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We propose a new class of error-correcting dynamic codes in two and three dimensions that has no
explicit connection to any parent subsystem code. The two-dimensional code, which we call the CSS
(Calderbank-Shor-Steane) honeycomb code, is geometrically similar to that of the honeycomb code by
Hastings and Haah and also dynamically embeds an instantaneous toric code. However, unlike the hon-
eycomb code, it possesses an explicit CSS structure and its gauge checks do not form a subsystem code.
Nevertheless, we show that our dynamic protocol conserves logical information and possesses a threshold
for error correction. We generalize this construction to three dimensions and obtain a code that fault tol-
erantly alternates between realizing two type-I fracton models, the checkerboard and the X-cube model.
Finally, we show the compatibility of our CSS honeycomb-code protocol and the honeycomb code by
showing the possibility of randomly switching between the two protocols without information loss while
still measuring error syndromes. We call this more general aperiodic structure “dynamic tree codes,” which
we also generalize to three dimensions. We construct a probabilistic finite automaton prescription that gen-
erates dynamic tree codes correcting any single-qubit Pauli errors and can be viewed as a step toward the
development of practical fault-tolerant random codes.
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I. INTRODUCTION

Any route toward new fault-tolerant schemes for quan-
tum computing involves finding qualitatively different
ways of performing quantum error correction. A recent
approach called operator quantum error correction [1-3]
requires the recovery of only a part of the original “logical”
state, while errors are allowed to affect the rest of it, which
is spanned by “gauge qubits.” This can be accomplished
by constructing a subsystem code, which is specified by a
gauge group G that is generically a non-Abelian subgroup
of the Pauli group. The stabilizer group S of the subsys-
tem code is given by the centralizer of the gauge group,
i.e., the set of the elements in the gauge group that com-
mute with all elements of the group, and the logical qubits
of the stabilizer code are split into the logical qubits of
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the subsystem code and gauge qubits, which are no longer
used for encoding logical information. Subsystem codes
thus provide a generalization of the concept of stabilizer
codes [4].

In subsystem codes, syndrome measurement can be per-
formed using generators of the gauge group only, which
are usually low-weight (noncommuting) operators. This
makes subsystem codes attractive for achieving fault tol-
erance and gives rise to several new proposals for real-
ization of universal quantum computing. A central idea in
these proposals is a procedure called gauge fixing, which
corresponds to measuring a commuting subset of gauge
operators (“checks”), thus fixing the states of the gauge
qubits. The measured gauge operators are then added to
the stabilizer S of the subsystem code defined by the gauge
group G. Different ways of performing gauge fixing allow
us to switch between different stabilizer codes S; and S,
starting from the same parent gauge group G. This is aptly
called “code switching” and a universal transversal set of
gates can been realized this way from the gauge color
code [5,6], the quantum Reed-Muller code [7], and more
[8]. Furthermore, other methods that allow one to over-
come the Eastin-Knill no-go theorem [9,10], such as lattice
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surgery and code deformation [11,12], can be unified into
the framework of gauge fixing [13].

Recently, a new dynamic error-correcting code, com-
prised of a time-periodic sequence of two-qubit Pauli
measurements, has been proposed by Hastings and Haah
[14,15] and dubbed the “honeycomb code.” It is con-
sidered the first example of a Floquet code because of
the inherent time periodicity in the measurement proto-
col. The honeycomb code is based on a subsystem code,
with a gauge group generated by terms in the Hamilto-
nian of the Kitaev honeycomb model [16]. Notably, this
subsystem code stabilizes no logical qubits [17]. How-
ever, the honeycomb code remedies this and dynamically
generates logical qubits by measuring a commuting sub-
set of the gauge group at each round, which constitutes
one third of the full set of two-qubit Pauli checks. This
dynamic protocol generates a different stabilizer group at
each instant in time, each of which differs from that of the
original subsystem code. In particular, the instantaneous
stabilizer group of the dynamic code is equivalent to that of
a toric code [18] on a certain superlattice and the embedded
code changes with period 3 while conserving logical infor-
mation. Remarkably, the honeycomb code has also been
shown to possess a threshold [19,20]. From the quantum
matter perspective, the honeycomb code not only switches
between different realizations of Z, topological order but
also exhibits a kind of time-crystalline behavior—while
the period of the cycling is 3, the period of the code is 6,
because after three rounds, an e/m automorphism occurs.
This idea has been more generally explored in Ref. [21].

In this paper, we propose a new class of Floquet codes
in two and three dimensions that are not based on parent
subsystem codes. Our two-dimensional (2D) construction
is geometrically similar to that of the honeycomb code,
but possesses an explicit Calderbank-Shor-Steane (CSS)
structure; therefore, we call our code the CSS honeycomb
code. We show that this code embeds an instantaneous
toric code, conserves logical information, and possesses
a threshold for error correction. It also turns out that the
CSS honeycomb code performs an automorphism every
three rounds. Our three-dimensional (3D) construction
embeds two distinct type-I fracton models: we show that it
cycles between realizing instances of checkerboard and X-
cube models [22] while preserving logical information and
being error correcting as well. This is the first Floquet code
we are aware of that prepares and cycles between fracton
stabilizer codes.

We argue that our 2D code cannot be reduced to the
honeycomb code. However, we show that it is possible
to fault tolerantly switch between our CSS protocol and
the honeycomb protocol. Moreover, we consider random
disturbances of the protocol in time, thus generalizing Flo-
quet codes to a large class of monitored random-circuit
codes that we call dynamic tree codes, as the path of a
single instance of such a code is a branch of the history

tree of a probabilistic process. We show that a special
class of these codes, i.e., random-flavor Floquet codes,
is fault tolerant. Next, we construct a probabilistic finite
automaton (PFA) that allows us to generate instances of
dynamic tree codes that allow detection and correction of
any single-qubit Pauli error. We conjecture that a large
class of PFA-generated dynamic tree codes is fault toler-
ant with an efficient decoder. This construction advances
us one step closer toward fault-tolerant random codes. In
practice, these codes also work well for error models that
are dynamical in time.

Thus, the dynamic codes that we construct in this paper
present a new class of quantum error-correcting codes
and suggest a new route toward universal fault-tolerant
schemes for quantum computation that relies on neither
stabilizer codes, nor subsystem codes, nor Floquet codes
generated from the gauge group of subsystem codes.

The rest of the paper is organized as follows. In Sec. I,
we introduce the 2D CSS honeycomb code, discuss it
in detail and explain its error-correction properties. In
Sec. III, we elaborate on an example that generalizes CSS
honeycomb codes to three dimensions and show that the
instantaneous code cycles between different realizations of
the checkerboard and X-cube model. In Sec. IV, dynamic
tree codes are introduced and are argued to be a more
general structure (that need not be periodic) bridging the
honeycomb code and the CSS honeycomb codes. We pro-
pose a PFA construction of error-correcting protocols and
also generalize dynamic tree codes to 3D.

I1. 2D CSS HONEYCOMB CODE

We propose a dynamic quantum error-correcting code
built solely out of X - and Z-flavored check operators—for
this reason, we refer to this code as the CSS honey-
comb code. Recall that in the honeycomb code of Hastings
and Haah [14], one picks a 3-colorable planar graph and
assigns labels of X, ¥, and Z to each of the three ori-
entations of the edges. The edges of the graph are also
3-colorable and the dynamic measurement protocol con-
sists of measuring the two-body Pauli operators (“checks’)
of the flavor corresponding to the orientation of the bond
at all the edges of a given color at each round. The color of
the edge is defined by the colors of the two plaquettes that
it connects (see Fig. 1).

In the CSS honeycomb code, the protocol is somewhat
simpler and is shown in Table I. It is partially inspired
by the construction of toric code topological order in
Refs. [23,24]. We similarly consider a honeycomb lattice
with periodic boundary conditions and divide the plaque-
ttes and the edges into three colors, red, green, and blue. At
each round of measurements, we apply either red, green,
or blue checks. However, the flavor of the check oper-
ators applied at each round alternates between X and
Z (i.e., one measures two-qubit operators XX or ZZ on
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TABLE 1. A summary of the CSS honeycomb code: the measurement sequence, the instantaneous stabilizer group S(r) at each
round, the syndrome plaquettes, logical operators, and the instantaneous codes. The checks and plaquette stabilizers are color coded
for convenience. The “Syndrome” column contains the plaquette stabilizers that have been known in previous rounds but are also
contained in the checks of the current round. These measurements are used as syndromes for error detection (see Sec. II C). The
logical operators labeled as electric (e) and magnetic (m, ) strings correspond to string operators that violate the superlattice vertex
or plaquette stabilizers of the embedded toric code, respectively. The magnetic m ;- and m;-strings are equivalent up to local operators
acting at their ends. The connections between the logical operators of the CSS honeycomb code and the topological excitations of
the embedded codes are explored in Sec. II B. TC(c), with ¢ € (, g, b), denotes a toric code realized on a triangular superlattice, with
vertices of the superlattice located on plaquettes of color ¢, while TC is the same code conjugated by a layer of single-qubit Hadamards,

i.e., where stabilizers have flavors exchanged, X < Z.

r ISG S(r) Syndrome Logical string Code
Measure my e my my e my

-3 rXX

-2 gZ7Z Py(X)

-1 bXX P.(2) Pp(X)
0 rZZ P,(X) P.(2) Pyp(X) gzz rXX bZZ TC(r)
1 gXX Py(2) P,(X) P.(2) Py(X) bXX gzZz rXX TC(g)
2 bZ7Z P.(X) Py(2) P, (X) P.(Z) rZZ bXX gzzZ TC(b)
3 rXX P, (2Z) P.(X) Py(2) P,(X) XX rZZ bXX TC(r)
4 gzz Pyr(X) P,(2) P.(X) Py(2) bZZ [:2.0.¢ rZZ TC(g)
5 bXX P.(Z) Py(X) Py (Z) P.(X) rXX bzZzZ gXX TC(b)
6 rZZ P,(X) P.(2) Pp(X) P,(2) gzZzZ rXX bZZ TC(r)
7

the edges of the color of the given round). This gives a
measurement schedule whereby we measure the sequence
{(rXX,gZ7,bXX ,rZZ,gXX ,bZZ} periodically in time.

