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Looped Pipelines Enabling Effective 3D Qubit Lattices in a Strictly 2D Device
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Many quantum computing platforms are based on a two-dimensional (2D) physical layout. Here we
explore a concept called looped pipelines, which permits one to obtain many of the advantages of a three-
dimensional (3D) lattice while operating a strictly 2D device. The concept leverages qubit shuttling, a
well-established feature in platforms like semiconductor spin qubits and trapped-ion qubits. The looped-
pipeline architecture has similar hardware requirements to other shuttling approaches, but can process «
stack of qubit arrays instead of just one. Even a stack of limited height is enabling for diverse schemes
ranging from NISQ-era error mitigation through to fault-tolerant codes. For the former, protocols involv-
ing multiple states can be implemented with a space-time resource cost comparable to preparing one noisy
copy. For the latter, one can realize a far broader variety of code structures; as an example we consider lay-
ered 2D codes within which transversal CNOTs are available. Under reasonable assumptions this approach
can reduce the space-time cost of magic state distillation by 2 orders of magnitude. Numerical modeling
using experimentally motivated noise models verifies that the architecture provides this benefit without

significant reduction to the code’s threshold.

DOI: 10.1103/PRXQuantum.4.020345

I. INTRODUCTION

Many platforms that are being explored for quantum
computing have the property that qubits can only inter-
act with physically proximal partners. For such systems,
one may ask about the importance of the dimensional-
ity of the qubit array: would one dimension (1D), two
dimensions (2D), or three dimensions (3D) be required
to achieve a given task efficiently? There are a number
of studies related to this question. For example, within a
certain framework it is possible to achieve quantum advan-
tage using a noisy circuit of constant depth on a 3D qubit
lattice [1], but it is not possible on a 2D qubit array if
we are considering tasks like variational quantum algo-
rithms [2]. When considering quantum error correction
(QEC), moving from 2D qubit arrays to 3D qubit lattices
enables 2D topological codes with transversal CNOT gates
[3] or 3D topological codes with transversal non-Clifford
gates [4,5]. In other applications like quantum error miti-
gation (QEM) [6,7] and quantum annealing [8], 3D qubit
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lattices can lessen or remove the demand for long-range
gates, which are usually much noisier. However, despite
the advantages provided by the 3D qubit lattices men-
tioned above, most hardware platforms nowadays are still
confined to a 2D layout due to technological challenges.
Hence, it is interesting to explore methods to efficiently
implement an effective 3D qubit lattice on a physical 2D
hardware substrate.

In many state-of-the-art hardware platforms, besides the
qubit connectivity limitations, another key challenge is the
conflict between providing spaces for classical control and
maintaining a high qubit density. In hardware platforms
where native entangling operations are short range, like
silicon spin systems and trapped ions, we might expect to
have an array of closely packed qubits. However, address-
ing qubits in such a closely packed array might lead to
crosstalk. Moreover, the number of classical control ele-
ments required can scale with the area of the array (number
of qubits) while the available space for these control ele-
ments may scale only with the perimeter of the array, lead-
ing to challenges in the wiring routing and heat dissipation
[9]. To tackle the dichotomy of short-range interactions
versus the desire for well-spaced structures, a natural solu-
tion is expanding the qubit array using shuttling tracks:
qubits that are scheduled to interact are brought together
through qubit shuttling. As a result, qubit shuttling forms
the basis for many of the most promising scalable architec-
tures for platforms like semiconductor spin qubits [10—12]
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and trapped-ion qubits [13—17]. The related question of
how to efficiently exploit the shuttling capabilities using
suitable control sequences has also been considered in
Refs. [18-21]. However, as we space out the qubit array
using shuttling tracks, it appears that the qubit density will
decrease accordingly, reducing the number of qubits that
we can fit onto a single integrated platform (e.g., a silicon
chip).

In this paper, we study a pipelining architecture, which
is obtained by replacing the commonly considered linear
shuttling tracks with shuttling loops. In this way, instead
of storing and processing a single 2D qubit array in the
shuttling-based architecture, we can effectively store and
process a stack of 2D qubit arrays using a similar amount
of physical resources, i.e., we aim to increase the qubit den-
sity for shuttling-based architecture without compromising
any of the advantages brought by shuttling. Then, with the
simple generalization of enabling (even limited) interac-
tions between qubits in the same shuttling loop, we can
perform transversal interactions between different layers
in the stack of qubit arrays. This transforms the stack of
qubit arrays into an effective 3D qubit lattice and enables
computing tasks that are impossible before in a strictly
2D lattice of static, locally interacting qubits. Inevitably
there are practical constraints on the height of the effec-
tive 3D lattice one can achieve, depending on the hardware
and the circuits we try to run. However, as we see later,
despite such limitations, very significant advantages can
still emerge in various applications.

Our interest is in performing circuit-based quantum
computation on matter qubits like silicon spin and trapped-
ion qubits. However, before we proceed, we also want to
take note of the extensive literature for building 3D clus-
ter states in the photonic platform, which can be used
for performing fault-tolerant measurement-based quantum
computation to overcome challenges like nondeterminis-
tic two-qubit gates and photon losses [22—24]. Due to the
“flying” nature of photonic qubits, in order to perform a
given sequence of operations in a photonic processor, one
must physically arrange a series of optical components
along the optical path; similarly, in conventional comput-
ers, the classical circuits we want to perform are physically
printed onto the classical processors. Due to such simi-
larities, classical concepts like pipelining can be naturally
adopted into photonic processors, turning into techniques
like time-domain multiplexing and optical loops, which

are then used in a range of proposed schemes for build-
ing 3D photonic cluster states [25-30]. On the other hand,
typical architectures for stationary matter qubits oper-
ate on a completely different paradigm with the target
circuit emerging from the time direction rather than phys-
ically appearing “baked into” the processor layout. Hence,
the adoption of classical computing techniques for mat-
ter qubits is much less straightforward. In this paper, we
construct a hybrid approach between flying and station-
ary qubits. This approach allows one to apply the classical
pipelining concept to matter qubits and support features
native to 3D circuit-based scalable quantum computation,
whereas existing schemes for performing measurement-
based quantum computation using 3D photonic cluster
states are effectively equivalent to 2D circuit-based scal-
able quantum computation.

We start by looking at the general construction of the
pipelining architecture in Sec. II. It is then used to imple-
ment a stack of 2D topological codes in Sec. III, and
more specifically for the task of magic state distillation
in Sec. IV. We consider the specific case of semicon-
ductor platforms in Sec. V, where we present numerical
simulations to determine thresholds for tolerable shuttling
errors. In Sec. VI, we look at a near-term application of the
looped-pipelining architecture in QEM. We conclude with
some general remarks and a discussion of possible future
directions in Sec. VII.

I1. PIPELINING 2D QUBIT ARRAYS

A. Classical linear pipeline

Let us suppose we want to implement a classical data-
processing circuit on many datasets. To convert the circuit
into a data-processing pipeline, we divide it into multiple
steps (also called stages) with each step able to oper-
ate only on one dataset at a time as shown in Fig. 1.
Now instead of inputting the second dataset only after the
first dataset completed the whole circuit, we can input the
second dataset into the first data-processing step as soon
as the first dataset leaves the first step, similarly for all
the subsequent datasets and the subsequent steps. In this
way, all data-processing steps can be working on different
datasets in parallel, increasing the throughput of the sys-
tem. This is the concept of pipelining. In fact, it is often
the case that each step can actually perform a range of
different operations with the same efficiency when using

| | FIG. 1. Example of a classical
i Tire i data pipeline consists of 4 steps.
| | | | |
® T s T —x T3 * T4 ) Here we have a steady flow of
Pipeline: input— l l N l —output datasets with a time gap Timax
' stepl 1 step 2, step 3~, 1 stepd between consecutive datasets.
Tmax
Data Stream:  --- O O - O—
_ \‘TJ Tgap i
O = dataset
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different control parameters. Hence, we can implement
different circuits on the different datasets using the same
data-processing pipeline.

The processing time needed for the mth step in the
pipeline is denoted as 7,,. Suppose there are M steps in
total, then the time taken for one dataset to flow through
the entire pipeline and execute the whole circuit is simply

M
Teire =) Tm. (1)

m=1

This is the processing time required for every dataset with-
out pipelining, and it is also the time required to process the
first dataset in the pipeline. The additional time required
to process the second dataset is determined by the slow-
est (rate-limiting) step in the pipeline with a processing
time of

Tmax — ml'?lx Ti, (2)

which is called the rate-limiting step time. This is because
the second dataset can enter only the slowest step when
the first dataset exits, similarly for any additional datasets.
Hence, the total time needed to process k datasets using
such a pipelining scheme is at least

Tpipe(k) = Teire + (k — 1) Tmax. (3)

We call this the steady-flow pipelining scheme since the
data stream can flow through the entire pipeline without
needing to modify the time gap between adjacent datasets
or be put on hold anywhere along the pipeline.

As we deviate from the steady-flow scheme, we often
need to temporarily put the datasets on hold within the
pipeline. To achieve this, we need to add buffers in between
the steps, which can hold multiple datasets temporarily and
require no processing time.

B. Looped qubit pipeline

Similar to the classical pipeline, we can define a linear
qubit pipeline as shown in Fig. 2(a) [31], with the datasets
being qubits and the processing steps being shuttling
steps, quantum gate devices, initialization and measure-
ment devices. Each shuttling step here is a small section
of shuttling track that can hold one and only one qubit at
a time. We can also use the steady-flow scheme for the
qubit pipeline, for which the time required for processing
k qubits is simply given by Eq. (3). Note that in practice,
each shuttling step is usually a very short shuttling section
that performs relatively quickly compared to the other pro-
cesses (see, e.g., Sec. V), thus the rate-limiting step is often
not shuttling. We assume without loss of generality that
shuttling tracks can hold the qubits without pushing them
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FIG. 2. Pipelines for applying single-qubit circuits on a stream
of qubits.

forward, thus they can also act as buffering regions for the
pipeline when needed.

Going beyond a linear pipeline, we can have a looped
pipeline, which can be implemented using the structure
shown in Fig. 2(b). This piece of hardware, which we
simply refer to as a “loop,” is made out of initialization
and measurement devices connecting to an outer shuttling
loop with gate devices. Unlike the linear qubit pipeline, in
which the circuit depth we can perform is limited by the
number of gate devices in the hardware, by allowing the
qubits to go around the loop and reuse the gate devices,
we can now effectively perform circuits of any depth even
though we have only a small number of gate devices in the
hardware.

Let us focus on the first qubit in the qubit stream, the
time needed for it to wrap around the loop is called the
cycling period and is denoted as Tioop. Assume that all
additional qubits in the looped pipeline follow behind with
a constant time gap of 7,4,, between the consecutive qubits.
When the qubit stream wraps around the loop, the first
qubit in the qubit stream may collide with the last qubit.
To avoid such qubit collision, we need to ensure the cycle
period Tioop is larger than the time gap between the first and
the last qubit, which is (k — 1) 74, With & being the number
of qubits:

Tloop > (k— 1)"/'gap-

The cycling period Tjoo, may change from one round to
another since different steps on the loop can be activated
at different rounds. We might want to apply three gates in
this round, but only two gates in the next round; moreover,
certain rounds may not involve measurement or initializa-
tion. Let us denote the minimum cycling period throughout

the whole pipeline process as Tjoy, then to avoid qubit
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collision throughout the pipeline, we need to have

Tin > (k— I)Tgapa

loop
k < mi)r];/fgap +1= Kloopa (4)

where Kijoop is the maximum number of qubits we can fit
on the loop.

In the steady-flow scheme, we have 75, = Tmax. There-
fore, the maximum number of qubits we can fit in the loop
in this case is simply

Kioop = T/ Tmax + 1. (5)

If Kioop is too small and we want to fit in more qubits into
the pipeline, we can try to increase T}, by adding buffer-
ing times, which we simply call collision buffering. In this
paper, in most of the cases, we try to keep the qubit num-
ber in the loop low enough to satisfy Eq. (5) so that no
collision buffering is needed.

We can also try to increase the number of pipelined
qubits by reducing .. When the rate-limiting step is
measurement or initialization, we can reduce their effective
processing time by adding more initialization or mea-
surement devices, for example, as shown in Fig. 3, and
operating them in parallel. With m times more initialization
or measurement devices in the pipeline, the effective mea-
surement and initialization time in the pipeline, and thus
rate-limiting step time tp,x, Will be reduced by a factor
of m as long as we are operating on more than m qubits:
Tmax = Tinit/meas/M. It i also possible to reduce the mea-
surement or initialization time to the point that they are
not the rate-limiting step anymore. It is worth noting that
without pipelining, naively putting in more initialization or
measurement devices will not reduce the processing time.

In the case that the rate-limiting step is the gate oper-
ation, we may be able to reduce its effective processing
time by, for example, applying the gate operation while the
qubit(s) involved traveling along a substantial portion of
the loop. Then, the gate operation can be carried out along-
side the shuttling process, instead of localizing the gate
operation at a corner. As is further discussed in Sec. 11D,
this effectively decomposes the gate operation into many
small gate steps to reduce the rate-limiting step time Tp,x.

Initialisation or
readout devices

Gate devices

Shuttling track

Qubits

FIG. 3. Example of a looped qubit pipeline with multiple
initialization or measurement devices.

One other possibility to fit more qubits in the loop is
by adding bypasses to allow the qubits at the front of the
qubit stream to lap the qubits at the back, so that the length
of the whole qubit stream can wrap around the outer loop
more than once. However, this could lead to more complex
scheduling of the pipeline and possibly additional time
cost.

It is also possible to fit in more qubits without making
any modification to the hardware and instead by simply
reducing the pipelining time gap between the qubits to
below 1, as mentioned in Sec. E. As we see later in our
discussion in Sec. V A, this can be one of the most practical
ways for solving the qubit collision problem.

C. Qubit-array pipeline

Let us consider a five-qubit array with a central qubit
interacting with the four neighboring qubits. In order to
avoid crosstalk among them and to provide additional
spaces for the wiring of the classical controls, we can space
out the qubits using shuttling loops as shown in Fig. 4(a),
where the qubit array is now stored in a loop array formed
from the loop elements mentioned in the last section. By
synchronizing the movement of qubits in different loops, if
the central qubit moves through one round of the loop, it
will come into contact with all of the surrounding qubits
along the way and interact with them, mimicking the con-
nectivity of the five-qubit array as shown in Fig. 4(a). A
method for synchronizing more complex qubit movements
is outlined in Sec. A. Such an architecture can be easily
extended to a large qubit array.

