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Bayes’ rule plays a crucial role in logical inference in information and physical sciences alike. Its
extension into the quantum regime has been the subject of several recent works. These quantum versions
of Bayes’ rule have been expressed in the language of Hilbert spaces. In this paper, we derive the expres-
sion for the Petz recovery map within any quasiprobability representation, with explicit formulas for the
two canonical choices of “normal quasiprobability representations” (which include discrete-Wigner repre-
sentations) and of representations based on symmetric informationally complete positive operator-valued
measures (SIC-POVMs). By using the same mathematical syntax of (quasi)stochastic matrices acting on
(quasi)stochastic vectors, the core difference in logical inference between classical and quantum theory is
found in the manipulation of the reference prior rather than in the representation of the channel.
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I. INTRODUCTION

Inference is a logical necessity in every science. In infor-
mation theory and physics, the fundamentality of inference
is particularly apparent in notions of process reversibility
and state recovery. Here, the most empirically applied and
canonical approach is Bayes’ rule:

y(a)
y()

£, (ald) = E(d|a) (1)
This relation gives us a recipe for obtaining various
probability-theoretic objects [1—4]. Of particular note, we
may use it to obtain the “reverse” transition 5}, for (i) any
given forward process or transformation £ and (ii) the ref-
erence prior y on the input of said process. The posterior,
y(d) =73 ,E(d|a)y(a), emerges from these two objects.

While the typical form of Bayes’ rule works naturally
for classical information theory, an extension to quantum
theory requires some work. As one possible reason for this,
note that in a classical process @ — a’, the joint proba-
bility distribution P(a,d’) is routinely defined; and from
this, one can compute marginal and conditional probabil-
ities. By contrast, for a quantum process « — o’ = E(a),
where £ is a completely positive trace-preserving (CPTP)
map, there is no elementary way to construct a state that
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takes both the input and the output into account. Various
proposals have been presented over the years and we refer
to a very recent consolidating framework for all the ref-
erences [5]. In this context of finding a quantum theoretic
Bayes’ rule, a special role is played by the Petz recovery
map [6-8]:

1

1
NGRNG

This recovery channel is defined for any CPTP map &£
and a reference density operator y. Notably, when refer-
ence priors, input states, and the channel share the same
eigenbases, the Petz map reduces to the classical Bayes’
rule [5,8—10]. This and other properties pertaining to what
may be called the “conservation of divergences” (which is
what led to its conception) have built up the reputation of
this recovery map as the “quantum Bayes’ rule” [11}—a
reputation recently vindicated in an axiomatic approach
[12]. The Petz-map construction also appears naturally in
the definition of fluctuation theorems in thermodynamics
[13-15].

Now, that said, it seems that what exactly makes the
Petz map similar (or different) to the classical Bayesian
update has not been as formalized as it could be. From an
information-theoretical perspective, there are correspon-
dences between the action of these recipes. Yet, we know
that there are key regime differences in the woodwork.
This lack of formal comparison across these regimes is
at least partially because the Petz map has thus far only
been understood in terms of CPTP maps and density oper-
ators, living in a Hilbert space. Meanwhile, the classical
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Bayes’ rule exists as a stochastic matrix mapping stochas-
tic vectors, living in a real vector space. While, as we
note, it is known that some CPTP maps correspond to
the classical case, the reverse of this—writing Petz maps
in terms of matrices and vectors, without Hilbert-space
formalism—has yet to be done.

In this paper, we attempt to close this gap by investigat-
ing the Petz map in quasiprobability representation (QPR)
[16,17]. This formalism provides a complete description
of quantum theories while sharing the familiar mathemat-
ical equipment found in classical probability theory. The
distinction is that quasiprobabilities (or “negative proba-
bilities”) are generally necessary in the quantum case [18].
This negativity has been attributed as a resource for advan-
tage in quantum computation [19-21]. As such, we seek
to put the Petz maps in the same formal habitat as that
of classical Bayesian inversion and in an expression that
is comparable to it. From there, we may discuss the simi-
larities, differences, and interpretations wherever they are
appropriate. We believe that this work contributes a for-
mal step forward in understanding the essential distinctions
between classical and quantum inference.

This paper is set out as follows. In Sec. II, we review
features of Bayesian inference for classical and quantum
transformations. In Sec. III, we review the formalisms of
QPR in quantum theory. Readers familiar with the for-
mal content here may skim through these sections. In
Sec. IV, we work toward the key expression of the Petz
map in QPR, stating relevant theorems along the way. In
Sec. V, we discuss consequential theoretical observations,
contrasting notable formal features of the expression to
the classical Bayesian update. In Sec. VI, we introduce
quasiprobabilistic “transition graphs” that can help visu-
alize the implications of our results. Finally, in Sec. VII,
we summarize our findings and state some open lines of

inquiry.

II. CLASSICAL AND QUANTUM BAYESIAN
INFERENCE

In the context of classical mechanics and probability
theory, a physical transformation can be expressed by
conditional probabilities £ (a’|a) mapping probability dis-
tributions of inputs p (a) to distributions of outputs p (a’) =
> . E(da)p(a) residing in some given state space 4 [22].
This can be captured compactly by a stochastic matrix
§¢ = {£(d|a)}, mapping v* = {p(a)} to v = {p(d)}.

As already discussed, if we want to acquire a stochasti-
cally valid and logically sound “reverse” of this transfor-
mation £, we must invoke not only the channel in question
but also a reference prior y on the input. This is essen-
tially a preexisting best guess of the inputs for which the
Bayesian inverse is constructed. This process of acquiring
é:y from & and y can be referred to as performing “retrod-
iction” (inference about the past, in contrast to prediction,

which is inference about the future) for £ on the prior y.
Meanwhile, S v? gives the “retrodicted input” given an
observation p. It may also be referred to as the “Bayesian
update on y given p.”

For every each individual transition, we may consult
Eq. (1) for the corresponding retrodiction ¢’ — a. For the
mapping of distributions, it is more instructive to write the
retrodiction map as a stochastic matrix:

E _
St =Dy (85) Dl (3)

Here, D, is a diagonal matrix with entries corresponding
to some distribution p.

