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Encoding quantum information onto bosonic systems is a promising route to quantum error correc-
tion. In a cat code, this encoding relies on the confinement of the dynamics of the system onto the
two-dimensional manifold spanned by Schrödinger cats of opposite parity. In dissipative cat qubits,
an engineered dissipation scheme combining two-photon drive and two-photon loss has been used to
autonomously stabilize this manifold, ensuring passive protection against, e.g., bit-flip errors regardless of
their origin. Similarly, in Kerr-cat qubits, where highly performing gates can be engineered, two-photon
drive and Kerr nonlinearity cooperate to confine the system to a twofold-degenerate ground-state manifold
spanned by cat states of opposite parity. Dissipative, Hamiltonian, and hybrid confinement mechanisms
have been investigated at resonance, i.e., for driving frequencies matching that of the cavity. Here, we pro-
pose a critical cat code, where both two-photon loss and Kerr nonlinearity are present and the two-photon
drive is allowed to be out of resonance. The performance of this code is assessed via the spectral theory
of Liouvillians in all configurations ranging from the purely dissipative to the Kerr limit. We show that
large detunings and small, but non-negligible, two-photon loss rates are fundamental to achieve optimal
performance. We further demonstrate that the competition between nonlinearity and detuning results in a
first-order dissipative phase transition, leading to a squeezed vacuum steady state. We show that to achieve
the maximal suppression of the logical bit-flip rate requires initializing the system in the metastable state
emerging from the first-order transition and we detail a protocol to do so. Efficiently operating over a broad
range of detuning values, the critical cat code is particularly resistant to random frequency shifts charac-
terizing multiple-qubit operations, opening avenues for the realization of reliable protocols for scalable
and concatenated bosonic qubit architectures.
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I. INTRODUCTION

The development of large-scale quantum computers
relies on the possibility of taming errors, i.e., the irre-
versible processes stemming from the interaction of the
system with its surrounding environment [1–4]. Quan-
tum error-correction schemes redundantly encode quantum
information onto multilevel quantum systems, in a way
that enables detection and correction of specific types of
errors without affecting the stored quantum information
[5–7]. The mainstream quantum error-correction paradigm
consists in encoding the |0L〉 and |1L〉 logical states onto a
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two-dimensional subspace of the Hilbert space character-
izing the states of several physical qubits [1,5]. Despite its
promise of scalability, this type of encoding suffers from its
large hardware footprint and the high connectivity between
physical qubits required to execute fault-tolerant quantum
computations.

An alternative paradigm to detect and correct quan-
tum errors consists in encoding the logical states of
a qubit onto an appropriately selected subspace of the
Hilbert space of a harmonic oscillator [8–15]. These
bosonic quantum codes are characterized by a reduced
hardware footprint and essentially eliminate the daunt-
ing challenge of simultaneously controlling the mul-
tiple degrees of freedom of several physical qubits
[16].

In these systems, information is encoded as a symmetric
pattern in phase space [11]. While a translational symmetry
underlies the Gottesman-Kitaev-Preskill (GKP) code [8],
a rotational one characterizes the Schrödinger-cat code,
where the logical manifold is spanned by cat states of
opposite parity [9,17].
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Schrödinger-cat qubits have been realized, in particular,
on superconducting circuit platforms that are mainly prone
to two noise processes: single-particle loss and dephas-
ing [11]. These directly map onto errors on the logical
qubit, namely, bit- and phase-flip errors. Confinement of
the dynamics of the system to the cat manifold relies on a
subtle interplay between engineered parametric processes.
In recent years, two approaches have been proposed to
achieve this confinement.

Dissipative confinement relies on an engineered dissi-
pation scheme combining the two-photon drive G and the
two-photon loss η [9,18–22] to generate and autonomously
stabilize the code manifold. Dissipative cats are intrin-
sically resistant to leakage processes, ensuring an expo-
nential suppression of the phase-flip error rate in the
photon number of the cat [9,18,23,24]. Their main draw-
back is the limited performance of logical gates on current
superconducting platforms [19,25].

Hamiltonian confinement, on the other hand, relies on
the Kerr nonlinearity U to restrict the system to the doubly
degenerate ground space of the Kerr parametric oscilla-
tor [26–29]. Gate performance can be improved by the
application of, e.g., superadiabatic pulse designs [20], lim-
iting the amount of leakage induced by gate operations.
Nevertheless, this protocol remains susceptible to thermal
and dephasing noise, which are no longer exponentially
suppressed in the photon number [25]. This issue is to
be ascribed to the level structure of the Kerr parametric
oscillator and has been identified as the primary limita-
tion of a hybrid confinement scheme, i.e., one combining
sizable two-photon loss and Kerr-nonlinearity. A new con-
finement scheme inheriting its nonlinearity from a two-
photon exchange with an external two-level system [25]
has recently been proposed as a possible solution to this
issue. Note that the dissipative, the Hamiltonian, and the
latter proposal alike all operate in a resonant regime, i.e.,
one where the pump-to-cavity detuning is � = 0. Only
very recently, finite values of � have been explored, albeit
restricting to the limiting case of Hamiltonian confinement,
in Refs. [30–32].

Here, we adopt a novel perspective, operating the cat in a
hybrid regime and in the presence of sizable detuning. We
dub our encoding a critical cat code by virtue of the first-
order dissipative phase transition (DPT) characterizing the
system.

By exploring the parameter space, we prove that:

(a) Efficient quantum information encoding is not lim-
ited to � = 0 if U �= 0 but extends over a broad
range of values of �, where the qubit can be oper-
ated (Sec. III).

(b) The critical cat outperforms its Hamiltonian, dis-
sipative, and hybrid-resonant counterparts as large
photon numbers and an enhanced exponential
suppression of bit-flip errors can be achieved for
carefully chosen values of � (Sec. III).

(c) The critical cat qubit provides a significant step for-
ward in the hybrid operation of cat qubits, overcom-
ing many of the limitations of the protocol detailed
in Ref. [25], such as the need for additional confine-
ment Hamiltonians other than the Kerr parametric
oscillator (with annexed hardware overhead) and the
lack of spontaneous stabilization (Sec. III).

(d) The code may achieve optimal performance in a
regime where the code space is only metastable,
while the steady state is a squeezed vacuum. In this
regime, which is emerging as a consequence of the
aforementioned DPT, logical errors compete with
the leakage process characterizing the decay from
the code space to the vacuum. Acknowledging the
presence of criticality is thus fundamental for the
proper characterization and initialization of detuned
cat qubits, regardless of their regime of operation
(Sec. IV).

(e) Parameter configurations exist for which the qubit
becomes resilient against uncontrolled changes in its
frequency (Sec. V), originating, for instance, from
the dispersive coupling to external reservoirs or
ancillary circuital elements [33,34], the latter being
typically required for the realization of two-
qubit entangling gates or concatenated-qubit error-
correction protocols.

The paper is structured as follows. In Sec. II, we introduce
the cat qubit and the dissipative and Hamiltonian processes
underlying its generation and we briefly review the role
of Liouvillian symmetries in bosonic quantum information
encoding. In Sec. III, we analyze the effect of detuning on
a hybrid cat code, demonstrating the enhanced resilience
of the critical cat to bit-flip errors. In Sec. IV, we show the
existence of metastable time scales and propose a proto-
col for the efficient initialization of detuned cats. We study
the resilience to frequency-shift errors in Sec. V and dis-
cuss protocols for bias-preserving gates in Sec. VI. We
draw our conclusions and discuss future perspectives in
Sec. VII. Appendix A presents details on the calculations
underlying the different encoding mechanisms detailed in
Sec. II B. Appendix B provides an in-depth analysis of the
timescales of the critical cat qubit, including the effects of
thermal noise and higher-order nonlinearities.

