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Quantum and Classical Correlations in Open Quantum Spin Lattices via
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The study of quantum many-body physics in Liouvillian open quantum systems becomes increasingly
important with the recent progress in experimental control on dissipative systems and their exploitation
for technological purposes. A central question in open quantum systems concerns the fate of quantum cor-
relations, and the possibility of controlling them by engineering the competition between the Hamiltonian
dynamics and the coupling of the system to a bath. Such a question is very challenging from a theoretical
point of view, as numerical methods faithfully accounting for quantum correlations are either relying on
exact diagonalization, drastically limiting the sizes that can be treated numerically, or on approximations
on the range or strength of quantum correlations, associated with the choice of a specific ansatz for the den-
sity matrix. In this work we propose a new method to treat open quantum spin lattices, based on stochastic
quantum trajectories for the solution of the open-system dynamics. Along each trajectory, the hierarchy of
equations of motion for many-point spin-spin correlators is truncated to a given finite order, assuming that
multivariate kth-order cumulants vanish for k exceeding a cutoff kc. This scheme allows one to track the
evolution of quantum spin-spin correlations up to order kc for all length scales. We validate this approach
in the paradigmatic case of the dissipative phase transitions of the two-dimensional XYZ lattice subject
to spontaneous decay. We convincingly assess the existence of steady-state phase transitions from para-
magnetic to ferromagnetic, and back to paramagnetic, upon increasing one of the Hamiltonian spin-spin
couplings, as well as the classical Ising nature of such transitions. Moreover, the approach allows us to
show the presence of significant quantum correlations in the vicinity of the dissipative critical point, and
to unveil the presence of spin squeezing, which can be proven to be a tight lower bound to the quantum
Fisher information.
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I. INTRODUCTION

After many decades of remarkable successes in describ-
ing nature at the microscopic level, and in providing foun-
dational contributions to modern technology, the frontier
of research on quantum mechanics has turned in the last
decade to the hitherto impossible creation and manipula-
tion of quantum entanglement at large scales, constituting
the basis of the so-called second quantum revolution [1,2].
The main technological rewards of this revolution are
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expected to lie in sensing, communication, and informa-
tion processing [3,4]. A most important challenge in this
endeavor stems from the interaction of quantum systems
with their environment, which generally destroys quan-
tum superpositions, namely, the fundamental resource for
quantum technology tasks. This calls for a detailed under-
standing of the interaction of complex quantum systems
with their environment, and for the devising of strate-
gies to overcome decoherence. The most obvious remedy
is to limit the interaction with the environment as much
as possible, but an alternative strategy is to investigate
the possibility of creating interesting quantum states by
engineering the environment itself [5,6].

A promising setting for the nonunitary manipulation of
quantum states is that of a phase transition in a driven-
dissipative many-body system [7–17]. On the experimental
side, several platforms have been developed where the
physics of nonequilibrium quantum steady states can be
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studied. One could cite circuit QED [18], arrays of Ryd-
berg atoms [19], ion traps [20], and semiconductor micro-
cavities [21], to name only the most advanced setups.
In analogy with equilibrium statistical physics, theoretical
understanding often benefits from using “toy models” able
to capture fundamental phenomena. For driven-dissipative
systems, the main models under study are Bose-Hubbard-
type models that are used to describe photonic systems
undergoing photon loss [22], and spin models that can, for
instance, provide an effective description of Rydberg atoms
undergoing spontaneous decay [23]. As possible appli-
cations of correlations in driven-dissipative lattice-like
geometries beyond simulation, we can mention efficient
solving of NP-hard optimization problems [24], related to
neural networks [25–27] and metrology [28], among oth-
ers. Even in the case of the simplest models, our theoretical
understanding of phase transitions in driven-dissipative
systems is hampered both by the absence of a free energy
minimization principle, underpinning the determination of
the steady state, and by the difficulty to simulate systems
that are sufficiently large to approach the thermodynamic
limit. In order to address these challenges, a new set of
theoretical tools have been developed over the last years
[8,29–37] for the study of open quantum many-body sys-
tems. It is to the development of new methods that the
present paper wishes to contribute. Here we propose a
scheme for dissipative quantum spin lattices that effec-
tively combines the stochastic sampling of the density
matrix evolution by the quantum trajectory method with
a scheme of truncation of the correlation-function hierar-
chy to second order. Our method is inspired by approaches
already developed in the case of bosonic lattice mod-
els [9,35,36], in which stochastic quantum trajectories are
combined with a Gaussian ansatz on the single-trajectory
bosonic state—the latter state can be viewed as resulting
from the ansatz of vanishing cumulants of the bosonic
fields beyond second-order ones. Similarly, we adopt here
for the spin operators a truncation of the correlation hier-
archy, by assuming that cumulants of order k exceeding a
given cutoff kc vanish—in practice, we take kc = 2 in this
work, but the same approach can be readily extended to
higher-order truncation schemes. The rationale behind the
truncation is that higher-order correlations, while develop-
ing in closed quantum systems, are far more vulnerable to
decoherence in open ones, so that their influence on the
dynamics remains limited [38]. Our method is sufficiently
simple to treat quite large systems comprising hundreds
of qubits, and at the same time it allows in principle for
a faithful description of long-range quantum correlations,
which is a fundamental requirement in order to describe
phase transitions that are either driven or significantly
altered by quantum effects.

As an illustration of our approach, we apply our method
to the driven-dissipative XYZ model in two spatial dimen-
sions, which can effectively describe the dynamics of an

array of optically driven Rydberg atoms [23], and which
has attracted considerable attention on the theory level as
an effective model for driven-dissipative phase transitions
[39–53]. It combines anisotropic nearest-neighbor cou-
plings with spin-flip dissipation, and, in spite of its simplic-
ity, it gives rise to a very rich phase diagram, already at the
mean-field level [23]. Moreover, it has become clear that
the mean-field predictions are qualitatively wrong in some
parameter regimes [39,41,44], pointing at the fundamental
role of correlations, and posing the challenge to their faith-
ful description. Here we find that the simplest nontrivial
formulation of our method, focusing on two-point quan-
tum correlators, leads to surprisingly good agreement with
the exact predictions for small systems, and shows a clear
trend of improvement with increasing system size. Using
finite-size scaling, we are able to characterize the phase
transitions present in the dissipative XYZ system, and con-
firm that they belong to the two-dimensional (2D) classical
Ising universality class. This result is to be contrasted
with that obtained by simply including classical correla-
tions within a mean-field trajectory scheme (corresponding
to kc = 1 in the cumulant-truncation approach introduced
below), whose results for the transition are inconsistent
with the 2D Ising universality class. This observation sug-
gests a surprisingly crucial role of quantum correlations
(fully discarded in the kc = 1 scheme, and accounted for at
all length scales in the kc = 2 one) in determining the crit-
ical behavior of the open quantum system, in spite of the
apparent classical nature of the observed criticality. Fur-
thermore, we inspect the nature of quantum correlations
and observe that the system develops spin squeezing in the
steady state, witnessing short-range entanglement. More-
over, we analyze an upper bound of the quantum Fisher
information based on a convex-roof construction [54], and
show that spin squeezing comes close to saturating this
bound in the vicinity of the dissipative phase transition.

Our paper is structured as follows. In Sec. II, we
describe the dissipative XYZ model under study, and
review previous numerical approaches used to study this
and other dissipative many-body models. In Sec. III, we
present the details of the correlation-hierarchy method for
dissipative spin systems. Section IV is devoted to the dis-
cussion of the results, and in particular of the finite-size
scaling analysis of the dissipative phase transition, as well
as of the quantum correlation properties across the phase
diagram. Conclusions are offered in Sec. V.

II. DISSIPATIVE QUANTUM SPIN LATTICES

A. The dissipative XYZ model

We focus our attention on the two-dimensional dissi-
pative XYZ Heisenberg model, which has been the sub-
ject of intensive theoretical research efforts in the past
years [23,39–53], due to its rich phase diagram. Its coher-
ent dynamics is governed by the anisotropic Heisenberg
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Hamiltonian

Ĥ =
∑

〈i,j 〉
(Jxσ̂

x
i σ̂

x
j + Jy σ̂

y
i σ̂

y
j + Jzσ̂

z
i σ̂

z
j ). (1)

Here the Jα are the coupling strengths for the α = x, y, z
spin components of nearest-neighboring spins, the σ̂ αi are
the Pauli matrices acting on site i, and

∑
〈ij 〉 runs over all

pairs of nearest neighbors 〈ij 〉. The XYZ couplings can be
engineered in, e.g., Rydberg or dipolar atoms, through a
combination of dipole interactions with engineered optical
pumping [23]. Note that energy minimization alone would
favor antiferromagnetic order for positive values of the
coupling constants, and ferromagnetic order when they are
all negative; yet the steady state of the dissipative dynam-
ics challenges the prediction of energy minimization, and
it exposes its fundamental nonequilibrium nature.

The dissipative part of the dynamics stems from spon-
taneous decay, described as incoherent spin flips along
the z axis. Each spin is coupled to its own Markovian
environment, so that the equation governing the dissipa-
tive dynamics of the quantum state ρ̂ can be assumed
to be of Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)
form [55–57]

∂tρ̂ = −i[Ĥ , ρ̂] + 1
2

∑

j

(2�̂j ρ̂�̂
†
j −�̂†

j �̂j ρ̂ − ρ̂�̂
†
j �̂j ).

(2)

Here, the �̂j = √
γ σ̂−

j = √
γ (σ̂

x
j − iσ̂ y

j )/2 are the Lind-
blad operators for the incoherent spin-flip processes along
the z axis with dissipation rate γ . The description of spon-
taneous decay in quantum optics by the GKSL equation
is widely accepted [57], and initiated in Ref. [23] for the
study of the dissipative XYZ model. We note that in more
general open quantum systems, this validity is not always
true [58], but it can often be justified through collisional
models [59,60], especially in cases where external driving
is present.

Along the dynamics governed by master equation (2),
the expectation value of an operator evolves according to
the equation

d〈Ô〉 = i〈[ĤÔ]〉dt

− 1
2

∑

j

(〈�̂†
j [�̂j Ô]〉 − 〈[�̂†

j Ô]�̂j 〉)dt, (3)

from which the time evolution of the moments of the spin
operators can be straightforwardly constructed.

A pioneering mean-field study of the XYZ model [23],
based on the assumption of a fully factorized quantum
state ρ̂ = ⊗

i ρ̂i at all times, has revealed a very rich
phase diagram, containing a paramagnetic phase, a ferro-
magnetic phase, an antiferromagnetic phase, as well as a

spin-density wave and a staggered XY phase. Subsequent
works, based on methods going beyond a single-site mean-
field approach, offer substantially different predictions for
the phase diagram when the XYZ model is cast on a two-
dimensional lattice. Cluster mean-field descriptions on the
level of the master equation [39,43,47,61], which are able
to incorporate the influence of some short-range quan-
tum and classical correlations, revealed a drastic impact
of such correlations on the phase diagram of the system, a
feature not observed in their closed-system counterparts.
However, as such, they completely miss the long-range
fluctuations, which actually govern the critical behavior.

On the other hand, the mean-field approximation
applied at the level of the quantum trajectory formal-
ism—namely, by studying each trajectory via a Gutzwiller
ansatz—allows for the inclusion of long-range clas-
sical correlations [41], possibly combined with some
short-range quantum correlations when using a cluster
Gutzwiller wave function [44]. Unfortunately, in all clus-
ter approaches—both at the level of the master equation
as well as at the level of quantum trajectories—one is still
limited by the relatively small size of the clusters that can
be used, and the faithful description of correlations is there-
fore not guaranteed. Moreover, as we shall see in this work,
the critical behavior predicted by Gutzwiller trajectories
is very different from what one can obtain with improved
methods, taking into account quantum correlations to all
scales.

It is worth mentioning that the dissipative XYZ model
is efficiently solvable in the case of all-to-all connectivity,
corresponding to a system in infinite spatial dimensions
[46]. The efficient solution, allowing one to exactly treat
systems with hundreds of spins, exploits the permutational
symmetry of the system in infinite dimensions and it has
been used to test the validity of the mean-field approxima-
tion in this limit [46]. Some extensions to frustrated lattice
geometries were studied in Refs. [47,52] on the mean-
field or cluster mean-field level. The literature has so far
predominantly focused on the transition from the paramag-
netic phase to the ferromagnetic phase, which, e.g., takes
place for Jy ≈ γ when one chooses Jx = 0.9γ and Jz = γ .

Using beyond-mean-field methods (see the following
section), Refs. [40,43,61] provided estimates of the criti-
cal exponent γ ≈ 1.5, which clearly indicates a departure
from mean-field prediction. However, the convergence of
these results is hard to assess and could therefore either
be interpreted as hinting towards a known set of expo-
nents such as those of the Ising universality class [40],
or pointing to a new class on its own [61]. Extensions to
the initial mean-field study in Ref. [23], as well as exact
numerical methods in small systems [42], have suggested a
reentrant behavior: upon increasing the value of Jy further,
ferromagnetic order is lost, and the system reenters into
a paramagnetic phase. The study of this second transition
and of its critical properties, however, is not a simple task.
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Interestingly, some of the methods either did not observe
the reentrant behavior or suggested that it was not associ-
ated with a true phase transition [40,42,45]. Most of the
beyond-mean-field methods are limited by system size, or
do not converge in this region of high Jy , where it has been
shown that the state is highly mixed [39,40,46].

