohmic numerator (linear in ω) and a polynomial
cut-off with poles located at ±� ± i	. For this spectral
density, the antisymmetric and symmetric parts of the
correlation are

CB
as(t) = −i

λ2

2�
sin(�t)e−	|t| (43)

and

CB
s (t) = λ2

4�
coth (β(� + i	)/2)ei�|t|e−	|t|

− λ2

4�
coth (β(−� + i	)/2)e−i�|t|e−	|t|

+ 2i
β

∑
k>0

J (ωM
k )e−|ωM

k ||t|, (44)

where ωM
k = 2π ik/β. Following Eq. (32), we can define

f B
s (t) = −(λ2/2�) cos(�t)e−	|t| so that the quantum and

classical parts of the correlation read

CB
Q(t) = CB

as(t) − f B
s (t) = λ2

2�
e−i�te−	|t| (45)

and

CB
class(t) = λ2

4�
coth (β(� + i	)/2)ei�|t|e−	|t|

− λ2

4�
coth (β(−� + i	)/2)e−i�|t|e−	|t|

− λ2

2�
cos(�t)e−	|t| + 2i

β

∑
k>0

J B(ωM
k )e−|ωM

k ||t|,

(46)

respectively. It is interesting to note that, in the β → ∞
limit, simplifications in the classical correlation occur,
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Time (1/ωs)

Frequency (ωs)

FIG. 4. Dynamics of a two-level system with Hamiltonian
HS = (ωs/2)σz and coupling operator s = σx strongly coupled
to an underdamped Brownian bath at finite temperature. As
the blue line, the evolution follows the standard pseudomode
model described in Eq. (48) in which all degrees of freedom
are quantized [for a total of five modes, i.e., the ones described
in Eq. (D42) and two fitting the Matsubara contribution to the
correlation]. As the dashed red line, the evolution of the empir-
ical average in Eq. (20) for Nstoch = 500 is evaluated with the
stochastic pseudomode model involving a single harmonic oscil-
lator to model the quantum contribution. The standard deviation
from Eq. (29) is, for these parameters, not visible. The hori-
zontal dashed gray line represents the value of the observable
at thermal equilibrium. The parameters are ω0 = ωs, γ = 0.1ωs,
λ = (0.2/

√
2π)ω

3/2
s , β = 2/ωs, and Nξ = 500.

resulting in the usual expression

CB
class(t)

β→∞= i
π

∫ ∞

0
dxJ B(ix)e−x|t|, (47)

which involves only the so-called Matsubara contribution.
In Fig. 2, we show an example of these correlations at zero
temperature.

The dynamics of a system coupled to a bath with the
spectral density in Eq. (42) can be computed through a
traditional pseudomode model in which quantum modes
are used to both exactly describe the quantum contribu-
tions and to approximate the Matsubara series in Eq. (46).
A minimal number of 1 + NMats pseudomodes are needed
in the zero-temperature limit (where NMats is the number
of Matsubara modes). In contrast, the stochastic pseudo-
mode model requires only a single quantum degree of
freedom initially at zero temperature to model an under-
damped Brownian environment at any temperature. More
specifically, the model reads

ρ̇ = −i[HB, ρ] + DB[ρ], (48)

where

HB = HS + ξB(t)s + λresσx(a + a†) + �resa†a (49)

Time (1/ωs)

Frequency (ωs)
20 exponentials

FIG. 5. Dynamics of a two-level system with Hamiltonian
HS = (ωs/2)σz and coupling operator s = σx coupled to an
Ohmic spectral density (inset) at zero temperature. For the
dashed green line and the dashed red line we used the stochastic
model (averaged Nstoch = 103 and Nstoch = 104 times, respec-
tively), where two quantum pseudomodes account for the anti-
symmetric part of the correlation, see also Fig. 10 for further
details. This result is compared with the solution of the HEOM
[32], where the full correlation function is approximated as a
linear combination of 20 decaying exponentials. This value is
chosen to check the results of the presented method with respect
to a nearly exact case. The bound on the estimated standard
deviation obtained from Eq. (29) is shown in light red. The
parameters are N�

PM = 2, α = 2/100, ωc = 3ωs, and Nξ = 1000.

in terms of the parameters λres =
√

λ2/2� and �res = �,
and where

DB[ρ] = 	res[2aρa†−a†aρ − ρa†a], (50)

is a zero-temperature dissipator written as a function of
the decay rate 	res = 	. The fields ξB(t) can be explic-
itly defined by use of Eq. (14) together with the analytical
expression in Eq. (D49) for the coefficients cn. To test
the method, in Figs. 3 and 4 we show the dynamics of a
single two-level system with Hamiltonian HS = (ωs/2)σz
and coupling operator s = σx. The stochastic model results
are compared with those obtained by solving the fully
quantized pseudomode model both at zero temperature
and at finite temperature and for different regimes involv-
ing strongly and weakly coupled resonances with different
broadening.

B. Ohmic spectral density with exponential cut-off

In this section, we consider the spectral density

J �(ω) = παωe−ω/ωc , (51)

which shows an Ohmic behavior at low frequencies char-
acterized by the strength parameter α ∈ R and by an expo-
nential decay characterized by the frequency cut-off ωc
[120]. While the transcendental form of this spectral den-
sity does not allow us to use the results presented in Sec.
IV for rational functions, it is still possible to follow the
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Time (1/ωs)

Frequency (ωs)

FIG. 6. Dynamics of a two-level system coupled to three baths
characterized by different spectral densities at different tem-
peratures (see the inset). As the cyan line, the dynamics was
computed with use of the HEOM. Dashed curves were com-
puted with use of the stochastic pseudomode model averaging
over Nstoch = 10 (yellow) and Nstoch = 104 (red) realizations for
the classical noise. The horizontal dashed red, green, and blue
lines correspond to the thermal occupation which the qubit would
have at the temperature of each individual bath. The horizontal
dashed gray line corresponds the occupation it would have in the
steady state when hybridization effects with the environment are
ignored, obtained with the expression given in Ref. [126].

procedure in Sec. III B to define the stochastic pseudomode
model using numerical optimization. Specifically, it is
possible to find the parameters {a�

j , b�
j , c�

j } that better
approximate the antisymmetric part of the correlation

C�
as(t) = −2iαω2

c
ωct

(1 + ω2
c t2)2 �

N�
PM∑

j =1

a�
j sin(b�

j t)e−c�
j |t|.

(52)

We note that,> with respect to the fully quantized pseu-
domode model, the procedure presented here has the
advantage of not having to fit the symmetric part of the
correlation, which also contains all information about the
temperature of the original environment. In Fig. 5 we show
an example in which the dynamics of a two-level system is
computed by use of two pseudomodes together with clas-
sical stochastic fields. We compared this result against the
hierarchical equations of motion solved with use of the
BoFiN package [32,121–124].

VI. MULTIPLE BATHS AT DIFFERENT
TEMPERATURES

It is interesting to note that, in the case of an under-
damped Brownian spectral density, the Hilbert space of
the stochastic pseudomode model augments the system
with only a single extra pseudomode initialized in the vac-
uum for any temperature of the original environment. This
should be compared with the deterministic pseudomode
method, which, as shown in Eq. (D40), requires 3 + NMats
pseudomodes [125], where NMats is the number of modes

0 2 4 6
Time (1/ S )

0.0

0.1

0.2

0.3

S(
t)

no Matsubara contribu�on
determinis�c PM model
stochas�c PM model

FIG. 7. Using the example and parameters from Fig. 3(b), we
calculate the von Neumann entropy of the reduced system state
as a function of time. The solid black curve shows the result from
a deterministic pseudomode (PM) model with a single quantum
pseudmode and where the Matsubara, or classical, contribution
to the bath correlation function is omitted entirely. The solid
blue curve represents the result for the same situation but with
the Matsubara contribution included as quantum pseudomodes.
Ad the dashed purple curve we show the result for the hybrid
stochastic pseudomode model, where the quantum part of the
correlation function is the same as that for the solid black curve,
but the Matsubara part is captured by classical stochastic fields,
with Nstoch = 1000. In both the deterministic approach and the
hybrid stochastic approach the addition of the imaginary-valued
Matsubara contribution reduces the system entropy.

corresponding to a fit with NMats exponentials for the Mat-
subara contribution to the correlation; see Eq. (D40). This
might result in a considerable reduction of the Hilbert
space when the system is coupled to multiple baths at dif-
ferent temperatures. We analyze this case in Fig. 6, where
a single two-level system is coupled to three independent
Brownian baths at different temperatures.

In Fig. 6, we compare the steady-state value of 〈σz〉 with
the values the spin would have when in equilibrium with
each bath. Using the elegant formalism in Ref. [126], we
further show that the steady state is different from the one
expected for a system weakly coupled to all three baths.
The averaging over the statistics of the field completes
the full characterization of the effects due to hybridization
with the quantum degrees of the original bath. To further
test the method, in Appendix D 3, we present the results
for an environment causing pure decoherence, i.e., when
the system interaction operator commutes with the system
Hamiltonian.

VII. VON NEUMANN ENTROPY

The hybrid pseudomode model described in this article
is an effective method, i.e., its only goal is to reproduce
the effects of the environment on the system, rather than
the system-bath full dynamics. It does so by introducing
ancillary degrees of freedom that are not directly related
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to the original environment. This allows us to extend the
regime of the associated parameters to unphysical values
as long as the reduced density matrix of the system remains
physical. As a consequence, despite the effective nature of
these degrees of freedom, it is still meaningful to estimate
relevant quantities that are a function of such a reduced
dynamics. One important example is the von Neumann
entropy

S(t) = −TrSρS(t) log ρS(t), (53)

which can be used as a measure of the information con-
tained in the system and the correlation between bipartite
systems. For example, in our context, it can be considered
as a measure of system-bath entanglement when the initial
state of the bath is at zero temperature, and the initial state
of the system is a pure state.

In normal circumstances, one might expect that the
presence of stochastic noise might drive a system to a
higher-entropy state, i.e., it would increase its information
disorder. It is then interesting to test whether this intuition
remains true for the kind of noise needed to model the
classical contribution to the correlation function of a quan-
tum bath considered here. In the case of a zero-temperature
bath characterized by an underdamped Brownian spectral
density, the driving field is purely imaginary. In Fig. 7, we
show that this unphysical field cause a decrease in the von
Neumann entropy of the reduced state of the system.

While the effective nature of the fields prevents a direct
physical interpretation, the meaning of this result can still
be found in the description of the properties associated
with different contributions to the correlation function of
a physical environment. For example, any approximation
that ignores the Matsubara contribution of a Brownian
environment at zero temperature will correspond to an
overestimation of the disorder in the reduced state of the
system, due to a breaking of the detailed balance condition
of that environment. In turn, by using unphysical, imagi-
nary fields, one can correctly reduce such a disorder to the
correct physical balance.

VIII. CONCLUSIONS

In this article, we analyzed a decomposition of the
effects of a Gaussian bosonic bath on a system into quan-
tum and classical contributions. We used this decompo-
sition to define a stochastic version of the bosonic pseu-
domode method in which classical noise complements a
discrete set of harmonic degrees of freedom to model
non-Markovian open quantum systems. This ultimately
results in a reduction of the number of ancillary quan-
tum resources needed for the classical simulation of the
original environment, which can become critical to model
highly structured open quantum systems in the presence of
multiple baths at different temperatures.

Ohmic, pure dephasing, multiple baths at different T  Specific models
(Sec. VI) 

Stochastic Error 

Bias error 

Effective
description 

Correlations 

Model Deterministic 

(Appendix A)

Stochastic 

symmetric 

HI = sX(t)
C(t) = ·X(t)X(0)Ò 

Open quantum
system

(Appendix A) 
System-bath interaction:

System dynamics determined by  

C
PM

(t) = decaying
exponential decaying

exponential
(Sec.III)

(Sec.IV)

C
SPM

(t) = C
class

(t) + CQ(t)

G[C
class

(t)]/√N
noice

 (Appendix C)

F[∆C(t)] 

pseudofields pseudomodes 

Zero on average for rational
spectral densities (Sec. V) 

pseudomodes 
(Sec. II) 

(Appendix C) 

Zero

FIG. 8. Summary. Given a linear interaction between a sys-
tem and a Gaussian environment, the system dynamics is a
function of the correlation of the environmental coupling oper-
ator. Different models rely on different approximations for the
correlation. For example, the deterministic pseudomode model
assumes an ansatz given by a sum of decaying exponentials,
which introduces a bias error. By using a classical or quantum
decomposition, it is possible to consider an additional stochas-
tic driving to model, on average, more general correlations. In
this case, the observables are stochastic variables whose vari-
ance scales as the inverse of the number of noise realizations.
Numerical examples for different specific models are provided.

Furthermore, all temperature effects of the original envi-
ronment can be encoded into properties of the classical
noise, allowing the remaining quantum degrees of freedom
to be, initially, at zero temperature. For a class of rational
spectral densities, all parameters of the stochastic pseudo-
mode model are explicitly provided without the need for
any best-fit optimization for all temperatures of the original
bath, thereby simplifying the modeling stage.

We tested the method for Ohmic spectral densities with
polynomial and exponential decay against the determinis-
tic pseudomode method and the hierarchical equations of
motion, respectively. The possibility to encode all temper-
ature effects in the statistics of the driving field even for
multiple baths leads to improved handling of the compu-
tational resources with respect to the fully deterministic
pseudomode model. We further observed interesting fea-
tures related to the unphysicality of this field, which,
despite its noisy nature, decreases the von Neumann
entropy of the system-environment partition. This shows
that the simplicity in the interpretation of this method can
lead to new interesting ways to explore non-Markovian
effects, such as the entanglement structure in open quantum
systems.

In summary, see Fig. 8, our hybrid method allows one
to model the nonperturbative effects of a bosonic bath on
a system’s dynamics with an approach that balances con-
ceptual simplicity (it requires only averaging over the solu-
tions of a Lindblad-like equation) and numerical accuracy,
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while using a limited amount of quantum resources with
respect to deterministic algorithms, such as the regular
pseudomode model and the regular HEOM.

Beyond numerical simulations, despite the purely effec-
tive nature of the degrees of freedom involved, the
quantum-classical decomposition presented here could
also be useful in analyzing the interplay between quan-
tum and classical effects induced by environments in the
context of quantum thermodynamics [127,128], quantum
control [32,129,130], and quantum transport [131–134].
In this direction, we provide evidence that the imagi-
nary nature of the stochastic field characterizes effects that
tend to decrease the von Neumann entropy of the reduced
system state.
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APPENDIX A: INFLUENCE SUPEROPERATOR

In this section, we derive an expression for the influ-
ence superoperator (see also Refs. [135–137]) appearing
in Eq. (2) that encodes all the effects of a bosonic Gaussian
environment linearly interacting with a quantum system.
The proof does not use any path-integral technique.

1. A canonical derivation

Here we present a canonical (i.e., purely operator-based)
derivation of the bosonic influence superoperator. We
consider system S coupled to bosonic environment B as

H = HS + HI + HB, (A1)

where HS is the system Hamiltonian and HB =∑k ωkb†
kbk

characterizes the energy ωk of each environmental mode
bk. We suppose the system-environment coupling to be
in the form HI = sX , where s is a system operator and
X is an interaction operator linearly expanded by {b†

k , bk}.
Meanwhile, we assume the initial state can be denoted as
ρ(0) = ρS(0) ⊗ ρB(0), where ρS(0) is the initial state of
the system and ρB(0) is a Gaussian state of the bosonic
environment (for example, a thermal equilibrium state at
inverse temperature β). We further suppose that the ini-
tial state of the environment is invariant under the free
dynamics, i.e., ρB(0) = U0(t)ρB(0)U†

0(t) in terms of the
free propagator U0(t) = exp[−i(HS + HB)t]

In the interaction picture, the Schrödinger equation

ρ̇ = −i[HI (t), ρ] (A2)

can be formally solved as

ρ(t) = T
[
e−i

∫ t
0 dτH×

I (τ )
]
ρ(0), (A3)

where HI (t) = U†
0(t)HI U0(t), and where we further

defined O×[·] = [O, ·] as the superoperator associated with
the commutation with the operator O. The time-ordering
operator T acts on superoperators as

T
[
O×(t1)O×(t2)

] = O×(t1)O×(t2)θ(t1 − t2)

+ O×(t2)O×(t1)θ(t2 − t1), (A4)

where θ is the step function defined as 1 for x > 0, 1/2 for
x = 0, and 0 otherwise.

