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Fermion-to-qubit mappings are used to represent fermionic modes on quantum computers, an essen-
tial first step in many quantum algorithms for electronic structure calculations. In this work, we present
a formalism to design flexible fermion-to-qubit mappings from ternary trees. We intuitively discuss the
connection between the structure of the generating trees and certain properties of the resulting mapping,
such as the Pauli weight and the delocalization of mode occupation. Moreover, we introduce a recipe
that guarantees that Fock basis states are mapped to computational basis states in qubit space, a desir-
able property for many applications in quantum computing. Based on this formalism, we introduce the
Bonsai algorithm, which takes as input the potentially limited topology of the qubit connectivity of a quan-
tum device and returns a tailored fermion-to-qubit mapping that reduces the SWAP overhead compared to
other paradigmatic mappings. We illustrate the algorithm by producing mappings for the heavy-hexagon
topology widely used in IBM quantum computers. The resulting mappings have a favorable Pauli-weight
scaling O(

√
N ) on this connectivity while ensuring that no SWAP gates are necessary for single-excitation

operations.

DOI: 10.1103/PRXQuantum.4.030314

I. INTRODUCTION

The field of quantum computing has witnessed astound-
ing developments in the past decade. While the technol-
ogy is improving quickly, so-called fault-tolerant quantum
computing still seems a distant milestone. Current devices
are limited to relatively few qubits and cannot reliably
execute the deep circuits required by many paradigmatic
quantum computing algorithms [1]. Yet, near-term com-
puters with a few hundred qubits and low levels of noise
can prepare entangled states that cannot be efficiently sim-
ulated classically, which can be a computational resource
in itself if combined with classical compute appropriately
[2–5], e.g., to mitigate the detrimental effects of noise
[6–9]. This is the reasoning behind most hybrid quantum-
classical computing approaches [10]. Within this hybrid
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framework, it was recognized early on that one applica-
tion stands out from the rest in terms of suitability: the
simulation of many-body fermionic quantum systems.

The solution of electronic structure problems with near-
term devices is of paramount importance in fields such
as computational chemistry [11–13], which itself has a
crucial impact on many industries ranging from material
science [14] to drug discovery [15,16], amongst many
others. In many cases, the limitations of classical meth-
ods for chemistry stem from the inability to account for
the complexity of electronic wave functions, which can
easily involve a superposition of a combinatorially large
number of electronic configurations. Given that quantum
processors can physically exhibit complex superpositions,
this problem seems particularly appropriate for them to
tackle. Indeed, in most near-term approaches, the physi-
cal state of the device is taken to represent the state of the
many-body fermionic system of interest and the physical
properties of the latter are inferred by appropriately mea-
suring physical properties of the former [17,18]. However,
since the fermionic and the many-qubit wave functions live
in fundamentally different Hilbert spaces, equipped with
different algebraic structures, realization of this prospect
calls for a concrete way to establish connections between
them, the so-called fermion-to-qubit mappings. The type of
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mapping between fermions and qubits used has a direct
impact on the quantum simulation. A fermionic wave
function |�f 〉 will be encoded into different many-qubit
states |�q〉 by different mappings and these different states
will generally not be equally easy to prepare on a given
quantum processor. Ultimately, the latter point depends
on the specifics of the hardware used, e.g., its connectiv-
ity, coherence time, etc. Moreover, one is not generally
interested in merely simulating state |�f 〉 but in deter-
mining physical properties, 〈�f |Of |�f 〉, where Of is
some fermionic quantity of interest. The fermion-to-qubit
mapping of choice will map said operator into its qubit
counterpart, Oq, and the evaluation of 〈�q|Oq |�q〉 will
be carried out via physical measurements on the device.
Therefore, in general, the measurement cost incurred will
also depend on the choice of mapping. The importance
of the encoding has thus motivated considerable research
toward designing convenient fermion-to-qubit mappings
beyond the paradigmatic ones, such as Jordan-Wigner
(JW) [19], Bravyi-Kitaev (BK) [20], and parity [21]. Much
work in relation to the design of fermion-to-qubit map-
pings is directed toward the reduction of the qubit and
Pauli weight (the number of qubits that mapped fermionic
operations involve) requirements on lattice models [22–
27]. Some works avoid fermionic encoding of the wave
function altogether in an effort to mitigate the associated
costs [28,29] Other works have addressed the measure-
ment cost in certain fermionic simulation tasks, which
directly depends on the Pauli weight of the mapping when
using informationally complete measurements and thus
introduces a mapping with provable optimal Pauli weight
[30]. The latter mapping is generated using regular ternary
trees and has largely inspired the current work. However,
the connection between ternary trees and mappings has
been established earlier. In Ref. [31], it has been used
to find representations of the Clifford algebras and spin
groups and there has been discussion about how JW and
BK can be generated from ternary trees as linear and
binary subgraphs of them with the appropriate pairing of
the resulting strings. More recently, a framework to design
mappings based on BK has been put forward in Ref. [32]
but it cannot achieve optimal Pauli-weight scaling.

In this paper, we consider the family of mappings gen-
erated by identifying Majorana operators with linearly and
algebraically independent Pauli strings obeying equivalent
anticommutation relations. In Sec. II, we give an overview
of fermion-to-qubit mappings and present a classifica-
tion in terms of the number of qubits that the nontrivial
overlap (NTO) between strings involves. We then focus
on one-qubit-wise anticommuting (1-NTO) encodings and
introduce a ternary-tree-based framework to design map-
pings within this subclass. More precisely, we prove that
any n-node connected ternary tree yields a valid mapping.

Importantly, this framework presents a number of desir-
able properties. On the one hand, it is clear and intuitive.

It enables understanding and consequentially the control
of many important properties of the mappings, such as
their mode locality (i.e., on how many qubits fermionic
mode occupation is stored, which has been suggested to
impact the resilience of quantum simulations to noise [33])
and their Pauli weight, in terms of simple properties of
the underlying ternary trees generating them. Part of the
discussion in Sec. II is aimed at explaining these aspects
in a pedagogical manner. On the other hand, it contains
the aforementioned paradigmatic mappings, as well as the
recently discovered optimal-weight fermion-to-qubit map-
ping [30], as specific instances. Hence, we can regard our
framework as being able to interpolate between and com-
bine well-known mappings, as well as generate completely
novel ones that bear little resemblance with these. In addi-
tion, these two properties together provide, as a byproduct,
a clean and transparent perspective on these widely used
encodings and their properties.

We also show that with the right assignment between
Majorana operators and Pauli strings, for which we pro-
vide a recipe, the tree-based-mapping design framework
introduced here guarantees a crucial property of the sam-
pled encodings: uncorrelated fermionic states, i.e., Fock
basis states (including the vacuum state) are mapped to
computational basis states in qubit space. This property,
which may be easily overlooked, is of utmost importance,
as it ensures that no additional quantum resources (more
precisely, entanglement) are needed to prepare reference
wave functions, such as the Hartree-Fock Slater deter-
minant often used as a starting point in many quantum
simulation algorithms.

In Sec. IV, we put our framework into use. We exploit
its versatility to devise an algorithm, which we name
the Bonsai algorithm, that takes a hardware connectiv-
ity layout as an input and returns a tailored mapping.
The resulting encoding is designed to minimize the SWAP
overhead required in the implementation of one- and
two-electron excitation operations, which are the building
blocks of many adaptive ansatz construction algorithms
of the ADAPT-VQE family [34–36]. At the same time,
the algorithm aims at minimizing the spread of fermionic
occupancy over qubits. When applied to heavy-hexagon
qubit-connectivity graphs, the standard layout in current
IBM devices, the Bonsai algorithm returns a mapping with
no SWAP overhead for single-excitation operations and a
quadratically lower Pauli weight than JW. Moreover, the
mapping also drastically reduces the circuit complexity
of the worst-case scenario implementation of single- and
double-excitation generated unitaries with respect to the
latter mapping.

II. FERMION-TO-QUBIT MAPPINGS

This section is devoted to the discussion of features of
general fermion-to-qubit mappings. After setting up the
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notation for fermionic systems (for detailed reviews, see
Refs. [37–39] ), the JW transformation, general fermion-
to-qubit maps, and finally Majorana-string mappings are
described.

A. Fermionic systems

Consider an N -mode fermionic system in second quan-
tization described in terms of N creation and annihilation
operators, {a†

i }i=0,...,N−1 and {ai}i=0,...,N−1, which fulfill the
usual canonical fermionic anticommutation relations

{ai, aj } = {a†
i , a†

j } = 0 and {a†
i , aj } = δij1. (1)

The creation and annihilation operators act on F(CN ), the
Fock space belonging to an N -dimensional one-particle
space. This is a 2N -dimensional Hilbert space spanned
by the fermionic vacuum |vacf 〉 and the vectors obtained
by applying subsets of fermionic creation operators; this
orthonormal basis, also called the Fock basis, can be
denoted as

|n0, n1, . . . nN−1〉 :=(a†
0)

n0(a†
1)

n1 · · · (a†
N−1)

nN−1 |vacf 〉 ,
(2)

where nj ∈ {0, 1} are the so-called occupation numbers of
mode j and the notation (a†

j )
0 = 1 is used. The fermion-

number operator for mode j is given as n̂j = a†
j aj . It is easy

to show that the Fock basis states are eigenstates of these
local fermion-number operators with eigenvalue given
by the occupation numbers, e.g., n̂0 |n0, n1, . . . nN−1〉 =
n0 |n0, n1, . . . nN−1〉.