Let us start in an arbitrary initial state (alternatively, we
prepare a specific state in order to encode logical informa-
tion in a code) and start measuring checks according to the
proposed protocol. At each round r, the state prepared in
this way is a stabilizer state under an instantaneous sta-
bilizer group (ISG) S(r). The generators of instantaneous
stabilizer groups at each round are listed in Table I. As a
remark, similarly to the honeycomb code, instead of post-
selecting or correcting to the 41 values of the measured
stabilizers, we instead record these signs and assume a
convention where the ground state is an eigenstate of the
plaquette stabilizers, with eigenvalues determined by the
measured signs.

At initial round » = —3, the red checks shown in Fig. 1,
which we denote »XX, are measured. At the next round,
r = —2, we measure ZZ checks on green edges, which
anticommute with the measurements at the previous round.
However, at this step, the ISG contains the stabilizers
P, (X), which corresponds to a product of Pauli-X oper-
ators around blue plaquettes and belongs to the center of
the group generated by (rXX,gZZ), i.e., commutes with
checks of both rounds. Measurement of XX in the subse-
quent round » = —1 produces plaquette stabilizers that are
the center of the group (XX, gZZ, P,(X)), which is Py(X)
and P.(Z).

After measuring 7ZZ at round » = 0, the ISG includes
Pg(X), as well as P,(X) and P.(Z) from the previous
rounds, as well as current checks rZZ. The prepared code
has a number of stabilizers that matches the number of
qubits on a torus minus two, because the plaquette oper-
ators are not all independent. This instantaneous code is
equivalent to the toric code (TC(r) in the table). To see
this, consider the superlattice formed by the dashed black
lines in Fig. 1. On this triangular superlattice, there are two

FIG. 1. A fragment of a honeycomb lattice with three-colored
plaquettes (P, ) and edges. The red, blue, and green checks cor-
respond to the edges connecting two plaquettes of the same color.
The red checks (), which are measured in rounds 37, are shown
by bold lines and the triangular superlattice is shown by dashed
black lines.
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qubits per edge. Let us constrain to the subspace where the
checks rZZ simply fuse the two qubits into a single-qubit
degree of freedom, with effective qubits located on each
red edge, which have effective logical operators X = XX
and Z =ZI = IZ. Then, it can be seen that P,(X) and

P, (X) simplify to products of three X operators around the
triangles of the superlattice. Similarly, P,(Z) corresponds
to the product of Z on the star of the edges emanating out
of each vertex of the triangular lattice. For simplicity of
presentation, assume that all measured signs of 7ZZ checks
are +1 (otherwise, the signs would appear as prefactors in
each term in the Hamiltonian without changing the con-
clusions). Thus, the effective stabilizer code corresponds
to the Hamiltonian

HST=3"4,(2) + ) Ba(X), O]
v A

where 4, and B, are the star and plaquette terms on the
triangular lattice, respectively. This Hamiltonian simply
describes the toric code, exhibiting the paradigmatic Z,
topological order.

When we continue to implement the protocol further, the
number of logical qubits does not change and the embed-
ded code in each round is a different realization of the toric
code; the period of the embedded code is 6. The logical
information, the details of which we address in Sec. II B,
is preserved during this cycling. To see that the embedded
code changes each round, consider the subsequent r = 1
step, when gXX checks are measured. The value of the sta-
bilizer P, (X') from the previous step is already contained in
the values of the measured green checks and therefore we
do not add it to the list of generators of the ISG (we add it
to the table as a syndrome, however, because the stabilizer
value inferred from the green checks at the current round
can be compared with the one stored earlier). Additionally,
measuring gXX turns the #ZZ checks of the previous round
to Pp(Z), so the number of logical qubits in the new code
does not change. We can see that on round » = 1, we also
obtain an effective toric code by drawing a triangular lat-
tice centered on the green plaquettes and viewing the gXX
checks as a fusion of the two qubits on each green edge,
which have effective logical operators X = X/ = IX and
7 = ZZ. The Hamiltonian corresponding to the embedded
code is

HT =34, + > Ba(2), ®)
v A

which is again a triangular lattice toric code.

In the next step, bZZ checks are measured and the pla-
quette P,(Z) becomes redundant, so we do not list it in the
ISG. A new plaquette P,(X) is added to the ISG and the
ISG yields an embedded toric code centered on the blue
sublattice (TC(b)). The instantaneous stabilizer groups of

the next three rounds are identical to the previous three
apart from X <> Z (and therefore the TC code goes into
TC; see Table I); hence the period of the code is 6.

Thus, starting from round » = 0, our CSS honeycomb
code always embeds a toric code in its instantaneous stabi-
lizer group. A striking difference between the honeycomb
code and the CSS honeycomb code is that while the hon-
eycomb code features fixed plaquette stabilizers after three
rounds of measurements, the plaquette stabilizers in the
CSS honeycomb code change from round to round via sub-
stitutions where P(Z) is replaced by another P(X) or vice
versa. This suggests a fundamental difference between our
code and the honeycomb code from the perspective of sub-
system codes, which we discuss below. In Appendix A,
we also show that this code has a regular representation as
the same protocol where only ZZ checks are measured at
each round and a layer of single-qubit Hadamard gates is
inserted after each round. This immediately turns it into a
period-3 protocol. Formulated in this way, using only ZZ
checks and unitary layers, the honeycomb code requires
single-qubit S and H gates with a period-3 pattern.

Finally, this protocol does not necessarily require a hon-
eycomb lattice and will work on any 3-colorable graph,
similarly to the honeycomb code [25]. In particular, if we
apply the same protocol to the 3-colorable square-octagon
lattice, the embedded code will alternate between explic-
itly realizing the Wen plaquette model [26] and the toric
code on a square superlattice, as shown in Fig. 2.

A. Relation to subsystem codes

As previously mentioned, subsystem codes are defined
by a gauge group G that is generically a non-Abelian
subgroup of the Pauli group. The stabilizer group of a
subsystem code is given by S = C(G) ()G, where C(G)
denotes the center of the gauge group. The subsystem code
can be viewed as a generalization of the concept of a stabi-
lizer code; the logical qubits of the stabilizer code defined
by S above are now split into logical qubits and gauge
qubits of the subsystem code. While the logical qubits
of the subsystem code are stabilized by G \ S, the gauge
qubits of the subsystem code are not and G transforms
them nontrivially. Logical operators of S are similarly
split into “bare” logical operators, which act trivially on
the gauge qubits, and “dressed” logical operators, which
transform the gauge qubits. Not only do subsystem codes
require lower-weight measurements in general (given the
non-Abelian nature of the gauge group) but they provide
attractive proposals for universal quantum computing. In
particular, we can perform a procedure called gauge fixing,
whereby an Abelian subset of the gauge group generators
is measured, thus fixing the states of some of the gauge
qubits and adding additional stabilizers to S, turning it
into S’. In this way, we can easily switch between different
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Py(Z): Py(Z)
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FIG. 2. The (a) YXX and (b) bZZ rounds of the CSS honey-
comb code realized on the 3-colorable square-octagon lattice
(periodic boundary conditions are assumed and only part of the
lattice is shown for convenience). Because the algebraic relations
between the checks are the same and the square-octagon lattice is
trivalent with even-sided plaquettes, the properties of the square-
octagon Floquet code and its error correction are the same as the
honeycomb version. The left half of each lattice shows the origi-
nal lattice and the ISG, and the right half shows the superlattice.
At the rXX step shown in (a), if the two-body checks define local
[[2,1,1]] codes, the embedded code on the superlattice is the toric
code with qubits on the edges, where P, ;(Z) become the plaque-
tte terms and P,(X) becomes the star term. In (b) (at blue, and
similarly, at green steps), we can view the blue checks together
with P,.(X) plaquettes as stabilizers of a [[4,1,2]] local code. This
results in a Wen plaquette model where the effective qubits are
located on vertices of the square superlattice.

codes with different stabilizer groups, which is called code
switching.

Therefore, one way to construct Floquet codes might
come from starting with a subsystem code (“parent subsys-
tem code”) and measuring subsets of its gauge operators
sequentially, arriving at different effective stabilizer codes
as a result. The honeycomb code fits in this framework:
the XX, Y7, and ZZ checks of the honeycomb code corre-
spond to the Hamiltonian terms of the Kitaev honeycomb
model and generate a subsystem code. Even though this
subsystem code does not contain any logical qubits, the
dynamical protocol leads to an ISG that, at every round,
is the same as that of the parent subsystem code minus
two operators that cannot be obtained by such sequential
measurements (the “inner” logical operators). In contrast,
an attempt to find a subsystem code that would play the

same role for the CSS honeycomb code fails, as we show
below. Note that the concept of the “parent subsystem
code” introduced above is distinct from and unrelated to
the “parent code” for anyon condensation, which has been
used to independently derive the CSS honeycomb code in
Ref. [27].

