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Bayes’ rule, P(B|A)P(A) = P(A|B)P(B), is one of the simplest yet most profound, ubiquitous, and far-
reaching results of classical probability theory, with applications in any field utilizing statistical inference.
Many attempts have been made to extend this rule to quantum systems, the significance of which we are
only beginning to understand. In this work, we develop a systematic framework for defining Bayes’ rule
in the quantum setting, and we show that a vast majority of the proposed quantum Bayes’ rules appearing
in the literature are all instances of our definition. Moreover, our Bayes’ rule is based upon a simple
relationship between the notions of state over time and a time-reversal-symmetry map, both of which are
introduced here.
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I. INTRODUCTION

Bayes’ rule is a cornerstone of inference, prediction,
retrodiction, and decision-making that is used throughout
the natural sciences [1–10]. Due to its ubiquitous stature,
many have proposed extensions beyond classical probabil-
ity theory into the setting of quantum mechanics [11–34],
with applications to cosmology [23], entanglement wedge
reconstruction in the anti–de Sitter – conformal field theory
(AdS-CFT) correspondence [26], and quantum founda-
tions [17,25,35].

A common approach to formulating quantum general-
izations of the classical Bayes’ rule, namely,

P(y|x)P(x) = P(x|y)P(y), (1)

is by “quantizing” Eq. (1), i.e., by defining operator
analogs of P(y|x), . . . , P(y) in such a way that the sub-
stitution of such analogs into Eq. (1) also yields a valid
equation. But since there are various approaches to formu-
lating operator analogs of P(y|x), . . . , P(y) and moreover,
since multiplication of such operators is not necessarily
commutative, different formulations of quantum Bayes’
rules have appeared in the literature, each having its own
advantages over the others [11–34].
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The approach taken here, however, is to view Eq. (1) as a
reflection of a certain time-reversal symmetry for classical
systems and that the associated symmetry transformation
relating both sides of Eq. (1) is more fundamental than the
particular form of the equation. Moreover, our emphasis
on transformations, as opposed to equations, reveals that
various formulations of quantum Bayes’ rules are all man-
ifestations of what we refer to as a Bayes’ rule with respect
to a state over time, which is a quantum analog of a joint
distribution P(x, y) associated with a physical system on
two timelike separated regions.

To explain how such a perspective may be taken in
the classical case, let (�, P) be a finite probability space,
where � is a finite set corresponding to all possible out-
comes of an experiment or data-generating process. Given
random variables X : �→ X and Y : �→ Y on �, let
p = X∗P and q = Y∗P be the associated probability mass
functions, so that for all x ∈ X and y ∈ Y,

p(x) = P
(X−1(x)

)
and q(y) = P

(Y−1(y)
)

. (2)

Since we are considering not one but two random vari-
ables, X and Y , there are two associated joint distributions
or, rather, states over time, ϑ : X × Y→ [0, 1] and ϑ∗ :
Y × X → [0, 1], depending on whether the observation of
X precedes Y or vice versa. In particular, ϑ is the state
over time corresponding to first observing X and then
observing Y , which is given by

ϑ(x, y) = p(y|x)p(x), (3)

where p(y|x) represents the conditional probability of
observing y given that x has been observed first. Similarly,
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ϑ∗ corresponds to the time reversal of this procedure, since
it describes the probability of first observing Y and then
observing X , which is given by

ϑ∗(y, x) = q(x|y)q(y). (4)

Bayes’ rule (1) in this context may then be reformulated as

ϑ = γ (ϑ∗), (5)

where γ is the canonical map sending distributions on
Y × X to distributions on X × Y, which we view as a
reversal of time for joint distributions representing timelike
separated variables. Equation (5) then says that the states
over time ϑ and ϑ∗ are related by the time-reversal trans-
formation γ and it is this formulation of Bayes’ rule that
we take as a guide into the quantum realm.