Besides the fermionic creation and annihilation oper-
ators, another useful set of generators for the fermion
observables are the 2N Majorana operators {mk}k=0,...,2N−1,
defined as

m2j = a†
j + aj and m2j +1 = i

(
a†

j − aj

)
, (3)

which are unitary, self-adjoint, and obey the Majorana
anticommutation relations

{mi, mj } = 2δij1. (4)

Any fermionic observable can be uniquely expressed as a
linear combination of Majorana monomials mx0 · · · mxj . In
particular, the number operator for mode j is n̂j = 1

2 (1 +
im2j m2j +1).

B. Jordan-Wigner transformation and general
fermion-to-qubit mappings

The fermionic Fock space F(CN ) and the Hilbert space
of N qubits (C2)⊗N are both 2N -dimensional Hilbert
spaces; thus one can map one into the other unitarily. A

very natural unitary mapping is to map the Fock basis
states of F(CN ) to the computational basis states of the
qubits such that the occupation number of the j th fermionic
mode matches with the state of the j th qubit [19]:

F(CN )� |n0, n1, . . . , nN−1〉 �→
N−1⊗
i=0

|ni〉 ∈(C2)⊗N . (5)

On the operator level, this correspondence induces a linear
mapping between the corresponding observable algebras
given by

m2j �→ Xj

j −1∏
k=0

Zk, (6)

m2j +1 �→ Yj

j −1∏
k=0

Zk, (7)

for j = 0, 1, . . .N − 1. Here and in the rest of the paper,
we use the notation Pj with P ∈ {X , Y, Z} for an operator
that acts as the Pauli operator P on the j th qubit and as
identity on the other qubits.

In general, a unitary mapping between the fermionic
and qubit Hilbert spaces induces a linear mapping on the
corresponding observable algebras such that

mk �→ Rk, k = 0, . . . 2N − 1,

(i) the Rk are algebraically independent,

(ii) {Rk, R�} = 2δk�1. (8)

Conversely, any linear mapping between the fermionic and
qubit observable algebras satisfying the properties (i) and
(ii) in Eq. (8) defines uniquely (up to a global phase factor)
a unitary mapping between F(CN ) and the Hilbert space
of N qubits (C2)⊗N . This unitary mapping between the
two Hilbert spaces can be constructed as follows. Since
the fermionic vacuum state |vacf 〉 is the unique vector
(up to a scalar factor) satisfying the relations aj |vacf 〉 =
1
2 (m2j + im2j +1) |vacf 〉 = 0 for all j = 0, . . . , N − 1, the
vacuum state is mapped to the state |ψ〉 which satis-
fies that 1

2 (R2j + iR2j +1) |ψ〉 = 0 for all j = 0, . . . , N − 1
(note that such a |ψ〉 is unique up to a phase factor). Any
other Fock basis vector a†

j0a†
j1 . . . a

†
j� |vacf 〉 is mapped to

1
2 (R2j0−iR2j0+1)

1
2 (R2j1−iR2j1+1) · · · 1

2 (R2j�−iR2j�+1) |ψ〉.

C. Majorana-string mappings

When it comes to mapping fermionic systems to qubit
systems, the Pauli basis suggests a path: finding a suitable
set S of 2N Pauli strings (i.e., products of Pauli opera-
tors) Sk (k = 0 . . . 2N − 1) fulfilling the anticommutation
{Si, Sj } = 2δij1. For this approach to result in a proper
fermion-to-qubit mapping, the Pauli strings in S must also
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be linearly and algebraically independent. Linear inde-
pendence is trivially satisfied if all the strings differ but
algebraic independence is more subtle. This means that it
must not be possible to find two different subsets A ⊆ S
and B ⊆ S , A �= B, such that

∏
Si∈A Si ∝ ∏

Sj ∈B Sj , given
that the corresponding products of Majorana operators in
fermion space result in distinct operators. Throughout this
work, we use the term Majorana strings to refer to the
Pauli strings within a set S satisfying these conditions.

Summarizing the above, in this paper we consider so-
called Majorana-string fermion-to-qubit mappings, which
are linear mappings between the fermionic and qubit sys-
tem observable algebras that satisfy the following crite-
ria:

(a) Criterion (A). Each Majorana operator is mapped to
a Pauli string, mj → Sj ∈ S for j = 0, . . . , 2N − 1.

(b) Criterion (B). The above Pauli strings satisfy
{Si, Sj } = 2δij1.

(c) Criterion (C). For any unequal subsets A ⊆ S and
B ⊆ S , A �= B,

∏
Si∈A Si ∝ ∏

Sj ∈B Sj is not fulfilled.

Furthermore, one often considers Majorana-string fermion-
to-qubit mappings that satisfy an additional criterion:

(a) Criterion (D). Vacuum preservation: the fermionic
vacuum is mapped to the all-zero computational
basis state, i.e., |vacf 〉 �→ |0〉⊗N .

Mappings that satisfy criterion (D) in addition to crite-
ria (A)–(C) are called vacuum preserving Majorana-string
fermion-to-qubit mappings.

Consider a Majorana string Sj that is (up to a phase fac-
tor) a product of (nonidentity) Pauli operators over a subset
of sites Aj ⊂ {0, . . . , N − 1}. We call Aj the support of
Sj . Let Aj and Ak be the supports of Sj and Sk, respec-
tively. We call Aj ∩ Ak the overlapping sites of Sj and Sk.
The subset of Nj ,k ⊆ Aj ∩ Ak, where the local Paulis corre-
sponding to the Majorana strings Sj and Sk are different,
is called the nontrivial overlapping sites of Sj and Sk.
As any two Majorana strings anticommute, the number of
nontrivial overlapping sites of any pair of Majorana strings
must be odd. Given a Majorana-string fermion-to-qubit
mapping, let k be the maximum of this odd number con-
sidering all the pairs of Majorana strings. We call such a
mapping a k-non-trivial-overlap (k-NTO) Majorana-string
fermion-to-qubit mapping. Most of the known fermion-to-
qubit mappings (e.g., JW, BK, and parity) are 1-NTO, but
non-1-NTO mappings also exist (see Appendix A).

III. MAPPINGS ORIGINATING FROM GENERAL
TERNARY TREES

In this subsection, we explore the correspondence
between a certain class of graphs, called ternary trees

(TT), and vacuum-preserving fermion-to-qubit mappings.
As mentioned previously, the connection between the two
has been established before [30,31]. In Ref. [30], the
minimum-depth TT is used to find a fermion-to-qubit map-
ping with optimal Pauli weight. Inspired by that work,
we now extend the TT formalism and show that any TT
can result in a valid mapping, the properties of which can
be directly connected to the graph-theoretical properties
of the tree. This connection is explored more carefully
in Sec. III A. Moreover, the mapping-generating method
introduced here guarantees that, for any sampled mapping,
the fermionic vacuum is mapped to the all-zeros qubit state
and Fock basis states are mapped to computational basis
states; we refer to this property as product preservation.

A. Ternary trees

It is useful for this section and the next one to start
by reviewing some graph-theoretic concepts. A graph is
a pair G = (V, E), where V is a set of vertices or nodes and
E ⊆ {

(x, y) | (x, y) ∈ V2, x �= y
}

are the edges, or links,
which are sets of paired vertices. We consider undirected
graphs, meaning that (x, y) ∈ E ⇒ (y, x) ∈ E. A length-�
path p in a graph is a length-� ordered sequence of vertices
p = {p0, p1, . . . , p�−1} such that any pair of consecutive
vertices in the sequence are connected in the graph, i.e.,
for every l < �, (pl−1, pl) ∈ E. We call a graph G con-
nected if, for any pair of vertices u, v, there exists at least
one path p with u and v as endpoints. In any such graph
G, the path structure induces a well-defined metric dis-
tance d(u, v) between all pairs of vertices, defined as the
length � of the shortest path (or paths, as they may not be
unique) with the two vertices as endpoints. It can be eas-
ily shown that the set of distances d(u, v) define a proper
metric space, given that they are positive, symmetric, zero
if and only if u = v, and they fulfill the triangle inequality,
d(u, v) ≤ d(u, w)+ d(w, v), ∀u, v, w ∈ V.

The path structure also allows us to define a special kind
of graph, the tree. A tree T is a graph that contains no
loops, i.e., for which there are no paths p containing any
node more than once. It is a fact that any connected N -node
tree contains exactly N − 1 edges and that any connected
undirected graph with N − 1 edges is a tree. It is also useful
to define the degree of a node u as the number of edges
reaching u,

�(u) = |{v ∈ V | (u, v) ∈ E}|. (9)

With these definitions at hand, we can introduce the TT.
Essentially, a TT is a tree in which the branching rate is at
most three, i.e., each node has at most three descendants.
To explain this concept more precisely, let us describe a
process in which a TT is built by adding nodes sequen-
tially. First, we start with a single node, the root r. Next,
we add kr ≤ 3 nodes to the graph and connect each of them
to the root r. The root now has degree �(r) = kr. Next,
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FIG. 1. An example of a mapping derived from a ternary tree.
The black lines represent the edges, which always connect two
qubits, while the legs are depicted in red. Throughout this paper,
we always represent the Pauli labeling on the links (both edges
and legs) by their position: the leftmost link below a node is
labeled with an X , while the rightmost link is labeled with a Z.
Every leg in the tree can be associated with a Pauli string by fol-
lowing the path from the root node (0, in this case) to the leg.
Every time a link with label P stemming downward from a qubit
u is crossed, the operator P acting on qubit u is added to the
string. The resulting string acts trivially on all qubits not vis-
ited along the path. For example, with the tree in the figure, the
leg labeled with S0 generates the string S0 = X0Z1, while S1 =
Y0Z2Z8Z10. The green lines depict the pairing between Majorana
strings that guarantees product preservation. Note that following
the upward paths starting from the two legs of any such pair, the
two paths meet at a qubit u once they both cross their first link
not labeled with a Z. In the previous example with strings S0 and
S1, this corresponds to the root node 0.

for each of these new nodes (descendants of r) u, we add
0 ≤ ku ≤ 3 nodes, which connect to u. The process can be
iterated until the graph contains N nodes. Note that since
each time we add a node, we add one link along with it, the
total number of edges will be N − 1 (this observation also
shows why the resulting graph is a tree: it is not possible to
close any loops in the graph by connecting one new node to
a single existing one only). Any node without descendants
is denoted leaf throughout this work.