The construction of the CSS honeycomb code does not
involve checks of a subsystem code and therefore one
might ask whether there exists a relation between this
dynamical code and any subsystem code. Let us explore
this question in more detail. Consider the group generated
by all checks of our protocol, i.e.,

G = (rXX,8ZZ,bXX,rZZ,eXX ,bZZ) . A3)

For this subsystem code, S = Z(G) = (]_[X, ]_[Z) These
extensive operators contain the Z, global symmetry of the
effective codes realized by the Floquet protocol. At each
step of the Floquet codes, one of these symmetries is just
a product of all checks and the other one is the product
of one color of plaquettes with the opposite flavor of the
checks; thus, both operators are contained in the ISG. The
latter operator is a symmetry of the embedded toric code.

Let us show that the subsystem code defined in Eq. (3)
provides only very limited information about the stabilizer
codes realized by the Floquet protocols constructed from
its checks and does not play a useful role as a parent sub-
system code. Assume that we gauge fix the code G by
adding the checks »XX to the stabilizer group. The new
codeis G' = (bXX,rZZ,gXX)and S’ = (]_[X, [1z, rXX>.
This code does not bear a resemblance to the topological
codes realized by the Floquet protocol and such topo-
logical codes cannot be achieved by further gauge fixing
or by removing some of the gauge checks. Therefore,
even though the CSS honeycomb code is generated by
sequentially measuring the checks of the subsystem code
in Eq. (3), this subsystem code does not imply a useful par-
ent subsystem code, unlike in the case of the honeycomb
code.

We may also introduce a concept of k-sliding subsys-
tem code, which is defined by a gauge group G, generated
by subset of checks from &k consequent rounds » — k +
I,...,r. Let us see if this relaxed notion of a subsys-
tem code can be a parent subsystem code for the Floquet
code at some of the rounds. First, we note that if £k =1,
the k-sliding subsystem code stabilizes too many qubits.
Before proceeding to higher &, we note that without loss of
generality, we can consider round » = 6n:

(a) k = 2. The generators of the gauge group are simply

g = (bXX rzz,[ [ x. ]‘[z) o

020341-5



DAVYDOVA, TANTIVASADAKARN, and BALASUBRAMANIAN

PRX QUANTUM 4, 020341 (2023)

The center of this gauge group is Z(G") =
(Pg(Z),Pg(X),]_[X,]_[Z), which does not have
three distinct types of plaquette stabilizers.

(b) k=3:

o = (gZ7,bXX ,1ZZ) . ®)

The center of this gauge group is Z (936”) =
(Pe(2),P(2),s(rZZ — gZZ),T]| X, []1Z),  where
s(rZZ — bZZ) are strings of rZZ and gZZ checks
along homologically nontrivial cycles of the torus.
Moreover, since the stabilizers are of the same fla-
vor, the code is classical. As we see, the stabilizer
group also does not contain three distinct types of
plaquette stabilizers.

(c) k> 4. A similar exercise shows that the stabilizer
group of a 4-sliding subsystem code produces a
single flavor of a plaquette as well as the global sym-
metries. There is a more fundamental reason, in that
looking beyond to & > 4 is unreasonable. Recall that
during each round, a ¢ = r,g or b-colored plaque-
tte substitution occurs where P.(X) is replaced with
P.(Z). In the next round, the value of P.(X) is then
destroyed (and the same happens on rounds where
X < Z). Given that after four rounds the value of
the stabilizer is destroyed by measurements, there
is no reason why we should consider a subsystem
code formed by checks from too many subsequent
rounds.

Therefore, even though the 2-sliding subsystem code con-
tains more stabilizers because it “inherits” additional sta-
bilizers from two previous measurement rounds, this nev-
ertheless tells us that there is no useful concept of a parent
subsystem code for the CSS honeycomb code, even if we
generalize to a k-sliding subsystem code. This discussion
also indicates that the CSS honeycomb code might belong
to a different class of dynamic codes than the honeycomb
code. Another example of a Floquet code that does not
seem to have an immediate parent subsystem code is the
automorphism code [21], although at the time of writing,
these codes have not been shown to be error correcting or
fault tolerant.

As we show below, our code nevertheless conserves log-
ical information and possesses a threshold. Surprisingly,
this shows that subsystem codes are not necessary for the
construction of “good” error-correcting dynamic codes.

B. Conservation of logical information and
automorphism

The instantaneous code embedded in our dynamic code
is equivalent to the toric code, as indicated in the last col-
umn of Table I. As mentioned before, the three plaquette
stabilizers of the ISG become the stabilizers of a toric code

on a triangular superlattice (see Figs. 1 and 3). The string
operators, the endpoints of which anticommute with the
vertex or plaquette stabilizers, excite e and m anyons on
their ends, respectively. Note that on the triangular lattice,
there are two types of m anyons (m ), corresponding to
two orientations of triangular plaquettes, though they nev-
ertheless belong in the same superselection sector. These
strings for e and m, , particles are formed by checks indi-
cated in Table I (see Fig. 3). For example, at round 6#, the
string operators creating e and m particles are

Sei =[] xx)e

LePiy

Sml(z),j = l—[ (ZZ)[’ (6)

LeP (g

where P; . is a set of checks of color ¢ that forms a string
emanating from hexagon i of the same color. The two X
and two Z logical operators for the instantaneous code
can be obtained by taking e- and m >-type strings around
homologically nontrivial cycles of the torus. The m;-type

(a)

FIG. 3. The string operators generating anyon excitations e
and m; anyons shown on (a) the honeycomb lattice and (b)
the superlattice (with qubits on the edges), occurring at rounds
r = 3n. At steps corresponding to odd n, the e-string is formed
from rXX checks, whereas the m;- (m;-) strings are generated
by gZZ (bZZ) check strings, respectively, as shown in the figure.
On the triangular superlattice, the red plaquettes turn into ver-
tices, whereas the blue and green plaquettes correspond to the
two types of triangular plaquettes. At rounds corresponding to
even n, the picture is the same upon exchanging X <« Z.
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string taken along such a cycle is the same as the m;-type
string; hence, they both produce the same logical operator.

Table I shows that the m; anyon at each step turns into
the e anyon of the subsequent round and the e anyon turns
into the m, anyon. The m;, anyon “disappears,” which
occurs exactly when the syndrome for plaquettes violated
by this flavor of anyon is measured. In fact, the m, anyon
is equivalent to the m; one up to the checks of the current
round; therefore, the information carried in the magnetic
logical operator is not lost. This is also useful for us when
attempting to understand the error-correcting properties of
this code.

Similarly to the transformation of anyons, the X - and
Z-type logical operators swap at each step but are never
measured; thus, this code conserves logical information.

In the honeycomb code, the logical operators can be
classified as either “inner” or “outer.” The “inner” oper-
ators are products of checks along the homologically non-
trivial cycles of the torus and they belong to the stabilizer
of the honeycomb subsystem code, whereas the “outer”
ones do not. Because of the lack of a subsystem code
framework, there is no concept of “inner” and “outer”
logical operators as in the original honeycomb code.

Finally, we remark that it might appear as though our
code does not possess an e <> m automorphism (which the
currently existing examples [14,21] of Floquet codes do).
However, let us follow a magnetic string gZZ measured in
round O (see Table I). It is preserved for three steps and at
step 2 the magnetic logical operator produced by gZZ and
rZZ is the same. Now, following ZZ to round 3, we see
that it becomes an electric string. The codes at steps 0 and
3 are the same toric code conjugated by on-site Hadamard
transformations and, therefore, up to this transformation,
an automorphism has in fact been performed.

C. Decoders and threshold

Despite the absence of the overarching structure of a
subsystem code and a stationary ISG, the CSS honeycomb
code surprisingly possesses a threshold. For a simplified
X, Z-error model of single-qubit errors, we can reduce
the decoding problem to that of the honeycomb model
[14] and, thus, argue that our code has a threshold. For
other error models and more specialized decoders, the
thresholds for these two codes are likely quantitatively
different.

In the simplified error model, we only consider the
occurrence of single-qubit X and Z errors with probabil-
ity p, corresponding to the quantum channel £(p) = (1 —
p)pl +p(1 —p)XpX +p(1 —p)ZpZ + p*YpY. Since
an X - (Z-) type single-qubit error can be commuted past
similarly flavored checks, we only need to consider the
occurrence of an X - (Z-) type error after even (odd) rounds.
We simplify our error model assuming independent single-
qubit errors of X (Z) type. Because the error syndromes for
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FIG. 4. A P,(X)-type detector cell is shaded blue; it can be
violated by Z-type errors occurring on its space-time support
(not including ¢t = r + 4). It consists of measuring the highlighted
P, (X) plaquette at time » and then measuring it again at time
r + 4. Two such neighboring detection cells are required to deter-
mine the space-time location of the edge where the single-qubit
error has occurred.

errors occurring after even (odd) rounds are measured on
odd (even) time stamps only, error correction can be per-
formed separately on even and odd temporal sublattices.
X and Z errors are treated identically, so for simplicity we
deal with Z errors in what follows.

We consider a simple nonoptimal decoder for this error
model. The value of each type of plaquette stabilizer is
measured twice during each period-6 cycle, once at step
r and once at step 7 + 4 (before being erased at step r + 5),
as shown in Fig. 4. Comparison of these values allows us to
infer the error syndromes that are necessary for decoding.
Thus, we need to record the syndromes inferred from com-
paring the two values of each plaquette stabilizer obtained
at different rounds.