However, while states over time in the classical case are
essentially unique, there are various approaches to defin-
ing states over time in the quantum setting. This stems
from the fact that while the postulates of quantum mechan-
ics make clear that a joint state supported on spacelike
separated regions of a system is represented by a density
matrix on the tensor product of the Hilbert spaces for each
region, the postulates are silent regarding what mathemat-
ical entity should faithfully represent timelike separated
states of a system. In particular, if two timelike separated
states are causally related, then a suitable notion of state
over time for the system should be an operator on the ten-
sor product of the Hilbert spaces at the two different times,
encoding not only the two timelike separated states but
also causal correlations between the states as well. More-
over, it has been emphasized in Refs. [36,37] that such a
state over time should admit negative eigenvalues if it is to
encode temporal correlations and, as such, states over time
should not be positive in general. It is for these reasons that
defining states over time is not so straightforward.

In Ref. [38], a minimal list of axioms has been proposed
that any general state-over-time construction should satisfy
and a no-go theorem has been proved, stating that there is
no such construction satisfying their list of axioms. How-
ever, while the aforementioned no-go theorem is mathe-
matically correct, in Ref. [37] the present authors have
found a loophole in this theorem by slightly weakening
the hypotheses in a way which does not alter their phys-
ical significance and interpretation, thus resulting in an
explicit state-over-time construction satisfying the axioms
put forth in Ref. [38]. While it is still not known whether
or not our state-over-time construction is characterized
by such axioms, we are nevertheless starting to better
understand states over time from both a mathematical and
physical perspective, as is further supported in this work.

In particular, we use Eq. (5) to formulate a general
quantum Bayes’ rule that takes into account the choice
of a state-over-time construction. By doing so, we show

that the various formulations of quantum Bayes’ rules
appearing in Refs. [11–13,16,17,23,25,28,29,32] may all
be obtained from our Bayes’ rule once an appropriate
notion of state over time is specified in each case. We also
establish a list of axioms for state-over-time constructions
similar to those in Ref. [38] and we prove general results
for arbitrary state-over-time constructions satisfying cer-
tain subsets of these axioms. For example, we show that
our Bayes’ rule with respect to any state-over-time con-
struction satisfying what we refer to as the classical-limit
axiom yields the state-update rule associated with quantum
measurement [12,39,40]. Moreover, with such axioms, we
are able to identify the key differences between these vari-
ous approaches toward quantum Bayes’ rules, while at the
same time incorporating them all into a single framework.

Another application of our quantum Bayes’ rule is in
regard to the notion of time reversal in quantum theory.
In particular, our Bayes’ rule yields a novel notion of a
Bayesian inverse of a quantum channel with respect to a
prior state that is to dynamically evolve according to the
channel. Moreover, we show that the Bayesian inverse of
a completely positive trace-preserving (CPTP) map gener-
ally differs from that of its Hilbert-Schimdt adjoint. Thus,
our Bayesian inverses provide a more robust notion of time
reversal in quantum theory, in parallel with other results
on retrodictability [8,9,41–44]. And while we find that
the Hilbert-Schmidt adjoint does not in general provide
an appropriate notion of time reversal, in the case of bis-
tochastic channels, we show that the Bayesian inverse with
respect to the uniform prior is indeed the Hilbert-Schmidt
adjoint of the channel. This result is, in fact, independent
of a state-over-time construction provided that it satisfies
the classical-limit axiom. This clarifies why bistochastic
channels are often viewed as the only channels exhibiting
a canonical time-reversal map [45–47].

Throughout our work, we illustrate our definitions
through a multitude of examples, including the two-state
vector formalism [41,42,48], the time-dependent two-point
correlator [49,50], the symmetric bloom of the present
authors [37], the noncommutative Bayes’ theorem of the
first author [29], the quantum Bayes’ rule of Fuchs [17],
the causal state formalism of Leifer and Spekkens with the
Petz recovery map [25,51], the compound states of Ohya
[52,53], generalized conditional expectations [32], and the
state-update rule associated with quantum measurements,
the latter of which has often been called the quantum ana-
log of Bayes’ rule by Bub, Ozawa, Tegmark, and others
[11,13,23,54].