As introduced in Sec. I, the counterpart to the Bayes’
rule in quantum theory is the Petz map given in Eq. (2).
It is well defined and CPTP for any full-rank E[y] [23]. Tt
may also be expressed as

&, = M,y 0 EToMep 12, “4)

where M,r[e] = " @ " for any density operator & and
r e R, and £ is the adjoint of £. This is the unique map
for which

Tr(E[plo) = Tr(E'[o]p), (5)

for all self-adjoint p and o.

Before continuing, it is important to stress that Bayesian
inference is generically not inversion. Inference is possible
for any map, while inversion is only possible for invertible
maps (information-preserving)—and even then, the two
operations are generally not the same, since the inverse of a
map is generically not a valid map. In fact, it can be proved
that inference and inversion coincide if and only if S¢ is a
permutation (for the classical case) or £ is a unitary chan-
nel (in the quantum case) [15,24]. In general, therefore,

Sé{ng" # v” and éy o E[p] # p; although the reference

state is recovered: S¢; SSv” = v” and &, o E[y] = y for
all y.

II1. QUASIPROBABILITY REPRESENTATIONS

A. Generalities

We now move on to provide a brief review of the essen-
tial elements of QPRs for quantum theory. To map quan-
tum theoretic objects acting on a d-dimensional Hilbert
space to a QPR, the core is the choice of a fiame {F}};ca,
i.e., a set of d x d Hermitian operators spanning the Her-
mitian space equipped with Hilbert-Schmidt scalar prod-
uct. The set of indices A may be continuous; its minimal
cardinality is @> and we assume such minimal frames for
the remainder of this paper. Given a frame, one can always
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find a dual frame {G;};c, such that

Va,B: Y Tr[Fa] Tr[G; B] = Trlep].

J

(6)

In general, the dual is not unique given a frame. However,
for a minimal basis, the frame and dual always satisfy the
orthogonality relation Tr[Fj Gk] = Sjr.

Once a frame and its dual are set, all Hilbert-space
objects are in one-to-one correspondence with an object
in the QPR. A dictionary of recipes between the two
frameworks is summarized in Table 1. These recipes can
be understood as category-theoretic relationships called
“functors,” mapping objects across the two formalisms,
each of which lives in its own separate category [25,26].
From the normalization of the state quasiprobability,
>, vi = 1, it follows that the frame operators must satisfy
>, Fa = 1. Similarly, from the fact that each POVM {E,,}
must satisfy ) E, = 1, it follows that Tr[Gj] =1 for
allj € A [27]. As such, the QPR of any CPTP map £ is a
quasistochastic matrix S¢ as defined in Table I, with entries
S(‘f/a eR,d,a € A,suchthat,Va ) _, Sfa = 1. The evolu-
tion of a state through a channel is then described by sim-
ple matrix multiplication: p’ = E[p] — v/, = > .S e
[28]. With a slight abuse of notation, for ease of corre-
spondence with the classical formalism, we also denote the
elements of the quasistochastic matrix as Sf L, =E&da).

Some of the subsequent derivations apply generally to
all representations; others are specific to one of the two
canonical choices of QPR that we describe next.

B. Normal quasiprobability representation

The first class of representations are those for which the
frame and dual-frame operators are proportional to each
other up to some scaling factor ¢, i.e.,

G; = cFj, (7)
for all j. For minimal bases, the constant c is equal to
the Hilbert-space dimension d. The class of representa-

tions satisfying this is known as normal quasiprobability
representation (NQPR) [29].

TABLE L.

An example of NQPR, and perhaps the most widely
used representation, is the discrete-Wigner (DW) represen-
tation [30—33], which is well defined for prime dimension
d and composites of them. For odd primes, the frame
operators are defined as

d—1
1 Xz
Fk = Fr,S = E E wsx—rz—o—ijZz’ (8)

x,z=0

where k = (r,5) € Zyg X Zg, @ = >/ is the dth root
of unity and Z and X are generalized Pauli operators
definedasZ|j) = «/ |j)and X |j) = |j + 1 mod d), with
{lj )}]f’;(l) as standard orthonormal basis. For a qubit system
(d = 2), the frame has a simple expression given by

1
Fy=F = Z[14 Do+ (1o + (=170, |,
©)

where k = (r,5) € Zy x Z and o,, oy, and o, are the
familiar Pauli operators. For composite d = d; x dp x
-+« x d, where di,d,...,d; are primes, a tensor struc-
ture applies for the frame. That is, the frame operators
decompose as

Fr=Fy,QF,® - ®F,

where k — (ki, ks, ..., k) with each k; = (77, 51) € Zg; x
Zg,. This tensor structure is enjoyed by any NQPR and
thus affords them an esthetic benefit when dealing with
composite states and purifications.

C. SIC-POVM representation

Under NQPR, negativity can be found in states, POVM
elements, and transformations alike. Symmetric informa-
tionally complete positive operator-valued measure (SIC-
POVM) representations seek to avoid this by ensuring that
all state vectors are positive [34,35]. Negativity features
are thus consolidated into the transformations and POVMs.

For d-dimensional Hilbert space, a SIC-POVM is
defined as a set of subnormalized rank-1 projectors

The dictionary of relationships between the Hilbert-space and quasiprobability formalisms. v, = p(a) indicates the ath

entry in a p distribution. Sf,a = &(d'|a) indicates the entry on the a’th column and ath row of a matrix S¢. The frame and dual operators
F; and G; are defined within choices of representations as discussed in Secs. III B and III C, with the most direct expressions found in

Eqgs. (7), (8), (10), and (11).

Object Hilbert-space formalism Quasiprobability formalism
State p =il (Al v? o vf =Trlp F,]
POVM {(Ep | Ep > 0,5, E, =1} 0" 9% = TH{E, Gy]
Unitary Ulel=Ue U, UU" =1 sS4 SY = Ti[FyUG,U'|
CP maps Elol =Y K10k, S€ 0 S8 = Ti[F,E[G,]]
Born rule Tr[pE,] v 0" € [0,1]
Dimensionality dim[C9] =d dim[RY @ RY] = &2
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E,7v —QqPr— S¢ 07

FIG. 1. A commutativity diagram illustrating the main task of
this work: the protocol “?” that is to be executable solely within
the QPR framework.