II. GENERATION AND STABILIZATION OF
SCHRÖDINGER CATS

Schrödinger-cat states are the even and odd superposi-
tions of two coherent states of opposite phases,

∣
∣C±
α

〉 = |α〉 ± |−α〉
2
√

1 ± e−2|α|2
, (1)

where the coherent states |α〉 are eigenstates of the
annihilation operator â, i.e., â |α〉 = α |α〉 [2,35]. When
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expressed in the number (Fock) basis,
∣
∣C±
α

〉

contain only
components with, respectively, even and odd numbers
of photons. As such, they are eigenstates of the parity
operator �̂ = exp

(

iπ â†â
)

with eigenvalues ±1.
Cat qubits are encoded in the two-dimensional mani-

fold defined by cat states of opposite parity. The prevailing
convention defines the logical basis as [36]

|0L〉 = 1√
2

(∣
∣C+
α

〉 + ∣
∣C−
α

〉) ≈ |+α〉 + O
(

e−2|α|2
)

|1L〉 = 1√
2

(∣
∣C+
α

〉 − ∣
∣C−
α

〉) ≈ |−α〉 + O
(

e−2|α|2
)

,
(2)

so that |±L〉 = ∣
∣C±
α

〉

. The generation and stabilization of
Schrödinger-cat codes relies heavily on parity-preserving
processes involving exclusively the pairwise exchange of
photons between the system and its environment [9,17,37].
These processes are modeled by the effective Lindblad
master equation [4,38–40]:

∂tρ̂ = Lρ̂ = L0ρ̂ + L1(κ1, κφ)ρ̂ (3a)

L0ρ̂ = −i
[

Ĥ , ρ̂
]

+ ηD [

â2] ρ̂ (3b)

Ĥ = � â†â + G
2

(

â2 + â†2) − U
2

â†2â2 (3c)

L1(κ1, κφ)ρ̂ = κ1D[â] ρ̂ + κφD[â†â] ρ̂. (3d)

Here, ρ̂ ≡ ρ̂(t) (for brevity) is the system density matrix
at time t and L is the Liouvillian superoperator, which we
separate into two parts: L0 and L1(κ1, κφ). The former, L0,
confines the dynamics to the cat manifold. Its Hamiltonian
Ĥ accounts for the two-photon driving-field amplitude G,
the Kerr nonlinearity U, and the pump-to-cavity detuning
�. L0 also accounts for two-photon losses, described by
the rate η at which pairs of photons are incoherently emit-
ted from the cavity. The latter, L1(κ1, κφ), describes the
unwanted effects of the environment on the code, induc-
ing errors in the logical qubit. Here, κ1 represents the
single-photon loss rate, while κφ is the total dephasing rate.

The dissipator D
[

Ĵ
]

describes the action of the jump

operator Ĵ on ρ̂ and is defined as

D
[

Ĵ
]

ρ̂ = Ĵ ρ̂Ĵ †− Ĵ †Ĵ ρ̂ + ρ̂Ĵ †Ĵ
2

. (4)

The combined effect of L0 and L1 is usually recast in terms
of a phase-flip error rate �φ and a bit-flip error rate � act-
ing on the logical qubit [9]. It is known [9,25,30,34,41–43]
that the main advantage of cat qubits lies in the expo-
nential suppression of � in the average photon number,
with �φ increasing only linearly. This is what drives the
interest in cat states as biased-noise codes. As we show
below, however, this picture is incomplete and, in most

detuned regimes of operation, at least one additional rate
�leak must be introduced, characterizing the leakage toward
states outside the logical qubit manifold.

A. Symmetries

Liouvillian symmetries are distinguished into two
classes: weak and strong [33,44–49]. A weak symmetry
occurs when an operator Ô can be found that obeys

L(Ôρ̂ Ô†) = Ô(Lρ̂)Ô†, (5)

where Lρ̂ = −i[Ĥ , ρ̂] + ∑

i γiD[Ĵi]ρ̂. A strong symmetry,
on the other hand, requires

[

Ô, Ĥ
]

=
[

Ô, Ĵi

]

= 0. (6)

While a weak symmetry only guarantees the existence of
a single steady state, a strong symmetry induces an n-
dimensional steady-state manifold, where n the number of
nonequivalent irreducible representations of the symmetry
group [49].

The ideal Liouvillian L0 described in Eq. (3b) is charac-
terized by a strong Z2 symmetry, as both the Hamiltonian
and the jump operators commute with the parity operator
�̂. The Liouvillian can thus be written in the block-
diagonal form L0 = L++

0 ⊕ L+−
0 ⊕ L−+

0 ⊕ L−−
0 sketched

in Fig. 1(b) [50,51]. The dynamics within each block are
conveniently described in terms of its eigenvalues λμνj and
right eigenoperators ρ̂μνj , where

Lμν0 ρ̂
μν
j = λ

μν
j ρ̂

μν
j with −Re{λμνj } < −Re{λμνj +1}. (7)

κ1

(b)(a)

FIG. 1. (a) The even and odd cat states, represented by their
Wigner functions, encode the logical states |0L〉 and |1L〉. Their
superpositions, approximately the two coherent states |±α〉,
define the logical states |±L〉. (b) The block structure of the
Liouvillian arising from its strong Z2 symmetry. Finite values
of � or κφ act only within the blocks L+−

0 and L−+
0 , so that

the four-block-diagonal structure of L0 is preserved. The single-
photon loss κ1, instead, connects different blocks, resulting in
a two-block-diagonal structure typical of weakly Z2-symmetric
systems.
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Due to the strong symmetry, the latter are also eigenopera-
tors of �̂ according to the relation

�̂ρ̂
μν
j = μρ̂

μν
j , and ρ̂

μν
j �̂†=νρ̂μνj . (8)

From here on, we refer to ρ̂μμ0 as steady states and to ρ̂μν0 ,
with μ �= ν, as coherences [24,50]. While the imaginary
part of λμνj describes the oscillations within the specified
sector, its negative real part sets the relaxation rate toward
the steady state. Throughout the paper, we deem

�
μν
j = −Re{λμνj }. (9)

Complementary information on the dynamical proper-
ties of L can be retrieved from its left eigenoperators σ̂ μνj ,
defined as

L†
μνσ̂

μν
j =

(

λ
μν
j

)∗
σ̂
μν
j . (10)

They are related to ρ̂μνj by the biorthogonality relation

Tr
[

(σ̂
μν

k )†ρ̂
μ′ν′
j

]

= δμ,μ′δν,ν′δj ,k (11)

and form a basis to express the time evolution of observ-
ables in the Heisenberg picture. The null eigenoperators
{σ̂ μν0 }μ,ν of L†, in particular, are conserved quantities,
defining the set of all observables that remain constant
throughout the evolution [50].

Upon introducing single-particle loss errors with rate κ1,
the strong Z2 symmetry is lost, as the four-block-diagonal
structure of the Liouvillian is replaced by the two-block
structure L = L+ ⊕ L− typical of the weak Z2 symmetry
that persists in the system [see Fig. 1(b)]. We denote the
eigenvalues of the weakly Z2 symmetric Liouvillian as

Lμρ̂μj = λ
μ
j ρ̂

μ
j with −Re{λμj } < −Re{λμj +1}. (12)

Similarly, the left eigenoperators are defined as

L†
μσ̂

μ
j = (λ

μ
j )

∗σ̂ μj (13)

and in analogy to Eq. (9), we define the rates

�
μ
j = −Re{λμj }. (14)

Within this picture, an arbitrary state will decay toward the
unique steady state of the system.

B. Quantum information encoding

An open quantum system can encode quantum infor-
mation and perform quantum computation (details in
Appendix A) if, at time t = 0, the following relation holds:

ρ̂(0) ≡ Q̂(0)⊗ M̂ (0). (15)

The matrix ρ̂(0) is that of a bipartite system, where Q̂(0)
is the state encoding quantum information, while M̂ (0) is

a mixed state. Hamiltonian and dissipative processes will
make the system evolve into

ρ̂(t) = β(t)Q̂(t)⊗ M̂ (t)+ [1 − β(t)]ρ̂leak(t), (16)

where ρ̂leak represents the leakage outside the code space,
β(t) is determined by the Liouvillian dynamics, and we
neglect possible coherences between the code and the leak-
age space. If β(t) = 1, the Liouvillian dynamics will not
induce leakage. In this case, the evolution Q(t) represents
that of a logical qubit in the presence of logical bit- (�) and
phase-flip (�φ) errors. The special case of Q̂(0) = Q̂(t),
i.e.,

ρ̂(t) = Q̂(0)⊗ M̂ (t), (17)

corresponds to � = �φ = 0. This is a noiseless subsys-
tem [1,13,23,51–54] and it can only emerge in the system
under investigation if κ1 = κφ = � = 0 [9,33]. Indeed,
only when a zero Liouvillian eigenvalue exists within
each symmetry sector, i.e., �μν

0 = 0 ∀μ, ν ∈ {±}, can
quantum information be stored indefinitely, as this guar-
antees infinitely long-lived steady states and coherences.
If, instead, κ1, κφ , � �= 0, and β(t) = 1, the system will
evolve toward its unique steady state as

ρ̂(t) = Q̂(t)⊗ M̂ (t). (18)

For the logical qubit, this corresponds to finite values of
� and �φ and will result in the irreversible evolution of
the qubit toward a steady state at the center of the Bloch
sphere. We refer to this case as the steady-state encoding.

If, instead, β(t) < 1, the system will leak out of the code
space. This case implies the existence of at least one addi-
tional time scale 1/�leak, governing the variation of β(t).
A limiting case in this scenario, which we call a metastable
encoding, is

ρ̂(t) = β(t)Q̂(t)⊗ M̂ (t)+ [1 − β(t)]ρ̂ss,

β(t) = 1 − e−�leakt.
(19)

As we show below, an optimal biased-noise metastable
encoding—wherein quantum information can be effi-
ciently stored—requires � and �leak to be very small with
respect to the typical rate of gate operations.