II. STATES OVER TIME, BAYES’ RULES, AND
BAYESIAN INVERSES

A. Notation and conventions

In this work, we represent finite-dimensional hybrid
classical-quantum systems by multimatrix algebras (as in
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Refs. [55] and [56, Chapter 2]), which are direct sums
of matrix algebras and which are denoted by A,B, C, . . . .
Any such multimatrix algebra A is therefore of the form
A =⊕

x∈X Mmx , with X some finite index set, {mx} pos-
itive integers, and Md denoting d × d complex matrices.
By using multimatrix algebras instead of just operators on
some Hilbert space, we have a single framework where all
concepts such as conditional probabilities, density matri-
ces, positive operator-valued measures (POVMs), ensem-
ble preparations, instruments, and quantum channels are all
instances of CPTP maps between such multimatrix alge-
bras. By working with CPTP maps, we are working in the
Schrödinger picture of quantum theory, in contrast to our
previous work [37], where our results have been formu-
lated in the Heisenberg picture. As such, some notation and
terminology differ. We now provide the basic definitions
and notation which are used throughout [55,57].

Every multimatrix algebra A =⊕
x∈X Mmx has a trace

tr the value of which on A =⊕
x∈X Ax is given by tr(A) =∑

x∈X tr(Ax), where the latter trace is the standard (unnor-
malized) trace on the matrix algebra Mmx . A density
matrix (or state) in A is an element ρ of A such that
tr(ρ) = 1 and ρ is positive, which means there exists some
element A ∈ A such that A†A = ρ. Here, the † denotes
the component-wise conjugate transpose, namely A† =⊕

x∈X A†
x , and the multiplication is also component-wise:

AA′ =⊕
x∈X AxA′x. The set of all states in A is denoted

by S(A).
We immediately give some examples. First, if mx = 1

for all x ∈ X , then each matrix algebra is one-dimensional,
so that ρ corresponds to a collection of non-negative num-
bers {ρx} the sum of which satisfies

∑
x∈X ρx = 1. In other

words, a density matrix can be viewed as a probability dis-
tribution on the index set X . At the other extreme, if X
is an index set with only a single element, then ρ is an
ordinary density matrix in a matrix algebra. Note that in
the general case of a multimatrix algebra, the x component
of ρ, namely ρx, need not be a density matrix, since its
trace can be less than 1. However, if the trace is nonzero,
then ρx/tr(ρx) is a density matrix on Mmx in the usual
sense. Hence, a density matrix ρ on a multimatrix alge-
bra, also called a classical-quantum state, can be viewed
as a collection of density matrices on possibly different
matrix algebras weighted by some probability distribution,
namely ρ =⊕

x∈X tr(ρx)ρx/tr(ρx).
For more examples, let B =⊕

y∈Y Mny be another mul-
timatrix algebra and let E : A→ B be a CPTP map. This
specializes to many cases of interest in quantum informa-
tion theory (for a brief summary, see Table I, and for more
details, see the introduction of Ref. [47]):

(1) When mx = 1 and ny = 1 for all x ∈ X , y ∈ Y, the
map E corresponds to a classical channel, i.e., a
collection of conditional probabilities P(y|x). More
explicitly, if δx denotes the unit vector with 1 in the

TABLE I. A summary of some of the classical and quantum
information-theoretic realizations of a CPTP map between mul-
timatrix algebras. The notation m (n), as opposed to mx (ny ), is
used for the size of the matrices in the algebra when |X | = 1
(|Y| = 1) or when all values coincide.