B. From ternary trees to fermion-to-qubit mappings

The starting point of this work is the observation that,
following a simple procedure introduced in Refs. [30,31]
for specific TTs, any N -node TT can be used to generate
valid fermion-to-qubit mappings. We now explain this pro-
cedure and show its generality. The scheme is illustrated in
Fig. 1, where we present an 11-qubit example.

Suppose that we have an N -qubit system that we want to
use to simulate an N -mode fermionic system. Without loss
of generality, in what follows we label each qubit with an
integer number u = 0, . . . , N − 1. To generate a fermion-
to-qubit mapping, we first generate an N -node TT by, e.g.,
following the iterative procedure introduced previously.
Next, we assign a qubit label u to each node. Different
assignments will lead to different mappings (a degree of
freedom that can be exploited) but any such labeling is

admissible. In the example (Fig. 1), this corresponds to the
tree with blue nodes and black edges.

The next step in the process is to add 3 − ku legs, i.e.,
edges without a node at the other end of the link, to each
node u, where ku is the number of descendants of u. Note
that kr = �(r) for the root r, while ku = �(u)− 1 for all
other nodes as �(r) ≤ 3 and �(u) ≤ 4. These are the red
links in Fig. 1. Importantly, doing this will result in 2N +
1 legs for any tree. To see this, let us denote the number
of legs by L. Every node except the root is now reached
by four links (a term that we use in this work to refer to
both edges in the original tree and legs), while the root
is reached by three. Thus, if we sum all the new degrees
(including legs) for all the nodes, we obtain F = 4N − 1.
In this sum, we count each of the edges in the original tree
twice (once per each node at its endpoints), while the legs
are counted only once. Hence, we have F = |E| + L, with
|E| = 2(N − 1) (since each edge is contained twice in E),
so L = 2N + 1.

Once the legs have been added and every node has
exactly three descending links (either edges or legs), we
distribute the labels X , Y, and Z among said three links of
each node. In order to ease the graphical depictions of the
trees in this work, the leftmost link implicitly carries the
label X , the central Y, and the rightmost one, Z, as in Ref.
[30].

With this labeling of nodes, edges, and legs, the tree can
be used to generate Pauli strings in the following manner.
For every leg, there exists a unique path leading from it
to the root r. The path only includes one leg, the starting
one, and it may cross some edges as well. With every link
in the path, we can associate a unique Pauli matrix, Pu,
where u is the parent node reaching the link, and P is the
label X , Y, or Z, corresponding to the link. The Pauli string
is therefore formed by taking the tensor product of these
Pauli operators, along with identity on nodes not along the
path. Since every path results in a different Pauli string, this
procedure generates 2N + 1 strings for N qubits.

Importantly, all these Pauli strings anticommute with
one another. This can be seen by considering two Pauli
strings Si and Sj stemming from two different legs in the
tree. The two paths corresponding to the legs must meet,
i.e., when traversing them upward toward the root, they
must have a first node in common (which may be the root
itself). If the first common ancestor to both legs is not
the root, both paths from that node upward are equal and
hence both Si and Sj contain the same Pauli operators for
those qubits. The first common ancestor, on the other hand,
must be reached following two different descendants of
said node, so the Pauli matrices for that qubit in the strings
are distinct and both different from identity (what we refer
to as nontrivial overlap). If the legs are not directly con-
nected to their common ancestor, their paths include other
nodes lying below the latter in the tree. However, note
that, by definition of a first common ancestor, those nodes

030314-5



AARON MILLER et al. PRX QUANTUM 4, 030314 (2023)

cannot be present in both paths and hence one of the strings
must act trivially on each such qubit. In short, Si and Sj
have a single-qubit nontrivial overlap, i.e., for every qubit
different from the aforementioned first common ancestor,
the corresponding Pauli matrices are either both equal or
at least one of them is equal to the identity.

Since all the 2N + 1 resulting Pauli strings are different,
they are obviously linearly independent but they are not
algebraically independent. In particular, any two disjoint
subsets of strings A and B, A ∩ B = ∅ such that A ∪ B is the
whole set of strings fulfill

∏
Si∈A Si ∝ ∏

Sj ∈B Sj . However,
as we prove in Appendix B, any subset missing at least
one Pauli string is algebraically independent. Therefore, by
dropping any of the strings, the remaining 2N ones can be
readily identified with the 2N Majorana operators associ-
ated with the N -mode fermionic system, thus defining a
valid fermion-to-qubit mapping.

C. Majorana-string pairing for product preservation

The previous discussion illustrates how any N -node
TT can be used to obtain N -mode mappings. While any
association between the generated Pauli strings and Majo-
rana operators results in a legitimate mapping, not all are
equally useful in practice. Many applications of fermion-
to-qubit mappings require that at least some reference state
(e.g., the vacuum) be known in qubit space. In near-term
quantum computing, for instance, it is also desirable that
Fock basis states be mapped to computational basis states.
We now provide a simple recipe to enforce this product-
preservation feature of the map, including guaranteeing
that the fermionic vacuum is mapped to the state |0〉⊗N .

First, let us introduce the concept of pairing. Accord-
ing to Eq. (3), there are two Majorana operators, m2j and
m2j +1, associated with every fermionic mode j . Therefore,
after identifying Majorana strings with Majorana oper-
ators, every creation and annihilation operator a(†)j will
be associated with two Pauli strings. The key to product
preservation lies in how the Pauli strings are paired into
fermionic modes.

Let the set of Majorana strings be the set obtained by
removing the Pauli string corresponding to the path that
only involves links with label Z and consider the following
pairing algorithm. For every node u in the TT, follow its
downward link labeled with X . If the link is not a leg, keep
traveling downward, always taking the Z links, until a leg
is reached. Denote the leg by s(u)x . The same procedure,
starting from the link with label Y, will lead to a different
final leg s(u)y . The two Pauli strings Ss(u)x

and Ss(u)y
should

then be paired together into some fermionic mode j , i.e.,
one of them should be identified with m2j and the other
one with m2j +1. These pairings are illustrated with green
lines in Fig. 1. The simplest identification corresponds to

the mapping

m2j ↔ Ss(u)x
and m2j +1 ↔ Ss(u)y

(10)

but it is worth mentioning that it is also possible to ensure
that the mapped creation and annihilation operators are real
in qubit space by associating with m2j the Pauli string that
contains an even number of Y operators and with m2j +1
the one containing an odd number of them. However, for
the sake of simplicity, we only consider the first type of
identification explicitly throughout this work. Importantly,
note that the identification between modes j and qubits u
in Eq. (10) implicitly establishes a bijection between the
two sets.

By inverting Eq. (3), we see that the fermionic creation
and annihilation operators are mapped into qubit space
according to

a†
j = 1

2
(m2j − im2j +1) ↔ 1

2

(
Ss(u)x

− iSs(u)y

)
,

aj = 1
2
(m2j + im2j +1) ↔ 1

2

(
Ss(u)x

+ iSs(u)y

)
. (11)

From these expressions, it is possible to show that the
fermionic vacuum is represented by the qubit state |0〉⊗N .
To do so, consider the two Pauli strings S′

s(u)x
and S′

s(u)y
obtained by substituting the Z operators on the qubits that
lie below u on the tree (if any) with identity. Clearly,

1 Choose a bijection f between modes j and qubits u,
j = f(u).

2 Let V be the set of qubits in the tree.
3 for u ∈ V do
4 Define s as the X-labelled downward link

stemming from u.
5 while s not a leg do
6 Define v as the qubit reached following s

downwards.
7 Define s as the Z-labelled downward link

stemming from v.

8 Set s → s
(u)
x .

9 Define s as the Y -labelled downward link
stemming from u.

10 while s not a leg do
11 Define v as the qubit reached following s

downwards.
12 Define s as the Z-labelled downward link

stemming from v.

13 Set s → s
(u)
y .

14 Remove the unpaired right-most Z-leg from the tree.
15 Create mode operators aj and a†

j using Eq. (11) with
j = f(u).