We are now interested in analyzing the reduced density
matrix for the system, i.e., ρS(t) = TrB[ρ(t)], which, with
use of Eq. (A3), takes the form

ρS(t) =
∞∑

n=0

(−i)n

n!
TrB

[
T
∫ t

0
dt1 · · ·

∫ t

0
dtnH×

I (t1)

· · · H×
I (tn)ρ(0)

]
. (A5)

We can now consider the explicit form of the interaction
Hamiltonian in the interaction frame, i.e., HI (t) = s(t) ⊗
X (t), where s(t) = eiHStse−iHSt and X (t) = eiHBtXe−iHBt,
and use it in Eq. (A5). In this way, the first nontrivial term
can be written as

H×
I (t) [ρS(0) ⊗ ρB(0)] =

2∑
i=1

S i
t [ρS(0)] ⊗ X i

t [ρB(0)],

(A6)

where S1
t [·] = s(t)·, S2

t [·] = − · s(t), X 1
t [·] = X (t)·, and

X 2
t [·] = ·X (t). With use of this notation in Eq. (A5), the

reduced density matrix takes the form

ρS(t) =
∞∑

n=0

(−i)n

n!
ρn(t), (A7)

where ρ0(t) = TrB[ρ(0)] and

ρn(t) =
∫ t

0
dt1 · · ·

∫ t

0
dtn

∑
i1,...,in

TrB

×
[
T X i1

t1 · · ·X in
tn ρB(0)

]
T S i1

t1 · · ·S in
tn ρS(0) (A8)

for n > 0. To make progress, we now take advantage of the
Gaussianity of the state ρB(0), which translates into the fol-
lowing version of Wick’s theorem for superoperators (see
Appendix A 4):

Tr
[
T X i1

t1 · · ·X i2N
t2N

ρB

]
=
∑

C∈P2N

∏
(l,m)∈C

Tr
[
T X il

tl X
im
tm ρB

]
,

(A9)
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where the traces are intended on the bath B, where we omitted the time label in the state ρB(0), and where P2N is the
collection of all possible sets (full contractions C) whose elements are N disjoint pairs (i.e., contractions) taken from
{1, . . . , 2N }. The cardinality of P2N is (2N − 1)!! = (2N )!/(2N N !), i.e., the number of different ways to fully contract the
set {1, . . . , 2N }. We further have that TrB

[
T X i1

t1 · · ·X i2N+1
t2N+1

ρB

]
= 0. We refer to Appendix A 4 for a detailed proof of this

version of Wick’s theorem written in terms of time-ordered superoperators.
Using Wick’s theorem in Eq. (A8), we obtain

ρ2N (t) =
∑

C∈P2N

∫ t

0
dt1 · · ·

∫ t

0
dt2N

∏
(l,m)∈C

∑
il,im

TrB

[
T X il

tl X
im
tm ρB(0)

]
T
[
S i1

t1 · · ·S i2N
t2N

]
ρS(0)

=
∑

C∈P2N

T

⎡
⎣
∫ t

0
dt1 · · ·

∫ t

0
dt2N

∏
(l,m)∈C

∑
il,im

TrB

[
T X il

tl X
im
tm ρB(0)

]
S i1

t1 · · ·S i2N
t2N

⎤
⎦ ρS(0)

=
∑

C∈P2N

T

⎡
⎣
∫ t

0
dt1 · · ·

∫ t

0
dt2N

∏
(l,m)∈C

⎛
⎝∑

il,im

TrB

[
T X il

tl X
im
tm ρB(0)

]
S il

tl S
im
tm

⎞
⎠
⎤
⎦ ρS(0)

= T

⎧⎨
⎩
∑

C∈P2N

⎛
⎝
∫ t

0
dt2
∫ t

0
dt1
∑
i2,i1

TrB

[
T X i2

t2 X
i1
t1 ρB(0)

]
S i2

t2 S
i1
t1

⎞
⎠

N

ρS(0)

⎫⎬
⎭

= T

⎧⎨
⎩

(2N )!
N !

⎛
⎝1

2

∫ t

0
dt2
∫ t

0
dt1
∑
i2,i1

TrB

[
T X i2

t2 X
i1
t1 ρB(0)

]
S i2

t2 S
i1
t1

⎞
⎠

N

ρS(0)

⎫⎬
⎭

= T

⎧⎨
⎩

(2N )!
N !

⎛
⎝
∫ t

0
dt2
∫ t2

0
dt1
∑
i2,i1

TrB

[
X i2

t2 X
i1
t1 ρB(0)

]
S i2

t2 S
i1
t1

⎞
⎠

N

ρS(0)

⎫⎬
⎭ . (A10)

Using this result in Eq. (A7), we obtain

ρS(t) = T

⎧⎨
⎩

∞∑
N=0

(−1)N

N !

⎛
⎝
∫ t

0
dt2
∫ t2

0
dt1
∑
i2,i1

TrB

[
X i2

t2 X
i1
t1 ρB(0)

]
S i2

t2 S
i1
t1

⎞
⎠

N⎫⎬
⎭ ρS(0)

= T Exp

⎧⎨
⎩−

∫ t

0
dt2
∫ t2

0
dt1
∑
i2,i1

TrB

[
X i2

t2 X
i1
t1 ρB(0)

]
S i2

t2 S
i1
t1

⎫⎬
⎭ ρS(0)

≡ T eF(t,s,C(t))ρS(0) (A11)

in terms of the superoperator

F(t, s, C(t))[·] = −
∫ t

0
dt2
∫ t2

0
dt1
∑
i2,i1

TrB

[
X i2

t2 X
i1
t1 ρB(0)

]
S i2

t2 S
i1
t1 [·]

= −
∫ t

0
dt2
∫ t2

0
dt1C(t2, t1) [s(t2)s(t1)[·] − s(t1)[·]s(t2)] + C(t1, t2) [[·]s(t1)s(t2) − s(t2)[·]s(t1)]

=
∫ t

0
dt2
∫ t2

0
dt1 C(t2 − t1)[s(t1)·, s(t2)] − C(t1 − t2)[·s(t1), s(t2)], (A12)

which proves Eq. (2) and which depends on the correlation function
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C(t2, t1) = TrB [X (t2)X (t1)ρB(0)]

=
∑

k

g2
k TrB[(a†eiωt2 + ae−iωt2)(a†eiωt1 + ae−iωt1)ρB(0)] =

∫
dω

J (ω)

π
[(2n(ω) + 1) cos(ωt) − i sin(ωt)]

(A13)

of the environmental interaction operator X (t). Here
J (ω) = π

∑
k g2

k δ(ω − ωk) and t = t2 − t1, so, using
2n(ω) + 1 = coth βω/2, we get Eq. (3). The invariance of
the initial environmental state under free dynamics implies
the stationarity of the correlation, i.e.,

C(t2, t1) = TrB

[
X (t2)U

†
0(t1)X (0)U0(t1)ρB(0)

]

= TrB

[
X (t2)U

†
0(t1)X (0)ρB(0)U0(t1)

]

= TrB

[
U0(t1)X (t2)U

†
0(t1)X (0)ρB(0)

]

= TrB [X (t2 − t1)X (0)ρB(0)]

≡ C(t). (A14)

In summary, the effects on the reduced dynamics of a Gaus-
sian bosonic environment linearly coupled to a quantum
system can be fully described by an influence superoper-
ator that depends on the system coupling operator s and
the correlation function C(t) of the environmental coupling
operator. This directly implies the equivalence between the
reduced dynamics of any open quantum system sharing the
same s and C(t); see Ref. [79].

In the following, we further improve on this derivation
to allow for a general linear system-bath interaction.

2. Generalized interaction

It is worth noting that the result proven in Eq. (A10)
can be generalized to the case where the system
and the environment interact through a more gen-
eral form of the interaction term, i.e., performing the
substitution

HI �→ H ′
I =

∑
α

sαX α , (A15)

in Eq. (A1), where sα and X α define a collection of sys-
tem and environmental interaction operators. Under the
replacement above, Eq. (A6) takes the more general form

H
′×
I (t) [ρS(0) ⊗ ρB(0)] =

∑
ᾱ

S ᾱ
t [ρS(0)] ⊗ X ᾱ

t [ρB(0)],

(A16)

where ᾱ ≡ (i, α) is a multi-index and where S(1,α)
t [·] =

sα(t)·, S(2,α)
t [·] = − · sα(t), X (1,α)

t [·] = X α(t)·, and X (2,α)
t

[·] = ·X α(t). As a consequence, we can follow all the
calculations done in the previous section by simply replac-
ing the upper indexes i with multi-indexes, i.e., i �→ α′ =
(i, α), to get

ρ ′
S(t) = T eF

′(t,{s},{C(t)})ρS(0), (A17)

where ρ ′
S(t) is the reduced density matrix for the system

when the interaction Hamiltonian with the environment
takes the generalized form H ′

I (t) above, and where

F ′ = −
∫ t

0
dt2
∫ t2

0
dt1
∑
α′

1,α′
2

TrB

[
X α′

2
t2 X α′

1
t1 ρB(0)

]
Sα′

2
t2 S

α′
1

t1 ,

(A18)

in which we omitted the functional dependencies
(t, {s}, {C(t)}) from F ′. We note that these dependen-
cies highlight that in this case the influence superoperator
depends on the whole set {s} of sα operators and the
whole set {C(t)} of correlation functions Cαβ , which can
be defined by further noting that

F ′ = −
∫ t

0
dt2
∫ t2

0
dt1G ′(t2, t1),

G ′ =
∑

i1,i2,α1,α2

TrB

[
X i2,α2

t2 X i1,α1
t1 ρB

]
S i2,α2

t2 S i1,α1
t1

=
∑
α,β

TrB

[
X α

t2 X β
t1 ρβ

]
sα

t2sβ
t1[·] + TrB

[
ρβX β

t1 X α
t2

]
[·]sβ

t1sα
t2 − TrB

[
X β

t1 ρβX α
t2

]
sβ

t1[·]sα
t2 − TrB

[
X α

t2 ρβX β
t1

]
sα

t2 [·]sβ
t1

=
∑
α,β

TrB

[
X α

t2 X β
t1 ρβ

]
[sα

t2 , sβ
t1 [·]] − TrB

[
ρβX β

t1 X α
t2

]
[sα

t2 , [·]sβ
t1 ] =

∑
α,β

Cαβ(t2, t1)[sα
t2 , sβ

t1[·]] − Cβα(t1, t2)[sα
t2 , [·]sβ

t1 ].

(A19)

030316-16



QUANTUM-CLASSICAL DECOMPOSITION. . . PRX QUANTUM 4, 030316 (2023)

Explicitly, we defined the correlation functions as

Cαβ(t2, t1) = TrB

[
X α

t2 X β
t1 ρβ

]
. (A20)

In conclusion, the influence superoperator for the general-
ized interaction Hamiltonian H ′

I can be written as

F ′[·] =
∫ t

0
dt2
∫ t2

0
dt1
∑
α,β

{
Cβα(t1, t2)[sα

t2 , ·sβ
t1 ]

−Cαβ(t2, t1)[sα
t2 , sβ

t1 ·]
}

. (A21)

a. Quantum white noise limit

Here we exemplify the results above in the case
where the environment can be modeled as quantum white
noise (i.e., frequency-independent spectral density nonzero
for both positive and negative energies, and frequency-
independent Bose-Einstein occupation number) and inter-
acts with the system in a “rotating-wave” fashion, i.e.,
H RW

I = s+A(0) + s−A†(0), where s+ = (s−)† and A(t) =∑
k gkbk(t). In this case, only two of the four correlations

in Eq. (A20) are nonzero, i.e.,

C+−(t2, t1) = TrB

[
A†

t2At1ρβ

]
=
∑

k

g2
k nkeiωkt

= 2	nδ(t),

C−+(t2, t1) = TrB

[
At2A†

t1ρβ

]
=
∑

k

g2
k (nk + 1)e−iωkt

= 2	(n + 1)δ(t), (A22)

and, similarly, C++(t2, t1) = C−−(t2, t1) = 0, where t =
t2 − t1 and where we used

∫∞
−∞ dωeiωt = 2πδ(t) together

with the quantum white noise conditions

J (ω) = π
∑

k

g2
k δ(ω − ωk) = 	,

nk = n. (A23)

By using these expressions in Eq. (A21), we obtain

G ′[·] = C+−(t)[s−
t2 , ·s+

t1 ] − C−+(t)[s−
t2 , s+

t1 ·]
+ C−+(t)[s+

t2 , ·s−
t1 ] − C+−(t)[s+

t2 , s−
t1 ·]

= 	δ(t)
{

n[s−
t1 , ·s+

t1 ] − (n + 1)[s−
t1 , s+

t1 ·]

+ (n + 1)[s+
t1 , ·s−

t1 ] − n[s+
t1 , s−

t1 ·]
}

= 	δ(t)
{

n
[
2s−

t1 ·s+
t1− · s+

t1s−
t1−s+

t1s−
t1 ·
]

+ (n + 1)
[
2s+

t1 ·s−
t1− · s−

t1s+
t1−s−

t1s+
t1 ·
]}

, (A24)

which, when inserted in Eq. (A17), gives a Lindblad
equation in the Schrödinger picture, i.e.,

ρ̇ ′
S(t) = −i[Hs, ρ ′

S(t)] + 	D[ρ ′
S(t); s−] (A25)

in terms of the dissipator

D[·; O] = n
[
2O · O†− · O†O − O†O·]

+ (n + 1)
[
2O†·O − ·OO†−OO†·] , (A26)

where O is a generic system operator.

3. Classical environment

The results presented in the previous section include
the possibility that part of the environment is made by a
classical stochastic process. To explicitly see this, we can
consider, in Eq. (A1), the replacement

HI �→ HI + H class
I , (A27)

where H class
I = sξ(t) in terms of a classical stochastic field

ξ(t) that complements the original quantum environment B
with additional classical noise. In the following, we denote
the average with respect to the underlying probability dis-
tribution of the field ξ(t) by E[·]. We further suppose the
stochastic process ξ(t) to be Gaussian (i.e., all statistical
moments depend on the second-order moment by Wick’s
theorem), to be stationary (i.e., the second-order moment
is invariant under translation in time of both its aug-
ments), and to have zero mean (i.e., E[ξ(t)] = 0). With the
replacement in Eq. (A27), all the reasoning in Appendix
A continues to hold as long as we perform the substitu-
tion TrB �→ E TrB. As a result, the correlation appearing in
Eq. (A13) takes a further contribution

C(t2, t1) �→ C(t2, t1) + Cclass(t2, t1), (A28)

where

Cclass(t2, t1) = E[ξ(t2)ξ(t1)]. (A29)

The hypothesis of stationarity for the process ξ(t) implies
that Cclass(t2, t1) = Cclass(t) for t = t2 − t1. Furthermore,
since the field ξ(t) is classical, it has trivial commutation
relations ([ξ(t2), ξ(t1)] = 0), and the correlation satisfies
the additional constraint

Cclass(t) = E[ξ(t2)ξ(t1)] = E[ξ(t1)ξ(t2)]

= Cclass(−t), (A30)

i.e., it is symmetric under time reversal.
Even more explicitly, using the same reasoning as

above, we can generalize the interaction term considered
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in Appendix A 2 with the addition of a classical stochastic
field, i.e., further generalizing Eq. (A15) using

H ′
I �→ H ′

I + H class
I . (A31)

This ultimately results in an additional term in the influ-
ence superoperator of the form

F ′ �→ F ′ + F(t, s, Cclass(t)). (A32)

4. Wick’s theorem for time-ordered superoperators

To optimize space, whenever not explicitly stated, all
traces in this section are assumed to be over the bath B.
Common derivations of Wick’s theorem (see Ref. [138],
page 243) show how to reduce n-point correlation func-
tions involving fields linear in bosonic creation and annhi-
lation operators in terms of two-point correlation func-
tions. Using the notation presented in this article, we can,
for example, write

〈X (t1) · · · X (t2N )〉 =
∑

C∈P2N

∏
(l,m)∈C

TrB [X (tl)X (tm)ρB] ,

(A33)

where 〈·〉 ≡ TrB[·ρB(0)] and where ρB(0) is a Gaus-
sian state such that TrB[X (t)ρB] = 0, and where P2N
is the collection of all possible sets (full contractions
C) whose elements are N disjoint pairs (i.e., contrac-
tions) taken from {1, . . . , 2N }. We further have that
TrB [X (t1) · · ·X (t2N+1)ρB] = 0. In this section, we show
that Wick’s theorem can also be written in terms of time-
ordered superoperators linear in the fields X (t). More
specifically, we are interested in correlations taking the
form

C2N = TrB

[
T X i1

t1 · · ·X i2N
t2N

ρB

]
, (A34)

where X 1
t [·] = X (t)· and X 2

t [·] = ·X (t). To begin, we can
write

C2N = TrB

[
X iPT(1)

tPT(1)
· · ·X iPT(2N )

tPT(2N )
ρB

]
, (A35)

where PT is a permutation of {1, . . . , 2N } such that tPT(1) ≥
· · · ≥ tPT(2N ). Now, depending on the value of their upper
indexes, the superoperators act on the left or the right of
the density matrix, so

C2N = Tr

⎡
⎣ ∏

j :iPT(j )=1

X iPT(j )
tPT(j )

∏
k:iPT(k)=2

X iPT(k)
tPT(k)

ρB

⎤
⎦

= Tr

⎡
⎣ ∏

k:iP̄T(k)=2

X (tPT(k))
∏

j :iPT(j )=1

X (tPT(j ))ρB

⎤
⎦ ,

(A36)

where we used the cyclic property of the trace to bring the
operators on the right of the density matrix back to the left.
We further note that this procedure has caused the fields
labeled by k indexes to be antiordered in time and indicate
this by the overbar in P̄T(k). It is now possible to invoke
the usual version of Wick’s theorem given in Eq. (A33). In
doing so, we obtain three different types of contraction:

(1) Contractions between indexes j (which we denote
as j1 and j2), whose contribution to Wick’s theorem
can be written as

Tr[X (tPT(j1))X (tPT(j2))ρB] = Tr[X 1
tPT(j1)

X 1
tPT(j2)

ρB]

= Tr[T X 1
tj1
X 1

tj2
ρB].