⊕
x∈X Mmx

E−→⊕
y∈Y Mny Concept in quantum information

|X | = 1, m = 1 = ny ∀ y Probability distribution on Y
|X | = 1 = |Y|, m = 1 Density matrix on Mn
mx = 1 = ny ∀ x, y Classical channel X → Y
|X | = 1 = |Y| Quantum channel Mm →Mn
|X | = 1, ny = 1 ∀ y POVM on Mm
|Y| = 1, mx = 1 ∀ x Ensemble preparation on Mn
|X | = 1, ny = n ∀ y Quantum instrument

x component and 0 otherwise, then P(y|x) is the y
component of E(δx).

(2) When X and Y have only one element each, E
corresponds to a quantum channel between matrix
algebras.

(3) When ny = 1 for all y ∈ Y and X has only a sin-
gle element, E corresponds to a POVM. Indeed,
each y component of E defines a positive func-
tional Ey : Mm → C, which equals tr(My · ) for
some unique positive matrix My ∈Mm. The trace-
preserving condition guarantees that

∑
y∈Y My =

1m.
(4) Dually, when mx = 1 for all x ∈ X and Y has only

a single element, E corresponds to an ensemble
preparation. Indeed, E sends each unit vector δx to
some positive matrix ρx in Mn. The trace-preserving
condition guarantees that tr(ρx) = 1 so that ρx is a
density matrix for each x ∈ X .

(5) When ny = n for all y ∈ Y for some positive inte-
ger n and X has only a single element, E : Mm →⊕

y∈Y Mn corresponds to a quantum instrument.
Indeed, the projection of E onto the y compo-
nent defines a CP map Ey : Mm →Mn. By the
trace-preserving condition on E , the sum

∑
y∈Y Ey :

Mm →Mn is CPTP. This is the usual definition for
an instrument with a finite outcome space Y [58].

More generally, arbitrary direct sums of matrix algebras
can be used to describe certain superselection sectors, as
discussed in Refs. [59] and [60, Section 2.3]. Thus, we find
that a number of fundamental concepts in quantum infor-
mation theory may be formulated in terms of completely
positive maps between multimatrix algebras. Moreover,
as every finite-dimensional C∗-algebra is isomorphic to a
multimatrix algebra [55], our formulation provides a step-
ping stone toward generalizations to infinite-dimensional
quantum systems, further justifying our use of the multi-
matrix algebra formalism.

Henceforth, if A and B are multimatrix algebras, the
collection of all CPTP maps from A to B is denoted by
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CPTP(A,B). If E : A→ B is a linear map, its Hilbert-
Schmidt adjoint E∗ : B→ A is the unique linear map
satisfying

tr
(E(A)†B

) = tr
(
A†E∗(B)) (6)

for all A ∈ A and B ∈ B. Let μA : A⊗A→ A denote
the multiplication map, which is uniquely determined by
its assignment on tensors via A1 ⊗ A2 �→ A1A2. Given E as
above, its associated channel state is the element of A⊗ B
given by

DA,B[E] := (idA ⊗ E)(μ∗A(1A)
)
, (7)

where 1A is the unit element in A and μ∗A is the Hilbert-
Schmidt adjoint of the multiplication map. When the alge-
bras are clear from context, the shorthand D[E] is used.
Although this definition may look unfamiliar at first, it
reduces to two familiar cases for certain multimatrix alge-
bras. First, when A =Mm and B =Mn, the channel state
reduces to the associated Jamiołkowski state [61]

D[E] =
∑

i,j

E(m)ij ⊗ E(E(m)ji ), (8)

where {E(m)ij } are the standard matrix units in Mm. In the
special case E = idA, the Jamiołkowski state becomes the
SWAP operator, which satisfies D[idA]

(|i〉 ⊗ |j 〉) = |j 〉 ⊗
|i〉 for all i, j ∈ {1, . . . , m} (Dirac notation is implemented).
Second, when A =⊕

x∈X C ≡ C
X and B =⊕

y∈Y C ≡
C

Y, so that a positive trace-preserving map E corresponds
to conditional probabilities P(y|x), the channel state is an
element of

⊕
(x,y)∈X×Y C ≡ C

X×Y, the (x, y) component of
which is given by P(y|x).