{11, };’2:1, I1; = |;) (¥;], such that the elements have

equal pairwise Hilbert-Schmidt inner product:

d(Sjk +1
d+1°

Te| 1] = 1wy v = (10)
The solutions to the vectors of SIC-POVM have been
found for vast number of dimensions (for the list, see Ref.
[36]) and is believed to exist for all [37]. Since the set is
informationally complete (i.e., it forms a basis), we can use
it as the definition of the frame of the SIC-POVM represen-
tation {F; = 51’[ ; }. From the orthogonality relation, it can
be easily deduced that the dual frame is given by

G =dd+1)F—1=@+ DI —1. (11

For one qubit, the canonical choice is the tetrahedron

1

FJ=Z[1+6,»-8], (12)

where G = (0y,0y,0:) and vy = J=(1,=1,1), 1 = %
(_151’1)7 Uy = 315_1)3andv3=\/L§(_1’_15_1)'

aH

1
vl

IV. THE PETZ MAP IN QUASIPROBABILITY
FORMALISMS

Now, our task is to express the Petz recovery map in its
QPR, which we denote as S7. This can obviously be done
by invoking the relationship between maps in Table I and
then connecting it with Eq. (2). This gives

Ey — i 1 , 1
S Tr[Faﬁg [mGa m}ﬁ} (13)

But, of course, this affords us no new insight. We are
still relying entirely on the Hilbert-space formalism. Noth-
ing novel can be said in comparison to classical Bayesian
inference as found in Eq. (3). Our specific task is as
illustrated in Fig. 1: write the Petz in a way that only
quasiprobability-theoretic objects (quasistochastic vec-
tors, matrices, and frames) are required.

The naive guess that S€ could be obtained by graft-
ing the quasiprobabilistic formalism onto the classical
Bayesian inverse given in Eq. (3) is easily dismissed: the

Sf:yL obtained by such a recipe is in general not a valid map
in QPR (for explicit counterexamples, see Appendix F), as
it results in measurement outcome statistics that are out of
bounds. That is,

3E, . pom) : (ST vP) - 5" ¢ [0, 1].

Rather, let us start by noting that the recipe for channels
in Table I and the condition given in Eq. (6) imply the
concatenation

§E8T = 557 (14)

for two channels £ and F. Thus the Petz map given in Eq.
(4) is represented by

$% = M, (Sg+) Mepy1-12, (15)
with
My =S¥ * (16)
ie.,
My ga = Tr[Fpa" G ]. 17)

Now, it is crucial for our goals that all objects entering
Eq. (15) can be constructed within the quasiprobability
formalism.

As a first check, we note that all the entries of the
matrices M, are real. Indeed, one can rewrite (Myr)yq =
Tr[F7,Gi] with F), = «"?F,a”/? and G = «?Ga"?.
These are Hermitian operators, and so Tr[}";,gg] =
%Tr[{f;,, g;}] is real.

Next, we show that M, can be expressed using the
quasiprobability representation of the state & = ) v% Gy.
Indeed,

(Ma)a’a = TI‘[Fa/OlGaOt]

= > VW Tt[FyG.G,G, ] (18)
Xy
= Z vy U;‘Sa/my, (19)
xy
where the
‘i:pqrs = Tr[FP GqGrGS] (20)

are referred to as structure coefficients. These same coef-
ficients have appeared in a recent work on the DW repre-
sentation of maps [38] (see Appendix A). The M, are real
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positive-semidefinite matrices with a unit trace: M, > 0
and Tr[M,] = 1. For NQPRs, they are Hermitian, while
for SIC-POVMs they are generically not symmetric and
thus not Hermitian (see Appendix E).

Having expressed M, in the QPR formalism, one can
finally prove that

My =M. 1)

holds for any € Q (i.e., for any rational number r; for the
proof, see Appendix B). In particular, the M, for r = :I:%
that are needed in Eq. (15) can be constructed from the
quasiprobability representation of states by first computing
M, Eq. (19) and then taking the suitable roots.

In summary, we obtain our main result:

Result. The Petz map in any QPR reads

é + _
Sow = M) (%) Mg[://]z, (22)

where
(My)a’a = Z U}: U)];/ ‘i:a’xaya
xy

(ME[V])a/a = Z(ngy)x(SEUy)y Sa’xay,
xy

and &,y = Tr[F,G,G,G,] are structure coefficients deter-
mined by the specific QPR. Everything is expressed exclu-
sively in the quasiprobabilistic formalism: no knowledge
of Hilbert-space renditions of the quantum channel or
reference state is required.

For the two canonical choices of QPR introduced above,
we prove in Appendix C that

NQPR : S§ = (55, (23)

SIC-POVM : S5 = (55)7 + Je, (24)

where (Jg); = %Z(Za E(jla) — 1); whence explicitly

£ ~1/2
Sno = M) (SH ™My )7, (25)
¢ _
Ssp = M [(S5)T +Je] M7 (26)

Since the QPRs of unital maps (i.e., £[1] = 1) are quasi-
bistochastic matrices (i.e., Y, E(la) =1 for all j), for
such maps J¢ vanishes and the expressions for the NQPR
and SIC-POVM representations are formally identical.

TABLE 1L
[Sg—y — Sg{, Egs. (3) or (27)] and quantum quasiprobabilities

Retrodiction maps for classical probabilities

[Sg—y — ngp Eq. (22)]. The law of transformation of the central
object is the same in both classical and quantum theory, while
one needs the structure coefficients to obtain the X, from the v,,.

Bayesian inference in theory 7°

E. 172 a€T\ v—1/2
S’Ty:XV (S )XS[y]

(XV )J = ny v)}fl v}]// Sixjy
Object 7T quantum T : classical
s¢' NQ: (867 (SE)T
SP: (S5)T + Je
Sy T[FiG:G; G 8ixjy 8

V. COMPARING CLASSICAL AND QUANTUM
RETRODICTION

A. Main comparison

We are finally in a position to compare classical and
quantum Bayesian inference. Having found Eq. (22), it is
easy to note that the classical Bayes’ rule given in Eq. (3)
can be rewritten in the same form,

& i _
Scp, = (D22 (S57) (DE,p "2, @27)

because (S€)7 = S¢' for classical channels (see Appendix
D) and (D,); = v} 8;. In other words, classical Bayesian
inference hides the fact that the central matrix is an
adjoint and that the left and right matrices should be seen
as square roots of more fundamental matrices X, and
Xery1. This is the common form of classical and quantum
Bayesian inference that emerges from using QPRs.