In the following sections we see that our method allows
us to overcome the above difficulties, and to provide a
quantitative analysis of all the transitions of the system
on large lattices (comprising up to hundreds of spins),
as well as an assessment of the importance of quantum
correlations.

B. Numerical techniques for the study of dissipative
spin lattices

Before ending this section we survey other numeri-
cal approaches that have been developed for the study
of dissipative quantum spin models in the recent past
(see also Ref. [30] for a recent review), and which have
been or could be applied to the study of dissipative phase
transitions such as those of the XYZ model.

Several methods have been proposed in order to over-
come the limitations of cluster mean-field approaches,
based on different ansatzes for the density matrix solv-
ing the Lindblad master equation. One such method is
the corner-space renormalization method [32,40], which
searches for a solution of the master equation for a given
system size within a reduced Hilbert subspace, built from
the most likely pure states appearing in the steady state
of a smaller system size. Such a method allows one to a
priori account for quantum correlations encompassing the
whole system; yet, due to the choice of a reduced Hilbert
space growing polynomially with system size, it is limited
in the amount of entropy that the steady state can exhibit.
Recently, variational ansatzes based on neural network
quantum states [45,62–64] have also been proposed, show-
ing promise for the description of large lattices; application
to the dissipative XYZ model has not shown the reentrant
paramagnetic behavior [45]. Another class of ansatzes
is offered by tensor network states [29,30]: within this
approach, infinite projected entangled pair states are par-
ticularly relevant, as they immediately grant access to the
thermodynamic limit in the regions where they converge
[48,49]. Application to the dissipative XYZ model has
been considered in Ref. [65]. It has been found however
that this approach is subject to instabilities [48]. Attempts
to overcome this issue have been suggested [48,49], but
have not to our knowledge been tested in the general dis-
sipative XYZ model. Generally speaking, tensor network
states have shown to be most effective for the study of 1D
systems [29].

Finally, an alternative category of methods for dissipa-
tive spin lattices relies on the truncated Wigner approxima-
tion (TWA) [37,66,67], which represents the expectation

values of operators along the quantum dynamics as aver-
ages over evolutions of classical spins, starting from states
drawn out of the discrete Wigner distribution for the quan-
tum spins. This approach can tackle very large lattice sizes
and effectively account for classical correlations, but it has
the disadvantage that the quantum nature of the system
is mimicked by classical fluctuations and it is therefore
unclear whether quantum effects are properly described in
the steady state. For example, the TWA has been shown to
suffer from unphysical predictions for the single-photon-
driven Bose-Hubbard model [68] and also to miss the
phase transition in the steady state under two-photon driv-
ing [35], motivating the construction of techniques that are
complementary to the TWA.

III. CORRELATION HIERARCHIES FOR
DISSIPATIVE SYSTEMS

A. Open quantum systems: quantum trajectories,
classical versus quantum fluctuations

1. Stochastic unraveling of the open-system evolution

The most fundamental level of description for the
dynamics of quantum systems coupled to a Markovian
bath is offered by GKSL equation (2) [57,69–72] for the
evolution of the density matrix of the system. Nonethe-
less, the theoretical framework which we use here is that
of quantum trajectories [29], which stochastically sample
the density matrix. In order to understand this framework,
one should realize that master equation (2) is largely inde-
pendent of the environment specifics. We may thus replace
the true environment with a macroscopic measuring device
without an observer. In practical terms, this means that the
incoherent effect of the environment is the same as the
one that would arise from a continuous weak, nonselec-
tive measurement. It is precisely because the measurement
is not read out that classical uncertainty over the sys-
tem increases and Eq. (2) does not conserve purity. But
one may also consider what happens if one does observe
the state of the measuring device. The time evolution is
then conditioned on the measurement result, and, assum-
ing no measurement imperfections, there is no loss of
information, so that states remain pure. Such a condi-
tional evolution consists of quantum trajectories, which
were introduced in the seminal works of Refs. [73–76].
The expectation values associated with the density matrix
evolved with master equation (2) are then recovered by
averaging over the pure states of the trajectories (that
is, tracing out the information on the measurement out-
come), in the limit of a sufficiently large sample. This latter
approach is known in the literature as the wave-function
Monte Carlo method, or the stochastic sampling method.
The advantage of the wave-function Monte Carlo method,
compared to the direct solution of the master equation, is
that the pure states of the trajectories can be described by
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a wave function |ψ〉 ∈ H with D = dim(H) components
only, compared to a density matrix ρ̂ ∈ H ⊗ H∗ with D2

components, so that significantly less computer memory is
required for the exact numerical simulation of trajectories.

Within this picture of quantum trajectories, there is still
some freedom regarding the (possibly hypothetical) mea-
surement protocol that is performed, defining a so-called
unraveling scheme. As long as no additional approxima-
tions are made, the result of averaging over trajectories
should be consistent with the master equation indepen-
dently of the measurement protocol, even though the indi-
vidual trajectories may have a vastly different behavior
depending on the measurement protocol itself.

One of the most adopted unraveling schemes is based
on quantum jumps (which models, e.g., photon counting
in experiments on optical cavities), leading to trajectories
of the form

d|̃ψ〉 = −iĤtraj |̃ψ〉dt, (4)

where

Ĥtraj = Ĥ − i
2

∑

j

�̂
†
j �̂j (5)

is an effective non-Hermitian Hamiltonian. Equation (4)
does not conserve the norm of the wave function; indicated
by the tilde notation. This evolution is complemented by
the fact that, given a uniform stochastic random number
0 < ζ < 1 , whenever ‖|̃ψ〉‖2 < ζ , a discrete jump of the
form

|̃ψ〉 jump−−→ �̂l |̃ψ〉
‖�̂j |̃ψ〉‖ (6)

will take place, where the choice of �̂l has probabil-
ity ‖�̂l |̃ψ〉‖2/

∑
j ‖�̂j |̃ψ〉‖2. In the case of quantum spin

models with spontaneous decay, such a scheme corre-
sponds to having a photon counting apparatus coupled to
each spin separately, measuring the number of photons
spontaneously emitted by the spin.

A different type of unraveling is obtained by a dif-
ferent measurement scheme, which in quantum optics
corresponds to heterodyning—namely, mixing the emit-
ted photons with a classical field at a different frequency.
For heterodyne detection, the single-trajectory evolution is
governed by a stochastic Schrödinger equation of the form

d|ψ〉 = −iĤdt |ψ〉

+
∑

j

(
〈�̂†

j 〉�̂j − 1
2
〈�̂†

j 〉〈�̂j 〉 − 1
2
�̂

†
j �̂j

)
dt |ψ〉

+
∑

j

(�̂j − 〈�̂j 〉)dZ∗
j |ψ〉 , (7)

where dZj = (dWX
j + idWY

j )/
√

2 is complex Wiener noise
in the Ito sense, satisfying dZ∗

i dZj = δij dt, dZidZj = 0.
Such an evolution is often referred to as quantum state dif-
fusion [77]. For the evolution of expectation values, Eq. (7)
yields

d〈Ô〉 = i〈[ĤÔ]〉dt

− 1
2

∑

j

(〈�̂†
j [�̂j Ô]〉 − 〈[�̂†

j Ô]�̂j 〉)dt

+
∑

j

(〈�̂†
j (Ô − 〈Ô〉)〉dZj + 〈(Ô − 〈Ô〉)�̂j 〉dZ∗

j ).

(8)

Comparing this expression with Eq. (3), we see that the
time evolution for expectation values under the master
equation is identical to the deterministic part of the evo-
lution under the heterodyne quantum trajectories. The
stochastic nature of the detector clicks under quantum tra-
jectory evolution reflects itself in the addition of noise to
the time evolution of expectation values.

2. Classical versus quantum fluctuations and
correlations

Given the correspondence between the master equation
and its stochastic unraveling, one has the choice to choose
an ansatz at either level. We have already pointed out
above the advantage of quantum trajectories in reducing
the computational cost for exact calculations. The advan-
tage of quantum trajectories is even more dramatic when
an ansatz is made on the state of the system. Indeed,
unlike the case of an ansatz for the density matrix, an
ansatz formulated at the trajectory level is always com-
plemented by classical (i.e., trajectory-to-trajectory) fluc-
tuations [29]. Denoting by |ψn(t)〉 the solution of the
stochastic Schrödinger equation along the nth trajectory,
we define as classical fluctuations of an observable Ô its
trajectory-to-trajectory fluctuations

Fc(Ô) = [O2
n(t)]traj − [On(t)]2

traj, (9)

where On(t) = 〈ψn(t)|Ô|ψn(t)〉 is the single-trajectory
expectation value of the observable, [·]traj = N−1

traj
∑

n(·)
denotes the average over Ntraj trajectories, and the time t
is chosen to be in the regime of convergence to the steady
state. The above fluctuations are uniquely due to the effect
of the environment, and they correspond to the incoher-
ent part of the fluctuations associated with the pure-state
decomposition of the density matrix

ρ(t) = 1
Ntraj

∑

n

|ψn(t)〉〈ψn(t)|, (10)
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valid asymptotically in the limit Ntraj → ∞. On the other
hand, quantum fluctuations in this context can be defined
as the fluctuations proper to the single-trajectory wave
functions |ψn(t)〉, averaged over all trajectories:

Fq(Ô) = [〈O2〉n(t)− 〈O(t)〉2
n]traj (11)

with 〈O2〉n(t) = 〈ψn(t)|Ô2|ψn(t)〉. These fluctuations are
clearly most sensitive to the choice of the ansatz for the
trajectory wave functions. It is easy to verify that the
total fluctuations associated with the density matrix can be
decomposed into a classical and a quantum part:

F(Ô) = 〈Ô2〉ρ̂ − 〈Ô〉2
ρ̂ = Fc(Ô)+ Fq(Ô) (12)

with 〈·〉ρ̂ = Tr(ρ̂ ·). Note that the decomposition of the
density matrix into pure states (and thus relative contribu-
tions of Fc and Fq) is not unique, as it depends in principle
on the stochastic unraveling that one chooses.

A similar decomposition can be carried out in the case
of correlations, namely, given two local operators Â and
B̂ (for instance, Â = σ̂

μ
i and B̂ = σ̂ νj for two local spin

components),

C(Â, B̂) = 〈ÂB̂〉ρ̂ − 〈Â〉ρ̂〈B̂〉ρ̂ = Cc(Â, B̂)+ Cq(Â, B̂),
(13)

where

Cc(Â, B̂) = [An(t)Bn(t)]traj − [An(t)]traj[Bn(t)]traj (14)

are the classical correlations associated with trajectory-to-
trajectory fluctuations, while

Cq(Â, B̂) = [〈AB〉n(t)− An(t)Bn(t)]traj (15)

are referred to as the quantum correlations, originating
from the entangled nature of the wave function of each
trajectory.

The above discussion suggests that the stochastic unrav-
eling is able to capture the essential traits of the classi-
cal, incoherent fluctuations and correlations of the density
matrix solution to the master equation, regardless of the
choice of ansatz wave function describing each trajectory
(but the results of this work cast some doubts on this point
of view; see Sec. IV D). This aspect has been revealed
by several quantum trajectory calculations based on the
Gutzwiller ansatz [41,78–81], the cluster Gutzwiller ansatz
[33,44], the Gaussian ansatz [9,36], and the matrix-product
state ansatz [82,83], generally providing superior results
with respect to calculations based on similar ansatzes for-
mulated at the level of the density matrix. As an example,
a Gaussian ansatz for the trajectory wave functions of a
bosonic system is able to describe phenomena such as

optical bistability in dissipative nonlinear cavities that can-
not be described by applying the same Gaussian ansatz
at the level of the master equation [35,36]. Indeed, the
Gaussian ansatz at the level of the master equation approxi-
mates the density matrix to be a single Gaussian state, fully
described in terms of the average field quadratures and of
their covariance matrix, while the Gaussian ansatz for tra-
jectory wave functions approximates the density matrix as
a pure-state decomposition on Gaussian states, which is no
longer a Gaussian state—namely its higher-order correla-
tions for the field quadratures are no longer reducible to
one- and two-point ones.

In this work we apply similar insight to the case of quan-
tum spin systems. The analog of a Gaussian state for a
spin system is a state whose higher-order spin-spin correla-
tions are reducible to single-spin and two-spin expectation
values, assuming the vanishing of all multivariate cumu-
lants for quantum spin operators beyond the second-order
ones. We apply such an ansatz to single trajectories for
the study of the evolution of dissipative quantum spin lat-
tices in the next section. Before doing so, nonetheless,
we elaborate further on the link between quantum fluctu-
ations and correlations extracted from specific unraveling
schemes, and quantum fluctuations and correlations associ-
ated with the full state ρ̂ that is stochastically reconstructed
by the unraveling scheme. This link is discussed in the next
subsection.