Now instead of one qubit per loop, we can fit multiple
qubits in each loop as shown in Fig. 4(b), essentially load-
ing multiple qubit arrays (denoted by different colors) into
the loop array without adding any additional components.
As shown in Fig. 4(b), by synchronizing the movement
of qubits among different loops [as in the pure shuttling
case in Fig. 4(a)] and allowing the various devices on the
loops to operate in parallel, we can process a stack of qubit
arrays from the top layer to the bottom layer in a pipelining
manner. Hence, this loop array can be used to implement
a qubit-array pipeline and thus we also refer to it as a
pipelining architecture. Even in the simple case that the
various layers of the virtual stack do not interact, this is
already interesting for applications such as VQAs where
one needs to repeatedly prepare and measure the same
quantum state (to adequately learn a set of observables).

Let 4 denote the number of (entire) loop arrays we need
to store and process all qubit arrays, which is proportional
to the space overhead needed. When the number of qubit
arrays is n, we can store them in 4 = n different loop arrays
[n copies of arrays similar to Fig. 4(a)] and process them
all in parallel. Alternatively, we can store them all in a
single loop array (4 = 1) and process them using pipelin-
ing, leading to a factor of n saving in the spatial overhead,
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Processing a five-qubit array.
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readout devices

O Qubits
(O] shuttling tracks Gate devices

Processing 4 five-qubit arrays using pipelining.

FIG. 4. Five-qubit arrays stored in a loop array. Multiple
qubits can be stored on the same loop through pipelining, which
corresponds to multiple layers of five-qubit arrays.

i.e., a factor of n increase in the qubit density. As given
by Eq. (3), comparing the pipelining scheme to the paral-
lel scheme, the time needed for the main computation is
the same, which is simply 7., but processing each addi-
tional qubit using pipelining will increment the total time
required by an amount 7,4 as in Eq. (3).

In an application, such as measuring observables by
repeated sampling, it is likely that the number of qubit
arrays n we want to process exceeds the maximum num-
ber of qubits we can fit in the pipeline Koo, given by
Eq. (4). Then the need to distribute the n qubit arrays into at
least A = [n/Kj,op| different loop arrays so that the num-
ber of qubit arrays stored in each loop array will not exceed
Kioop- Nevertheless, we compress the spatial overhead by a
factor of Kjoop. This is further explored in the context of
surface-code computation in Sec. III E.

The qubit-array pipeline can also be implemented on 2D
qubit layouts beyond valence-4 connectivity as illustrated
in Fig. 5. We can see that since the interloop interactions
are carried out at the corners of the loop, the qubits with n

(a) One loop array

~ N \ Entire
ALY device
(b) S8
v, \ "
) Shuttling tracks
Hﬁ O Qubits
v Possible
Interactions
FIG. 5. (a) An entire array of loops, sufficient for a given role

(a NISQ calculation, or representing one logical qubit) may be
only part of the entire device. (b) Transforming a given qubit
connectivity graph to a pipelining architecture. The shuttling
loop of a given qubit is simply constructed by connecting up the
midpoints of all of its interaction edges.

neighboring qubits will simply be transformed into n-gon
loops, whose n corners are connected to the corners of the »
neighboring loops for interaction. There are of course other
pipelining architectures possible as discussed in Sec. 11 D.

Generalizing the architecture described above, we can
add components to allow interactions between specific
qubits within the same loop; in the stack picture this corre-
sponds to interactions between qubits in different layers. If
the same pattern of intraloop interaction is repeated over
a complete set of loops (as in the brown-purple pairing
within the white loops in the lower panel of Fig. 6) then
we implement “transversal” interactions between layers.
In this way, the qubit connectivity is effectively extended
beyond a 2D array to a 3D lattice. The “height” of this
3D lattice cannot be increased indefinitely due to the lim-
itation on the number of qubits in each loop as discussed
in Sec. II B. Nonetheless, the increased connectivity can
expand the computation power of the device by, for exam-
ple, enabling transversal CNOT gates in QEC codes and
an efficient implementation of purification-based QEM as
discussed later.

The simplest way of scheduling these intraloop inter-
actions is just halting the pipelining flow, effectively
halting all interloop interactions, and then bringing the
corresponding qubits in the loop together for interac-
tion. We can have a circuit structure of alternating layers
of intralayer (interloop) and interlayer (intraloop) inter-
actions just like the standard gate scheduling for a 3D
qubit lattice. In this paper, we consider applications with
mostly intralayer (interloop) operations and rare interlayer
(intraloop) operations. Hence, we ignore the time cost for
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Enabling interloop interactions

Pipeline flow direction

Intralayer (interloop)
A interactions

Interlayer (intraloop)
VWA interactions

o8] Initialisation or
readout devices

Gate devices

“ua

O Qubits

@ Shuttling tracks

FIG. 6. Interactions within layers are enabled by interloop
(red) interactions while transversal interaction in between layers
are enabled by intraloop (green) interactions.

interlayer (intraloop) operations in the analysis for those
applications.

We can also have different numbers of qubits and/or dif-
ferent cycling frequencies in different loops. In such a way,
it is possible to construct 3D qubit structures beyond a
stack of aligned layers, even without using intraloop inter-
action. One such example is shown in Fig. 7. If indeed we
do also have intraloop interactions available, then we can
construct qubit structures that are yet more sophisticated.
One such example is shown in Fig. 8.

D. Alternative qubit-array pipeline implementations

The shape of the loop we construct in Fig. 5 is
merely one of the more simple implementation possibili-
ties. Instead of a simple loop of the shape of an n-gon, we
can have more complicated shapes like, e.g., a “8” shape
with a crossing at the middle (i.e., instead of having the
shape of a graph cycle, we can have the shape of a graph
circuit).

In Fig. 4, the corner interaction is illustrated as two
separate tracks coming into proximity. In practice, such
corner interaction can also be implemented using shutting
junctions connecting the two loops as shown in Fig. 9,

.

M.
ju]

7
;
4
l l .

>
4 *
y .
v I =
/ T
>

Interloop interac- o6 Initialisation or
tions readout devices
O Qubits i ! Gate devices

@ Shuttling tracks

FIG. 7. Constructing 3D qubit connectivity without using
intraloop interactions. Here the cycling frequency of the center
(gray) loop is twice as fast as that of the surrounding (white)
loops. Interactions between the middle two layers can be enabled
if we allow qubit swaps within the same loops as shown in
Fig. 8.

utilizing Y junctions that have been extensively consid-
ered for trapped-ion devices [19—21]. It is also possible to
extend the interaction regions between the loops beyond
the corners by increasing the overlaps between the edges
of different loops as shown in Fig. 10(a). Pushing this to
the extreme, we then have complete overlaps between the
edges of different loops as shown in Fig. 10(b), which we
simply call the edge-interacting pipeline.

Here we see that the qubit interactions are now extend-
ing over the whole edge of the loop instead of simply
at the corner. It is now possible to operate on multiple
qubit pairs simultaneously along a given edge. Such an
extended gate-operation node along the whole edge can
be viewed as many consecutive small gate-operation steps,
with each small gate-operation step only able to operate on
one qubit at a time. If the gate step is the rate-limiting step
in the corner-interacting pipeline, by decomposing each
gate operation into the m small gate steps in the edge-
interacting pipeline, we can reduce the time required for
the rate-limiting step by a factor of m. Of course, this
assumes that the time needed for the gate operation for
both the corner-interacting and edge-interacting pipelines
are the same. In the edge-interacting pipeline, since we
are carrying out shuttling and qubit interaction in paral-
lel, there is a time saving on removing the shuttling time
cost. The density of the loops in the loop array may also
increase compared to the corner-interacting case. On the
other hand, a qubit-qubit interaction realized while both
qubits are transiting along the edge may not be possi-
ble in certain platforms, or may have lower fidelity than
stationary qubit interaction at the corner.
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FIG. 8.

A qubit pipelining scheme to achieve the qubit connectivity shown on the left using loops of different cycling fre-

quencies and a different number of qubits. Here the only intraloop operation we need is swapping the qubits in the same loop,
which can be carried out using swap gates or via qubit shuttling if we allow one qubit to bypass another qubit in the loop.
Qubit bypass in the loop can be achieved by adding structures to allow one qubit to move off the loop to give way to another

qubit.

IT1. STACKING 2D TOPOLOGICAL CODES

A class of QEC codes that are particularly relevant to
physical implementation is 2D (planar) topological codes.
These codes can naturally match to the geometric layouts

Interaction
Region

FIG. 9. One possible way to implement the interactions
between two loops using shuttling junctions.

of physical qubits to ensure local stabilizer checks of
constant weights [32,33]. When performing fault-tolerant
quantum computation using 2D topological codes, we have
a set of 2D qubit arrays (storing different logical qubits)
that need to be processed in the exact same way to perform
stabilizer checks for quantum memory. This is a perfect
setting for applying the qubit-array pipeline discussed in
Sec. I C, which will increase the density of the logical
qubits. Furthermore, when we enable intraloop operations
(or equivalent extensions), then we are able to perform
transversal operations between the logical qubits for faster
Sfault-tolerant quantum computation, or indeed to realize
3D codes.

A. Pipelining time cost for quantum error correction

We assume the entire pipeline of QEC consists of D
code cycles and ignore the initialization of all qubits at
the beginning and the measurement of all qubits at the end
since the associated time costs are negligible compared to
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FIG. 10. Edge-interacting qubit-array pipelines. Intraloop gate
devices are not explicitly shown for visual clarity. We see that
multiple qubit pairs can interact simultaneously along a given
edge.

the main code cycles. The time required for one logical
qubit to run through one code cycle is denoted as Tyl
and called the code cycle time. Following Eq. (3), the time
needed to pipeline k logical qubits through D code cycles
is simply

Tpipe(Da k) = DTcycle + (k — 1)Tmax
= (D + (k - 1)f) Tcyclea (6)

with f* = Tpmax/Teyele being the fraction of the code cycle
time taken by the rate-limiting step.

The depth of the logical circuit D is the number of
layers of logical operations we need to perform, which is
usually much smaller than the number of code cycles D.
For most of the interesting applications, we usually find
circuit depth scales more than linearly with the number of
logical qubits needed n: D = n. Now using the fact that
the total number of logical qubits # is larger than the num-
ber of logical qubits in each qubit-array pipeline k, and

f <1, we have D> D 2 n>k> (k—1)f. When
applied to Eq. (6), this implies that in many fault-tolerant
applications, the pipelining time cost is negligible.

B. Surface codes

Surface codes and color codes are two of the most
promising topological codes at the moment due to their 2D
planar layout, high thresholds, and the existence of effi-
cient decoding algorithms [34,35]. Let us first use surface
codes as an example. In surface codes we need to perform
local X /Z checks, which are represented using the red and
green plaquettes in Fig. 11(a). For each X check, we use
the circuit in Fig. 11 to measure the X parity of the data
qubits located at the vertices of red plaquettes (semicircles
at the boundary), similarly for Z checks.

Each stabilizer check is a five-qubit process that can
be implemented in the pipelining architecture in Fig. 4(b).
There the data qubits are transformed into the surrounding
(white) data loops and the ancilla qubit is transformed into
the central (gray) ancilla loop. After a given ancilla qubit
moves around the loop, it is able to interact with every sur-
rounding data qubit and carry out the parity-check circuit
in Fig. 11.

The pipelining structure can be easily extended beyond
the five-qubit check array to the whole surface-code patch
as shown in Fig. 12. It is shown in Ref. [34] that X and Z
checks in the surface code can be carried out in parallel if
we perform each check in a zigzag pattern across the four
data qubits. The way we perform each check in a circular
manner in a loop in Fig. 4(b) means that we can perform
only X and Z checks in a staggered manner instead of in
parallel. Of course, this is a feature of the round-shaped
shuttling track rather than of pipelining, and it can be pre-
vented by having a zigzag shuttling track instead. It is also
worth noting that even without pipelining, we might want
to stagger X and Z checks anyway since it can improve
code performance by preventing error propagations and/or
help with combating special kinds of errors [36—39].

In a given stabilizer check, we need to be careful about
“hook” errors [3] in which single-qubit errors on the ancilla
qubits propagate and become weight-two errors on data
qubits. To mitigate the damage due to hook errors, when
performing checks around a loop, we need to start the
X checks at the position of the purple or orange dot in
Fig. 12, while the Z checks need to start at the position
of the blue or brown dot, such that the resultant weight-
two errors do not align with the logical operators. This
is reflected through the different orientation of the ini-
tialization or measurement devices in X and Z ancilla in
Fig. 12.

We construct a pipeline for one surface-code cycle tak-
ing into account the restrictions above as shown in Fig. 13,
which is written as a combination of the data pipelines,
X ancilla pipelines and Z ancilla pipelines. We denote the
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FIG. 11. The surface code and its parity-check circuits.

time required for qubit measurements, initialization, CZ
gates, H gates, and shuttling through one full round of
the 100p as Timeas, Tinit» Tcz, Tu, and g, respectively. The
rate-limiting step time is given by

Tmax = maX(TmeaSa Tinit> Tczs TH)'

®)
Data
qubits| —[H]

@

Ancilla: |+)
X pairty-check circuit

B

i

() .
Data ®
qubits T
Ancilla: |+)

Z pairty-check circuit

Note that 7y, contains many small shuttling steps and we
assume that shuttling is not the rate-limiting step as men-
tioned before (this is merely to simplify our analysis and is
not essential).

The code-cycle time Ty is obtained by looking at the
data pipeline and the ancilla pipeline in one code cycle.
In each code cycle, the data qubits will flow through three

Initialisation or
Zchecks 88 readout devices
X checks _ Gate devices
O Qubits @ Shuttling tracks

FIG. 12. Pipelining architecture for surface codes. Intraloop gate devices are not explicitly shown for visual clarity. The initialize
or readout devices on the data qubit tracks are not used during a normal stabilizer cycle. More specialized hardware design with
heterogeneous data and ancilla loops is possible, but is not shown here for simplicity. Note that here all data and ancilla pipelines are
flowing in the clockwise direction. It is also possible to run in a configuration that all data pipelines flow clockwise while all ancilla

pipeline flow anticlockwise.
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rounds of the loop with eight CZs and two H applied along
the way. Thus the circuit time needed for the data qubits for
one code cycle is

T8 — 374 4 87c, + 21 (7
On the other hand, the ancilla qubits (both X and Z) flow
through one round of the loop with initialization, four CZs
and measurement applied along the way. Thus the circuit
time needed for the ancilla qubits for one code cycle is

Tci1nrz = Toh + 47z + Tinit + Tmeas- ®)

The code-cycle time is simply determined by the rate-
limiting pipeline

Teyete = max (T4, T9), ©)
with buffering added to the faster pipeline to achieve syn-
chronization. We can then use Egs. (6) and (9) to obtain the
time needed for pipelining & surface-code patches through
D cycles.