Let us now study the differences between the two the-
ories. There is, of course, the starting point: for a given
system dimension d, in classical theory the v¥ are d-
component probability vectors, while in a minimal QPR
of quantum theory they are d>-component quasiprobability
vectors. If we leave this aside and focus only on Bayesian
inference, the formal difference appears in the matrices X,,
(DJZ, for classical, M, for quantum). Both can be written

d2
Xy)j = Y vl v &y (28)

x,y=1

but while the M, of quantum theory has &;; =
Tr[F,-Gij Gy], the DJZ/ of classical theory is such that

(D2)y = ()25, ie.,
Eiiy = 808y [Classical]. (29)

This comparison is summarized in Table II.
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B. Related remarks
Previously, we have mentioned that SQ‘I’VI is not naively

equal to SEVL We can now be more precise about
this difference. First, we note that no frame satisfies
Tr[FtiGj Gy] = 38;8j,8;; . If this were the case, M, would
be diagonal for all y; in fact, all conceivable quantum
channels would become trivial. Here is the proof: by
extending on Ref. [38] (see Appendix A), in any QPR
every entry of S¢ can be expressed as

Slf = Z Tr[Fk/] Tr[FyKIT] Tf[FtiGj Gy] ’

xyl

(30)

where {k;}; defines a Kraus representation of £ [39]. Thus,
a hypothetical frame satisfying Eq. (29) would have

St = Z Tr{Fek;] Tr[FyK,T ] 8ix8j,0;5
xyl

=85 Y THlFiu] Tr[Fj K,T] =5,
/

where the last equality comes from the fact that S¢ must be
quasistochastic. In other words, we would have S¢ = 1
for every £, which is absurd [40]. We conjecture that the
only way to obtain Tr[F,-Gij Gy] = 88,0, with d x d
matricesistoset F; = G; = |i) (i|for 1 <i <dand (ij) =
8;; but this defines a projective measurement; it has only d
elements and is certainly not a frame.

. . é -
Next, one might conjecture that (SQ{VIU”) " =

(Sé{v") - v holds for classical processes: i.e., processes in
which p, y, £[y], and E,, all have the same eigenbasis and
no coherence appears. While our numerical exploration
suggests that this is the case for some specific scenarios,
it is certainly false in general, even for simple examples
(see Appendix G).

A last question is whether the quantum Bayes’ rule can
be written as

& @a) =f (€@, y@)) 6D

in analogy to Eq. (1). The answer is: in principle, yes,
because the square roots of M, and Mg[,) are certainly
functions of the £(d'|a) and the y(a). However, writ-
ing down this expression in practice requires the explicit
expressions. Even for the simplest quantum case (the
qubit), in general one would have to find the roots of a
quartic characteristic equation.

VI. VISUALIZING QUANTUM INFERENCE VIA
QPR

A. Introducing transition graphs

A notable advantage of stochastic maps is their ease of
visualization. One can draw what might be called “tran-
sition graphs,” where transitions between a; and a; are
depicted by arrows going from the former to the latter.
The probability weights on these transitions may be then
depicted by a number or by a color function. These kinds
of graphs are not straightforward to write for the stan-
dard Hilbert-space formalism. This is simply due to the use
of complex terms, probability amplitudes, and the plural-
ity of possible basis choices. With QPR, we can illustrate
transformations and their quantum Bayesian inverses with
transition graphs just as we would for classical stochastic
channels, albeit with the added task of depicting negativity
in these transitions.

In Appendix H and this section, we consider some
choices of £ that give rise to S¢ and their retrodictions
SIS,(,V and Sc;y)_ These are then depicted as transition graphs.
We choose to include, in particular, a half-SWAP channel
with a |1)(1] ancilla to visually illustrate and explore the
properties of quantum retrodiction. Other transformations
are also noted in passing with their graphs and expressions
consolidated in Appendix H. Before these, we note some
illustrative elements of these figures.

First, with transition arrows, we depict negative (pos-
itive) quasiprobabilities with cooler (warmer) shades.
Furthermore, these negative (positive) arrows are drawn
using dashed (solid) lines. A color legend is included
in Fig. 2(a).

Second, in order to get a sense of how irreversible
a forward map is and which states it tends to erase
toward, we add colored “bubbles” around the output side
(denoted {a;}) of every graph for a given S¢. The inten-
sity and color of the bubbles are weighted according to the
quasiprobability distribution of the state £[1/d]. Hence,
one should expect that these bubbles are colored uni-
formly for all unital maps (and, thus, for all reversible
maps too). Visually speaking, the most irreversible maps
would be those for which these colored bubbles corre-
spond exactly to the color of the transition arrows that
are drawn toward them (for an example of this, see
Fig. 6) [41].

Third, a similar feature isAadded for the retrodictive tran-
sition graphs, drawn for S matrices. Crucial for under-
standing the Bayesian inverse is the reference prior. Hence,
for Bayesian-inverting transition graphs, we add colored
bubbles on the input (denoted {a;}, i.e., the input of the
Jforward map) side of the graph, weighted according to the
distribution of y. For simplicity, we describe channels act-
ing on qubits and use the most canonical choices of frames:
Eq. (9) for DW (with r, s starting from 0) and Eq. (12) for
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(a)
-1.0 7&5 0.0 55 1.0
(b)
ag aq a ag
ag aq aj a3
(c)
ag aq ap ag
ag aj ay ag
(d)
ag aq a a3
ag aj ay a3
(e)
ag aq a2 23
|
ag aj ajy ag
(f)
ag a4 ay as
T |
ag aj ay a3

FIG. 2. Transition graphs for a ‘“half-SwAP” with |1)(1]
and various retrodictions with a range of reference priors.