III. ENHANCED SUPPRESSION OF BIT-FLIP
ERRORS

Dissipative, Hamiltonian, and hybrid stabilization alike
have mainly been investigated at � = 0, where, in the
absence of errors, Eq. (15) is exactly met. In this section,
we unveil � as a new control parameter, demonstrating its
potential to significantly enhance the performance of cat
codes.
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As we are interested in the cat code as a biased-noise
encoding, we focus in this section on finding the opti-
mal parameter configuration minimizing the bit-flip error
rate � in the presence of both photon-loss and dephas-
ing errors. For consistency with the existing literature
[25,29–31,34], we take 0 < G < 8 and consider through-
out this section two noise configurations: one dominated
by photon-loss (κ1 = 10−3 
 κφ = 10−5) and the other by
dephasing (κ1 = 10−5 � κφ = 10−3). We defer a thorough
analysis of the interplay between � and �leak and of the dif-
ferent encoding emerging at finite detuning to Sec. IV and
Appendix A.

A. Liouvillian analysis of critical cat

In this section, we analyze the spectral properties of L =
L0 + L1 [Eq. (3)] to gain insight into the interplay between
�, U and/or η in relation to �. We relate these parameters
by setting

η = W cos(θ), U = W sin(θ), η2 + U 2 = W 2, (20)

where W represents the natural unit of the system. In what
follows, all energies and times are reported in units of
W and W−1, respectively. By varying θ between 0 and
π/2, we are able to continuously explore the hybrid region
between the dissipative and Hamiltonian (Kerr) limits. We
do so in Fig. 2 where, for a fixed value of G, we explore the
phase diagram of�−

0 in� and U/η = tan(θ) for both noise
configurations. Within this Liouvillian picture, � ≡ �−

0
represents the slowest time scale involved in the decay of
the field quadratures. For instance, it describes the rate at
which |α〉 → |−α〉 whenever � = 0 [24,31].

While in the dissipative limit (U/η < 1) the detuning
configuration minimizing � is the resonant one (�opt =
0), for sizable Kerr nonlinearities (U/η > 1) �opt > 0.
Indeed, in this regime, the introduction of a nonvanish-
ing detuning significantly suppresses the value of � not
only with respect to the physical error rates but to all reso-
nant configurations as well. This result is at the heart of the
critical cat code, as it highlights the key role of detuning
in suppressing bit-flip errors, with its effectiveness being
linked to the presence of a nonzero Kerr nonlinearity (see
Fig. 2).

In this direction, comparison of Figs. 2(a) and 2(b)
shows that in a configuration dominated by dephasing, the
optimal � is found deep in the hybrid regime (U/η ≈ 102),
while in a configuration dominated by photon loss, it is
achieved closer to the Kerr limit (U/η � 105). This is
further supported by Fig. 3, which displays �(�opt) as a
function of κ1 and U/η, for different values of κφ . The data
reveal that the region with optimal protection from errors
progressively shifts from the hybrid phase to the Kerr limit
as κφ is decreased. This trend can be observed for all values
of κ1, although it becomes more pronounced for κ1 
 κφ .

10−2 100 102 104 106

U/η

0

20

40

Δ

Δopt

Δc

0

20

40

Δ

2 4 6 8
G

0

5

10

15
Δ

op
t

−7 −5 −3

log10(Γ)

−9 −6 −3

log10(Γ)

101 104

U/η

(a)

(b)

(c)

FIG. 2. (a),(b) The bit-flip error rate � as a function of the
detuning � and the ratio U/η = tan(θ) defined in Eq. (20). The
dissipative limit corresponds to θ = 0 (U = 0, η = 1). The oppo-
site limit, i.e., the Kerr (or Hamiltonian) limit, is reached for
θ = π/2 (U = 1, η = 0). The optimal detuning values�opt(G =
5, θ) are shown as continuous yellow lines. The dot-dashed line
denotes the critical threshold �c separating the phase with large
steady-state photon number from the vacuum one (see Sec. IV).
We set the two-photon driving-field amplitude G = 5 and (a)
κ1 = 10−5 � κφ = 10−3 and (b) κ1 = 10−3 
 κφ = 10−5. (c)
�opt(G, θ) as a function of G for different values of θ and κ1 =
10−3 
 κφ = 10−5.

Note that although �opt is rapidly increasing in U/η (yel-
low solid lines), for both noise configurations we find large
regions in the parameter space where � does not signifi-
cantly depart from its optimal value. While in the photon-
loss-dominated case, this region extends from a hybrid to a
purely Kerr regime [Fig. 2(b)], in the dephasing-dominated
one, it always requires nonvanishing η [Fig. 2(a)]. Over-
all, this introduces a trade-off between the choice of θ
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10−2 100 102 104 106

U/η

10−5

10−3

κ
1

10−4 10−3 10−2 10−1

Γ(Δopt)/κφ

10−3

10−5

10−7

κ
φ

FIG. 3. The optimal bit-flip error rate �(�opt) as a function of
the single-photon loss rate κ1 and of the ratio U/η for κφ = 10−3.
The value of �(�opt) is normalized to κφ to ensure consistency in
the limiting values of the displayed quantity for all choices of κφ .
The solid line highlights the lowest-(U/η) isoline �(�opt)/κφ =
5 × 10−5. The dashed curves display the same quantity for κφ =
10−4, 10−5, 10−6, and 10−7. The optimal configuration is clearly
seen to shift toward the Kerr limit for increasing values of κφ .

and the attainable values of �, which is an experimen-
tally finite resource. Indeed, for very large detuning, the
approximations leading from a microscopic description to
the effective model in Eq. (3) break down. For this reason,
we restrict our considerations to � ≤ �max = 50, consis-
tently with the most recent experimental efforts in this
direction [32]. In Fig. 2(c), we characterize the behavior
of �opt as a function of G for various values of U/η. The
increase of �opt follows a staircase pattern, taking on inte-
ger multiples of U for which additional degeneracies in the
spectrum of the Kerr parametric oscillator have been found
[30–32]. This staircase pattern is particularly pronounced
in the hybrid regime, becoming steeper in the Kerr limit,
consistently with the aforementioned divergence of�opt in
U/η.

B. Scaling of bit-flip error rates

Having shown the advantage of the hybrid critical
encoding for G = 5, we set out to demonstrate the
enhanced exponential suppression of � with the average
photon number 〈â†â〉 ∝ G. In Fig. 4, we assess the scal-
ing of � as a function of G for several values of θ and
�. As baselines for the assessment of the critical cat,
we consider the resonant dissipative (blue) and Hamil-
tonian (yellow) limits. As expected [25], the dissipative
confinement shows an exponential suppression of �, sig-
nificantly outperforming its Kerr counterpart. We verify
that if we set � = 0 and optimize � over θ alone, the
optimal point coincides with the dissipative limit (θopt|�=0

(a)

(b)

FIG. 4. The bit-flip error rate � as a function of the driving-
field amplitude G for different values of � and θ , for (a) κ1 =
10−5 � κφ = 10−3 and (b) κ1 = 10−3 
 κφ = 10−5. In both
panels, we display results for (i) the Kerr limit U/η = 106, (ii)
the dissipative limit U/η = 0, (iii) the optimal configuration
obtained by optimizing both θ and�, and (iv) the result obtained
by setting U/η = 106 and optimizing over�. The curve denoted
as (v) is obtained by setting U/η = 102 in (a) and U/η = 105

in (b).

= 0). We thus move to consider the effect of �. By set-
ting θ = 0 and optimizing over � alone, we find that
�opt|θ=0 = 0. In the dissipative limit, therefore, there is no
advantage in introducing a nonvanishing detuning. In the
Kerr limit (U/η = 106) instead, optimizing � introduces
only a marginal advantage in the dephasing-dominated
configuration [Fig. 4(a)] in the configuration dominated
by photon-loss [Fig. 4(b)]. Finally, we consider the com-
bined optimization of θ and �. We verify that the critical
cat code significantly outperforms its resonant counterparts
and confirm that in the dephasing-dominated case, for all
G > 3, the optimum is found deep in the hybrid regime
(U/η ≈ 102), while in the photon-loss-dominated one, it
approaches the Kerr limit (U/η � 105).

We now set out to demonstrate the enhanced scaling of
� as a function of the photon number in the critical cat.
We find that in the driving range 4 < G < 12, all curves
display the functional dependence �/G � �0 exp{−ζG},
which we use to extract the scaling coefficient ζ(θ , κ1, κφ).
The results are shown in Fig. 5 as a function of the ratio
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FIG. 5. The exponential rate ζ computed as a function of U/η
for� = 0 (dashed) and� = �opt (solid): (a) κ1 = 10−5 � κφ =
10−3; (b) κ1 = 10−3 
 κφ = 10−5. The dot-dashed curve in (b)
shows ζ(�opt) for �max = 90.