For each type of plaquette stabilizer, there exists a type
of check that anticommutes with this stabilizer (e.g., con-
sider the pair P.(X) and rZZ). Thus, the values of such
plaquette stabilizers are necessarily randomized after suffi-
cient time and it is impossible to fix the values of stabilizers
in our Floquet code to, say, 41, once and for all. The only
constraint on the values of the stabilizers in the system is
that the logical information is preserved, which is argued
above. Despite this, it is surprising that the protocol is still
error correcting.
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In more detail, each plaquette stabilizer, once inferred
from check measurements, survives for four rounds before
a check is applied that anticommutes with this stabilizer.
This allows us to define a corresponding space-time detec-
tor cell. For example, consider the plaquette P,(X) that is
inferred at step » from rXX checks (r = 6n + 3(mod 6) in
Table I). One such plaquette at round r is highlighted in
Fig. 4. Once measured, this plaquette is not randomized
for the next three rounds and appears in the ISG. At round
7+ 4, this plaquette is measured again (the “syndrome”
plaquette in Table I). The respective space-time detector
cell is supported on this plaquette between the rounds r
and r + 4, i.e., between two consecutive measurements of
Py (X) occurring at these rounds. The product of these two
plaquette measurements determines the error syndrome
and therefore whether the detector cell has been violated.
As an example, the product {Py(X)}, X {Pp(X)},14 will be
equal +1 if there is an even number of Z-type errors in its
support and —1 if there is an odd number of errors. Finally,
at round r + 5, P»(X) plaquettes are randomized by bZZ
checks.

If a Z error has occurred after an odd time step, it can
be commuted past the measurement of the next round and
therefore it is sufficient to only consider Z- (X -) type errors
after even (odd) rounds. Consider an isolated single-qubit
Z-type error occurring after an even round of the pro-
tocol. First, knowing only the edge where the error has
occurred is sufficient to correct the error. In this situa-
tion, correction corresponds to applying a Pauli operator
with the same flavor as the error to any of the qubits on
this edge; if the qubit is guessed incorrectly, this turns the
single-qubit error into a check error of the current round.
However, we can show that such check errors do not affect
the logical state in the instantaneous toric code, so long
as the edge is of the same color as the checks of the last
round.

We now discuss how to determine the edge where the
error occurs. Let us assume that a Z error occurs after
round » = 0. At the next round » = 1, measurement of one
of the gXX checks involving this qubit acquires an error.
This violates a Py (X )-type detector cell (its type is deter-
mined by the “syndrome” column in Table I). Similarly,
at round r = 3, the XX checks are measured and one of
the checks changes its sign due to the error. This violates
a respective P, (X)-type detector cell. These two detector
cells share only one ZZ-type edge: the red edge at r = 0.
Thus, the space-time location of the faulty edge caused by
a single-qubit error is determined unambiguously. Finally,
in the case of multiple errors, a minimum-weight perfect-
matching (MWPM) decoder can be used (discussed below)
and the location of the error chains will be determined up
to stabilizers of the code.

The principle of error correction beyond this point is
same as in the honeycomb code, where the violated detec-
tors have to be matched on the same space-time lattice

(decoding graph). This space-time lattice is parametrized
by {1, by, b3}, where b, = (ﬁ 12,3/2, 2) and the other

two vectors are obtained by 277 /3 rotation of each previous
one around the time axis (the distance between the centers
of hexagons is taken to be +/3; see Fig. 1). The links of
the lattice are given by {b;, by, b3}. We have two copies of
the syndrome lattice, corresponding to odd and even time
steps, that store syndromes from bit-flip (X') and phase-flip
(Z) errors, respectively.

The MWPM decoder can be applied for error correction
[28] and the problem can be similarly mapped to a random-
bond Ising model with a phase transition to a confined
“noncorrectible” phase, thus exhibiting a threshold. Thus,
similarly to the honeycomb code, the CSS honeycomb
code has a threshold.

Another way of convincing ourselves of a threshold
comes from the probability of error leading to a failure
being exponentially suppressed as L — oo for a torus of
size L x L. Let us sketch a bound on the failure proba-
bility in a similar manner to Ref. [28]. Each edge on the
syndrome lattice has a one-to-one correspondence with
a physical qubit of a toric code on the superlattice from
one time step earlier. Therefore, once the MWPM decoder
determines the lowest-weight string of errors £, by finding
the shortest string on the syndrome lattice, the set of links
on the respective superlattices at the times when errors in
Ey occur will be determined unambiguously. As we note
earlier, only the edge of the superlattice on which the error
occurred needs to be detected (i.e., the errors have to be
detected up to a position within the two-qubit check of
the round after which the error occurred). Because of this
one-to-one correspondence, we can refer to the “flipped”
edges on the syndrome lattice as errors. Let p be the prob-
ability of a single-qubit error and let us assume that there
are no measurement outcome errors. We consider one type
of error and, thus, one copy of the syndrome lattice, and
assume that the true error string is £ and that the recovery
string is £y and has length wy.

Note that the set C = E + E contains a set of disjoint
loops, either homologically trivial or not. A failure occurs
if the set C contains at least one homologically nontrivial
cycle. Consider an arbitrary connected path S(w) of length
w; then, the probability of failure can be bounded by the
probability of C containing a path S(w) with length greater
than the distance of the code:

P(fail) < )

S(w):w>d=L

PSw) € O). (7

We consider only self-avoiding walks, since every closed
loop can be eliminated. Assume that we have an arbi-
trary path containing w, errors [i.e., links belonging to
S(w) (N E)]. The probability of such a path is (v:”e)pwe(l —

p)" . Now, if the path S(w) happens to be contained
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in C, the number of errors on it w, > w/2 because of
the assumption of the minimum-weight matching. We
formulate this as §'\ (S(E) < Eo. This yields

(W)p“"’(l —p)'r < (W)pw/z. (8)
We We

Thus, we have

PSWmSO= )

S(w):S\ (SN E)<CEy

< Z(W) foopt ()

w
Wg>2

P(Sw))

The probability of failure can be bounded by

P(fai) < Y 2"p"2 =) nsw)2"p"?,  (10)

S(w):w>d=L w>L

where ng(w) is the total number of self-avoiding walks
on the syndrome lattice. The lattice has six directions
for the walk from each point and therefore ng(w) < 6 x
5" x (1/9)L?T, where (1/9)L?T counts the number of the
possible starting points. Therefore,

102p)"/*

P(fail) < —OL2TZ 5w pnl2 < 10,5, (10%) 7
i 37 (1= 10p)

(11)

The probability of the failure that we find above is expo-
nentially suppressed as long as p,q < p{” = 0.01 and the
timescales of running the code 7(L) before the error cor-
rection is performed satisfies lim;_, o, L>T (102p)L/ =0
for given p < p¥ (which is always the case for, e.g.,
T(L) = poly(L)). Thus, the lower bound on the threshold
within this model is p. > p?.

A threshold in the X, Z-error model implies a thresh-
old against measurement outcome errors as well, because
a check error corresponds to a correlated-in-time appli-
cation of a noncommuting single-qubit Pauli error right
before and after the check is applied. Additionally, a partial
implementation of any logical operator is correctable in a
similar sense to how the “inner” logical operators are cor-
rectable in the honeycomb code. Despite the fact that there
is no concept of an “inner” logical operator because the
subsystem code structure is absent in our code, any par-
tially implemented logical operator is detectable. Robust
error correction during rounds » = —3 to » = 0 is not pos-
sible because the instantaneous code is still being prepared
during these steps. We can instead start by initializing the
effective toric code at » = 0 on the corresponding super-
lattice by a different high-fidelity method. Similarly, the

measurement of the logical operators can be done by two-
qubit checks applied to the effective toric code on the
superlattice after termination of the protocol.

I11. 3D GENERALIZATION: FRACTON FLOQUET
CODE

In this section, we present an example of a 3D con-
struction inspired by our 2D CSS honeycomb code, which
we find gives rise to Floquet codes for fracton topological
orders.

The general protocol and associated geometry are shown
in Fig. 5 and Table II. In particular, we consider a truncated
cubic lattice, which can either be thought of as a cubic
lattice, where every site is turned into an octahedron, or
a lattice of corner-sharing octahedra, where each shared
corner is extended into an edge. The physical qubits are
located at the vertices of this lattice. It can be seen that the
volumes of this lattice are 3-colorable: we label the cubic
volumes with red and blue (&7, and &% in Fig. 5) and the
octahedra with green.

The protocol is implemented using checks of weight
2 and 3. The checks that we use in the protocol consist
of the products of three Paulis rXXX (rZZZ) around red
triangles, bXXX (bZZZ) around blue triangles, and the two-
body checks along green links gXX (gZZ) (see Fig. 5).
This coloring is chosen to match the coloring in the 2D
CSS honeycomb code: the green edges protrude out of
green volumes and red(blue) plaquettes interface between
the volumes of two other colors (blue or green and red or
green, respectively).