(a) Color 1egend for quasiprobabilities. (b) SSW for E[e] =

Trg[Ux o @ [1)¢ ] (C)S for Uy, B = [1)(1],y = |0)(0].
£

(d) SDQ, for U/K ,8 =Ly =+ (@ Spw for Uy, B =

{1,y =D)AL ® Sn(v for Up,B=ID(1l.y(5 5.5
as per (33).

VT Tr[po]

| |

(S€vP) - 7% +— Tr[E[p]o]

lVP” lYpo

(SSTU”) " «— Tr [ET[o]p]

FIG. 3. The relations within and functors between formalisms
pertaining to the adjoint map, illustrated commutatively.

SIC-POVM representations. We employ these frames for
all the numerics found in this paper.

B. Fully reversible and fully irreversible

As depicted in Figs. 4 and 5 (found in Appendix H), we
observe the provable property that S = S4 = (S¥)7, for
unitary channels /. The Bayesian inverses simply reflect
the transition trajectories back, doing so with equal prob-
ability and negativity and regardless of what reference
prior is chosen. More interesting features occur for nonuni-
tary channels. We may write any CPTP map as a dilation
defined by a global unitary U acting on an extended state
space H,4 ® Hp for which the input system e, and an
environment or ancilla Bg is defined:

E[e] = Trz[U e ®B U'. (32)

We stick to the case where both the target and the ancilla
are qubits. Arbitrary qubits may be written as

B(@,0,¢) = sin*(w) [{) (Y| + cos®(w) [¥h) (Y],
(33)

where |/) = cos(6/2)|0) 4+ €?sin(8/2) |1) and |¢t) =
e sin(9/2) |0) 4 cos(6/2) [1). In maximal contrast to
unitary channels, one may consider a quantum total-
erasure channel. This is simply a kind of replacement map
where a full-SWAP Eq. (H1) acts on a qubit and an ancilla
and we trace out the environment. The Bayesian inverses
of such quantum channels follow their classical counter-
parts: they erase back to the reference prior [15]. Since
the channel is totally irreversible, the quantum Bayes’ rule
simply reverts our inference to our best guess about the
initial state (illustrated by Fig. 6).

C. Liminally (ir)reversible

For a more conceptually involved and instructive sce-
nario, we consider the half-SWApP U, which may be
represented in the computational basis as

«/_ 0 0 0

1 1 1 0
“=5 0 1 -1 0 34)

0 0 0 V2
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FIG. 4. Transition graphs for o;,0,, and o,
respective retrodictions. (a) S for E[e] =o0. e 0.

Slin for E[e] = 0. e0.. (c) S¢ for E[e] =0, e 0.

(d) S;‘,’ and S§6 for E[e] = 0, e 0,. (¢) S¢ for E[e] = 0, e 0.

E.

Sep and

(a)

ag aq ap az
ap aj a aj
a0 a a2 ag
\ | |
ag aj ay ajy
(c)
ag a4 ay a3
ap aj a a
ag aq az ag
ag aj ay a3
(e)
ag ay ap az
g aj a ag
ag a4 ap ag
agy aj ay ay

() S5 and S, for £[e] = 0, ® 0.

Q

and their FIG. 5.

(a)

aq az ag

ap ag a3 aj

ag aq az ag

ag aj ay a3
(c)

ap aq az ag

aj a ag ag
(d)

1 \\\j’j : :

agy ay ay a3
(e)

ag aq az as

\/
N
ag ay aj \ ag

U]

ap asg

agy aj ay a3

PRX QUANTUM 4, 020352 (2023)

Transition graphs for the Hadamard gate and an arbi-
trarily chosen qubit unitary and their respective retrodictions.

(a) SUt for Uy[e] = Uy e Ul,. (b) U for Uyle] = Uy e Ul,.
(©) Sp for Ueg[o] = Usg ® Uly. (d) Spay for Usy[e] = Usg @
Uly. (€) S5t for Upg[e] = Usg @ Uly. () Skt for Uygle] =
Ueg ® Ul
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As depicted in Fig. 2, we have the forward and retrodictive
transition graphs for a channel given by £[e] = Trp[Uj e
®|1) (1] U;]. To understand the retrodictive action given
by the Petz, we can gain some intuitions by writing out
these mappings:

1 Trp 1
—(101) +10)) 22| 21|,
ﬁ“ ) +110)) 7

Uj
101y 2

ERISSLATEIOn L(|01> +110)),
RN

4 4 232 ’

Uj
11y 2 11y 2

1) (11 |

We see that if the reference state is y = |0) (0] or |+) (+],
then any state is compatible to its output (they are unam-
biguously full rank in C?). Hence, the Petz map erases all
(output) states back to the reference, in full consistency
with the earlier comments about the quantum total-erasure
channel. This is depicted in Figs. 2(c) and 2(d).

A very different situation occurs for y = |1) (1]. In this
case, only |1) (1] is allowed as an output. Thus, the Petz
sends |1) (1] to itself, while all other states are retrodicted
in (complicated but logically consistent) ways dependent
on that forward transitions of the channel, reflected in
Fig. 2(e).

To explain this more symmetrically: in the former two
scenarios, all outputs are compatible with the absolute con-
viction (as enforced by state purity) given to the reference
state; hence all outputs are retrodicted to it. Meanwhile, in
this latter case, only one pure output (which just so hap-
pens to be the same as the reference) is compatible with
the pure reference state. Hence, all other states (beside
the expected output) are retrodicted in accordance with the
channel without any regard the reference, since the refer-
ence already excludes the possibility of such states. These
more complicated Bayesian inversions come together and
cumulate into a vertical reflection of the forward chan-
nel, as depicted in Fig. 2(e). For an arbitrary y, we obtain
a classical mixture of all these key effects together. We
depict the case where y = y (f, %, ) in Fig. 2(f).

It should be said the interplay of reference and channel
dependencies that we review here is fundamental in classi-
cal retrodiction scenarios as well. The half-SWAP illustrates
that these same Bayesian features hold in the quantum
regime via the inferential structure of the Petz map, even
when complementarity and entanglement is introduced.