U/η. As also predicted in Ref. [25], for � = 0, the sys-
tem progressively loses its protection against dephasing-
induced bit-flip errors as it transitions from the dissipative
to the Hamiltonian limit. On the contrary, operating the
critical cat at � = �opt(G) endows the system with an
additional resilience to errors, so that the bit-flip error rate
is not only exponentially suppressed in the photon number
but it does so with an enhanced scaling coefficient com-
pared to its optimal resonant value ζ = 2 achieved in the
purely dissipative regime. To clarify the relevance of the
bound �max, Fig. 5(b) also shows the rate ζ obtained by
setting �max = 90. This larger bound results in a marginal
increase of the favorable range of values of U/η, as also
expected from the analysis of �opt(θ) in Fig. 2. We finally
draw attention to the fact that in a realistic framework,
where detuning is a limited resource, the presence of a
small two-photon loss is essential to achieve optimal scal-
ing and operating with a pure Kerr confinement can result
in severe underperformance of the cat.

Overall, we demonstrate the existence of regions in
parameter space granting enhanced protection from bit-flip
errors. Our findings also resolve the issues tied to the
hybrid operation of Kerr-cat qubits outlined in Ref. [25]
and discussed in Sec. I. Finally, we remark that in this
section we treat U/η as a free parameter, although in
general U and η represent distinct and limited resources.
Nonetheless, we show that the optimal configuration is one

where η ∼ κ1, κφ � U. It is thus possible to achieve these
values starting from a Kerr-qubit architecture through
reservoir engineering techniques, as demonstrated in pre-
vious works [18,29].

IV. METASTABLE ENCODING AND THE
CRITICAL CAT

The analysis until now has focused on the minimization
of � alone. We now consider the interplay between � and
�leak and the various possible encodings.

A fundamental property of the two-photon driven-
dissipative Kerr resonator is the occurrence of a first-order
DPT at a critical detuning �c, resulting in a discontinu-
ous change in the steady state of the system [55–57]. Here,
we show that this phase transition has profound conse-
quences on the encoding and determines the way in which
the qubit must be prepared and controlled to achieve opti-
mal performance. The DPT arising for a specific choice of
parameters is shown in Fig. 6(a). Here, the photon number
of the system is seen to change abruptly as � is increased
beyond�c [58]. Indeed, while for� < �c the steady state
of the system defines a highly populated phase (catlike),
for � > �c, the steady state approximates the squeezed
vacuum state.

Figures 2(a) and 2(b) detail the dependence of �c on θ ,
marking the boundary between the two phases. This figure
shows that �opt minimizing � crosses �c as the ratio U/η
is increased. A fundamental question is therefore which
kind of encoding among those introduced above holds in
each phase. Another main result of our work consists in
showing that the two phases identified above express dif-
ferent encodings, with the metastable encoding in Eq. (19)
characterizing all largely detuned configurations. This is a
pivotal point, as now �leak also contributes to the perfor-
mance of the code. This effect has been overlooked when
modeling the cat code within a purely Hamiltonian formal-
ism, oblivious to the DPT. We also show that the critical
behavior affects the initialization of the code in either phase
and we provide an initialization protocol that prevents the
system from being pinned to the squeezed vacuum. All in
all, accounting for the critical behavior of the cat code at
finite values of �, η, κ1, and κφ is key to determining an
optimal encoding protocol.

The analysis that follows assumes G = 5, U/η = 105,
and κ1 = 10−3 
 10−5 = κφ .

A. Criticality and metastability

Two types of critical phenomena can occur in open
quantum systems: first- and second-order phase transitions
[55–57,59–70]. The former (latter) corresponds to a dis-
continuous (continuous but not differentiable) change in
the properties of the system, the finite-size precursor of
which is shown in Fig. 6(a), which displays the steady-
state photon number as a function of �. Upon crossing the
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FIG. 6. (a) The average photon number of the steady and
metastable states as defined in the text. The jump discontinu-
ity in the photon number signals the presence of a first-order
DPT at �c ∼ 15 [58]. (b) The Liouvillian gaps �+

1 and �−
0 as

defined in Eq. (12). The vertical dotted lines denote the values
of � selected for further investigation in Fig. 9. (c) Expansion
of the state ρ̂−

0 (+) ≡ |1L〉〈1L| [cfr Eq. (22)] in the left eigen-
states of L. The expansion coefficients are cm = 〈

σ
μ
m
∣
∣ρ̂−

0 (+)
〉

.
Each component in the expansion evolves with one specific time
scale. For � < �c, only two components are nonvanishing: the
steady state and that corresponding to bit flips. For � > �c, a
single additional component corresponding to the leakage with
rate �leak = �+

1 emerges and the dynamics are that of Eq. (19).
We consider G = 5, U/η = 105, and κ1 = 10−3 
 10−5 = κφ .

critical value �c, an abrupt transition from a highly pop-
ulated to a squeezed vacuum phase (from here onward,
vacuum for brevity) occurs. We verify that �c is only
marginally affected by the values of (κ1, κφ). The hallmark
of a first-order DPT is the closure of the Liouvillian gap
�+

1 [64,71,72], the finite-size precursor of which is shown

in Fig. 6(b). This closure entails metastability and is asso-
ciated with a hysteretic behavior of the system, which,
despite the uniqueness of the steady state, can persist in
other states for very long times.

In the cat code, a biased response to noise requires
the existence of two opposite points on the logical Bloch
sphere, between which noise-induced transitions are expo-
nentially suppressed. Without loss of generality, we can
identify these two points as the logical states |0L〉 and |1L〉.
These states are defined through the following procedure
[71,73]. We start from the eigenoperator ρ̂−

0 , which in its
diagonal form reads

ρ̂−
0 =

∑

i

pi |ψi〉〈ψi| . (21)

Because ρ̂−
0 is Hermitian, all the pi are real and

〈

ψi
∣
∣ψj

〉 =
δij . Since Tr[ρ̂−

0 ] = 0, some pi will be positive while others
are negative and we can order them in such a way as to
have pi > 0 (pi < 0) for i ≤ ī (i > ī). In this way, ρ̂−

0 =
ρ̂−

0 (+)− ρ̂−
0 (−) with

ρ̂−
0 (+) =

∑

i≤ī

pi |ψi〉〈ψi| , ρ̂−
0 (−) = −

∑

i>ī

pi |ψi〉〈ψi| .

(22)

The probabilities pi are normalized to ensure that
Tr[ρ̂−

0 (±)] = 1. The logical states of the code are then
defined as

|0L〉〈0L| = ρ̂−
0 (+), |1L〉〈1L| = ρ̂−

0 (−). (23)

This definition ensures that the bit-flip rate � = �−
0 coin-

cides with the slowest decay rate of the off-diagonal
Liouvillian sector. Additionally, for all cases considered
below, the logical qubit will undergo decoherence at a
rate �φ—the noise mechanism not suppressed by the cat
encoding.

We identify three regimes:

(1) � = 0. Here, ρ̂−
0 ∝ |α〉〈α| − |−α〉〈−α|; thus

|0L〉 = |α〉 and |1L〉 = |−α〉. The very same
states also define ρ̂ss � (|α〉〈α| + |−α〉〈−α|)/2 [74],
which is located at the center at the Bloch sphere
(see illustration in Fig. 7). This is the steady-state
encoding defined in Eq. (18) for which the states
|0L〉 and |1L〉 are only exchanged at a rate �.

(2) 0 < � < �c. While ρ̂−
0 cannot be expressed as a

simple mixture of two coherent states, as in the case
when � = 0, a steady-state encoding still holds (as
illustrated in Fig. 7), since ρ̂ss � |0L〉〈0L| + |1L〉〈1L|.
The spectral decomposition in Fig. 6(c) demon-
strates that also in this regime, |0L〉 and |1L〉 only flip
at a unique rate �. As� approaches�c, the vacuum
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state becomes progressively more stable, as shown
by the decrease of �+

1 in Fig. 6(b). This increased
stability makes the initialization of the code more
challenging, as the system tends to remain pinned to
the long-lived vacuum state.

(3) � > �c. In this regime, ρ̂ss � |n = 0〉〈n = 0| �=
|0L〉〈0L| + |1L〉〈1L|. This is a metastable encoding
according to Eq. (19). Indeed, all processes within
the code space can still be described in terms of the
logical error rates � and �φ . All states initialized on
the logical Bloch sphere will, however, irreversibly
decay toward ρ̂ss, which now lies outside of the code
space. This process occurs at a rate�+

1 = �leak. The
center of the Bloch sphere, which previously coin-
cided with ρ̂ss, is now ρ̂+

1 (+) and is obtained by the
spectral decomposition

ρ̂+
1 =ρ̂+

1 (+)− ρ̂+
1 (−), (24)

defined in analogy to Eqs. (21) and (22). Indeed,
while ρ̂+

1 (−) closely resembles the vacuum-
like steady state, ρ̂+

1 (+) ∝ |0L〉〈0L| + |1L〉〈1L| (see
Fig. 14). In this regime, the quality of the encoding
will thus depend not only on the magnitude of � and
�φ but on that of �leak as well. Our simulations sug-
gest, for �opt > �c, the rates � and �leak may have
comparable magnitudes, as can be inferred from the
data in Fig. 6(b).