For the data pipeline, the data qubits go around the
loop three rounds in each code cycle, and the minimum
cycling period is given by the last round in Fig. 13 in
which only one CZ gate and one H gate are applied:
Tﬁ}g}; = Tsqn + Tz + Ty. Hence, the maximum number of
qubits we can fit into the pipeline is given by Eq. (5):

mn

Ty, T
100p+1=Tsh+ CZ+TH+1.

Tmax Tmax

(10)

Kloop =

For the ancilla pipeline, the ancilla qubit goes through one
round of the loop without wrapping around, thus there is
no danger of the front of the qubit stream colliding with
the rear.

When the rate-limiting step is measurement or initial-
ization, we can reduce the effective rate-limiting step time
by adding more initialization or measurement devices as
discussed in Sec. II B. Note that in many platforms, one
can perform nondestructive projective measurements (e.g.,
Pauli spin blockade measurement for semiconductor spin
qubits in Sec. V A), which acts as the initialization step for

Z ancilla pipeline: ~(Q-Shuttle + €Z) x 4,

the next code cycle and thus we have T, = 0. When the
CZ or H gate is the rate-limiting step, we might switch to
a loop array with edge interactions to reduce the effective
rate-limiting step time as discussed in Sec. I D.

The pipeline we propose in Fig. 13 is simply one of
the possible workflows. A simpler (but not necessarily
efficient) stabilizer check scheme can be mimicking the
conventional zigzag checking pattern [34] by flowing the
qubits through two rounds of the loops and activating the
gates at the appropriate moments. There are also other pos-
sibilities depending on the exact processing steps and the
structure of the loops, which would be an interesting future
direction to investigate.

C. Color codes

The structure of the color code [40] is shown in Fig. 14.
In color codes, instead of performing X and Z checks sepa-
rately on different plaquettes like in surface codes, we need
to perform both X and Z checks for all plaquettes. Such
a structure is why we can implement transversal H and
S logical gates in color codes. The local checks in color
codes are weight-6 (weight-4 at the boundary), and thus
can be carried out using a parity-check circuit similar to
Fig. 11 but with six data qubits. As the parity-check circuit
involves more qubits and gates, the error threshold of color
codes is usually lower than that of the surface codes.

Color codes can be transformed into a pipelining archi-
tecture following Sec. II. Each stabilizer check becomes
the structure in Fig. 15 in which the data qubits are trans-
formed into the surrounding (white) data loops and the
ancilla qubit is transformed into the central (gray) ancilla
loop. Since we have weight-6 checks (weight-4 at the
boundary) for color codes, we see that the ancilla loops
are hexagons. The data loops are triangles since each data
qubit is connected to three ancilla qubits. Note that per-
forming checks using a single ancilla in triangular color
codes is prone to hook errors just as in surface codes. This
can be avoided by adding extra ancilla qubits called flag
qubits to detect these hook errors [41], and the new qubit
layouts with the additional flag qubits can still be pipelined
using the method discussed in Sec. II.

Meas. + Init.

Data pipClinC: OShuttlc X 4+ CZ X 2\

H + Shuttle

‘") Repeat

+ Wait if data is rate limiting

O (Shuttle + CZ) x 4~y H +Shuttle X3 s~y Repeat

+Wait for CZ x 2

Meas. + Init.

+ Wait if ancilla *~
is rate limiting

M\Shuttle x 4+ CZ x 2/  Meas. + Init.

X ancilla pipeline:

+ Wait if data is rate limiting

FIG. 13.

- Repeat
+Wait for CZ x 2

Pipeline workflow for a code cycle in surface codes. “Shuttle” here means shuttling along one edge of the square shuttling

loop. “Wait” here means buffering and it needs to be added into the pipeline for synchronization depending on which pipeline is the
rate-limiting pipeline. We do not include the initializations of qubits before all code cycles and the measurement of all qubits after all

code cycles.
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BothxXandz © Dataqubits

checks O Ancilla qubits

FIG. 14. A logical qubit in the color code.

In surface codes, each ancilla loop is either responsible
for the X checks or the Z checks, thus the operations in
the X checks and the Z checks can be carried out in paral-
lel. On the other hand, in color codes, every ancilla loop is
responsible for both the X and Z checks, thus in the sim-
plest case, we can carry out only the X and Z checks in a
strictly sequential manner. A possible code-cycle pipeline
for the color codes is discussed in Sec. B.

D. Transversal logical CNOT

Most of the state-of-the-art topological codes like sur-
face codes and color codes are Calderbank-Shor-Steane

Pipeline flow direction

Intralayer (interloop) Initialisation or
YW\ interactions o8] readout devices

ww Interlayer (intraloop)

e .
interactions 1__: Gate devices

[> @ Shuttling tracks

FIG. 15. Pipelining architecture for color-code parity checks
with six qubits in the pipeline. Intraloop gate devices are not
explicitly shown for visual clarity. Here we effectively have six
layers of parity-check units stacking on top of each other.

O Qubits

(CSS) codes for which the stabilizer checks are either X
parity checks or Z parity checks, i.e., there are no checks
consisting of a mixture of X and Z operators. For CSS
codes, the logical CNOT can be implemented transver-
sally, i.e., it can be implemented by performing physical
CNOT between the corresponding physical qubits in the two
logical qubits [42]. Such a transversal logical CNOT is usu-
ally not considered in practical implementations since it
is challenging to link the corresponding physical qubits
within two topological code patches in a 2D architecture.
Therefore, instead, people turn to defect-based methods
[23,24] or lattice surgeries [43,44]. However, these meth-
ods are based on code deformation, which requires O(d)
code cycles to be performed before the CNOT can be suc-
cessfully completed, where d is the distance of the code.
In contrast, transversal CNOTs and more generally any
transversal gates can be directly implemented in the looped
pipeline paradigm; one means is simply to modify a sin-
gle code cycle as discussed in Sec. II C. If this modified
cycle introduces only a typical level of noise to the device,
then no additional code cycles are required—this is the
assumption we make presently in our resource estimations.
However, even if higher-than-normal noise is introduced
by the modified cycle, we would require only a small fixed
(d-independent) number of additional cycles [45], which
would not significantly alter our conclusions.

The numbers of code cycles required for the different
logical operations in the universal set are summarized in
Table I. We see that CNOTSs, if implemented via lattice surg-
eries, can be a big part of the time cost for both surface
codes and color codes. For color codes, CNOT via lattice
surgeries would be the only operation requiring O(d) code
cycles and thus optimizing it via pipelining can potentially
speed up the computation by a large factor. For the sur-
face code, CNOT is one of the slowest steps, but there are
other steps requiring O(d) code cycles like the Hadamard
gate H and the phase gate S. One must also note that lattice
surgeries also require a larger qubit overhead (more ancilla
patches) than transversal operations.

E. Multiple code stacks

Due to the qubit collision constraint outlined in Sec. 11 B,
there is a limit to the number of logical qubits (2D code
layers) that we can fit into the same pipeline (stack). When
the number of logical qubits exceeds the capacity of a sin-
gle stack we employ multiple stacks forming an array, as
we now discuss.

For a conventional 2D architecture, we might partition
the device into multiple zones, or patches, each of which
can store a separate logical qubit. In our looped-pipeline
architecture, we may also employ patches whose lateral
dimensions are sufficient to represent one logical qubit;
however those dimensions are measured now in terms of
a certain number of complete loops. Therefore, in each
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TABLE I. Number of code cycles needed for different logical operations. The correspondence is not exact due to reasons including
the following: (1) we assume that d code cycles are needed for fault-tolerant syndrome extraction, which might change with, e.g., the
measurement error rate; (2) we assume transversal operations have low enough noise such that the usual frequency of code cycles for
memories is enough for correcting their errors. However, this table gives us a good order-of-magnitude estimate for the operational

speed of a given scheme.

H S CNOT |T) Init. |0)/|+) Init. X /Z Meas.
Surface code  3d [46,47]* d [46,48]° 2d [46] (lattice surgery) or 0 (transversal) 6 [44] 0[47]° 0
Color code 0 0

23d code cycles are needed for rotating a surface code in place (with the help of ancilla patches).

bCode distance is halved during the gate.

“We need O(d) code cycles for projecting the incoming state into the code space. However, this can be done simultaneously with all
the other operations after initialization. Hence, as long as there are O(d) code cycles between the qubit initialization and measurement,
the initialization time cost can be taken to be 0, otherwise we need to take it to be O(d).

patch we can in fact store a stack of k logical qubits
(layers), where k is also the number of physical qubits
within each loop. Denoting by 4 the number of distinct
patches, each now seen as supporting a stack, we have
kA logical qubits in total. Assuming that & is fixed for a
given hardware technology and application, then we scale
the device by increasing 4, i.e., adding to the number of
hardware patches—this is the spatial overhead of a given
architecture.

Within the same stack, fast transversal CNOTs between
logical qubits are available, while in between different
stacks, logical CNOTs need to be carried out through, e.g.,
lattice surgery. Within the same stack, swapping logical
qubits can be carried out by transversally swapping the
positions of the corresponding qubits in each loop, and thus
can be implemented using only shuttling operations, which
are likely to be much faster than other steps in the pipeline.
Such fast and reliable swap operations within the stack,
along with the constant height of the stack, mean that we
effectively have all-to-all connectivity within the stack. On
the other hand, the connectivity between logical qubits in
different stacks is dependent on the layout of the data and
ancilla patches. If we have a chequerboard pattern of data
and ancilla patches, then we just have 2D nearest-neighbor
connectivity between data stacks via lattice surgery.

The simple solution mentioned above can be improved
at the cost of using some of our resource as ancillas. A
suitable layout is shown in Fig. 16 where we have 3 ancilla
patches per data patch; we then ensure direct connectiv-
ity between any two data stacks via lattice surgery. This
can be achieved by using the ancilla space (white regions
of Fig. 16) around the two data stacks to create a Bell
pair through which the long-range CNOT can be performed
[49,50]. Such a layout can, of course, be used without
pipelining—i.e., using single-layer data patches instead of
stacks—but then there is a limitation to the parallelizabil-
ity of the lattice-surgery CNOT gates since the connecting
ancilla patches cannot cross each other [50], see Fig. 17(a).
By adopting pipelining, lattice surgeries can be carried out
in parallel in different layers of the stacks, and thus having

k layers in each stack will increase the parallelizability of
the CNOT gates by & fold (on top of enabling transversal
CNOTs within each stack). A loose analogy is the use of
flyovers to permit highways to cross one another without
intersecting.

While the advantages of introducing additional ancilla
space are attractive, we stress that this is not essential
for the pipelining paradigm: pipelining & layers in each
stack immediately leads to a k-fold reduction in the spatial
overhead compared to the other shuttling-based architec-
tures. Indeed, the improved logical qubit connectivity in
the pipelining architecture also means that a chequerboard
arrangement of the data and ancilla stacks could be suffi-
cient, which can lead to a further 2 times reduction in the
spatial overhead compared to the arrangement in Fig. 16.

The impact of the pipelining paradigm on execution
speed depends on the configuration details, but two limits

Hardware patches for storing

g ) Interstack logical operation
(stacks of) data logical qubifs

via lattice surgery

Hardware patches for storing
its

Intr k logical ration
(stacks of) ancilla logical qu trastack logical operatio

via transversal operations

Stacks of logical data qubits

FIG. 16. A possible layout for storing logical information in
multiple stacks. Here each square is an array of loops that can
store a stack of logical qubits. The ancilla logical qubits (stacks)
do not need to be always present and thus are not explicitly
shown here.
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(a) (b)

D:] Data patch

|:| Ancilla patch

Ancilla connection for
implementing cnot

FIG. 17. Illustration of how CNOTs can fail to be parallelized
when using lattice surgery (a), when using a simple 2D architec-
ture. Here we are trying to perform CNOTs using lattice surgery
between the two blue qubits and the two purple qubits. They can-
not be carried out in parallel because they both need to make use
of the center ancilla patch. In (b), we see this is possible with the
virtual stack.

are trivial: in the extreme case in which the circuit consists
of only intrastack CNOTs, we can achieve O(d) reduction
in the time overhead by using transversal CNOTSs instead of
lattice surgery. On the other hand, for circuits consisting of
only interstack CNOTs, pipelining enables the paralleliza-
tion of CNOTs in k different layers, which can potentially
reduce the CNOT depth by k times, achieving a k times
reduction in the time overhead.

Beyond these simple observations, it is apparent that
savings are possible by tailoring the specific circuit we
want to implement towards the pipelining architecture. In
the following section, we look at one of the most impor-
tant subroutines for fault-tolerant computation: magic state
distillation. For a given well-studied approach, we explore
the exact space-time overhead saving achievable through
pipelining.

IV. APPLICATION TO MAGIC STATE
DISTILLATION

For full fault-tolerant quantum computation we need to
perform logical gates beyond Clifford gates. One such non-
Clifford gate, suitable for completing the universal set of
operations, is the T gate, which is a 7 /4 rotation around
the Z axis in the Bloch sphere: T = e /3%, It can be
implemented using Clifford gates and a supply of T states:
|T) = T |+) through gate teleportation shown in Fig. 18.

The circuit in Fig. 18 is a logical circuit consisting of
only logical Clifford gates. Hence, provided we can imple-
ment all the Clifford gates fault tolerantly, the problem of
implementing fault-tolerant 7' gates becomes the problem
of fault-tolerant preparation of logical |T). This is usually
done through magic state distillation, which is a process

FIG. 18. Gate teleportation circuit for implementing T gate.
The S gate (S = e 7*/4?) is only applied when we obtain the 1
outcome from the Z measurement. If we change the correction to
applying an ST gate when we obtain the 0 outcome from the Z
measurement, we would be implementing 77 |1/) instead.

that consumes multiple noisy logical |T) and outputs fewer
logical |T) of higher fidelity using logical Clifford opera-
tions and postselection. The standard distillation protocol
consists of the concatenation of two QEC codes. One
is the base code that we use to ensure the fault-tolerant
implementation of Clifford gates, e.g., surface codes and
color codes as we described above. The other one is the
distillation code, which has transversal T gates.