VII. CONCLUSIONS

By expressing the Petz recovery map as a decomposi-
tion of matrices given by Eq. (22), we situate quantum

Bayesian inference in the same formal language as that
of its classical counterpart given by Eq. (27). We also
highlight what we find to be the most noteworthy (and
interpretation neutral) similarities and differences between
these two theories when it comes to logical inference.
Bayesian inference in both theories involves a similar

structure (see Sf}' in Table II). Given that the transpose of
a classical channel is also its adjoint, the key difference

between Séi and Sg’fw lies not in the central matrix S¢'
but in the right and left matrices Xg[,,) and X, that capture
the description of the priors. This affirms the fact that what
separates quantum theory from classical theory is not so
much in its dynamics (which is in many ways conceptually
similar) but in the description of states.

Mathematically, the difference is captured by the form
of the structure coefficients &;,;,. In classical theory, the
structure coefficients render the matrices diagonal. By con-
trast, in a QPR of quantum theory, the structure coefficients
introduce weighted products vy vf of every pair of entries
of the distribution v®. This is a consequence of the fact
that frames are tomographically complete—ultimately, a
signature of complementarity.

After these key results, we illustrate some examples
of quantum Bayesian reasoning using transition graphs,
which offer some visual intuitions about how the Petz
map produces inferences in a quantum regime. Finally,
we point to two possible directions to enlarge the perspec-
tive open by this work. One may repeat the current study
for alternative proposals of quantum Bayes’ rule that are
not equivalent to the Petz map [5]. Also, having chosen
(quasi)stochastic processes as the common language for
the comparison, we leave out representations of quantum
theory that have a different structure and use complex num-
bers: notably, the Kirkwood-Dirac representation, which
has recently been shown to be related to metrological
advantages [42].
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APPENDIX A: S IN TERMS OF &,,,,
We recall in reference to Table I that
SE = Tr[FiE[G]]. (Al)

Braasch and Wootters have observed [see Ref. [38, Eq.
(19)]], in the context of DW representation, that one
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can write an output state p’ = £[p] of a channel £[e] =
Dokie K;L in the following QPR expression:
roo 1
v = > Tr[GiG:G; Gy | Ky, (A2)

)
where K, = Y, K)E’)Ky(l)* and K = éTr[kal]. Hence,

v;)/ _ di?’ Z Tr[GxKl] Tr[GyKZT] Tr[GlGij Gy] 'l)]'~0.

vl

(A3)

Since v*’ = §€v?, this implies that

1
(Sl = =5 D Tr[Gue] Tr[Gny ] Tr[G,G,G; G,].
xyl

(A4)

We build upon this observation by deriving directly from
Eq. (A1) an expression akin to Eq. (A4) but valid for any
QPR:

Si = Tr[F.ELG]] (AS)
= Z Tr[F,-K;Gj K;r] (A6)

/
= 3 T Fu] Te| G.Goef F,-] (A7)

xl )

= Y TFw T Pl | THFGG G] (A8

xyl
= 3 TelFuk) Te| Fy] ] . (A9)

xyl

Recalling Eq. (7), we recover Eq. (A4) for DW represen-
tations. In Eq. (A9), we have an expression much like Eq.
(19), now catering for general CP maps. We may compare
these expressions more instructively, by writing Eq. (19)
as

Sy = Ma)y =) TrlFra] Tr[Fyar] £y (A10)
Xy

This comparison gives us a sense of what the structure
coefficients embed into objects in which they reside. They
structurally encode the choice of frame and representation
into the entries of these maps, whether they are CPTP or
not.

APPENDIX B: M,r = M, FORALLr e Q

From the concatenation of maps S¢S¥ = %7 [Eq.
(14)] and the definition Eq. (16), it is immediate that M,,» =

M, holds for r € Z*. We now proceed to prove that it is

valid for r € Q.
We recall the entry-wise definition in Eq. (17):
(Mg, = Tr[Fio’ Gja"] . (B1)

First, we prove that

(My12My12) 5 = Z(Mal/z)[k(Mal/z)kj
k

= Y Ti{Fiv/aGiv/a] Tr[Fi/aG; /o]
k

= ) Ti{Giv/aFiv/a] Tr[Fi/aG; /o]

= Tr[VaFiv/a/aG;/a]

= Tr[FaGia] = (M)

Crucially, in the fourth equality we use the property given
in Eq. (6) in QPR. Hence,

M, = Mtyz.

By reiterating this (i.e., sending @ — /a), we obtain

1
VneZ": M,y = Mg",
Using Eq. (14) for N € Z*, we have

Mnon = SMaN/2n
N times

— SMO[I/Zn o Mal/Zn ©---0 Mal/Zn
= l_[Mal/bt = HM;/Z".
N N

Since any positive rational number can be written as g =
N /2n, we prove that

My = MY, q Q. (B2)

Second, we note that

(MoM,-1)y = Y Tr{FiaGa] Tr[Fra™' Gra ™'
k

=Y Ti[GaFa] Tr[Fia~' Gia™']
k
= Tr[aFiaa_lGja_l]

Hence, M, 1 = M. Repeating this, we can easily see
that forany N € Z™:

M, v =M7".

o o

(B3)
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Finally, taking from Egs. (14), (B2) and (B3), we find that
Mgy = §Mat=N = gMaaoM,-N
= MMy~ = MIM;Y
=M,
Since any rational number can be written as a positive

rational number minus a positive integer, we prove that
M, = M forany r € Q.

APPENDIX C: S¢' IN TERMS OF (5%)7 FOR QPRs

We derive the QPR expressions for 5€" for some CP map
E[e] = Y k1 @ k. For NQPRs, we find easily that

(SKols = Tr[FiE"[G)1] = T{Fi ZK;G,-KJ
/
= ZTI‘[G]K[F,‘KIT] = ZTI‘[F}KIGI.KIT]
! I

= Tr|:Fj ZK}G,’K;:| = Tr[Fj S[Gi]] = Sﬁ

i

Thus, for NQPRs SiflT = (S%)7. For SIC-POVM represen-
tations, we have a more complicated expression. We first
use Eq. (11):

(&5 = Ti[FE'[Gy]]

G +1
= Tr[ +

t = et .
@+ 11]].