We repeat the measurement procedure similarly to the
2D case. The protocol is outlined in Table II. After round
—2, when the green links are measured, the product of the
eight red triangular plaquettes that form the truncated faces

T Td) " s
M}

FIG. 5. (a) A decorated cubic lattice with two qubits per edge
(located at the vertices of the resulting lattice). The cubes of the
two types correspond to B and B, respectively, and the triangu-
lar plaquettes between the octahedra located at each vertex and
the cube of type b (r) are shaded red (blue), respectively, i.e.,
in the complementary color. The two square plaquettes ¢, that
produce two independent stabilizers are shown in (b).
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TABLE II

A summary of the 3D CSS fracton Floquet code: the measurement sequence, the instantaneous stabilizer group S(r)

at each round, the syndrome plaquettes, logical string operators, and the instantaneous codes. The “Syndrome” column stores the
star and volume stabilizers that can be inferred from the checks of the current round and compared with the known value of this
plaquette stabilizer in the previous round. The strings of checks are labeled electric (e) and magnetic (m; ) in correspondence with
the instantaneous code on the superlattice. The magnetic m; and m, strings are equivalent up to local operators at their ends. XC(g)
denotes the embedded X-cube model realized on a cubic superlattice with effective qubits on its edges. CB(r/b) denotes the embedded
checkerboard model realized on a cubic superlattice with effective qubits on its vertices and the volume stabilizers defined on /b
cubes. XC (CB) are the same codes conjugated by a layer of single-qubit Hadamards, i.e., having stabilizer exchange flavors X <> Z.

r ISG Syndrome Logical string Code
Measure m e my m e my
-3 rXXX
) 977 0, (X)
-1 bXXX &0,(Z) 60, (X)
0 bZ77 0 (X) &0y (Z) 0, (X) 977 XXX 777 CB(b)
1 XX 50,(Z) 0 (X) 50,(2) 0, (X) bXXX 977 XXX XC(g)
2 rZ77 &, (X) 5,(Z) 0g(X) & (2Z) bZ7Z bXXX 977 CB(r)
3 XXX 04(2) &, (X) &,(Z) 0 (X) gXX bZZZ bXXX CB()
4 gzZzZ 60, (X) 04(Z) &2,.(X) &2,.(Z) rZZ7 XX bZ77 XC(g)
5 bXXX &0,(Z) 60, (X) 0e(2) &3,.(X) rXXX rZZ7 XX CB(b)
6 bZ77 0 (X) &y (2) &0,(X) 04(2) 977 XXX rZ77 CB(b)
8

of the blue cube is in the instantaneous stabilizer group.
This is denoted by a volume stabilizer

@(X) = ] rXXX)a.
AE@b (12)
In the next round, » = —1, we measure the products of

X's on the blue triangles, indicated by bXXX. These do
not commute with the green checks of the previous round
but instead commute with the product of green checks
around a blue cube. Hence, only the product of gZZ
checks forming &7, (Z) stays in the instantaneous stabilizer
group.

Naively, at round 0 one might wish to return to the
beginning of the protocol and measure »ZZZ, in accor-
dance with the 2D protocol for the CSS honeycomb code.
However, the rZZZ check commutes with bXXX of the
previous step, which results in six independent plaquette
stabilizers on a single octahedron. Since an octahedron
is comprised of six physical qubits, this stabilizes a sin-
gle state. The fix is to instead measure bZZZ at round 0,
thereby cycling between the check colors in the sequence
“rgb bgr rgb bgr...” rather than “rgb rgb...”. The mea-
surement of bZZZ preserves both &,(Z) and &, (X) but
does not commute with AXXX of the previous round.
Instead, on each octahedron, the square plaquettes ¢, (X)
remain in the instantaneous stabilizer group of the next
round, the members of which we refer to as “diamond”
stabilizers. There are three such diamonds in total but only

two of them are independent. Using the fact that the prod-
uct of bZZZ around an octahedron is the identity, there are
five independent stabilizers per octahedron, which means
that a single qubit per octahedron (or, equivalently, a single
qubit per vertex of the cubic lattice) effectively remains.
The equivalent Hamiltonian for all of the stabilizers at
round 0 is therefore

Hy=JY (bZZZ+04(X))+ > (@H(X) +@h(2)).
=
(13)

For J > 1, the first term contains five independent stabi-
lizers that fuse the six qubits of the octahedron into one
effective qubit, with the local effective Pauli operators act-
ing on it being X = XXX and Z = rZZZ. Now, since
&0, (X)) (@ (Z)) are comprised of products of rXXX (rZZ7),
each of which now acts as an effective Pauli on each ver-
tex, the operators reduce to a product of X (Z) around the
eight vertices of the blue cubes:

H5™ = (@(X) +@(2)),
o5, (14)

®b(X) = H XU-,

velD (15)
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@ (Z) = ] Z..
velD (16)

This is simply the checkerboard model [29] defined on the
cubic superlattice.

At round 1, we measure gXX on the green links. This
set of measurements includes the &, (X) stabilizer of the
previous round (which is therefore updated and stored
for determining the syndrome; see Table II) and also
adds a new stabilizer 53,(Z) formed from the checks of
the previous round. The Hamiltonian formed from the
instantaneous stabilizer group is then

Hy=JY gXX;+ ) og(X)+ Y &(2).
‘ s (17)

For J > 1, the gXX checks fuse the two qubits on each
green edge of the cubic lattice into a single qubit per edge,
with effective Pauli operators X = X/ = IX and Z = ZZ.
The effective model is

HT = "oy(X) + > d(2).

T (18)
OQ(X) = H Xﬁv

eco (19)
@(Z) =[] Z..

el (20)

namely, the ¢,(X) stabilizers are the star stabilizers and
the 68(Z) are the cube stabilizers of the X-cube model
[29]. There might exist a link between the emergence of
the X-cube model subsequent to the checkerboard model
and the fact that two coupled copies of an X-cube model
are connected to the checkerboard model by an adiabatic
deformation [30].

At round 2, we measure »ZZZ, after which the checks of
the previous round form the stabilizer 62, (X ') and the stabi-
lizer &, (Z) is contained in the newly measured checks (and
is thus used for determining the syndrome). The effective
Hamiltonian is then

Hy=1JY) (rZZZ+y(X))+ ) (@ (X) +E:(2)),
&,
21)

which is again the checkerboard model but now on the red
cubes.

This concludes a period’s worth of measurements
and upon repeating the measurement sequence, a simi-
lar cycling continues. To summarize, the embedded code
alternates between two types of type-I fracton: the checker-
board model centered on b(r) cubic sublattice and the
X-cube model. Additionally, an X <> Z mapping occurs
every round and the period of the code is 6.

We note in passing that the current protocol can be
modified by measuring a periodic sequence that alternates
between (rXXX, gXX) and (bZZZ, gZZ). This increases
the rank of the ISG and fuses the two qubits on each edge
of the cubic lattice into one effective qubit at each round.
This protocol is equivalent to repetitive measurements of
the three-body X and Z check operators of the subsystem
toric code proposed in Ref. [31].

A. Relation to subsystem codes

The conclusion about the relation between our 3D con-
struction and subsystem codes is the same as in 2D. First,
the stabilizer of the gauge group generated by all checks
in the protocol contains only the subsystem symmetries
shared by all ISGs of the Floquet code (i.e., the subsys-
tem symmetries shared by the checkerboard and X-cube
fracton orders). These are products of X and Z operators
on planes formed by green checks. At each round, these
operators are either contained in the last measured checks
or in the product of one of the types of the volume stabi-
lizers. Some of these operators become “inactive” logicals,
which we discuss in Sec. 111 B.

Similarly to the CSS honeycomb code, gauge fixing
the subsystem code comprised of all checks does not pro-
vide any useful information for construction of 3D Floquet
code.

Consider further the following gauge groups for the k-
sliding subsystem codes (noting that £ = 1 is trivial):

(a) k= 2. The relevant gauge group is
G, = (XXX ,gZ7) . (22)

The center of this gauge group Z(G,) contains
<@;-(Z),@b(X ) [ DptanesX ,]_[planesZ> along with a
possible subextensive number of stringlike or plane-

like operators.
(b) k = 3. The relevant gauge group is

Gy = (rXXX,gZZ, bXXX) . (23)

The local stabilizers contained in Z(Gz) are
<@;~(X 2,385 (X)), [ ToanesX » leanesZ> along with a
subextensive number of stringlike or planelike oper-
ators again.

(c) It is clear that the center will be a group that is not
larger than that of Z(G3) upon further adding checks
to the gauge group at £ > 4.
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Therefore, we again conclude that there is no single sliding
subsystem code the stabilizer group of which contains the
set of plaquettes of any ISG for the 3D Floquet code.

B. Conservation of logical information

Consider the decorated cubic lattice on a 7> torus of
size 2L, x 2L, x 2L., where the even-sized linear dimen-
sions are required for 3-colorability. The effective X-cube
model on the corresponding superlattice has a ground-state
degeneracy of 4(L, + L, + L.) — 3, while that of the effec-
tive checkerboard model is 4(L; + L, + L.) — 6. Thus,
there seems to be a discrepancy in the number of logical
operators in the corresponding rounds. The resolution to
this puzzle is a feature not present in the 2D code; there are
three logical operators of the static X-cube model that are
read out or scrambled by the measurement schedule and,
therefore, do not belong to the set of logical qubits in the
Floquet code. We call such logical qubits and the respec-
tive operators inactive logical qubits and operators. In
contrast, the remaining 4(L, + L, + L.) — 6 logical qubits
of the static code that store information in the Floquet code
are called active. In fact, the inactive logical operators that
are read out or measured are among the symmetries in the
center of the subsystem code G.