One of the most widely studied distillation codes is
the 15-qubit Reed-Muller code [52], which is the smallest
3D color code. Each execution of the distillation protocol
using this code will consume 15 noisy |7) and output a sin-
gle | T) with higher fidelity if all checks are passed, thus it is
called a 15-to-1 distillation scheme. There are two different
implementations of the distillation scheme, one requires
more qubits and a shallower circuit as shown in Fig. 19
[34], while the other requires fewer qubits and a deeper
circuit as shown in Fig. 20 [51].

A. The space-time overhead for different pipelining
schemes

To implement the 15-to-1 distillation scheme for color
codes and surface codes, there are many different possible
schemes, which include instances on the different extremes
of the pipelining spectrum. As mentioned before, pipelin-
ing 2D codes can be essentially viewed as putting the
2D codes into stacks. Different pipelining schemes simply
means a different number of logical qubits (layers) in each
stack. Here we focus on three different pipelining schemes
tailored to the 15-to-1 distillation scheme.

1. One layer (no pipelining)

This means only k£ = 1 logical qubit in each stack (and
thus 1 qubit in each loop). We carry out the distillation
process using lattice surgeries, and thus the CNOTs require
O(d) code cycles (so constituting one of the time bottle-
necks). In this case, it is natural to use the circuit in Fig. 19,
which requires fewer rounds of CNOTs than Fig. 20. To
implement the distillation circuit in Fig. 19, we need to
store 31 logical qubits in 31 separate regions; for each of
which we use the term “stack” although this is the trivial
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FIG. 19. Circuit to perform 15-to-1 magic state distillation
from Ref. [34]. It starts with preparing the logical state of the dis-
tillation code |0), then we prepare a Bell state between this log-
ical qubit and the ancilla qubit o< [00) + [11) = |++) + |=—).
After that we implement the transversal 7 gates by consuming
noisy |T) using the circuit in Fig. 18. Note this requires an addi-
tional qubit at each location marked 7" in the figure, 15 in total,
implying 31 qubits to execute the circuit. All qubits above are
encoded in the base code (none are simply “physical” qubits). At
the end, we perform local X measurements to obtain the X stabi-
lizer checks and logical X measurement of the distillation code.
Any circuit runs with failed X stabilizer checks are discarded.

k = 1-layer limit. The resources needed for the ancilla log-
ical qubits for implementing lattice surgeries will be of a
similar order. Hence, in total we need 4 ~ 50 “stacks.”

2. Ten layers

We put all the logical data qubits into one single stack
(4 =1). In this way, all the CNOTs can be implemented
transversally, and thus the circuit depth due to CNOT will
not contribute much to the time cost. On the other hand,
there is also a limit on the number of qubits we can fit in
each stack following Eq. (4). Hence, it is natural to use the
circuit in Fig. 20, which requires fewer qubits than Fig. 19.
We need 5 qubits for the distillation code and 5 qubits for
storing the noisy T states, thus accounting for a total of
k = 10 logical qubits (layers) in the stack.

3. Five layers

We put the qubits for the noisy 7 states in one stack and
the qubits for the distillation code in another. Using the cir-
cuit in Fig. 20, we have £ = 5 logical qubits in each stack.
We also need another ancilla stack for the lattice surgeries
between the two data stacks. Hence, in total we need three
stacks of logical qubits (4 = 3).

By stepping through the distillation circuits in Figs. 19
and 20 and following the time costs of the different logical
gates in Table I, we can derive the number of code cycles
D required for the magic state distillation circuit for the
different pipelining schemes. We specify the details in Sec.
C, and summarize the results here in Table II. There we can
see a decrease of D as we increase £ due to the increased
availability of transversal CNOTs. The code cycle time of

the k-layer pipelining scheme is denoted as Tg;)cle, which
can be multiplied with the corresponding D to obtain the
full time overhead of the given pipelining scheme. Com-

bining with the space overheads (4) discussed above, we
can obtain the total space-time overhead (ADT(k) ) for dif-

ferent pipelining schemes for implementing crygl;gic state
distillation as summarized in Table II. There we see that
if all code-cycle times are similar Tf:;lle -~ Tﬁi)cle ~ Té;gl)e,
which is achievable for silicon platforms as we discuss
in Sec. V, then we can achieve substantial reductions in
space-time overhead: by 1 order of magnitude for the

S-layer stack and by 2 orders for the 10-layer approach.

) ———— 1l il Al (+
+) il il il (+
-+ il il il (+]
+) il il il (+
+) i 1] ] I7)

FIG. 20. Circuit to perform 15-to-1 magic state distillation with fewer qubits but a deeper circuit from Ref. [51]. In this case, the
15 noisy |7) are not consumed in parallel, but in three rounds. In other words, we need only to consume 5 |7) at one time. Thus we
can use five qubits for the distillation code and five qubits for generating the noisy |7). For the measurement at the end, we are only
postselecting the circuit runs that measure |+) for the first four qubits. The circuit here can be further optimized by removing some of
the CNOT gates at the end that acts trivially on the postselected states of the first four qubits |+)®4, and by recompiling the CNOT gates
in between different rounds of T gates. Note that all qubits above are encoded in the base code.
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TABLE II.
is the code-cycle time for the k-layer scheme for the given code.

Summary of the space-time overhead of the various pipelining schemes for the magic state distillation circuit. Here 7™

cycle

k: no. layers (no. qubits per loop)

A: no. stacks (no. loop arrays)

D: no. code cycles Space-time overhead

1 50
5 3
10 1

12d 600dT}).
5)

6d 18473,
d dril%

cycle

(a) Color codes

k: no. layers (no. qubits per loop)

A: no. stacks (no. loop arrays)

D: no. code cycles Space-time overhead

1 50
5 3
10 1

13d 650dTh,,
9d 27dT5),,
3d 3d7(?)

cycle

(b) Surface codes

B. Implication for surface-code fault-tolerant
computation

In Sec. D, we provide an analysis of the space-time
saving achievable beyond just the magic state distillation
stage. As discussed there, since magic state distillation
is often the bottleneck of fault-tolerant computation [46,
47,53], the factor of time savings achieved by the magic
state distillation circuit in Table II can be largely translated
into the same time-saving factor for the overall fault-
tolerant computation (barring some subtleties related to
multiround magic state distillation). The space-saving fac-
tor is at least £ when we fit k£ qubits into each loop (k layers
in each stack), and can be more if we optimize the circuit
implemented to take advantage of the increased connec-
tivity and faster CNOTs in the pipelining architecture, as
we have done for the magic state distillation circuit. The
final space-time saving achieved is of course highly depen-
dent on the circuit we try to run and the implementation
details. Nevertheless, our estimates in Sec. D suggest that
we should expect to achieve 1-to-2 orders of magnitude
space-time saving for the entire fault-tolerant computation
process using pipelining, just as we achieve for magic state
distillation specifically.

V. PIPELINING SURFACE CODES USING
SEMICONDUCTOR SPIN QUBITS

A. Implementation of a code cycle

As discussed in Sec. III B, in a surface-code cycle we
want to perform one round of X checks and Z checks using
the parity-check circuits in Fig. 11. There are a number of
specific implementation choices that are possible in a plat-
form where qubits are embodied by semiconductor spins.
In this section we summarize one natural set of choices,
so that threshold calculations can be presented in the next
section. Needless to say, multiple other options exist and
we refer the reader to reviews such as Ref. [54]

1. Ancilla initialization and measurements in X basis.

One of the spins in a singlet and triplet pair is used as the
effective ancilla qubit to flow around the loop and interact
with the data qubits, while the other spin is stored at the
initialization and readout node to act as the reference qubit
for readout [36,55]. The singlet and triplet pair can be read
out using Pauli spin blockade, which can achieve a mea-
surement time of Tyeas & 1 s [S6-58]. This is a projective
nondestructive measurement that allows us to use the mea-
sured ancilla qubits directly in the next code cycle without
initialization, thus we have 7,,;; = 0. We note that the field
is evolving rapidly and faster measurement time may well
be possible without compromising fidelity. However, it is
instructive to take the time 1us and see the consequences.

2. Single-qubit gate.

We can implement single-qubit gates using electric
dipole spin resonance (EDSR), which can achieve a
Hadamard (/2 Y rotations) gate time of 7y & 25 ns [59]
and similarly for 77/2 Z rotations. We presently discuss a
variant employing ESR.

3. Two-qubit gates.

A number of high-fidelity two-qubit gates have now
been experimentally demonstrated through controlling the
exchange interaction [60—62]. The specific physical opera-
tion may be «/SWAP or a controlled-rotation, but generally
we can assume that it is possible to implement (directly
or as a composite) a CZ gate [63] with a gate time of
Tez ~ 100 ns.

4. Shuttling.

In addition to the standard gate set above for the parity
check circuit, we also need to include the shuttling oper-
ation in order to implement the pipelining architecture.
In semiconductor spin qubits, each step of shuttling can
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be carried out by tipping the electrical potential of an
occupied quantum dot to transfer the spin into an adja-
cent quantum dot adiabatically. Various modes such as
“bucket brigade” [64] and “conveyor” [65] have been
explored, and high fidelity shuttling steps on the timescale
of nanoseconds is expected to be possible [12,66—69] with
the corresponding shuttling speed being tens of ms~!.
Hence, the shuttling step will not be the rate-limiting step
in the pipeline. In Ref. [11], it is estimated that a qubit sep-
aration of ~ 10 wm is needed for the local integration of
various classical control electronics for the implementation
of surface code. Such a qubit separation would correspond
to a loop with an edge length of approximately 7 um in
the pipelined surface-code architecture in Fig. 12. Assum-
ing a shuttling speed of approximately 25 m s~!, the time
required for shuttling through one round of the loop is then
Toh ~ 1 s,

In this case, the rate-limiting step is the measurement
with a processing time of

Tmax = Tmeas ™~ 1 ILS.

Using Egs. (7) and (8), the time needed to implement the
parity-check circuits for one code cycle for the data and
ancilla pipelines are

79 — 374 4+ 870, + 27,4 = 3.85 s,

cire

(11

T = 19y + 4Tz + Timeas = 2.4 LS. (12)

circ
In this scenario the data pipeline is the rate-limiting
pipeline, which determines the code-cycle time:

Teyele = max (T34 790°) — 3.85 pis.
We also need to know the maximum number of qubits we
can fit into the pipeline without qubit collision. Follow-
ing Eq. (10), we have Kjyp ~ 2, i.e., we can only fit two
qubits in each loop, which is not enough for implementing
any of the pipelining magic state distillation schemes dis-
cussed in Sec. IV. The most straightforward way to solve
this is by adding more measurement devices as discussed
in Sec. IIB. If we equip each loop with four measure-
ment devices such that the rate-limiting step time is now
Tmax = Tmeas/4 = 0.25 ws, we are able to fit in five qubits
in each loop following Eq. (10), which is enough for car-
rying out the five-layer magic state distillation scheme
in Sec. IV. Note that the code-cycle time 7y remains
unchanged this way.

However, there is a much more efficient scheme to fit
in more qubits as discussed in Sec. E. There we deviate
from the steady-flow scheme and reduce the pipelining
qubit time gap below Tyax = Tmeas- NO measurement steps
occur in the data pipeline, thus this has no effect on the
data pipeline. On the other hand, we need to add buffer-
ing to the ancilla pipeline since it contains measurement

steps. If we add enough measurement devices such that the
data pipeline remains the rate-limiting pipeline, the code-
cycle time Teyele remains unchanged. In this way, we can
fit 5 qubits using only two measurement devices in each
loop. Hence, we need only two measurement devices per
loop for carrying out the five-layer magic state distillation
scheme, instead of five measurement devices mentioned
above. With three measurement devices in each loop, we
can fit up to ten qubits, which enables us to carry out the
superior ten-layer distillation scheme.

Using the reduced time gap, if we do not add any mea-
surement devices, then the more qubits we fit in, the more
buffering we need to add to the ancilla pipeline, which
may then become the rate-limiting pipeline and lead to an
increase in Tcycle. As discussed in Sec. E, for our parame-
ter regime, it is more efficient to add buffering into the data
pipeline instead, which will increase the minimum cycling
period T{‘;g‘ and thus increase the number of qubits we can
fit in using Eq. (4). As shown in Sec. E, to implement
the five-layer (kK = 5) and ten-layer (k = 10) distillation
schemes without adding measurement devices, we need
a code-cycle time of Tcyce = 6 ps and Teyee = 10.5 ps,
respectively.

As mentioned before, the space-time overhead is simply
the product of the number of loop arrays required (4), the
number of code cycles required (D,) and the code-cycle
time (7¢ycle). The space-time overhead savings achieved
by applying pipelining to the magic state distillation cir-
cuit in a semiconductor spin-qubit platform is summarized
in Table III. There we see that without adding any mea-
surement devices, the best we can achieve is an 100 times
reduction in the space-time overhead using the ten-layer
distillation scheme. If we add two more measurement
devices per loop, we can achieve a 200 times reduction
in the space-time overhead using the ten-layer distilla-
tion scheme. The five-layer scheme does not offer any
advantages over the ten-layer scheme in the cases that we
consider. The detailed space-time savings expected for the
whole computation are discussed in Sec. D for the cases in
which additional measurement devices are added, as nec-
essary, such that the code-cycle time stays the same (the
implications of using a single measuring device are also
noted).

As mentioned above, we consider the case that the
single-qubit gates are carried out via EDSR; this can
necessitate the use of gate devices involving micromag-
nets placed close to the quantum dots. If such devices are
placed on the shuttling loop, then our qubits may undergo
unwanted rotations every time they pass these structures.
To the extent that such rotations are deterministic, it may
be possible to account for them within the algorithm we
are implementing. We might also tackle such an issue at
the architectural level by having these single-qubit gate
devices branching off the shuttling loop (similar to the
readout devices in earlier figures), so that the qubits do not
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TABLE III.

Summary of the space-time saving brought by pipelining for the surface code magic state distillation circuit implemented

in the semiconductor spin-qubit platform. The time overhead is simply DTy and the factor of time saving is calculated using the
no-pipeline (k = 1) scheme as the baseline. Similarly, the space-time overhead is ADTy. and the factor of space-time saving is

calculated using the no-pipeline (k = 1) scheme as the baseline.