By expanding the terms and noting the unitality of every
adjoint map (i.e., £7[1] = 1), we arrive at the expression

(SED); = Tr|:F,» >k ij,} + Tr[ET[F1] — Tr{Fi]
1
= S5 + Tr[ET[F :
=8 + Tr [j]]—;[

By taking note of the relations found in Table I, we may
wiite Tr[€'[F1] = X, Trli/ Fyia ] = 2, Tr[ Frie] | =
Tr[FjE[]l]] = é(ngl)j: = flzaé’(ﬂa). Hence, we can
write the total expression of each entry for SIC-POVM
representation as

1
(S5 = S5 + 7 <Z EGla) — 1) SN (e

This can be written, on the matrix level, as Eq. (24).

APPENDIX D: (5%)7 AS S€' FOR CLASSICAL

In the previous appendix, we prove that for quantum
channels (expressed in QPRs), we can express the adjoint
channel in terms of the transpose of the channel. Here, we
prove the opposite relation for classical channels: that the
transpose of a classical channel is the adjoint of that chan-
nel. Namely, the transpose map is the map for which Eq.
(5) is fulfilled in the case of classical scenarios. Noting first
the commutative diagram found in Fig. 3 (which invokes
the relationships found in Table I), we see how Eq. (5) is
fulfilled by a map for which

(SEvP) - 57 = (S£'0%) - 17, (D1)
for all p and o. With this, we expand the left-hand side of
Eq. (D1):

(SE07) - 07 =Y (S50, 0] (D2)
y

= SSLiy. (D3)
Xy

Next we expand the following, in order to check if the
transpose qualifies as the adjoint:

(ST - 07 = (S0 ) (D4)
Xy

= Z Sy 0f (D5)
Xy

(D6)

_ E =p, O
= E SyUy vy -
xy

Now, for classical scenarios, the trace of two states, if
treated like quantum states in Hilbert space, would sim-
ply be the inner product of its density spectra: v* - v’ =
Tr[p o]. This is because the states, being classical distri-
butions, would be diagonalized in the same way. Thus we
could have replaced v” with v” in all the above calculations
and in Fig. 3. The reason why we write v* as opposed to v”
is to simply highlight that while, indeed, Eq. (D3) is iden-
tical to Eq. (D6) for classical scenarios, because v” = v”
there (and NQPR for that matter, since v’ = ¢ v”), the
same does not hold for SIC-POVM. The transpose quali-
fies as an adjoint for both NQPR and classical channels but
not for SIC-POVM. Hence, the relation proved for classi-
cal states and channels does not contradict the ones proved
in the previous appendix for QPRs.

APPENDIX E: PROPERTIES OF M,

Here, we note some interesting properties of M,,
namely, that it is a matrix with all real entries and non-
negative eigenvalues that sum to 1.
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(a)
ag aq az az
2 a a2 23
(b)
ap aq a2 ag
ag 3 az a3

FIG. 6. Transition graphs for a quantum

total-erasure channel with arbitrary ancilla B and a
corresponding retrodiction with reference prior y. (a)
SSw  for  E[e]l=Trp[Uw e ®B(E,Z, L) ULT]T  (b)

é T T T s
SS])VW for U<H>a ﬂ(%) 3?5 3)7 y(ﬁa 5 %)'

1. Real entries

It can be shown that all the entries of M, are real:
My)y = Tr[Fiana] € R. A proof is given in the main
text, valid for any M,; we repeat it here for completeness.

We first note that the anticommutator for any
two Hermitian operators A and B is always also
Hermitian—{4, B}" = {4, B}—while the trace of the com-
mutator of any two operators is always zero (in
finite dimension) due to cyclicity: Tr[[A,B]] = Tr[AB] —
Tr[BA] = 0. Hence

{4,B} [A4,B]
2 2

1
Tr[4B] = Tr|: ] = STi(4.B)] € R.

(E1)
Noting that /aF;/o and \/aG;/a are both Hermitian
(frame and dual operators are always Hermitian and « is

a density operator in Hilbert space), we apply Eq. (E1) to
(M,);j . The entries of M,, are thus proven to be always real.

2. Positive semidefiniteness

For any NQPR, we can always write

Moy = e Te| VaFi/a (VaF; va)'].

Hence, M, is a Gram matrix with some positive factor
c. Thus it is positive semidefinite. For SIC-POVM, we

expand (M, ); via Eq. (11), arriving at

= s (v VaGiva (Va6 va)']

+Tr[Gya?] ).

(Moz)ij

The first term, as with the NQPR case, corresponds to
a Gram matrix, which is positive semidefinite. One can
then note that the second term corresponds to a matrix
Jo (e, (Jo)ij = Tr[Gj az]) with duplicate rows (every j th
column filled with identical entries. This simply implies
that the only nonzero eigenvalue would be the sum of the
entries of any given row, which just means that eig[J,] =
{2, Tr[Gja?],0} = {Tr[@?],0) > 0. So M, is the sum
of two positive semidefinitive matrices and thus we may
conclude M, > 0 for SIC-POVM as well.

3. Unit trace
The trace of M,, is given by

TiM] =Y (Mo)i =Tr | Y FaGi o | = 1.

———
1

To prove the relation invoked for the final equality, we
use the previously found result in Ref. [43]. Consider the
superoperator

d2
Ale] =) eIl (E2)
i=1
it can be shown that
d
All] = ——(T1; + D). (E3)

d+1

Since the set {I1;} forms a basis, we can express the
superoperator as

d+1 e

where Z[A4] = Tr[A4] 1. Using this, we can easily show that
for SIC-POVM representation, we have

ZF,’(XG,’ = df—;l Xi:l'[,-(xl'[i — ;{a;l’[i

=1 (ES)
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For DW representation, Zhu [29] has shown that the dual
frame can always be expressed as follows:

G = —vd+ 1T, + (”— dd“) 1. (E6)

Thus, it can also be easily shown that ), F;aG; = 1 in this
representation.