3. Quantum correlations from trajectories versus the
quantum Fisher information of the full state

The previous subsection showed that the quantum tra-
jectory approach can shed light on the role of classical
versus quantum fluctuations and correlations in the state
of the system, via the combined analysis of the statis-
tics of trajectory-to-trajectory fluctuations versus that of
the fluctuations within single-trajectory wave functions.
This analysis is clearly dependent on the specific unrav-
eling scheme, and it appears at first sight to be of purely
theoretical interest, given that the single-trajectory fluctu-
ations are inaccessible experimentally, unless one is able
to repeat the exact same trajectory (i.e., the same sequence
of measurement records) multiple times. Nonetheless, the
theoretical estimate of quantum fluctuations and correla-
tions at the level of a specific unraveling scheme turns out
to be much more relevant than what may at first appear,
thanks to the link between this estimate and fundamental
quantum coherence properties of the state of system ρ̂.

A central quantity for the determination of quantum
fluctuation and quantum correlation properties of a generic
state ρ̂ is the quantum Fisher information (QFI) related to
an operator Â [84,85], which is defined as

QFI(Â) = 2
∑

lm

(λl − λm)
2

λl + λm
|〈l|Â|m〉|2, (16)
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where |l〉 and |m〉 are eigenstates of ρ̂ with respective
eigenvalues λl and λm. The QFI represents the most impor-
tant quantity in quantum interferometry, determining the
ultimate sensitivity of state ρ̂ to a unitary transformation
generated by Û(θ) = e−iθ Â. If Â and ρ̂ commute, such
sensitivity is zero; hence, QFI ultimately probes the non-
commutativity between Â and ρ̂, or, more explicitly, the
amplitude of the quantum fluctuations of Â in state ρ̂.

QFI can also be used to probe entanglement in state ρ̂. If
Â is a sum of local qubit observables, Â = ∑

i Âi, the state
sensitivity to the unitary transformation exceeds the stan-
dard quantum limit (SQL) �θ = 1/

√
N of independent

qubits only if the state is entangled [85,86], as detected by
the fact that the QFI density exceeds unity: QFI(Â)/N > 1.
In particular, the condition QFI(Â)/N > p (with p ∈ N)
reveals that the system contains (p + 1)-partite entangle-
ment [87,88].

In quantum trajectory calculations we do not have direct
access to QFI, which generically requires full knowledge
of the density matrix. The stochastic unraveling of the den-
sity matrix evolution does offer a pure-state decomposition
of state ρ̂, but not its eigenstate decomposition [which
is instead required by the definition of QFI, Eq. (16)].
Nonetheless, knowledge of a pure-state decomposition of
the density matrix still gives access to an upper bound
to QFI [54,89], in the form of the quantum fluctuations
defined in Sec. III A 2, namely,

QFI(Â) ≤ 4
∑

n

pnVarψn(Â) = 4Fq(Â). (17)

Here pn is the probability assigned to the pure state
|ψn〉 by the quantum trajectory approach (e.g., in the
steady state) and Varψn(Â) = 〈ψn|Â2|ψn〉 − 〈ψn|Â|ψn〉2 is
the variance of Â on the state of a single trajectory; hence,
this expression is equivalent to the trajectory-sampling
expression (11) for the quantum fluctuations in the limit
Ntraj → ∞. Inequality (17) becomes an equality only when
extremizing Fq over all pure-state decompositions [54,89].
Given that the value of the upper bound in Eq. (17)
is unraveling dependent, one could in principle find an
optimal upper bound by exploring different unravelings,
although we limit ourselves to heterodyne unraveling for
this work.

The expression of the quantum fluctuations of Â for
the trajectory approach can be made more explicit by
casting it in terms of quantum correlations Cq defined in
Eq. (15):

Fq(Â) =
∑

i,j

Cq(Âi, Âj ). (18)

Such a decomposition can be put in parallel with that of
QFI for the macroscopic observable Â,

QFI(A) =
∑

ij

Qij , (19)

where Qij = Q(Âi, Âj ) is given by

Qij = 2
∑

lm

(λl − λm)
2

λl + λm
〈m|Âi|l〉〈l|Âj |m〉, (20)

the so-called quantum Fisher information matrix (QFIM;
for the special case of commuting observables [Âi, Âj ] =
0), and plays a central role in multiple phase estimation
[90,91].

As we will see for the case of the dissipative XYZ model
studied below, the unraveling-dependent quantum corre-
lation function Cq(Âi, Âj ) has an exponentially decaying
behavior as a function of distance in the steady states
examined below |Cq(Âi, Âj )| ∼ exp(−rij /�̃Q), where �̃Q
is an (unraveling-dependent) quantum coherence length,
introduced for equilibrium mixed states in Ref. [92], and
defining the characteristic spatial range of quantum corre-
lations. Notably, this behavior is also generally expected
for thermal states [92–94], as recently proven in Ref. [95].
It is reasonable to assume as well that the QFIM has a sim-
ilar exponential decay, |Qij | ∼ exp(−rij /�Q), where now
the quantum coherence length �Q is an absolute property
of state ρ̂ and not of its stochastic sampling. The fact that
the integral of Cq (given by Fq) is an upper bound to the
integral of the QFIM (QFI itself) leads one to conclude
that �̃Q � �Q, namely, the spatial range of the unraveling-
dependent quantum correlations Cq provides in practice an
upper bound to that of the spatial range of the QFIM.

Hence, the above inequalities show that the quantum
trajectory analysis of quantum fluctuations provides upper
bounds to QFI and the quantum coherence length. One
may expect the inequalities to be rather tight, since the
unraveling corresponding to quantum state diffusion con-
tains local jump operators only, and it is therefore likely
to feature close-to-minimal entanglement in the trajectory
states [96]. In Sec. IV E we also provide a lower bound to
QFI, offered by the spin-squeezing parameter, allowing us
to provide a definite quantitative estimate of QFI whenever
the lower and upper bounds are close to each other.

B. Cumulant expansion and its truncation

In analogy with a classical probability distribution, the
quantum state of a lattice system can either be speci-
fied by its expansion coefficients with respect to a Hilbert
space basis or by the expectation values of a suitable
set of single-site operators X̂i (e.g., creation and annihi-
lation operators for bosonic and fermionic systems, Pauli
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matrices for spin systems). The moments of the local oper-
ators X̂i are expectation values of the form 〈X̂ m

i X̂ n
j · · · 〉,

where k = m + n + · · · is the order of the moment. Such
moments can be conveniently expressed in terms of the
multivariate cumulants 〈X̂ m

i X̂ n
j · · · 〉c, which are recur-

sively defined as [97,98]

〈X̂i〉 = 〈X̂i〉c,

〈X̂iX̂j 〉 = 〈X̂iX̂j 〉c + 〈X̂i〉c〈X̂j 〉c, (21)

〈X̂iX̂j X̂k〉 = 〈X̂iX̂j X̂k〉c + 〈X̂iX̂j 〉c〈X̂k〉c + 〈X̂iX̂k〉c〈X̂j 〉c

+ 〈X̂j X̂k〉c〈X̂i〉c + 〈X̂i〉c〈X̂j 〉c〈X̂k〉c,

and so on. A crucial insight justifying the use of a
cumulant expansion is that, in typical situations of inter-
est in physics—e.g., in the equilibrium state of many-
particle systems—the value of the cumulants is expected
to decrease with their order k. Therefore, a meaning-
ful approximation scheme might consist in truncating the
cumulant hierarchy to a given order kc: in so doing,
moments of order k > kc can be expressed in terms of
the moments of order 1 ≤ k ≤ kc, and therefore the whole
state is assumed to be described in terms of a finite set
of moments, whose number grows polynomially with the
system size as N kc . Approaches based on a truncation of
the cumulant expansion for the moments of the fluctua-
tions have been widely used in complex systems across
physics; for example, in condensed matter and chemical
systems [97,99–101], but also in quantum chromodynam-
ics [102], cosmology [103], and even medical imaging
[104]. In the context of driven-dissipative systems, cumu-
lant approaches have been most commonly applied to
bosonic systems and in particular on the level of the master
equation [68,105–113]. Some recent work has shown the
advantage of descriptions on the level of quantum trajecto-
ries for such systems instead, in particular at the Gaussian
level [9,36,114]. Our goal here is to extend these methods
to dissipative quantum spin lattices, exhibiting their poten-
tial to quantitatively describe dissipative phase transitions
and the role of quantum fluctuations.

It must be noted that, while the truncation of the cumu-
lant hierarchy often leads to insightful results, it is typically
not variational, namely, it does not necessarily correspond
to an existing ansatz for the quantum state. According to a
well-known theorem of statistics proven by Marcinkiewicz
[115], all classical probability density functions either
have only nonvanishing k ≤ 2 cumulants, or cumulants
up to infinitely high order will be nonvanishing [116].
This has since been generalized to bosonic quantum states
[117]. As a consequence of the Marcinkiewicz theorem,
physical bosonic states have either only first-order cumu-
lants (coherent states, kc = 1), only first- and second-order
cumulants (Gaussian states, kc = 2), or nonzero cumu-
lants to all orders. For the case of spin systems, we are

not aware of an analog to the Marcinkiewicz theorem,
although the existence of spin-to-boson mappings suggests
that the limitations on the existence of physical trunca-
tions of the cumulant expansion valid for bosons may have
similar repercussions on spins as well. We argue nonethe-
less that, even if the truncation to order kc of the cumulant
hierarchy did not correspond to any physical state for the
quantum spins, its application to calculations amounts to
an embedding of the physical problem of interest within
a larger family of problems, a procedure which is rather
common in physics. As an example, in the context of
spin-to-boson mappings, quantum spins are mapped onto
bosons with a constrained Hilbert space [118], but the
necessity to release the constraints for the sake of feasi-
ble calculations embeds the quantum spin problem within
a larger family of problems. The latter act is meaningful
as long as the physical content of the theoretical predic-
tions is not substantially altered by the embedding. In
the following, we make this (falsifiable) assumption of
the truncation of the cumulant expansion to order k =
kc = 2 for spin systems. We remark that throughout our
study we have not encountered a single unphysical result
justifying the need to revise this assumption, and have val-
idated consistency with exact results where these could be
obtained.

C. Truncated-cumulant equations for dissipative spin
systems

In this work we focus our attention on spin-1/2 spins,
in relation with current studies on ensembles of qubits
coupled to each other and with an environment. For a
spin-1/2 system, the local spin variables form a closed
algebra, such that any product of spin operators acting
on the same site can be written as a single spin variable.
Therefore, the only local observables Xi of interest are
the spin components σ̂ αi , α = x, y, z, taken to first power,
whereas the nonlocal moments of interest are of the kind
〈σ̂ αi

i σ̂
αj
j σ̂

αk
k · · · 〉 with i �= j �= k. As a consequence, a trun-

cation of the cumulant hierarchy to order kc implies that all
k-point correlation functions with k > kc can be expressed
in terms of k-point ones with k ≤ kc. In the following
we adopt the truncation scheme of the cumulant expan-
sions at the level of single trajectories, with kc = 2. We
note that some recent works have applied a similar trun-
cation scheme to spin systems [111,112], but as an ansatz
on the density matrix solving the master equation instead.
In view of the discussion provided above on classical
versus quantum correlations, we can state that the above-
cited works truncate all correlations equally, whereas the
approach we discuss here preserves classical fluctuations
up to all orders, and only truncates the higher-order cumu-
lants of quantum correlations. This is a much more flexible
ansatz since, in analogy with the bosonic case, cumulants
of order higher than k = 2 are preserved at the level of the
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trajectory-to-trajectory fluctuations. We note that a trun-
cation on quantum correlations is physically justified in a
dissipative system, as high-order cumulants of quantum
fluctuations may be expected to be strongly suppressed
by decoherence [38], given that each site is assumed to
interact with its own independent environment.

In the following we discuss the single-trajectory equa-
tions of motion for the moments of the spin fluctu-
ations within the two truncation schemes with kc = 1
(corresponding to the Gutzwiller mean-field ansatz for

trajectories) and with kc = 2, which is the truncation level
we adopt for the rest of our work.