No. of No. of meas.
qubits per No. ofloop  No. of code devices per Pipelined time  Code cycle time:  Time saving Space-time
loop: k& arrays: A4 cycles: D loop: m gap: Tgap (I1S) Teyele (108) factor saving factor
1 50 13d 1 1 3.85 1 1
5 3 9d 1 0.4 4.8 1.2 19

2 0.28 3.85 1.4 24
10 1 3d 1 0.32 8.55 2 100

0.125 3.85 43 200

go near these gate devices unless we want to apply gates
on them. Since we expect the speed of the shuttling step to
be relatively fast compared to the other operations in the
pipeline, taking this detour need not have much effect on
the arguments we make above.

As an alternative to the EDSR route, a platform might
employ electron-spin resonance (ESR) to implement the
single-qubit gates instead. As shown in Sec. F, using ESR
means a slower code cycle without pipelining Tf:;)cle =
5.9 ws. However, an advantage to the slower code cycle
is that we can actually fit more qubits into the pipeline
without adding buffering and measurement devices. With
the exact same hardware (without adding any measure-
ment devices), we can carry out the ten-layer distillation
scheme with a code cycle of 9.15 ws, achieving a 140
times reduction in the space-time overhead compared to
the unpipelined scheme.

B. Threshold calculations

In order to carry out parity checks for quantum error-
correction codes like the surface code, we need to use
circuits like those in Fig. 11 with the understanding that all
components are at some level faulty. There exists a thresh-
old for the error rate of these faulty physical components,
below which the logical error rate of the code can be sup-
pressed to any desired level by suitably scaling up the
code. Hence, this error threshold implies a target com-
ponent fidelity that experimentalists aim to surpass in
order to scale up their system through error correction.
The error threshold is different for different codes and
is highly dependent on the exact implementation of the
stabilizer check process. For the surface code with compo-
nents suffering depolarizing noise, various stabilizer check
implementations have been studied and typically yield an
error threshold of 0.5% to 1% [70].

In this section, we perform an error-threshold simula-
tion for the implementation of surface-code pipelines using
the semiconductor spin qubits as outlined in Sec. V A. The
noise model we use for the standard gate components are
as follows:

(a) Measurement, initialization, and CZ gates experi-
ence fully depolarizing noise with probability p.

(b) Single-qubit gates experience completely depolariz-
ing noise with probability p /10.

This is consistent with some of the most widely used noise
models for the standard gate set, so that our result can
be compared to threshold results in other studies. On top
of these standard gate noise sources, we also consider the
noise due to the shuttling process itself, and the noise due
to placing multiple qubits in the same loop.

1. Shuttling dephasing

A leading source of errors for shuttling semiconduc-
tor spin qubits is phase rotation due to inhomogeneity of
effective g factors across different quantum dots in the
loop [10,66,69]. We can think of it as some determinis-
tic phase rotation on the qubit after one round around the
shuttling loop, which can, in principle, be corrected by
applying a calibrated inverse rotation at the end of each
round. Phase rotations commute with CZ, thus as long as
we correct it after each round so that the phase rotation
on the data qubits does not go through the Hadamard gate
and become bit rotation, ideally the shuttling noise can
be perfectly removed. However, as time goes on, some
shuttling loops may go out of calibration and there will
be some remnant phase rotation after each round. If we
twirl this remnant noise by conjugating the circuit with
random Pauli gates [71], the noise will effectively become
pure dephasing noise on the qubits with the error proba-
bility pg, in each code cycle [10]. One must note, however,
that the additional single-qubit Pauli gates used for twirling
will also introduce single-qubit depolarizing noise with the
probability p /10.

2. Shuttling leakage.

In silicon spin qubits, the mixture of two valley orbitals
(equivalent minima) in the bulk silicon conduction band
gives rise to the ground orbital that our spin qubit lives
in and an excited orbital. The amount of mixing between
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the two valley orbitals and the resultant energy separa-
tion (valley splitting) between the ground orbital and the
excited orbital is influenced by the heterointerface at the
quantum dot. Due to variations of these heterointerfaces
from one quantum dot to another, we see variations in
the ground orbital mixture from one dot to another. Such
a variation means that as we shuttle the spin qubit from
one dot to another, the spin qubit may interact with the
excited orbitals in the two dots, resulting in a state that has
qubit information “leaked” into the excited orbital. Such
a leaked component is analogous to a spin qubit with a
miscalibrated detuning, thus its interaction with the other
qubits will also be erroneous [72]. The leakage rate pje,i 1S
highly dependent on the system’s structure, and this is the
free parameter we sweep in our modeling. A second key
parameter is the intervalley relaxation time, i.e., the typical
duration for which a leaked state persists before relaxing
back; we would wish this to be fast. This relaxation time
can go below 100 ns [69] and even reach 10 ns [73,74],
which is much smaller than the code-cycle time we con-
sider (s scale). Hence, we expect the leaked qubits can
be restored back into the computational subspace within
each code cycle. In Ref. [69] the authors argue that valley
excitation and relaxation during shuttling will effectively
lead to dephasing noise. Here we will make the pessimistic
assumption of an even more damaging model for the shut-
tling leakage errors: all qubits will leak with the probability
Pleak at the start of each code cycle, and if leakage happens,
the leaked qubit completely depolarizes all qubits that it
interacts with and will become completely depolarized
itself at the end of the code cycle.

3. Unwanted intraloop interaction.

Another possible noise source is the undesired long-
range dipole-dipole interaction among qubits in the same
loop. The strength of the dipole-dipole interaction is given
by J = wog2ps/4wr with p, g., s, and r being the vac-
uum permeability, electron g factor, Bohr magneton, and
the distance between the spins, respectively. As discussed
in the last section, a reasonable assumption for the length
of one edge of the loop is 10 wm. Even if we have approx-
imately 100 qubits in the loop, it would mean a qubit
spacing of » ~ 0.1 wm, translating into J ~ 100 Hz. Such
a noise strength is negligible compared to the other energy
scales (on the order of MHz to GHz) in the scenario.

The error locations in the X parity check circuit is
summarised in Fig. 21, similarly for the Z checks.

The error threshold we obtain for purely standard gate
noise (without any of the shuttling noise) is 0.74%, which
agrees with previous well-known results [23]. Now sup-
pose we manage to achieve a gate error rate of p =
0.5%, which is below threshold and has been demon-
strated in state-of-the-art experiments [61,62]. Then the
level of shuttling dephasing noise we can tolerate is found

- _
Data - = : . _
qubits O ! : | -
S e e e —
Ancilla: [+)— - -0 —e— o e l, @

: Shuttling error that leaks with pjeac and dephases with pgy

: Initialisation or measurement error that depolarizes with p
-- : CZ error that depolarizes with p

: Twirling gate error that depolarizes with p/10

: Hadamard gate error that depolarizes with p/10

FIG. 21. Diagram showing the different error locations in the
X -check circuits in our error model.

from the threshold plot in Fig. 22(a), namely pg, = 0.36%.
As mentioned, the shuttling dephasing noise is due to
equipment drifting out of calibration and thus should be
at a much lower level than the gate noise. Hence, the
shuttling dephasing noise should not pose a problem for
our implementation. This is consistent with the result in
Ref. [10].

Holding the gate error rate at p = 0.5%, now let us
shift our focus to the leakage noise. In the threshold plot
in Fig. 22(b), we obtain a leakage threshold of pie.x =
0.04% in the presence of gate noise. Reference [69] has
argued that such a shuttling error rate is achievable when
shuttling across tens of pm at a speed of tens of ms™!,
which is exactly the physical setting that we are con-
sidering in Sec. V A. Note that the achievable error rate
given in Ref. [69] includes shuttling dephasing error, thus
our achievable leakage error rate will be even lower. The
leakage error model in Ref. [69] is also less damaging than
the error model we assume, hence our figures provide a
pessimistic lower bound of the threshold for the model in
Ref. [69].

If we can further suppress our gate noise below p =
0.5%, we can further improve our tolerance against the
dephasing noise and leakage noise due to shuttling. In
the extreme of zero gate noise (p = 0), we can toler-
ate a level of dephasing noise pg, = 1.75% and a level
of leakage noise pieax = 0.20%. Overall, we see that the
dephasing noise in shuttling is less damaging than standard
gate noise, while the leakage noise, even assuming a very
damaging noise model, is just 1 order of magnitude more
damaging than the standard gate noise. Hence, they should
not impose any fundamental limitation on implementing
shuttling-based architectures in semiconductor spin qubits.
It would be interesting to perform a similar analysis for
trapped-ion shuttling, for example using the error model
presented in Refs. [19,21].

A further noise mechanism worth considering is the
Rashba spin-orbit interaction due to the shuttling of the
spin qubits. This leads to coherent rotations of the qubits
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FIG. 22. Threshold plots for the dephasing errors (ps,), leakage errors (pieak), and the Rashba error (pr,sn) due to shuttling when
implementing surface codes in semiconductor spin qubit using shuttling-based architectures. Note that in order to investigate the
tolerance of the surface code against a given specific type of shuttling noise, the other types shuttling noise are turned off in our
simulation. Each noise type is evaluated both for a gate error rate p of zero, and for p = 0.5%.

as they go around the loop, which can be characterized
and corrected analogously to the shuttling dephasing [75].
We can again use twirling to decohere any uncompensated
residual noise; in this case however it will give rise to
stochastic Pauli X and Y noise. For simplicity, we assume
X and Y errors occur with the same probability prasn/2
each time we shuttle the qubit around the whole loop. In
the context of performing X stabilizer check, we label the
error locations of the Rashba errors in Fig. 23, with the
error strength in each location adjusted according to the
corresponding shuttling length in that section of the cir-
cuit. Note that there we show only the shuttling errors due
to Rashba interaction. The corresponding thresholds for
the shuttling error due to Rashba interaction are shown in
Fig. 22 where the threshold is p,sn = 0.1% with gate noise
being p = 0.5%, and psn = 0.46% in the absence of gate
noise p = 0%. These thresholds are lower than those for
shuttling dephasing noise because we are using CZ gates

in our parity-check circuit as shown in Fig. 23 along which
X and Y errors can propagate but Z noise cannot. A higher
threshold can be obtained if we are using CNOT gates in the
parity-check circuits instead. The thresholds given above
effectively determine the required accuracy for the coher-
ent correction we need to perform. They are of the similar
order as the shuttling dephasing noise we study above and
should not present any fundamental roadblocks for our
implementations.

Before concluding this section, it is worth pointing out
that instead of using single electron spins as our qubits,
it is also possible to use singlet-triplet qubits [76] or
exchange-only qubits [77] in our pipelining architectures.
An advantage is that faster single-qubit gates could then
be available. Furthermore, if we are transporting all the
constituent spins together, some of the shuttling noise we
mention above may have trivial effects since these qubits
live in decoherence-free subspaces [78]. However, there
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m : Shuttling error due to Rashba interaction for which
X and Y errors each occurs with np,.sn/16 probability

: Initialisation or measurement error that depolarizes with p
-- : CZ error that depolarizes with p

: Twirling gate error that depolarizes with p/10

: Hadamard gate error that depolarizes with p/10

FIG. 23. Diagram showing the different error locations in the
X -check circuits with the shuttling errors coming from Rashba
interaction.

are additional challenges in shuttling and additional noise
mechanisms involved like leakage from the qubit sub-
space. Hence, the performance and trade-offs for such
qubit encodings in the pipelining architecture can be an
interesting future direction to explore.

VI. APPLICATION TO QUANTUM ERROR
MITIGATION

Besides quantum error correction, pipelining can also
find an application in recently proposed purification-based
quantum error mitigation using multiple copies of the
noisy state, which is called error suppression by derange-
ment [6] or virtual distillation [7]. In these methods, the
ideal state we want to prepare is some pure state py, but
due to the noise in the circuit, we have the noisy state p
instead. If the dominant eigenvector of p is pg, then we
can construct a M™-degree purified state

M
v _ P

Pour = p(piy”

which has removed up to the (M — 1)"-order errors in the
noisy state, i.e., the errors in the state is exponentially sup-
pressed with the increase of the degree of purification M.
If the dominant eigenvector of p is not pg, the error sup-
pression still works well as long as it is not too far from py,
but now there is an upper bound on the amount of noise it
can remove in the name of noise floor [7] or coherent mis-
match [6]. In some practical cases, such coherent mismatch
is shown to be small [79].

Now in practice, instead of trying to obtain the ideal
state, we are often interested in the expectation value of
some observable O on the ideal state py: Tr(Opy). Then

instead of trying to construct the purified state p{y7), we

can construct the “purified” expectation value Tr(Op{i0):
Tr(0p™)

Tr(Op\M)) = ————. 13

1(Oppy) Tr(o™) (13)

Hence, all we need do is to estimate Tr(Op™) for some
observable O, and obtain Tr(p") using the same method
but with O = 1. Then Tr(Op{;y’) is obtain by dividing
Tr(0p™) by Tr(p™).

As shown in Refs. [6,7], Tr(Op™) can be rewritten as

Tr(0p") = Tr(0V Cy p®V), (14)

where p®M denotes M copies of the noisy state p, Cy is
the cyclic permutation operators among these M copies,
and O means the operator O is only applied to the first
copy. Hence, the target expectation value Tr(Op™) can be
obtained by preparing M copies of the same noisy state
p®M and measuring the product of the observable OV and
the copy-cyclic-permutation operator Cy;.

Without loss of generality, we can assume O to be Pauli
since any observable of interest can be decomposed into a
linear sum of Pauli operators. Hence, O can be written as a
tensor product of single-qubit Pauli operators {G;} acting
on the different qubits in the first copy:

N

o =G

i=1

Here N is the number of qubits in each copy of p, and i is
the labeling of these qubits. We can measure OV simply
by measuring G; on the i qubit of the first copy.

On the other hand, the M -copy cyclic permutation oper-
ator Cy; is equivalent to applying the M-qubit cyclic-
permutation operator Cy, transversally to the correspond-
ing physical qubits in each of the copies:

T =2V,

Hence, the observable OV C), can be decomposed into the
following tensor product:

N
0y = QG Cr,

i=1

which can be measured transversally.