(A37)

(2) Contractions between indexes k (which we denote
as k1 and k2) whose contribution to Wick’s theorem
can be written as

Tr[X (tP̄T(k1))X (tP̄T(k2))ρB] = Tr[X 2
tPT(k1)

X 2
tPT(k2)

ρB]

= Tr[T X 2
tk1
X 2

tk2
ρB].

(A38)

(3) Contractions between indexes j and k, whose con-
tribution to Wick’s theorem can be written as

TrB[X (tP̄T(k))X (tPT(j ))ρB] = TrB[X 2
tP̄T(k)

X 1
tPT(j )

ρB]

= TrB[T X 2
tkX

1
tj ρB],

(A39)

where we note that the time-ordering is irrelevant as
the superoperators commute.

As a consequence, using Wick’s theorem for operators in
Eq. (A33) together with Eqs. (A37)–(A39), we can write

Tr
[
T X i1

t1 · · ·X i2N
t2N

ρB

]
=
∑

C∈P2N

∏
(l,m)∈C

Tr
[
T X il

tl X
im
tm ρB

]
,

(A40)

which proves Eq. (A9). Since the number of superopera-
tors present in the correlation is equal to the number of
corresponding operators, the hypothesis TrB[X (t)ρB] = 0
together with Wick’s theorem for operators allow us to also
conclude that TrB

[
T X i1

t1 · · ·X i2N+1
t2N

ρB

]
= 0.

APPENDIX B: PSEUDOMODE MODEL

In this section, we provide details for the pseudomode
model. In particular, we derive the pseudo-Schrödinger

030316-18



QUANTUM-CLASSICAL DECOMPOSITION. . . PRX QUANTUM 4, 030316 (2023)

equation in Eq. (5), which supports the main correspon-
dence presented in Eq. (4).

Following Refs. [79,80], to characterize a pseudomode
model, we proceed in two logical steps. First, we define
an open quantum system for which there exists a spe-
cific interaction operator whose correlation function can
be expressed as a sum of decaying exponentials. As a
consequence, this open quantum system can be used to
define a structured environment that simulates physical
baths whose correlation function can be expressed in such
a functional form. Second, we show that the reduced den-
sity matrix for a system interacting with this environment
can be equivalently computed by solving the pseudomode
Lindblad master equation in Eq. (5).

1. Open quantum system

We consider a model in which the system directly cou-
ples with NPM pseudomodes, each of which interacts with
its own residual environment made out of bosonic modes
as

HT = HPM + H I
PM-RE + HRE, (B1)

where

HPM = HS + Xs +
NPM∑
j =1

�j a†
j aj ,

X =
∑

j

λj Xj , (B2)

where HS is the system Hamiltonian and we consid-
ered NPM pseudomodes aj having frequency �j ∈ C.
The system-pseudomode interaction is characterized by
a generic system operator s and an interaction operator
X , where λj ∈ C and Xj = aj + a†

j . We further suppose
that each pseudomode aj is associated with an indepen-
dent residual environment made out by a collection of
bosonic modes bjk having frequency ωjk so that HRE =∑

j
∑

k ωjkb†
jkbjk. To highlight their importance, we now

describe the interaction of each pseudomode with its resid-
ual environment and the initial condition in the “pseu-
domode–residual environment” (PM-RE) space in more
detail.

(1) We assume the interaction with the j th pseudomode
to be written in following rotating-wave form:

H I ,j
PM-RE =

∑
k

gjk(aj b†
jk + a†

j bjk), (B3)

so H I
PM-RE =∑NPM

j =1 H I ,j
PM-RE.

(2) We assume the spectral density characterizing the
j th residue environment to be a constant and to be

defined for both negative and positive frequencies,
i.e.,

Jj (ω) = π
∑

k

g2
jkδ(ω − ωjk) ≡ 	j . (B4)

(3) We assume the initial state in the PM-RE space to
be

ρPM-RE(0) ∝
NPM∏
j =1

exp

×
[
−βj �j a†

j aj − βjk

∑
k

ωjkb†
jkbjk

]
, (B5)

where we omitted the factor needed to ensure
TrPM-REρPM-RE(0) = 1. To allow the invariance of
the initial state under the free dynamics in the
PM-RE space, i.e., under the Hamiltonian

H free
PM = H I

PM-RE + HRE +
NPM∑
j =1

�j a†
j aj

=
NPM∑
j =1

[
�j a†

j aj +
∑

k

ωjkb†
jkbjk

+gjk(aj b†
jk + a†

j bjk)
]

, (B6)

we consider a quantum white noise setting in which
the expectation value of the occupation of each
pseudomode is frequency independent, i.e.,

〈b†
jkbjk〉 = 〈a†

j aj 〉 = nj . (B7)

Here the expectation values are taken with respect
to Eq. (B5), which further implies the constraints

βj �j = βjkωjk = ln
1 + nj

nj
. (B8)

Using these relations, we can write Eq. (B5)
as ρPM-RE(0) ∝∏NPM

j =1 exp
[
−ln(1 + 1/nj )N

j
PM-RE

]
,

where N j
PM-RE = a†

j aj +∑k b†
jkbjk is the total num-

ber of excitations of the j th pseudomode and
its residual environment. Since the Hamiltonian
H I

PM-RE describes a rotating-wave interaction, and
there is no interaction between the pseudomodes aj ,
we have [H free

PM-RE,
∑

j N j
PM-RE] = 0, which, in turn,

implies

[H free
PM-RE, ρPM-RE(0)] = 0, (B9)

i.e., the initial state is invariant under the free PM-
RE dynamics.
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We now consider the correlation function

C(t + s, s) = TrPM-RE[X (t + s)X (s)ρPM-RE(0)], (B10)

where X (t) = U†(t)XU(t), where U(t) = e−iH free
PM t. Using

Eq. (B9), we can prove that this correlation is stationary,
i.e,

C(t + s, s) = Tr[U†(t + s)XU(t)XU(s)ρPM-RE(0)]

= Tr[U†(t)XU(t)XU(s)ρPM-RE(0)U†(s)]

= Tr[X (t)X (0)ρPM-RE(0)] := C(t), (B11)

where, for notational convenience, we omitted the labels
PM ⊗ RE under the trace operator. We now compute
C(t) explicitly by considering the Heisenberg equations of
motion

ȧj (t) = i[H free
PM , aj ] = −i

(
�j aj +

∑
k

gjkbjk

)
,

ḃjk(t) = i[H free
PM , bjk] = −i

(
gjkaj + ωjkbjk

)
(B12)

with initial conditions aj (0) and bjk(0) at t = 0. By intro-
ducing the Laplace transformation aj [s] and bjk[s] of the
operators, we can write

aj [s] = Fj [s]aj (0) − iFj [s]
∑

k

Gjk[s]bjk(0), (B13)

where

Fj [s] = 1

s + i�j +
∑

k

g2
jk

s + iωjk

= 1

s + i�j + 1
iπ

∫
dω

Jj (ω)

ω − is

= 1
s + i�j + 	j sg(t)

,

Gjk[s] = gjk

s + iωjk
, (B14)

where we used Eq. (B4) and where sg(t) = t/|t| for t �= 0.
We can now use the inverse Laplace transform to find

aj (t) = aj (0)e−i�j t−	j |t|

− i
∑

k

gjkbjk(0)

∫ t

0
dτe−i�j τ−	j |τ |e−iωjk(t−τ),

(B15)

where we used the convolution theorem. Because of the
stationarity condition in Eq. (B11), we can use the formula
above to directly compute the correlation as

C(t) = Tr[X (t)X (0)] =
∑

j

λ2
j

(
Tr[a†

j (t)aj (0)] + Tr[aj (t)a
†
j (0)]

)

=
∑

j

λ2
j

[
nj ei�j t + (nj + 1)e−i�j t] e−	j |t|. (B16)

Despite our having already reached the main goal of this section with the expression above, it is interesting to also
compute the correlation directly, i.e., without assuming (or, in our case, previously proving) translational invariance
in time. This will highlight the role of the quantum fluctuations in the residual environment so as to effectively obtain
stationarity. To do this, we write, with the help of Eq. (B15),

C(t2, t1) = Tr[X (t2)X (t1)]

=
∑

j

λ2
j

{
ei�j (t2−t1)−	j (|t2|+|t1|)Tr[a†

j (0)aj (0)] + e−i�j (t2−t1)−	j (|t2|+|t1|)Tr[a(t2)a†(t1)]
}

+
∑

j

λ2
j

∑
k

g2
jkTr[b†

jk(0)bjk(0)]
∫ t2

0
dτ̄

∫ t1

0
dτeiωjk(t2−τ̄−t1+τ)ei�j τ̄−	j |τ̄ |e−i�j τ−	j |τ |

+
∑

j

λ2
j

∑
k

g2
jkTr[bjk(0)b†

jk(0)]
∫ t2

0
dτ̄

∫ t1

0
dτeiωjk(t2−τ̄−t1+τ)ei�j τ̄−	j |τ̄ |e−i�j τ−	j |τ |. (B17)

Using Eqs. (B7) and (B5), we can write the last two two lines in Eq. (B17) as π times an integral over frequencies,
which can be evaluated, giving rise to 2πδ(τ̄ − [t2 − t1 + τ ]). This allows us to further compute one of the integrals
in time to obtain, assuming t2 > t1,
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C(t2, t1) = Tr[X (t2)X (t1)]

=
∑

j

λ2
j

{
nj ei�j (t2−t1) + (nj + 1)e−i�j (t2−t1)

}
e−	j (|t2|+|t1|)

+ 2
∑

j

λ2
j 	j

{
nj

∫ t1

0
dτei�j (t2−t1)−	j |t2−t1+τ |e−	j |τ | + (1 + nj )

∫ t1

0
dτe−i�j (t2−t1)−	j |t2−t1+τ |e−	j |τ |

}

=
∑

j

λ2
j

{
nj ei�j (t2−t1) + (nj + 1)e−i�j (t2−t1)

}
e−	j (t2−t1), (B18)

which, indeed, shows how the fluctuations in the resid-
ual bath variables are essential to generate the t2 − t1
dependence for stationarity.

2. Lindblad master equation

Here we show that the reduced system dynamics can be
computed by solving a Lindblad master equation in the S-
PM space. We do this by considering the Hamiltonian in
Eq. (B1) and by tracing the residual environment. This can
be done with use of the results in Appendix A 2, which rely
on the following correlations for the residual environment
operator B =∑j ,k gj ,kbj ,k:

CRE
1 (t2, t1) = TrB

[
B†(t2)B(t1)ρB

]

=
∑
j ,k

g2
j ,keiωk,j (t2−t1)TrB

[
b†

j ,kbj ,kρB

]

= 1
π

∑
j

∫
dωJj (ω)nj eiωt

= 2
∑

j

	j nj δ(t),

CRE
2 (t2, t1) = TrB

[
B(t2)B†(t1)ρB

]
= 2

∑
j

	j (1 + nj )δ(t), (B19)

where B(t) = eiHREtBe−iHREt and t = t2 − t1. The reduced
dynamics in the S-PM space can be obtained with use of
Eq. (A19), i.e., ρS(t) = T eF

RE(t)ρS(0). The corresponding
GRE is given by

GRE(t2, t1) =
NPM∑
j =1

2	j nj δ(t)D(aj (t2), aj (t1))

+ 2	j (1 + nj )δ(t)D(a†
j (t2), a†

j (t1)) (B20)

and the corresponding FRE is given by

FRE(t′) = −
∫ t′

0
dt2
∫ t2

0
dt1G(t2, t1)

=
NPM∑
j =1

∫ t′

0
dt2 − 	j (1 + nj )D(a†

j (t2), a†
j (t2))

− 	j nj D(aj (t2), aj (t2)), (B21)

where we defined

D(a, b)[·] = [a, b†·] − [a†, ·b], (B22)

and the Heisenberg operator aj (t) = eiHPMtaj e−iHPMt.
Going back to the Schrödinger picture, we find the dynam-
ics in the S-PM space takes the following Lindblad form:

ρ̇SPM = −i[HPM, ρSPM] + L[ρSPM], (B23)

where

L[·] =
∑

j

	j (1 + nj )
(

2aj [·]a†
j −{a†

j aj , ·}
)

+
∑

j

	j nj

(
2a†

j [·]aj − {aj a†
j , ·}
)

. (B24)

To finish this section, we show that the correlation in
Eq. (B16) can be computed with use of the influence
superoperator formalism. To do this, we consider the free
dynamics in the PM-RE space as described by the Hamilto-
nian H free

PM . The translational invariance of C(t) in Eq. (B11)
allows us to write it as

C(t) = TrPM⊗RE[XU(t)X ρPM-RE(0)U†(t)]

= TrPM[X TrRE[U(t)X ρPM-RE(0)U†(t)]], (B25)

which, in turn, allows us to use the results in Appendix A 2
with the unphysical initial condition X ρPM-RE(0). We can
then use Eq. (A19), where the influence superoperator can
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be calculated with use of steps similar to those used to get
Eq. (B21). We can then write

C(t) = TrPM[XeLPMt[X ρPM(0)]]

= TrPM[eL
†
PMt[X ]X ρPM(0)], (B26)

where ρPM(t) = TrRE[U(t)ρPM(0) ⊗ ρRE(0)U†(t)] and
LPM[·] = −i

∑NPM
j =1 [�j a†

j aj , ·] + L[·], where L†
PM is the

adjoint operator of LPM:

L†
PM[·] =

NPM∑
j =1

i[�j a†
j aj , ·] + 	j nj

(
2aj [·]a†

j −{aj a†
j , ·}
)

+ 	j (1 + nj )
(

2a†
j [·]aj − {a†

j aj , ·}
)

. (B27)

By using the identities

L†
PM[aj ] = −(i�j + 	j )aj ,

L†
PM[a†

j ] = (i�j − 	j )a
†
j , (B28)

we can write the correlation as

C(t) =
NPM∑
j =1

TrPM[eL
†
PMt[Xj ]

NPM∑
j =1

Xj ρPM(0)]

=
NPM∑
j =1

λ2
j {e(−i�j −	j )t〈aj a†

j 〉 + e(i�j −	j )t〈a†
j aj 〉}

=
NPM∑
j =1

λ2
j e−	j t (e−i�j t(nj + 1) + ei�j tnj

)
. (B29)

We note that we could have obtained the same result by
using the more general expression given by Eq. (6) in Ref.
[79], i.e.,

C(t + s, s) = TrPM{XeLt [XeLs[ρPM(0)]
]}, (B30)

where X =∑NPM
j =1 λj xj . Since the initial state is invariant

under L, i.e., eLtρPM(0) = ρPM(0), this is equivalent to
Eq. (B26).

APPENDIX C: COMPLEMENTING
PSEUDOMODES WITH CLASSICAL

STOCHASTIC FIELDS

In this section, we analyze how to replace some of the
quantum degrees of freedom in the pseudomode model
with classical stochastic fields.

We consider a modification of the pseudomode model
presented in Eq. (B1) defined by adding classical stochastic

noise to the system, i.e.,

H ξ
T = H ξ

PM + H I
PM-RE + HRE, (C1)

where H ξ
PM = HPM + sξ(t). Here the field ξ(t) is supposed

to have all the properties outlined in Appendix A 3, i.e.,
Gaussianity, stationarity, and zero mean. We then proceed
by characterizing this model following the two logical
steps already used in Appendix B, i.e., we first find the cor-
relation of the interacting operator of the model and then
describe the master equation that can be used to simulate
the reduced density matrix.