16 Return mapped mode operators.

Algorithm 1. Pairing scheme.
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S′
s(u)x

and S′
s(u)y

are equal except for the Pauli operator act-

ing on qubit u, which implies that S′
s(u)x

+ iS′
s(u)y

contains

Pauli operators on all qubits except for u, where it contains
a 2P− = X + iY operator. Moreover, since S′

s(u)x
|0〉⊗N =

Ss(u)x
|0〉⊗N , and similarly for S′

s(u)y
,

(
Ss(u)x

+ iSs(u)y

)
|0〉⊗N = 0. (12)

A similar argument for the creation operator can be used
to show that (Ss(u)x

− iSs(u)y
) |0〉⊗N is proportional to a com-

putational basis state: since (Ss(u)x
− iSs(u)y

) |0〉⊗N = (S′
s(u)x

−
iS′

s(u)y
) |0〉⊗N , its action is to flip the state of qubit u from |0〉

to |1〉, as well as possibly to flip any other qubits above u in
the tree for which the traversed links are labeled with an X
or a Y. In Appendix C, we extend this argument to prove
that any Fock basis state is mapped into a computational
basis state in qubit space.

After application of this pairing scheme, the j th mode
operators take the form

aj �→ 1
2

⎛
⎝Xu

∏
k∈Zx

u

Zk + iYu

∏

k∈Zy
u

Zk

⎞
⎠ Gu,

a†
j �→ 1

2

⎛
⎝Xu

∏
k∈Zx

u

Zk − iYu

∏

k∈Zy
u

Zk

⎞
⎠ Gu, (13)

where Zx
u and Zy

u are sets of qubits that Ss(u)x
and Ss(u)y

act
nontrivially on below qubit u in the tree and Gu is a com-
mon Pauli string that we can factor out. The sets Zu

x/y may
be empty, in which case the operator reduces to a similar
form to the JW mapping, a(†)i → P±

u Gu, where Gu enforces
fermionic antisymmetry with other qubits analogous to the
Z chain. This equation is graphically understood as Gu

being the common path of S(u)x/y from the root to qubit u
and sets Zx/y

u are qubits along the Z paths bifurcating from
the X /Y legs of qubit u.

D. Properties of the mappings and the effect of labeling

In the construction of a TT mapping, there are two main
degrees of freedom: the tree and the labeling. In this sub-
section, we briefly discuss how the properties of these
elements impact the resulting mappings.

An important feature of a fermion-to-qubit mapping is
its Pauli weight. The Pauli weight of a Pauli string is
defined as the number of qubits on which the string acts
nontrivially (i.e., with a Pauli operator different from iden-
tity). In the case of a mapping, this refers to the Pauli
weight of the strings of the mapped fermionic operators.

In the case of TT mappings, this can be easily analyzed
by considering the Majorana strings. More concretely, note
that the Pauli weight of a Majorana string generated from
a TT is precisely the length of the corresponding path from
root to leg. Thus, there is a straightforward connection
between the Pauli weight of the mapping and the average
shortest path length to the root in the tree. More generally,
the topology of the tree impacts the sets of qubits involved
when applying creation or annihilation operators but not
how (i.e., by which Pauli operators).

The labeling, instead, has a more subtle impact on the
resulting map. While it cannot affect the average Pauli
weight of the resulting Majorana strings, it impacts how
the occupation of the fermionic modes is delocalized over
qubits. More precisely, consider the number operator nj =
a†

j aj for a fermionic mode j in qubit space. Using Eq. (11),
we see that

nj = 1
2

(
1 + im2j m2j +1

) ↔ 1
2

(
1 + iSs(u)x

Ss(u)y

)
. (14)

Since the two Pauli strings Ss(u)x
and Ss(u)y

are equal on all
qubits above u in the tree, the product on the right-hand
side results in the identity operator for those. On u, on
the other hand, the product yields XY = iZ. For the qubits
below u in the strings, however, one string acts with a Z
operator while the other one acts with identity. Therefore,
if we define the set Zu of qubits below u on which Ss(u)x

and
Ss(u)y

act nontrivially and include u itself too, we have

nj = a†
j aj ↔ 1

2

⎛
⎝1 −

∏
q∈Zu

Zq

⎞
⎠ , (15)

i.e., the occupation of a mode j is encoded in the parity
of the state of the qubits in Zu. Now, given a qubit u with
edges directly below itself, the choice of label for each of
these edges will generally affect the structure of sets {Zu}u
in the resulting mapping and, with it, its delocalization
structure.

To analyze this in an illustrative manner, let us introduce
a convenient definition of mode-specific delocalization Du
in terms of the qubit u the mode is associated with in a
mapping,

Du = |Zu| − 1. (16)

Now, consider a generic example in which a node i, which
is not the root, has two descendants j and k (see Fig. 2).
Nodes j and k themselves may have descendants. Suppose
that we add legs to all qubits and we label all links in the
resulting tree except for the three links stemming down-
ward from i. The question is then how those three links
should be labeled. Of course, there are three possibilities
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(a) (b)

FIG. 2. The effect of edge labeling below a node i. Its two
descendants, j and k, both have descendants and the all-Z paths
underneath them have length Lj and Lk, respectively. We assume
that all links in the tree except for the ones right below i have
the same label in both (a) and (b). In (a), both paths contribute
to occupation delocalization of the mode associated with i, while
in (b), only the path below j does. In (b), the path of length Lk
may contribute to the delocalization of some other mode unless
the path from i to the root only crosses Z-labeled edges.

(three labels to be distributed among three links) but since
swapping X ↔ Y labels between two links stemming from
the same node has a simple impact on the mapping (switch-
ing the roles of Ss(u)x

and Ss(u)y
), the only two situations to be

discussed are whether the Z label should be assigned to an
edge or the leg.

In the left figure, we depict the case in which the leg is
assigned the Z label and the two edges X and Y. In this
case, Zi contains i and all the nodes in the Z strings lying
below j and k, which in the example have length Lj and Lk,
respectively. Therefore, the occupation of the mode associ-
ated with qubit i is delocalized among Di = Lj + Lk qubits.
In the opposite case, in which the Z label is assigned to one
of the edges, on the other hand, one of the two Z strings no
longer contributes to the delocalization of node i. In the
illustration, we have Di = Lj , i.e., the occupation of the
mode is less spread in the second case.

However, note one important fact: assume that we fol-
low the path from i upward toward the root r until we
reach an edge labeled with an X or a Y and let us call u
the node reached by traversing that edge. In the latter case
(right-hand side of the figure), the Z string along qubit k is
now part of one of the Z strings directly below qubit u. In
other words, while the delocalization of the mode associ-
ated with i decreases by an amount Lk, the delocalization of
the mode associated with u increases by the same amount.
Therefore, under this assumption, the labeling cannot affect
the average delocalization of the mapping but only its dis-
tribution among the qubits. Crucially, if the path from i to
r only crosses Z-labeled edges, this is no longer true and
the second labeling does not increase the delocalization of
any other mode.

From the above discussion, we can draw a very useful
overall conclusion regarding the delocalization structure

of a mapping: the average delocalization among nodes is
given by

〈Du〉 = 1 − hZ

N
, (17)

where hZ is simply the number of nodes that can reach
the root node r by traversing only Z-labeled edges, includ-
ing the root itself. This can be seen as follows. If a node
i cannot be traced back to the root following Z-labeled
edges, the path toward r must cross an X - or Y-labeled
edge attached to some node u and thus i contributes one
unit to the delocalization of node u. Therefore, the sum
of all delocalizations must be equal to the number of
nodes not in the Z-labeled path, i.e.,

∑
u Du = N − hZ .

This observation implies that in order to minimize the
delocalization of the modes, which may be a desirable
property of a fermion-to-qubit mapping [33], we must
maximize the number of nodes along the Z-only path.
Interestingly, since hZ ∈ {1, . . . , N }, the average delocal-
ization is bounded 〈Du〉 ∈ [0, 1 − 1/N ], i.e., on average,
the occupation of the fermionic modes is stored in less than
two qubits, 〈|Zu|〉 ∈ [1, 2 − 1/N ].

E. The ternary trees of paradigmatic mappings

It is illustrative to analyze paradigmatic fermion-to-
qubit mappings in this context. In particular, the JW, BK,
and parity mappings and obviously the optimal mapping
from Ref. [30] (JKMN) are all 1-NTO and can be gen-
erated from TT. In Fig. 3, we depict their corresponding
trees. By analyzing their graph topologies,and following
the insights from the previous discussion, we can easily
understand their main properties.

Both JW and parity are given by linear graphs. Since
these are depth-N trees, the Pauli weight of the resulting
Majorana strings is O(N ). However, their occupation delo-
calization is different. JW is an extreme case, given that all
nodes are in the Z-labeled path and thus has average delo-
calization 〈Du〉 = 0; this is the only possible TT mapping
with no delocalization. In the case of parity, the occupation
is maximally delocalized, with each occupation encoded
between two consecutive nodes in the chain, except for the
last qubit, in which it is fully localized.

BK and JKMN, on the other hand, are generated by trees
with constant branching rates 2 and 3, respectively. There-
fore, their depths, and hence the resulting Pauli weights,
scale as O(log N ), with JKMN having a smaller depth
owing to its higher branching rate (in fact, the authors
prove the optimality of the Pauli weight of their mapping
in Ref. [30]). In both cases, however, the price to pay is
the delocalization of the occupation. More precisely, note
that the higher up the tree the common ancestor of a given
pairing is, the more Z links are involved in the resulting
Majorana strings. Thus, only the lowest-lying nodes lead
to completely localized modes.
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(a) (b)

(c) (d)

FIG. 3. Ternary trees generating four paradigmatic mappings. (a) JW, (b) parity, (c) BK, and (d) JKMN mapping. From the analysis
presented throughout Sec. III D, we can see that both JW and parity have linear-scaling depth, and hence Pauli weight, while BK and
JKMN have O(log2 N ) and O(log3 N ) scaling, respectively. Regarding the delocalization, it can be seen that JW minimizes it, while
BK and parity have no nodes other than the root in the all-Z branch. JKMN has a nonminimal all-Z branch including O(log3 N ) nodes
and hence is nearly maximally delocalized for large N .

