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Long-range entanglement—the backbone of topologically ordered states—cannot be created in finite
time using local unitary circuits, or, equivalently, adiabatic state preparation. Recently, it has come to
light that single-site measurements provide a loophole, allowing for finite-time state preparation in certain
cases. Here we show how this observation imposes a complexity hierarchy on long-range entangled states
based on the minimal number of measurement layers required to create the state, which we call “shots.”
First, similar to Abelian stabilizer states, we construct single-shot protocols for creating any non-Abelian
quantum double of a group with nilpotency class 2 (such as D4 or Qg). We show that after the measure-
ment, the wave function always collapses into the desired non-Abelian topological order, conditional on
recording the measurement outcome. Moreover, the clean quantum double ground state can be determin-
istically prepared via feedforward—gates that depend on the measurement outcomes. Second, we provide
the first constructive proof that a finite number of shots can implement the Kramers-Wannier duality trans-
formation (i.e., the gauging map) for any solvable symmetry group. As a special case, this gives an explicit
protocol to prepare twisted quantum doubles for all solvable groups. Third, we argue that certain topolog-
ical orders, such as nonsolvable quantum doubles or Fibonacci anyons, define nontrivial phases of matter
under the equivalence class of finite-depth unitaries and measurement, which cannot be prepared by any
finite number of shots. Moreover, we explore the consequences of allowing gates to have exponentially
small tails, which enables, for example, the preparation of any Abelian anyon theory, including chiral
ones. This hierarchy paints a new picture of the landscape of long-range entangled states, with practical

implications for quantum simulators.
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I. INTRODUCTION

A fundamental notion emerging from decades of
research into the ground states of many-body quantum sys-
tems is that of long-range entanglement (LRE) [1-7]. A
thermodynamically large quantum state is said to exhibit
LRE if it cannot be obtained by applying a finite-depth
local unitary (FDLU) to a product state, which can intu-
itively be envisioned as a “brick layer” of local gates.
Sometimes, one allows the gates in the circuit to have
exponentially decaying tails (we refer to this as a quasi-
FDLU), which are the unitary transformations generated
by time evolving with a local Hamiltonian. States related
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by such quasi-FDLU circuits, at least in the absence of
symmetries, closely parallel the notion of a single phase
of matter. Hence, LRE states represent distinct phases and
cannot be obtained by adiabatic state preparation [8]. This
is an unfortunate situation for the burgeoning field of quan-
tum simulators where the circuit depth is a costly resource
[9], since the most interesting and powerful states (e.g.,
for quantum computation purposes) are exactly those with
LRE.

However, in addition to applying quantum gates, quan-
tum simulators and computers can perform site-resolved
measurements. In fact, it is known that measurements
allow certain LRE states to be efficiently prepared in finite
time, independent of the system size [10—20]. More gener-
ally, measurements have been known to reduce complexity
of certain computational problems and its precise lim-
its remain an active front of exploration [21-26]. This
suggests that it is worthwhile to consider a coarser equiv-
alence than usual for phases of matter. Indeed, Piroli et al.
[14] recently introduced an equivalence class for states
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obtainable using local unitaries of fixed depth and a
sequential (and thus linear depth) number of local oper-
ations and classical communication, which includes mea-
surements.

In contrast, we instead consider measurement as a scarce
resource in this work. We do not place a hard cutoff on the
depth of the quantum circuit as long as it is finite (i.e., does
not scale with the system size), and instead ask what states
are obtainable using £ rounds of single-site measurements
interspersed with finite-depth unitaries. Note that the case
£ > 1 typically requires feedforward [27]: a FDLU that can
depend on the measurement outcomes. We denote ¢ as the
number of “shots” we need to prepare the state.

Exploring the classification of quantum states with
respect to such a number of shots has at least two important
consequences. First, it gives a new conceptual and analytic
tool to organize and understand interesting emergent prop-
erties of many-body quantum states. For this particular
problem, using measurement as a scarce resource further
organizes the already rich classification of LRE into a hier-
archy of states based on the amount of resources needed
to prepare it. Second, asking for the minimal number of
shots is especially timely for the preparation of such states
in noisy intermediate-scale quantum devices [9]. Although
performing midcircuit measurements are now possible, an
unavoidable overhead is the fact that the protocols to pre-
pare LRE states require the ability to adapt the circuit
dynamically based on past measurement outcomes, a tech-
nology in active development [28—31]. Thus, minimizing
the number of midcircuit measurements ¢ and feedforward
can potentially lead to preparing states with higher fidelity.

Our work reveals a new hierarchy on quantum states,
of which we give an example in Fig. 1. In the largest red
box, the number of dotted lines surrounding a particular
state denotes the number of shots required in order to cre-
ate the state from a product state. For example, the toric
code and double semion, two of the simplest examples of
Abelian topological order, can be prepared in one shot,
while the S3 quantum double, an example of a non-Abelian
topological order, requires two shots. A natural conjecture
is that to move from Abelian to non-Abelian topological
orders, multishot protocols are essential. Surprisingly, this
is not the case. A family of non-Abelian topological orders
can be created with just a (carefully designed) single-shot
protocol, like their Abelian counterparts. A recent exam-
ple was given for the quantum double of D, (the dihedral
group of eight elements), with realistic gates amenable to
quantum processors [20]. In this work, we provide a gener-
alized protocol to prepare quantum doubles for any group
of nilpotence class 2, which includes, for example, D, and
Qg (the quaternion group), but not S; (the permutation
group on a set of three elements).

On the other hand, we argue that there are certain phases
of matter that are not obtainable by a finite number of
shots. We substantiate this for the quantum double of
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FIG. 1. Including measurements induces a hierarchy on the
equivalence relation between topological orders. Boxes are long-
range entangled states that cannot be obtained from a product
state by a finite-depth circuit [the topological order (TO) for
a gauge group G refers to the quantum double D(G)]. How-
ever, dashed lines indicate that they can be obtained by using
a layer of measurements and feedforward; the number of dashed
lines equals the number of necessary shots. A dash-dot line indi-
cates the need for a quasi-FDLU rather than strictly local gates.
Finally, solid (red) lines cannot be crossed by any finite number
of measurement layers; these define nontrivial measurement-
equivalent phases of matter (red box). We argue that Fib is such
an example, and similarly for nonsolvable groups, with represen-
tatives for their measurement-equivalent phases being given by
the quantum doubles of perfect centerless groups (e.g., 4, with
n>5).

nonsolvable groups, and also the Fibonacci topological
order. In addition to being unreachable from a prod-
uct state, certain nonsolvable group quantum doubles are
also unreachable from other nonsolvable groups. This
motivates us to introduce the notion of a measurement-
equivalent phase, where in this coarser definition, two
states are in the same phase (or equivalence class) if
they are related to each other by a finite number of
shots. Restricting to quantum double of finite groups, we
propose a classification of such measurement-equivalent
phases, shown as red boxes in Fig. 1. Each measurement-
equivalent phase can be labeled by the quantum double of
a perfect centerless group (with the solvable case corre-
sponding to the trivial group). Moreover, Fibonacci anyon
theory also defines a nontrivial measurement-equivalent
phase.

In addition to the hierarchy on states (in a many-
body Hilbert space), we also present a hierarchy on maps
(i.e., linear functions between many-body Hilbert spaces).
Indeed, similarly to LRE states, there are certain maps
of interest that cannot be written as a FDLU. Two cele-
brated examples are the Kramers-Wannier (KW) [32—42]
and Jordan-Wigner (JW) [43—51] transformations. In par-
ticular, we show that the Kramers-Wannier duality trans-
formation of any solvable group G can be constructed from
a FDLU circuit with a finite number of shots. Here, the
number of shots required is given by the derived length /s
of the group, a quantity that measures how far the group is

020339-2



HIERARCHY OF TOPOLOGICAL ORDER...

PRX QUANTUM 4, 020339 (2023)

from being Abelian. This generalizes a previous result that
was the Abelian case with [ = 1 [16].

Notably, the KW map can act on any G-symmetric state,
which need not be a fixed point state. In fact, the input state
can be critical or even long-range entangled. As a special
case, choosing the input state to be the symmetric prod-
uct state |[+)$ gives an explicit scheme to construct any
solvable quantum double. To the best of our knowledge,
this is the first general protocol for such states; indeed,
Tantivasadakarn et al. [16] gave a general nonconstructive
existence argument, and Bravyi ef al. [18] gave an explicit
construction for the special case where each extension is
split [52]. An important consequence of having an explicit
KW map is that this automatically gives a way to prepare
twisted quantum doubles for any solvable group (some of
which are not quantum doubles of any group). Namely, we
can first prepare a symmetry-protected topological (SPT)
state for any finite group G using the FDLU from group
cohomology given in Ref. [53] before applying the KW
map.

A. Terminology

Let us briefly disambiguate the term feedforward used
in the paper. We follow the definition that feedforward
refers to the fact that the measurement is performed in one
subsystem, and the adaptive circuit is performed in a dif-
ferent subsystem [54]. This contrasts feedback, where the
measurement and adaptive circuit act on the same subsys-
tem. Feedforward is prominent in quantum protocols such
as quantum teleportation [55,56]. Indeed, the implemen-
tation of the KW duality using measurement in Ref. [16]
is akin to teleportation; after applying a quantum circuit,
measurements are performed on the input subsystem, and
the resulting state on the output subsystem (up to gates
depending on the measurement outcome) is the KW dual
of the input state.

We note that the distinction between feedforward and
feedback is not necessarily a fundamental one: if a mea-
surement of an ancilla qubit is preceded by a unitary
gate, one can equally well consider the combined object
as a multibody measurement, in which case a subsequent
adaptive circuit could be seen as an example of feed-
back. However, we prefer to emphasize the fact that we
always perform single-site measurements, for two reasons:
(1) most measurement capabilities in quantum devices can
indeed only measure single qubits, and (ii) it makes mean-
ingful the notion of having a single (or multiple) layer
of measurement, since single-site measurements always
commute (see also note [27]).

Second, we clarify the possible scenarios one can per-
form after measurement.

(1) One discards the measurement outcome.

(2) One records the measurement outcome, but one
does not explicitly use it to correct the state.

(3) One uses the recorded measurement outcome to act
on the state

Scenario 1 gives rise to a mixed state, whereas we wish to
focus on pure states with long-range entanglement and/or
topological order. Scenario 3 corresponds to a feedforward
correction, which deterministically prepares the desired
state. On the other hand, we do not call scenario 2 feed-
forward because the measurement outcome is not used to
correct the state. Nevertheless, for the protocols we present
that require only one round of measurement, the topologi-
cal order can be prepared regardless of the measurement
outcome [57], as long as the results are not discarded.
More precisely, the statement is that, for any measurement
outcome, the resulting pure states will all be in the same
nontrivial topological phase. We note that in the case of
feedforward (scenario 3), we deterministically prepare the
clean state; it would be very interesting in future work to
explore the probabilistic case.