Consider using a conventional 2D nearest-neighbor
qubit architecture, in which different copies are stored
in different 2D qubit arrays (for example, adjacent large
regions of entire complete system’s array). If we want to
measure a multicopy transversal operator like OV Cy;, w
need to interlace the qubit arrays corresponding to dif-
ferent copies using a number of swaps gates that are
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FIG. 24. Measurement circuit in each loop for purification-
based QEM.

proportional to the size of the qubit array. This would
be extremely costly—indeed it is for an analogous rea-
son that in 2D topological code, it is conventionally more
efficient to employ lattice surgery rather than transversal
CNOTs. Instead we would ideally use the looped-pipelining
architecture proposed in the present paper, with all the
M-qubit arrays in the same loop array (i.e., M qubits in
each loop structure). Then the transversal measurement of
the M-copy operator OV’ C), can simply be carried out by
measuring the M-qubit operator Gfl)CM in the i™ loop.

To be more specific, the full process of implementing
purification-based QEM using the pipelining scheme is
now as follows: using the qubit-array pipeline discussed
in Sec. II C, we can have M qubits in each loop and pro-
cess them in the same way to prepare M noisy copies of
our target quantum states. However, we require one fur-
ther ancilla qubit in each loop, effectively adding another
array of ancilla qubits on top of the M noisy copies. The
i loop contains the i qubit of each copy of p as well as
the i ancilla, for a total of M + 1 qubits. We implement
the circuit in Fig. 24 in each loop. The i ancilla measures
the observable GEI)CM, and the product of the measure-
ment results of all ancilla measures the observable OV Cy,
on the M copies of state p®, giving us the expectation
value in Eq. (14), which we can then use to obtain the
error-mitigated expectation value in Eq. (13).

As discussed before, in many hardware platforms, shut-
tling is an essential component for scaling up. In that
case, if we scale up using a loop array as discussed in
Sec. I1 C, we can pipeline extra qubits at zero spatial over-
head. Moreover, the pipelining time cost is also negligible
if the computation is deep as seen from Eq. (3). Hence,
purification-based QEM can be carried out at almost zero
space-time overhead in the pipelining architecture. In
contrast, conventional architectures need multiple copies
of the same machines and long-range interactions.

Of course, the above arguments assume that the num-
ber of qubit arrays that we pipeline for the error mitigation
is not limited by the qubit collision problem mentioned in
Sec. II B. This is not a serious limitation since in practice,
due to the noise floor and the sampling overhead, it would
be unlikely that one would wish to go beyond fourth-
degree purification [6,7], which can be implemented using
only three qubit arrays consisting of two noisy copies and
one ancilla with the help of state verification [80,81]. For
the main computation, we need only to compute on two
noisy copies, which means two qubits per loop, which
should not pose any significant challenges as we have seen
in the example of pipelining surface codes. At the error-
mitigation stage we need to add in the ancilla qubit to
each loop, but any additional buffering time here can be
expected to be insignificant since the main computation is
presumably much deeper. Note that if we are interested in
only second-degree purification, it can be carried out by
performing transversal measurements on two noisy copies
without using any ancilla [7].

VII. CONCLUSION

Several proposed platforms for scalable quantum com-
puting aim to employ physical shuttling of qubits in order
to optimally space out the components of the technology,
thus making room for classical control systems, permitting
heat dissipation, avoiding crosstalk, and so on. Shuttling
structures are typically implemented or envisaged as /in-
ear “highways” that connect components in a sparse grid.
In this paper, we have examined an alternative realization
where one stores a sparse qubit array in an array of shut-
tling loops. The key merit of this formulation is that in
such a loop-array structure, we can put additional qubits
into each loop, to form a local stream of qubits where each
follows the same trajectory as the first qubit. Thus one
can store and process multiple qubit arrays using the same
architecture without adding any additional hardware.

With k& qubits in each loop, we have increased the
qubit density (reduced the spatial overhead) by a factor
of k compared to the other shuttling-based schemes while
still retaining all of their advantages for scaling up. This
loop array can be viewed as a pipeline for processing a
stack of k-qubit arrays layer by layer, i.e., a qubit-array
pipeline. Furthermore, by allowing interactions between
qubits within the same loop, we can connect between dif-
ferent layers of the stack of qubit arrays. In this way,
we can perform computations on an effectively 3D qubit
lattice using a 2D loop array whose hardware require-
ments are similar to those that are needed in any case
for 2D shuttling-based platform. The height of the resul-
tant 3D qubit lattice is given by the number of qubits in
the loop & and thus cannot be increased indefinitely. We
have shown that significant improvements in both NISQ
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and fault-tolerant applications can be achieved via our
architecture despite this limited height.

Processing multiple topological logical qubits in one
loop array using pipelining will reduce the space overhead
of logical qubits. Furthermore, intraloop qubit interac-
tions enable transversal CNOT among logical qubits, which
can significantly speed up most fault-tolerant applications
since CNOT is usually one of the rate-limiting steps. We
have outlined a possible implementation of the surface
code pipeline for semiconductor spin qubits, and we esti-
mate that one could achieve a reduction by a factor of 100
in the space-time overhead for magic state distillation com-
pared to a generic shuttling-based architecture. Moreover,
a reduction by a factor of 200 in the space-time overhead
can be achieved if we add two more measurement devices
to each loop. Achieving such factors would of course
require that certain bottlenecks are avoided, and we discuss
these caveats. When considering the full process of fault-
tolerant quantum computation, we have estimated that one
to two orders of space-time saving can be achieved by our
architecture depending on the implementation details.

For the case of silicon spin-qubit devices, we have
shown that one can easily fit ten qubits in each loop for
implementing the surface code, which is enough for car-
rying out magic state distillation using only transversal
CNOTs. Furthermore, we perform surface-code threshold
simulations using several models for the noise, which may
be introduced by shuttling. We concluded that the permis-
sible noise levels are well within those that are expected
for spin shuttling.

In the final section of our analysis, we considered the
utility of the looped-pipeline architecture for an application
that is more relevant to NISQ-era devices: certain pow-
erful purification-based quantum error-mitigation methods
that have recently been proposed. These mitigation meth-
ods require two or more entire copies of the computer’s
output, and then these copies need to be interacted qubit by
qubit; this is potentially costly and unwieldy for a canon-
ical 2D grid system. We note that a natural solution is to
arrange that the i™ qubit of each copy of the state are stored
within the i loop of the architecture. In this way, we can
perform the circuit for purification-based QEM at almost
zero space-time overhead compared to the unmitigated
circuit.

There are many other possible applications using the
pipelining architecture beyond what we have studied. For
example, the pipelining architecture is a natural choice
for concatenating other codes on top of a topological
code (indeed the case of magic state distillation, which
we studied is essentially an instance of this). It would be
interesting to see if such code concatenation would bring
advantages in fault-tolerant memory or storage. It might
also be possible to connect the boundaries of the code
patches in the same pipeline to construct a long strip of
folded code that might be robust against biased noise [82].

We focused on an application of the qubit-array pipeline
where qubits form layers of a virtual 3D stack. Here the
majority of gate operations are interloop and remain within
each 2D qubit array. There is a high degree of regular-
ity between different qubit arrays in the pipeline, e.g., the
stabilizer checks for the 2D topological code pipeline and
the noisy copy preparation for the QEM pipeline. Given
this scenario we were able to analyze the qubit move-
ment scheduling and time cost of the whole pipeline by
studying only one of the arrays. However, relaxing these
regularities may be perfectly possible in both electron spin-
qubit devices and ion traps; generalizations would include
performing different operations on distinct qubit arrays in
the same pipeline, having more frequent scheduling of
transversal operations between different qubit arrays, or
varying either the number of qubits in the loops or their
cycling frequency. Given some of these capabilities, a par-
ticularly interesting application that can be explored in the
future is the implementation of 3D codes. Note that one
might need to use just-in-time decoding [83,84] to over-
come the limited height of the 3D lattice in the pipelining
architecture. Going beyond 3D codes, there has been recent
work on implementing more general LDPC codes using
our pipelining architecture [85]. When the end-to-end pro-
cess of fault-tolerant computation for these more general
LDPC codes is fully worked out, it will be interesting
to perform more detailed optimizations and performance
analysis for their pipelining implementations.

Note added in proof—For Eq. (5) (and its derivation),
removing the “4-1” leads to a closer answer to the practical
implementation of the proposed schemes.
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APPENDIX A: SYNCHRONIZING AN ARRAY OF
SHUTTLED QUBITS

Let us again consider a large qubit array stored in a loop
array similar to Fig. 4(a), which can also be viewed as a
qubit-array pipeline processing just one qubit array. The
looped qubit pipelines in the array are engineered to have

020345-22



LOOPED PIPELINES ENABLING EFFECTIVE 3D QUBIT LATTICES. ..

PRX QUANTUM 4, 020345 (2023)

the same cycling period at every round so that they can
work in synchronization, but they are at different phases
to allow the right qubit interactions to happen. The cycling
period of the qubit-array pipeline is determined by the con-
stituent looped qubit pipeline with the longest period, and
other loops will synchronize with this rate-limiting looped
qubit pipeline through buffering. Such a local buffering
(idling) stage is no different from those required for the
gate scheduling in the other 2D architectures.

We can define a global clock cycle that takes the time
of one cycling period, within which all the qubit streams
flow around the loops exactly once, enabling us to imple-
ment single-qubit operations on any qubits and two-qubit
operations between any neighboring qubits for all the
qubit arrays in the pipeline. Through multiple global clock
cycles, we can implement any unitaries we want on the
qubit arrays. Since the qubit streams in the loop array are
flowing in synchronization like an array of meshed cog-
wheels, we can study the time taken for the qubit-array
pipeline by just looking at the time needed for any of its
constituent looped qubit pipelines. The initialization at the
beginning and the measurement at the end for the whole
qubit-array pipeline also have all of its constituent looped
qubit pipelines working in perfect synchronization, thus
the same argument applies. Hence, when we want to per-
form any wunitary circuits on the qubit arrays using such
a shuttling architecture (the qubit-array pipeline), the time
required is directly given by the time needed for any of
its constituent looped qubit pipelines adding the buffering
time needed for synchronizing the cycling period.

Going beyond unitary circuits, we may want to perform
midcircuit nondestructive measurement on some qubits
in the arrays. Suppose we want to perform a midcircuit
measurement on a given qubit pipeline within the array
between the n'" and the n + m™ global clock cycle. The
qubit stream in the corresponding qubit pipeline needs to
break away from the global clock cycle after the n™ round,
flow to the measurement device for the operation and then
flow back to the outer loop to rejoin the n + m™ global
clock cycle. If the measurement operation described here
(including the additional shuttling) takes longer than m —
1 global clock cycles, then the measured qubit pipeline
would become the rate-limiting pipeline, and we need to
add buffering on top of the m — 1 global clock cycles for

the other qubits in the array to synchronize with the mea-
sured qubit. Otherwise, the midcircuit measurement of the
given qubit would not affect the global schedule of the
other qubits in the circuits, and thus it can be carried out
without additional time cost. We can always add more
measurement devices as discussed in Sec. IIB to speed
up the measurement process and avoid the additional time
cost. All the discussion of midcircuit nondestructive mea-
surement above also applies to destructive measurement
plus reinitialization.

APPENDIX B: COLOR-CODE PIPELINE

Similar to the surface-code pipeline in Sec. III B, we
look at the data pipeline and the ancilla pipeline separately.
A possible pipeline is shown in Fig. 25, in which we carry
out the X and Z checks in a strictly sequential manner. The
time required for processing one qubit array is given by

(B
(B2)

Tl — 2tgh + 127, + 21y,

cire

Yf}‘flr(é = 2Teh + 127z + 2Tinit + 2Tmeas-
They are both longer than the corresponding times in the
surface code as expected. The overall code-cycle time
is again determined by the rate-limiting pipeline out of
the data pipeline and the ancilla pipeline and is given by
Eq. (9) with the new Tffrtca and T3¢ for the color code.

The above process can be sped up by doubling the num-
ber of ancilla qubits in the ancilla pipeline, with the first
half of them being the Z-check ancilla qubits and the sec-
ond half of them being the X -check ancilla qubits. That is
to say, when we have k qubits in each data pipeline cor-
responding to k different color-code patches, we have 2k
qubits in each ancilla pipeline. In this way, different oper-
ations of the X and Z checks might be applied at the same
time, e.g., the CZs of the Z checks and initialization of the
X checks, or the measurements of the Z checks and the
CZs of the X checks.

APPENDIX C: TIME OVERHEAD OF PIPELINED
MAGIC STATE DISTILLATION

1. Color codes

Let us first consider the case in which the base code is
a color code. For color codes, the only operation requiring

Ancilla pipeline:

Z Checks X Checks
O (Shuttle + CZ) X 6 o/ Meas. + Init. (Shuttle + OZ) x 6 () Meas. + Init. 7, R
. —U 4 - —% epeat
+ Wait if data is + Wait if data is
rate limiting rate limiting
O (Shuttle + CZ) X 6 H \ (Shuttle + CZ) X 6 H ,\:‘ Repeat

Data pipeline:

+ Wait if ancilla
is rate limiting

FIG. 25.

+ Wait if ancilla
is rate limiting

Pipeline workflow for a code cycle in color code. As illustrated in the diagram, “Wait” needs to be added into the pipeline

for synchronization depending on which pipeline is the rate-limiting pipeline. We do not include the initializations of qubits before all

code cycles and the measurement of all qubits after all code cycles.
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O(d) code cycles are CNOTs via lattice surgeries. Hence,
the time required for a given circuit is largely determined
by the number of rounds of CNOTs via lattice surgeries we
need to implement, with each round costing 2d code cycles
(Table I). In this way, the number of code cycles D we need
for the distillation circuit for different pipelining schemes
are given below.

(a) One layer (no pipelining). We need to perform five
rounds of multitarget CNOTs in Fig. 19 and one addi-
tional round of CNOT for teleporting the T gates.
Hence, we have

D=(G5+1)2d=12d. (C1hH

(b) Five layers. We need to implement three rounds of
CNOTs between the T-state stack and the distillation
stack via lattice surgeries for T-gate teleportation.
All the other CNOTs are implemented transversally.
Hence, we have

D =3x2d=06d, (€2)
i.e., half the time needed without pipelining in
Eq. (C1).

(c) Ten layers. All CNOTs can be implemented transver-
sally and thus no CNOTs via lattice surgeries are
required. However, as mentioned in Table I, the ini-
tialization process requires the whole circuit to last
at least d code cycles. Hence, we have

D=d, (C3)
which is 12 times smaller than the time needed
without pipelining in Eq. (C1).

2. Surface codes

For the surface code, the only difference is that the S gate
for the correction in the 7-gate teleportation also requires
O(d) code cycles. Hence, for each round of T-gate tele-
portation, we need to add d code cycles to the overall time
cost. The number of code cycles D we need for the dis-
tillation circuit for different pipelining schemes are given
below.