The correlation of the model in Eq. (C1) can be found by
simply considering the results provided in Appendixes B 1
and A 3. Equation (A28) tells us that the stochastic open
quantum system in Eq. (C1) has correlations given by

CPM+class = CPM + Cclass, (C2)

where

CPM(t2, t1) = TrPM-RE[XPM(t2)XPM(t1)ρPM-RE(0)]

=
NPM∑
j =1

λ2
j [(1 + nj )e−i�j t + nj ei�j t]e−	j |t|,

Cclass(t2, t1) = E[ξ(t2)ξ(t1)], (C3)

with XPM(t) =∑NPM
j =1 λj Xj (t) and where CPM is the corre-

lation of the pure pseudomode model; see Eq. (B16).
In our second step, we present a master equation to com-

pute the reduced system dynamics. To do this, we can
simply adapt the results presented in Appendix B 2 by
incorporating the action of the stochastic field into the sys-
tem, i.e., by considering HPM �→ HPM + sξ(t). This leads
to the Lindblad equation for the S-PM system:

ρ̇ξ (t) = −i[HPM + sξ(t), ρξ (t)] +
NPM∑
j =0

Dj [ρξ (t)], (C4)

where

Dj [·] = 	j [(1 + nj )(2aj · a†
j −a†

j aj · − · a†
j aj )

+ nj (2a†
j · aj − aj a†

j · − · aj a†
j )]. (C5)

Each Lindblad operator Dj acts only on the j th pseu-
domode’s space. The reduced system dynamics can be
computed by tracing the pseudomodes and averaging over
the stochastic noise, i.e.,

ρS(t) = E
[
TrPM[ρξ (t)]

]
. (C6)

In practice, it might not be possible to compute this
exact average over the stochastic field. In these cases, the
equation above must be replaced with an empirical average
as
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ρ
ξ

S (t; Nstoch) = 1
Nstoch

Nstoch∑
j =1

TrPM[ρξj (t)], (C7)

where ξj (t) indicates one of the Nstoch realizations of the
stochastic process. This highlights the fact that to take
advantage of this formalism, the resulting density matrix
is now a random variable. In turn, this means that, on
top of the deterministic sources of error due to poten-
tial imprecision in modeling the correlation of the origi-
nal environment, here we also need to take into account
further uncertainties due to the statistical properties of
the stochastic variable ρ

ξ

S (t; Nstoch). The analysis of these
deterministic and stochastic errors is the focus of the next
section.

1. Error analysis

It is important to note that by replacing the exact aver-
age in Eq. (C6) with the “empirical” one in Eq. (C7), we
are effectively introducing a potential error in the model.
Intuitively, we can divide the sources of imprecision in the
pseudomode model into two classes. One is a “bias” due to
errors in approximating the correlation of the original envi-
ronment C(t) with CPM in Eq. (C2). The second source of
error is due to the stochastic nature of Eq. (C7). In the fol-
lowing we estimate more precisely the combined effects of
these two error contributions.

To be more specific, we consider physical quanti-
ties in the form of the empirical average Oξ (t; Nstoch) =
TrS

[
Oρ

ξ

S (t; Nstoch)
]

for a generic system operator O and

we can further define Oξ (t) ≡ Oξ (t; 1). Using Eq. (C7), we
can further write

Oξ (t; Nstoch) = 1
Nstoch

Nstoch∑
j =1

TrS

[
Oρ

ξj
S (t)

]
, (C8)

which better highlights its nature of stochastic variable,
where we defined ρ

ξj
S (t) = TrPM[ρξj (t)]. Its expectation

value is given by

O(t) = E[Oξ (t; Nstoch)] ≡ E[Oξ (t)], (C9)

which is the stochastic-error-free estimate of the true
expectation value Otrue(t) and is affected only by the bias
error in reproducing the original correlation function. This
can be quantified more explicitly by defining the following
measure for the total error:

�O(t) = E[|Oξ (t; Nstoch) − Otrue(t)|], (C10)

which with use of the triangle inequality takes the form

�O(t) ≤ �stochO(t) + �biasO(t), (C11)

where

�stochO(t) = E[|Oξ (t; Nstoch) − O(t)|],
�biasO(t) = |O(t) − Otrue(t)|. (C12)

In the following, we analyze these two sources of error
separately.

a. Bias

The bias error is due to the inaccuracy in reconstruct-
ing the original correlation function, i.e., it depends on the
difference �C(t) = C(t) − CPM+class, where C(t) is the cor-
relation of the original environment and CPM+class is the
pseudomode model correlation in Eq. (C2). While this
bias can, in principle, originate from both classical and
quantum pseudomode contributions, the classical part can
usually be defined to achieve any accuracy by increas-
ing the number of modes in the spectral expansion of the
stochastic fields. As a consequence, the bias error is usu-
ally dominated by the functional form of the pseudomode
correlation as a finite sum of decaying exponentials; see
Eq. (C3).

To estimate the bias, we closely follow Ref. [77] and re-
present the derivation of one of its results. We do this for
self-consistency and to explicitly avoid using any reference
to path-integral techniques. We start by interpreting O(t)
in Eq. (C9) as obtained by tracing over an environment
made out of the tensor product of the original bath B and an
auxiliary “error bath” Berr. This auxiliary bath is supposed
to be Gaussian and to have correlations given by Cerr(t) =
CPM+class(t) − C(t). This allows us to consider S′ = S + B
(system plus original bath) as a new system and use the
results in Appendix A. We have

�biasO(t) = |TrS′O(t)T e�Fρ(0) − TrS′T O(t)ρ(0)|,
(C13)

where O(t) = eiHtOe−iHt with the Hamiltonian defined in
Eq. (1) in the S + B space, and where �F = F [t, s, Cerr(t)]
is the result of tracing out Berr using the definition in
Eq. (A12). Here ρ(0) = ρS(0)ρB; see the definitions in
Sec. I. By expanding the exponential and by the triangle
inequality, we get

�biasO(t) =
∣∣∣∣∣

∞∑
n=1

1
n!

TrS′O(t)T (�F)nρ(0)

∣∣∣∣∣

≤
∞∑

n=1

1
n!

|TrS′O(t)T (�F)nρ(0)|. (C14)

Using Eq. (A12), we can write �F as

�F =
∫ t

0
dt2
∫ t2

0
dt1

4∑
j =1

(�C)j
ˆ̂sj , (C15)
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where, explicitly, (�C)j = Cerr(t2 − t1)(δj 1 + δj 2) − Cerr(t1 − t2)(δj 3 + δj 4) and where ˆ̂s1[·] = s(t1)[·]s(t2), ˆ̂s2[·] =
−[·]s(t2)s(t1), ˆ̂s3[·] = s(t1)s(t2)[·], and ˆ̂s4[·] = −s(t2)[·]s(t1). This leads to

�biasO(t) ≤
∞∑

n=1

1
n!

∑
j1,...jn

(∫ t

0
dt2
∫ t2

0
dt1

)n

|TrS′O(t)T (�C)j1 · · · (�C)jn
ˆ̂sj1 · · · ˆ̂sjnρ(0)|

≤
∞∑

n=1

1
n!

∑
j1,...jn

(∫ t

0
dt2
∫ t2

0
dt1

)n

|(�C)j1 | · · · |(�C)jn | |TrS′O(t)T ˆ̂sj1 · · · ˆ̂sjnρ(0)|

≤
∞∑

n=1

1
n!

∑
j1,...jn

(∫ t

0
dt2
∫ t2

0
dt1

)n

|(�C)j1 | · · · |(�C)jn | ||O(t)T ˆ̂sj1 · · · ˆ̂sjnρ(0)||1, (C16)

in which we used an abuse of notation in labeling time dependencies to achieve a leaner notation and where we used
the fact that the trace norm || · ||1 does not increase under a partial trace; see Eq. (17) in Ref. [139] and Appendix C 1 c.
We now act with the time ordering so that all the superoperators ˆ̂s are correctly ordered. We then note that each term
ˆ̂sj1 · · · ˆ̂sjnρ(0) involves 2n operators s(t), some of which will be placed before and some of which will be placed after
ρ(0). We can then use Eq. (C37) multiple times to write

�biasO(t) ≤
∞∑

n=1

1
n!

∑
j1,...jn

(∫ t

0
dt2
∫ t2

0
dt1

)n

|(�C)j1 | · · · |(�C)jn | ||O||∞||s||2n
∞||ρ(0)||1

= ||O||∞
∞∑

n=1

||s||2n
∞

n!

⎛
⎝
∫ t

0
dt2
∫ t2

0
dt1|

∑
j

(�C)j |
⎞
⎠

n

= ||O||∞
∞∑

n=1

4n||s||2n
∞

n!

(∫ t

0
dt2
∫ t2

0
dt1|Cerr(t2, t1)|

)n

= ||O||∞
{

exp
[

4||s||∞
∫ t

0
dt2
∫ t2

0
dt1|Cerr(t2, t1)|

]
− 1
}

; (C17)

see Eq. (6) in Ref. [77]. Here we used the fact that Schatten norms are unitarily invariant, ||ρ(0)||1 = 1, and the fact that
each �Cj takes the form given in Eq. (3) so that |�Cj | = |Cerr(t2, t1)|.

b. Stochastic error

In this subsection, we consider the stochastic error

�stochO(t) = E[|Oξ (t; Nstoch) − E[Oξ (t)]|]. (C18)

Unfortunately, it is not possible to analyze this uncertainty using the same techniques as used in the previous section.
We cannot directly consider the influence superoperator in the context of the “empirical” average equation (C7) of the
stochastic noise since, in this case, Wick’s theorem holds only on average. For this reason, we need to take one step further
back to Eq. (A7) to write

�stochO = E

⎡
⎣
∣∣∣∣∣∣

∞∑
n=0

(−i)n

n!

∫ t

0
dt1 · · ·

∫ t

0
dtn

⎛
⎝ 1

Nstoch

Nstoch∑
j =1

ξ
j
t1 · · · ξ j

tn − E[ξt1 · · · ξtn]

⎞
⎠TrS′′

[
O(t)T s×

t1 · · · s×
tnρS(0)

]∣∣∣∣∣∣

⎤
⎦

≤ E

⎡
⎣ ∞∑

n=0

1
n!

∫ t

0
dt1 · · ·

∫ t

0
dtn

∣∣∣∣∣∣
1

Nstoch

Nstoch∑
j =1

ξ
j
t1 · · · ξ j

tn − E[ξt1 · · · ξtn]

∣∣∣∣∣∣
∣∣∣TrS′′

[
O(t)T s×

t1 · · · s×
tnρS(0)

]∣∣∣
⎤
⎦

≤
∞∑

n=0

1
n!

∫ t

0
dt1 · · ·

∫ t

0
dtn

√√√√√E

∣∣∣∣∣∣
1

Nstoch

Nstoch∑
j =1

ξ
j
t1 · · · ξ j

tn − E[ξt1 · · · ξtn]

∣∣∣∣∣∣
2 ∣∣∣TrS′′

[
O(t)T s×

t1 · · · s×
tnρS(0)

]∣∣∣ , (C19)
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where we omitted the time dependence on the left-hand
side and where S′′ is the composition of the system S and
the deterministic pseudomode open quantum system. We
also used the inequality E[|X |] ≤

√
E[|X |2]. This result

shows us that the stochastic error depends on the average
of the difference between the empirical moments and the
true moments. To obtain a more direct bound, we now pro-
ceed using rather aggressive inequalities, which will limit
the result to short times. To start, we write

E

∣∣∣∣∣∣
1

Nstoch

Nstoch∑
j =1

ξ
j
t1 · · · ξ j

tn − E[ξt1 · · · ξtn]

∣∣∣∣∣∣
2

= 1
N 2

noise
E

⎡
⎣∑

j ,k

ξ
j
t1 · · · ξ j

tnξ
k
t1 · · · ξ k

tn

⎤
⎦− ∣∣E[ξt1 · · · ξtn]

∣∣2 ,

(C20)

and we note that contributions of Wick’s theorem to the
first term in which k and j fields are never contracted will
end up simplifying with the term |E[ξt1 · · · ξtn]|2 (also con-
sidering that for odd n the expectation value E[ξt1 · · · ξtn]
is just zero). We are then left with contributions in which
at least one contraction happens between k and j fields,
which generates a δjk and is consequently proportional to
1/Nstoch, which already allows us to conclude that

�stochO(t) = O
(

1√
Nstoch

)
. (C21)

Furthermore, each of the resulting correlation terms aris-
ing from the contractions considered above can be upper
bounded by Cmax

class = maxt′∈[0,t] C̃class(t′), where we used the
definition in Eq. (C71). We note that for real correlations
Cclass(t′) ∈ R, we have Cmax

class = maxt′∈[0,t] Cclass(t′). With
these definitions, we can write

�stochO ≤ ||O||∞√
Nstoch

∞∑
n=1

√
(2n − 1)!!(2||s||∞t

√
Cmax

class)
n

n!

≤ ||O||∞√
Nstoch

F(||s||∞t
√

2Cmax
class), (C22)

where we omitted the time dependence on the left-hand
side and in terms of the function

F(x) =
∞∑

n=1

√
(2n)!
(n!)3 xn, (C23)

which is subexponential in the asymptotic limit, and where
we used the same techniques as in Sec. C 1 a to analyze
the term

∣∣TrS′′
[
O(t)T s×

t1 · · · s×
tnρS(0)

]∣∣ and also considered
that (2n − 1)!! = (2n)!/(2nn!) overestimates the number

of contractions when n is even. The practical applicabil-
ity of this expression is limited within a timescale given
by 1/(||s||∞

√
2Cmax

class). Whenever this expression does not
give a useful bound, it is always possible to compute an
empirical variance following the bound

�2
stochO(t) ≤ E[

∣∣Oξ (t; Nstoch) − E[Oξ (t)]
∣∣2]

= E{[Oξ (t; Nstoch)]2} − E
2[Oξ (t; Nstoch)],

(C24)

where we used the inequality E2[|X |] ≤ E[|X |2] and the
fact that E[Oξ (t)]|2] is the expectation value of the random
variable Oξ (t; Nstoch), which can be directly checked using
the definition in Eq. (C8).

In abstract terms, given a random variable X having
finite expectation value μX = E[X ] and finite variance
σ 2

X = E[X 2] − E2[X ], it is possible to estimate μX by
making a single extraction of the empirical average ran-
dom variable

Y = 1
N

N∑
k=1

Xk. (C25)

E[Y] = μX and

σ 2
Y = E[Y2] − E

2[Y]

= 1
N 2

∑
k,k̄

E[XkXk̄] − μ2
X

= NE[X 2] + (N 2 − N )E2[X ]
N 2 − μ2

X

= E[X 2] − E2[X ]
N

= σ 2
X

N
. (C26)

For large N , a single extraction of Y gives a good approx-
imation to μX . The variance σ 2

X can instead be estimated
by a single extraction of the random variable

Z = 1
N

∑
k

X 2
k −

(
1
N

∑
k

Xk

)2

. (C27)

E[Z] = 1
N

∑
k

E[X 2
k ] − 1

N 2

∑
k,k̄

E[XkXk̄]

= 1
N

∑
k

E[X 2
k ] − 1

N
E[X 2] − N 2 − N

N 2 E
2[X ]

=
(

1 − 1
N

)
(E[X 2] − E

2[X ])

=
(

1 − 1
N

)
σ 2

X . (C28)
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The variance σ 2
Z of Z depends on the higher momentum of

the variable X and goes to zero as N → ∞. This can be
proven without computing all terms explicitly. We have

E[Z2] = 1
N 2

∑
kk̄

E[X 2
k X 2

k̄ ] + 1
N 4

∑
kk̄ll̄

E[XkXk̄XlXl̄]

− 2
N 3

∑
kll̄

E[X 2
k XlXl̄]. (C29)

The leading order in this expression (constant in N )
is obtained when all the labels of the stochastic vari-
ables are different from each other. Such a term can be
directly computed and it is equal to E2[X 2] + E4[X ] −
2E[X 2]E2[X ] = σ 4

X = E2[Z], where the last equality does
not take into account terms O(1/N ). The remaining terms
are of higher order in 1/N and depend on higher momen-
tum of the random variable X . Supposing these momenta
are finite, we then obtain the result that

σ 2
Z = E[Z2] − E

2[Z] = O
(

1
N

)
. (C30)

To resume, these results show that a single extraction of the
variables Y and Z can be used to estimate the expectation
value and variance of the variable X .

In our case, we can identify X �→ Oξ (t) ≡ Oξ (t; 1) and
Y �→ Oξ (t; Nstoch), which leads to

�2
stochO(t) ≤

σ 2
Oξ (t)

Nstoch
= E[Z]

Nstoch
+ O

(
1

N 2
noise

)
. (C31)

where we used Eq. (C28) to relate the right-hand
side to the expectation value of Z �→ 1

N

∑
k[Oξ (t)k]2 −

( 1
N

∑
k Oξ (t)k)

2, which can be estimated numerically. By
Chebyshev’s inequality, the probability that Z is kσZ dis-
tant from the expectation value E[Z] is less than 1/k2.
Because of Eq. (C30), this implies that

�2
stochOs(t) ≤ Z̃

Nstoch
+ O

(
1

N 3/2
noise

)
, (C32)

with probability almost 1. Here Z̃ is a single realization of
the random variable Z.