B. Outline

The sections of this paper are also structured accord-
ing to this very hierarchy, ordered by the hardness of their
preparation, and summarized in Table 1. In Sec. II, for
completeness, we briefly review states that can already be
prepared from a product state without the need of mea-
surements. These include not only short-range entangled
states, such as SPT phases, but also certain long-range
entangled states, such as the Kitaev chain, provided that we
use ancillas as resources. In Sec. III, we discuss states that
only require one shot to prepare. This includes (twisted)
Abelian quantum doubles, but also remarkably certain
non-Abelian topological states, and we give an explicit
protocol to construct all quantum doubles corresponding
to a group of nilpotence class 2. In Sec. IV, we give an
explicit protocol to implement the Kramers-Wannier map
for all solvable groups in a finite number of shots. This
gives a method to prepare all (twisted) quantum doubles
based on solvable groups. Highest in the hierarchy, in
Sec. V we argue that there exist states that cannot be pre-
pared by FDLU and a finite number of shots, namely, the
Fibonacci topological order, and the quantum doubles for
nonsolvable groups. Assuming this, we are able to derive
how all quantum doubles of finite groups are organized
into measurement-equivalent phases according to an asso-
ciated perfect centerless group. In Sec. VI we expand the
allowed local unitary evolution to also include quasilocal
ones (quasi-FDLU). We then reiterate through the hier-
archy, showing that all invertible states can be prepared
without measurement, and that certain chiral states, such
as the chiral Ising topological order, can be prepared in one
shot. We conclude in Sec. VII with open questions.
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TABLE 1.

Hierarchy of quantum states via unitaries and measurement. Implementable states and maps are stated according to the

allowed resources. With only FDLUs, one can only prepare SRE phases, while invertible phases can be prepared if ancillas are allowed.
With measurements, the topological order that one can prepare depends on how many measurement layers are allowed, while some
topological orders are not even preparable with a finite layer of measurements, and are not included in this table (see Fig. 1).

Resource Implementable states starting from the product state Implementable maps
FDLU All cohomology SPT phases FDLU
Quasi-FDLU All SPT phases ? (all nontranslation QCA?)

FDLU + ancillas

Quasi-FDLU + ancillas
FDLU

+ one measurement layer
+ two measurement layers
-+ n measurement layers

Quasi-FDLU

Kitaev chain, three-fermion Walker-Wang, ...

All invertible phases (p + ip, Es, ..
All (twisted) Abelian quantum doubles (TC, DS, ...)
All nil-2 quantum doubles (D4, Os, B(2,3),...)

All (twisted) metabelian quantum doubles (Ss, .. .)
All (twisted) solvable quantum doubles

All Abelian anyon theories (Laughlinv = 1/n,...)

Any QCA (translation, three-fermion
QCA,...)

) ?

Abelian KW
Jordan-Wigner in any dimension

KW for all metabelian groups
KW for all solvable groups

?

Kitaev’s 16-fold way (chiral Ising anyons, ...)

+ one measurement layer

I1. STATES OBTAINABLE WITHOUT
MEASUREMENT

Since measurements play a key role in the results of
this paper, it is equally important to review what states
can already be prepared without measurements. This is to
establish that measurement is a necessary ingredient for
the scalable preparation of states in the later sections of
this paper. Furthermore, these states will also serve as start-
ing points upon which measuring gives rise to interesting
states.

A. FDLU: SPT states

The first layer in the hierarchy (see Table I) natu-
rally consists of states obtained by FDLU. In the land-
scape of phases of matter, this can prepare SPT states
[3,4,53,58-09], i.e., states that can only be prepared with
FDLUEs if the individual gates violate certain “protecting”
symmetries. These states are of interest due to their entan-
glement structure, which in the case of cluster or graph
states (obtained by applying a circuit of controlled-Z gates)
can be used, e.g., for measurement-based quantum compu-
tation [10,22,70,71]. In fact, we discuss how the interesting
short-range entanglement of various SPT states can be
used to construct LRE via measurement [16].

B. FDLU + ancillas: invertible states and QCAs

The next step in the hierarchy does not yet involve
measurement, but merely ancilla qubits. Remarkably, there
exist states that can only be created from FDLU if one uses
such ancillas. These states are invertible LRE states, such
as the Kitaev-Majorana chain, i.e., the p-wave supercon-
ducting chain. Indeed, a FDLU can create two decoupled
Kitaev chains (see Appendix A 1). If we simply remove

a single copy [72], we have thus obtained the Kitaev-
Majorana chain.

More generally, one can ask about the class of maps
obtained from FDLU and ancillas. This turns out to contain
all locality preserving unitaries, also called quantum cellu-
lar automata (QCAs). Indeed, it is known that if a QCA
acts on a Hilbert space H then there exists a FDLU for
QCA ® QCA™! on the doubled Hilbert space H @ H [73].
For instance, this allows the implementation of the transla-
tion operator on H, which is yet another way to obtain the
Kitaev-Majorana chain. Other interesting QCAs in higher
dimensions have emerged in the past few years [73—76].

Similarly, while SPT states cannot be prepared using a
finite depth of local gates that preserve the symmetry, they
can still be prepared with the help of ancillas by first using
a symmetric circuit to prepare the state SPT ® SPT~! and
then removing a single copy.

III. STATES PREPARABLE IN ONE SHOT:
ABELIAN AND NIL-2 NON-ABELIAN QUANTUM
DOUBLES

It is known that certain (noninvertible) LRE states,
including the Greenberger-Horne-Zeilinger, toric code,
and in fact any Calderbank-Shor-Steane code, can be pre-
pared by measuring cluster states [10—14]. Recently, the
present authors, in collaboration with Ryan Thorngren,
generalized this by showing how FDLU and a single mea-
surement layer can implement the KW transformation for
any Abelian symmetry in any spatial dimension [16]. This
can be thought of as a protocol to “gauge” an Abelian sym-
metry. We briefly recap this in Sec. III A, which allows us
to prepare any twisted Abelian quantum double, as already
noted in Ref. [16]. We then point out in Sec. III B that
beyond obtaining Abelian topological order, a single-shot
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protocol can even prepare a class of non-Abelian topo-
logical orders corresponding to the quantum doubles of
nilpotent groups of class 2, such as Dy or Os.

A. Twisted Abelian quantum doubles

Let us briefly recap this “gauging” protocol (or KW
duality) for a global Z, symmetry generated by [], X,
(we denote the Pauli matrices by X, Y,Z) on an arbi-
trary cellulation of a closed spatial manifold. Starting with
an arbitrary 7, symmetric wave function |y); defined
on the vertices of a lattice, we introduce product state
ancillas |1); on the edges. After applying controlled-NOT
gates (denoted CNOT or CX more briefly) to all nearest-
neighbor bonds (with the control on vertices and the target
on edges), projecting the vertices into a symmetric product
state implements the KW map:

KW )y = (+r [ [ cXuel De@ 9. (D)

(v.e)

Here, we use the shorthand [1); = @),z 1), and |[+) ) =
& ,cr |+)y- Crucially, Eq. (1) does not require postselec-
tion: if one measures the vertices in the X basis and finds
|—), these can always be paired up [77] in one extra unitary
layer using string operators. In particular, a pair of |—) on
two vertices can be turned into a |[+) by applying a string of
Z, on all edges connecting these two vertices. This is the
only step relying on the symmetry group being Abelian:
the measurement outcomes label Abelian gauge charges
[anyons in two dimensions] that can always be paired up in
finite time. Applying Eq. (1) to the special case of a two-
dimensional product state deterministically prepares the
toric code, whereas choosing a Z, SPT phase [67] (which
is itself preparable using FDLU, since the preparing circuit
does not need to respect symmetry) leads to double-semion
(DS) topological order [16].

Let us also note two related versions of the KW map. (i)
The KW in Eq. (1) maps the Ising interaction as Z,Z,, —
Z,. Alternately, (ii) applying the Hadamard gate on all
edges replaces CX by CZ (i.e., controlled-Z gate) and |1);
by |+), giving the map Z,Z,, — X., which we denote by
KW. Specifically,

KW, = ( I1 He)KW?V( I1 He>

= (+ly [ | cZue |+)5 2)

(v.e)

in which we recover the protocol of measuring cluster
states by using |+), as an input.

The measurement protocol to implement the KW dual-
ity generalizes naturally to any finite Abelian group 4, by
using the corresponding generalizations of CX and Cz. In
this case, the graph must now be directed. Each edge e can

be associated with an “initial” vertex i, and “final” vertex
fe, and, reciprocally, for each vertex v, we denote the set
of edges pointing into and out of v as e — v and e < v,
respectively. The KW map is constructed as

KWi, =+ ]| [ [Texio ] cxfe} 1),

e—>v e—>v

= ([ [extoextot g, 3)

where |+) = (1/|4]) > .4 la), 1 is the identity in 4, and
the generalized CX gate for the group 4 is defined as

A
CXW |avs ae) = |aua avae> . (4)

Similarly, KWz, can be obtained by performing the
Fourier transform on all edges, which changes CX to Cz
and [1) to [+). We get

KWg = (+, ]| [ [Tz T] czﬁe} +)e

e—>v e—>v

= (+ly [ [czlo(czt ) 140k, )

where the generalized CZ gate is defined as
CZ;:le |avaae> = Xav (ae) Iav: ae) . (6)

Here, we use the fact that, for Abelian groups, there is
an isomorphism between group elements and irreducible
representations (IRs) so that we can define x¢, the char-
acter corresponding to group element a. Again, postse-
lection is not required since one can always pair up the
corresponding charges in finite time.

Nevertheless, the above construction does not naively
apply to the KW map for non-Abelian groups (which
would be a method to prepare non-Abelian topological
order), since FDLU cannot pair up the non-Abelian anyons
that result as measurement outcomes [78] (see Sec. [IVB
for a full discussion on this obstruction). However, some
groups are obtained by a finite number of Abelian exten-
sions. For example, the symmetry group of the square,
Dy, can be obtained by extending Z, x Z;, (the horizontal
and vertical mirror symmetries) by Z, (the diagonal mir-
ror); note that these two do not commute [79]. Using this
observation, Tantivasadakarn et al. [16] observed that suc-
cessively applying Eq. (1) can thus generate any quantum
double for a solvable gauge group; Verresen et al. [17] pre-
sented explicit two-step protocols for D, and S5 (see also
Ref. [18]).