We remark that both �−
0 and �+

1 display oscillations
with sharp minima. While the minima of �−

0 occur at
� � Um with m ∈ N, those of �+

1 occur at � = (m +
1/2)U, where �−

0 has maxima. While in the regime where

FIG. 7. An illustration of the optimal encoding on the two
sides of the phase boundary. For � < �c, the steady-state man-
ifold coincides with the encoding manifold and the logical code
space is characterized by a single phase-flip error rate �. For� >

�c, the steady state is a squeezed vacuum and is distinct from the
optimal encoding manifold characterized by a finite average pho-
ton number. In this case, a second time scale emerges, which is
characterized by the rate �+

1 at which the logical states decay
into the vacuum.
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FIG. 8. The phase diagrams of (a) the diagonal Liouvillian
gap �+

1 and (b) the steady-state photon number as a function
of the detuning � and the ratio U/η. The yellow line denotes
the optimal detuning�opt that minimizes the bit-flip error rate �.
The circles and triangles indicate the specific cases selected for
the discussion of the state-preparation protocol in Sec. IV B and
shown in Fig. 9.

a steady-state encoding holds, �+
1 does not affect the

performance of the code, in the one characterized by
a metastable encoding, �+

1 = �leak defines a source of
uncorrectable errors. Because for the detuning values min-
imizing �−

0 , �−
0 and �+

1 become comparable, a trade-off
between these two error processes emerges when decid-
ing at which detuning to operate the code. The conclusions
drawn here hold in both noise configurations and through-
out the range 102 ≤ U/η ≤ 105. Additional results in this
direction are presented in Appendix B. From these data, we
note that these oscillatory features become less pronounced
the larger the η that we take.

In Fig. 8, we finally display the Liouvillian gap �+
1 and

the steady-state average photon number as a function of
� and U/η. As U/η increases, the optimal detuning �opt
crosses the phase boundary, identifying large regions in
the parameter space where the optimal encoding is the
metastable one. In all parameters considered, the sudden
drop in the photon number is accompanied by a reduc-
tion in �+

1 , minimal around �opt. Comparing Figs. 8(a)
and 2(b), we conclude that a minimal leakage error �leak
accompanies the minimal �. These data support the above
analysis, demonstrating that the presence of a metastable
encoding is an emergent feature of the cat code at finite
detuning and highlighting the key role of criticality in
determining the optimal encoding.
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B. State-preparation protocol

The scenario described above indicates that the code
space is stable and the vacuum metastable whenever � <

�c, while the converse is true for � > �c. Assuming a
preparation protocol where, starting from the vacuum, the
two-photon driving field G is ramped up, two issues may
arise. For � < �c, the system will remain stuck in the
vacuum for a time 1/�−

0 before reaching the stable code
space. For � > �c, the system will never leave the sta-
ble vacuum and thus will never reach the metastable code
space. We simulate this simple ramp-up protocol for the
exemplary noise configuration with κ1 = 10−3 
 10−5 =
κφ and display the results in Fig. 9, confirming the above
predictions.

We propose a solution for this initialization problem tak-
ing advantage of criticality. While the system undergoes a
first-order DPT for� > 0, a second-order DPT takes place
at � < 0 [55,70,71]. As shown in Ref. [75–77], around
a second-order DPT, the system is highly responsive and
does not experience critical slowing down if properly ini-
tialized. We take advantage of this property in a protocol
where � is ramped up rather than G. We start from �0 ≡
�(t = 0) < G, with the system in the vacuum state and G
fixed at its target value. We then increase �(t) according
to a schedule

�(t) = �0 + f (t, τ) (�−�0), (25)

where f (t, τ) a smooth function increasing from f (0, τ) =
0 to f (t → ∞, τ) = 1 over a characteristic time τ . To
assess the accuracy of the initialization protocol, we eval-
uate the overlap [78]

O
(

Â, B̂
)

≡ Tr(Â†B̂)
√

Tr(Â†Â)Tr(B̂†B̂)
(26)

between the prepared state ρ̂(t) and the encoding state
|0L〉〈0L| + |1L〉〈1L|. For very small values of η, this proto-
col leads to the desired state manifold but it is characterized
by unwanted fast oscillations around the target state. These
are due to the phase accumulation through the sweep and
they hinder the exact initialization of the code. We ver-
ify that choosing �0 � −G, where the steady state is
vacuumlike, leads to similar results, with the size of the
oscillations around the ideal value increasing as the system
approaches the critical value�0 = −G. In Fig. 9, we show
that a slightly larger value of η, for the same choice of �0,
suppresses these unwanted oscillations, further increasing
the fidelity of the produced state. Notably, this choice does
not significantly displace � from its optimal value [cf.,
e.g., Fig. 2(b)]. This result further advocates in favor of
a hybrid operation of the cat instead of the Kerr limit, even
in photon-loss-dominated configurations.
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FIG. 9. The time-dependent simulation of the initialization
protocols detailed in the text. The colors and symbols in the
legend correspond to those points selected in the phase dia-
gram of Fig. 8. The dashed lines represent the adiabatic ramping
of G(t) = f (t, τ)G, where f (t, τ) = tanh(t/τ), with τ = 50 and
G = 5. The solid lines describe �(t) = �0 + f (t, τ) (�−�0)

for �0 = −10 and U/η = 5 × 102. The shaded lines describe
the amplitude of the oscillation for the same �(t) protocol, set-
ting U/η = 105. (a) The evolution of the photon number during
the initialization protocol. The dotted horizontal lines define the
desired photon number for the different detuning configurations.
(b) The quantity 1 − O as defined in Eq. (26), describing the
similarity between the prepared state and the encoding one. We
consider κ1 = 10−3 
 10−5 = κφ .

V. RESISTANCE TO FREQUENCY SHIFTS

As discussed in Ref. [33,34], random shifts in the reso-
nant frequency of the oscillator can significantly hinder the
performance of the code. In most cases, these effects can
be modeled by an additional correlated noise in the form
of an effective detuning �errâ†â acting on the system for a
limited time t0, representing, e.g., the typical time of gate
operations. Common sources of shifts are cross-Kerr inter-
actions originating either from spurious interactions with
dissipatively coupled qubits or from stochastic jumps and
thermal excitations in reservoir modes nonlinearly coupled
to the system by, e.g., Josephson junctions. Because quan-
tum information can be efficiently encoded over the whole
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broken-symmetry region as in that realizing the metastable
encoding, we anticipate the effect of such shifts to be far
less detrimental for the critical cat code.

To demonstrate this claim, we consider the following
protocol. The system is initialized in the state ρ̂(0) =
|0L〉〈0L| and subsequently quenched with an additional
detuning �err. The system evolves under L′ρ̂ = L0ρ̂ −
i�err[â†â, ρ̂] for a time t0 = 10 at which point �err is
switched off, leaving the system to stationarize under L0
over a time t1 = 5.

Figure 10 shows the orthogonality 1 − O as a function
of � and U/η. O is the overlap between the initial and the
final states. It is defined by

O ≡ Tr
[

ρ̂(0) ρ̂(t0 + t1)
] = Tr

[

ρ̂(0) eL0t1eL
′t0 ρ̂(0)

]

(27)

and can be related to the evolution of the observables
characterizing the system via the asymptotic projection
method [33]. Figure 10(a) is computed for �err = 1. We
choose this value in accordance with the discussion in Ref.
[34, Appendix B3], specializing its result to the case of
two coupled oscillators. The physical parameters charac-
terizing the storage and reservoir modes are chosen by
interpolating between those found in Refs. [18,19,29,31].
The data clearly identify a range of parameters in which the
quantum information encoded in the critical cat is highly
resilient to random frequency shifts. This region is char-
acterized by positive values of � and 1 � U/η � 103.
A similar analysis for �err = 4 is shown in Fig. 10(b).
This shows that even for very large frequency shifts, the
critical cat still offers room for optimal encoding. This
analysis further demonstrates the advantage of a hybrid
encoding. We note, however, that the parameters granting
optimal protection from frequency shifts do not coincide
with those minimizing �. Nonetheless, a trade-off between
these two optimal conditions can be found, although we
anticipate the necessity for a complete characterization of
these effects in coupled cat qubits when designing two-
qubit gates or concatenation protocols, as also discussed
in Ref. [34].