To finish, it is instructive to explicitly compute the first
terms in Eq. (C19) under the same considerations as below
that expression. At second order, we have

�2
stochO(t) ≤ ||O||∞[μ1(t) + μ2(t)], (C33)

where

μ1(t) = 2||s||∞
∫ t

0
dt1

√√√√ 1
N 2

noise

∑
j ,k

E[ξ̄ j
t1ξ

k
t1 ] − |E[ξt1 ]|2

= 2||s||∞
√

C̃class(0)t
√

Nstoch
,

μ2(t) = 4||s||2∞
2!

∫ t

0
dt1
∫ t

0
dt2

√√√√ 1
N 2

noise

∑
j ,k

E[ξ j
t2ξ

j
t1ξ

k
t2ξ

k
t1 ] − |E[ξt1ξt2]|2

= 2||s||2∞√
Nstoch

∫ t

0
dt1
∫ t

0
dt2
√

C̃2
class(0) + C̃2

class(t2 − t1). (C34)

c. Some properties of the trace norm

In this section, we report two important properties of the
trace norm. To begin, we start by defining the Schatten p-
norm as

||A||p =
⎛
⎝

NA∑
j =1

|σ p
j (A)|

⎞
⎠

1/p

, (C35)

where A : RNA → RNA , NA ∈ N, NA > 0. Here σj (A) is
the j th singular value of A, i.e., the j th eigenvalue of the
operator |A| = (A†A)1/2. We further denote

||A||∞ = max
j

σj (A). (C36)

In our case, to apply this formalism, we consider a regu-
larization of the total Hilbert space (for example, by trun-
cating the number and dimension of all harmonic Hilbert
spaces).
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Given these definitions, we first state the Hölder inequal-
ity for Schatten norms [see Ref. [140], Eq. (IV.42), page
95], which reads

||AB||1 ≤ ||A||p ||B||q, (C37)

where A and B are generic operators, where p , q ∈ N

(p , q ≥ 1), with 1/p + 1/q = 1, and where || · ||p is the
Schatten p-norm.

For self-consistency and for better relation to the present
content, we now also report the proof given in Ref. [139]
showing that the trace norm does not increase under the
partial trace. Following Ref. [139], we define an operator
Q acting on a Hilbert space HA ⊗ HB of dimension nAnB.
We consider the partial trace with respect to B, i.e., QA =
TrB[Q]. We further consider an orthonormal basis |ei〉A and
|fα〉B with i = 0, . . . , nA − 1 and α = 0, . . . , nB − 1. Using
these definitions, we can write the operator Q as

Q =
nB−1∑
α,β=0

nA−1∑
i,j =0

|ei〉
〈
ej
∣∣Qαβ

ij |fα〉 〈fβ∣∣ (C38)

in terms of Qαβ
ij ∈ C. We now define the following gener-

alization X and Z of the Pauli operators acting on the space
B:

Z |fα〉 = e2π iα/nB |fα〉 ,

X |fα〉 = |fα+1〉 , (C39)

where the “closed boundary conditions”
∣∣fnA

〉 = |f0〉 are
intended. Taking the conjugate of the definitions above, we
get 〈fα| (Z†Z)

∣∣fβ 〉 = 〈fα| (X †X )
∣∣fβ 〉 = δαβ , impliying that

both X and Z are unitary. We also have

Z(Q) := 1
nB

nB−1∑
η=0

(IA ⊗ Zη)Q(IA ⊗ Zη)†

=
nB−1∑
η=0

nB−1∑
α,β=0

nA−1∑
i,j =0

e2π iη(α−β)/nB

nB

× |ei〉
〈
ej
∣∣Qαβ

ij |fα〉 〈fβ∣∣

=
nB−1∑
α,β=0

nA−1∑
i,j =0

|ei〉
〈
ej
∣∣Qαβ

ij δαβ |fα〉 〈fβ∣∣ (C40)

and

X (Z(Q)) :=
nB−1∑
η=0

(IA ⊗ X η)Z(Q)(IA ⊗ X η)†

=
nB−1∑
η=0

nB−1∑
α,β=0

nA−1∑
i,j =0

〈
ej
∣∣Qαβ

ij δαβ

∣∣fα+η

〉

× |ei〉
〈
fβ+η

∣∣

=
nB−1∑
α=0

nA−1∑
i,j =0

|ei〉
〈
ej
∣∣∑

α

Qαα
ij IB

= TrB(Q) ⊗ IB. (C41)

At the same time, we also have

X (Z(Q)) = 1
nB

nB−1∑
η,η′=0

(IA ⊗ X η′
Zη)Q(IA ⊗ Zη†X η′†)

= 1
nB

nB−1∑
η,η′=0

(IA ⊗ X η′
Zη)Q(IA ⊗ X η′

Zη)†.

(C42)

Taking the norm of Eqs. (C41) and (C42), and considering
that X and Z are unitary, we get

||TrB(Q) ⊗ IB||p ≤ n2
B

nB
||Q||p = nB||Q||p . (C43)

At the same time, the singular values of TrB(Q) ⊗ IB are
nB degenerate, which gives

||TrB(Q) ⊗ IB||p =
⎡
⎣nB

∑
j

σ
p
j (TrB(Q))

⎤
⎦

1/p

= n1/p
B ||TrB(Q)||p . (C44)

Together, Eqs. (C43) and (C44) imply

n1/p
B ||TrB(Q)||p ≤ nB||Q||p , (C45)

which leads to

||TrB(Q)||p ≤ n(p−1)/p
B ||Q||p , (C46)

so for p = 1,

||TrB(Q)||1 ≤ ||Q||1. (C47)
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2. Spectral representation of classical correlations

In this section, we introduce a spectral representation to
define a stationary Gaussian stochastic field ξ(t) character-
ized by a vanishing mean and by a symmetric correlation
function C(t′). To add extra clarity, we use t to denote times
within the domain t ∈ [0, T], while we use a prime sym-
bol to denote variables that can be written as the difference
between two times, which implies t′ ∈ [−T, T].

Our main goal is to define the field ξ(t) in such a way to
satisfy E[ξ(t)] = 0 and E[ξ(t2)ξ(t1)] = C(t2 − t1), where
C(−t′) = C(t′).

Since we are interested in simulating the dynamics of
a system for times within the domain [0, T], we take
advantage of the structure of L2(−T, T) functional spaces
(characterizing the domain of the difference between two
times, i.e., t′ = t2 − t1 ∈ [−T, T]) by defining the inner
product 〈f , g〉T between two functions f , g : [−T, T] → C

as

〈f , g〉T = 1
2T

∫ T

−T
dτ f̄ (τ )g(τ ), (C48)

where the overbar denotes complex conjugation. In this
space, we can define the orthonormal basis φn(t′) = einπ t′/T

that fulfills

〈φn, φm〉T = δn,m, (C49)

and it has the property that

φn(t2 − t1) = φn(t2)φ−n(t1). (C50)

With this formalism at hand, a stationary correlation can
be decomposed as

C(t′) =
∞∑

n=−∞
cnφn(t′), (C51)

where cn = 〈φn, C〉T. The symmetry C(t′) = C(−t′),
together with φn(−t′) = φ−n(t′), implies the constraint
c−n = cn, which simply reflects the fact that the function
C(t′) can be expanded with use of cosine functions and
that

cn = 1
2T

∫ T

−T
dτ cos(nπτ/T)C(t). (C52)

Using Eq. (C50), we can further write

C(t2 − t1) =
∞∑

n=−∞
cnφn(t2)φ−n(t1)

=
∞∑

n,m=−∞
φm(t2)Cmnφn(t1), (C53)

where Cmn = cmδn,−m. This matrix is symmetric because of
the constraint c−n = cn and hence we can diagonalize it as

Cmn =
∞∑

j =−∞
Omj dj Ojn, (C54)

where Omj is the (possibly complex) orthogonal matrix
made out of the mth element of the j th eigenvector with
eigenvalue dj of the matrix Cmn. In this case, the eigenvec-
tors are just trigonometric functions that can be expressed
as

Omj = δj 0δm0 + θ(j )[δj ,m + δj ,−m]/
√

2

− θ(−j )[δj ,m − δj ,−m]/
√

2, (C55)

corresponding to the eigenvalues

dj = δj 0c0 + cj [θ(j ) − θ(−j )], (C56)

where θ(x) = 1 for x > 0 and θ(x) = 0 otherwise. We note
that the sign in front of the eigenvectors in Eq. (C55) can
be chosen arbitrarily. As we will see later, the minus sign
in the second line in Eq. (C55) is designed to allow a
cleaner expression for the fields. Plugging Eq. (C54) into
Eq. (C53), we can write

C(t2 − t1) =
∞∑

n,m,j =−∞
φm(t2)Omj dj Ojnφn(t1)

=
∞∑

j =−∞
φC

j (t2)dj φ
C
j (t1), (C57)

where

φC
j (t) =

∞∑
n=−∞

Ojnφn(t)

= δj 0 +
√

2[θ(j ) cos(nπ t/T) + θ(−j )i sin(nπ t/T)].
(C58)

We explicitly note that the last line in the above equation
holds only when the eigenvectors can be organized in a,
possibly complex, orthogonal matrix, which is a conse-
quence of the symmetry under time reversal of the original
correlation. This is a manifestation of the fact that the con-
struction shown here is prevented for “nonclassical” cor-
relations, i.e., correlations that are not symmetric under
time reversal. Using Eqs. (C56) and (C58) in Eq. (C57),
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we can further be more explicit and write

C(t2 − t1) = c0 + 2
∞∑

n=1

cn[cos(nπ t2/T) cos(nπ t1/T)

− i2 sin(nπ t2/T) sin(nπ t1/T)]

= c0 + 2
∞∑

n=1

cn[cos(nπ t2/T) cos(nπ t1/T)

+ sin(nπ t2/T) sin(nπ t1/T)], (C59)

whose correctness can be directly checked by noting that
Eq. (C51) can be written as

C(t′) = c0 + 2
∞∑

n=1

cn cos[nπ(t2 − t1)/T], (C60)

which, indeed, corresponds to Eq. (C59) by use of
the trigonometric identity cos(α − β) = cos(α) cos(β) +
sin(α) sin(β). As already noted above, the whole construc-
tion of this section would be prevented if the correlation
has a term proportional to a sine function as the analogue of
the trigonometric identity above contains nonfactorizable
products of cosines and sines.

We are now in a position to finally define the stochastic
variable ξ(t) as the following spectral representation:

ξ(t) =
∞∑

j =−∞
ξj
√

dj φ
C
j (t), (C61)

where ξj ∈ N (0, 1) are independent Gaussian variables
with unit variance and zero mean. This immediately
implies that E[ξ(t)] = 0. Furthermore, we can use
Eq. (C57) to show that

E[ξ(t2)ξ(t1)] =
∑
j ,j ′

E[ξj ξj ′]
√

dj dj ′�C
j (t2)�C

j ′(t1)

=
∑

j

dj �
C
j (t2)�C

j (t1)

= C(t2 − t1). (C62)

Using Eqs. (C56) and (C58) in Eq. (C61), we can write the
fields in the following more explicit form:

ξ(t) = √
c0ξ0 +

∞∑
n=1

√
2cn[ξn cos(nπ t/T)

+ ξ−n sin(nπ t/T)]. (C63)

Here we note that the plus sign in front of the sine is due
to our previous sign choice in Eq. (C55). We can further

check explicitly that these fields indeed have the correct
statistics by writing

E[ξ(t2)ξ(t1)] = c0 + 2
∞∑

n=1

cn[cos(nπ t2/T) cos(nπ t1/T)

+ sin(nπ t2/T) sin(nπ t1/T)]

= c0 + 2
∞∑

n=1

cn cos[nπ(t2 − t1)/T], (C64)

where we again used the identity cos(α − β) = cos(α)

cos(β) + sin(α) sin(β). It is interesting to note that the
presence of antisymmetric functions (the sines) in the
definition of the field ξ(t) is essential in reproducing the
stationarity of the symmetric correlation C(t′).

As an example, we compute the spectral representation
above for terms in the correlations taking the form of a
symmetric exponential, i.e.,

Cdecay(t2 − t1) = α2eω|t2−t1|, (C65)

in terms of the frequencylike parameter ω ∈ C. Here the
superscript “decay” indicates that, usually, correlations of
this kind are used to model purely decaying contribu-
tions such as the Matsubara ones (for ω ∈ R and ω < 0).
However, they can also be used to model resonant effects
through cos(ωt) = (eiω|t| + e−iω|t|)/2). By using Eq. (C52),
we find

cdecay
n = 1

2T

∫ T

−T
dτ eωτ cos

(nπτ

T

)
= Ln(ω) (C66)

in terms of the function

Ln(ω) = (eωTeinπ − 1)
ωT

(ωT)2 + (nπ)2 . (C67)

It is interesting to finish this section with an analysis of the
first two moments of the empirical expectation value for
the correlation, i.e., the random variable

Cemp
class(t2, t1) = 1/Nstoch

∑
j

ξj (t2)ξj (t1), (C68)

which constitutes an estimate of the true average in
Eq. (C62) by averaging over Nstoch independent realiza-
tions of the noise ξj (t), j = 1, . . . , Nstoch. The expectation
value is simply the expected value of the correlation

E[Cemp
class(t2, t1)] = 1

Nstoch

∑
j

E[ξj (t2)ξj (t1)]

= Cclass(t2 − t1), (C69)
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while the variance is given by

σ 2
emp = E

[∣∣Cemp
class(t2, t1) − E[Cemp

class(t2, t1)]
∣∣2]

= E[|Cemp
class(t2, t1)|2] − |Cclass(t2, t1)|2

= 1
N 2

ξ

∑
j ,k

E[ξ̄j (t2)ξ̄j (t1)ξk(t2)ξk(t1)]

− |Cclass(t2, t1)|2

= 1
N 2

ξ

∑
j ,k

{E[ξ̄j (t2)ξ̄j (t1)]E[ξk(t2)ξk(t1)]

+ E[ξ̄j (t2)ξk(t2)]E[ξ̄j (t1)ξk(t2)]

+ E[ξ̄j (t2)ξk(t1)]E[ξ̄j (t1)ξk(t2)]}
− |Cclass(t2, t1)|2

= [|C̃(0)|2 + |C̃(t2 − t1)|2]/Nstoch, (C70)

where we used Wick’s theorem and the real version of the
correlation C(t) can be defined as

C̃(t) = E[ξ̄ (t2)ξ(t1)]

= |c0| + 2
∞∑

n=1

|cn| cos(nπ t/T), (C71)

where we used Eq. (C63). Using Eq. (C60), we finally find

σ 2
emp ≤ [|Cclass(0)|2 + |Cclass(t2 − t1)|2]/Nstoch. (C72)

APPENDIX D: A CLASS OF RATIONAL
SPECTRAL DENSITIES

To be more specific, we now study this decomposition
for a subclass M of spectral densities that are real and
asymmetric on the real axis and meromorphic in the overall
complex plane. We further suppose all 2Np > 1 poles (we
later show this number needs to be even and suppose there
is at least one such couple) to be simple (and not located
on the real axis) apart from a pole of order N∞ < 2Np at
infinity. We now consider three basic facts about functions
in M:

(1) The poles of J (ω) ∈ M come in complex-conjugate
pairs having complex-conjugate residues. To show
this, we consider a region D that contains all the
poles. The Schwarz reflection principle tells us that
J (ω̄) = J̄ (ω) for ω ∈ D. For any pole ωk in the
upper (or lower) complex plane C, we can write the
Laurent series J (ω) =∑∞

j =−∞ aj (ω − ωk)
j , where

a−1 represents the residue at ωk. With use of
the Schwarz reflection principle, this implies that
J (ω) =∑∞

j =−∞ āj (ω − ω̄k)
j , i.e., the point ω̄k is

also a pole whose residue is the complex con-
jugate of the one evaluated at ωk. This immedi-
ately implies that the number of poles is even,
i.e., it can be written as 2Np . In the following we
use the notation (ωk, ω−k) to denote the complex-
conjugate pairs of poles, i.e., ω−k = ω̄k. We will
further use k > 0 (k < 0) to denote poles in the
upper (lower) complex plane so that the full set of
poles can be written as {ωk} for k ∈ Z

0
Np

, where
Z

0
Np

= {−Np , . . . , −1, 1, . . . , Np} and where all ωk

are distinct.
(2) Since J (ω) is meromorphic with single poles

located in the finite complex plane,
∏

k∈Z
0
Np

(ω −
ωk)J (ω) is analytical in C and it has a pole of order
N∞ at infinity. This implies that such a function is
an N∞-order polynomial p(ω), so

J (ω) = p(ω)∏
k∈Z

0
Np

(ω − ωk)
. (D1)

Imposing J (ω) ∈ R for ω ∈ R implies that all coef-
ficients in the polynomial p are real, i.e., p̄(ω) =
p(ω̄) (since the roots ωk appearing in the denom-
inator come in complex-conjugate pairs). It is
now possible to write this expression in terms
of a sum of rational functions with polynomials
of degree 1 in the denominator. To see this, we
note that 1/

∏
k(ω − ωk) =∑j κvj /

∏
k �=j (ω − ωk),

where
∑

k vk = 0 and κ = −1/
∑

k(vkωk). By pro-
ceeding iteratively in this way, we find a decomposi-
tion of the kind 1/

∏
k(ω − ωk) =∑k ck/(ω − ωk)

in terms of some coefficients ck ∈ C. Ultimately this
leads to

J (ω) = p(ω)
∑

k∈Z
0
Np

ck

(ω − ωk)
. (D2)

This expression also allows us to find a more explicit
expression for the coefficients ck. The residue at any
of the points ωk can be computed both from Eq. (D2)
as p(ωk)ck and from Eq. (D1) as p(ωk)/

∏
j �=k(ωk −

ωj ). Equating these two results, we find that ck =
1/
∏

j �=k(ωk − ωj ). Furthermore, the residue at ωk
explicitly reads

Rk ≡ Res[J (ω); ωk]

= p(ωk)/
∏
j �=k

(ωk − ωj ), (D3)
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so

R−k = Res[J (ω); ω−k]

= p(ω̄k)∏
j �=−k

(ω̄k − ωj )

= p(ω̄k)

(ω̄k − ωk)
∏

j �=−k,k

(ω̄k − ω̄j )

= R̄k, (D4)

checking explicitly what was proved in (1) and
where we used the fact that all poles come in
complex-conjugate pairs.