The above line of reasoning strongly suggests that it is
impossible to create non-Abelian topological order in a
single shot. Perhaps surprisingly, this expectation is false.
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In Ref. [20], the present authors argued that it is in fact pos-
sible to prepare non-Abelian topological order that admits
a Lagrangian subgroup in a single shot and gave explicit
protocols to prepare the D4 and Qg topological orders. In
this work, we present an explicit protocol to prepare a
class of non-Abelian topological orders, all of which can
be prepared in a single shot: the quantum double for class-2
nilpotent groups.

B. Quantum double for class-2 nilpotent G in one shot

A group G is class-2 nilpotent (commonly called a nil-2
group) if there exists finite Abelian groups N and Q such
that the extension

Il N->G—>0—1 @)

is central. That is, N is contained in the center Z(G). Such
central extensions are specified by a function w : 0> — N
called a 2-cocycle [w € H?*(Q, N)], which determines how
multiplication of O can give rise to elements in N. As a
2-cocycle, w satisfies the cocycle condition

w(q2,93)0(q1,92q3) = 0(q1,92)0(q192,93).  (8)

Elements in g € G can be denoted by the pair (n, g) whose
group law is given via

(n1,q1) x (n2,q2) = (mmaw(q1,92),9192)- )

As an example, consider N = Z, and Q = Z3. Denote
an element ¢ € Q as the pair (a,b) where a,b € {0, 1}
with addition as the group multiplication. One choice of
a cocycle is

w((a,b1), (az, b)) = a1b,. (10)

One can check that the above cocycle condition is satisfied,
and by further checking the group multiplication, one finds
that the resulting group is the dihedral group G = D4. On
the other hand, the cocycle

w((ai, by), (a2, b)) = ayar + aiby + b1by (11)

gives rise to the quaternion group G = Qs.

In previous proposals [16,18] such quantum double
D(G) requires two rounds of measurements by sequen-
tially performing KW on N then Q. Conceptually, pairing
up the charges in the first round before continuing is crucial
to avoid creating non-Abelian charges in the second mea-
surement round. In the current proposal, we can prepare
the same state in one shot by instead gauging a particu-
lar N x Q SPT state. The Abelian charges we measure by
gauging this SPT can be translated into a combination of
Abelian charge and fluxes of D(G), which braid trivially.

We now give the exact claim for preparing the ground
state of the quantum double model for a nil-2 group G
on the edges £ (purple) of a square lattice using ancil-
las on the vertices V' (blue) and plaquettes P (red) as in
Fig. 2 (though it applies to arbitrary graphs). The local
Hilbert space is given by the group algebra with basis ele-
ments |g,) € C[Q] on V, |n,) € C[N]on P, and |n,,q.) €
C[N] x C[Q] = C[G] on E. Each edge is given two direc-
tions: one connects between vertices (black arrows) and
one connects plaquettes (gray arrows).

Lemma [1—The ground state for the nil-2 quantum
double can be expressed as

ID(G))g = (+lyp CXPpQyprCZhy |+)y 1+, g [4)p
—~=N
= KWgVQVEVKWEP [+ [+)p, (12)

where the action of Qyzy is defined as [80]

Qyer Hguh {ned) = Hgo}, {ne@(qic» Givgr)t) . (13)

We defer the proof that the resulting state is indeed
exactly the ground state of D(G) to Appendix C 1, where
we use properties of KW maps for normal subgroups,
developed in Sec. IV C. Using the above result, we are able
to show that

Theorem I.—Protocol (12) for preparing a nil-2 quan-
tum double can be performed in a single shot.

Proof—We postpone all measurements in the protocol
until the very end. Since the KW maps act on different
subspaces, it is possible to correct the measurement out-
comes independently. Namely, measurement outcomes of
the vertices and plaquettes correspond to charges ¢ € QO
and fluxes of n € N, which can be paired up using solid
strings of Z¢ and dotted strings of X, respectively. |

The interpretation of the protocol is as follows. The
first layer (had the measurements on the plaquettes been
immediately performed) gauges the symmetric product
state on NV, thus preparing the N-toric code. In the second
step, Qygy turns the toric code into a symmetry-enriched
topological (SET) state protected by Q. In particular, the
charges of the toric code are fractionalized by symmetry
0, and the fractionalization is given precisely by cocycle
w € H*(Q,N) [81]. Finally, the last layer along with the
measurement on the vertices gauges Q.

A couple of remarks are in order. First, regardless of the
measurement outcome, the state always has D(G) topo-
logical order since the feedforward correction is pairing
up Abelian anyons [82]. Second, it is possible to view the
above protocol as gauging an N x Q decorated domain
wall SPT state [83], where a (1+1)-dimensional (1+1D) Q-
SPT state is decorated on N domain walls. We elaborate
on this point in Appendix C 2.

Lastly, we make contact to a sufficient condition in
Ref. [20] that any anyon theory that admits a Lagrangian
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FIG. 2. Single-shot preparation of the quantum double for nil-2 groups. The three circuit layers needed to entangle the product state

in Eq. (12). After measuring vertices (blue) and plaquettes (red), the resulting state on the edges (purple) exhibits G topological order
regardless of the measurement outcome. If one desires, the exact ground state of D(G) can be recovered by a string of X” on the dual

lattice and a string of Z7 on the direct lattice.

subgroup can be prepared in one shot. A Lagrangian sub-
group 4 is a subset of Abelian bosons in the topological
order that is closed under fusion and has trivial mutual
statistics, and every other anyon braids nontrivially with
at least one of the anyons in the subgroup [84,85]. We
first recall that the pure charges and fluxes of D(G) are
labeled by IRs and conjugacy classes of G, respectively.
There are two natural classes of Abelian anyons when G
is nil-2. First, since Q is Abelian, IRs of Q are all one
dimensional; thus, they pullback to Abelian charges in G.
Second, since N is in the center of G, conjugacy classes
of N remain one dimensional upon being pushed forward
to G, giving Abelian fluxes. Moreover, these two classes
of anyons have mutual braiding statistics, which follows
from the exactness of sequence (7): pulling IRs from Q
back to N gives the trivial IR. This can be interpreted phys-
ically as the fact that O charges are transparent to the N
fluxes. Together, these fluxes and charges form a subgroup
A = N x Q. Lastly, a sufficient condition to verify that the
subgroup is Lagrangian is that the size of the group is equal
to the total quantum dimension of the theory. Indeed, one
has |4] = |G]. To conclude, for the quantum double of a
nil-2 group, conjugacy classes of N and IRs of QO form
a Lagrangian subgroup of D(G). These are exactly the
anyons we measure to prepare the state in one shot.

IV. FINITE SHOTS: KRAMERS-WANNIER MAP
FOR SOLVABLE GROUPS

In previous work [16], we argued that quantum dou-
bles corresponding to solvable groups—groups that arise
from recursively extending Abelian groups—can be pre-
pared in finite time. In the present work, we show that this
can be extended to the space of maps: one can implement
the Kramers-Wannier map KW for any solvable group G
in finite time using measurements and feedforward. Apply-
ing it to the symmetric product state then gives the G
quantum double, constituting the first explicit protocol for
splitting-simple solvable groups. Moreover, by applying

it to G-SPT states yields all twisted Abelian quantum
doubles.

A. Statement of the results

In this subsection, we present the results, which are then
derived and explained in the remainder of this section.
Rather than jumping straight to the result for arbitrary
solvable groups, we offer two stepping stones where we
introduce the ingredients necessary for the general case, as
summarized in Table II. When we write KW for a non-
Abelian group G, we refer to the particular gauging map
that is defined by the Kramers-Wannier transformation; we
review it in more detail in Sec. [V B.

1. Two-shot protocol for gauging nil-2 groups

Let us first consider a group G of nilpotency class 2,
as in Sec. III B. This means that G is obtained via a cen-
tral extension (7) involving the normal subgroup N and
quotient group Q. In Sec. III B, we prepared the quan-
tum double D(G) in a single shot using Eq. (12). The
approach used there essentially involved gauging [86] a
product group N x Q and thus cannot be used to gauge
G 22 N x Q for a generic G-symmetry input state.

Indeed, although we could prepare the G quantum dou-
ble in a single shot, here we only find a two-shot protocol
for gauging G. One way to naturally motivate this is by
first considering an alternate protocol for the aforemen-
tioned quantum double. Indeed, instead of starting with
measuring the plaquette term to prepare the N-toric code
using IZ.\\N];IE [as in Eq. (5)], we can measure the vertex
terms of the toric code using KW%,. This has two con-
sequences. First, since the charges carry fractional charge
under Q, they become non-Abelian anyons in the quan-
tum double; this forces us to apply feedforward after this
first gauging step (when charges are still Abelian), mak-
ing it a two-shot protocol. Second, now the input state is
|+)][\,’ ® |+)g = |+)(V;, which can be interpreted as a G-
symmetric state, suggesting that we can indeed interpret
this approach as gauging the G symmetry of the product
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TABLE II. Decomposition of KW in terms of unitaries and Abelian KW operators, the latter of which can be performed using
unitaries and one round of measurement. For the solvable case, the N; are subgroups in the derived series of G; KW"<C = (/N<CKwW"
is the KW map to gauge a normal subgroup N of G [defined in Eq. (34)]; and UV<C = =~! x Q, where ¥ and Q are unitary operators
that depend on the factor system of the group extension. When /s = 2, the result reduces to the metabelian case. When the group

extension of the metabelian group is central, ¥ = 1 and the result reduces to the nil-2 case.

Group Nil-2

Metabelian

Solvable

KwW¢ KW? x @ x KWV (14)

KW? x UNG x KW (17) ik

i KW®; /Nj-D<(G/N;—1) (23)

state [which is a well-known way of producing D(G)].
Indeed, later in this section we will see that this proto-
col gauges the G symmetry for any G-symmetric input
state, i.e.,

KWY, = KW, KW, (14)
where we remind the reader that KW for Abelian groups is
defined in Eq. (3) and the unitary Qygp in Eq. (13).

2. Two-shot protocol for gauging metabelian groups

Next, we consider the most general type of non-Abelian
groups that are obtained by a single Abelian extension of
an Abelian group, called metabelian groups. In contrast to
the aforementioned case of nil-2 groups (which is more
restrictive), extension (7) defining a metabelian group need
not be central.

Hence, to characterize the extension that gives rise to G,
one must specify—in addition to the 2-cocycle w—how
QO acts on N. This is given by a map o : Q — Aut(N).
That is, for a fixed ¢, 09 : N — N is an automorphism.
The multiplication law is now

(n1,q1) x (n2,q2) = (mo " [m]w(q1,92),9192), (15)
and associativity demands that  satisfies the cocycle
condition

o 'w(q2,q3)]w(q1,92q3) = w(q1,92)@(q192,93). (16)

The pair 0 and w is together called a factor system (see
Appendix B2 for a derivation of the above properties).
For instance, S3 = 73 X Z,; is a (split) extension with the

normal subgroup N = Z; = {0,1,2} and quotient group
0 = Z, = {0, 1}, with addition as the group multiplication
in the normal and quotient subgroups. While the cocy-
cle is trivial, the extension has a nontrivial automorphism
o'[n] = —n. Examples for other metabelian groups can be
found in Table III.