VI. BIAS-PRESERVING GATES

To harness the full potential of biased-noise qubits
and retain their benefits throughout the computation, the
gate operations must preserve the exponential suppres-
sion of bit-flip errors. Possible implementations of these
bias-preserving gates rely on Zeno dynamics and topo-
logical deformation of the code space and have been
extensively investigated in the resonant-dissipative and
resonant-Hamiltonian configurations [9,25,28,34,42,43].
The very same protocols can be applied in the presence of
nonvanishing detuning and in the hybrid-regime. This pos-
sibility has been extensively investigated in Refs. [25,30],
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FIG. 10. The quantity 1 − O, defined in Eq. (27), displayed as
a function of the detuning � and of the angle θ in Eq. (20) for
κ1 = 10−3 
 κφ = 10−5. The data are obtained by appropriately
selecting at each point the correct encoding, either steady-state or
metastable. The initial state |0L〉〈0L| and the final state obtained
from the recovery procedure are detailed in the text. The data
in the two panels are computed assuming a frequency shift of
(a) �err = 1 and (b) �err = 4. The white dashed lines bound the
region wherein 1 − O < 10−5 in the cases (a) �err = −1 and (b)
�err = −4.

also in relation to colored dissipation and superadiabatic
pulse designs. To complete our investigation, we provide
evidence of analogous benefits stemming from operat-
ing the qubit in the hybrid-detuned regime. We do so by
investigating the simple example of the bias-preserving
realization of a single qubit Z gate via ĤZ = f (â + â†),
where F is a weak drive. Indeed, |+L〉〈+L| and |−L〉〈−L|
are states of opposite parity which can be connected by
acting with ĤZ for a time T = π/(4FRe{α}). This is deter-
mined analytically by neglecting the effect of errors, setting
� = 0, and evaluating the action of ĤZ on the manifold
spanned by the pure cat states

∣
∣C±
α

〉

with α = √
G/W. In

the detuned regime, we find a similar expression for T
with α =

√

〈â2〉. The optimal driving strength F maxi-
mizing the performance of the gate is determined by the
competition between the adiabatic and nonadiabatic errors
induced by the gate operation [20,27]. The adiabatic errors
are those caused by the single-photon loss and dephasing
events occurring during the action of the gate. The nona-
diabatic errors, on the other hand, stem from diffusion out
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of the code manifold induced by the driving field. Under
these conditions, a trade-off must be found between these
two sources of error.

Figure 11 provides a quantitative comparison of
the performance of a Z gate in the hybrid-detuned,
resonant-Hamiltonian, and resonant-dissipative configu-
rations. Defining the error rates involves assessing the
fidelity between the theoretically expected states and those
obtained by time evolving under the action of gates. In
agreement with the overarching literature [20,25,30], the
total Z error is estimated by initializing the system in
|+L〉〈+L| and evolving under LZ ρ̂ = Lρ̂ − i[ĤZ , ρ̂] for a
time T. The error probability PZ is then defined as

PZ =
〈

�̂(T)
〉

+ 1

2
, (28)

exploiting the fact that after half a Rabi oscillation, the
state of the system is expected to coincide with |−L〉〈−L|,
and that Tr[�̂ |±L〉〈±L|] = ±1, where we recall that �̂
is the parity operator. To evaluate PX , we initialize the
system in |0L〉〈0L|, evolve under LZ for a time T, and define

PX = 1 −
〈

Ŝ(T)
〉

. (29)

The operator Ŝ quantifies whether the state is located in the
right or left half plane of the phase space with respect to the
line α → −α and is defined as

Ŝ ≡ sgn
(

cos(φ)Q̂ + sin(φ)P̂
)

, (30)

where α = eiφ|α|, Q̂ = (â + â†)/
√

2, and P̂ = −i(â −
â†)/

√
2.

Having obtained PZ and PX , we verify the bias preser-
vation of the Z gate, expressed through the noise bias
χ = PZ/PX in Fig. 11(c).

Our results confirm the viability of performing high-
fidelity gates in the hybrid-detuned configuration and show
a substantial improvement in the speed of gate opera-
tion in the critical regime with minimal impact on its
fidelity, as well as a largely improved noise bias. In
realistic computation, however, one needs also to asses
how the gate performs when acting on an initial state
deformed by the spurious processes of prior operations.
In this paper, we consider the minimal example of the Z
gate being applied after an idling time of the same dura-
tion of the Z gate itself, i.e., T. The results, displayed as
dashed lines in Fig. 11(a), clearly demonstrate the advan-
tage of the critical encoding over both the dissipative and
Hamiltonian ones. Figures 11(b) and 11(c) demonstrate the
noise bias being preserved under the action of consecutive
operations.
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FIG. 11. (a),(b) The total Z and X error probabilities of the Z
gate as defined by Eqs. (28) and (29). (c) Their ratio, the noise
bias χ = PZ/PX . We consider three different operation regimes:
critical (� = 40, U/η = 400), Kerr (� = 0, U/η = ∞), and
dissipative (� = 0, U/η = 0). The solid and dashed lines cor-
respond to applying the gate at t = 0 or after an idling time of
t = T, respectively. We consider the noise configuration κ1 =
10−5 � κφ = 10−3.

VII. DISCUSSION AND CONCLUSIONS

We investigate the properties of the Schrödinger-cat
code in the whole range of regimes between the two lim-
iting cases of dissipative [9,18,19] and Kerr [26–29] cat
code. We demonstrate that operating the cat code at finite
values of the detuning between the two-photon driving
field and the cavity frequency dramatically increases the
resilience of the cat qubit to bit-flip errors. This improve-
ment may require us to encode the information in the
metastable manifold emerging from the first-order dissipa-
tive phase transition characterizing the driven-dissipative
Kerr resonator at finite detuning [55]. We also discuss
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how one needs to take into account several factors when
discussing the performance of detuned cat codes. Beyond
the phase-flip errors �, one has to explicitly take into
account the fact that the system is metastable in many con-
figurations and therefore a new error process, characterized
by a rate �leak, needs to be considered when discussing the
quality of the encoding.

Our analysis of the bit-flip rate demonstrates that a small
amount of two-photon loss already produces a signifi-
cant improvement of the code performance with respect
to the Kerr limit. Furthermore, we propose an efficient ini-
tialization protocol relying on small two-photon loss that
circumvents the problems posed by the hysteresis of the
vacuum and the metastable nature of the encoding. Two-
photon loss is also beneficial for correcting frequency-shift
errors that are expected to emerge in connected and con-
catenated cat architectures, as detailed in Ref. [34]. Finally,
we show that bias-preserving gates perform significantly
better in the hybrid-detuned case than in the Kerr and
dissipative limits.

The picture emerging from our analysis is that focus-
ing on a single a figure of merit to choose the optimal
regime operation is reductive. All quantities considered
here, namely �, �leak, the resistance to frequency shifts,
code initialization, and gate fidelity, advocate for a small,
but non-negligible, two-photon loss rate being necessary
for the optimal performance of the code. However, these
quantities do not identify a unique global optimum. The
optimal choice for the two-photon loss rate will ultimately
depend on the specific of the platform under consideration.

All in all, dissipation and detuning emerge as pivotal
and necessary resources for optimally efficient and reliable
bosonic quantum encoding. From a broader perspective,
our work demonstrates the nontrivial nature of dissipative
processes in the presence of criticality. It suggests that the
largely unexplored parameter space of all bosonic codes
may still offer regions where specific properties of the code
are enhanced, leading to a competitively efficient design of
bosonic quantum code architectures.
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APPENDIX A: BOSONIC QUANTUM
INFORMATION ENCODING

In this appendix, we focus on demonstrating the validity
of the encoding for the different configurations explored in

the main text. To do so, we first need to assess under which
conditions a set of density matrices can encode quantum
information and allow for quantum computation. Consider
the six generic matrices ρ̂±X , ρ̂±Y, and ρ̂±Z . The first
requirement for them to define a logical Bloch sphere is
that the states on the opposite sides of the Bloch sphere are
pairwise orthogonal. Having verified this, for them to sup-
port gate operations, one must also ensure that the structure
they generate is isomorphic to

ρ̂ = Q̂ ⊗ M̂ , (A1)

where

Q̂ = Q00 |0L〉〈0L| + Q11 |1L〉〈1L|
+ Q01 |0L〉〈1L| + Q10 |1L〉〈0L| (A2)

is a 2 × 2 matrix defining the logical qubit and M̂ a
generic, possibly mixed, density matrix of a noisy system.
If these conditions are satisfied, we can identify

ρ̂±X ≡ |0L〉〈0L| + |1L〉〈1L| ± |0L〉〈1L| ∓ |1L〉〈0L|
2

⊗ M̂ ,

ρ̂±Y ≡ |0L〉〈0L| + |1L〉〈1L| ∓i |0L〉〈1L| ±i |1L〉〈0L|
2

⊗ M̂ ,

ρ̂+Z ≡ |0L〉〈0L| ⊗ M̂ , ρ̂−Z ≡ |1L〉〈1L| ⊗ M̂ . (A3)

Operationally, to verify the validity of an encoding, we
proceed as follows. Having identified possible candidates
for ρ̂±X , ρ̂±Y, and ρ̂±Z , we verify the existence of a unitary
transformation connecting them. To do so, we diagonal-
ize ρ̂+Z and ρ̂−Z , which, being orthogonal, commute and
thus admit a common basis. By checking that their eigen-
values coincide, we verify that the matrix M̂ associated
with these states is the same. We then implement the per-
mutation required for Eq. (A3) to be satisfied and call the
combination of diagonalization and permutation of the two
matrices, respectively, R̂+Z and R̂−Z . Finally, we verify that
Eq. (A3) is also satisfied by