IV. GROWING HARDWARE-EFFICIENT
MAPPINGS WITH THE BONSAI ALGORITHM

Ternary tree mappings can be used as a tool for the
design of custom fermion-to-qubit mappings. The frame-
work introduced in Sec. III is general and can help find
mappings with specific desired properties by tailoring the
trees according to different cost functions. In what follows,
we introduce an algorithm to produce mappings aimed at
reducing the complexity of fermionic simulations on quan-
tum computers by minimizing the impact of limited qubit
connectivity in the quantum processor. We start this section
by briefly introducing the problem and we then present
the Bonsai algorithm along with an illustrative and impor-
tant use case: heavy-hexagon qubit lattices, the topology
of choice for current IBM quantum computers.

A. Fermionic simulation under limited-connectivity
constraints

The simulation of fermionic many-body systems is one
of the most promising applications of quantum computing,
both in the near term and in the fault-tolerant era. Many
of the existing algorithms work in second quantization and
thus typically require mapping the fermionic operators into
qubit space. Fermionic operations are then mapped to uni-
tary gates among the qubits in the device. However, many
platforms (such as superconducting qubits) have limited
connectivity, meaning that many pairs of qubits in the pro-
cessor cannot physically interact directly. Thus, when a
quantum gate involves qubits that are not physically con-
nected, SWAP gates are iteratively applied so that the states
of distant qubits are transported to neighboring ones and
the gate is then applied. While this is always possible in

theory, in practice, the additional SWAP gates increase the
circuit complexity, which results in longer run times and,
consequently, an increased detrimental effect of noise.

In order to illustrate how limited connectivity impacts
the circuit complexity, let us consider a minimal exam-
ple with four fermionic modes simulated with four qubits
on two different platforms, one with linear connectivity
(the physical-connectivity graph being a one-dimensional
chain) and a second one with starlike connectivity (three of
the four qubits connected to the fourth and no other con-
nections). Both are depicted in Fig. 4. We now map four
fermionic modes to these qubits using JW and TT map-
ping. For the latter, we consider the specific situation in
which the ternary tree is congruent with the connectivity
graph of the qubits: qubit 0 is the root and the other three
qubits are its descendants.

We now examine the simulation of the even-even Majo-
rana terms, m2im2j for i �= j , arising from single-excitation
terms, a†

i aj . The resulting six Pauli strings are tabu-
lated in the figure. In many applications, these terms
must be exponentiated and implemented as rotations, i.e.,
exp −iθm2im2j . This requires entangling gates between the
qubits not acted upon by an identity in the correspond-
ing Pauli string. As explained above, if two such qubits
are not neighbors in the physical-connectivity graph of the
device, SWAPs must be applied. Figure 4 highlights the
qubits involved in implementing the rotations. The SWAP
overhead is indicated by thin lines skipping over the qubits.

In Fig. 4, we observe that with TT and linear connec-
tivity, three operators, m0m6, m2m6, and m4m6, involve
all four qubits even though the actual Pauli strings only
act on three qubits each. The JW mapping, on the other
hand, is more congruent with the underlying connectivity.
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Ternary tree

FIG. 4. Qubit operators resulting from the product of two even Majorana operators, m2im2j , implemented on a linear and a clustered
topology. The operators are mapped to qubit space using JW and a four-qubit TT mapping in which the root has degree 3. Each
product of Majorana operators yields a Pauli string, which is written explicitly in the leftmost column of each mapping. The red (blue)
highlight corresponds to qubits on which the Pauli strings act nontrivially. A highlighted line skipping over qubits denotes ones that
are not present in the strings but are involved in the cascade of SWAP gates.

In the large-N limit, the regular TT mapping presents an
advantage in terms of Pauli weight with respect to JW (the
former scales as O(log3 N ), while the latter as O(N )) so,
in principle, each such rotation would involve many fewer
qubits. However, the SWAP overhead with limited connec-
tivity reduces the Pauli-weight advantage for the regular
TT (and similarly for BK) and a number of controlled-NOT
(CNOT) gates equivalent to JW may typically be required.
In the case of star-graph connectivity, on the other hand,
the TT mapping never requires SWAPs, as opposed to
JW, and moreover, no operation involves more than three
qubits.

This simple example illustrates why limited connectiv-
ity can be an issue for the implementation of fermionic
operations and also that the right choice of mapping—in
particular, one that is congruent with the underlying con-
nectivity—can help mitigate the overhead.

B. The Bonsai algorithm

In this section, we introduce an algorithm to gener-
ate custom fermion-to-qubit mappings tailored to device-
specific connectivity graphs. More precisely, the problem
is, given a quantum processor, to find a mapping such
that: (1) it is product preserving, (2) the resulting Pauli
weight is low, and (3) the mode occupancy is local in
qubit space. The first condition is satisfied by appropri-
ate pairing as described in Sec. III C. The second and third
points are suitably satisfied by finding a ternary tree that
is a subgraph of the physical-connectivity graph (or close
to one) and then exploiting the labeling freedom to define
how the mode occupancy is distributed over qubits in a
rational manner. In the following, we present this heuristic

strategy in detail and illustrate it with an important appli-
cation: designing mappings for heavy-hexagon quantum
computers. The steps of the algorithm are summarized in
Algorithm 2, while the specific subroutines are described
in detail in Appendix D.

1. Finding the ternary tree

The input of the Bonsai algorithm is a physical-
connectivity graph P = (VP , EP), in which the nodes are
the qubits in the processor and the edges represent the
pairs of qubits onto which it is possible to physically
apply entangling gates. In Fig. 5(a), we depict the physical-
connectivity graph P of a 37-qubit heavy-hexagon com-
puter. Now, the strategy to minimize the SWAP overhead
is to find a TT, T = (VT , ET ), that is congruent with the
topology of P . More precisely, suppose that T is a sub-
graph of P (i.e., VT = VP and ET ⊆ EP ). Then, any path
from the root to leaf in T is a path in P and, conse-
quently, no SWAPs are required to apply a gate generated
by a Majorana string. A similar argument can be used for
gates generated by single-excitation operators.

A tree subgraph T that spans all the nodes in a graph
P is called a spanning tree (ST). If P is a tree itself, then
the choice of ST is unique. A general graph, however, may
have several STs. A degree-�-constrained ST is one such
tree that has no vertices with a degree greater than �. In
our case, since we need the subgraph T to be a ternary tree
in order to define a mapping, all nodes but one must be
at most degree 4 and the root degree 3. This implies that
it is not always possible to find such a tree (e.g., if P is
a tree but not degree-� constrained with � ≤ 4). More-
over, even if a degree-4-constrained tree subgraph exists,
finding it is generally hard (in fact, simply determining
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(a) (b) (c)

FIG. 5. (a) The connectivity graph of a 37-qubit heavy-hexagon processor. (b) The unfolded tree, illuminating how the paths of the
tree follow the hardware topology in order to create a hardware-efficient mapping. The coloring of vertices indicates where the three
initial branches from the root qubit unfold to. (c) The same tree as in (b), folded in the layout used in the rest of this work.

whether there is one is an NP-complete problem [40]). For
our purposes, if T is not an ST of P , it can neverthe-
less define a proper fermion-to-qubit mapping, although
in such case some SWAPs may be needed to implement
Majorana-generated unitary gates. Therefore, we propose
using a greedy heuristic to find a TT that is close to a span-
ning tree and is in fact guaranteed to find an ST for some
specific topologies. The routine is explained precisely in
Appendix D (Algorithm 3).

The idea is to start by defining T = (VT , ET ), with
empty VT and ET , and grow the tree iteratively. First,
choose a node to be the root r of the TT and define L0 = r.
The choice of the root has an impact on the resulting Pauli
weight and average delocalization of the mapping, as is
discussed later on; we now choose it to be central in P
(i.e., such that it minimizes the distance to its furthest node,
r = argminu maxv d(u, v), where d(u, v) is the topological
distance between nodes u and v in P). In Fig. 5(b), this is
the pale blue central node. Next, define an empty set L1,
and add to it min(�(r), 3) neighbors of r in P . For every
node u that is added, add the link between r and u to ET .
Note that r may have degree �(r) > 3. In that case, the
choice is not unique. For simplicity, we suggest choosing
three of them randomly. Then, the process is repeated for
each node in L1: define L2 = ∅ and add to it up to three
neighbors of each node in L1 that have not yet been added,
i.e., not in L0 ∪ L1 ∪ L2, and the corresponding links to
ET . By iterating this process, at some point, all neighbors
of all nodes in LL for some L are added to some Li, so
the procedure must stop. Now, let VT = ⋃

i=1,...,L Li. If
VT = VP , we find a degree-4-constrained ST of P . Note
that this procedure succeeds with heavy-hexagon lattices,
as shown in Figs. 5(b) and 5(c).

If the above procedure does not span all the qubits in
P , we need to add the remaining nodes in VP \ VT to T
according to some criterion. Note that it is always possible

to include these nodes in T through “virtual edges” that
connect physically detached nodes at the expense of SWAPs
in the compilation. In order to minimize the resulting SWAP
overhead, a good strategy is to try to minimize the physical
topological distance between qubits connected in T . This
can be achieved following a greedy criterion: for every
node u in VP \ VT , find amongst the nodes v in VT with
a downward degree less than 3 in T the ones that mini-
mize the distance d(u, v) in P , and connect u to one of
them.