(3) The antisymmetry hypothesis on J (ω) imposes fur-
ther constraints on the set of poles {ωk} and on
the polynomial p(ω). Because of antisymmetry, we
need to require

J (ω) = J (ω) − J (−ω)

2

= p(ω)

2
∏

k

(ω − ωk)
− p(−ω)

2
∏

k

(−ω − ωk)
. (D5)

To continue, we can distinguish between two kinds
of pole. For imaginary ωk, both denominators con-
tain the same ω2 + |ωk|2 factor. For general com-
plex poles ωk, we can apply a greatest common
divisor to show that in Eq. (D1) for an antisym-
metric spectral density the poles come either in
complex-conjugate pairs (if ωk is purely imaginary)
or in quadruples (ωk and −ωk and their conjugate
pairs, see Fig. 9). Furthermore, the polynomial p(x)
must be antisymmetric.
This has immediate implications in the expression
for the residues when the poles come in quadru-
ples. To show this, we denote by k̃ the label such
that ωk̃ = −ω−k = −ω̄k so that k̃ has the same
sign as k and so that the quadruples of poles are
(ωk, ω−k, ωk̃, ω

(̃−k)). We have

Rk̃ = Res[J (ω); ωk̃]

= p(−ω̄k)∏
j �=k̄

(−ω̄k − ωj )

=
p(−ω̄k)

⎡
⎣ ∏

j �=k̄,k,−k,(̃−k)

(−ω̄k − ω̄j )

⎤
⎦

−1

(−ω̄k − ωk)(−ω̄k + ωk)(−ω̄k − ω̄k)

FIG. 9. The poles of the spectral densities considered in this
section come either in quadruples (ωk, ω̄k, −ωk, −ω̄k), repre-
sented in blue, or in couples (ωk, ω̄k), represented in red.

=
p(ω̄k)

⎡
⎣ ∏

j �=k̄,k,−k,(̃−k)

(ω̄k + ω̄j )

⎤
⎦

−1

(ω̄k + ωk)(ω̄k − ωk)(ω̄k + ω̄k)

=
p(ω̄k)

⎡
⎣ ∏

j �=k̄,k,−k,(̃−k)

(ω̄k − ω̄j )

⎤
⎦

−1

(ω̄k + ωk)(ω̄k − ωk)(ω̄k + ω̄k)

= R−k

= R̄k, (D6)

where we used the fact that an even number of labels j
is present and that, given the symmetries of the poles, a
change in sign in all ωj is just formal.

A similar proof holds to show that the residues of
poles coming in conjugate pairs (ωki , ω−ki) are real. We
have

Rki = Res[J (ω); ωki]

= p(ωki)

(ωki − ω̄ki)
∏

k �=±ki

(ωki − ωk)
, (D7)

where p(ωki)/(ωki − ω̄ki) is real by the antisymmetry of
p and the fact that ωki is imaginary. The remaining
roots k �= ki come either in couples or in quadruples.
In both cases (ωki − ωk)(ωki − ω̄k) and (ωki − ωk)(ωki −
ω̄k)(ωki + ωk)(ωki + ω̄k) are real by construction.
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We can now compute

Cas(t) = − i
2π

∫ ∞

−∞
dωJ (ω) sin(ωt)

= 1
4π

∫ ∞

−∞
dωJ (ω)(e−iωt − eiωt), (D8)

where we used Eq. (10) together with the antisymmetry
of J (ω). Since the degree N∞ of the polynomial p(ω)

is smaller than the degree Npoles of the polynomial in
the denominator (i.e., N∞ < Npoles), Eq. (D1) implies that
limω→∞ J (ω) → 0, which allows us to use the Jordan
lemma to write

Cas(t) = − iθ(t)
2

∑
k<0

Res
[
J (ω)e−iωt; ωk

]

+ iθ(−t)
2

∑
k>0

Res
[
J (ω)e−iωt; ωk

]

− iθ(t)
2

∑
k>0

Res
[
J (ω)eiωt; ωk

]

+ iθ(−t)
2

∑
k<0

Res
[
J (ω)eiωt; ωk

]
, (D9)

where Res[g(ω); ω∗] denotes the residue of the function
g(ω) at the point ω∗. Now that the Jordan lemma has been
used, we can use Eqs. (D3) and (D4) to write

Cas(t) = − i
2

∑
k>0

θ(t)[Rkeiωkt + R̄ke−iω̄kt]

+ i
2

∑
k>0

θ(−t)[Rke−iωkt + R̄keiω̄kt]. (D10)

We now describe an environment made out of pseudo-
modes able to exactly reproduce the correlation Cas(t).
To achieve this, we first write Eq. (D10) in the following
slightly more explicit form:

Cas(t) = − i
2

∑
k>0

θ(t)[RkeiωR
k t + R̄ke−iωR

k t]e−ωI
k t

+ i
2

∑
k>0

θ(−t)[Rke−iωR
k t + R̄keiωR

k t]eωI
k t

= −isg(t)
∑
k>0

RR
k cos(ωR

k t)e−ωI
k |t|

+ i
∑
k>0

RI
k sin(ωR

k t)e−ωI
k |t|, (D11)

where the indexes R and I denote the real and imag-
inary parts of a variable. It is important to note that
the sum over poles that belong to the same quadruple

(ωk, ω−k, −ωk, −ω−k) or pure-imaginary pairs (ωk, ω−k),
if present, can be further reduced or simplified. To do
this, we partition the 2Np poles into Nq quadruples and Ni
imaginary couples so that 2Np = 4Nq + 2Ni. We can now
write

Cas(t) = −2isg(t)
Nq∑

kq=1

RR
kq

cos(ωR
kq

t)e
−ωI

kq
|t|

+ 2i
Nq∑

kq=1

RI
kq

sin(ωR
kq

t)e
−ωI

kq
|t|

− isg(t)
Ni∑

ki=1

RR
ki

cos(ωR
ki

t)e−ωI
ki

|t|, (D12)

where we used Eq. (D6), and where kq > 0 labels poles
coming in quadruples (ωkq , ω−kq , −ωkq , −ω−kq) and such
that Re[ωkq] ≥ 0 and Im[ωkq] > 0. Similarly, ki > 0 labels
poles coming in pairs (ωki , ω−ki) and such that Im[ωki] > 0
and Re[ωki] = 0.

To characterize a pseudomode model able to reproduce
the correlation above, we need to find the explicit param-
eters that allows to write CPM(t) = Cas(t), where CPM(t) is
given in Eq. (B16). However, the presence of the sign func-
tion in Eq. (D11) requires a few further preliminary steps.
First, we write Eq. (D11) as

Cas(t) = −isg(t)
∑
k>0

RR
k cos(ωR

k t)(e−ωI
k |t| − e−W|t|)

− isg(t)
∑
k>0

RR
k cos(ωR

k t)e−W|t|

+ i
∑
k>0

RI
k sin(ωR

k t)e−ωI
k |t|, (D13)

where we introduced an arbitrary frequency scale W. We
can now use the identity

sg(t) = exp[−a(|t| − t)] − exp[−a(t + |t|)]
1 − exp[−2a|t|] , (D14)

where a is an arbitrary nonzero frequency. By imposing
a → (W − ωI

k )/2 for each different k, we get

Cas = −i
∑
k>0

RR
k cos(ωR

k t)[e(W−ωI
k )t/2 − e−(W−ωI

k )t/2]

× e−(W+ωI
k )|t|/2 − isg(t)

∑
k>0

RR
k cos(ωR

k t)e−W|t|

+ i
∑
k>0

RI
k sin(ωR

k t)e−ωI
k |t|
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= 2
∑
k>0

RR
k cos(ωR

k t) sin
[−i(W − ωI

k )t
2

]

× e−(W+ωI
k )|t|/2

− isg(t)
∑
k>0

RR
k cos(ωR

k t)e−W|t|

+ i
∑
k>0

RI
k sin(ωR

k t)e−ωI
k |t|, (D15)

where we omitted the time dependence on the left-
hand side. Using the identity sin(x) cos(y) = [sin(x +
y) + sin(x − y)]/2, we finally obtain

Cas =
∑
k>0

RR
k sin

[−i(W − ωI
k ) + 2ωR

k

2
t
]

e−(W+ωI
k )|t|/2

+
∑
k>0

RR
k sin

[−i(W − ωI
k ) − 2ωR

k

2
t
]

e−(W+ωI
k )|t|/2

+ i
∑
k>0

RI
k sin(ωR

k t)e−ωI
k |t|

− isg(t)
∑
k>0

RR
k cos(ωR

k t)e−W|t|. (D16)

As noted before, the sum over poles that belong to the
same quadruple (ωk, ω−k, −ωk, −ω−k) or pure-imaginary
pairs (ωk, ω−k) can be further reduced or simplified using
Eq. (D6) to write

Cas = 2
Nq∑

kq=1

{
iRI

kq
sin(ωR

kq
t)e

−ωI
kq

|t|

+ RR
kq

sin

[−i(W − ωI
kq

) + 2ωR
kq

2
t

]
e
−(W+ωI

kq
)|t|/2

+ RR
kq

sin

[−i(W − ωI
kq

) − 2ωR
kq

2
t

]
e
−(W+ωI

kq
)|t|/2

}

+
Ni∑

ki=1

{
iRI

ki
sin(ωR

ki
t)e−ωI

ki
|t|

+ 2RR
ki

sin

[−i(W − ωI
ki
)

2
t

]
e−(W+ωI

ki
)|t|/2

}

− isg(t)
∑
k>0

RR
k cos(ωR

k t)e−W|t|, (D17)

where we omitted the time dependence on the left-hand
side. We further note that for W much bigger than any
inverse timescale present in the model, the last term is
effectively nonzero only at t = 0. However, in the context
presented here, the correlation can always be interpreted as

a distribution, i.e., as a functional over functions of time (in
the domain [0, t]). This can be seen explicitly by expanding
Eq. (A17) in series and using it to compute the expectation
value of a system observable. In this case, the correla-
tion always appears inside an integral that further involves
functions of time related to the system, i.e., it can be inter-
preted as a linear operator over the space of such functions
over the time domain. As a distribution, the correlation can
always be redefined over discrete domains, thereby justify-
ing the ignoring of the last term in the previous expression
to write

Cas = 2
Nq∑

kq=1

{
iRI

kq
sin(ωR

kq
t)e

−ωI
kq

|t|

+ RR
kq

sin

[−i(W − ωI
kq

) + 2ωR
kq

2
t

]
e
−(W+ωI

kq
)|t|/2

+ RR
kq

sin

[−i(W − ωI
kq

) − 2ωR
kc

2
t

]
e−(W+ωI

k )|t|/2

}

+ 2
Ni∑

ki=1

RR
ki

sin

[−i(W − ωI
ki
)

2
t

]
e−(W+ωI

ki
)|t|/2,

(D18)

where we omitted the time dependence on the left-hand
side. The resulting expression for the antisymmetric corre-
lation can then be expressed as

Cas(t) =
Nas∑
j =1

gas
j sin(�as

j t)e−	as
j |t| (D19)

in terms of the parameters gas
j , �as

j , 	as
j ∈ C, which can be

explicitly read by direct comparison with Eq. (D18). Here
Nas = 3Nq + Ni denotes the maximum number of terms in
this decomposition. This immediately implies the possi-
bility to use N rational

PM = Nas pseudomodes to reproduce the
effects of this correlation. However, to reproduce sine func-
tions with the expression for the pseudomode correlation
given in Eq. (B16), with a minimal (i.e., Nas) number of
modes, one needs to impose what is, arguably, the highest
level of unphysicality on the bosonic occupation num-
bers. If we label generic pseudomode parameters with an
asterisk, reproducing a sine function requires n∗ = −1/2,
which does not allow an obvious truncation scheme for the
thermal state that describes the initial state of the pseudo-
mode (since its temperature would be required to satisfy
β∗�∗ = iπ ). While alternative solutions might be found
(as simple as increasing the number of pseudmodes), in
this article we chose a strategy based on the fact that
we are always free to reshape the antisymmetric part of
the correlation by adding a symmetric function as long
as we compensate it with classical stochastic fields; see
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Appendix C. This allows us to model Eq. (D19) using
N rational

PM pseudomodes initially at zero temperature. By
explicitly defining the following symmetric function as
described in Sec. III B,

fs = −i
N rational

PM∑
j =1

gas
j cos(�as

j t)e−	as
j |t|

= 2
Nq∑

kq=1

{
RI

kq
cos(ωR

kq
t)e

−ωI
kq

|t|

− iRR
kq

cos

[−i(W − ωI
kq

) + 2ωR
kq

2
t

]
e
−(W+ωI

kq
)|t|/2

− i RR
kq

cos

[−i(W − ωI
kq

) − 2ωR
kq

2
t

]
e
−(W+ωI

kq
)|t|/2

}

− 2i
Ni∑

ki=1

RR
ki

cos

[−i(W − ωI
ki
)

2
t

]
e−(W+ωI

ki
)|t|/2,

(D20)

where we omitted the time dependence on the left-hand
side, we obtain, using Eq. (33), the following quantum
contribution to the correlation:

CQ(t) = Cas(t) − fs(t)

= −2
Nq∑

kq=1

{
RI

kq
e
−iωR

kq
t
e
−ωI

kq
|t|

+ iRR
kq

e
−i[ωR

kq
−i(W−ωI

kq
)/2]t

e
−(W+ωI

kq
)|t|/2

+ i RR
kq

e
−i[−ωR

kq
−i(W−ωI

kq
)/2]t

e
−(W+ωI

kq
)|t|/2
}

+ 2i
Ni∑

ki=1

RR
ki

e−i[−i(W−ωI
ki

)/2]te−(W+ωI
ki

)|t|/2, (D21)

which corresponds to a decomposition like the one pre-
sented in Eq. (B29), which can be modeled by pseudo-
modes initially at zero temperature.

1. Symmetric correlation

In this subsection, we explicitly compute the symmetric
part of the correlation for the subset of spectral densities
M. We do this for completeness as the stochastic fields
needed to reproduce this part of the correlation can be
computed without reference to any analytical form; see
Appendix C 2.

We want to compute, see Eq. (10),

Cs(t) = 1
2π

∫ ∞

−∞
dω J (ω) coth(βω/2) cos(ωt)

= 1
4π

∫ ∞

−∞
dω J (ω) coth(βω/2)(e−iωt + eiωt)

(D22)

for J (ω) ∈ M. We have

Cs(t) = − iθ(t)
2

∑
k<0

Res
[
J (ω) coth(βω/2)e−iωt; ω̃k

]

+ iθ(−t)
2

∑
k>0

Res
[
J (ω) coth(βω/2)e−iωt; ω̃k

]

+ iθ(t)
2

∑
k>0

Res
[
J (ω) coth(βω/2)eiωt; ω̃k

]

− iθ(−t)
2

∑
k<0

Res
[
J (ω) coth(βω/2)eiωt; ω̃k

]
.