1. k = 1 truncation

When truncating the cumulant expansion to first-order
cumulants, nonlocal quantum correlations are completely
discarded, and the pure state along each trajectory cor-
responds to a factorized Gutzwiller ansatz [41]. We then
obtain, from Eqs. (1), (2), and (7),

d〈σ̂ x
m〉 =

(
− γ

2
〈σ̂ x

m〉 + 2Jy

∑

m′
〈σ̂ y

m′ 〉〈σ̂ z
m〉 − 2Jz

∑

m′
〈σ̂ z

m′ 〉〈σ̂ y
m〉

)
dt +

√
γ

2
(1 + 〈σ̂ z

m〉 − 〈σ̂ x
m〉2)dWx

m +
√
γ

2
〈σ̂ x

m〉〈σ̂ y
m〉dWy

m,

(22)

d〈σ̂ y
m〉 =

(
− γ

2
〈σ̂ y

m〉 + 2Jz

∑

m′
〈σ̂ z

m′ 〉〈σ̂ x
m〉 − 2Jx

∑

m′
〈σ̂ x

m′ 〉〈σ̂ z
m〉

)
dt −

√
γ

2
(1 + 〈σ̂ z

m〉 − 〈σ̂ y
m〉2)dWy

m −
√
γ

2
〈σ̂ x

m〉〈σ̂ y
m〉dWx

m,

(23)

d〈σ̂ z
m〉 =

(
− γ (〈σ̂ z

m〉 + 1)+ 2Jx

∑

m′
〈σ̂ x

m′ 〉〈σ̂ y
m〉 − 2Jy

∑

m′
〈σ̂ y

m′ 〉〈σ̂ x
m〉

)
dt −

√
γ

2
〈σ̂ x

m〉(1 + 〈σ̂ z
m〉)dWx

m

+
√
γ

2
〈σ̂ y

m〉(1 + 〈σ̂ z
m〉)dWy

m. (24)

Note that these equations are expressed differently than
those of Ref. [41], but are equivalent (modulo the choice
of stochastic unraveling). We have also observed that they
are numerically more efficient to integrate. When the noise
terms are omitted in Eqs. (22)–(24), recovering the k = 1
truncation scheme at the level of the density matrix, these
equations reduce to the mean-field equations described in
Ref. [23].

In Appendix D we extend the k = 1 calculations of
Ref. [41], and we provide a comprehensive finite-size scal-
ing analysis of the dissipative paramagnetic-ferromagnetic
phase transition exhibited by the k = 1 truncation scheme.
This analysis shows that the k = 1 data are incompatible
with the universality class of the 2D classical Ising, but
have rather good agreement with the mean-field universal-
ity class; however, this picture is strongly altered by the
inclusion of quantum correlations within the k = 2 trunca-
tion scheme, as we discuss further in Sec. IV D, which is
in stark contrast with the treatment of classical correlations
only.

2. k = 2 truncation

We now turn our attention to the more general k > 1
case, which allows one to account for quantum correla-
tions in the dissipative dynamics. The derivation of the

equations for the evolution follows the scheme outlined
above, and in the k = 2 case it is detailed in Appendix A
for heterodyne unraveling.

As already mentioned above, in the bosonic case
only k = 1, 2 truncations correspond to variational states
(coherent states and Gaussian states, respectively).

In the case of spin states, the situation is more intricate.
The vanishing of cumulants of order larger than k = 1 is
realized by Gutzwiller states (see Sec. III C 1). The absence
of well-understood quantum spin states that display closure
at the k = 2 level, however, does not mean that this trun-
cation is without its merits in the description of physical
systems.

It has actually been shown that almost all pure quan-
tum states for N = 3 spins are in fact fully determined by
knowledge of the two-spin density matrices [119]. This
implies in turn that third-order cumulants must vanish
exactly for these states. This result has been generalized to
systems with N > 3 [120,121], where it has been proven
that most quantum states are fully determined by knowl-
edge of the reduced states involving only a fraction of
its degrees of freedom—albeit generically a macroscopic
fraction thereof. This suggests that truncated-cumulant
hierarchies have physical relevance, even though the trun-
cation to order kc = 2 might not be realized exactly by a
generic physical state for N � 2 spins.
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The choice of k = 2 guarantees the ability to cap-
ture quantum correlation at the smallest computational
cost—namely, that of tracking the evolution of two-point
correlation functions, requiring a computational time of
order O(N 2) for systems with short-range interactions. As
noted above, these two-point quantum correlation func-
tions are those most likely to survive decoherence and
they are expected to dominate the critical behavior at true
quantum phase transitions.

A technical remark is in order at this point. In the
stochastic trajectory approach, the fluctuations of order√

dt result in equations that turn out to be numerically
unstable. Stability is recovered however when the noise
terms in the equations of motion for the second-order
cumulants are dropped. The justification for omitting the
noise terms in the dynamics of the second-order cumu-
lants is detailed in Appendix B. There we show that the
dynamics becomes more stable when the amplitude of the
noise is reduced. Physically, this corresponds to a situa-
tion with detectors that have a limited efficiency, namely,
that they only detect a portion of the photon signal emitted
by the spins upon decaying. With these finite efficiencies,
we see that the presence of noise on the second moments
does not affect the results, and we can extrapolate the
results to the (numerically unstable) trajectory limit with
γm = γ . This observation therefore allows us to omit these
noise terms on the second-order cumulants. Doing so, we
observe very good agreement between the cumulant hier-
archy and numerically exact results for small systems—as
we detail below—further demonstrating the validity of this
approach.

IV. RESULTS

In what follows we present the results for the dissipa-
tive XYZ model from our method obtained with the k = 2
cumulant truncation. In Secs. IV A–IV E, we focus our
attention on the case Jx = 0.9γ and Jz = γ ; a full account
of the phase diagram of the system will be provided in
Sec. IV F. Note that, to obtain the expectation value of
an operator Ô in the quantum trajectory formalism, we
time evolve each quantum trajectory over a long enough
period of time for it to reach the steady-state regime.
Subsequently, we continue to time evolve and use this col-
lected data to perform time averaging when calculating
expectation values. Additionally, we average over multiple
trajectory realizations.

A. The steady-state spin structure factor

We start by benchmarking the k = 2 truncation scheme,
which amounts to tracking the evolution of one- and two-
point correlators with ranges covering the entire lattice. To
this end, we compare our results on the steady-state expec-
tation values with the exact solutions of a 2 × 2, 3 × 3, and
4 × 4 lattice. For the two smaller lattices, we directly solve

master equation (2), while the larger lattice is solved with a
wave-function Monte Carlo approach based on the photon
counting unraveling of Eqs. (4)–(6), which converges to
the exact steady-state expectation values when averaging
over a sufficient number of trajectories. The Z2 symmetry
of the problem along the x and y axes prevents the appear-
ance of a nonzero magnetization in the steady state; hence
we resort to the steady-state (SS) spin structure factor to
reveal the possible appearance of ferromagnetic order in
the system. It is defined as

SααSS (k) = 1
N 2

∑

i,j

eik·rij 〈σ̂ αi σ̂ αj 〉 (25)

with rij = ri − rj . For the choice of k = 0, a value of the
structure factor not scaling with the system size signals
the presence of long-range ferromagnetic order, while a
value scaling to zero with system size (as N−1) signals a
paramagnetic phase. The results for the steady-state spin
structure factor in the x direction are shown in Fig. 1(a)
for values of 0 < Jy/γ < 2. In the proximity of Jy ≈ γ we
find excellent correspondence between our method and the
exact solution. We refer the reader to Appendix C for addi-
tional data showing a comparison of the second and fourth
moments in the x and y directions for the k = 2 trajec-
tory method and the exact solution, once again exhibiting
a rather remarkable correspondence.

Furthermore, as the system size increases, so does the
region where the k = 2 results fall onto the exact solution.
This can also be observed by studying the local maxima
of the steady-state spin structure factor: for the maxima on
both sides of Jy = γ , one can observe a decreasing differ-
ence with the exact solution as the system size is increased,
suggesting that a result very close to the exact solution may
in fact be recovered in the thermodynamical limit.

The agreement between the numerically exact solution
and the k = 2 results is especially good in the region
close to the paramagnetic-to-ferromagnetic phase transi-
tion, occurring in the vicinity of Jy/γ = 1 (as we will see
in Sec. IV D), and in a way that is nearly independent
of system size. This good correspondence for small sys-
tem sizes gives confidence for the use of our method to
study the critical properties around the transition. The very
good agreement between the k = 2 results and the exact
ones suggests that the cumulants that we discard (of order
k = 3 and higher) are—as anticipated—significantly sup-
pressed in the steady state as a result of the coupling to the
environment.

Figure 1(b) exposes the significant improvement offered
by the k = 2 results compared to the k = 1 ones through-
out the range of parameters relevant for the physics dis-
cussed in this work. The same figure also shows that the
application of the k = 2 truncation scheme at the level
of single-trajectory wave functions, which stochastically
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FIG. 1. (a) Steady-state spin structure factor for the σ̂ x spin
components, Sxx

SS(0), for a 2 × 2, 3 × 3, and 4 × 4 lattice as a
function of Jy/γ (Jx = 0.9γ ): dashed lines represent the results
from the k = 2 truncation scheme, while solid lines are the exact
steady-state solution, obtained by directly solving the master
equation exactly for N < 4, and by sampling exactly calculated
trajectories in the stochastic unraveling of the master equation for
N = 4. The parameter region in which the k = 2 results overlap
with the exact ones is seen to become progressively wider for
larger system sizes. (b) Comparison of the same spin structure
factor from different correlation-hierarchy methods, k = 1 (dot-
ted lines) and k = 2 (dashed lines), for the 4 × 4 lattice, applied
at the level of the master equation (ME) and at the level of quan-
tum trajectories (QTs). For the data of both panels, and for all
system sizes, the number of trajectories for the k = 2 calcula-
tions is given by Ntraj ≈ 250; the results are time averaged over
the time interval tγ ∈ [75; 150], corresponding to the stationary
regime of the evolution.

sample the density matrix, delivers results that are in sig-
nificantly better agreement with the exact solution than
those obtained by applying the same truncation scheme for
the full fluctuations, i.e., at the level of the master equation.
This is especially visible in the vicinity of the transition at
Jy/γ ≈ 1.

In the ferromagnetic phase, long-range ferromagnetic
order appears in the X -Y plane, but not necessarily along
one of the coordinate axes, and it is therefore necessary to
systematically search for the direction of maximal correla-
tions. Such a direction is defined by the angle φ for which
the k = 0 structure factor

SφφSS (0) = cos2 φ Sxx
SS(0)+ sin2 φ Syy

SS(0)

+ 2 sinφ cosφ Cxy(0) (26)

is maximal, where we have introduced the cross-
correlation term

Cxy(k) = 1
2N 2

∑

ij

eik·rij 〈σ̂ x
i σ̂

y
j + σ̂

y
i σ̂

x
j 〉. (27)

Maximizing with respect to φ, one can easily obtain the
following condition on the optimal angle:

φ = 1
2

tan−1
(

2Cxy(0)
Sxx

SS(0)− Syy
SS(0)

)
+ pπ

2
(28)

with p ∈ Z. This condition allows for the extraction of
angle φ that maximises the order parameter by simply cal-
culating the three quantities Sxx

SS(0), Syy
SS(0), and Cxy(0).

From this point onward we systematically focus on results
for the optimal angle φ.

B. Paramagnetic phase with quantum properties

The qualitative correspondence of the k = 2 results
allows us to investigate more closely the region 0 <
Jy/γ < 1. In this region the Gutzwiller approach (either
at the level of the master equation or of the wave-function
trajectories) predicts a featureless paramagnetic phase [23,
41], exhibiting a structure factor that is very close to zero
for all system sizes. On the other hand, our k = 2 results
show the existence of ferromagnetic correlations; the fact
that they appear in this approach and not within the k = 1
scheme [44] indicates that they have a quantum origin,
given that the account of quantum correlations is the main
distinction between the two truncation schemes. An anal-
ysis of scaling with system size allows us to determine
the fate of these quantum ferromagnetic correlations in
the thermodynamic limit. In panel (a) of Fig. 2 we show
the steady-state spin structure factor SφφSS for various sys-
tem sizes. It is clear that the maximum for the left peak
decreases with increasing system size, but correlations per-
sist for lattices of intermediate size. A finite-size scaling of
the maximum, shown in panel (b) of Fig. 2, shows a power-
law decrease proportional to N−0.95. This signals that in
fact the quantum ferromagnetic correlations are of short-
range nature, as we show explicitly in the next section,
and one recovers a paramagnetic phase as predicted by
the Gutzwiller trajectory approach [44]. Nonetheless, as
shown in Sec. IV E, the quantum nature of correlations
present in this phase is not only underlined by the com-
parison with the Gutzwiller results, but it can be further
characterized in terms of entanglement witnesses. Indeed,
as we will see, substantial quantum correlations are accom-
panied by spin squeezing, offering a rather tight lower
bound to the quantum Fisher information associated with
the collective spin in some parameter regimes.
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FIG. 2. (a) Steady-state spin structure factor for the σ̂ φ spin
components at the optimal angle, SφφSS (0), for lattices with dimen-
sions L = 5, . . . , 10, obtained via quantum trajectories within
the k = 2 truncation scheme (Jx = 0.9γ ). (b) Scaling of the
local maximum of SφφSS (0) for Jy/γ < 0.9; the red line shows a
power-law fit ∝ (L2)−0.95. In both panels, the other simulation
parameters are the same as for the k = 2 case presented in Fig. 1.