It is worth noting a few aspects of this method. On
the one hand, since at each step in the first part of the
algorithm we add as many neighbors of each node as the
topology allows, we are implicitly minimizing the depth of
the resulting tree. Indeed, note that if the physical device is
all-to-all connected, then the resulting graph is the TT from
Ref. [30] with optimal depth O(log3 N ). In the case of the
heavy-hexagon topology, the greedy algorithm succeeds in
finding degree-constrained spanning trees with depth scal-
ing as O(

√
N ), i.e., with quadratically lower Pauli weight

than JW. This latter point can be seen through geometric
arguments: the number of qubits at a given topological dis-
tance smaller than R from a chosen root node r scales as
R2. On the other hand, if the connectivity graph is a chain,
the algorithm, as presented above, would choose as root r
a node in the center of the chain. While this would lead
to a mapping with Pauli weight lower than JW, the occu-
pation would be more delocalized than in the latter case.
Instead, if one is interested in minimizing delocalization, a
better choice of the root is a node that lies on an extreme
of a diameter of P (i.e., one of its longest shortest paths),
so that the edges along the longest shortest path can be
later labeled with Z, hence maximizing hZ . In such a case,
JW would be obtained for a chain. In general, this trade-
off between Pauli weight and delocalization can be easily
controlled with the choice of the root node.
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(a) (b)

FIG. 6. Mappings resulting from two different labeling strategies applied to the tree in Fig. 5. (a) By applying the homogeneous
localization labeling, modes associated with qubits with descendants are delocalized in a rather even fashion: nodes with one and
two descendants have delocalization Du = 1 and Du = 2, respectively. The enlarged area involving qubits 4, 7, 13, 19, and 20 further
illustrates the occupancy distribution. The modes associated with 4 and 13 involve three qubits, the mode in qubit 7 involves two, and
the ones in 19 and 20 only one. (b) The application of the heterogeneous-localization strategy yields a very different delocalization
structure. Nodes with one descendant are completely localized in this case (Du = 0) but nodes with two descendants can be fairly
delocalized. For instance, looking again at the four nodes in the shaded area, we see that the modes in qubits 7 and 13 are more
localized than in the previous case, while the one in qubit 4 is delocalized among more qubits, with D4 = 3. The particular case of the
root node is a clear example, as it now exhibits delocalization D0 = 14.

2. Labeling the tree

Once the TT has been identified, the next step is to intro-
duce terminating legs and Pauli labels to the links to create
a qubit tree. As discussed in the previous sections, in order
to minimize the average delocalization, we must label with
Z all edges from the root to the most distal node from it.
In the case of the heavy hexagon in Fig. 5, we may do so
with all the edges between nodes 0 (the root) and 36. Using
the different labeling techniques, we can decide to a certain
degree how mode-occupancy localization is spread. While
these cannot affect the average delocalization, 〈Du〉, they
can determine how heterogeneously distributed among the
qubits the occupancy can be. To that end, we introduce two
different labeling strategies, which we coin homogeneous

Find a ternary tree T congruent with the physical
connectivity graph P using Algorithm 3, which
consists of the routines:

a. Find a degree-constrained tree subgraph T using
greedy search throughout P.

b. If the resulting tree does not span all nodes, add
the remaining ones connecting them as to
minimise the physical distance to nodes already
in T .

Add legs and introduce labels to T using Algorithm 4,
choosing among

a. Homogeneous localisation: occupancy is spread
evenly over qubits in the tree.

b. Heterogeneous localisation: a subset of mode
operators will act on many qubits while
reducing the amount that others act on.

Pair the generated strings using Algorithm 1.

Algorithm 2. Bonsai algorithm.

and heterogeneous localization, based on the discussion in
Sec. III D.

Homogeneous localization proceeds by maximizing the
number of XY branches amongst edges stemming from
the same nodes, in a similar fashion as in Fig. 2 (left).
Thus, pairs of edges below a node are assigned X and
Y labels, while single edges have an X label. Heteroge-
neous localization, instead, maximizes the number of Z
labels amongst edges: if a node has two descendants, one
of the edges is assigned a Z and the other one an X . If the
node has only one edge, it is assigned a Z. In this way,
the heterogeneous-localization assignment tends to local-
ize the occupation of single-edge nodes at the expense of
the delocalization of nodes above them, hence resulting in
typically more heterogeneous distributions of localization.

In Fig. 6, we depict the two labeling outcomes for the
heavy-hexagon topology. Homogeneous localization pro-
duces many operators with occupancy depending on at
worst case three qubits, giving a typical delocalization
Du = 2 for those. This is also reflected in the fact that
the green lines representing the pairings do not span dis-
tant qubits. The number of completely local operators, with
specific delocalization Du = 0, is 16 in this case, whereas
in the case of heterogeneous localization, 27 operators are
fully localized. This has the side effect of creating fewer
operators with higher delocalization, such as the num-
ber operator for the mode associated with the root (qubit
0), with delocalization D0 = 14. Table I in Appendix E
exhibits mode operators generated for both localization
schemes in this heavy-hexagon example.

The choice of one delocalization scheme or the other
is application specific and will alter the structure of the
resulting circuit. This is evident when considering a highly
delocalized mode operator. Operations derived from this
mode will generally act on more qubits than its local-
ized counterpart, consequently resulting in more expensive
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(a) (c) (e)

(b) (d) (f)

FIG. 7. The highlight indicates qubits involved in application of worst-case excitations, both for one- and two-particle terms. The
top (a),(c),(e), and bottom (b),(d),(f) rows correspond to single- and double-excitation terms, respectively. For simplicity, we assume
that the identification between modes j and qubits u in Eq. (10) is such that j = u. Qubits to which modes are associated are circled in
red, blue, and green for the JW, BK, and the custom map. For example, (a) and (b) correspond to qubit operators of modes-(0, 36) and
modes-(0, 1, 2, 36) accordingly. In the case of JW [(a) and (b)], both excitations result in gates acting on all qubits. For BK [(c) and (d)],
the resulting gates will act on many disconnected qubits, resulting in a high SWAP cost completely mitigating its logarithmic scaling
benefit. The custom mapping [(e) and (f)] generated by the Bonsai algorithm, on the other hand, presents much simpler worst-case
scenarios. The single- and double-excitation terms involve many fewer qubits than JW, and only two SWAPs are required to connect
the separate highlighted regions in the latter case.

circuits. However, since every tree mapping has a cer-
tain level of average delocalization, careful handling is
required. In certain cases, a few modes may hold lit-
tle importance and can be delocalized without significant
detrimental consequences. In such scenarios, employing
the heterogeneous-localization strategy to localize the rel-
evant modes can prove beneficial. This will lead to an
overall improvement as frequently used modes become
less delocalized. Conversely, in cases where assumptions
about the structure cannot be made, applying homoge-
neous localization may prove a safe option. This strategy
spreads the delocalization uniformly, ensuring a balanced
distribution across the modes.

With these mappings, circuit cost is reduced in two
ways. Given that Majorana products follow paths along
the paths in the tree structure, the number of SWAP gates
needed for single excitations is zero and the number is
diminished for double excitations due to Majorana prod-
ucts following paths along the tree structure. The num-
ber of entangling gates is further mitigated by lessening
the Pauli weight. This is illustrated in Fig. 7, where we
highlight the interaction maps of worst-case single and
double excitations for the mapping obtained through
homogeneous localization, compared to the JW and BK
mappings. In both cases, JW acts extensively on the whole

system. For BK, the qubits involved are disconnected and
will need many SWAPs to compile, mitigating the circuit
benefits of the logarithmic Pauli-weight scaling of the
encoding. This is not the case for our custom encoding,
where the reduction is approximately two thirds of the sys-
tem for single and one third for double excitations. For the
latter case, two SWAP gates are required to bridge across
the disconnected interaction regions.

Another interesting aspect of these custom mappings is
that it simplifies the transpilation of the circuits. Since the
mapping is designed to be congruent with the hardware, it
is not necessary to search for the optimal qubit assignment
but only to solve the Steiner-graph problem to determine
where SWAP gates are required. In addition, for two-
dimensional devices other than the heavy-hexagon based
connectivity studied here (e.g., Google’s Sycamore grid
topology [41]), we expect a similar square-root scaling.

It is noteworthy that the formalisms presented in this
study can be expanded to tackle the difficulties posed by
fully connected devices like ion traps. This could involve
exploring modified mappings to minimize the Hamiltonian
Pauli weight linked to reduced measurement cost [42] or
devising mappings based on the structure of the circuit
rather than the hardware to mitigate costs. However, such
investigations are deferred to future research.
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V. CONCLUSIONS

In this work, we consider fermion-to-qubit mappings
relying on the identification of sets of Pauli strings obey-
ing the anticommutation relations of Majorana operators.
Within this context, we focus on a specific class, arguably
the simplest one to work with, in which the Pauli strings
have a nontrivial overlap involving just one qubit. We
then present a framework that enables sampling such
mappings while designing many of their resulting prop-
erties. An important element of the methodology is the
pairing algorithm that ensures the preservation of separa-
bility, i.e., that uncorrelated fermionic states are mapped to
uncorrelated qubit states. Interestingly, the framework con-
tains paradigmatic mappings as particular instances, which
allows us to interpolate between them at will.