To see what happens explicitly, we first start from round
1 ( = 1 mod 6), where the ISG corresponds to the X-cube
model. Let us recall how to count the logical operators
for the corresponding instantaneous effective code. Given
a straight line along the effective cubic lattice, the prod-
uct of Z, on all edges along the line commutes with the
X-cube stabilizers. This physically corresponds to tunnel-
ing a lineon excitation around the torus. Moreover, the Z
strings applied along different parallel lines are distinct,
since they are not related by a product of stabilizers. How-
ever, there is a relation between certain products of such
logical operators. Taking a product of four adjacent par-
allel lines that form edges of a cube is equal to a product
of the enclosed &3(Z) stabilizers. For concreteness, let us
pick logical operators formed by products along the lines in
the z direction. There are (2L,)(2L,) such lines. There are
also (2L, — 1)(2L, — 1) relations imposed on these lines,
one for each square in the x-y plane minus the condition
that the product of all the cubes in a plane equals iden-
tity. Altogether, the z-lineons give rise to (2L,)(2L,) —
(2L, — )(2L, — 1) = 2L, + 2L, — 1 independent Z logi-
cals [32]. Summing over the other two directions, we find
4(Ly + L, + L.) — 3 logical Z operators.

Now, consider the logical operators formed by a prod-
uct of all Z = gZ7 along all edges in a fixed x-y plane.
Measuring rZZZ in the next round » = 2, we note that such
product of gZZ in the plane is equivalent to the product of
all ©4(Z) in the same plane (see the example in Fig. 6).
Moreover, each diamond is a product of two rZZZ opera-
tors. It therefore follows that this particular logical operator

of the X-cube model is measured in the next round, r = 2,
and is therefore inactive. Similarly, the product of gZZ
along all edges in one fixed xz and one fixed yz plane is also
measured. This accounts for the three inactive Z logicals.
Next, let us similarly find the active X -logical opera-
tors, i.e., those that commute with the measurements of
the next round, » = 2. Define a product of »XXX along a
straight line. Suppose that the line points in the z direction,
which tunnels a lineon, which is a bound state of an x-z
planon and a y-z planon [33]. Like the Z-type lincons, there
is a similar constraint on the X -type lineons: the product
of tunneling four adjacent lineons forming the edges of a
cube can be decomposed into a product of stabilizers and
the product of tunneling all lineons for a fixed plane is the
identity. The importance of defining the bound states is that
the local hopping operators come in pairs and hence they
commute with »ZZZ checks of the next round, which is
the necessary condition for them being active. This gives
the total of 4(L, + L, + L.) — 6 active X logicals. We now
ask what the remaining three logical operators are that anti-
commute with the checks of round 2. Fixing a direction,
say y, consider the product of X operators that hops a
planon (which is a bound state of two fractons) across the
y direction, as shown in Fig. 6. It is clear that this operator
anticommutes with one of the »ZZZ operators. Moreover,
this operator is unique up to stabilizers and the active X -
logical operators. Lastly, it anticommutes the inactive Z
logical operators in the x-y plane. By rotational symmetry,
we conclude that there are three such inactive X logicals.
Finally, let us confirm that the active logical qubits
indeed survive and are transferred to logical qubits of
round 2, which is the checkerboard model. The active
X logical operators are products of bXXX, which is the
effective qubit X of round r = 2. They therefore transfer
faithfully to the X logical operators of the checkerboard.
As for the active Z logical operators defined as products
of gZZ along a line, using the »ZZZ checks of round 2,

(X
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AVAVAVAN
VAV“!’AV
VAVAY
NV

A

FIG. 6. A fragment of the cubic superlattice of rounds » = 1
mod 6 with realization of the X-cube model XC(g). The qubits
are fused by the gXX checks of rounds » = 1 mod 6 into a single
effective qubit per edge. (a),(b) On a 3-torus, examples of the
inactive logical (a) Z and (b) X operators are shown. There is a
total of three such independent operators for each cycle around
the torus.
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we find that their strings are equivalent to strings of bZZZ
operators,

which is the product of the effective local Z operators of
round 2. They therefore faithfully transport into the logical
operators of the checkerboard model.

Going from round » = 2 to » = 3, we see that the ISG is
defined on the same lattice. We find that the Z(X') logical
operators of CB(r) in round » = 2 become Z(X) logical
operators of CB(r), which equate to X (Z) logical operators
of CB(7) in round 3. We hence conclude that the X and Z
logical operators are swapped.

Finally, from round » = 3 to » = 4, the logical informa-
tion is transferred from a product of bXXX to a product of
gXX using the measurements rXXX :

Thus, the logical operators of the checkerboard model
embed into the active logical operators of the X-cube
model in the next step. The next three rounds, » = 5,6, 7,
proceed identically but with X and Z swapped.

Let us now discuss the automorphism occurring in the
model. The obvious one that exchanges between mag-
netic and electric sectors is seen from comparing CB(7)
and CB(») in rounds 2 and 3 and comparing CB(b) and
CB(b) in rounds 5 and 6, where the roles of the X and
Z logical operators are swapped. Therefore, the automor-
phism between these codes occurs in the same sense as
in 2D Floquet code, up to a layer of Hadamard gates.
Comparing XC(g) and XC(g) in rounds 1 and 4 is more
subtle. Although the active logical operators get swapped,
this does not produce a well-defined automorphism for the
X-cube model. The inactive logical operators cannot be
permuted, since they have different spatial support. There-
fore, transfer of the logical information from electric to
magnetic sectors given by the protocol does not preserve
the fusion rules for the excitations. It would be interest-
ing to examine more generally the connection between
the existence of inactive logical qubits and the absence
of an automorphism in Floquet codes during certain
rounds.

C. Decoders and threshold

The error correction in 3D Floquet fracton codes is
remarkably similar to that in 2D CSS honeycomb codes,
mainly because the former is a natural generalization of
the latter. The details of the error syndromes looks differ-
ent, as we discuss in more detail below, but the decoder
on a (3+1)-dimensional space-time lattice that is a gener-
alization of the (2+1)-dimensional case considered earlier
will perform well and will have a threshold by an anal-
ogous argument. Moreover, if analyzed using statistical-
mechanics mappings [28,34], larger thresholds are likely
to be facilitated due to the higher dimensionality.

Considering the same error model as before, where X
and Z errors occur with probability p, we only need to con-
sider two distinct times for the errors to occur and the rest
of the behavior of the syndromes can be deduced by sym-
metry. We also find that the syndromes for the errors that
have occurred after even (odd) rounds are measured at odd
(even) rounds only. This means that the errors after even
and odd time steps can be corrected separately.

Consider first a Z error occurring at a single qubit right
after round 0. One of the gXX checks of round 1 will be
affected, as well as two cubes &7, (X) inferred using this
check, which can then be compared with the stored value
and recorded as a syndrome. This allows us to determine
the green link on which the error occurred. Then, on step 3,
rXXX is measured and two triangles on the same octahe-
dron will have their values flipped. The three (redundant)
©¢(X) plaquettes belonging to the same octahedron can
be inferred by combining pairs of triangles belonging to
this octahedron. These stabilizers can be compared with
the values that have been stored earlier and the compari-
son uniquely determines the diagonal of the octahedron on
which the fault occurs. Together with knowing the green
link where the error occurs, this allows us to unambigu-
ously determine the location of the error. However, the
same syndrome is found when the error instead occurs
on two complementary qubits belonging to the same blue
triangle. In this case, we can still assume a (more proba-
ble) single-qubit error and correct for it. If the actual error
has occurred on the two complementary qubits, the total
error will become a bZZZ operator, which is inconsequen-
tial, because it corresponds to the check of the round = 0
after which the error has occurred. Similarly to the 2D case,
these kinds of check errors do not affect the logical state.

Errors occurring after round 3n + 2 lead to a syndrome
that is qualitatively similar to the one discussed above. A
qualitatively different type of error syndrome is found for
errors that occur after rounds » = 3n + 1. Without loss of
generality, consider an X single-qubit error occurring after
round 7 = 1. In round » = 2, two of the rZZZ checks will
be flipped and two cubes 67,(Z) sharing an edge the val-
ues of which are inferred from these checks will be flipped
and stored as a syndrome. Similarly, a pair of cubes £2,.(Z)
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will be flipped in » = 4. The syndromes at both rounds
r =2 and r = 4 allow us to determine the location of the
flipped edge ¢ and the additional redundancy can be used
for error correction that is more robust against the mea-
surement outcome errors. The application of a correcting
single-qubit Pauli-X gate to any of the qubits on this edge
will either correct the error or apply an XX to the entire
edge. In the latter case, this will be removed once the
round that remeasures this check occurs. A pair of errors
on two neighboring qubits belonging to the same octahe-
dron produces the same syndrome as the pair of errors on
the other two qubits belonging to the same ¢,-plaquette.
Nevertheless, this error can still be corrected up to an
inconsequential edge error on a green link by applying a
Pauli operator on any of the qubits not belonging to this
diamond.

Thus, the syndromes will occur on the space-time lattice
that is formed by the centers of cubic volumes of the same
color at t = (mod 3) and # = 4+ 2 (mod 3) and by the
vertices of the cubic lattice at = r + 1 (mod 3). At times
t =r+ 1, the measured syndrome can take one of eight
values, indicating which of the three ¢, square plaquettes
have (or have not) been violated.

The mapping of this problem onto a graph-matching
problem and the design of an efficient minimum-weight
decoder based on the known syndromes is an involved task
that we leave for future work.