B. Main definitions

Definition 1.—A state-over-time function associates
every pair (A,B) of multimatrix algebras with a map
�AB : CPTP(A,B)× S(A)→ A⊗ B, the value of which
on (E , ρ) is denoted by E �AB ρ (or just E � ρ when A and
B are clear) [62], such that �AB preserves marginal states
in the sense that

trB (E �AB ρ) = ρ and trA (E �AB ρ) = E(ρ), (9)

where trB : A⊗ B→ A and trA : A⊗ B→ B denote the
partial traces. In such a case, the element E �AB ρ ∈ A⊗
B is referred to as the state over time associated with �AB
and the input (E , ρ).

To incorporate more examples and also various
approaches to states over time, the definition given here
is less restrictive than the definition of a state-over-time
function given in Refs. [37,38]. In particular, this definition
includes only the bare minimum of what one would expect

from a state-over-time function, namely, that the output
element E � ρ has the expected marginals. Note that uni-
tality, as defined in Refs. [37,38], holds automatically
because if ρ is a density matrix and E is trace preserv-
ing, then tr(E � ρ) = 1 because of the marginal preser-
vation property. Of course, however, one would expect a
physically meaningful state-over-time function to satisfy
additional properties.

Definition 2.—A state-over-time function �

(P1) is Hermitian if and only if E � ρ is self-adjoint for
all ρ ∈ S(A) and E ∈ CPTP(A,B)

(P2) is locally positive (or block positive) if and only if

tr
(
(E � ρ)†(A⊗ B)

) ≥ 0 (10)

for all ρ ∈ S(A), E ∈ CPTP(A,B), and for all pos-
itive A ∈ A and B ∈ B

(P3) is positive if and only if E � ρ is positive for all ρ ∈
S(A) and E ∈ CPTP(A,B)

(P4) is state linear if and only if

E � (λρ + (1− λ)σ ) = λE � ρ + (1− λ)E � σ
(11)

for all λ ∈ [0, 1], ρ, σ ∈ S(A), and E ∈ CPTP(A,B)
(P5) is process linear if and only if

(
λE + (1− λ)F)

� ρ = λE � ρ + (1− λ)F � ρ

(12)

for all λ ∈ [0, 1], ρ ∈ S(A), and E ,F ∈ CPTP(A,B)
(P6) is bilinear if and only if � is state linear and process

linear
(P7) satisfies the classical-limit axiom if and only if

given any ρ ∈ S(A) and E ∈ CPTP(A,B) satisfy-
ing [D[E], ρ ⊗ 1B] = 0 implies [63]

E � ρ = D[E](ρ ⊗ 1B) (13)

There is also an associativity axiom guaranteeing that a
state-over-time function yields a consistent notion of a tri-
partite state over time on A⊗ B ⊗ C associated with every
composable pair A E−→ B F−→ C of CPTP maps. We men-
tion in our examples when this associativity axiom holds,
but otherwise we do not make use of it in this work [64].

Note that if a state-over-time function � satis-
fies the classical-limit axiom, then E � (1A/tr(1A)) =
(1/tr(1A))D[E]. This shows that such a � can be viewed as
an extension of the Jamiołkowski isomorphism to include
states besides the maximally mixed state (though it need
not be bijective). We also note that a state over time
that is positive appears in the marginal state problem and
is sometimes called a compound state [34,52,53,65,66].
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Since we do not require positivity, our considerations are
more general.

We provide many examples of state-over-time func-
tions in the remaining sections. But first, we introduce
the definition of a Bayesian inverse with respect to a
state-over-time function in terms of a quantum Bayes’ rule.