R̂+ZR̂−Z ρ̂±X R̂†
−ZR̂†

+Z ,

R̂+ZR̂−Z ρ̂±YR̂†
−ZR̂†

+Z ,
(A4)

with the same M̂ .
Note that this construction only guarantees the possi-

bility of encoding quantum information and performing
gates at a single given time. The possibility of extend-
ing the validity of the encoding over time is tied to the
action of the Liouvillian on span{ρ̂±X , ρ̂±Y, ρ̂±Z}. Indeed,
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in the same way in which we have identified the isomor-
phism between the density matrices ρ̂±X , ρ̂±Y, ρ̂±Z and
the logical encoding, we can separate the action of the
Liouvillian as

L = LQ ⊕ LM ⊕ LM→Q ⊕ LQ→M . (A5)

While LQ and LM represent the action of the Liouvillian
within Q̂ and M̂ , LM→Q and LQ→M describe the processes
connecting the logical manifold with the remainder of the
Hilbert space containing M̂ . The different scenarios iden-
tified by Eqs. (16)–(19) correspond to the different ways
in which L can act on the code space. Both the steady-
state and metastable encodings discussed in Sec. IV can
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〉

(a)

10−7

10−4

10−1

Γ

(b)

0

π/6

π/3
π/2

η

U

−10 0 10 20
Δ

10−6

10−3

100

D
(z

+
+
,z

−−
)

(i)

(ii)

(c)

(i) (ii)

10−6

10−3

100
|rd|

−5 0 5
x

−5

0

5

y

−0.25

0.00

0.25

W (α)

FIG. 12. The Liouvillian spectral analysis for G = 5 and different values of θ in Eq. (20). (a) The average occupation of the cavity
as a function of the detuning � for different values of the Kerr nonlinearity U and two-photon loss η. As |α(� = 0)|2 = G/W, all
curves intersect at � = 0. The jump in 〈â†â〉 appearing at � > 0 becomes sharper for larger values of θ , heralding the emergence of a
first-order phase transition. (b) The Liouvillian gap of the +− symmetry sector �+−

0 = �. Optimal configurations with nonvanishing
detuning appear as local minima of the curves and allow us to take advantage of the nonlinearity (see the text). In addition to this
general trend, � exhibits dips for specific detuning values, namely, � = mU with m ∈ N. These dips become more pronounced as
the system approaches the Kerr limit, where they have recently been measured [32]. The insets to these plots display the Wigner
distribution of |1L〉 for U/η = 5 and increasing detuning values identified by red markers. (c) In an ideal noiseless subsystem, the
eigenoperators ρ̂μν0 obey R̂μρ

μν

0 R̂†
ν ≡ |μ〉〈ν| ⊗ zμν , where zμν = zμ′ν′ ∀μ, ν,μ′, ν ′ and R̂μ is the unitary transformation diagonalizing

the density matrix ρ̂μμ0 [33]. We quantify the discrepancy from this ideal case using the trace distance between the two diagonal blocks
z++ and z−−. We show this as a function of � for 2θ/π = 0.01, 0.96. The insets show the structure of the full density matrix for the
points indicated in the main figure: (i) exemplifies a decoherence-free subspace and (ii) a noiseless subsystem with a mixed M̂ .
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be seen as an extension of the ideas laid out for the ideal
noiseless subsystem structure [13,23,52–54,79], which we
briefly review below in relation to the driven-dissipative
Kerr resonator.

1. Noiseless subsystem encoding

A noiseless subsystem is formally a subset of the
Liouville space immune to the action of dissipation,
making the logical information encoded therein trans-
parent to any kind of error process. Indeed, the matrix
Q̂ in Eq. (A1) characterizing this encoding is stationary
throughout the dynamics [cf. Eq. (17)]. This is always
the case whenever ρ̂±X , ρ̂±Y, and ρ̂±Z span the kernel
of the Liouvillian. As detailed in Ref. [33], this require-
ment is equivalent to having four stationary processes:
two steady states and two steady coherences. For the
strongly Z2 symmetric Kerr resonator under investiga-
tion, this condition is only fulfilled for � = κ1 = κφ = 0,
that is, when the only dissipative process is two-photon
loss.

Zero eigenvalues of the Liouvillian, however, are not
only the hallmark of quantum information encoding but
also one of the main signatures of DPTs. Indeed, the
fourfold steady-state degeneracy necessary for an exact
noiseless subsystem encoding can be achieved at � �= 0
through spontaneous breaking of the underlying symme-
try of the model [33,71]. While this consideration is exact
only in the thermodynamic limit of a DPT, precursors to
these effects can be harnessed in finite-size systems. The
question thus becomes: over which detuning region can
an approximate noiseless subsystem encoding exist and

FIG. 13. A schematic representation of the states comprising
the steady-state encoding defined in Eq. (A7). We show ρ̂±Z and
ρ̂±X . ρ̂±Y can be obtained by acting on ρ̂±Z with the rotation
X̂ϕ = cos ϕ

2 (ρ̂+Z + ρ̂−Z)+ i sin ϕ

2 (ρ̂+X − ρ̂−X ) with ϕ = π/2.

FIG. 14. A schematic representation of the states comprising
the steady-state encoding defined in Eq. (A8).

to what extent does the introduction of a nonvanishing
detuning destroy the encoding?

In a Liouvillian framework, the loss of quantum infor-
mation introduced by the addition of a nonvanishing detun-
ing is determined by the slowest relaxation rate of the
off-diagonal Liouvillian sector, i.e., by �+−

0 = �−+
0 =

� [cf. Eq. (9)]. Indeed, while the strong Z2 symmetry

0 20 40
Δ
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10−6

10−3

100

D
Z

X

Noiseless subsystem

Steady-state encoding

Metastable encoding

FIG. 15. The same distance quantifier as that used in
Fig. 12(c). Here, it is evaluated between ρ̂Z and ρ̂X , following the
procedure detailed in the main text. We plot the results as a func-
tion of the detuning � for κ1 = 10−3 
 κφ = 10−5 and G = 5.
The dips at integer values of detuning are to be imputed to the
tunneling-suppression effects of Hamiltonian nature discussed in
Ref. [32].
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FIG. 16. The average photon number of the steady and metastable states as defined in the main text and the Liouvillian gaps �+
1

and �−
0 as defined in Eq. (12) are shown as a function of the detuning �. The shaded blue (orange) area identifies the region hosting a

steady-state (metastable) encoding. We consider G = 5 and κ1 = 10−3 
 κφ = 10−5.

ensures�++
0 = �−−

0 = 0, the off-diagonal Liouvillian gap
�

±,∓
0 can still take finite values and should be minimized

in order to suppress qubit decoherence. This quantity is
shown in Fig. 12(b) and allows the identification of two
regimes.

In the U = 0 case investigated in Ref. [33], the sys-
tem displays two second-order phase transitions at�/G =
±1, which symmetrically divide the phase space into
a normal region (|�|/G > 1), hosting at most a classi-
cal qubit structure, and a Z2-broken region (|�|/G < 1),

where �+−
0 is small (zero in the TDL) and an approx-

imate (exact in the TDL) noiseless subsystem structure
emerges. For such vanishing nonlinearities, the broken-
symmetry region is very narrow, the maximal photon
number is attained at � = 0, and it can be only increased
by increasing G.

For finite U, the behavior of the system changes dras-
tically, as the extent of the Z2-broken region wherein
�+−

0 � 0 increases far beyond the typical values obtained
for U � 0. Indeed, while the phase boundary for � <

0
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FIG. 17. The same as Fig. 16 but for κ1 = 10−5 � κφ = 10−3.
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FIG. 18. The Liouvillian gaps �+
1 and �−

0 as defined in Eq. (12). The dephasing noise at rate κφ and the thermal excitations at
rate nthκ1 are turned on separately, with the single-photon loss at rate (1 + nth)κ1 underlying all of the simulations. The dashed line at
� = 10−9 serves as a guide to the eye to follow the considerations in the text. We set κ1 = 10−3, nth = 0.06, and κφ = 10−5. Within
the range of experimentally meaningful values of nth, the one selected above allows us to immediately grasp the similar effects of
dephasing and thermal noise.

0 is not significantly modified and the corresponding
DPT is still of second order, for � > 0, a first-order
transition emerges at �/G �

√

1 + (U/η)2 replacing the
second-order one at �/G = 1 for U = 0. This allows for

an approximately noiseless subsystem tensor structure to
hold over a much broader region of positive detuning. In
this regard, the use of a first-order DPT entails several
advantages with respect to the proposal of Ref. [33].
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FIG. 19. The Liouvillian gaps (a)�−
0 and (b)�+

1 as a function
of the detuning � for different values of λ3 in the perturb-
ing Hamiltonian Ĥ3 defined in Eq. (B1). We set U/η = 104

and κ1 = 10−3 
 κφ = 10−5, with the black curve detailing the
unperturbed behavior (λ3 = 0).

Identifying the gradual transition from a second- to a
first-order DPT are the elbowlike shape of the photon num-
ber for U = 0 in Fig. 12(a), which gradually evolves into a
jump discontinuity for increasing values of U, and the pre-
cursors to a pointlike closure [71] of the diagonal gap�++

1
seen in Fig. 8(a).