With this framework at hand, we devise an algorithm
to design hardware-specific mappings with lower SWAP
overhead than other paradigmatic mappings while retain-
ing a fair localization of the fermionic occupation in qubit
space. When applied to the heavy-hexagon architecture,
we obtain a mapping with a quadratically lower Pauli
weight than JW. Importantly, the mapping enables the
application of single-excitation operations with no SWAP
overhead and of double excitations with a minor one.
This can result in a significant improvement in circuit
complexity with respect to hardware-agnostic mappings.

Currently, JW is the mapping of choice in most simu-
lations on limited-connectivity hardware [43–46], partly
due to the fact that its linear generating tree structure
(see Fig. 3) makes it easy to find a set of qubits with
that connectivity within the device. For other mappings
such as BK or TT, suitable subgraphs that have treelike
structure are unattainable on limited connectivity, resulting
in a SWAP overhead negating the logarithmic advantage.
Bonsai encodings, on the other hand, enable the leverag-
ing of higher dimensions of limited-connectivity graphs to
reduce simulation cost, as they naturally extend the hard-
ware suitability of JW while reducing the nonlocality of
the mapping.

The versatility of the approach here presented enables
many other possibilities. In terms of designing mappings,
the choice of the cost function to be optimized for is not
unique, so the Bonsai algorithm can be naturally extended
to produce encodings with different desirable properties.
In particular, an important application is to extract relevant
physical quantities of the system using local information-
ally complete positive operator-valued measures (POVMs)
[30,42,47]. In this case, the Pauli weight of the observable
is the dominant figure of merit, which is why the authors
have proposed the logarithmic depth regular ternary tree
in Ref. [30]. While that is the optimal mapping in terms
of measurement cost for arbitrary fermionic reduced den-
sity matrix elements, in practice, one is typically inter-
ested in specific observables such as the energy. In that

case, the mapping may be further optimized to reduce the
measurement cost of, e.g., the Hamiltonian of the system.
Moreover, it would be interesting to do so while limiting
the incurred SWAP overhead on specific hardware.

In broader more theoretical terms, we emphasize that
the bulk of the work here presented is devoted to a
specific subset of all the possible mappings, the 1-NTO
class, which includes all the widely used encodings. As
we prove, with the pairing that we introduce, any root-
containing connected ternary tree yields a valid product-
preserving fermion-to-qubit mapping. However, we also
show with a counter-example that not all 1-NTO maps
can be generated in this fashion, so the question of how to
characterize and represent the space of 1-NTO encodings
remains open. In addition, as noted in Sec. II, k-NTO maps
with k > 1 do exist. This opens up the interesting prospect
of studying these somewhat exotic mappings.

The Bonsai algorithm is part of Aurora’s suite of algo-
rithms for chemistry simulation.

APPENDIX A: EXAMPLES OF EXOTIC
FERMION-TO-QUBIT MAPPINGS

The most-used fermion-to-qubit mappings, such as the
JW, BK, and parity mappings, are all 1-NTO mappings,
and can even be generated from ternary trees. In this
appendix, we provide a toy example of a fermion-to-qubit
mapping that is not 1-NTO and another one that is 1-NTO
but cannot be generated from ternary trees.

Consider the following mapping of a four-mode fermion
system to a four-qubit system:

m0 �→ X1X2X3, m1 �→ Y1Y2Y3,

m2 �→ X0Z1Y2Y3, m3 �→ Y0Z1X2X3,

m4 �→ Y0Y1X3, m5 �→ X0X1Y3,

m6 �→ X0X1X2Z3, m7 �→ Y0Y1Y2Z3.

One can easily check that the mapping satisfies criteria
(A)–(C) of Sec. II C; thus it is a valid Majorana-string map-
ping. The nontrivial overlap between the Majorana strings
X1X2X3 and Y1Y2Y3 is 3; thus this cannot be a 1-NTO
mapping but is instead 3-NTO.

An example of a 1-NTO Majorana-string mapping (for
three fermionic modes) which cannot be generated from a
ternary tree is the following:

m0 �→ X0Z1, m1 �→ Y0Z1,

m2 �→ X1Z2, m3 �→ Y1Z2, m4 �→ Z0X2, m5 �→ Z0Y2.

APPENDIX B: ALGEBRAIC INDEPENDENCE OF
SUBSETS OF TT-GENERATED PAULI STRINGS

The aim of this appendix is to prove that any subset
S ′ ⊂ S (|S ′| < |S|) of the set S of 2N + 1 Pauli strings
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generated by an N -node TT is algebraically independent,
i.e., that there are no two different subsets A ⊆ S ′ and
B ⊆ S ′, A �= B, such that

∏
Si∈A Si ∝ ∏

Sj ∈B Sj .
First, note that it is enough to prove that no two disjoint

subsets A and B leading to equal products exist, given that

∏
Si∈A

Si ∝
∏
Sj ∈B

Sj ⇒
∏

Si∈A\A∩B

Si ∝
∏

Sj ∈B\A∩B

Sj . (B1)

The above implication stems from the fact that both prod-
ucts on the left-hand side can be multiplied by the Pauli
strings in A ∩ B. Since these Pauli strings appear twice
in each resulting product and they anticommute with any
Pauli string different from themselves, they cancel out to
identity incurring at most a change of sign.

Following a similar reasoning as above, if there are two
distinct and disjoint subsets A ⊂ S ′ and B ⊂ S ′ such that∏

Si∈A Si ∝ ∏
Sj ∈B Sj ,

∏
Si∈A∪B

Si ∝ 1N , (B2)

where 1N is the identity operator in the Hilbert space of N
qubits. In short, it is enough to prove that there is no subset
I ⊆ S ′ ⊂ S fulfilling

∏
Si∈I Si ∝ 1N . In what follows, we

prove this by showing that

∏
Si∈I

Si ∝ 1N ⇒ I = S , (B3)

so that no such I ⊆ S ′ exists for any incomplete subset S ′
of S .

Given a TT and a subset of its legs I ⊆ S , we can
define a set of link multiplicities {ϕl}, where ϕl is an inte-
ger defined for every link l in the tree (be it an edge or
a leg) and counts the number of paths from the root node
to each of the legs in I that traverse link l. Now, if we
assume that

∏
Si∈I Si ∝ 1N , we can make the following

observations:

(1) For any node u in the tree, the link multiplicities
ϕl(u)x

, ϕl(u)y
, and ϕl(u)z

of the three links stemming
downward from u must either be all even or all odd.
This is a consequence of the fact that the product
of Pauli strings in I results in a product of Pauli
operators Xu, Yu, and Zu on qubit u. Since these
operators anticommute with one another and their
product must be proportional to identity according
to our assumption above,

(Xu)
ϕ

l(u)x (Yu)
ϕ

l(u)y (Zu)
ϕ

l(u)z ∝ 1, (B4)

which can only be fulfilled if all three link multiplic-
ities have equal parity.

(2) Consider a node u different from the root and let
us refer to its upward-edge multiplicity by ϕl(u)up

.
The downward-link multiplicities are ϕl(u)x

, ϕl(u)y
, and

ϕl(u)z
, as above. If the assumption

∏
Si∈I Si ∝ 1N

holds, then ϕl(u)up
must have the same parity as the

three downward links. This is a direct consequence
of observation 1 and of the fact that edge multiplic-
ity is conserved,

ϕl(u)up
= ϕl(u)x

+ ϕl(u)y
+ ϕl(u)z

, (B5)

since every path that traverses l(u)up must traverse one
of the three downward links. Indeed, the sum of
an odd number of odd numbers is odd and no odd
number can be obtained by adding even numbers.

These two observations imply that the parity of the link
multiplicities is conserved at each node, i.e., all links
reaching a node must have equal multiplicity parity if the
assumption

∏
Si∈I Si ∝ 1N is true. Since the tree is con-

nected, it follows that the multiplicity of all links in the
graph must have the same parity. Given that the legs in I
have multiplicity one, all links in the graph must have odd
multiplicity. Thus, all legs in S must have multiplicity one
and hence be in I , which proves Eq. (B3).

APPENDIX C: FROM FOCK BASIS STATES TO
COMPUTATIONAL BASIS STATES

In the main text, we show that, with the pairing intro-
duced in Sec. III C, the fermionic vacuum is mapped to
|0〉⊗N and that states of the form a†

i |vacf 〉 lead to compu-
tational basis states in qubit space. We now show that this
is also true for any Fock basis state.

Consider an arbitrary Fock basis state |ψ〉 in which the
fermionic modes in the subset F ⊆ {0, 1, . . . , N − 1} are
occupied, i.e., |ψ〉 = ∏

k∈F a†
k |vacf 〉. Since all the creation

operators in the expression are different, they anticommute,
so |ψ〉 can be written, up to a sign, by applying them in an
arbitrary order.

Recall that, given a TT mapping, every fermionic mode
j can be associated with a qubit uj according to the pair-
ing strategy [see Eq. (10)]. This identification allows us
to associate an integer hj to every mode in F indicat-
ing how deep uj lies down the tree. More precisely, hj is
the topological distance between the associated qubit uj
of mode j and the root node. Now, consider a sequence
(R0, . . . , R|F |−1) of the elements in F (i.e., Ri ∈ F for
all i ∈ {0, . . . , |F | − 1} and Ri = Rj ⇔ i = j ) following a
top-down order, hRi ≤ hRi+1 ∀i ∈ {0, . . . , |F | − 1}. We can
then construct |ψ〉 by applying the sequence of creation
operators starting from the highest modes up in the tree
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1 Define physical connectivity graph P = (VP , EP).
2 Determine root node r = argminu maxv d(u, v; P), where d(u, v; P) is the topological distance between u and v in P.
3 Define initial layer, L0 = r, height h = 0, and tree T = (VT , ET ) with VT = ET = ∅.