Definition 3.—Let � be a state-over-time function. Given
a density matrix (a prior) ρ ∈ S(A) and a CPTP map
E : A→ B (a process), a Bayesian inverse associated with
(E , ρ) is a CPTP map E�ρ : B→ A such that

E � ρ = τ (E�ρ � E(ρ)
)

, (14)

where τ : B ⊗A→ A⊗ B is the quantum time-reversal
map for states over time, defined as the unique conjugate-
linear extension of the assignment

τ(B⊗ A) = A† ⊗ B†. (15)

The equation E � ρ = τ (E�ρ � E(ρ)
)

is then referred to as
Bayes’ rule associated with � and the input (E , ρ).

By applying the partial trace trB to both sides of Bayes’
rule, it follows that

ρ = E�ρ
(E(ρ)). (16)

In other words, if ρ is thought of as a prior, with E(ρ) as
the associated prediction via E and E�ρ as the associated
retrodiction map, then the retrodiction applied to the pre-
diction gives back the prior. If E�ρ exists and is unique for
all E and ρ (such that ρ and E(ρ) are faithful), this assign-
ment defines a (universal) recovery map in the language
of Refs. [67–70], a state-retrieval map in the language of
Ref. [71], and a retrodiction family in the language of Ref.
[44].

While the linear swap map γ : B ⊗A→ A⊗ B pro-
vides a suitable notion of time reversal for states over time
in the classical setting (as described in Sec. I) [72], we find
that composing the swap map with the dagger provides a
more robust notion of time reversal for states over time
in the quantum setting (see Fig. 1). Indeed, the swap map
γ on its own only guarantees that the right-hand side of
Bayes’ rule is an element ofA⊗ B. However, if a quantum
channel E is invertible with its inverse also a channel, then
the usage of τ ensures that E−1 is a Bayesian inverse for
E , which would not necessarily be the case if we had sim-
ply used γ (for more details, see Remark 2). Remarks 1, 3,
and 5 provide further justifications for supplementing the
swap map with the dagger in the quantum setting. More-
over, τ reduces to γ for classical systems and the Bayes’
rule from Definition 3 coincides with the standard Bayes’
rule [Eq. (1)] on commutative algebras when we take the
state-over-time function to be the standard one [37, Section
1]. We see this explicitly in Sec. III, along with many other

t0

t1

t0

t1

ti
m

e tim
e

A

B

A

B

ρ

E(ρ)

ρ

E(ρ)

E E�
ρ

A ⊗ B

E�
ρ � E(ρ)

B ⊗ A

E � ρ
τ

FIG. 1. If E : A→ B is viewed as a CPTP map describing
some dynamics from initial time t0 to final time t1, then this
figure depicts the two states over time associated with (E , ρ) and
a Bayesian inverse. If E � ρ is interpreted as having a time orien-
tation t0 → t1, then E�ρ � E(ρ) has time orientation t1 → t0. The
quantum time-reversal map τ simultaneously reverses the orien-
tation of time and switches the two factors so that the resulting
elements can be compared on an equal footing. Bayes’ rule says
that these two elements are the same. In this way, τ embod-
ies a fundamental time-reversal symmetry for states over time
associated with any input process and state (E , ρ) that admits a
Bayesian inverse (see Ref. [44] for a closely related inferential
form of time-reversal symmetry).

examples from the literature, some of which have also been
called quantum Bayes’ rules.

Furthermore, our formulation of Bayes’ rule using our
quantum time-reversal map τ solves several open ques-
tions in the literature. First, it resolves a puzzle posed
by Leifer and Spekkens at the end of Ref. [25, Section
VII.B.1], where they observe that using γ alone is not suffi-
cient to provide enough symmetry to relate states over time
in the forward and backward time directions. By adding
a dagger, we solve this problem and restore the symme-
try. Second, we show how Tsang’s Bayes’ rules, obtained
from certain inner products [32], are derived from a cer-
tain class of state-over-time functions and our Bayes’ rule.
This answers Tsang’s open remark or question (posed at
the end of Ref. [32, Section III.B]) in regard to the rela-
tionship between generalized conditional expectations and
states over time. Moreover, combining these two previ-
ous points yields that our Bayes’ rule provides a possible
answer to the question of Baez on the relationship between
time reversal and the inner product in quantum theory [73].
In particular, our present work combined with Ref. [44]
suggests that retrodiction based upon our quantum Bayes’
rule may provide a mathematically precise relationship
between time reversal and the inner product that is more
robust than the ordinary adjoint operation on quantum
channels [45–47,73–75].