Like the nil-2 case above, we present a two-shot protocol
for gauging such a metabelian group, using the above data
w and . In particular, we claim that KW¢ can be prepared
by inserting a specific FDLU UV <C between the two KW
maps.

Lemma 2—For an arbitrary group extension, we have
the identity

KW, = KWL OKWY,, (17)
where UN<C is the FDLU
UNG = 32 Qupy (18)

with Qpgy defined in Eq. (13) and the action of X gy given
by

Zer Hav}s {ne}) = l{gu}, fo%e[nc}) - (19)

We provide a physical intuition for the role of 24V <¢ both
from the point of view of a basis transformation, and as
an entangler that symmetry-enriches the input state in Sec.
IV C2. The full proof is found in Appendix B 3.

The above result implies that, for a metabelian group G
where Q and N are Abelian, we can implement KW using
two rounds of measurement. Applying KWY to the G-
symmetric product state prepares D(G) for any metabelian
group. For N = Z3 and Q = Z,, the protocol matches our

TABLE IIl. Examples of group extensions and factor systems for metabelian groups. Here, we assume addition as the group multi-
plication for the normal and quotient subgroups. The map KW¢ for such groups can be implemented using the decomposition in Eq.
(17).

G N (0] o 10}

S3 Zy ={0,1,2} Ly ={0,1} o'ln] = —n o(q1,92) = 1

D, Z, ={0,1} 73 =1{0,1}? ol =1 w((ay,by), (az,b7)) = aib;

08 Z, ={0,1} 73 ={0,13 ol=1 w((ay,by), (az,b7)) = ajaz +aiby + b1b;
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previous proposal to prepare D(S3) in Ref. [17], and also
agrees with Ref. [18] (up to an appropriate inversion of
group elements) that treated the case of a split extension
(i.e., for a trivial cocycle w). We further remark that in
the special case of a central extension (where o is triv-
ial), we have Xz = 1 and thus recover the nil-2 protocol
in Eq. (14).

In fact, for the remainder of this section, we find it con-
venient to define KWV<C as the KW map for gauging a
normal subgroup N of G [87]. Namely, it is the canoni-
cal choice for which the following property for two-step
gauging holds:

KW¢ = KWCKWV<C, (20)

Intuitively, the map KW"<C gauges N in such a way that
it leaves the action of the quotient group Q untouched,
which implies that Q can be sequentially gauged as is [see
Eq. (34) in Sec. IV C for a proper definition]. Hence, the
nontrivial result in Eq. (17) boils down to the statement
that

KWV<C = (yNOKW". (21)
We use the above form for KWY<¢ moving forward.

3. Finite-shot protocol for gauging solvable groups

To state our most general result, let us first briefly
review some useful notions about solvable groups. A
derived series is a set of normal subgroups N; < G, defined
inductively by

(22)

where [N, N1 is the commutator subgroup of N. The small-
est natural number /; where ]V;G = 7, is called the derived
length of the group. A solvable group is defined as a
group where /s is finite. For example, Abelian groups
and metabelian groups correspond to Iz = 1 and I = 2,
respectively.

To simplify the notation, we now define N; = N;G,j SO
that Ny = Z and N;;, = G. We also remark that, using the
fact that the N; are commutator subgroups, one can show
that, for the derived series, N; < N, for all i < &, and that
the N;1/N; are all Abelian.

Based on the derived series, we claim that KW can be
implemented in exactly /5 rounds of measurement, which
we moreover expect to be optimal.

Theorem 2—The Kramers-Wannier map for any solv-
able group G with derived length /5 can be implemented
using a finite-depth unitary and /; measurement layers

(interspersed with feedforward) as

1
KW = 1_[ KWW /Nj—)<(G/N; —1)
Jj=lg
KW Nig-1gw WNig-1/Nig-2)(G/Nig—2)

. KW(Nz/N1)<(G/N1)KWN1<G, (23)

where each KWV can be performed in a single shot using
Eq. (21).

Intuitively, at round j = 1, we begin by performing the
Abelian KW for the normal subgroup N;. This leaves
a remaining quotient symmetry G/N;. We now proceed
inductively forj = 2,...,ls. At round j, we have gauged
group N, _1, so we proceed to gauge group N; /N;_;, which
is again an Abelian normal subgroup of the remaining
symmetry G/N,_;. This reduces the remaining symmetry
to G/N;. We repeat this until the entire symmetry G is
gauged.

Proof—We proceed by induction. The base case /z = 1
is trivial, and for /; = 2, Lemma 2 gives the existence of a
map KW/V<C that satisfies the two-step gauging condition
(20).

Now we proceed to the induction step. Suppose that
we have proven Eq. (23) for derived length /g; consider
a group G’ of derived length I = I+ 1 with derived
series N]. Let G = G'/N; and N; = N/ ,/N|. From the
third isomorphism theorem, we have

G _G/N] G
N NN TN

N,  No/Ni N,
N NN N

24

Then,

1
H Kw i/ —D=(G /N

J=lg

1
B [ [T xw®s/ N«/'/)“(G'/N/'”]KWN{@
=Ig

1
— |: l_[ Kw(M/M1)<(G/1\G1)i|KWN{<G/
J=lg
— KWGKWN{QG/
— KWI/N kW@
= KWY, (25)

as desired. [ |
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The remainder of this section is devoted to deriving
properties of KWV<C. Because of its length, we provide
a brief summary. Section IV B reviews the KW map for
an arbitrary finite group G, and discusses the subtleties of
implementing the map with FDLU and measurements for
non-Abelian groups. In Sec. IV C, we give a prescription
of KW"<C and show that, for Abelian N, this map can be
implemented with FDLU and a single round of measure-
ment and feedforward. In Sec. [V C 2, we provide intuition
on how and why KW"<¢ differs from KW" from the view-
point of symmetries. As an application, we show in Sec.
IV D that inputting the symmetric product state into KW¢
prepares the ground state of D(G), proving that the state
can be prepared with /; measurement rounds [88].

B. Review of the KW map for G

The Kramers-Wannier map for G in d-spatial dimen-
sions (KWY) is defined as a nonlocal transformation that
maps between states with G 0-form symmetry to states
in a G gauge theory with Rep(G) (d — 1)-form symmetry
[89,90]. Note that, unlike Abelian groups, there is no nat-
ural generalization of KW, since there is no isomorphism
between G and Rep(G).

We begin with an arbitrary directed graph with G
degrees of freedom C[G] on both vertices and edges with
basis vectors given by group elements |g), and |g),. At
the level of states, the KW map acts by mapping vertex
degrees of freedom to edge degrees of freedom by heuris-
tically mapping spin variables on vertices to domain-wall
variables on edges. The output of an edge g, is determined
by the two vertices at the boundary where the initial and
final vertices are denoted i, and f;, respectively. That is
KW¢ : C[G]®M — C[G]®"e which acts as

KwY -
® |gv>v — ® |giegfe>e
v e

where g denotes the inverse of g. Based on this definition,
we can work out how operators map. First, we define the
generalization of Pauli X and Z to finite groups [91,92].
The Pauli X is generalized to left and right multiplication
for each group element g:

(26)

L#|h) = |gh),  Rf|h) = |hg). 27)
Let p** be the matrix representation for each IR w of G. The
generalization of Pauli Z is no longer a single-site operator,
but now a matrix product operator with bond dimension
d*, the dimension of the IR p. Namely,

Z;|g) = p"(2)y lg), (28)
where i,j = 1,...,d" denote the bond indices of Z. Here
notationwise, we also use bold font to denote that the bond

indices have not been contracted, and physical operators
must be defined by fully contracting such indices.

The defining property of the KW map is that it is not
unitary. More specifically, it has nontrivial right and left
kernels, which we denote as the “symmetry” and “dual
symmetry,” respectively. From map (26), it is apparent that
performing left multiplication on all vertices will leave the
output state invariant, and any product of Z around a closed
loop is unchanged by an arbitrary input state. In equation
form,

(29)

KWC x (]_[Lf) =KW,

Tr[]_[ZQ‘Oe] x KWO = d"KWO.

e€l

(30)

The former is precisely the G 0-form symmetry, while
the latter is given for an arbitrary closed loop / (3/ = 0).
Here O, denotes the orientation of e with respect to the
loop, which conjugates a given representation if the orien-
tation of e goes against that of the loop. If / is contractible
then it defines a local constraint, which can be thought of
as a gauge constraint, while for non contractible loops,
this defines a Rep(G) (d — 1)-form symmetry. For non-
Abelian G, this symmetry operator is not unitary and not
onsite if 4* > 1, and is therefore a generalized notion of
symmetry called a noninvertible or categorical symmetry
(see Refs. [93,94] for a review and further references). In
this case, the Rep(G) symmetry has an intuitive interpreta-
tion as string operators whose endpoints are gauge charges
for the quantum double of G [95]. The fusion rules for such
symmetries correspond precisely to the fusion rules for IRs
of G.
Similar to the cluster state for Abelian groups, it is
possible to represent KW as a tensor-network operator
KWy = (+7 Ugy IDE, (31)
where US, is a unitary that generalizes the cluster state
entangler to G degrees of freedom [91] (see Appendix B 1
for further details). However, we run into a problem when
we try to implement the projection via measurement. In
general, a complete set of measurement outcomes on each
vertex is given by all IRs of the group G. Thus, suppose
that the measurement outcome transforms under operators
[1, L as some IR p on vertex v and u' on vertex v';
then the desired state where the measurement outcome is
|+) can be recovered if we first act with operator Z’I}Z’; .
Pushing this through the KW gives the output string oper-
ator we must apply to pair annihilate the IRs and fix the
state, which is [ ., Z&, where [ is a path whose endpoints
are v and v’ [see Eq. (B9) in Appendix B for a deriva-
tion]. If d* = 1 then the excitation is an Abelian anyon
and the string operator factors to each edge and so it can
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be implemented in a single layer. However, if d* > 1 then
the operator remains a matrix product operator that cannot
be implemented in finite depth.

Consequently, we now address how to overcome this
problem for solvable groups by sequentially apply a KW
map that gauges a sequence of Abelian subgroups in G, as
given in Eq. (23).

C. KW for gauging a normal subgroup N of G

We proceed to define KWV <, and show that it satisfies
the two-step gauging property (20). Let us remark that even
though N can be assumed to be Abelian for the purposes
of this paper, the formulas we present hold for an arbitrary
(not necessarily Abelian) normal subgroup of G.