4 while Lh �= ∅ do
5 Define Lh+1 = ∅.
6 for v ∈ Lh do
7 Define the set of unassigned neighbours of v, Nv = {w ∈ VP : (v, w) ∈ EP ∧ w /∈ VT }.
8 if |Nv| > 3 then
9 Define N ′

v ⊂ Nv containing three nodes randomly chosen from Nv.
10 Set N ′

v → Nv.

11 Set Lh+1 ∪ Nv → Lh+1.
12 Set VT ∪ Nv → VT .
13 Set ET ∪

⋃
w∈Nv

{(v, w), (w, v)} → ET .

14 Set h + 1 → h.

15 for u ∈ VP \ VT do
16 Determine set A ⊆ VT of nodes in T available to connect, A = {u ∈ VT : |{v ∈ VT : (u, v) ∈ ET }| + δu,r < 4}.
17 Find set C ⊆ A of closest nodes to u, C = {v ∈ A : d(u, v; P) = minw({d(u, w; P) : w ∈ A})}.
18 if |C| > 1 then
19 Define C′ ⊂ C containing one node randomly chosen from C.
20 Set C′ → C.

21 Set VT ∪ C → VT .
22 Set ET ∪ {(u, v), (v, u)} → ET , where v ∈ C.

23 return T

Algorithm 3. Qubit spanning-tree subroutine.

and following downward:

|ψ〉 ∝
∏

i=0,...,|F |−1

a†
Ri

|vacf 〉 . (C1)

Each fermionic operator a†
j involves the two Majorana

strings S
s
(uj )
x

and S
s
(uj )
y

, which only differ on qubit uj (on

which they act with Xuj and Yuj , respectively) and on all
qubits in the X and Y branches lying below uj in the tree;
each of the two Majorana strings acts with a Z operator on
the qubits on one of the branches but trivially on the qubits
in the other branch. Therefore, if |φ〉 is a computational
basis state in which uj and all the qubits below it are in the
|0〉 state, (S

s
(uj )
x

− iS
s
(uj )
y
) |φ〉 = (S′

s
(uj )
x

− iS′
s
(uj )
y

) |φ〉, where

the Z Pauli operators on the qubits below uj are substituted

with identities in the primed Pauli strings, as in Sec. III C.
Importantly, in the output vector, the state of uj and possi-
bly of other qubits above uj in the tree are flipped but not
the state of qubits below uj . In addition, the vector remains
a computational basis one.

With this setup, we can proceed in an inductive way.
First, it is clear from the above discussion (and the
one in the main text) that the state a†

R0
|vacf 〉 in qubit

space—let us denote it by |φ0〉—is a computational basis
state. Second, it can be seen that if the mapped state∏

i=0,...,n a†
Ri

|vacf 〉, |φn〉, is a computational basis state,
then so is |φn+1〉. This follows from

|φn+1〉 = 1
2

(
S

s
(uN+1)
x

− iS
s
(un+1)
y

)
|φn〉 , (C2)

1 Procedure Minimise delocalisation by maximising all-Z branch length:
2 Find the longest path � in T .
3 Associate a Z label to every edge along �.

4 Procedure Homogeneous localisation:
5 For every node in the tree, add labels to each of its unlabelled descending edges with priority 1) X, 2) Y , and 3) Z

(that is, single edges are labelled with X and double edges with XY ).
6 Add labels to all legs.

7 Procedure Heterogeneous localisation:
8 For every node in the tree, add labels to each of its unlabelled descending edges with priority 1) Z (if available), 2)

X, and 3) Y (that is, single edges are labelled with Z and double edges with ZX).
9 Add labels to all legs.

Algorithm 4. Labeling subroutine.
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TABLE I. The qubit mode operators generated from the trees in Fig. 6. Localized operators are qubit mode operators with raising,
P+

j , and lowering, P−
j operators acting on the j th qubit. Specific delocalization is clear from the number of Pauli Z operators in the

brackets.

a(†)j
j Homogeneous localization Heterogeneous localization

0 1
2 (X0Z1 ∓ iY0Z2)

1
2 (X0Z1Z4Z8Z14Z22Z31Z34 ∓ iY0Z2Z5Z10Z16Z26Z32Z35)

1 1
2 X0(X1Z4 ∓ iY0) X0P±

1
2 1

2 Y0(X2Z5 ∓ iY2) Y0P±
2

3 Z0P±
3 Z0P±

3
4 1

2 X0X1(X4Z7 ∓ iY4Z8)
1
2 X0Z1(X4Z7Z13Z20 ∓ Y4)

5 1
2 Y0X2(X5Z9 ∓ iY5Z10)

1
2 Y0Z2(X5Z9Z15Z24 ∓ Y5)

6 1
2 Z0Z3(X6Z11 ∓ iY6)

1
2 Z0Z3(X6Z11Z17Z28 ∓ Y6)

7 1
2 X0X1X4(X7Z13 ∓ iY7) X0Z1X4P±

7
8 1

2 X0X1Y4(X8Z14 ∓ iY8) X0Z1Z4P±
8

9 1
2 Y0X2X5(X9Z15 ∓ iY9) Y0Z2X5P±

9
10 1

2 Y0X2Y5(X10Z16 ∓ iY10) Y0Z2Z5P±
10

11 1
2 Z0Z3Z6(X11Z17 ∓ iY11) Z0Z3X6P±

11
12 Z0Z3Z6P±

12 Z0Z3Z6P±
12

13 1
2 X0X1X4X7(X13Z19 ∓ iY13Z20)

1
2 X0Z1X4Z7(X13Z19 ∓ iY13)

14 1
2 X0X1Y4X8(X14Z21 ∓ iY14Z22)

1
2 X0Z1Z4Z8(X14Z21 ∓ iY14)

15 1
2 Y0X2X5X9(X15Z23 ∓ iY15Z24)

1
2 Y0Z2X5Z9(X15Z23 ∓ iY15)

16 1
2 Y0X2Y5X10(X16Z25 ∓ iY16Z26)

1
2 Y0Z2Z5Z10(X16Z25 ∓ iY16)

17 1
2 Y0X2X5X9(X15Z23 ∓ iY15Z24)

1
2 Z0Z3X6Z11(X17Z27 ∓ iY17)

18 1
2 Y0X2Y5X10(X16Z25 ∓ iY16Z26)

1
2 Z0Z3Z6Z12(X18Z29 ∓ iY18)

19 X0X1X4X7X13P±
19 X0Z1X4Z7X13P±

19
20 X0X1X4X7Y13P±

20 X0Z1X4Z7Z13P±
20

21 X0X1Y4Y8X14P±
21 X0Z1Z4Z8X14P±

21
22 1

2 X0X1Y4X8Y14(X22Z31 ∓ iY22) X0Z1Z4Z8Z14P±
22

23 Y0X2X5X9X15P±
23 Y0Z2X5Z9X15P±

23
24 Y0X2X5X9Y15P±

24 Y0Z2X5Z9Z15P±
24

25 Y0X2Y5X10X16P±
25 Y0Z2Z5Z10X16P±

25
26 1

2 Y0X2Y5X10Y16(X26Z32 ∓ iY26) Y0Z2Z5Z10Z16P±
26

27 Z0Z6X6X11X17P±
27 Z0Z3X6Z11X17P±

27
28 Z0Z6X6X11Y17P±

28 Z0Z3X6Z11Z17P±
28

29 Z0Z6X6Z12X18P±
29 Z0Z3Z6Z12X18P±

29
30 Z0Z6X6Z12Z18P±

30 Z0Z3Z6Z12Z18P±
30

31 1
2 X0X1Y4Y8Y14X22(X31Z34 ∓ iY31) X0Z1Z4Z8Z14Z22P±

31
32 1

2 Y0X2Y5X10Y16X26(X32Z35 ∓ iY32) Y0Z2Z5Z10Z16Z26P±
32

33 Z0Z6X6Z12Z18Z30P±
33 Z0Z3Z6Z12Z18Z30P±

33
34 X0X1Y4X8Y14X22X31P±

34 X0Z1Z4Z8Z14Z22Z31P±
34

35 Y0X2Y5X10Y16X26X32P±
35 Y0Z2Z5Z10Z16Z26Z32P±

35
36 Z0Z6X6Z12Z18Z30Z33P±

36 Z0Z3Z6Z12Z18Z30Z33P±
36

where un+1 is the qubit associated with the fermionic
mode Rn+1. Since all the Majorana strings that must be
applied to prepare |φn〉 from |0〉⊗N act on un+1 and all
qubits below it with either identity or with Z (again, given
that hRi ≤ hRn+1 ∀i ∈ {0, . . . , n}), the state of each of those
qubits must be |0〉. As we show above, along with the
condition that |φn〉 be a computational basis state (which
here is true by assumption) this guarantees that |φn+1〉 is a
computational basis state as well.

APPENDIX D: ALGORITHMS AND ROUTINES IN
MORE DETAIL

APPENDIX E: THE HEAVY-HEXAGON
MAPPINGS EXPLICITLY
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