C. Long-range order and short-range quantum
correlations

The most salient feature in Fig. 2(a) is the appearance of
a strong peak in the structure factor, which is nearly size
independent in the region 1 � Jy/γ � 1.25, reflecting the
appearance of long-range ferromagnetic order. The phase
diagram therefore sees the succession of two transitions
upon increasing Jy/γ : from paramagnetic to ferromagnetic
around Jy/γ ≈ 1 and from ferromagnetic back to param-
agnetic around Jy/γ ≈ 1.25. The critical behavior at these
two transitions will be investigated in detail in Sec. IV D.

We now examine the steady-state correlation function
〈σ̂ φi σ̂ φj 〉 for the optimal angle φ spin components, i.e.,
σ̂
φ
i = cos(φ)σ̂ x

i + sin(φ)σ̂ y
i . These correlations are shown

in Fig. 3(a) for a 14 × 14 lattice and various values of
Jy/γ using dashed lines with filled circles. In this figure
we plot, along with the above-cited correlation function,
the one associated with classical correlations, as defined
in Eq. (14), namely, accounting only for trajectory-to-
trajectory fluctuations of the single-trajectory average val-
ues 〈ψn|σ̂ φi |ψn〉. The differences between these data in turn
give the quantum correlations as defined in Eq. (15).

We systematically observe for all values of Jy/γ that
classical correlations and total correlations tend to coincide
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FIG. 3. (a) Total correlation function C(σ̂ φi , σ̂ φi+r) = 〈σ̂ φi σ̂ φi+r〉
for the optimal-angle spin components (dashed lines with filled
circles), along with its classical part Cc(σ̂

φ
i , σ̂ φi+r) (solid lines with

stars), for several values of Jy/γ at Jx = 0.9γ . (b) Quantum
contribution to the correlations Cq(σ̂

φ
i , σ̂ φi+r) (dashed lines with

crosses), compared with a reference exponential decay (solid
line). In both panels, the data refer to a 14 × 14 lattice, and
are obtained using Ntraj = 128 trajectories, with time averaging
performed in the time interval tγ ∈ [75; 150].

at long distances, indicating that the paramagnetic-to-
ferromagnetic and ferromagnetic-to-paramagnetic transi-
tions in the system are fundamentally driven by classical
fluctuations—this conclusion will also be corroborated in
the Sec. IV D with the analysis of the universality class
of the transition. Nonetheless, we clearly observe the
presence of very pronounced short-range quantum corre-
lations, in that classical and total correlations significantly
deviate from each other at shorter distances. More pre-
cisely, as shown in Fig. 3(b), we observe exponentially
decaying quantum correlations exhibiting a finite quantum
coherence length �̃Q, as defined in Sec. III A 3. Remark-
ably, we observe �̃Q ≈ 1, the lattice constant, across all
parameter values. The ability of the method to tackle rather
large lattices allows us to describe the full spatial struc-
ture of quantum correlations. Their short-ranged nature
may erroneously suggest that one may ignore them alto-
gether (as done by Gutzwiller trajectory approaches, or
their cluster extensions for distances beyond the cluster
size) and that this will not bear any consequence on the
study of the critical behavior of the system—which, by
definition, involves only long-range correlations. In fact,
we see in the next section that taking quantum correlations
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into account properly has profound consequences for the
critical behavior, in spite of its seemingly classical nature.

D. Phase transitions and universal behavior

We now turn to a systematic finite-size scaling anal-
ysis of the two transitions appearing in the system:
the paramagnetic-to-ferromagnetic transition for Jy/γ ≈ 1
and the transition to reentrant paramagnetism for Jy/γ ≈
1.25. While the presence of the first phase transition is well
established, the second one is debated, and in fact even
proposed to be a smooth crossover [42]. In particular, a dif-
ficult aspect for this transition is that it occurs in a regime
in which the steady state has high entropy, posing a chal-
lenge to all density matrix methods that are limited in the
entropy content of the state [32,40]. We argue that, a pri-
ori, our method should be able to capture the proper critical
behavior regardless of whether it is driven by classical or
quantum fluctuations.

1. Structure factor

In analogy with equilibrium thermal phase transitions,
we assume that the behavior of the system exhibits scale
invariance at a dissipative phase transition, so that the sin-
gular part of all thermodynamic quantities in turn exhibits
a scaling behavior, governed by critical exponents. As a
consequence of such scaling behavior, the structure factor
at the optimal angle φ is expected to exhibit the following
scaling behavior in finite-size systems:

SφφSS (0) = L−2β/νF(|Jy − Jy,c|L1/ν). (29)

Here Jy,c is the critical value for our control parameter Jy ,
L is the linear system size, F is a universal scaling func-
tion, and β, ν are universal critical exponents. In order to
extract the three parameters Jy,c, β, and ν from a finite-size
scaling analysis of our k = 2 results, we should adjust the
values of the parameters so that the curves for SφφSS (0)L

2β/ν

plotted as a function of |Jy − Jy,c|L1/ν for different sys-
tem sizes collapse together, reconstructing the universal
scaling function F . Reducing the number of fitting param-
eters, we start off with an educated guess, and immediately
observe the consistence of our results with the 2D Ising
universality class. Indeed, the insight gained by the anal-
ysis of correlations in the previous section showed us
that long-range correlations in the system are of classical
origin, so that we should expect the transitions (from para-
magnetic to ferromagnetic and back) to be of a classical
nature, and compatible with the Z2 symmetry of the sys-
tem, its two-dimensional nature, and the short-range nature
of its couplings. These characteristics suggest the 2D clas-
sical Ising universality class as a natural candidate for our
transition, inviting us to fix the critical exponents to the
corresponding values β = 1/8 and ν = 1. Therefore, the
only parameter to be adjusted remains Jy,c.
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FIG. 4. (a) Rescaled structure factor SφφSS (0)L
2β/ν at the

paramagnetic-to-ferromagnetic transition for Jx = 0.9γ , using
2D Ising exponents (ν = 1 and β = 1

8 ). (b) Full scaling plot,
using Jy,c ≈ 1.064 as the critical point. For all system sizes,
the number of trajectories is given by Ntraj ≈ 768, and time
averaging is performed in the interval tγ ∈ [75; 150].

The value of Jy,c can be extracted as the crossing point Jy

between curves of the rescaled structure factor SφφSS (0)L
2β/ν

for different system sizes. Our results show a crossing
at Jy/γ ≈ 1.064 [Fig. 4(a)] for the first transition, and
at Jy/γ ≈ 1.24 [Fig. 5(a)] for the second one. The proof
that the transition belongs to the classical 2D Ising uni-
versality class comes when plotting the rescaled structure
factor as a function of the rescaled distance to the criti-
cal point |Jy − Jy,c|L1/ν with ν = 1: Figs. 4(b) and 5(b)
show an excellent collapse for the first transition, and a
very good one for the second transition when looking at
the largest lattices (from 9 × 9 to 12 × 12). The apparently
imperfect collapse at the second transition for smaller sys-
tem sizes is clearly due to finite-size effects, as already
visible in Fig. 5(a), in which the crossing point of the
curves stabilizes only starting from the 9 × 9 lattice, as
can be seen in the inset of Fig. 5(a). The above results
therefore provide conclusive evidence for the existence of
two transitions, both belonging to the 2D classical Ising
universality class.

As discussed in Appendix D, a similar scaling anal-
ysis shows that the results obtained within the k = 1
(Gutzwiller) scheme are not compatible with a 2D Ising
transition, nor with a mean-field one—in fact, we can
obtain a scaling collapse of our k = 1 data only for
effective critical exponents that do not correspond to any

030304-13



WOUTER VERSTRAELEN et al. PRX QUANTUM 4, 030304 (2023)

1.18 1.20 1.22 1.24 1.26 1.28
Jy/γ

0.5

0.6

0.7
S

φ
φ

SS
(0

)L
2β

ν

(a)
7 8 9 10 11

L

1.20

1.22

1.24

J
y
,c

–0.75 –0.50 –0.25 0.00 0.25 0.50
L

1ν(Jy − Jy,c)/γ

0.5

0.6

0.7

S
φ
φ

SS
(0

)L
2β

ν (b)

7 × 7
8 × 8
9 × 9

10 × 10
11 × 11
12 × 12

FIG. 5. (a) Rescaled structure factor SφφSS (0)L
2β/ν at the

ferromagnetic-to-paramagnetic transition for Jx = 0.9γ , using
2D Ising exponents (ν = 1 and β = 1

8 ). Inset: crossing points Jy,c
of the curves associated with sizes L and L + 1. (b) Full scaling
plot, using Jy,c ≈ 1.24 as the critical point. For all system sizes,
the number of trajectories is given by Ntraj ≈ 1408 for L = 7, 8, 9,
Ntraj ≈ 1920 for L = 10, 11, and Ntraj ≈ 1792 for L = 12, and
time averaging is performed in the interval tγ ∈ [75; 150].

equilibrium universality class known to us. This result
is rather surprising, in view of the fact that one would
expect the k = 1 approach to capture classical fluctua-
tions at the dissipative transition, and that such fluctuations
are expected to govern the critical behavior. From this
observation we conclude that short-range quantum cor-
relations, included in the k = 2 approach, are essential
in determining the universality class, even though the
long-range correlations that emerge at criticality are of
classical origin. We can partially attribute this to the fact
that the diffusion constants in the k = 1 model become
zero in the paramagnetic phase so that no noise is left
there. This aspect is rather surprising, but it shows that
dissipative phase transitions often defy the intuition for
critical phenomena that one may have developed in the
context of equilibrium systems. Indeed, we can put this
observation in parallel with the (equally surprising) one
that cluster mean-field approaches [39], only including
short-range correlations, radically change the prediction
for the phase diagram of our system of interest com-
pared with the standard mean-field approach [23]. In both
cases, one observes that the proper account of fluctua-
tions at short scales in dissipative quantum systems can
have significant consequences on the long-wavelength
properties.

2. Derivative of the transverse magnetization

The steady state of the dissipative XYZ model at
study is generally characterized by the presence of a
net magnetization mz = 〈Ĵ z〉/N = N−1 ∑

i〈σ̂ z
i 〉 along the

z axis—which is induced by the fact that dissipation in
the form of spontaneous decay favors the spin to point
downwards along this axis. The mz magnetization takes
the value of −1 at the U(1) symmetry point of the model
(Jx = Jy), at which the steady state is fully polarized along
−z by the dissipation given that M z is a good quan-
tum number. But it decreases (in absolute value) with
respect to is saturation value as soon as Jy �= Jx because of
quantum effects, given that Hamiltonian Ĥ ceases to com-
mute with Ĵ z. Upon increasing the value of J y/γ at fixed
J x/γ , the mz curve clearly exhibits two size-dependent
anomalies, corresponding to the two transitions of the sys-
tem, as shown in Fig. 6(a): a sharp decrease (in absolute
value) at the first (paramagnetic-to-ferromagnetic) tran-
sition and a successive upturn (again in absolute value)
at the second (ferromagnetic-to-paramagnetic) transition.
These features are best captured by taking the derivative
of the magnetization with respect to the control param-
eter of the transition γ dmz/dJy : this derivative—shown
in Fig. 6(b)—exhibits two sharp size-dependent features,
namely, a sharp growing peak and an equally sharp grow-
ing dip. Tracking the size dependence of the height of
the peak (at the paramagnetic-to-ferromagnetic transi-
tion) we observe that it is compatible with a logarithmic
growth γ (dmz/dJy)peak ≈ A + B log L [Fig. 6(c)]. A simi-
lar behavior is observed as well for the dip in the derivative
at the second transition, as shown in Fig. 6(d). A logarith-
mic growth is to be expected according to the 2D Ising
universality class: indeed, a similar logarithmic divergence
of the derivative of the transverse magnetization with
respect to the control parameter of the transition (the tem-
perature, in this case) is observed at the thermal transition
of the 2D Ising model in a transverse field, and, as dis-
cussed in Appendix E from the scaling form of the free
energy, it can be proven to be equivalent to the well-known
logarithmic divergence of the specific heat peak at the 2D
Ising transition [122]. Therefore, this result corroborates
further the adherence of the two transitions of the system
to the 2D Ising universality class, as well as the ability of
the k = 2 truncation scheme approach to dissipative phase
transitions to accurately reconstruct the multiple facets of
critical behavior.