1. Definition of KW"<¢

First, let us define the maps that give the N and Q
components of an element in G:

7:G— Q,
t:G— N,

w(g) =g, (32)
Hg) = n. (33)

Namely, g can be represented as g = (n,q¢) = (¢#(2), 7 (2)).
Note that while 7 is a group homomorphism, # is not.

We define the KW"<C map by projecting to the Q spins
on the vertices via 7t and to the N domain walls via . That
is, KWV<C : C[G]®M — C[N]®" @ C[Q]®M given by

Rl Y Rz @ @), (4

Let us show that, using this definition, the two-step gaug-
ing property (20) holds. Further applying KW¢, we find
that

Q) 11@i.g0)) Q) I (2.))?

e v

Y R [1@g)) 17 @] = Rl (35)

e

where we have used the fact that 7(g))7(g2) = 7(2122),
and combined the N and Q degrees of freedom to a single
G degree of freedom g;g,. Comparing to Eq. (26), the two
maps combined is exactly KWC.

2. Physical derivation of KW"<¢

Given the above formula, a direct computation that
we perform in Appendix B3 shows that Eq. (21) holds.
Namely, KW"<¢ can be implemented by KW" followed
by an extra FDLU V<,

Here, we opt to motivate physically why this extra uni-
tary is needed, and why it takes the above form. First,

let us see what goes wrong in the absence of this unitary.
Consider implementing only the map KW/

Rz ™ Rl @ r@n?  (6)

Using this map, there will be a dual Rep(V) (d — 1)-form
symmetry defined as

Tr []_[ z;‘)‘?} (37)

el

for every v € Rep(N). However, the remaining Q 0-form
symmetry will not take the form [], L for a nontrivial
extension. This can be confirmed explicitly by noting that
performing left multiplication by g on all the vertices does
not leave the output state invariant because of the modified
group multiplication rule (15). Indeed, one finds that

Rlgz)s & R ¥ R r@n?  (38)

where n' = nod[ni]w(q, q1)no[nlw(g, q2) # nin,.

In fact, the physical reason why this must be the case
when the group extension is nontrivial is because the end-
points of Rep(N) (which can be thought of as anyons
formed by the endpoints of the symmetry lines) must
transform nontrivially under Q [96-98].

(1) When o is nontrivial, 0 must permute the
Rep(N) (d — 1)-form symmetry [99].

(2) When w is nontrivial, Q and Rep(N) have a mutual
anomaly [100]. (If o is trivial, this can be detected
by symmetry fractionalization: the endpoints of
Rep(V) will carry a projective representation under

Q)

For this reason, we need to further perform a basis transfor-
mation (in the Heisenberg picture) in order to turn Q into
an onsite symmetry [], L (at the cost of also modifying
the form of Rep(V)), so that O can be sequentially gauged
in the next step.

To gain further insight into the required basis transfor-
mation, we now turn to investigate the kernels of map
KW/ <Y First, we note that left multiplication by N on all
vertices leaves invariant 7 (g,) on all vertices and #(g;,g;,)
on all edges. It is therefore a right kernel of KW"<“. More
generally, this means that the G symmetry will be reduced
to a Q symmetry under the KW"<¢ map

KWV<G x TT28 =[] 24 x KW=, (39)
v v
which is imperative for sequential gauging. On the other

hand, the dual symmetry is not the usual Rep(N) symme-
try defined in Eq. (37). Instead, it is obtained by taking a
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product of Z: operators around closed loops where
(40)
(41)

for IRs v € Rep(N). Namely, we have a (d — 1)-form
Rep(N) symmetry

Z: |qieane’ que) = pv(ﬁE) |qigan85 q/@) ’
ne = oe[n.Jw(qi,,q:.9%),

Tr [ I1 Z;Oe} x KWVC = KWN<C, (42)

eel

To verify this, we note that the group element on each edge
can be expressed using the factor system as

ne = 1(g;,8r.) = &(qi,» 4i, )0 " [n,ns,10(qi, qr,). (43)
Inserting this into Eq. (41) and simplifying using the
cocycle condition (16) gives

o = i (44)
Thus, taking a product around a closed loop, the contribu-
tions from each vertex pairwise cancels.

The difference between Z" and Z" allows us to back out
the required basis transformation. Namely, 2/V<¢ must be
the unitary such that

U \gi.) Ine) gg) = lgi.) 17e) 1gz) s (45)
so that Z¥ = UN<CZ" UN<C)T. From the definition of 7 in
Eq. (41), we see that Eq. (18) is exactly the FDLU that does
the job.

Let us now offer a complimentary viewpoint of 2V<¢
in terms of the Schrédinger picture. That is, as a basis
transformation on states instead of the symmetry operators.
Suppose that we input a symmetric product state of G, and
apply KW, but instead of declaring the QO symmetry to
be the result of pushing [], L through the KW map, we
insist that the O 0-form symmetry is given by [], L. Then
at this point, the state we have prepared is the N quantum
double that is enriched #rivially by symmetry Q. That is,
if we now further gauge this onsite Q, the resulting state
would be D(N x Q), which would be the same result had
the group extension been trivial [101]. Thus, to fix this,
we need to entangle the state into a nontrivial SET state.
This entangler is precisely /V<C. The two layers of UN<C
depend on the two data specifying the group extension, and
serves the following roles that enrich the state:

(1) Xgp has an action from the vertices to the edges,
which makes the gauge charges [endpoints of
Rep(N)] permute correctly under the action of the
0 0-form symmetry;

(2) Qygy can be viewed as the entangler that decorates
the strings of the gauge charges with a 1+1D “SPT

state” [102] given by the cocycle w that gives the
endpoints the correct symmetry fractionalization by

0.

In Appendix B 3, we prove Eq. (21) explicitly by showing
that the right-hand side has the correct kernels, as shown
in Egs. (39) and (42).

D. Preparation of D(G)

As an application, we can use KW to prepare the
ground state of D(G) by applying it on a symmetric
product state [89,91].

Lemma 3.—For any finite group G,

Wiz [+)5

Proof—Recall that |+), is the +1 eigenstate of the
projectors

D) =

1
RmﬂHWHG—EI RE. (46)

For each vertex. In Appendix B 1, we show that

R KV ge [TrTT L2 (47)

e—>v e<v

Therefore, the output state must satisfy

g—]‘[Rg]_[ngl, (48)

e—>v e<—v

4, =
IGI

which is the vertex term of the quantum double model. In
addition, for each closed loop around a plaquette p, the left
kernel of KW tells us that the state also satisfies

O,
B;:Tr[]_[zg

ecop

} = a* (49)

for each IR p. Summing over all IRs weighted by their
dimensions and using (1/|G]) Zu d"*x*(g) =81 and

Zﬂ(dﬂ)2 =
1

B, = —
"Gl

|G| we have

d'By=3 8

{ge}

g}) ({gedl = 1,
(50)

which is precisely the plaquette term of the quantum
double model. This shows that state KW, |+) has eigen-
values +1 under both 4, and B,,. |

Combining this with Theorem 2, which gives an explicit
protocol to implement G with measurements for solvable
groups, we have the following result.

Corollary 1.—For a solvable group G with derived
length /g, the ground state of D(G) can be prepared with
FDLU, /; measurement rounds, and feedforward.

020339-12



HIERARCHY OF TOPOLOGICAL ORDER...

PRX QUANTUM 4, 020339 (2023)

Similarly, one can input a G-SPT state instead of a sym-
metry product state. The resulting state will be a twisted
quantum double of G [103,104]. Again, we remind the
reader that to prepare D(G) the measurement rounds can
be lowered, as we have shown for nil-2 groups.

V. NO GO ARGUMENT FOR PREPARATION BY A
FINITE NUMBER OF SHOTS: FIBONACCI
ANYONS AND NONSOLVABLE QUANTUM

DOUBLES

So far, we have demonstrated that there is an interesting
hierarchy of states and maps depending on the number of
shots required to prepare or implement it, which is sum-
marized in Table I. It is equally valuable to know negative
results, similar to how it is interesting to note that, say,
the toric code cannot be obtained from the product state
by a FDLU [1]. Note that acting with a FDLU followed
by measurement on a state naturally gives rise to a pro-
jected entangled pair state (PEPS) representation of the
wave function. Thus, this automatically excludes volume
law states. It is also widely believed that chiral states do
not admit a PEPS representation with finite bond dimen-
sion [105—108] (however, this restriction can sometimes
be overcome by using gates with exponential tails; see Sec.
VI). On the other hand, there are a wide range of states in
two dimensions that admit a PEPS representation. In fact,
it was recently shown that even certain critical states admit
such a representation, and particular ensembles of them
can be efficiently prepared in this manner [109,110].

In this section, we nevertheless argue that there are cer-
tain phases—in fact, even fixed-point states that admit
relatively simple PEPS representations—that cannot be
prepared in finite time using FDLU, measurement, and
feedforward. Namely, we argue that a finite number of
shots cannot prepare nonsolvable quantum doubles and the
Fibonacci topological order (Fib) [111].

A. The necessity of creating nonlocal defects for the
measurement-prepared topological order

Let us first recall one of the simplest cases of prepar-
ing topological order via measurement: one obtains the
toric code upon measuring its stabilizers. The randomness
of measurement gives us a speckle of “anyon defects.”
While these can be paired up with only a single layer of
feedforward gates (to deterministically prepare the clean
toric code), this is a conditional gate that depends ronlo-
cally on the measurement outcome. Here we formalize the
intuition that this is unavoidable by proving the following
theorem regarding states that can be prepared with mea-
surement and local corrections (i.e., where one does not
require nonlocal classical communication upon applying
feedforward).

Theorem 3.—If a state |Yoy) 1s deterministically
obtained from an input state |,) by single-site measure-
ments followed by local corrections implemented by a
FDLU, then there exists a state |¢) such that |;,) is related
by 2 FDLU 10 [You) ® |9).