(a) One layer (no pipelining). One round of T-gate
teleportation, which means adding d to Eq. (C1) and
thus we have

D= 13d. (C4)

(b) Five layers. Three rounds of 7T-gate teleportation,
which means adding 3d to Eq. (C2). However, note

that in this case we can again view initialization as
instantaneous and thus we have

D =9d,

which is 1.4 times smaller than the time needed
without pipelining in Eq. (C4).

(c) Ten layers. Three rounds of 7 gate teleportation,
which means adding 3d to Eq. (C3) and thus
we have

D =3d,

which is 4.3 times smaller than the time needed
without pipelining in Eq. (C4).

We do not discuss the pipelining time cost in Eq. (6). This
is because magic state distillation is just a subroutine and
not the full circuit while the pipelining time cost is for
implementing the full circuit. As mentioned in Sec. Il A,
when we look at the full circuit, for most of the inter-
esting applications we have relatively deep computations,
such that we can neglect the pipelining time cost. Even if
we focus only on the magic state distillation circuit itself,
the number of qubits we need in each pipeline is at most
k = 10. This is only a fraction of the code distance in prac-
tice (d ~ 30), which is in turn smaller than the number
of code cycles D. Hence, following Eq. (6), the pipelin-
ing time cost is only a fraction of the time needed for one
round of the magic state distillation subroutine and thus
should be negligible compared to the time needed for the
full circuit.

APPENDIX D: SPACE-TIME OVERHEAD OF
PIPELINED SURFACE-CODE FAULT-TOLERANT
COMPUTATION

The full process of fault-tolerant quantum computation
can be viewed as a pipeline in which magic states are
distilled and then consumed. At each time step, we input
Ny magic states into the pipeline, which are distilled into
N; < Ny magic states after the first round of magic state
distillation (MSD) and then further distilled into N, < N,
magic states after the second round. Practical implemen-
tations of surface codes rarely go beyond two rounds of
MSD, thus these N, magic states go straight into the main
computation to be consumed for implementing 7' gates.
Magic states input at different time steps can be processed
concurrently in the first round of MSD, the second round of
MSD and the main computation, and thus these three steps
can form a pipeline for the full fault-tolerant computation.

We analyze the space-time saving achievable by the
first round of MSD and the main computation in Secs. [V
and IITE, respectively. Unlike the first round of MSD in
which the input T states are prepared in place in constant
time (Table I), for the second round of MSD, all 15 of its
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input T states need to coexist with the qubits for the distil-
lation code before we can carry out the distillation circuit.
Hence, when using the pipelining architecture, unless we
can fit 20 logical qubits into one stack, we need to have
multiple data stacks to carry out the second round of MSD.
For the five-layer pipelining scheme, we can still achieve
the same time saving as the first round of MSD, but now
the number of code stacks needed is 4 = 5 (including one
ancilla stack). For the ten-layer pipelining scheme, addi-
tional time is needed for the second round of MSD to move
the input 7 states into the same stack as the distillation code
or we need to carry out CNOTSs between different stacks for
T-gate teleportation. Correspondingly, the number of code
cycles needed becomes D = 7d (slightly less than the five-
layer scheme since the distillation code can be initialized
in the same stack with five of the T states) and the num-
ber of code stacks needed is 4 = 3 (including one ancilla
stack).

The space-time saving brought by different pipelining
schemes at the different steps of the full fault-tolerant com-
putation is summarized in Table IV. There for simplicity
we assume the code-cycle times stay the same as we fit
five and ten qubits into each loop: Tﬁ;)cle = Tg)de = Tﬁ;gfe,
which is achievable in silicon architecture by adding mea-
surement devices as shown in Sec. V A. The speed of the
full computation is determined by the rate-limiting steps in
the whole computation pipeline. In practice, one can only
fit in a limited number of MSD factories due to the signif-
icant space overhead involved, and thus the rate-limiting
step is usually one of the two MSD steps [46,47,53].
Hence, the time-saving factor achievable by pipelining
for the full computation is given by the time-saving fac-
tor achievable by the rate-limiting MSD step, which is a
1.4 times reduction in the time overhead for the five-layer
pipelining scheme. For the ten-layer pipelining scheme, the
factor of achievable time overhead reduction is 4.3 and 1.9
when the rate-limiting step is the first and second rounds of

MSD, respectively. On the other hand, the space overhead
saving for the full computation lies between the saving
achieved by the different steps, and is dependent on the
fraction of the total spaces used for different steps. One
can at least achieve a x time reduction in the spatial over-
head by using the x-layer pipelining scheme, and this space
saving will increase as we increase the fraction of spaces
used for MSD. Hence, the five-layer pipelining scheme can
achieve a 5 to 16 times reduction in the space overhead,
while the ten-layer pipelining scheme can achieve a 10 to
50 times reduction in the space overhead.

At the early stage of fault-tolerant computation, we have
only enough resources for one round of magic state dis-
tillation, or a very limited number of first-round MSD
factories in a two-round MSD process. In such cases, the
rate-limiting step will be the first round of MSD, which
means a 7 to 20 times reduction in the space-time over-
head for the five-layer pipelining scheme, and a 40 to 200
times reduction in the space-time overhead for the ten-
layer pipelining scheme. In the later stage of fault-tolerant
computation, since it is possible to fit in more MSD fac-
tories for the first round, sometimes the second round of
MSD might become the rate-limiting step, which will lead
to the same reduction in the space-time overhead for the
five-layer pipelining scheme, and a 20 to 100 times reduc-
tion in the space-time overhead for the ten-layer pipelining
scheme.

It is worth noting that the analysis above is just a crude
estimate of the overall saving for the full fault-tolerant
computation. It is impossible to get an exact figure for
the space-time saving without knowing the specific hard-
ware constraints and the exact logical circuits that we try
to implement. Another subtlety that we do not mention
above is the stochastic nature of MSD, i.e., inputting Ny
magic states into the pipeline does not guarantee to out-
put N; and N, magic states after the first and second round
of MSD, respectively. The output numbers indicate only

TABLEIV. Summary of the space and time saving of the various pipelining schemes for different steps in surface-code fault-tolerant
computation. Here d is the code distance. We assume the code-cycle time does not change as we fit five and ten qubits into the pipeline,
which can be achieved by having one or two more measurement devices in each loop for silicon platforms as noted in Sec. V A. Without
the additional measurement devices, the savings indicated above will reduce by factors of 1.2 and 2.2 for the five-layer scheme and the

ten-layer scheme, respectively.

Steps in the pipeline Space saving factor

Time saving factor

First round MSD 16.6
Second round MSD 10
Main computation >5

1.4
1.4
intrastack CNOTs: O(d) interstack CNOTs: < 5

(a) 5 qubits per loop.

Steps in the pipeline Space saving factor

Time saving factor

First round MSD 50 43

Second round MSD 16.6 1.9

Main computation > 10 Intrastack cNOTs: O(d) interstack CNOTs: < 10
(b) Ten qubits per loop.
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the expected behavior in each step. Nonetheless, the above
analysis gives a good intuition about the expected saving
achievable via pipelining, at least in the limit of large N.

If we are allowed to shuttle qubits across different loops
using, e.g., the Y junctions shown in Fig. 9 that connect dif-
ferent loops, then it is possible to move logical qubits from
one stack to another using shuttling to enable intrastack
transversal CNOTs rather than performing interstack lattice
surgery CNOTSs. The time needed for such shuttling of log-
ical qubits from one stack to another will still scale with
the code distance d. However, since shuttling is usually
much faster than the other operations, such movement of
logical qubits may still be much faster than the other logi-
cal operations for practical code sizes. Therefore, this may
be an interesting option to explore to effectively enable
transversal CNOTs among all qubits even in a multistack
picture.

APPENDIX E: SURFACE-CODE PIPELINE USING
SEMICONDUCTOR SPIN QUBITS

Now let us look at surface-code pipelines using semi-
conductor spin qubits following a similar argument to
Sec. V A, there the ranking of the processing time for dif-
ferent steps in the pipeline iS Tyeas > Tz > Ty While the
individual shuttling step and the initialization step take
negligible time. Note that Tpe,s = rr'r'f;; /m, where m is
the number of measurement devices in each loop. An
assumption that measurement remains the rate-limiting

step, implies that

1 m=1

Tmeas — frr:;s /m > Tz = m= fmeas/TCZ' (El)

In Sec. V A, we discuss the steady-flow scheme in which
the time gap is Tgap = Tmax = Tmeas and the minimum cycle
period is inside the data pipeline with the value of

T = Ton + Tez + T (E2)
The maximum number of qubits we can fit into the pipeline
is given by Eq. (4):

m
= loop g, (E3)
Tgap

Hence, in order to fit in more qubits, we can either reduce
the time gap such that Ty, < Tyax = Tmeas and/or increase
the minimum cycle period such that T{“;g;) > Tgh + Tez + Tu.

In this section, we focus only on time gaps that are larger
than the rate-limiting component time on the data pipeline

Tgap > Tcz, 1.6,

—Tﬁ:g;’ > T, (E4)
Kloop -1~ e

so that no time-gap buffering would be needed in the data

pipeline.

There is one cycle around the loop in the ancilla pipeline
while there are three cycles in the data pipeline. Out of
these cycles, for the given operation times, the minimum
cycle period T{‘gg;) is most likely inside the data pipeline.

Hence, increasing T{gg; will mean adding buffering to the
data pipeline, but have no effects on the ancilla pipeline.
On the other hand, reducing the time gap T4ap below Tiax =
Tmeas Means we need to add time-gap buffering to the

measuring step in the ancilla pipeline following Eq. (G6):

Azéz%?anc = (Kloop — 1) (Tmeas — Tgap)
= (Kloop — 1) Tmeas — 10(i)r113a
where we use Eq. (E3). Combining with the ancilla circuit

time given by Eq. (12), we can obtain the effective ancilla
circuit time to be

Tg?fc = Toie + ATgap,anc

cire
in
= Tsh + 4TCZ + Tmeas + (Kloop - 1)Tmeas - Tlrgop

= Tsh + 5TCZ + Kloopfmeas - 7{22;) (ES)

when we increase Tﬁ}g]; and/or decrease Tg,p. Note that 744,
does not explicitly appear in the equation here since we
can re-express T{g(‘)‘; in terms of g, for a given Kj,p using
Eq. (E3).

For the time needed for the data pipeline, we need to
consider several parameter regimes.

1. No buffering in the data pipeline

No buffering in the data pipeline means that Tﬂ)‘(‘)'l‘) will
not change, which is given by Eq. (E2). The time gap used

can be obtained using Eqs. (E3) and (E2) for different Kjqp:

Tsh + Tz + Tn

E6)
Kloop -1 (

Tgap =

this gives Ty, = 0.28 s for Kjpop = 5 and 7gp = 0.125 pus
for Kjoop = 10.

No buffering in the data pipeline also means g, > 7z,
which simply means that

Tsh + Tez + T

Kloop = +1= 12; (E7)

Tcz

i.e., we can at most achieve Kj,op = 12 without adding any
buffering to the data pipeline.

In this way, the effective circuit time for the data pipeline
is the same as before in Eq. (11)

Td — 7t _ 3y + 81, + 2T,

circ

(E®)

which is independent of the time gap.
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Substituting Eq. (E2) into Eq. (E5) we get the effective
ancilla circuit time in this case to be

m=1
nc meas
]Z‘ff =4t — ™+ Kloop m

(E9)

a. Data pipeline is rate limiting

For the data pipeline to be rate limiting, the number of
measurement devices we need per loop is

nc ata
TH < T

m > ’7 Tg;;Kloop —‘ _ [Kloop—‘ '
T | 3tsn + 4tz + 3w 3.5
In this way, the code-cycle time is just the data circuit time,
which in turn is unchanged since no buffering is added
to the data pipeline. Hence, the code-cycle time Tcycle is
just the same as the steady-flow scheme in Sec. V A with
Teyele = 3.85 pis.

Hence, following Eq. (E10), to maintain the same code-
cycle time, we can fit in Kj,op = 5 qubits to carry out
the five-layer distillation scheme if we have at least m =
[5/3.57 = 2 measurement devices per loop. In order to fit
in Kjoop = 10 qubits to carry out the ten-layer distillation
scheme, we need m = [10/3.57 = 3 measurement devices
per loop.

(E10)

b. Ancilla pipeline is rate limiting

For the ancilla pipeline to be rate limiting, we need the
reverse of Eq. (E10) to be true, i.e., m < [Kjoop/3.5]. If we
want to fit in Kjoep = 5 qubits, this implies m = 1. Since
the ancilla pipeline is rate limiting, the code-cycle time is
simply the effective ancilla circuit time given by Eq. (ES).
For m = 1 and K, = 5 we have

m=1

T
meas ~_
Teycle = Tif:}c = 47z, — Ty + Kioop " ~ 5.4 pus.

If we want to fit in Koo, = 10 qubits, this implies m < 2,
which gives a code-cycle time of

=l o |104 s
m 54 s

m=1

Tcycle =41, — T + Kloop m=2"

2. Adding buffering to the data pipeline

Here we consider the case in which we add buffering to

the data pipeline to increase Tﬂ}gl‘o in order to fit in more

qubits. For simplicity, we consider only the case in which
Tloop 18 increased until it is larger than the slowest cycle in
the data pipeline

in
Tﬁ)lop > Toh + 47z,

(E11)

so that all three cycles in the data pipeline can take the
same cycling period. (We also require tya, > ¢z, Which is

true as long as Kjyop < 12). In such a case, the effective
circuit time for the data pipeline is simply

ata __ in
eff — loop*

(E12)
For a given Kjp, this effective circuit time for the data
pipeline and that for the ancilla pipeline in Eq. (E5) is equal
when

m=1
gmink _ Tsh + 47cz + Tmeas KlOOP/m
loop 4

(E13)

in ; inx ata nc
When 7770, increase beyond Ti0i ", we have Tgff > T3

1a 3 in inx ata nc
while if we have T{gop < T{gop , then T‘gff < T3F.

Hence, the surface-code cycle time is given as

ata ne
Tcycle = max(Tgff > Tgﬁ

in in ink

. 3'Tlrgop Tﬁ)lop z Tﬁ)lop
- . . . b

Tsh + 4"-'CZ + Kloopfmeas - ng:)l;) mg;, < TE:)I;)*

which has the minimum at 7j00, = 7750, which gives

— yminx _ 3t + 127, + 3K100prmeas
loop 4 .