Numerical evidence of the approximate fulfillment of
Eq. (A3) is provided in Fig. 12(c). As explained above and
in Ref. [33], we quantify the discrepancy from the ideal
case via the trace distance

D(A, B) =
√

Tr
[

(A − B)†(A − B)
]

between the diagonal forms of ρ̂+Z and ρ̂−Z . While in
the dissipative limit D(ρ̂+Z , ρ̂−Z) only approaches zero in
the vicinity of � = 0, as the ratio of U/η is increased,
small values of D(ρ̂+Z , ρ̂−Z) persist over a much wider
range of positive detunings. Similar results are found for
the distance from the orthogonal axes rotated according to
Eq. (A4) (not shown). The insets below Fig. 12(c) are color
plots of the absolute value of the matrix elements, for the
two cases highlighted in the plot. They illustrate, respec-
tively, a decoherence-free subspace steady state spanned
by pure cat states and a noiseless subsystem steady state
spanned by mixed states.

We conclude that a steady catlike state, capable of
encoding quantum information, can be generated in the
whole region −G < � < G

√

1 + (U/η)2. This state—the

Wigner representation of which is shown in the insets
to Figs. 12(a) and 12(b) for increasing values of �—is
not exactly the ideal cat described in Eq. (1), although it
displays analogous properties.

2. Steady-state and metastable encoding

Having reviewed the ideal noiseless subsystem encod-
ing, we generalize it to include biased-noise encoding and
the possibility of encoding the system on metastable states.

The full Liouvillian L in Eq. (3) only possesses a
weak Z2 symmetry, its steady state ρ̂ss = ρ̂+

0 is unique,
and its generic density matrix decomposes along its
eigenoperators as

ρ̂(t) = ρ̂ss +
∑

j ≥0

c−
j (t)ρ̂

−
j +

∑

j>0

c+
j (t)ρ̂

+
j . (A6)

Note that ρ̂μj are not physical density matrices, as they are
in general neither positive nor have unit trace [80], and
they acquire a physical meaning only through their eigen-
decomposition described in Eq. (21). Following the main
text, we distinguish two regimes of operation wherein the
nature of the encoding differs drastically.

Dropping the ⊗M̂ notation for brevity, for � < �c, the
logical Z and X axes are identified by

ρ̂−
0 = ρ̂−

0 (+)− ρ̂−
0 (−) ≡ |0L〉〈0L| − |1L〉〈1L|

ρ̂ss = ρ̂ss(+)+ ρ̂ss(−) = |+L〉〈+L| + |−L〉〈−L|
= |0L〉〈0L| + |1L〉〈1L| .

(A7)
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FIG. 20. The same as Fig. 19, with the Hamiltonian Ĥ4 defined
in Eq. (B2) as the perturbing term.
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In this regime, the unique steady state toward which the
system decays coincides with the center of the logical
Bloch sphere so that, although the matrix Q̂(t) evolves in
time [cf. Eq. (18)], the dynamics are restricted to the code
manifold. Specifically, the only process acting on the poles
of the logical Bloch sphere is one that exchanges them at
a rate � = �−

0 (bit-flip error). The schematic representa-
tion of this encoding, which we deem to be steady-state
encoding, is shown in Fig. 13.

For � > �c, instead, the steady state approximately
coincides with the vacuum and is no longer a viable choice
for encoding the logical X axis. Nevertheless, the emer-
gence of a second (almost) infinitely long-lived process
(ρ̂+

1 ) spanned by highly populated states still allows us to
identify the logical Z and X axes as

ρ̂−
0 =ρ̂−

0 (+)− ρ̂−
0 (−) ≡ |0L〉〈0L| − |1L〉〈1L|

ρ̂+
1 (+) = ρ̂+

1 (++)+ ρ̂+
1 (+−) = |+L〉〈+L| + |−L〉〈−L| .

(A8)

The rates at which these states decay can be obtained
using the eigendecomposition in Eq. (A6). What we find
is that, as depicted in Fig. 14, only one additional channel
emerges that connects the poles of the Bloch sphere with
the vacuum at a rate �+

1 , the dependence of which on � is
characterized in Figs. 6 and 8. The metastable state ρ+

1 (+)
replaces the steady state as the center of the logical Bloch
sphere, allowing us to extend the construction of steady-
state encoding to incorporate metastability in what we dub
a metastable encoding, whereby Eq. (19) follows.

Finally, in Fig. 15 we provide numerical evidence for
the qubit structures defined in Eqs. (A7) and (A8) to sat-
isfy Eq. (A1). Once again, we do so by evaluating the
trace distance between the diagonal form of ρ̂±Z and the
matrix obtained by applying to ρ̂+X the transformation in
Eq. (A4). As � is increased, U/η is modified accordingly
from point to point to ensure that� = min[�opt(θ),�max].
We can clearly distinguish two regions: � < �c, where
the steady-state encoding approximates Eq. (A1) and the
metastable one fails completely, and � > �c, where the
converse is true.

APPENDIX B: EXTENDED ANALYSIS OF � AND
�leak

We first extend the discussion on the relation between
� and �leak started in Sec. IV by repeating the same anal-
ysis presented in Figs. 6(a) and 6(b) for different choices
of U/η and for both noise configurations. The results are
shown in Figs. 16 and 17. We observe that the peaklike
structure characterizing both �−

0 and �+
1 discussed in the

main text is gradually suppressed as η is increased. More-
over, as expected from Figs. 2(a) and 2(b), we note that
the optimal detuning value minimizing �−

0 tends toward
the steady-state encoding region (blue area) the higher is

the value of η (lower ratios U/η) that one considers. This
encoding is not affected by any metastable time scale, thus
voiding the trade-off between �−

0 and �+
1 identified in the

metastable encoding (orange area).
We further extend our analysis by taking into account

the effects of thermal noise, as it has been identified as a
leading source of error in Kerr-cat encodings [27,29]. In
the Lindblad master equation [see Eq. (3)], its effect is cap-
tured by a term of the form nthκ1D[â†], where nth is the
equilibrium thermal-occupation number of the nonlinear
resonator. In Fig. 18, we characterize the resilience of � =
�−

0 and �leak = �+
1 to such perturbations. To disentan-

gle the thermal contributions from those of dephasing and
single-photon loss, we activate the different noise chan-
nels separately, so that each of the four rows of Fig. 18
corresponds to a different noise configuration: Figs. 18(a)
and 18(b) only single-photon loss, Figs. 18(c) and 18(d)
single-photon loss and thermal noise, Figs. 18(e) and 18(f)
single-photon loss and dephasing noise, and Figs. 18(g)
and 18(h) single-photon loss and thermal and dephasing
noise.

For these parameters, we compare the fully Hamiltonian
limit (U/η = ∞) to a hybrid case (U/η = 104) allowing us
to take advantage of criticality. From Figs. 18(a) and 18(b),
we note that if κφ = nth = 0, all integer detuning values
share the same value of � in the Hamiltonian limit, while
the configuration with nonvanishing two-photon dissipa-
tion is optimal at resonance. This is no longer the case
as soon as even the smallest amount of either dephasing
or thermal noise is included. In this case, the value of
� at low values of � rises substantially, leading to the
considerations laid out in the main text.

In addition, comparison of Figs. 18(c) and 18(e) [and/or
Figs. 18(d) and 18(f)] shows that dephasing and thermal
noise affect � and �leak in a similar way, allowing us to
extend the conclusions drawn for dephasing in the main
text to thermal noise as well.

Finally, Figs. 18(g) and 18(h) demonstrate the addi-
tional protection provided by a nonvanishing two-
photon dissipation with respect to the combined effect
of all the noise sources discussed above. This advo-
cates once more in favor of operating in the critical
regime.

The static effective Lindbladian in Eq. (3) is obtained
from a low-order truncation of the perturbative expan-
sion of a nonlinear microscopic Hamiltonian, e.g., the
cosinusoidal potential of a Josephson junction [18]. To
conclude, below we address the stability of our metastable
solutions to the higher-order terms of this expansion.
The leading resonant contributions that we take into
account are the photon-number-dependent squeezing inter-
action

Ĥ3 = λ3(â†â)(â†2 + â2) (B1)
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and the three-body interaction

Ĥ4 = λ4â†3â3. (B2)

The analytical expressions for the coefficients of both
terms are found in Ref. [31].

In Figs. 19 and 20, we detail the effect of Ĥ3 and Ĥ4 on �
and �leak, respectively. The changes in � and �leak depend
on both the magnitude and sign of the perturbations, with
positive (negative) values of λj =3,4 favoring (hindering)
the logical error rates. While these effects become more
pronounced at larger detuning, the critical detuned regime
remains the most advantageous one. It is finally worth not-
ing that Ĥ4 introduces new minima in � and �leak, while
Ĥ3 simply shifts them. Analogous results are found in the
Kerr limit (U/η = ∞) (not shown).
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