APPENDIX F: GENERAL EXAMPLES FOR
Son # S
As discussed in Sec. VIC, it is the case that
E,[p] = &.[p] = |+) (+] for all p when E[e] = Tr[Uj o
® 1) (1] U;\] and y = |4) (+]. Yet we can easily find
that, for the canonical state representations for DW and
SIC-POVM, we have

1 L(3-v2) 1 H(v2+3)
g 1 1(q_
sia=| 0 1(v2+4) 0 1(4-V2)
0 0 0 0
0 0 0 0
11 1 1
111 1) &
755 0 0 0 0 | °"ow
00 00
Likewise,
0925 0183 —0264 0.353
G _ | 00744 0744 0275 0.168
st = | —0.0191 0.0491 0915 0.0947
0.0199 0.0233 0.0737 0.384
V3+3 3+3 J3+3 /343
L L V343 V343 V343 V343
121 3-43 3-V3 3-V3 3-3
3—V3 3=3 3-3 3-43
é
= Ssp -

Indeed, for some channels, one can find states for
which the postmeasurement probabilities violate accept-

. £ .
able bounds. This means that S_; fails to represent a
generally valid quantum transformation. For instance,
for a unitary transformation {/[e] = U e U', where U =

V31
find that
( I V3 We find tha

B~

(S 10 = 243 > 1

(L) gt = %(2 —5v/3) < 0.

Sér + Sé}: is thus easily shown.

APPENDIX G: Sg # Sc;, EVEN WHEN
E[y1,,p,En ALL COMMUTE

Some may expect that quantum retrodiction, under QPR
formalism and using its mathematical equipment, would
go to classical retrodiction once all states and transforma-
tions share the same eigenbasis. Put differently, there may
be an expectation that, for every choice of QPR and if

é - é
Elyl, v, p, and E,, commute, (SQR,[vp) " = (Sepv”) -
T

However, it turns out that this is not the case. We sim-
ply list two examples where this does not obtain. For the
canonical choice of DW representation,

V2+2 =i —1+4i i(fz—z)
po Ll 1= V242 2-V20 1
T4 14i 2-V2 V2+2  —1+i |
—i(ﬁ—z) “l—i 1+i 242
1
B=z1L,y=p=E,=]|—a){—al,

2

where U and § define the unitary dilation for &, |[+a) =
cos(r/4) |0) + e Bsin(/4) 1), |—a) = e ™/ sin(/4)
|0) — cos(ir/4) |1). Essentially, this gives a simple noise-
inducing channel (for qubits) that preserves the coherence
of states in the |+«) and |—a«) basis. It can be found that

3 1
(Sgmt") = 7(1= V2, 1, 14V2, 1),
3 1
(ST v = @ 5V2 2424
+3v2, 2+V2),

é I - a1
(Souv”) 0" = 2, S 1" = 128 = V2).

Similarly, for the canonical choice of frames under SIC-
POVM,

1
U:Uﬂa y:pzzl’

B =10)(0, Ey = [1)(1].
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Here, we have an amplitude-damping channel for the |0),
|1) basis. It can be found that

: 1
(Souv”) =320 = V3, 94+ V3,9 -3, 94 V3),

; 1
ST = L= V3 143

— V3, 11 ++/3),
¢ I - 2
Somv?) - 0" = 175 Sepv”) - 0" =3,

so even when all relevant states and POVMs are diago-
nal in Hilbert space, the QPR formalism does not make it
such that quantum Bayesian inference goes to the classi-
cal Bayes’ rule. This highlights the categorical difference
between quantum and classical theory even when they are
using similar mathematical equipment. Once one employs
tomographically complete frames in one’s QPR, one may
not simply reinvoke classical Bayes’ rule hoping that it will
simulate the quantum retrodiction, even when all quantum
states and transformations commute.

Note that this does not contradict the known result, men-
tioned in Sec. I, that the Petz map given in Eq. (2) reduces

J

Ll 1 1 Un
o= (1 4) s

1 I -1 1

2 1 1 -1

to classical Bayes’ rule when all relevant quantum objects
are diagonal in the same basis. This is because that result
holds in the context of the d-dimensional Hilbert-space for-
malism. Meanwhile, the above conclusion is made under a
QPR, when a valid frame has been affixed to define d x d
real space.

APPENDIX H: OTHER TRANSITION GRAPHS

In this appendix, we include illustrative cases of S,
some respective retrodictions, and their transition graphs.
In Fig. 4, the transition graphs are depicted for very famil-
iar Pauli rotations. It so happens that these unitaries trans-
late to S€ that give permutations. This is seen in the bold
bijective-transition arrows. Like other unitary channels, all
retrodictions are reference-prior independent. Transition
graphs of such retrodictions are thus always mirror images
of the corresponding forward transition graph. That said,
most unitaries do not enjoy a permutative structure that
exists for these SU(2) rotations. The Hadamard gate, for
instance, defined by the following computationally repre-
sented operator and gives the respective quasistochastic
matrix:

1 1 I -1
1
1 b
-1 1 1 1

which is consistent across the canonical choices of the DW and SIC-POVM representations.

Likewise, for an arbitrarily chosen unitary Ueg,

i<~/§+2i)

3i 0

Uegél 0 i (ﬁ + 21') 0 3i
4 _3i 24i/3 0
0 0 2+4iV3

one has the following quasiprobability objects:

9 V3—6 4-3Y3 2349
o L[ —v3-6 9-2v3 3J/3+4
W6 | 3344 2349 -3 6-5V3 |’
9-2J3 4-3J3 5/3+6 -3
-3 5346 4—-3J3 9-23
g _ L[ 6-5/3 =3 2/3+9 3V3+4
ST 16| 3V34+4 9-23 9 -/3-6
2349 4-3V3 V3-6 9
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It is clear that these forward channels do not give permu-
tative QPRs. Nevertheless, the property that ¥ = S =
(SY)7 is still reflected clearly in Fig. 5. In contrast to these
reversible maps, we can speak of the quantum total-erasure
channel mentioned in Sec. VI B. The full swap is expressed
as follows:

(HT)

[=NeBelS
oS = O O
SO = O
—_o O O

As clearly depicted in Fig. 6, both the forward channel and
its retrodiction are erased perfectly to the relevant state (the
ancilla for the forward map and the reference state for the
retrodiction).
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