(D23)

Here we denoted by ω̃k the collection of both the poles ωk
of J (ω) as described in the previous section and the Mat-
subara poles ωM

k = 2π ik/β, k ∈ Z − {0}, of coth(βω/2).
0 is not a pole for the composite J (ω) coth βω/2 because
it is canceled by asymmetric p(ω), whose degree is larger
than 1.

If simple poles of J (ω) and Matsubara poles have no
intersection, using the fact that ResωM

k
coth(βω/2) = 2/β,

we can write

Cs(t) = i
2

∑
k>0

θ(t)[Rβ

k eiωkt − R′β
k e−iω̄kt]

+ i
2

∑
k>0

θ(−t)[Rβ

k e−iωkt − R′β
k eiω̄kt]

+ 2i
β

∑
k>0

J (ωM
k )e−|ωM

k ||t|, (D24)

where Rβ

k = Rk coth(βωk/2) and R′β
k = R̄k coth(βω̄k/2),

which is the conjugate of Rβ

k for real β. We also took
advantage of the fact that ωM

−k = −ωM
k . For real temper-

atures, we can further write

Cs(t) = −
∑
k>0

[Rβ,R
k sin (ωR

k |t|) + Rβ,I
k cos (ωR

k t)]e−ωI
k |t|

+ 2i
β

∑
k>0

J (ωM
k )e−|ωM

k ||t|. (D25)
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By partitioning the sum into poles belonging to couples
and quadrupoles, we have

Cs = −2
∑

kq

[Rβ,R
kq

sin (ωR
kq

|t|) + Rβ,I
kq

cos (ωR
kq

t)]e
−ωI

kq
|t|

−
Ni∑

ki=1

Rβ,I
ki

e−ωI
ki

|t| + 2i
β

∑
k>0

J (ωM
k )e−|ωM

k ||t|, (D26)

where kq = 1, . . . , Nq, and where we used Eq. (D6). Noting
that Eq. (D6) implies that Rβ,I

ki
= Im[Rki coth(βωki/2)] =

−iRki coth(βωki/2) = −iRβ

ki
, and using the fact that ωI

ki
=

−iωki , together with cos(ωt) = cos(ω|t|) for all ω, we can
further write

Cs =
Nq∑

kq=1

[iRβ

kq
eiωkq |t| − iR̄β

kq
e−iω̄kq |t|]

+ i
Ni∑

ki=1

Rβ

ki
eiωki |t| + 2i

β

∑
k>0

J (ωM
k )e−|ωM

k ||t|. (D27)

Using Eqs. (33) and (D20), we can also find the classical
contribution to the correlation function as

Cclass(t) = Cs(t) + fs(t)

=
Nq∑

kq=1

[iRβ

kq
eiωkq |t| − iR̄β

kq
e−iω̄kq |t|]

+ i
Ni∑

ki=1

Rβ

ki
eiωki |t| + 2i

β

∑
k>0

J (ωM
k )e−|ωM

k ||t|

+
Nq∑

kq=1

{
RI

kq
(eiωkq |t| + e−iω̄kq |t|

)

− iRR
kq

(eiωkq |t| + e−iω̄kq |t|
)

− i RR
kq

(e
(−iωR

kq
−W)|t| + e

(iωR
kq

−W)|t|
)

}

− i
Ni∑

ki=1

RR
ki

(e−ωI
ki

|t| + e−W|t|), (D28)

which can be further written as

Cclass(t) =
Nq∑

kq=1

[i�Rkq eiωkq |t| − i�′Rkqe−iω̄kq |t|]

+ i
Ni∑

ki=1

�Rki eiωki |t| + 2i
β

∑
k>0

J (ωM
k )e−|ωM

k ||t|

(D29)

in terms of �Rkx = Rβ

kx
− Rkx and �′Rkx = R̄β

kx
+ Rkx (x =

q, i) and where we used Eq. (D7) and ignored terms
decaying exponentially in the free parameter W.

This explicit expression can also be used to explicitly
compute the coefficients for the spectral decomposition of
the field ξ ; see Eq. (14). We can simply use Eq. (D29) in
Eq. (13) to obtain

cn =
Nq∑

kq=1

[i�Rkq L(iωkq) − i�′Rkq Ln(−iω̄kq)]

+ i
Ni∑

ki=1

�Rki Ln(iωki) + 2i
β

∑
k>0

J (ωM
k )Ln(−|ωM

k |),

(D30)

where, as in Appendix C 2, we used the identity

1
2T

∫ T

−T
dτeω|τ | cos

(nπτ

T

)
= Ln(ω), (D31)

for all ω ∈ C in terms of the function

Ln(ω) = (eωTeinπ − 1)
ωT

(ωT)2 + (nπ)2 . (D32)

2. Brownian spectral density

We now specialize the results of the previous section for
the Brownian spectral density

JB(ω) = γ λ2ω

(ω2 − ω2
0)

2 + γ 2ω2
, (D33)

characterized by a resonant frequency ω0, a width γ

(with dimension of frequency), and an overall strength λ

(with dimension frequency to the power 3/2, so that, for
adimensional system coupling s, the correlation has the
dimension of energy squared). This spectral density has

four poles located at ±(� ± i	), where � =
√

ω2
0 − 	2

and 	 = γ /2. This defines an underdamped limit when
ω0 > γ/2 (poles not located on the imaginary axis) and
an overdamped limit when ω0 < γ/2 (poles located on the
imaginary axis), which we analyze in the following sec-
tions. In both cases, the spectral density in Eq. (D33) can
be written, in the notation of Eq. (D1), as

JB(ω) = pB(ω)∏
k∈Z

0
4
(ω − ωk)

, (D34)

where pB(ω) = γ λ2ω, Z
0
4 = {−2, −1, 1, 2}, ω1 = � + i	,

ω2 = −� + i	, and ω−k = −ωk.
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a. Underdamped limit

The underdamped limit 	 < ω0 implies � > 0 and,
using Eq. (D34), we can compute the residues at the two
poles ω1 and ω2 on the upper complex plane as

Resω1JB(ω) = γ λ2 ω1

(ω1 − ω2)(ω1 − ω−1)(ω1 − ω−2)

= γ λ2 ω1

(2i	)(2ω1)(2�)

= −i
λ2

4�

Resω2JB(ω) = γ λ2 ω2

(ω2 − ω1)(ω2 − ω−1)(ω2 − ω−2)

= γ λ2 ω2

(2i	)(−2�)(2ω2)

= i
λ2

4�
. (D35)

The imaginary nature of the residues above considerably
simplifies the expression in Eq. (D16) for the asymmetric
part of the correlation function, which reads

Cas(t) = −i
λ2

2�
sin(�t)e−	|t|

= λ2

4�
(e−i�t − ei�t)e−	|t|. (D36)

Similarly, the symmetric part of the correlation in
Eq. (D25) can be written as

Cs(t) = λ2

4�
coth (βω1/2)eiωR

1 |t|e−|ωI
1||t|

− λ2

4�
coth (βω2/2)eiωR

2 |t|e−|ωI
2||t|

+ 2i
β

∑
k>0

J (ωM
k )e−|ωM

k ||t|

= λ2

4�
coth (β(� + i	)/2)ei�|t|e−	|t|

− λ2

4�
coth (β(−� + i	)/2)e−i�|t|e−	|t|

+ 2i
β

∑
k>0

J (ωM
k )e−|ωM

k ||t| (D37)

in terms of the Matsubara frequencies ωM
k = 2π ik/β. In

the β → ∞ limit, we have

Cs(t)
β→∞= λ2

4�
(ei�t + e−i�t)e−	|t|

+ i
π

∫ ∞

0
dxJ (ix)e−x|t|. (D38)

By defining RB = Re{coth[β(� + i	)/2)} and IB =
Im{coth[β(� + i	)/2)}, we can write the full correlation
function as

C(t) = Cs(t) + Cas(t)

= λ2

2�

(
RB + 1

2
e−i�t + RB − 1

2
ei�t
)

e−	|t|

+ λ2

4�

(
IBe−(−i�+	)|t| − IBe−(i�+	)|t|)

+ 2i
β

∑
k>0

J (ωM
k )e−|ωM

k ||t|. (D39)

From this expression, it is possible to define a completely
deterministic model on the lines of the one proposed in
Ref. [80]. This can be done by introducing three “reso-
nant” modes aj , j = 1, 2, 3, and NMats “Matsubara” modes
aj , j = 4, . . . 3 + NMats, as

ρ̇det = −i[H det
B , ρdet] + Ddet

B [ρdet], (D40)

where

H det
B = HS +

3+NMats∑
j =1

λj (aj + a†
j )s + �j a†

j aj ,

Ddet
B [ρ] =

3+NMats∑
j =1

	j [(nj + 1)(2aj ρa†
j −a†

j aj ρ − ρa†
j aj )

+ nj (2a†
j ρaj − aj a†

j ρ − ρaj a†
j )] (D41)

as a function of the parameters

λ1 =
√

λ2

2�
, λ2 =

√
IBλ2

4�
λ3 =

√
−IBλ2

4�
,

�1 = �, �2 = 0, �3 = 0,
	1 = 	, 	2 = 	 − i�, 	3 = 	 + i�,

n1 = RB − 1
2

, n2 = 0, n3 = 0

(D42)

characterizing the resonant modes. We note that other
choices that use only two resonant modes initially pre-
pared with complex temperature values are possible [141].
The parameters characterizing the Matsubara modes can be
defined by imposing nj = 0, �j = 0 for j = 4, . . . , NMats
and by minimizing the functional difference

∣∣∣∣∣∣
2i
β

∑
k>0

J (ωM
k )e−|ωM

k ||t| −
NMats∑
j =4

λ2
j e−	j |t|

∣∣∣∣∣∣ . (D43)

In contrast, the stochastic method proposed here requires
one to solve only the dynamics of the system coupled to a
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single zero-temperature resonant mode a0 and driven by a
complex stochastic field ξ(t) as

ρ̇ = −i[HB, ρ] + DB[ρ], (D44)

where

HB = HS + λ0s(a0 + a†
0) + �0a†

0a0 + ξ(t)s,

DB[ρ] = 	0(2a0ρa†
0−a†

0a0ρ − ρa†
0a0). (D45)

In this case, the parameters for the resonant mode and the
statistics of the field can be determined by the following
classical-quantum decomposition of the correlation:

C(t) = Cclass(t) + CQ(t), (D46)

where

Cclass(t) = Cs(t) − fs(t),

CQ(t) = Cas(t) + fs(t) = λ2

2�
e−i�t−	|t| (D47)

in terms of the symmetric function fs(t) = CQ(t) +
CQ(−t). Specifically, the parameters in Eq. (D45) must
then be defined as λ0 =

√
λ2/2�, �0 = �, and 	0 = 	,

while the field ξ(t) must be Gaussian and such that

E[ξ(t2)ξ(t1)] = Cclass(t2 − t1). (D48)

It is actually possible to be even more explicit in the
definition of the stochastic field. By using Eq. (D35) in
Eq. (D30), we obtain

cn = λ2

4�
{coth[β(� + i	)/2] − 1}L(i� − 	)

+ λ2

4�
{coth[β(� − i	)/2] − 1}L(−i� − 	)

+ 2i
β

∑
k>0

J (ωM
k )Ln(−|ωM

k |) (D49)

in terms of the function Ln(ω) defined in Eq. (D32).

b. Overdamped limit

The overdamped limit 	 > ω0 implies �2 < 0, so the
results in the previous section can be adapted with the sub-
stitution � �→ i|�|, with |�| < 	. For example, the poles
in the upper complex plane are now ω1 = i(	 + �) and
ω2 = i(	 − �) and the residues become

Resω1JB(ω) = − λ2

4|�| ,

Resω2JB(ω) = λ2

4|�| . (D50)

Using Eq. (D18) and noting that here the poles come in
pairs (we have two such pairs, one for each of the poles ω1

and ω2 on the upper complex plane) with real residues, we
can write

Cas(t) = 2
∑

ki

RR
ki

sin

[−i(W − ωI
ki
)

2
t

]
e−(W+ωI

ki
)|t|/2

= 2
sg(t)

2i

∑
ki

RR
ki

e−ωI
ki

t

= 2
sg(t)

2i
λ2

4|�|e−	|t| (e|�||t| − e−|�||t|)

= i
λ2

4|�|e−	|t| (e−|�|t − e|�|t) . (D51)

When the poles of the spectral density JB(ω) are not
located at the poles of coth (βω)/2, the symmetric part of
the correlation reads

Cs(t) = − λ2

4|�|cot
[
β(	 + |�|)

2

]
e−(	+|�|)|t|

+ λ2

4|�|cot
[
β(	 − |�|)

2

]
e−(	−|�|)|t|

+ 2i
β

∑
k>0

JB(ωM
k )e−|ωM

k ||t|. (D52)

When the poles ω1 and ω2 are located exactly at one of
the Matsubara poles ωM

k , one can still apply the expression
above after regularizing the degeneracy and then taking the
limit for such regularization to be zero.

c. Critical-damping limit

When 	 = ω0, we have � = 0, implying the pres-
ence of a second-order pole in the upper complex plane
located at ω1 = ω2 = i	. The correlation can be com-
puted by either using the residue theorem or simply taking
the � → 0 limit in the corresponding expressions for the
underdamped and overdamped limits to obtain

Cas(t) = − itλ2

2
e−	|t|. (D53)

Similarly, the symmetric correlation reads

Cs(t) = λ2

4
β + |t| sin(β	)

sin2(β	/2)
e−	|t|

+ 2i
β

∑
k>0

JB(ωM
k )e−|ωM

k ||t|. (D54)
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3. Ohmic spectral density

In this section, we analyze an Ohmic spectral density

J�(ω) = παωe−ω/ωc , (D55)

characterized by a strength parameter α ∈ R and a cut-
off energy scale ωc. The antisymmetric contribution to the
correlation takes the form

C�
as(t) = −α

2

∫ ∞

0
ωe−ω/ωc(eiωt − e−iωt)dω

= −2iαω2
c

ωct
(1 + ω2

c t2)2 , (D56)

whose behavior interpolates the following limiting
regimes:

C�
as(t)

t�1/ωc= −2iαω3
c t

t�1/ωc= −2iαω2
c

(ωct)3 . (D57)

In contrast to the rational case, this contribution does
not identically follow the ansatz in Eq. (31). However, it
is always possible to impose it, i.e., to find the optimal
parameters that better approximate the expression

C�
as(t) �

N�
PM∑

j =1

a�
j sin(b�

j t)e−c�
j |t|. (D58)

It is interesting to gain some intuition on this procedure by
using Eq. (D57) in Eq. (D58) to obtain a rough estimate

of the parameters. By assuming N�
PM = 1 and taking the

t � 1/ωc limit on both sides of Eq. (D58), we can write
the following intuitive expressions:

a�
1 � −2iαω2

c , b�
1 � ωc, c�

1 � ωc. (D59)

By using these expressions in Eq. (33), we can con-
clude that the quantum contribution to the Ohmic spectral
density can be approximated by a single pseudomode
with parameters λ� = √

2αωc, �� = ωc, and 	� = ωc.
In Fig. 11, we show the results for the dynamics of the
off-diagonal elements of the density matrix of a two-
level system interacting with an environment through a
coupling operator that commutes with the system Hamilto-
nian. Specifically, we chose this pure dephasing model to
be characterized by s = σz and, for simplicity, by HS = 0.

As can be seen from the analysis in Sec. D 3 a, the
dynamics of the coherences of a two-level system in con-
tact with a dephasing environment depends only on the
symmetric part of the correlation. It is then interesting to
note that if we were to use the protocol defined in Sec.
III B, this model would still require a certain number of
quantum pseudomodes in order to account for the quan-
tum part of the correlation function. In turn, the classical
field would then be defined in terms of the classical part
of the correlation, which is defined in terms of both the
symmetric part and the antisymmetric part. However, the
procedure in Sec. III B is not the only possible one. In this
case, we can, for example, model the full symmetric part
of the correlation using a classical stochastic field [i.e.,
imposing fs(t) = 0 in the general formalism developed in
Sec. II] and avoid considering any quantum degrees of
freedom.