Proof—Denote the total Hilbert space H, the subspace
on which the measurements are performed H,,, and the
remaining Hilbert space Hj;. For each measurement out-
come |s;) where i € M, we follow up by a local unitary
Ui(s;) that depends on s;. All U;(s;) must commute regard-
less of the measurement outcome on each site, since the
corrections cannot depend on the order in which they
are applied. For a given measurement outcome, we can
therefore write the resulting state as

[ ] Uitsi) Isi) (il x 1¥in) - (51)
ieM

Next, define the controlled operator
CU; =Y Is}) (s}l Us(s)), (52)

(s}

which applies U;(s;) depending on an orthonormal basis
of measurement outcomes {s}}. Orthonormality guarantees
that CUj is unitary. Moreover, since all U;(s;) commute, all
the control gates must also commute. We next note that
Ui(sy) Isi) (sil = Isi) (sl CUL. (53)
Note that here U does not act on the ancillas (indeed, the
feedforward only needs to correct on Hz; to determinis-
tically prepare |Yout)). Therefore, the resulting state may
also be expressed as
[ T1so (il CUL x [n) (54)

ieM

That is, this is a deterministic unitary followed by single-
site measurements. Now, if this always gives the state
[Wout) on Hiz, this means that the measurement at the
end must not affect the output state. Therefore, before the
measurement, we must have

Vou)ri ® 020, = [ [ CUI x [Wrin),
ieM

(35)

for some state |¢). Since [[,,, CU; is a FDLU, this
completes the proof. |
Corollary 2—Starting with a product state, a single-
shot protocol with locally correctable outcomes can only
prepare invertible states.
Proof—Recall that invertible states |y,,) are states
such that there exists an “inverse state” |y,.!) such that

Ul¥iny) ® |¥;70) is a product state for some FDLU U.
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By definition, if |yy,) is a product state then |yy) 1S an
invertible state. n
Likewise, for a finite-shot protocol, one can still prepare
only invertible states from the product state if at each level
the measurement results are locally correctable. Moreover,
the same reasoning suggests that in the space of maps,
locally correctable protocols can only implement QCAs.

B. No-go argument for the Fibonacci topological
order: “Fib” is a nontrivial measurement-equivalent
phase

Let us use the above result to present a plausibility argu-
ment that Fib cannot be prepared in a finite number of
shots. We assume that there is a sequence of FDLU, mea-
surements, and feedforward corrections that prepares Fib,
and argue a contradiction. Let us focus on the final shot of
a potential multishot protocol.

First, let us assume that in the final shot there are
measurements that are nonlocally correctable. Then, the
obtained wave function can be realized as a ground state of
a alternate Hamiltonian that differs from the true Hamilto-
nian by terms localized near such measurement outcomes.
Such a wave function can be said to contain “defects.”
Such defects can be classified by nontrivial superselection
sectors, since, by definition, they cannot be removed by
local corrections. Such superselection sectors are referred
to as anyons if they are zero dimensional, and /ine defects
if they are one dimensional in space. However, Fib has
only one type of non-Abelian anyon a with fusion rules
a x a =1+ a. It also does not have any line defects, since
the automorphism group is trivial, and it does not permit
a nontrivial symmetry fractionalization class. Therefore,
if we wish to deterministically prepare the state, we are
not allowed to postselect on obtaining the scenario where
all measurement outcomes are locally correctable (corre-
sponding to trivial anyon 1). Hence, it is possible that some
measurement outcome results in a nonlocally correctable
error, corresponding to anyon a. Since a is non-Abelian,
it cannot be paired up in finite depth [18,78,112]. Thus,
feedforward corrections will fail to prepare Fib.

The only remaining possible scenario is then that all
measurements are locally correctable. By Theorem 3, this
is only possible if the state before the measurement is
equivalent (up to a FDLU that can potentially depend
on the measurement outcome of the previous round) to
|[Fib) ® |C) for some state |C). Let us now ask whether
|Fib) ® |C) can itself be prepared by a finite number of
shots. Again, measurement outcomes can correspond to
anyons or line defects in the phase Fib X C. The only pos-
sible Abelian anyons are those entirely in C, and since the
states are in a tensor product, measuring these Abelian
anyons cannot help prepare |Fib). Thus, we are left with
the possibility that the measurements result in line defects
in |[Fib) ® |C). By a similar argument, if the line defects are

noninvertible, they cannot be shrunken away with a FDLU.
Therefore, we only consider the case that the measurement
outcomes correspond to invertible line defects.

We now give a physical argument that measuring
invertible line defects does not help prepare topologically
ordered states. Since these defects correspond to charges
of 1-form symmetries [113], if they occur as measure-
ment outcomes, they would come from a KW map that
gauges a 1-form symmetry, which physically corresponds
to anyon condensation. Thus, measuring such line defects
only serves to reduce the topological order, rather than cre-
ating a more complicated one. Thus, the parent state itself
should be even harder to prepare. Indeed, from the cate-
gory theory point of view, it is known that the Fibonacci
topological order cannot be trivialized by a finite number
of Abelian gauging procedures [114].

To give an explicit example, consider C to be another
copy of Fib. Then there is an Abelian line defect given by
a Z, symmetry that swaps the two copies. However, the
parent phase on which measuring would give such a line
defect corresponds to the phase obtained by gauging the
SWAP symmetry. Thus, this does not help us prepare Fib.

To conclude, we conjecture the following.

Conjecture 1—The Fibonacci topological order cannot
be prepared deterministically from the product state by a
finite number of shots.

Assuming that the above conjecture is true, this also
implies that any number of copies of Fibonacci cannot be
prepared. If we were able to prepare N copies, we can sim-
ply “measure away” N — 1 copies and we would be left
with a single copy of Fib. Similarly, the double Fibonacci
topological order, which admits a PEPS wave function
[115—117], cannot be prepared in any number of shots.

This result motivates us to define the notion of a
measurement-equivalent phase.

Definition 1.—Two states |) and |¢') are in the same
measurement-equivalent phase if one can deterministically
prepare both |) from |¢') and |¢') from |¢) using a
finite number of rounds of FDLU, measurements, and
(finite-depth) feedforward.

Our claim implies that Fib realizes a nontrivial
measurement-equivalent phase, distinct from twisted
quantum doubles for D(G) for solvable groups, which lie
in the trivial measurement-equivalent phase.

C. Conjecture for nonsolvable quantum doubles

Similarly, we can construct a similar argument for non-
solvable quantum doubles. In this case, it first helps to
show that certain groups are in the same measurement-
equivalent phase.

Lemma 4—The quantum double D(G) for any finite
group G is in the same measurement-equivalent phase
as D(Gpc), where G,. is a perfect centerless group
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corresponding to the central quotient of the perfect core
of G.

Here, we recall a few definitions. A perfect group is
defined as a group that is equal to its own commutator sub-
group (G = [G, G]), and the perfect core G,, of a group G
is the largest perfect subgroup of G. A group G is center-
less if its center Z(G) is trivial, and the central quotient of
a group G is defined as G/Z(G). An example of a perfect
centerless group is A, the alternating group on the set of n
elements for n > 5.

The above lemma tells us that we can reduce the
problem to showing that D(G,.) realizes a nontrivial
measurement-equivalent phase for each nontrivial G,,.. We
note in particular that, for solvable groups, their quantum
doubles are in the same measurement-equivalent phase as
that of the trivial group G, = {1}.

The following proof can be interpreted as the fact that
one can sequentially condense Abelian anyons starting
from D(G) to reach D(Gp.). Notably, D(Gy.) can be
thought as a “fixed point” in the measurement-equivalent
phase because it only contains non-Abelian anyons.

Proof of Lemma 4—To show our claim, we turn to the
derived series (22) of an arbitrary finite group G. The
derived series will always stabilize to the perfect core G,
of G. Therefore, given such a group, one can always start
from D(G,) and apply the KW map to sequentially gauge
appropriate groups according to the derived series in the
same spirit as Eq. (23) in order to arrive at D(G).

Specifically, we have

ID(G)r = KW, |+)§

Gp<G

G/G, Gp G/Gp
= KWEI// puEV ! /o

G,
KWy 14+)" 1+)y

G/Gp

G/G, Gp<G
U DG 1)

since G/G, is solvable, we can prepare KW?,/,G” using
measurements and feedforward.

Next, we further argue that D(G,) for any perfect group
can in turn be prepared from D(Gy.). If G, is already
centerless then we are done. Otherwise, Griin’s lemma
states that the quotient group G,/Z(G,) is centerless, and
is therefore a perfect centerless group. Thus, starting from
D(Gpe) we can turn it into a SET state where the fluxes
are fractionalized by the symmetry Z(G,) according to the
2-cocycle that determines the central extension

1 — Z(G,) — G, = Gpe — 1. (57)
Then, gauging Z(G,) using the KW map prepares D(G,)
as desired.

Reciprocally, to prepare D(Gy,.) from D(G), it suffices
to perform measurements of the hopping operators to con-
dense the anyons that resulted from the gauging in the
reverse order. |

Similarly to the Fibonacci case, let us consider the
defects in D(Gpe). The anyons in D(Gy) are all non-
Abelian: since the group is perfect, it does not have (non-
trivial) 1D IRs (corresponding to gauge charges), and since
the group is centerless, all conjugacy classes except the
trivial one have more than one group element (correspond-
ing to non-Abelian fluxes and dyons). Therefore, the only
way to prepare this phase comes from measuring Abelian
line defects. Again, as we have argued, this does not help
since the parent state must be a larger topological order.
We thus conjecture the following.

Conjecture 2—The quantum doubles D(G,.) and
D(G,,) for distinct perfect centerless groups Gpe and G
are in distinct measurement-equivalent phases.

VI. QUASILOCAL UNITARIES AND
MEASUREMENTS

So far, our discussion has focused on states that can
be prepared using (strictly) local unitaries, by which we
mean finite-depth circuits consisting of finite-range gates.
In this final section, we discuss what we can obtain if we
instead allow for quasilocal unitaries, i.e., unitary gates
with exponentially small long-range tails.

First, using ancillas, it is now possible to prepare any
invertible (possibly chiral) state since the “doubled” phase
(the phase along with its time-reversed partner) can always
be prepared from the product state via quasi-LUs [118].
The partner can then be discarded, leaving us with a sin-
gle chiral state (see Appendix A 2 for an explicit example
for the Chern insulator). More generally, on the space of
maps rather than states, any quasilocal QCA can also be
implemented using a quasi-FDLU and ancillas. Indeed,
we note that, although the proof given in Ref. [73] (that
QCA ® QCA™! is a FDLU) presumes the strictly local
case, the proof carries over to the quasilocal case. We also
note that in one dimension, quasilocal QCAs have the same
classification as that of their local counterparts [119], while
higher-dimensional classifications are unknown.

Adding measurements, one can then perform either KW
or JW to gauge such an invertible state in one shot [16]. For
example, the Ising topological order can be prepared with
a quasi-LU and one round of measurement by gauging a
p + ip superconductor. Similarly, all of Kitaev’s 16-fold
way can be similarly prepared. We note that Hsieh et al.
[120] observed that one can also obtain the 16-fold way
states by locally measuring the parity operator, as a sort
of measurement-induced Gutzwiller projection; this also
qualifies as a single-shot protocol, although this viewpoint
was not emphasized.

It is also worth noting that while Abelian anyon theo-
ries with gappable edges can be prepared with FDLU and
single-site measurements (since they can be prepared by
gauging an appropriate Abelian SPT phase [84,121]), all
cases with ungappable boundaries can be prepared using
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a quasi-FDLU in one shot. Given such an Abelian anyon
theory M, its “double” M X M admits a gapped bound-
ary, and therefore can be prepared in one shot. Then, M
and M can be separated to different Hilbert spaces using
a quasilocal unitary, so that we can now discard M. For
example, the v = 1/3 Laughlin state [122] can be prepared
by first preparing a Zs toric code, adding fermionic degrees
of freedom, then performing a quasi-FDLU to the fixed
point of the doubled Laughlin state.