IV. DYNAMIC TREE CODES

So far, we have considered CSS versions of Floquet
codes in both two and three dimensions. Both of these
codes have robust error-correcting properties but fall out-
side of the subsystem-code formalism. In this section, we
further generalize these results by introducing a broader
family of dynamic codes where the measurement sequence
need not beperiodic. Surprisingly, under certain constraints
on correlated randomness of the measurements, this ran-
dom code can correct arbitrary single-qubit Pauli errors.
This construction bears a relation to some classes of mon-
itored random-circuit codes and random unitary circuits
[35-42], in which achieving practical quantum error cor-
rection has been a long-standing challenge [38—42]. As
of now, it is unclear whether random circuits, including
those considered in Refs. [43,44], consisting of randomly
applied checks of the honeycomb code, can possess a finite
threshold.

We call the proposed random codes dynamic tree codes
because a given code carves out a path on a configura-
tion space of allowed checks that forms a tree. Dynamic
tree codes can be viewed as the first instance of monitored
random-circuit codes that are capable of correcting arbi-
trary single-qubit Pauli errors, though they are restricted to
correlated randomness and the absence of spatial random-
ness. Practically speaking, these codes might be useful if

the error model itself is dynamical: e.g., it could adapt the
error-correction procedure to biased error models and to
adversarial time-dependent error models.

A. Random-flavor Floquet codes and switching
between CSS honeycomb code and honeycomb code

We start with the 2D case. Let us show that if the colors
of the checks follow an rgb sequence but the Pauli flavors
are randomized such that the flavors of two consecutive
rounds are different, the resulting random-flavor Floquet
code will be error correcting and will have a threshold. The
condition on flavors of two consecutive rounds being dif-
ferent ensures that the checks of the two rounds always
anticommute and the rank of the ISG stays the same.

Without loss of generality, we can consider a code
shown in Table III (considering only four arbitrary rounds
is sufficient for the argument), where £, € {X, Y, Z} denotes
the flavor of the given round r, f,; # f;, and the colors
of the checks follow a rgbrgb - - - sequence (or the sym-
metric version thereof, rbgrbg - - -). We can also assume
that the code has been properly initialized far in the past.
By inspection, we see that this code realizes a sequence of
toric codes by analogy with 2D CSS and honeycomb codes
on a superlattice corresponding to the color of the current
round; the ISG at each round is shown in the table. From
the logical strings of the code shown in Table 111, we see
that the condition f.; # f, and c(r + 1) # c(r) is indeed
sufficient for conserving logical information between the
rounds, because it ensures that we never measure logical
operators from round to round.

Let us now show that the random-flavor Floquet code
can correct arbitrary single-qubit Pauli errors. The error
after each round r can be expanded in the basis of Pauli
flavors f. and f.;; of the current and the next rounds,
respectively. The f,.; component of the error can be com-
muted past the checks of round » + 1 and only the error of
the flavor of the current round f; needs to be considered.
Therefore, we again need only consider the error model
where single-qubit Pauli errors have the flavor of the last
round.

Without loss of generality, we can consider an fy-Pauli
error that occurred after round » = 0. Let us show that we
can detect the red edge where this error has occurred in
space-time in our random-flavor Floquet code shown in
Table III. This is sufficient for being able to correct the
error: as before, we only need to apply the f; Pauli opera-
tor on any of the qubits of the edge. If we guess the wrong
qubit, the result is the two-Pauli operator equivalent to the
check of the last round, which is an inconsequential error.

At round » = 0, prior to the error, the values of plaque-
ttes P, (f1) and Py(f_1) are known. If we remeasure the
values of plaquettes P, (f;) and Py(f_) after the error has
occurred, the change of sign of these plaquettes will allow
us to determine the edge where the error has occurred,
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TABLE IIL

The random-flavor Floquet code, where the checks follow a fixed color sequence rgb but the flavors f, in each round r

are randomized (with the constraint that £, | # f,). The syndromes that are obtained in rounds 1 and 3 and are listed in the “Syndrome”
column. We only show the syndromes obtained in odd rounds, which are used to detect the error after even rounds, and we omit listing
the syndromes at even rounds for clarity. If we assume that a single-qubit Pauli error of flavor fy has occurred after round » = 0, the
listed syndromes allow us to unambiguously determine the red edge where the error has occurred.

r ISG

Measure Plaquettes Syndrome m e my
0 ik P PG P | gfe  rhfi b
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2 bah PR PR Pulf) L b bAG ghh
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which in this case is a red edge between these two
plaquettes. Referring to Table III, we see that, indeed,
the P,(f_1) and P, (f;) plaquettes are immediately remea-
sured at rounds » = 1 and » = 3, respectively, yielding the
needed syndrome changes. This allows us to detect and
correct single-qubit errors. Additionally, note that the loca-
tions and the time stamps of the errors are the same as in
the CSS honeycomb code and in the honeycomb code.

Random-flavor Floquet codes are fault tolerant by a
similar argument to that for the CSS honeycomb and the
honeycomb codes. If the ISG and syndrome are book-kept
similarly to how it is shown in Table III, it is clear that the
plaquette occurring for the first time at round » will be kept
in the code until round » + 3, when it will be updated. The
new value of the plaquette will be able to detect errors that
have occurred after rounds » and » + 2. This is the same
syndrome-error relation as in the codes that have been
studied earlier and the decoding procedure is analogous to
that of the honeycomb code.

One consequence of the existence of error-correcting
random-flavor Floquet codes is that we can switch between
the protocols for the honeycomb code and the CSS honey-
comb code fault tolerantly, so long as the color sequence
of the checks remains unperturbed. Therefore, this shows
that the CSS honeycomb code and the honeycomb code are
compatible, which might be useful for the future design of
error-correcting codes with time-dependent error models.

B. PFA construction of error-correcting dynamic
codes

Next, we address the question of whether it is possi-
ble to introduce more randomness into the Floquet code
protocol while preserving its ability to detect and correct
errors. We propose a construction that uses what we call a
T-probabilistic finite automaton (7-PFA). If initialized in a
toric code ground state, the automaton chooses the flavor

and color of each check at random, realizing a toric code
at each round, and by design guarantees that any single-
qubit Pauli error will be detected no later than 7T steps
after its occurrence and is thus correctable (we use the
same error model as earlier in the text). If this protocol
is initialized in an arbitrary state, it will prepare the toric
code model no later than after T steps and will continue
to function as described, with a length-7 window for error
detection.

The construction is outlined below and is exemplified in
Fig. 7. In the discussion below, we assume that the protocol
is initialized in a toric code state corresponding to the first
check of the protocol.

The 7-PFA has memory containing 7 arrays, each con-
sisting of up to four plaquettes with status either “not
remeasured” or “remeasured.” When a new check at
round » = n + 1 is measured, four plaquettes with “not-
remeasured” status are added to the corresponding array.
Two of the plaquettes are elements of the current ISG with
flavors that are not the same as the flavor f,,; of the cur-
rent check. The other two are equivalent to the first two
plaquettes up to checks of the current round. The mem-
ory is designed in this way because if an error occurs after
round » = n 4 1, remeasuring any two of these four pla-
quettes of different colors would be sufficient to detect the
edge where the error has occurred and its time stamp. We
keep these plaquettes in memory in order to ensure that
the possible syndrome for a single-qubit Pauli error can be
tracked and recorded.

The update rules for 7-PFA after » = n are as follows:

1. Pick the check of the next round from (rXX,rYY,
rZZ,eXX,gYY,8ZZ,bXX ,bYY,bZZ7):.

(a) Eliminate the checks that have the same color or
flavor as the past round » = n — 1 (this guaran-
tees that the rank of the ISG stays the same).
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r n=2 n=T-1 n="T n=T+1

0 rXX Py(Z) rX X Py(Z)

1 bZ7Z P,(Y) (Y74 P,Y) vZ7Z P,Y)

2 g¥Y F(X)P.(2) P(X) Py(2) gYY Py(Z) gYY gY}
T-1 gYY PuX)P.(Z)P(X) P(Z) gy P.(X) gYY P(X)

T r XX B(Y) P(Z)P)(Y) Py (2) rXX O PB(Y)
T+1 WYY P(X) P(Z)P(X) Py(Z)

FIG. 7. An example of a random sequence of measurements using the 7-PFA scheme discussed in Sec. IV B. The PFA stores a
running window containing 7 arrays of cells (apart from during the initialization rounds between 1 and 7). We assume that the code
has been properly initialized in a toric code state at » = 0. Here, » counts the rounds in the measurement history and » is the current
round in the PFA operation. The arrays correspond to the 7 memory cells of the 7-PFA. In each array, the darkened plaquette label
indicates a plaquette that needs to be remeasured in order to infer the syndrome corresponding to a possible error on the plaquette.
Light-gray plaquettes that are not crossed out indicate that the plaquette has been already remeasured. We keep the plaquettes that are
redundant up to the checks of the current round for completeness. Light-gray plaquettes that are crossed out have been randomized
before they could have been remeasured. Each new check is chosen by the PFA based on the memory of checks and plaquettes,
corresponding to the set of update rules of the PFA denoted by operator R described in the main text. In short, the new check is
chosen such that it differs in color and flavor from the previous check and such that it does not randomize any of the “not-remeasured”
(darkened) plaquettes in the memory. Furthermore, checks must also be chosen such that the measurement of all syndromes from more
than T steps in the past is completed; so long as this holds true, it suffices for the PFA to store memory from the past 7 rounds and for

the error to be undetected only for up to 7 rounds.

(b) Eliminate checks that randomize plaquettes that
are stored in memory with “not-remeasured”
status.

(c) If in memory cell with » =n — T there is a
“not-remeasured” plaquette, choose only from
checks that remeasure this plaquette.

(d) Otherwise, pick a random check from the
remaining options.