E. Bounds on the quantum Fisher information

1. Spin squeezing as an entanglement witness

In Sec. IV C we already ascertained the existence of
short-range quantum correlations along each stochastic
trajectory. Nonetheless, this result is strongly dependent
on the properties of the trajectory wave functions, and

030304-14



QUANTUM AND CLASSICAL CORRELATIONS. . . PRX QUANTUM 4, 030304 (2023)

–1.0

–0.8

–0.6

–0.4

–0.2

m
z

(a)

0.5 1.0 1.5 2.0
Jy/γ

0

2

4

6 (b)

5.0

5.5

6

γ
m

ax
( d

m
z

d
J

y
/

)
γ

m
in

( d
m

z
d
J

y
/

)

γ
( d

m
z

d
J

y
/

)
y(L) = 2.546 log(L) + 0.4725

(c)

7 8 9 10 11
L

–0.2

–0.1

0.0

y(L) = –0.4009 log(L) + 0.7155
(d)

L = 7
L = 8
L = 9
L = 10

FIG. 6. (a) Dissipation-induced transverse magnetization mz as a function of Jy for Jx = 0.9γ and different system sizes. (b) Deriva-
tive of the transverse magnetization γ dmz/dJy , showing two clear anomalies at the two transitions of the system. (c) Scaling of the
peak value of γ dmz/dJy with system size (around Jy/γ ≈ 1). (d) Scaling of γ dmz/dJy at the minimum value (around Jy/γ ≈ 1.25).
In panels (c) and (d) the dashed line is a logarithmic fit to the data. The numbers of trajectories used in (a) and (b) are Ntraj ≈ 250 and
Ntraj ≈ 750 in the region close to Jy ≈ 1.05. In panel (c) the number of trajectories range from Ntraj ≈ 27 000 to Ntraj ≈ 15 000 and in
panel (d) from Ntraj ≈ 70 000 to Ntraj ≈ 35 000 (depending on the lattice dimension). For each trajectory, time averaging is performed
in the interval tγ ∈ [75; 150].

it could in principle be interpreted as depending on the
specific unraveling that we are considering. Nonetheless,
as already discussed in Sec. III A 3, the integral of the
(unraveling-dependent) quantum correlations

Fq(Ĵ φ) =
∑

i,j

[
cos2 φ Cq(σ̂

x
i , σ̂ x

j )+ sin2 φ Cq(σ̂
y
i , σ̂ y

j )

+ 1
2

sin(2φ) (Cq(σ̂
x
i , σ̂ y

j )+ Cq(σ̂
y
i , σ̂ x

j ))

]

(30)

provides an upper bound to QFI of the collective spin com-
ponent along the optimal angle Ĵ φ = ∑

i σ
φ
i , QFI(Ĵ φ), and

the spatial decay of quantum correlations defines a similar
bound to the spatial decay of the QFIM. Here we discuss
how our calculations can in turn access a lower bound to
QFI(Ĵ φ), therefore allowing for a quantitative estimate of
its value.

The quantity of interest is related to the spin-squeezing
parameter, which probes the structure of the uncertainty
on the orientation of the collective spin Ĵ α = ∑

i σ
α
i (α =

x, y, z). We observe that the state of the system is mag-
netically polarized along the negative z direction for the
spins because of spontaneous decay—namely, it develops
a finite value for 〈J z〉 in the steady state. Moreover, at the
transition the uncertainty on the collective spin component
at the optimal angle φ, Ĵ φ = cosφĴ x + sinφĴ y , develops
anomalous critical fluctuations; if these fluctuations have

an enhanced quantum component then one can expect that
anomalously small fluctuations are developed by the per-
pendicular collective spin component J φ⊥ , as observed at
Ising quantum critical points [123]. Under these circum-
stances, entanglement can be effectively detected in the
form of squeezing, namely, by the fact that the squeezing
parameter [124]

ξ 2
R = N Var(Ĵ φ⊥)

〈Ĵ z〉2
(31)

becomes smaller than unity, or, equivalently, ξ−2
R > 1. This

condition is enough to show that the state is not separable
[125].

The inverse of the squeezing parameter inherits
its entanglement witnessing properties (discussed in
Sec. III A 3) from the fact that it is a lower bound to QFI
associated with the most strongly fluctuating collective
spin component, QFI(Ĵ φ). Indeed, the inverse squeezing
parameter represents a lower bound to the QFI density,
ξ−2

R ≤ QFI(Ĵ φ)/N [85], as it offers the gain in metrological
precision (compared to the SQL) using a specific measure-
ment protocol (Ramsey interferometry [124]). Therefore,
the entanglement witnessing properties of QFI are directly
transferred to the inverse spin-squeezing parameter.

2. Results

Our estimate of QFI of the steady state proceeds then by
exploiting the inequality chain
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ξ−2
R ≤ QFI(Ĵ φ)

N
≤ 4Fq(Ĵ φ)

N
, (32)

and by explicitly calculating the two bounds. Figure 7(a)
shows the inverse squeezing parameter (solid lines) for dif-
ferent system sizes as a function of Jy/γ scanning across
the two dissipative phase transitions of the system. We
observe that squeezing (namely, the condition ξ−2

R > 1) is
massively present in the phase diagram of the system: in
particular, squeezing accompanies the first paramagnetic-
to-ferromagnetic transition at Jy/γ ≈ 1, and, most promi-
nently, it is present across a wide region of the paramag-
netic phase for Jy/γ < 1, which, as already pointed out in
Sec. IV B, is accompanied by pronounced quantum cor-
relations. The cusp singularity of squeezing for Jy/γ =
Jx/γ = 0.9 marks the fact that the steady state at this sym-
metry point is the factorized pure state | ↓↓ · · · ↓〉. The
fact that squeezing is nearly independent of the system
size is a reflection of the fact that quantum correlations
are short ranged, as already explicitly shown in Sec. IV C.
At the same time, squeezing is absent at the second tran-
sition for Jy/γ ≈ 1.2. The striking difference between the
behavior at small Jy/γ versus the behavior at larger Jy/γ is
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FIG. 7. (a) Inverse spin-squeezing parameter ξ−2
R (lower solid

curves) and 4Fq(Ĵ φ) (upper dashed curves) as a function of
Jy/γ (Jx/γ = 0.9) for different system sizes. The two sets of
curves provide a lower and upper bound to QFI(Ĵ φ), respec-
tively [see Eq. (32)], whose value is therefore enclosed within
the green-shaded area (for a 10 × 10 lattice). For all system
sizes, the number of trajectories is given by Ntraj ≈ 770, and
time averaging is performed in the time interval tγ ∈ [75; 150].
(b) Scaling of the maximum of ξ−2

R and of 4Fq(Ĵ φ) near the
paramagnetic-to-ferromagnetic transition (Jy ≈ 1.064γ ).

certainly a consequence of the fact that the regime at larger
Jy/γ exhibits much larger entropies [40], so that quantum
coherence effects are expected to be suppressed.

While the presence of squeezing is conclusive proof for
the entangled nature of the state, its absence does not allow
one to draw any conclusion about the nature of the state,
since entanglement may still be witnessed by another cri-
terion. Such a criterion could be offered by the QFI density
exceeding unity, which is more effective than the squeezing
criterion as, by construction, it detects all metrologically
useful forms of entanglement, irrespective of the measure-
ment protocol used to exploit it. In Fig. 7(a) we show both
bounds for the QFI density appearing in Eq. (32), as they
evolve across the two phase transitions. There we observe
that the inequality chain becomes tight in the vicinity of the
factorization point Jy/γ = 0.9 and of the first transition,
revealing that squeezing is in fact the nearly optimal metro-
logical resource of the steady state of the system, ensuring
a sensitivity of the state to rotations that exceeds the SQL.
On the other hand, the bound becomes looser for smaller
values of Jy/γ as well as larger ones. This may mean that
the heterodyne unraveling is simply far from that minimiz-
ing the quantum fluctuations on pure state decompositions
in Eq. (17), or that metrologically useful entanglement
exists in these regimes instead, but in forms different from
(or superior to) spin squeezing. The conclusive aspect of
our analysis in these regimes is that the upper bound on the
QFI density, 4Fq(Ĵ φ), does not appear to scale with system
size, which implies that the QFI density itself cannot scale
either: this is yet another consequence of the short-range
nature of quantum correlations, pointed out in Sec. IV C.
To corroborate this observation, an analysis of the scaling
near the paramagnetic-to-ferromagnetic transition where
Jy ≈ γ is shown in Fig. 7(b). Both the lower and upper
bounds on the QFI density converge to finite values in
the thermodynamic limit, approximately 1.9 and approx-
imately 2.4, respectively, as indicated by their respective
fits. Hence, the QFI density, albeit not scalable, is predicted
to witness entanglement in the infinite-size limit.

F. Phase diagram: total and quantum correlations

We conclude this section with an overview of total and
quantum correlations across the phase diagram of the sys-
tem at fixed Jz/γ = 1, and for variable Jx/γ and Jy/γ .
First of all, let us remark that the phase diagram is sym-
metric under the exchange Jx ↔ Jy , namely, it is mirror
symmetric around the Jx = Jy axis. Moreover, there is a
mirror symmetry when the signs of both Jx and Jy are
switched, and concomitantly ferromagnetic phases in the
x-y plane are mapped to antiferromagnetic ones [23]. This
latter symmetry reflects the fact that the canonical transfor-
mation σ x(y)

i → (−1)iσ x(y)
i , corresponding to a π rotation

of one of the two sublattices of the square lattice, leaves
the dissipation term unchanged in the GSKL equation; it
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therefore establishes a correspondence between the steady
states of the system with couplings Jx, Jy and that of the
system with couplings −Jx, −Jy .

1. Structure factor

Figure 8 shows the evolution of total correlations
throughout the phase diagram, as captured by the max-
imum of the structure factors at the optimal angle φ,
namely, the maximum between SφφSS (k = 0) (characterizing
the ferromagnetic phase) and SφφSS (k = (π ,π)) (character-
izing the antiferromagnetic phase). The results shown in
Fig. 8 are obtained on a 6 × 6 lattice: this system size
is smaller than those used to obtain the results presented
above, yet sufficient to capture the overall shape of the
phase diagram. We can clearly observe two ferromagnetic
and two antiferromagnetic islands, surrounded by param-
agnetic regions. The transitions from paramagnetic behav-
ior to ferro/antiferromagnetic order appear rather sharp
in the vicinity of the symmetry axis Jx = Jy , but much
smoother away from it, revealing that finite-size effects are
more pronounced in those ranges of parameters; as a con-
sequence, one may erroneously deduce from the study of
a finite system that the (anti)ferromagnetic behavior per-
sists for much larger values of |Jy | or |Jx|, or that the
paramagnetic phase does not in fact reappear at all when
moving far away from the symmetry axis, as predicted
at the mean-field level [23]. Yet the existence of a true
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FIG. 8. Maximum of the structure factor, max[SφφSS (0),
SφφSS (π ,π)], for a 6 × 6 lattice with Jz = γ . The black dotted lines
show the mean-field predictions (indicated by a MF subscript) for
the boundaries of the FM and AFM phases. The solid black lines
show the contour line where the (maximal) structure factor is
equal to its value at the critical point (Jx, Jy,c)/γ = (0.9, 1.24)/γ ,
repeated three times by reflection symmetry around the Jx = Jy
axis and around the Jx = −Jy axis. Each data point is obtained
with Ntraj ≤ 320 trajectories and time averaging is performed in
the time interval tγ ∈ [50, 150].

(anti)ferromagnetic-paramagnetic transition at large Jy (or
Jx) was firmly established by our results of Sec. IV D.

The ferromagnetic (FM) and antiferromagnetic (AFM)
islands are connected by an arc-shaped line of max-
ima in the structure factor. In fact, a cut through one
of these arcs already appeared in Fig. 2 around Jy = 0.
The finite size scaling in Fig. 2(b) showed that the struc-
ture factor tends to zero in the thermodynamic limit,
and that the origin of the local maximum of the struc-
ture factor is an enhancement of quantum fluctuations.
This enhancement corresponds to a crossover between
a strongly polarized paramagnetic phase (mz � −1) and
a much more weakly polarized paramagnetic phase
(|mz| � 1).

Our analysis does not consider any spin-density-wave
phase, which is instead predicted by the mean-field analy-
sis [23] in a small region of the diagram at high and slightly
unequal Jx, Jy . The reason is that its appearance in a finite
system is restricted by commensurability of the period with
the lattice constant and system length.

2. Spin squeezing and the upper bound to the quantum
Fisher information

As for the behavior of quantum correlations across the
phase diagram, Fig. 9 shows the evolution of the inverse
squeezing parameter max(ξ−2

R,FM, ξ−2
R,AFM), where ξ 2

R,FM is
the squeezing parameter defined in Eq. (31), while ξ 2

R,AFM
corresponds to the squeezing parameter defined with the
variance of the staggered magnetization

ξ 2
R,AFM = N Var(J φ⊥

st )

〈J z〉2 , (33)
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FIG. 9. Maximum of the inverse of the spin-squeezing param-
eter ξ−2

R for the collective spin with uniform (FM) or staggered
(AFM) collective spin in the x-y plane. All simulation parameters
are as in Fig. 8.
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FIG. 10. Maximum upper bound to QFI of collective spin
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φ
st)]/N . All simulation parame-

ters are as in Fig. 8.

where we have introduced the staggered total spin
Ĵ φ⊥

st = ∑
i(−1)iσ̂ φ⊥

i at angle φ⊥ perpendicular to the
optimal one. On the other hand, Fig. 10 shows the
evolution of the unraveling-dependent upper bound
4max[Fq(Ĵ φ), Fq(Ĵ

φ
st)]/N , where we have introduced the

staggered total spin Ĵ φst at the optimal angle φ. The max-
imization procedure used for both figures allows us to
correctly capture the amount of quantum correlations in the
ferromagnetic regime as well as antiferromagnetic one of
the phase diagram.