Note the importance of a quasi-FDLU in preparing
states with ungappable edges. In the absence of expo-
nentially small tails, our preparation scheme would have
given a PEPS realization of such a state with finite bond
dimension, which is believed to be impossible [105—108].

VII. OUTLOOK

In this work, we have introduced a hierarchy of long-
range entangled states based on the number of shots
required to prepare the state. In particular, we provided
an explicit protocol that shows that nil-2 quantum double
states (despite being non-Abelian) are as simple to pre-
pare as Abelian topological states when measurement is
an additional resource. In general, we have presented a
hierarchy of KW maps for solvable groups G based on
their derived length. Moreover, for groups with an infinite
derived length (i.e., nonsolvable groups), we conjecture
that their quantum doubles are in distinct measurement-
equivalent phases of matter, and similarly for the Fibonacci
topological order.

It is interesting to make a comparison to the ability
for such states to be universal for quantum computation.
Indeed, it is known that non-nilpotent solvable quan-
tum doubles can only realize Clifford gates by braiding,
whereas Fibonacci anyons and nonsolvable quantum dou-
bles can realize non-Clifford gates by braiding alone. Nev-
ertheless, for non-nilpotent quantum doubles, additional
ancillas and measurement can enable a universal gate set
amenable for topological quantum computation [123,124].
It is thus worth exploring whether there is a deeper con-
nection between the hierarchy of states from measurements
and the computational power of the prepared state. More-
over, we have pointed out that solvable but non-nilpotent
quantum doubles require at least two rounds of measure-
ment. It would be interesting to see whether if there is any
further increase in computational power (such as a denser
universal gate set) for such quantum doubles that require
at least three or more rounds of measurement.

Moreover, it is interesting to note that while the present
work argues that Fib (and in particular double Fib) cannot
be prepared by a finite number of shots, a recent work
has shown that string-net models can be prepared using
O(In L) layers, where L is the system size [19] (which can
be compared to the known linear depth protocols involv-
ing unitary circuits [112]). It is thus tempting to think that

perhaps using O(InL) shots is optimal, although this is
unproven.

Looking forward towards the preparation of more gen-
eral topological phases of matter in 2+1D, we believe
that our results generalize to anyon theories described by
modular tensor categories (MTCs). Namely, we conjec-
ture that all nil-2 MTCs [125,126] can be prepared in
one shot using quasi-FDLUs. In particular, this includes
anyon theories that do not have a Lagrangian subgroup,
such as Ising anyons. Similarly, we conjecture that all
solvable MTCs [114] can be prepared using quasi-FDLUs
and a finite number of shots. A step towards proving this
conjecture, as well as the conjectures given in Sec. V,
would be to rigorously show that performing measure-
ments that are nonlocally correctable relates the initial
and final topological orders by gauging an Abelian sym-
metry. A further interesting question is whether all rep-
resentatives of measurement-equivalent phases are given
by perfect MTCs (theories that only contain non-Abelian
anyons).

Regarding the preparation of solvable MTCs, it would
be worthwhile to obtain rigorous results about the min-
imal number of shots required to prepare a given state
of matter. For example, this number for quantum doubles
D(G) is upper bounded by the derived length /g, but can
be lowered, as we have shown for nil-2 groups. How does
one calculate this number for general solvable MTCs and
does this minimal number coincide with any interesting
mathematical quantity?

Relatedly, the explicit form for (KW®)" shows that
Rep(G) can be gauged for any finite group G (which
does not need to be solvable) using only a single round
of measurement. This is because the measurement out-
comes correspond to domain walls of G, which can be
paired up with L8. In particular, this implies that sym-
metry broken phases of G can be prepared for any finite
G in one shot. Are there other interesting noninvertible
symmetries that can be gauged efficiently using measure-
ments and feedforward?

Although the construction in the present paper applies to
a system without a boundary, we believe that it is straight-
forward to apply the construction to the case with a bound-
ary. First of all, applying the KW map to a system with a
smooth boundary produces a particular gapped boundary,
namely, the boundary where all gauge fluxes condense. For
example, measuring a 2D cluster state with a boundary pre-
pares the toric code where all the m anyons condense. In
two spatial dimensions, it is known that gapped boundaries
of the quantum double of G are classified by a subgroup
K of G and a 2-cocycle H?(K, U(1)) [127,128]. This can
be physically interpreted as a particular 1D G-symmetric
state before gauging. Namely, the boundary corresponds
to a symmetry-breaking state where the subgroup X is pre-
served, and the remaining symmetry can be put in to a SPT
state. Since such symmetry breaking and SPT states can
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also be prepared using FDLU and measurements, this gives
an explicit way to construct solvable quantum doubles with
arbitrary gapped boundaries. We leave the explicit con-
struction of twisted quantum doubles with arbitrary gapped
boundaries, and gapped boundaries of topological orders in
higher dimensions (itself an active line of research [128—
130]), to future work. The preparation of topological orders
with condensation defects inserted [131—134] would also
be an interesting direction.

In higher dimensions, gauge theories of nil-2 groups
naturally generalize to higher group gauge theories
[135] where Abelian O-form symmetries are “centrally”
extended by higher-form symmetries. We give a protocol
to prepare such a class of 2-group gauge theories in 3+1D
in one shot in Appendix D. One can also prepare hybrid
fracton phases [136,137] where an Abelian 0-form sym-
metry is centrally extended by subsystem symmetries in
one shot.
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Note added —Recently, we learnt of an upcoming work
[138], which provides an alternate protocol to prepare
twisted quantum doubles for non-Abelian groups. In addi-
tion, Bravyi et al. [ 18] recently informed us of a refinement
to their previous proof, to appear, that removes the implicit
restriction to split extensions in Ref. [18].

APPENDIX A: INVERTIBLE STATES FROM
ANCILLAS

1. Preparing the Kitaev chain from a FDLU and
ancillas

The Kitaev chain can be prepared by a FDLU and ancil-
las by preparing two Kitaev chains and discarding the sec-
ond copy. We start with two trivial fermionic chains with
Majorana operators y,, y, and n,,n,. The stabilizer of the
trivial state (atomic insulator) with all sites unoccupied is

—iVn)/n/, —iﬂnﬂ;~ (A1)

Now we implement two layers of Majorana SWAP gates

T ! T /
U=exp (Z > 77n+1J/n> exp (Z > nnl/n)- (A2)

From this we see that

Uy, U =y, Uy U'=y,_,, (A3)

UnnUT = —Mn+1, U’I; Ut:ﬂ;‘ (A4)

That is, all ¥’ are translated to the left while all n are
translated to the right (up to a minus sign). The resulting
stabilizers are

iynyy:—la i77n+177;,, (AS)

which are exactly the stabilizers for two copies of the
Kitaev chain.

2. Preparing the Chern insulator from a quasi-FDLU
and ancillas

Next, we outline how to prepare the Chern insulator with
a quasi-FDLU and ancillas. First, consider the Hamiltonian

i o i +
= Z <5ax’y+lax’y B be’y""lbx’y + aiaybx,y—o—l

Xy

+al tiybey + ai,ybx,y) 1+ He., (A6)

where the couplings are depicted in Fig. 3(a). The red
(blue) dots are 4 (B) sites, forming the two-site unit cell.
It can be straightforwardly checked that this has Chern
number C = 1. In momentum space [139]

H - // dedky (azxaky’ b/tx’k)’)

" sin(ky) 1+ e~ 4 by
1+ ek 4 e~k — sin(ky)

o (W)
Dk,

(AT)
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(@ (b)

YUY Y

FIG. 3. (a) Two-dimensional lattice model with nonzero Chern number [see Eq. (A6)]; bonds with arrows correspond to an imagi-
nary hopping. (b) A stack of two Chern insulators with opposite Chern numbers; it can be adiabatically connected to a product state
by tuning the rung couplings.

The nontrivial Chern number implies that the ground state cannot be adiabatically connected to a product state. How-
ever, let us consider the double stack in Fig. 3(b), where a second copy is introduced with inverted signs of the imaginary
hopping, giving C = —1 to the second copy. As a whole, this nonchiral system can be adiabatically connected to a product
state by simply introducing rung couplings; the momentum-space Hamiltonian is

sin(ky) 1 + e 4 ek 0 0
_ 1+ e 4 e~k — sin(k,) 0 0
M= =2) 0 0 —sin(k,) 14 e & 4
0 0 1+ e 4 ek sin(ky)

(A8)

For A =0, we have the two decoupled layers, but for APPENDIX B: FURTHER DETAILS ON THE KW
A = 0, we add a real (imaginary) hopping between the red MAPS
(blue) sites. The case A = 1 is a trivial product state along

each rung. The ground state remains gapped throughout, as
shown in Fig. 4. We can explicitly construct map KW as a tensor net-

work operator and demonstrate that it has the correct
action. Let |[+)¢ = = (1//1G]) X pe lg) and 11)¢ = |19),
where 19 is the identity element of G. Define

1. KW¢ from the generalized cluster state

1.00 KW§, = (+I7 Ug, I1)g, (B1)
075 - where

[oB

5 050 Uy, = H[HCR HCLL] HCLLCRT (B2)
025 e—>v e<v

The unitary UC is the generalization of the cluster state
entangler for G degrees of freedom, which has both G
symmetry and Rep(G) (d — 1)-form symmetry [140]. The
controlled-NOT gates are generalized to controlled-left and
controlled-right multiplication operators

0.0 0.5 1.0
A

FIG. 4. Adiabatic path connecting two decoupled Chern insu-

lators (A =0) to a product state (AL = 1). The Hamiltonian CL —
is given in Eq. (A6) and the couplings are depicted in ve lg1)y 822, = lg1)y |g1_g2>e’ (B3)
Fig. 3. CRye €1), 1€2). = 18), 18281) -
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An intuitive way to see the action of UY is to note that, for
each edge e, the unitary acts as

CL! CR}, |g.) lg.) lg) = (B4)

J

gi.) 18i.8e81.) 181.) -

CL! (L8 ® L8)CL,, = L8 ® 1.,
CL! (R8 ® 1,)CL,, = Ré ® L&,
CL,(Z'®Z)CL!, =1, ® Z!,

First let us show that left multiplication is a symmetry,
Eq. (29):

GxHLf— +|,,UG1_[Lg|1
+|VUG1_[[L’>’ ]_[Rg]_[Lg} )¢

e—>v e<v

+|,,1_[LgUG|1 Vg = (+15U% 11§

=KW¢C. (B8)

In the second line we used the fact that [],[[],_,6 RS
[T, Li111)¢ = |1)¢ since each edge is acted by Lng,
which leaves IG invariant, and in the third line we used Eq.
(B5) to obtain U°[LS ], , RS [1.., LS1(US)T = L§ and
finally (+| L§ = (+°.