2. Update the memory based on the new check.

(a) Scan the memory for “not-remeasured” plaque-
ttes. For each such plaquette, change the status
to “remeasured” if the value of this plaquette
can be inferred based on the current check and
the interim checks.

(b) Erase any plaquettes in the memory that are
redundant with those already remeasured.

(c) Erase any plaquettes that have been randomized
by the new check.

(d) Erase the array at round » = n — T (as the syn-
drome measurement has been concluded for this
round).

(e) Create a new array with time stamp » =n +
1 that holds four “syndrome” plaquettes with
“not-remeasured” status.

The above rules implicitly use the fact that whenever
the new check is measured, one of the plaquettes of the
previous round is updated. This is guaranteed because

subsequent checks are noncommuting. For the same rea-
son, one of the two plaquettes of the other color has to be
randomized. Thus, we can verify that for rule 1(c), there
will indeed be only one plaquette with “not-remeasured”
status at » = n — 7. Additionally, we find by explicit ver-
ification that it is always possible to find a check that
satisfies the requirement in 1(c). Similarly, if step 1(d)
is reached, one can see that there will be at least two
choices for checks. Thus, the algorithm cannot halt due to
unsatisfiability of the requirements of the update rules.

Altogether, the protocol based on the 7-PFA guarantees
that for a single-qubit Pauli error, the first syndrome will be
measured immediately after the error occurs, while the sec-
ond one will be measured no later than 7 rounds afterward.
This allows us to determine the space-time location of the
faulty edge and correct the error. In fact, additional infor-
mation about errors is contained in checks because there
are multiple ways to obtain the second syndrome from the
measured checks (a plaquette can be formed in multiple
ways by checks taken at various pairs of times; this applies,
e.g., to the last update of P,(Z) in Fig. 7). Together with
the correctability of single-qubit errors, this argues for the
likelihood of fault tolerance of either this protocol or at
least some of its subclasses. It would be interesting to see
if there exists an efficient decoder for dynamic tree codes
generated by 7-PFA and benchmark its performance.

One might wonder if there exist nontrivial examples of
such dynamic tree codes. In fact, random-flavor Floquet
codes are the only solution for 7' = 3, which, as we argue
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above, comprise a class of fault-tolerant dynamic codes.
Another example concerns codes that follow the color
sequence equivalent to (7fif1) [(2f22) (BAA)] (gff2) ="
with s + k£ < T, or symmetric versions thereof. An illus-
tration of such a code is shown in Fig. 7.

C. 3D generalization

It is a straightforward but cumbersome task to con-
firm that the random-flavor Floquet code in 3D, i.e., one
that follows the rgbbgr-like color sequence with consecu-
tive checks anticommuting, corrects all single-qubit Pauli
errors. The time signatures of the syndrome measurements
are altered depending on the flavor sequence, however,
which might affect the fault-tolerance properties of the
code. Similarly, we can verify that a 7-PFA approach can,
in principle, be generalized to 3D. Designing an efficient
decoder for the 3D fracton Floquet code and 3D dynamic
codes and analyzing their fault tolerance properties would
require a more involved analysis, so we leave this to a
future work.

V. DISCUSSION AND CONCLUSIONS

In this paper, we present several new dynamic codes in
two and three dimensions that cannot be described under
the subsystem-code framework. One immediately impor-
tant direction would be to benchmark these codes and
compare their performance to the honeycomb code with
various error models. It should be possible to extend our
analysis to finite Abelian groups, i.e., the case when the
qubits are Zy variables. Progress on this question has been
made for the honeycomb code [45] and it would be useful
to see if there are major qualitative differences for the CSS
honeycomb code.

Our protocols in 3D involve three-body measurements
and it would be beneficial to find alternative constructions
where measurements involve two-body operators while
preserving the error-correcting properties of the fracton
Floquet codes. We find a preparation protocol for Haah’s
cubic code (shown in Appendix B) using two-body mea-
surements; however, the construction of Floquet codes for
type-11 fractons would be very interesting. Furthermore,
fracton codes have recently been shown to have outstand-
ing optimal thresholds for error correction [34] with the
possibility of parallel error correction [46]. Therefore, it
would be interesting to rigorously benchmark the fracton
Floquet code.

Another interesting question is the relation between the
CSS honeycomb code and the e <> m automorphism code
from Ref. [21]. Furthermore, one might ask whether there
exists a unifying picture for dynamic tree codes and auto-
morphism codes from the perspective of adiabatic paths of
Hamiltonians, perhaps by utilizing the parent color-code
model.

Finally, the dynamic tree codes proposed in this paper,
especially the 7-PFA generated codes, present an interest-
ing way of constructing monitored random circuits using
correlated randomness. Understanding the robustness of
this error-correcting phase and generalizing the code to
a T-PFA construction that incorporates spatial nonunifor-
mity would be valuable pursuits. It would be curious to
prove fault tolerance of these monitored random-circuit
codes by mapping to models of statistical mechanics.

Note added 1.—Recently, we have become aware of
an upcoming work where 2D CSS honeycomb codes are
independently found from anyon condensation [27], which
provides a valuable framework for understanding Floquet
codes and also finds a numerical threshold for the code. We
have also learned of another forthcoming work [47] that
introduces a fracton Floquet code with a code space that
grows with the system size and a nonzero error threshold.

Note added 2.—In the independent work of Ref. [27],
the CSS honeycomb code has been discovered indepen-
dently and the threshold of approximately 0.3% has been
found numerically for a MWPM decoder for depolarizing
noise model (at the circuit level). We refer the reader to
this reference for a useful discussion of error correction for
this code and the effect of measurement errors.
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APPENDIX A: UNITARY CIRCUIT WITH
MEASUREMENTS FRAMEWORK

One difference between the honeycomb code and the
CSS honeycomb code is that the ISG of the former always
stays as a subgroup of a fixed subsystem code and the lat-
ter is not derivable from a subsystem code. Another way
of comparing these two codes might be by noting that
the layout of the measurements is the same in both codes
and, thus, there must exist a depth-1 unitary circuit relat-
ing the codes at a given time instance. This does not mean
that there is an equivalence between the codes, because
the unitary circuit is different at each time. In particular,
measuring XX on a given link is equivalent to applying
the unitary HH on that link, then measuring ZZ, and then
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FIG. 8. The construction of Haah’s code.

applying HH again. Similarly, measuring YY on a given
link is equivalent to applying the unitary (SH) ® (SH),
measuring ZZ, and then applying (HST) ® (HS").

Therefore, we can reduce a Floquet code to measure-
ment of ZZ checks of the color of the given round inter-
spersed with a depth-1 unitary circuit. For the CSS honey-
comb code, we can verify that this depth-1 unitary circuit
at each iteration is

(AD)

Ucss = ®Hx,
X

where x indexes the coordinates of qubits on the lattice.
For the honeycomb code, the depth-1 unitaries change with
period 3. We define @) = (0,3/2) and a; = (3«/5/4,3/4)
and set the origin of the lattice to coincide with the bot-
tom of one of the vertical red checks. The correspondence
between the edge orientation and the check flavor is then

Py
z )
At the step when the red-colored checks are measured, it is

Unn, = ® U(x)

[[]SH, X = Xum,
H, xzxnm—i—(O,%),
H, x=xnm—|—<*/7§,0 ,
Ux) = HST, X =Xy, + «/E’ (A2)

HSH,

(
S, x=xmt(
(

I

r |S(r)

0 |¢{XX,¢ZZ on colored edges in figure

1 (a, ﬁ)Xle, (a,ﬂ)XQXQ, (’}/, 5)21Z1, (’7, 5)2222
pX1Xe, qZ1Z2, Haah’s code stabilizers

where x,,, = na; + ma,. At rounds when green and blue
checks are measured, the unitary layer is

@i (-(24)
Uiy = QU <x - (? %)) . (A3)

Thus, we see that the structure is quite different for the
two Floquet codes. The difference even in a depth-1 single-
qubit unitary layer can affect the threshold properties of a
code under different (biased) noise models [48—50]; there-
fore, it would be interesting to benchmark the code(s)
discussed here and compare their performance to that of
the honeycomb code. A classification scheme could exist
for dynamic codes based on the algebra of the check
operators, or based on the algebra of the depth-1 unitaries.

APPENDIX B: PREPARATION PROTOCOL FOR
HAAH’S CODE

This protocol prepares Haah’s code in two layers via
measuring two-qubit gauge checks. However, we are not
aware if it is possible to adapt this protocol in order to
make it dynamical. As in the checkerboard-model prepara-
tion, we divide each site of the square lattice into six sites,
forming an octahedron. Each site on the decorated lattice
now hosts two spins, of types “1” and “2.”

We draw the configuration of links formed in Fig. 8.
Since there are two links coming out of each site, each
link corresponds to a two-spin interaction. The prepara-
tion protocol is therefore shown in Fig. 8. The notation ¢
corresponds to the links labeled in the figure, where we
assume that orange and pink links act on qubits of type
“1,” and blue and green links act on qubits of type “2.” «,
B, v, and § correspond to the labeled edges, while p and
q correspond to labeled vertices. The subscripts 1 and 2
correspond to the flavors of the spins at each site.

Note that per octahedron there are initially 12 qubits.
The checks of the round » = 2, namely C{Xl,zXl,z, ,BXl ,2X1 2
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and yZ12Z12, 821277, force there to be four effective
qubits left. Next, two of these qubits are eliminated by
measuring pX1 X, and gZ,Z,. Additionally, after perform-
ing the checks of this round, the edge measurements of
round » = 1 form Haah’s code stabilizers.
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