Time (1/ωs)Time (1/ωs)

Time (1/ωs)Time (1/ωs)

(a) (b)

(c) (d)
(imaginary)

(imaginary)

FIG. 10. Correlations for the Ohmic spectral density (see Ref. [120] for an analytical expression) at zero temperature. Here the
parameters correspond to the ones in Fig. 5. The fitting of the antisymmeatric part of the correlation function is done using two sine
functions (which corresponds to two pseudomodes).
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As expected from the analysis presented in Sec. D 3 a,
the resulting dynamics matches the analytical dynamics
more since it is the only one that affects the system in
this dephasing model [see Eq. (D64) and the third line in
Eq. (D62)].

a. Pure dephasing

Here we consider the case in which the system-bath
interaction Hamiltonian commutes with the system Hamil-
tonian, i.e., that [s, HS] in the notation of Appendix A. In
this case, the operator s is time independent in the inter-
action picture and the dynamics described by Eq. (A11)
becomes

ρS(t) = eFdeph(t,s,C(t))ρS(0), (D60)

which, importantly, no longer requires a time ordering. The
influence superoperator for the pure dephasing case reads

Fdeph[·] =
∫ t

0
dt2
∫ t2

0
dt1 {C(t2 − t1)[s·, s]

− C(t1 − t2)[·s, s]}

=
∫ t

0
dt2
∫ t2

0
dt1 {2Cs(t2 − t1)s · s

− Cs(t2 − t1)[·s2 + s2·] − Cas(t2 − t1)[s2, ·]
= 	deph(t)Ddeph[·] − i�deph[s2, ·], (D61)

Time (1/ωs)

FIG. 11. Dynamics of the coherences for a pure dephasing
model with Ohmic spectral density at zero temperature for
NPM = 0 (dashed red line) against the analytical result (solid blue
line). The classical model does not have any pseudomodes and
its stochastic field is defined to reproduce the symmetric part of
the correlation (see Fig. 10) in accordance with the pure dephas-
ing analysis presented in Appendix D 3 a. The initial state of the
two-level system is assumed to be an equal superposition of the
ground state and the excited state. Specifically, here we plot the
off-diagonal elements of the density matrix, which decay expo-
nentially in the parameter −4	dep(t) = −2α log(1 + ω2

c t2); see
Eq. (D65) and Ref. [1], Eq. (4.51). Other parameters are the same
as those in Fig. 5. The averaging is done over 104 samples.

where we defined

�deph = −i
∫ t

0
dt2
∫ t2

0
dt1 Cas(t2 − t1)

= − 1
π

∫ ∞

0
dωJ (ω)

tω − sin(ωt)
ω2

	deph =
∫ t

0
dt2
∫ t2

0
dt1 Cs(t2 − t1)

= 1
π

∫ ∞

0
dωJ (ω) coth (βω/2)

1 − cos(ωt)
ω2

Ddeph[·] = 2s · s − s2 · − · s2, (D62)

where we used
∫ t

0
dt2
∫ t2

0
dt1 cos [ω(t2 − t1)] =

∫ t

0
dt2
∫ t2

0
du cos (ωu)

= 1 − cos(ωt)
ω2∫ t

0
dt2
∫ t2

0
dt1 sin [ω(t2 − t1)] = tω − sin(ωt)

ω2 . (D63)

In the special case of a system made of a two-level system
with s = σz, the effective Hamiltonian for the dephasing is
zero because σ 2

z = 1, and Eq. (D60) becomes

ρS(t) = e	deph(t)[2σz ·σz−2·]ρS(0), (D64)

which leaves the diagonal elements invariant, while caus-
ing a decay exp[−4	deph(t)] of the off-diagonal coher-
ences. For the Ohmic spectral density in Eq. (D55) and in
the β → ∞ limit, the decay rate can be further simplified
to

	Ohmic
deph (t) → α

2
log
(
1 + ω2

c t2
)

. (D65)

[1] H.-P. Breuer and F. Petruccione, The Theory Of Open
Quantum Systems (Oxford University Press, Oxford,
2002).

[2] C. Gardiner and P. Zoller, Quantum Noise: A Handbook
of Markovian and Non-Markovian Quantum Stochastic
Methods with Applications to Quantum Optics, Springer
Series in Synergetics (Springer, Berlin, 2004).

[3] G. Lindblad, On the generators of quantum dynamical
semigroups, Commun. Math. Phys. 48, 119 (1976).

[4] V. Gorini, A. Kossakowski, and E. Sudarshan, Com-
pletely positive dynamical semigroups of N-level systems,
J. Math. Phys. 17, 821 (1976).

[5] A. G. Redfield, The theory of relaxation processes, Adv.
Magn. Opt. Reson. 1, 1 (1965).

[6] A. Ishizaki and G. R. Fleming, On the adequacy of the
Redfield equation and related approaches to the study of

030316-39

https://doi.org/10.1007/BF01608499
https://doi.org/10.1063/1.522979
https://doi.org/10.1016/B978-1-4832-3114-3.50007-6


LUO, LAMBERT, LIANG, and CIRIO PRX QUANTUM 4, 030316 (2023)

quantum dynamics in electronic energy transfer, J. Chem.
Phys. 130, 234110 (2009).

[7] A. Dodin, T. V. Tscherbul, and P. Brumer, Quantum
dynamics of incoherently driven V-type systems: Ana-
lytic solutions beyond the secular approximation, J. Chem.
Phys. 144, 244108 (2016).

[8] P. R. Eastham, P. Kirton, H. M. Cammack, B. W. Lovett,
and J. Keeling, Bath-induced coherence and the secular
approximation, Phys. Rev. A 94, 012110 (2016).

[9] A. Trushechkin, Unified Gorini-Kossakowski-Lindblad-
Sudarshan quantum master equation beyond the secular
approximation, Phys. Rev. A 103, 062226 (2021).

[10] A. Fruchtman, N. Lambert, and E. Gauger, When do per-
turbative approaches accurately capture the dynamics of
complex quantum systems?, Sci. Rep. 6, 28204 (2016).

[11] I. de Vega and D. Alonso, Dynamics of non-Markovian
open quantum systems, Rev. Mod. Phys. 89, 015001
(2017).

[12] H.-B. Chen, C. Gneiting, P.-Y. Lo, Y.-N. Chen, and F.
Nori, Simulating Open Quantum Systems with Hamilto-
nian Ensembles and the Nonclassicality of the Dynamics,
Phys. Rev. Lett. 120, 030403 (2018).

[13] H.-B. Chen, P.-Y. Lo, C. Gneiting, J. Bae, Y.-N. Chen, and
F. Nori, Quantifying the nonclassicality of pure dephasing,
Nat. Commun. 10, 3794 (2019).

[14] G. T. Landi, D. Poletti, and G. Schaller, Nonequilibrium
boundary-driven quantum systems: Models, methods, and
properties, Rev. Mod. Phys. 94, 045006 (2022).

[15] R. Feynman and F. Vernon, The theory of a general quan-
tum system interacting with a linear dissipative system,
Ann. Phys. 24, 118 (1963).

[16] A. Caldeira and A. Leggett, Path integral approach to
quantum Brownian motion, Phys. A 121, 587 (1983).

[17] A. Caldeira and A. Leggett, Quantum tunnelling in a
dissipative system, Ann. Phys. 149, 374 (1983).

[18] P. Hedegård and A. O. Caldeira, Quantum dynamics of
a particle in a fermionic environment, Phys. Scr. 35, 609
(1987).

[19] L. Bönig, K. Schönhammer, and W. Zwerger, Influence-
functional theory for a heavy particle in a Fermi gas, Phys.
Rev. B 46, 855 (1992).

[20] M. W. Y. Tu and W.-M. Zhang, Non-Markovian decoher-
ence theory for a double-dot charge qubit, Phys. Rev. B
78, 235311 (2008).

[21] J. Jin, M. W. Y. Tu, W.-M. Zhang, and Y. Yan, Non-
equilibrium quantum theory for nanodevices based on the
Feynman–Vernon influence functional, New J. Phys. 12,
083013 (2010).

[22] W.-M. Zhang, P.-Y. Lo, H.-N. Xiong, M. W.-Y. Tu, and F.
Nori, General Non-Markovian Dynamics of Open Quan-
tum Systems, Phys. Rev. Lett. 109, 170402 (2012).

[23] H.-N. Xiong, P.-Y. Lo, W.-M. Zhang, D. H. Feng, and
F. Nori, Non-Markovian complexity in the quantum-to-
classical transition, Sci. Rep. 5, 13353 (2015).

[24] Y. Tanimura and R. Kubo, Time evolution of a quantum
system in contact with a nearly Gaussian-Markoffian noise
bath, J. Phys. Soc. Jpn. 58, 101 (1989).

[25] Y. Tanimura, Nonperturbative expansion method for a
quantum system coupled to a harmonic-oscillator bath,
Phys. Rev. A 41, 6676 (1990).

[26] A. Ishizaki and Y. Tanimura, Quantum dynamics of sys-
tem strongly coupled to low-temperature colored noise
bath: Reduced hierarchy equations approach, J. Phys. Soc.
Jpn. 74, 3131 (2005).

[27] Y. Tanimura, Stochastic Liouville, Langevin, Fokker–
Planck, and master equation approaches to quantum dis-
sipative systems, J. Phys. Soc. Jpn. 75, 082001 (2006).

[28] A. Ishizaki and G. R. Fleming, Unified treatment of
quantum coherent and incoherent hopping dynamics in
electronic energy transfer: Reduced hierarchy equation
approach, J. Chem. Phys. 130, 234111 (2009).

[29] A. G. Dijkstra and Y. Tanimura, Non-Markovian Entan-
glement Dynamics in the Presence of System-Bath Coher-
ence, Phys. Rev. Lett. 104, 250401 (2010).

[30] A. G. Dijkstra and Y. Tanimura, System bath correlations
and the nonlinear response of qubits, J. Phys. Soc. Jpn. 81,
063301 (2012).

[31] Y. Tanimura, Reduced hierarchical equations of motion
in real and imaginary time: Correlated initial states and
thermodynamic quantities, J. Chem. Phys. 141, 044114
(2014).

[32] N. Lambert, T. Raheja, S. Cross, P. Menczel, S. Ahmed,
A. Pitchford, D. Burgarth, and F. Nori, QuTiP-BoFiN: A
bosonic and fermionic numerical hierarchical-equations-
of-motion library with applications in light-harvesting,
quantum control, and single-molecule electronics, (2020),
ArXiv:2010.10806.

[33] Y. Tanimura, Numerically “exact” approach to open quan-
tum dynamics: The hierarchical equations of motion
(HEOM), J. Chem. Phys. 153, 020901 (2020).

[34] K. Nakamura and Y. Tanimura, Optical response of
laser-driven charge-transfer complex described by Hol-
stein–Hubbard model coupled to heat baths: Hierarchi-
cal equations of motion approach, J. Chem. Phys. 155,
064106 (2021).

[35] A. Garg, J. N. Onuchic, and V. Ambegaokar, Effect of fric-
tion on electron transfer in biomolecules, J. Chem. Phys.
83, 4491 (1985).

[36] R. Martinazzo, B. Vacchini, K. H. Hughes, and I.
Burghardt, Communication: Universal Markovian reduc-
tion of Brownian particle dynamics, J. Chem. Phys. 134,
011101 (2011).

[37] J. Iles-Smith, N. Lambert, and A. Nazir, Environmental
dynamics, correlations, and the emergence of noncanon-
ical equilibrium states in open quantum systems, Phys.
Rev. A 90, 032114 (2014).

[38] M. P. Woods, R. Groux, A. W. Chin, S. F. Huelga,
and M. B. Plenio, Mappings of open quantum systems
onto chain representations and Markovian embeddings, J.
Math. Phys. 55, 032101 (2014).

[39] P. Strasberg, G. Schaller, T. L. Schmidt, and M. Espos-
ito, Fermionic reaction coordinates and their application
to an autonomous Maxwell demon in the strong-coupling
regime, Phys. Rev. B 97, 205405 (2018).

[40] M. Wertnik, A. Chin, F. Nori, and N. Lambert, Optimizing
co-operative multi-environment dynamics in a dark-state-
enhanced photosynthetic heat engine, J. Chem. Phys. 149,
084112 (2018).

[41] T. Holstein, Studies of polaron motion: Part I. The
molecular-crystal model, Ann. Phys. (N. Y) 8, 325 (1959).

030316-40

https://doi.org/10.1063/1.3155214
https://doi.org/10.1063/1.4954243
https://doi.org/10.1103/PhysRevA.94.012110
https://doi.org/10.1103/PhysRevA.103.062226
https://doi.org/10.1038/srep28204
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1103/PhysRevLett.120.030403
https://doi.org/10.1038/s41467-019-11502-4
https://doi.org/10.1103/RevModPhys.94.045006
https://doi.org/10.1016/0003-4916(63)90068-X
https://doi.org/10.1016/0378-4371(83)90013-4
https://doi.org/10.1016/0003-4916(83)90202-6
https://doi.org/10.1088/0031-8949/35/5/001
https://doi.org/10.1103/PhysRevB.46.855
https://doi.org/10.1103/PhysRevB.78.235311
https://doi.org/10.1088/1367-2630/12/8/083013
https://doi.org/10.1103/PhysRevLett.109.170402
https://doi.org/10.1038/srep13353
https://doi.org/10.1143/JPSJ.58.101
https://doi.org/10.1103/PhysRevA.41.6676
https://doi.org/10.1143/JPSJ.74.3131
https://doi.org/10.1143/JPSJ.75.082001
https://doi.org/10.1063/1.3155372
https://doi.org/10.1103/PhysRevLett.104.250401
https://doi.org/10.1143/JPSJ.81.063301
https://doi.org/10.1063/1.4890441
https://arxiv.org/abs/2010.10806
https://doi.org/10.1063/5.0011599
https://doi.org/10.1063/5.0060208
https://doi.org/10.1063/1.449017
https://doi.org/10.1063/1.3532408
https://doi.org/10.1103/physreva.90.032114
https://doi.org/10.1063/1.4866769
https://doi.org/10.1103/PhysRevB.97.205405
https://doi.org/10.1063/1.5040898
https://doi.org/10.1016/0003-4916(59)90002-8


QUANTUM-CLASSICAL DECOMPOSITION. . . PRX QUANTUM 4, 030316 (2023)

[42] T. Holstein, Studies of polaron motion: Part II. The
“small” polaron, Ann. Phys. (N. Y) 8, 343 (1959).

[43] B. Jackson and R. Silbey, On the calculation of transfer
rates between impurity states in solids, J. Chem. Phys. 78,
4193 (1983).

[44] R. Silbey and R. A. Harris, Variational calculation of the
dynamics of a two level system interacting with a bath, J.
Chem. Phys. 80, 2615 (1984).

[45] R. A. Harris and R. Silbey, Variational calculation of the
tunneling system interacting with a heat bath. II. Dynam-
ics of an asymmetric tunneling system, J. Chem. Phys. 83,
1069 (1985).

[46] U. Weiss, Quantum Dissipative Systems (World Scientific
Publishing Co. Pvt. Ltd, Singapore, 2008).

[47] S. Jang, Y.-C. Cheng, D. R. Reichman, and J. D. Eaves,
Theory of coherent resonance energy transfer, J. Chem.
Phys. 129, 101104 (2008).

[48] S. Jang, Theory of coherent resonance energy transfer for
coherent initial condition., J. Chem. Phys. 131, 164101
(2009).

[49] A. Nazir, Correlation-Dependent Coherent to Incoherent
Transitions in Resonant Energy Transfer Dynamics, Phys.
Rev. Lett. 103, 146404 (2009).

[50] D. P. S. McCutcheon and A. Nazir, On the calculation of
transfer rates between impurity states in solids, New J.
Phys. 12, 113042 (2010).

[51] S. Jang, Theory of multichromophoric coherent resonance
energy transfer: A polaronic quantum master equation
approach, J. Chem. Phys. 135, 034105 (2011).

[52] D. P. S. McCutcheon and A. Nazir, Coherent and inco-
herent dynamics in excitonic energy transfer: Correlated
fluctuations and off-resonance effects, Phys. Rev. B 83,
165101 (2011).

[53] A. Kolli, A. Nazir, and A. Olaya-Castro, Electronic exci-
tation dynamics in multichromophoric systems described
via a polaron-representation master equation, J. Chem.
Phys. 135, 034105 (2011).

[54] F. Pollock, Energy transport in open quantum systems,
Ph.D. thesis, Oxford University, UK (2014).

[55] F. A. Pollock, D. P. S. McCutcheon, E. M. Lovett, B.
W. Gauger, and A. Nazir, A multi-site variational master
equation approach to dissipative energy transfer., New J.
Phys. 15, 075018 (2013).

[56] D. Xu and J. Cao, Non-canonical distribution and non-
equilibrium transport beyond weak system-bath coupling
regime: A polaron transformation approach, Front. Phys.
11, 110308 (2016).

[57] J. Rau, Relaxation phenomena in spin and harmonic oscil-
lator systems, Phys. Rev. 129, 1880 (1963).

[58] V. Scarani, M. Ziman, P. Štelmachovič, N. Gisin, and V.
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