We observe that squeezing is a characteristic of the
whole low-entropy paramagnetic regime enclosed between
the Jx = Jy symmetry axis and the arc-shaped lines of max-
ima of the structure factor. In particular, it becomes very
pronounced along the boundaries of the (A)FM islands that
are closest to the Jx = Jy symmetry axis, and especially
so for Jy/γ � 1 and Jx/γ � 1, and symmetrically for
Jx/γ � 1 and Jy/γ � 1, and all along the arcs connecting
the FM and AFM islands.

The same regions are also highlighted as being those
potentially hosting the strongest quantum correlations
when looking at the behavior of the upper bound 4Fq(Ĵ φ)
(somewhat surprising given that this phase is described
reasonably well with mean-field theory), with the possibil-
ity that the reentrant paramagnetic phase at large distance
from the symmetry axis also be quantum correlated (albeit
not squeezed). On the other hand, both ξ−2

R and 4Fq(Ĵ φ)
single out the ferromagnetic and antiferromagnetic phases
as being those hosting the weakest quantum correlations in
their respective parameter ranges.

V. CONCLUSIONS

In this work, we have introduced a new technique for
the theoretical study of driven-dissipative many-body spin

systems. Our method is based on the combination of the
quantum trajectory approach to dissipative evolutions and
of a description of the state along each trajectory based
on one- and two-point spin-spin quantum correlation func-
tions only, following a truncation scheme of the cumulant
hierarchy for the pure states along each trajectory. Our
approach is able to account for both classical and quan-
tum fluctuations at all length scales, and it uniquely makes
a simplifying assumption on the statistics of quantum
fluctuations along each trajectory. Such an assumption is
crucial to limit the computational cost of our approach
to an O(N 2) polynomial scaling with N quantum spins
(for short-range interactions), making large system sizes
(N � 200) accessible.

We have applied our method to the dissipative two-
dimensional XYZ model, a paradigmatic nonequilibrium
system that shows a rich and debated phase diagram. In
particular, we find that the reentrant phase transition from
the ferromagnetic to the paramagnetic state upon increas-
ing the coupling of one of the spin components is a true
phase transition rather than a crossover. Finite-size scal-
ing of the order-parameter fluctuations conclusively shows
that the critical behavior near both transitions belongs
to the classical 2D Ising universality class. The classi-
cal nature of criticality at the dissipative phase transi-
tions of the model is further supported by our analysis
of classical versus quantum correlations associated with
the trajectory unraveling. We find that quantum correla-
tions are always short ranged, even close to the phase
transition, so that the critical behavior is systematically
dominated by the classical fluctuations between the differ-
ent trajectories. Nonetheless, accounting for short-ranged
quantum correlations appears to have crucial repercus-
sions on the ensuing critical behavior: indeed, neglecting
quantum correlations altogether (as in the Gutzwiller-state
trajectories) leads to critical behavior incompatible with
the 2D Ising. In fact, the critcal behaviour is rather dif-
ficult to analyze in light of known universality classes.
The latter holds even if short-range quantum correlations
restricted to “clusters” are considered. Moreover, quantum
correlations, albeit short ranged, are still associated with
certifiable entanglement related to spin squeezing. This
form of entanglement is enhanced at the paramagnetic-
ferromagnetic transition, showing that the competition
between the coherent Hamiltonian dynamics and the inco-
herent coupling to a bath can in fact induce quantum
entanglement in the steady state when tuned in the vicinity
of a dissipative critical point. Surprisingly, we also predict
significant entanglement in the paramagnetic phase, specif-
ically at the crossover region that replaces the mean-field
paramagnetic-to-(anti)ferromagnetic phase transitions. We
note that we have mapped the phase diagram for fixed
Jz/γ , but changing this parameter is expected to mostly
lead to a shift of the position of the phases, while leav-
ing the overall features of the phase diagram unchanged.
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A possible exception could be the limit Jz/γ → 0, where
a staggered XY phase is predicted to appear by mean-
field theory [23]; yet, a more extensive study of the latter
phase [49] indicates that it may be unstable to fluctuations
beyond the mean-field approximation. Our simulations did
not include pure dephasing jumps (Lindblad operators of
the form σ̂z) either, which might also be an additional effect
of the environment [23]. However, since we already found
that the critical behavior is dominated by classical fluc-
tuations, we do not expect the inclusion of dephasing to
change the picture.

In view of the success of our method for the dissipative
XYZ model, we expect that it will yield new insights into
a variety of dissipative spin systems, thanks to its ability
to combine the inclusion of quantum effects at all length
scales with the ability to study relatively large systems.

The assumption of the truncation of the correlation
hierarchy to two-point correlations may be justified a
posteriori by the effect of the environment, preventing
quantum correlations from spreading significantly across
the system, and from moving to progressively higher
orders. Exceptions may exist to this picture, requiring the
inclusion of higher-order correlations, such as the study
of topological order in dissipative systems, which are
known to relate to higher-order irreducible correlations
[126] Extending the method to include k-point correla-
tion functions leads to a computational cost scaling as
O(N k), which is still manageable, although the sizes that
are practically accessible will be necessarily reduced.

The approach that we described is very flexible. In
our present work we have focused on the steady state
of the dissipative dynamics, but our approach also sug-
gests the possibility of tracking the whole evolution of
the system, starting from any initial state that is compat-
ible with the truncation scheme of correlations. It does not
rely on assumptions on lattice geometry such as locality,
sparsity, or symmetries. Application to high-dimensional
setups such as arbitrary graphs [127] would be straight-
forward. We further note that our method is compatible
with a bosonic [9,36] or fermionic ansatz for the trajectory
states, opening the way to the study of composite systems

comprising different constituents. Finally, even in closed
systems, the addition of fictitious dissipation has proven
to be useful to obtain quantitatively meaningful results
[128–130], and our method could be used in that context
as well.

In the current stage of development of quantum tech-
nologies and the study of driven-dissipative physics acces-
sible to experiments [18–21], there are a few important
tasks: for example, assessing the impact of decoherence
and dissipation in realistic quantum simulation and com-
puting setups, and envisioning novel quantum states stabi-
lized away from equilibrium by the competition between
engineered unitary dynamics and the coupling to an engi-
neered bath. We believe that the approach outlined in this
work paves the way towards a systematic investigation
of many-body phenomena in open quantum systems, and,
as such, will contribute to the development of quantum
technologies with open systems.
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APPENDIX A: EVOLUTION EQUATIONS FOR
THE k = 2 TRUNCATION SCHEME

In this section we detail the equations for the evolution
of the single-spin and two-spin correlators stemming from
the basis of the k = 2 truncation scheme. The equations for
the single-spin expectation values read

d〈σ̂ x
s〉 =

(
− γ

2
〈σ̂ x

s〉 + 2Jy

∑

s′
〈σ̂ y

s′ σ̂
z
s〉 − 2Jz

∑

s′
〈σ̂ z

s′ σ̂
y
s 〉

)
dt +

√
γ

2
(1 + 〈σ̂ z

s〉 − 〈σ̂ x
s〉2)dWx

s +
√
γ

2
〈σ̂ x

s〉〈σ̂ y
s 〉dWy

s

+
√
γ

2

∑

j �=s

〈δ̂x
s δ̂

x
j 〉dWx

j −
√
γ

2

∑

j �=s

〈δ̂x
s δ̂

y
j 〉dWy

j ,

d〈σ̂ y
s 〉 =

(
− γ

2
〈σ̂ y

s 〉 + 2Jz

∑

s′
〈σ̂ z

s′ σ̂
x
m〉 − 2Jx

∑

s′
〈σ̂ x

s′ σ̂
z
s〉

)
dt −

√
γ

2
〈σ̂ x

s〉〈σ̂ y
s 〉dWx

s −
√
γ

2
(1 + 〈σ̂ z

s〉 − 〈σ̂ y
s 〉2)dWy

s

+
√
γ

2

∑

j �=s

〈δ̂y
s δ̂

x
j 〉dWx

j −
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∑
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〈δ̂y
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j ,
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d〈σ̂ z
s〉 =

(
− γ (〈σ̂ z

s〉 + 1)+ 2Jx

∑

s′
〈σ̂ x

s′ σ̂
y
s 〉 − 2Jy

∑

s′
〈σ̂ y

s′ σ̂
x
s〉

)
dt −

√
γ

2
〈σ̂ x

s〉(1 + 〈σ̂ z
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s +
√
γ
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〈σ̂ y
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s〉)dWy
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+
√
γ

2

∑
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〈δ̂z
s δ̂

x
j 〉dWx

j −
√
γ

2

∑

j �=s

〈δ̂z
s δ̂

y
j 〉dWy

j ,

where δ̂
α

s = σ̂
α
s − 〈σ̂ αs 〉 and, consequently, 〈δ̂αs δ̂

β

m〉 = 〈σ̂ αs σ̂ βm〉 − 〈σ̂ αs 〉〈σ̂ βm〉 indicates the two-site covariance.
Equation (8) leads to several contributions to the evolution of the covariances: two terms from the deterministic parts,

an Ito term, and two noise terms from the stochastic part:

d〈δ̂αs δ̂
β

m〉 = 〈(dDδ̂
α

s )δ̂
β

m〉 + 〈δ̂αs (dDδ̂
β

m)〉 + dI 〈δ̂αs δ̂
β

m〉 + 〈(dS δ̂
α

s )δ̂
β

m〉 + 〈δ̂αs (dS δ̂
β

m)〉. (A1)

For the deterministic contributions, one can simply substitute

dDδ̂
x
s =

(
− γ

2
δ̂

x
s + 2Jy

∑

s′
σ̂

z
sσ̂

y
s′ − 2Jz

∑

s′
σ̂

y
s σ̂

z
s′

)
dt, (A2a)

dDδ̂
y
s =

(
− γ

2
δ̂

y
s + 2Jz

∑

s′
σ̂

x
s σ̂

z
s′ − 2Jx

∑
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σ̂

z
sσ̂

x
s′

)
dt, (A2b)

dDδ̂
z
s =

(
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z
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∑

s′
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y
s σ̂

x
s′ − 2Jy

∑
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x
s σ̂

y
s′

)
dt. (A2c)

For the stochastic terms, one has

〈(dS δ̂
x
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√
γ

2
(−2〈σ̂ x
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x
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s , (A3a)

〈(dS δ̂
y
s ) ·〉 = −
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s·〉)dWy
s , (A3b)
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〈· (dS δ̂
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2
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m, (A3e)

〈· (dS δ̂
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m)〉 = −

√
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m, (A3f)

where the center dots can be replaced with any operator δ̂
α

m. Finally, the Ito terms give contributions such as

dI 〈δ̂x
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x
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x
j δ̂

x
m〉 + 〈δ̂x

s δ̂
y
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y
j δ̂

x
m〉]dt.

(A4)

Equations (A2) contain the three-spin terms of the form 〈σ̂ αs σ̂ βs′ δ̂
γ

m〉. We can reduce them to functions of single- and two-
spin terms by assuming the vanishing of the third-order cumulant; in doing so, we distinguish between the cases when the
s′ index is and is not equal to m. If s′ = m, σ̂ βmσ̂

γ
m = σ̂

βγ
m is another single spin operator and

〈σ̂ αs σ̂ βmδ̂
γ

m〉 = 〈δ̂αs δ̂
βγ

m 〉 + 〈σ̂ αs 〉〈σ̂ βγm 〉 − 〈σ̂ γm〉〈σ̂ αs σ̂ βm〉; (A5)
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otherwise,

〈σ̂ αs σ̂ βs′ δ̂
γ

m〉 = 〈σ̂ αs 〉〈δ̂βs′ δ̂
γ

m〉 + 〈σ̂ βs′ 〉〈δ̂
α

s δ̂
γ

m〉. (A6)

Similarly,

〈δ̂αs σ̂ βs σ̂ γm〉 = 〈δ̂αβs δ̂
γ

m〉 + 〈σ̂ αβs 〉〈σ̂ γm〉 − 〈σ̂ αs 〉〈σ̂ βs σ̂ γm〉,
(A7)

and, for s �= m′,

〈δ̂αs σ̂ βm′ σ̂
γ
m〉 = 〈σ̂ βm′ 〉〈δ̂αs δ̂

γ

m〉 + 〈σ̂ γm〉〈δ̂αs δ̂
β

m〉. (A8)

APPENDIX B: FINITE MEASUREMENT
EFFICIENCIES

We find that the numerical simulation of the quantum
trajectory k = 2 equations are subject to numerical insta-
bilities in various parameter regimes. More specifically, the
expectation values tend to diverge at very short time scales,
leading to unphysical results and ultimately numerical “not
a number” (NaN) results. These numerical instabilities are
caused by the noise terms coupled to the second-order
cumulants [Eqs. (A3)], or second-order noise terms in
short, and are very hard to control or suppress. However,
not including the second-order noise terms allows one to
simulate the equations and yield physical results with lit-
tle to no numerical instabilities. We now show, through a
numerical example, that these second-order noise terms are
not important, and can be neglected from the equations,
by using the concept of measuring efficiency. This method
will allow us to profit from the numerical stability of the
standard master equation approach, in combination with
the increase in the method’s complexity due to the trajec-
tory approach. We first recall the concept and then apply
it to the XYZ model studied in the main text, the results of
which are shown in Fig. 11 below.