Next, to show the dual symmetry (30), we note that

e—>v

7! x KW = (+|G 71 U% |1)§

<+|VUGZ”Z“Zf 116

= (+(§ UGZ”Z“ )¢ = KWY x Z“Z’g,
(BY)

where in the second line we used Eq. (B7) to obtain
(UH'ZeU° =27y Zj and in the third line we used
/9 |1)g =1, |1)g. Then Eq. (30) follows immediately by
sending through instead a product of Z, around a closed
loop and noting that, for each vertex along this loop, we
have (+ |GZ“Z“ = (—I—IG 1, since, for each (g| in the sum,
we have p”(g)p"(g) = p*(@)p"(g) = p*(19) = 1.

Thus, after setting g, = 1 (which is implemented by con-
tracting with |1)g), we are left with g;, g7, the domain-wall
variable we map to in Eq. (26).

Let us show that KWC defined in Eq. (B1) has the
correct kernels. The following properties of the controlled-
left and controlled-right multiplication operators will be
useful:

CR], (L8 ® R§)CR, = L8 ® 1., (BS)
CR!,(R¢ ® 1,)CR,, = R ® R, (B6)
CR,.(Z' ® Z*)CR} =1, ® Z}". (B7)

Lastly, we figure out the result of “gauging” RS, Eq.
47):

KW x R = (+|5 U°RS |1)§
= (+HIFR [ RET T L8V 102

e—>v e<v
GTTRe T80 10§ = 48 x KWC.
e—>v e<v

(B10)

In the second line we used Eq. (B6) to obtain
UL (UST = R ]_[e_w RST],., L% and in the third line
we used (+|% RS = (+]%.

2. More on factor systems

Here, we give a careful derivation of the properties
regarding factor systems and how they determine group
extensions.

Given a group G and a normal subgroup N < G, one has
an exact sequence

1> NS5>GS 00— 1. (B11)
That is, there exists an injective map ¢t : N — G and a
surjective map 7 : G — Q such that m ot = 1. Next, we
pick a lift s : O — G such that 7 o s is the identity map
in Q. Note that s is not a group homomorphism. The map
s allows us to define the two pieces of data in the factor
system.

(1) The map o : Q — Aut(N) can be defined by
H(a?[n]) = s(@)e(m)s(g).

That is, for each g € O, 07 defines an automorphism
on N given by conjugation with s(g).
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(2) The cocycle  : Q> — N can be defined by

tw(q1,92)) = s(q1)s(q2)s(q192),

which captures the failure of s to be a group homo-
morphism.

Note that because s(1¢) = 1¢ we automatically have the
following properties assumed in the main text:

(1) o' acts as the identity automorphism;
(2) w is counital (“normalized”) i.e.,
0(g,19) =1V,

w(12,9) =

We remark that o might fail to be a group homomorphism
if N is non-Abelian,

ol 0 g% = @) 5 G192 (B12)

where ¢"! is an inner automorphism that acts as conjuga-
tion: "' [ny] = nynyn;.

Let us define the elements of the extended group g €
G as g = (n,q) = t(n)s(g). From this, it follows that the
group multiplication is given by

(n1,q1) X (n2,q2) = (no?[ny]w(q1,492),9192). (B13)

Furthermore, associativity of group multiplication requires
w to satisfy the cocycle condition

o '[w(q2,q3)]w(q1,9293) = w(q1,92)0(q192,q3)-
(B14)

3. Properties of KW"<¢

We would like to show that KWY;¢ (defined as the
unique map that gauges N and leaves Q invariant) can be
expressed as

KW = U x KWY,. (B15)
Equivalently, it suffices to define KW"<C as above, and
show that KWV <C has the correct kernels. First, it is helpful
to define the unitary

UNe =UNSCUY, = S0 Quer Uy, (B16)
so that the map can be expressed as
KW = (+Iy U 1D (B17)

We note that, similarly to Eq. (B4), an intuitive way to see
why this map works is to note that UY<“ acts on each edge

as

Upi% i) ne) lgg)

= |gi,) @i, qi, )0 % (i .neng, 0 (qi,,q1.)) 121) -
(B18)

Therefore, after setting n, = 1 (which is implemented
by contracting with |1)§ ), we are left with #(g;,g.), the
domain-wall variable we map to in Eq. (43).

For calculation purposes, it is also useful to have

U 1g) 1ne) lgr)

= |g;,) Ini,0%[nJw(qi,, qi.q5)n1) 1g.),  (B19)

as well as the action of left and right multiplications in the
basis |n,q) € C[N] ® C[Q]:

L% |ny, qy) = Ino?[ny]w(q, qv), 9qv) »

(B20)

RS ny, qy) = |ne@(qvq, 9)o 1], ¢ug) -

From the above, one finds the identities

(UN<'G)T(]_[L§> UV =T1es[ [ orese,  B21)
NN =277y (B22)

where X7 =" |0[n]) (n|.
Now let us check that KW/ <C has the correct kernels, to
show Eq. (39):

KWV x ]_[Lg (+1y UN<'G]_[Lg Iy

= (+I¥ UN<G|:1_[Lg HL”R”Z":|
= (+I) [[ 28U 11y}
= (+I) [[z40™= 1)y

=[] £8 x KWN<C (B23)

In the second line we used the fact that L"R'E{ [1V), =
|no[1¥n), = |1V),, and in the third line we used Eq.
(B21) and finally (+[% [, LS = (+I% [, L?.
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Next, to show the dual Rep(N) (d — 1)-form symmetry,
consider

Z) x KWNC = (4N Z2 UV | 1))
=U (+Iy UNZ] Z)Z;, 1)}
=U (+|y U2 Z) 1)

=KWV x 7] 7, (B24)
where in the second line we used Eq. (B22), and in the third
line we used Z., |1)]g =1, |1>%’ . Thus, by taking a product
over all edges in a closed loop, the Z; Z; terms pairwise
cancel at each vertex, proving Eq. (42).

APPENDIX C: NIL-2 QUANTUM DOUBLES

1. Proof of preparation

Let us confirm that the protocol in Eq. (12) indeed

prepares D(G). An important observation is that the inter-

mediate state after gauging N is exactly the toric code state.
Therefore,

=N
IDIN))p = KWpp |+)p =KWy [4)y,  (CI)
where instead of measuring the plaquette operators, we

instead prepared the toric code by measuring the vertex
operators. Therefore,

=N
KW, QKW p |1 4)5 14))

= KW, Qe KW, |+)2 | +)V

= KWE, KW [4)7 [+)

= KWS, |0

= |D(G))k, (C2)
where we used the definition of KW"<C in Eq. (21) for the
case of a central extension (trivial o and therefore Xy =
1) and the two-step gauging property in Eq. (20).

2. One-shot preparation of the nil-2 quantum double
by gauging a decorated domain-wall SPT state

An alternative way to understand the protocol in Eq.
(12) is to treat the state preparation as gauging a SPT state
protected by N x Q. First, note that if Qyz, were absent
then we are simply applying KW to gauge the product state
with symmetry N x O, which will give an N x Q toric
code. However, as pointed out in the main text, by using
QpEpy we are turning the N-toric code phase into a non-
trivial SET phase protected by Q. In fact, we can further
push Qygy through w" by using the fact that it per-
forms a right multiplication by w(q;,, gi,qy,), thus pushing

it through and using the fact that KW" turns “X” (in this
case, right multiplication) into “ZZ”,

~ N =~=N
QVEVKWEP = KWEPQVVPPa (C3)
Qyyep 9iy» Gfes N> 1)
= x T (i) i o i 1) €4

where iy and f; denote the plaquettes with dotted lines
pointing into and out of the edge e. This is exactly the
decorated domain-wall wave function [83]. For each edge
e, a “1D SPT state” given by a 2-cocycle w whose wave
function lives on the vertices and is given by w(q;,qy,, qy,)
is present whenever there is an N domain wall, which is
detected by the combination n;, 7. To conclude, our state
has been recasted into the form

ID(G)g = (19 Xy [1)2 x (1Y Czpg [+)) x |SPT),
(C5)

where the SPT state protected by N x Q is given by

ISPT) = Qypp |-H)2 [+ . (C6)

Hence, in this viewpoint, we are preparing a twisted quan-
tum double D*(N x Q) realizing the same phase of matter
as D(G) [141]. The 3-cocycle o corresponds to a class
[a] € H3(N x Q,U(1)), and can be related to » using the
H?*(Q,H' (N, U(1))) part of the Kunneth formula. The two
classes are related via [100,142]

a=pUow, (&)}

where p is the generating class of H' (N, U(1)).

APPENDIX D: ONE-SHOT PREPARATION OF
2-GROUP GAUGE THEORY WITH ABELIAN
0-FORM SYMMETRY

A 2-group [143] G gauge theory can be specified by
a 0-form symmetry Q, a 1-form symmetry N, an auto-
morphism o : O — Aut(V), and a certain 3-cocycle w €
Hg (Q, N) called the Postnikov class. The natural general-
ization of a nil-2 group in this setting is to assume that O
is Abelian, and that the automorphism o is trivial. Simi-
lar to the 2D construction, we start with a 3D triangulation
with branching structure and place C[Q] on vertices 7 and
edges E, and C[N] on plaquettes P and tetrahedra 7. We
have

=N
|G)EP = KWgVQVPVKWPT H‘)g |+>]}[

= (+]yr X% Quprczly [H) 2N 1Y )Y
(D1)

To define Qppy, the vertices in each plaquette p can
be ordered using the branching structure as v,o, Up1, Up2.
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Then,

QVPV = l_[ |C]vp05 ‘]vp] Cval 5 ”pd)(CvaOa Z]Upoqvpl 5 év]ﬂ Cvaz))
P

<va07 qvpl qypl > np | . (D2)

Similarly, this construction can be thought of as gauging an
N x Q SPT state where both symmetries are 0-form with
4-cocycle @ = p U w, where p is the generating class of

H'(N, U(1)). After commuting Qypy through KW, we
obtain

G = KW2,KWdY, Qypvrr|+)21+)Y, (D3)

where Qpyyrr is the entangler for the SPT state by deco-
rating a 2D Q-“SPT state” on N domain walls:

Qyyyrrlquyg> Gv,1 Gvpas Mip> 1)

— J)(vao ,(_]Upoqvpl ’(_]Uplq

X
(D4)

Here, i, and f, are tetrahedra that point into and out of
plaquette p.
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