T;

cycle

Substituting the time needed for the different operations
into Eq. (E13), the minimum code-cycle time is given by

) . K
= 7oy = (0354 522 ) s

The restriction on T{ggl‘) in Egs. (E11) and (E4) trans-

lates into ngg; > 1.4 and T{ggll) > 0.1K00p — 0.1, which is
always be true if we have Kjoop/m > Sand m < 2.

For Kiyop = 10, m = 2 and Kjoop = 5, m = 1, we have
Kioop/m =5 and

inx

lOOp == 1.6 HS,
T:ycle =3 locl)rll)* =438 HLS.
The corresponding time gap iS Tgqp = T{ggg /9 =0.18 us
for Kioop = 10 and 7y = Tiam' /4 = 0.4 15 for Kigop = 5.

For Kjoop = 10, m = 1, we have Kjqop/m = 10 and

102,‘;,* = 2.85 ps,
Toye = 37}22,%* = 8.55 us.

The corresponding time gap is Ty, = ﬂggg /9 = 0.32 ps.
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3. Others

Further pipelining schemes can be explored where
Tgap < Tcz. However, in that case, we need to take into
account the time-gap buffering needed in the data pipeline
and the corresponding change in the minimum cycling
period T{gg;)

APPENDIX F: SEMICONDUCTOR SPIN-QUBIT

SURFACE-CODE PIPELINE USING ESR

In Sec. E, we assume the single-qubit gates are per-
formed using EDSR with the time required being t; =
25ns. However, EDSR has required the incorporation of
micromagnets into the architecture, which is not always
possible in practice. In this section, we perform the same
analysis but with the single-qubit gates carried out using
electron-spin resonance (ESR) instead. High-fidelity Rabi
oscillation using ESR with a period of approximately 1 s
has been demonstrated for both local field and global field

control [86,87]. Hence, the 7 /2 Y rotation: Y %, which cor-
responds to a quarter of the Rabi cycle and can be used in
place of the Hadamard gates, should be able to be carried
outin ty ~ 250 ns. The Z rotation used for constructing CZ
can be carried out using stark shift [88] in a similar time
scale. Hence, we assume the CZ gate can be carried out
in 7z ~ 300 ns. To realize a many-qubit processor, target-
ing ESR effects to specific qubit(s) could be a fundamental
challenge. In that respect it may be a favorable feature of
homogeneous codes that multiple Hadamard gates should
be performed simultaneously. Certainly it is interesting to
explore the potential performance under the assumption
that the architectural challenges can be met.

1. No buffering in the data pipeline

In this case, the time gap used can be obtained for
different Kj,,p, can be obtained using Eq. (E6), which
gives Tgep = 0.39 s for Kijoop = 5 and 744, = 0.17 s for
Kioop = 10.

The restriction g, > 7¢; translate into [see Eq. (E7)]

Tsh + Tez + T

Kioop < +1=6, (F1)

Tcz

i.e., we can at most achieve Kjo,p = 6 without adding any
buffering to the data pipeline.
The effective circuit time for the data pipeline is

= TE = 31, + 87, + 2Ty = 5.9 ps.

circ

(F2)

a. Data pipeline is rate limiting

In this way, the code-cycle time is just the data circuit
time given by Eq. (F2): T¢ycle = 5.9 ps. This includes the
steady-flow scheme (T(l) = 5.9 us).

cycle

The requirement on the number of measurement devices
is given by Eq. (E10):

m> fﬂ;sl Kloop _ Kloop '
- 3‘[5]1 + 4TCZ + 31:]_[ 5

Hence, with m = [5/5] &~ 1 measurement devices per
loop, we can fit in Kj,o, = 5 qubits to carry out the five-
layer distillation scheme and maintain the same code-cycle
time (](5) = 5.9 us).

cycle

b. Ancilla pipeline is rate limiting

We need m < Kjoop/5. If we want to fit in Kjoop = 10
qubits, this implies m = 1. The corresponding code-cycle
time is just the ancilla circuit time given by Eq. (E9):

.L,m:l
Tcycle = Tg?fc =41, — Ty +Kloop rr;;as ~ 10.95 ps.

2. Adding buffering to the data pipeline

Substituting the time needed for the different operations
into Eq. (E13) and focusing on the case of Koo, = 10, the
minimum code-cycle time is given by

qmin _ gmin _ Teh + 47z + Kloopfmeas
loop loop 4

5
= (0.55 + —) LS.
2m

This satisfies both Eqs. (E11) and (E4) as long as m = 1.
For m = 1, the minimum code cycle time is simply

T

cycle

= 3Tj = 9.15 ps,
which allow us to fit ten qubits into the pipeline to carry out
the ten-layer distillation scheme (T(IO) = 9.15 ps). The

cycle
Fk

corresponding time gap is Tgap = Tjgoy /9 = 0.34 pus.
3. Space-time overhead saving for magic state
distillation

From the arguments above, with m = 1 measurement
devices per loop, the time required for no one-layer, five-
layer, and ten-layer schemes for the magic state distillation
circuit are

T =59 us (Sec. Fla),
TSk =59 s (Sec. Fla),
T =915 s (Sec. F2).

Substituting into Table II, we get 24 times space-time
saving by using the five-layer scheme and 140 times
space-time saving by using the ten-layer scheme.
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Note that with these new operation times using ESR,
we are not able to simply increase the number of mea-
surement devices m in each loop to improve the efficiency
of the pipeline. This is because the measurement time is
much closer to the second slowest step: CZ gates. There-
fore, the measurement step will not be the rate-limiting
step anymore when there are more than two measurement
devices in each loop and improving its efficiency will not
the pipelining efficiency. However, it is possible to add
more gate devices at the same time to further parallelize the
other steps as well, which can then improve the efficiency
of the whole pipeline.

APPENDIX G: TIME COSTS FOR QUBIT
PIPELINES

Here we consider different ways k qubits can flow
through a pipeline with M steps. The time required for the
rate-limiting step is given as Tpy.x. For every step in the
pipeline, we can put buffering regions before and after the
step, and we call them the entry buffer and the exit buffer of
the step, respectively. These buffers can temporarily hold
the qubits if necessary and otherwise cost zero time. When
we say we have a qubit stream with a qubit time gap tgap,
in between the m™ and (m + 1)™ steps, it means that after
any given qubit in the qubit stream exits the m™ exit buffer
and enters the m + 1™ exit buffer, the next qubit will do
the same after time T,y ,». The time gap for the input qubit
stream is denoted as Tyup0 and the time gap of the qubit
stream at the output is simply g, We always have to
make sure the time gap between the qubits entering the
m™ step is larger than the processing time of the m™ step
T.. Hence, sometimes there is a need for changing the
time gap from 7y, -1 to 7, before entering the m™ step
if Tgapm—1 < Tin-

There are two ways to change the time gap:

(a) Increasing the time gap from g, to 7,,,, we need to
buffer the nth qubit by the amount of (n — 1)(tg’ap —
Tgap). Note that all qubits are buffered other than the
first qubit.

(b) Decreasing the time gap from Ty, to 7,,,, we need to

buffer the nth qubit by the amount of (k — 1) (tgsp —

Tqap)- Note that all qubits are buffered other than the

last qubit.

1. Constant time gap

Let us suppose we want to maintain a time gap of
Tgap fOr the qubit stream throughout the pipeline: Tgap,, =
Tgap VM. Such a qubit stream can pass through all the
steps that have 1,, < 74, without any buffering. However,
whenever we need to pass through a step with 7,, > 7gyp,
we need to temporary increase the time gap from 7y, t0 7,y
passing through the step, and reduce the time gap from t,,
to Tgap again. This will buffer the first qubit by the amount

of (k— 1)(t,y — Teap). Hence, after passing through all
steps in the pipeline, the first qubit will be buffered by an
amount of

M
ATgp = (k—1) (Z Max (T — Tgap, 0)) . (GD)

m=1

Hence, the effective time needed to process the first qubit
is now
Tetr = Teire + ATgap~ (G2)
Time needed to process any additional qubit is simply
given by the time gap 7,4, and thus the total time needed
to process k qubits using this pipeline is
Tpipe(k) = Teg + (k — 1)":gap- (G3)
If we have Tgap = Tmax, We then have max(ty, — Tgqep, 0) =
0 for all m and hence the pipelining time is simply given by
Eq. (3) as expected, in which the first qubit will need T
to complete the pipeline while and any additional qubit will

need Tyax, regardless of the depth of the pipeline M.
Using Eq. (G1), we can rewrite Eq. (G3) as

Tpipe (k) = Teirc

M
+ k-1 (Tgap + Zmax(fm — Tgap» O)) >
m=1
(G4)

which can also be viewed as Eq. (G3) with ATy, =0
and réap = Tgap + Zf\le max (T, — Tgp,0). Hence, if we
have 7oy < Tmax, then the time needed for processing
an additional qubit through the pipeline is now g, +
Zﬁle max(Ty — Teap, 0), which is dependent on the depth
of the pipeline M.

2. Steady flow around the loop

Due to the repeated use of the loop in the loop pipeline,
an interesting pipelining scheme besides trying to achieve
a steady flow throughout the whole pipeline will be achiev-
ing a steady flow only on the loop instead (excluding
measurement and initialization), which we simply call
the steady-loop-flow scheme. This is essentially the same
scheme as the steady-flow scheme in Sec. II A, but only
taking into account the steps on the loop. Hence, the small-
est time gap we can have for the steady-loop-flow scheme
is simply

o> — max 1;,

on loop

Tiax (G5)

which is the time needed for the slowest step on the loop.
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The steady-loop-flow scheme will be different from
the the steady-flow scheme only when the rate-limiting
step is initialization or measurement, so that we have
Tmax = Tinit/meas > % By definition, the steady-loop-
flow scheme does not require any buffers on the loop.
Hence, we have the same cycling period Tioop as the steady-

flow scheme. Due to the smaller time gap Tl < Tmax, W
are able to use the steady-loop-flow scheme to fit more
qubits in the pipeline compared to the steady-flow scheme
according to Eq. (4).

However, using the steady-loop-flow scheme comes
with additional time costs. While the steady-loop-flow
scheme does not need any buffers on the loop, it requires
buffers before and after it passes through the rate-limiting
step (initialization or measurement) to maintain the qubit
time gap ré?ff . The amount of such buffering put on the first
qubit is denoted as AT, As shown in Sec. G, to process
k qubits using the steady-loop-flow scheme, the amount of
buffering we need to apply is

ATSP = (k1) (Z max(z, — r&fﬁfﬁ)) - (69

Here we sum over all steps in the pipeline and only the
steps are slower than the rate-limiting elements on the loop
(i.e., measurements and/or initializations) are effectively
included.

Hence, the effective time needed to process the first

qubit is given by Eq. (G2) with ATy, = ATe:

00p __ . oop
T = Teire + ATl

(G7)

The total time needed to process k qubits using this

pipeline is given by Eq. (G3) with Tur= 7o and
Tgap = Trlr?;))? :

Thipe (k) = Tyt® + (k — 1)Tao0p

max °

(G8)

3. Varying time gap
If we allow the time gap to vary, we have a series of
peaks (local maxima) and troughs (local minima). Each
transition from a peak to a trough will be called a fall. Sup-
pose there are L falls throughout with the ¢ fall being the
transition from #, ¢ to fy ¢, then the buffering we need to
apply to the first qubit to carry out these L falls is simply

L
ATgap =k-1 (Z Tpk,e — Ttr,() .

=1

Hence, using Eq. (G3), the total time needed for pipelining
all & qubits (i.e., the time taken for the last qubit to exit the
pipeline) is

L
Tpipe(k) = Tiire + (k -D (Tgap,M + Z Tpk,t — Ttr,(f) .

=1

If Tgap.1r 18 @ trough, then 7y ; = Teap.ir and we have

L—1
Tpipe(k) = Teire + (k—1) (Tpk,L + Z Tpk,e — Ttr,l) .
=1
(G9)

Otherwise, if Tgap/ i @ peak, then Ty ;11 = Tgapar and we
have

L
Tpipe(k) = Teie + (k—1) <Tpk,L+1 + Z Tpk,e — Ttr,lf) .
=1

(G10)

In either case, if there are O peaks throughout the whole
process with their time gaps denoting as {7y, | | < ¢ <
0}. In between these Q peaks, there are Q — 1 troughs
(i.e., excluding any troughs at the beginning and end of
the pipeline) with their corresponding time gaps denot-
ing as {txy | 1 < g <0 —1}. An example is shown in

§D Tpk,2 = Tgap,4 — Tmax

- Tpk,1 = Tgap,2

£z

.

g ..

S E

£ w

e & Ttr,1 = Tgap,3 Ttr,2 = Tgap,6

2 g

&< | Input—Seg. 1HSeg. 2HSeg. 3HSeg. 4HSeg. 5HSeg. 6HSeg. THSeg. 9—Output

pipeline flow direction

FIG. 26. Diagram showing the change of the time gap of the qubit stream as it passes through different steps in the pipeline.
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Fig. 26. Then by defining 7, o = 0, the additional time cost
in Egs. (G9) and (G10) can be combined into

Y
Tpipe (k) = Teirc + (k -1 Z Tpk,g — Trg—1

q=1

(G11)

We restrict our scheme such that at all peaks, we have
Tpk,g = Teap,n = T in Which we have the gth peak occurs

at the mth step. Hence, Zqul Tpkg 1S simply the sum of
time required for some subset of steps where the time peak
happens, and thus it will be smaller than the overall time
require for the all steps Zgzl Tpkg < Tcire, Which implies
that

0
Toipe () = Teire + (k= 1) | D Tpkg — Tirg-1
q=1

< kTG,

i.e., the pipelining scheme will always have time saving
over the sequential scheme.

For the sum ZqQ:1 Tpkg — Tirg—1, W€ know that one of
the peaks would be 7. Hence, we can extract out Ty,
and pair up the peaks and troughs before the T, peak
using “falls” and pair up the peaks and troughs after the
Tmax peak using “rises.” In this way, we can show that
Zgzl Tpkg — Tirg—1 = Tmax. In other words, any time-gap
variation will never outperform the scheme with a constant
time gap of Tpmax.-

When there is only one peak, i.e., Q = 1, which would
occur at the rate-limiting element with 7,1 = Tax, We
would have

Tpipe(k) = Teire + (K — 1) Trmax,

which is simply Eqgs. (3) and (2). In other words, there is no
additional time cost if there is just one peak in the time-gap
variation.
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