In the quantum trajectory formalism one assumes the
existence of perfect detectors continuously monitoring the
system of interest. This leads to Eq. (7). However, one can
equivalently derive equations for the more general case
where the detector has a finite efficiency 0 ≤ η ≤ 1 [71].

Indeed, one can rewrite Eq. (2) as

∂tρ̂ = −i[Ĥρ̂]+ 1
2

∑

j

(1−η)(2�̂j ρ̂�̂
†
j −�̂

†
j �̂j ρ̂−ρ̂�̂†

j �̂j )

+ 1
2

∑

j

η(2�̂j ρ̂�̂
†
j −�̂

†
j �̂j ρ̂ − ρ̂�̂

†
j �̂j ), (B1)

where we have rewritten the original dissipator as two indi-
vidual dissipators with Lindblad operators

√
1 − η�̂j and√

η�̂j . We can imagine now that only the part propor-
tional to η contributes to the noise term in the stochastic

Schrödinger’s equation emerging in the quantum state
diffusion approach, Eq. (7). Physically, this process corre-
sponds to a situation in which the information (i.e., photon
current) leaking out of the system is collected with a finite
efficiency η ≤ 1. One can then straightforwardly show that
this yields the following equation for the expectation value
of an operator Ô:

d〈Ô〉 = i〈[ĤÔ]〉dt − 1
2

∑

j

(〈�̂†
j [�̂j Ô]〉 − 〈[�̂†

j Ô]�̂j 〉)dt

+ √
η

∑

j

(〈�̂†
j (Ô − 〈Ô〉)〉dZj

+ 〈(Ô − 〈Ô〉)�̂j 〉dZ∗
j ). (B2)

Including a finite efficiency for the continuous monitoring
process thus leads to only a factor

√
η in the noise part

of the trajectory formalism. A measuring efficiency η = 1
brings us back to the original quantum trajectory equa-
tions, while for η = 0, one retrieves the master equation
approach to correlation hierarchies [Eq. (3)]. For the lat-
ter, no noise terms are present (on any cumulant) and
the earlier mentioned numerical instabilities are absent In
practice, the imperfect measuring efficiency η makes the
simulation of the equations numerically more stable. As
a result, it allows one to numerically solve the equations
using the k = 2 quantum trajectory formalism until the
numerical instability becomes unmanageable. Note that
such a formalism is physical by itself [71], and naturally
compatible with our approach.

Hence, we use this finite measuring efficiency formal-
ism to solve the k = 2 quantum trajectory equations for
various values of η and show that their results are identi-
cal to the k = 2 quantum trajectories without second-order
noise terms (and of course with the same respective η, i.e.,
noise coefficients to the first-order cumulants). Such an
analysis allows us to extrapolate the validity of the k = 2
quantum trajectory approach without second-order noise
terms at full measuring efficiency (η = 1), and thus in the
regime where one profits most of the trajectory approach
with respect to the master equation approach (η = 0).

We now revisit the results for the dissipative XYZ model,
by focusing on the steady-state structure factor SφφSS (0) for
the φ spin components displaying the strongest correla-
tions (see Sec. IV A). In Figs. 11(a) and 11(b) we show the
k = 2 quantum trajectory results with and without second-
order noise contributions [Eqs. (A3)] for various values
of η of a 7 × 7 lattice. We generally observe very good
agreement between the results excluding the second-noise
terms and those including them (when available) for vari-
ous values of η, showing that those noise contributions are
in fact negligible whenever they do not lead to numerical
instabilities.

030304-21



WOUTER VERSTRAELEN et al. PRX QUANTUM 4, 030304 (2023)

0.0 0.2 0.4 0.6 0.8 1.0
Jy/γ

0.02

0.04

0.06

0.08

0.10
S

φ
φ

SS
(0

)
(a)

1.4 1.6 1.8 2.0
Jy/γ

0.05

0.10

0.15

0.20

0.25

0.30

S
φ
φ

SS
(0

)

(b)

0.0 0.5 1.0 1.5 2.0
Jy/γ

0.0

0.5

1.0

N
N

aN
/N

tr
aj

(c)η = 0
η = 0.3
η = 0.6
η = 1

η = 0
η = 0.3
η = 0.6
η = 1

η = 0.6
η = 0.75
η = 0.9
η = 1

FIG. 11. (a),(b) Steady-state structure factor SφφSS (0) on a 7 × 7 lattice for various measuring efficiencies η, with second-order noise
contributions (crosses) and without second-order noise contributions (dotted lines with circles), for two regions of the phase diagram.
(c) Number of diverging, i.e., NaN, trajectories NNaN with respect to the total number of trajectories Ntraj. Only results with second-order
noise terms (solid lines with crosses) are shown as results without second-order noise terms are all located at (approximately) zero.
The number of trajectories for the results in all panels is Ntraj = 256, and time averages are taken over the time interval tγ ∈ [75; 150].

Note that, for higher values of η, occasional results devi-
ate for values of Jy/γ ≈ 0.1 [see Fig. 11(a)], which is
due to the increasing number of diverging trajectories. We
denote this number NNaN and show this rate with respect
to the total number of trajectories Ntraj in Fig. 11(c). Every
time a trajectory diverges, we discard the entire trajectory
and do not use it to gather statistics on the system. We
note that such omission of divergent trajectories is math-
ematically justified under quite general conditions [131].
Because of the very low number of nondiverging trajecto-
ries at high measuring efficiencies, the gathered statistics
will evidently be low. Hence, some deviations from the
(stable) results where the second-order noise term has been
omitted appear in the finite numerics. For example, for the
highest values of η, the number of diverging trajectories
is equal to the number of simulated trajectories for the
highest (and lowest) values of Jy/γ shown in Fig. 11(c).
This in turn results in a lack of results for the k = 2 quan-
tum trajectory approach with noise terms, i.e., the original
problem.

Nevertheless, as the efficiency η is increased, across the
parameter regime, one still observes the correspondence
between the results with and without noise terms. Extrap-
olating these results in the limit of η → 1 (i.e., assuming
that the second-order noise terms remain negligible at effi-
ciency η = 1 over the entire range of parameters that we
explore—including in parameter regions for which all tra-
jectories become numerically unstable when second-order

noise terms are included), we can conclude that the omis-
sion of the second-order noise terms is legitimate. All the
results presented in the main text for the k = 2 trunca-
tion scheme are therefore solutions to equations with η = 1
with the omission of second-order noise terms.

APPENDIX C: SECOND AND FOURTH MOMENTS
OF THE xy SPIN COMPONENTS

We show results for the (steady-state) second and
fourth moments of (1/N )

∑
j σ̂

x
j and (1/N )

∑
j σ̂

y
j in

Figs. 12(a)–12(d). Note that the second moment is iden-
tical to the structure factor from Eq. (25), SααSS (k = 0) =
mα

2 . The remarkable correspondence with the exact results
shown in Fig. 12(a) is thus identical to that discussed in
Fig. 1(a). Nonetheless, panels (b)–(d) of Fig. 12 show that
this correspondence to the exact results is not limited to
the second moment, but also persists in the fourth moment
for both the σ̂ x and σ̂ y spin components. Moreover, the
correspondence of the second moment my

2 and the fourth
moment my

4 is even more convincing than that for mx
2

and mx
4.

The agreement of the fourth moment of the spin compo-
nents with exact diagonalization shows that the truncation
scheme of the cumulant hierarchy to second order does
not lead to a significant loss in accuracy when looking
at higher-order correlators. This observation vindicates
the working assumption underlying our approach, namely,
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FIG. 12. Second (a,c) and fourth (b,d) moments for the σ̂ x (a,b) and σ̂ y (c,d) spin components obtained with the k = 2 truncation
scheme (dashed lines), compared with the exact solution (solid lines) for three different system sizes. The exact results correspond to
a direct solution of the master equation for N < 4, and to its stochastic unraveling for N = 4. The k = 2 results are obtained using
Ntraj ≈ 250 trajectories, and time averaging is performed over the time interval tγ ∈ [75; 150].

the fact that cumulants of order higher than k = 2 are
essentially negligible in the steady state.

APPENDIX D: FINITE-SIZE SCALING OF THE
k = 1 RESULTS

In the main text, using the k = 2 cumulant truncation
scheme, we have shown that the phase transitions belong
to the universality class of the classical 2D Ising model,
and hence the critical fluctuations are of a classical nature.
It may thus be tempting to think that the k = 1 (Gutzwiller)
trajectories are already sufficient to describe this behavior,
as they are expected to capture classical fluctuations with-
out any a priori assumption or limitation on their spatial
structure.

However, as we can see in Fig. 13 for the paramagnetic-
to-ferromagnetic transition (at Jx/γ = 0.9, Jy/γ ≈ 1) the
k = 1 results are incompatible with the 2D Ising universal-
ity class.

Figures 13(a) and 13(b) show the rescaled structure fac-
tor SφφSS (0)L

2β/ν using 2D classical Ising exponents, which
do not lead to a clear collapse of the curves for different
system sizes, even in the vicinity of the putative critical
point. In fact, different combinations of critical exponents
can give a better collapse. In particular, a decent collapse is
obtained when one takes β = ν = 1/2, i.e., the mean-field
critical exponents, as shown in Figs. 13(c) and 13(d).

For the second transition (from ferromagnetism back to
paramagnetism) at even higher Jy values, it was already

clear from earlier works that the Gutzwiller trajectory
approach [41] and its cluster extensions [44] predict a
size-dependent sudden drop in the structure factor instead
of a set of smooth curves that find a common crossing
upon rescaling, which would be the expected behavior at a
continuous phase transition.

APPENDIX E: SCALING OF THE TRANSVERSE
MAGNETIZATION DERIVATIVE AT THE 2D

ISING TRANSITION

In this section we discuss the expected scaling of the
derivative of the transverse magnetization with respect to
the control parameter of the transition at the thermal phase
transition of the 2D Ising model. This discussion serves
as a basis for the scaling analysis proposed in Sec. IV D
for this quantity at the dissipative transition of the 2D XYZ
model.

For the sake of definiteness, we use as a reference model
the transverse field Ising model, with Hamiltonian

Ĥ = −J
∑

〈ij 〉
σ̂ x

i σ̂
x
j − �

∑

i

σ̂ z
i (E1)

defined on the same square lattice as the XYZ model inves-
tigated in the main text. Although the above model has a
well-known quantum phase transition in the ground state,
we focus only on its thermal properties, and in particular
on the fact that it has a line of thermal 2D Ising transitions
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FIG. 13. Finite-size scaling analysis of the k = 1 results for the structure factor SφφSS (0): (a) rescaled structure factor SφφSS (0)L
2β/ν

using 2D Ising exponents (ν = 1 and β = 1/8); (b) full scaling plot with the same exponents, using the critical point Jy,c = 1.0405; (c)
rescaled structure factor SφφSS (0)L

2β/ν using mean-field exponents (ν = 1/2 and β = 1/2); (d) full scaling plot with the same exponents,
using Jy,c = 1.039. All results stem from Ntraj ≈ 32 trajectories, and they are time averaged over the time interval tγ ∈ [700; 1000].

at temperatures Tc(�) that decrease with increasing �, and
eventually vanish at the quantum critical point.

In the vicinity of the critical line, the singular part of the
free-energy density is expected to scale as

fs(T,�) ∼ |T − Tc(�)|2−α , (E2)

which implies that the transverse magnetization mz = 〈σ z
i 〉

has singular part

mz = − ∂fs
∂�

∼ (2 − α)
dTc

d�
|T − Tc(�)|1−α , (E3)

while the derivative of this magnetization with respect
to the control parameter of the transition (namely, the
temperature T) exhibits a singularity of the form

∂mz

∂T
= − ∂2fs

∂�∂T
∼ (2 − α)(1 − α)

dTc

d�
|T − Tc(�)|−α ,

(E4)

namely, it is has the same singular behavior as the specific
heat

cv = −T
∂2fs
∂T2 ∼ (2 − α)(1 − α)|T − Tc(�)|−α . (E5)

The 2D Ising universality class has α = 0, meaning that
the scaling dimension of the specific heat, α/ν, is also van-
ishing. Yet this result still leaves room for a specific heat

diverging at the transition as log L, where L is the linear
size of the lattice. Hence we expect that this same scal-
ing property is also shared with the temperature derivative
of the transverse magnetization ∂mz/∂T. We have veri-
fied that this is indeed the case on quantum Monte Carlo
data for the thermal transition of the 2D Ising model in a
transverse field. We can therefore expect the same scaling
behavior to be shared with γ (dmz/dJy) at the dissipative
transition of the 2D XYZ model if this transition is to com-
ply with the 2D Ising universality class; the logarithmic
divergence of ∂mz/∂T is clearly exhibited in Sec. IV D.
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