III. FIRST EXAMPLES

The usefulness of a definition is illustrated through
its examples. In what follows, we first justify the sig-
nificance of the classical-limit axiom by considering not
only the case of commutative algebras but also bistochas-
tic channels (between possibly noncommutative algebras).
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We then provide an example of a state-over-time function
where the classical-limit axiom fails by removing all cor-
relations. Subsequently, we consider the Leifer-Spekkens
state over time [25]. From there, we describe two mea-
surement scenarios. First, we show how prepare-evolve-
measure scenarios have an inferential time-reversal sym-
metry involving our Bayes’ rule. Second, we show how the
state-update rule due to measurement is an instantiation of
our Bayes’ rule.

A. The classical case

The following example provides some motivation and
justification for the importance of the classical-limit
axiom. Consider the special case where A = C

X ≡⊕
x∈X C and B = C

Y ≡⊕
y∈Y C, with X and Y finite

sets. Then, a state ρ on A corresponds to a probability
distribution {px} on X , and a CPTP map E : A→ B cor-
responds to a stochastic map from X to Y with conditional
probabilities denoted by Eyx.

In such a case, we have [D[E], ρ ⊗ 1B] = 0, since the
algebras A and B are both commutative. Because the
associated channel state D[E] is the element of A⊗ B ∼=⊕

x,y C, the (x, y) component of which is Eyx, it fol-
lows that (ρ ⊗ 1B)D[E] has an (x, y) component given by
pxEyx, which we refer to as the classical state over time.
Write qy :=∑

x∈X Eyxpx as the probability distribution on
Y corresponding to E(ρ). A Bayesian inverse of (E , ρ) is
therefore a CPTP map E�ρ : B→ A, with corresponding
conditional probabilities written as (E�ρ)xy , such that

Eyxpx = (E�ρ)xyqy , (17)

which is the classical Bayes’ rule [cf. Eq. (1)].
If E is viewed as a genuine stochastic process, the phys-

ical intuition behind the term Eyxpx is that it describes
the predictive probability of first measuring x and then
measuring y after the system has undergone the evolu-
tion described by E (note that this probability does not, in
general, equal pxqy , which would require the random vari-
ables associated with X and Y to be independent and/or
uncorrelated). Conversely, (E�ρ)xyqy describes the retrod-
ictive probability of measuring y and deducing that x has
preceded it in the course of evolution through the inference
map E�ρ [5].

Of course, the classical-limit axiom covers far more
cases than this, such as when the algebras A and B are not
necessarily commutative and yet the commutativity con-
dition still holds. One example is the case of unital CPTP
maps, which includes bistochastic matrices and which is
described in Sec. III B.

B. Bistochastic channels and time-reversal symmetry

Let � be any state-over-time function that satisfies the
classical-limit axiom. Take A =Mm, B =Mn and let E :

A→ B be a unital quantum channel (sometimes called
a bistochastic channel), i.e., E(1m) = 1n. If ρ = 1m/m
then, the associated state over time is always given by
E � ρ = (1/m)D[E]. Physically, E describes a stochastic
evolution that leaves the infinite-temperature-limit Gibbs
state invariant (it is a consequence of unitality and the
trace-preserving condition of E that m = n). If A and B
were commutative algebras instead of matrix algebras,
then E would be a doubly stochastic matrix (as the matrix
is necessarily square, since A ∼= B).

Hence, when E is a unital quantum channel and the prior
is the uniform density matrix ρ = 1m/m, then a Bayesian
inverse E�ρ must satisfy the equation

D[E∗] = γ (D[E]
) = γ (D[E]†) = D[E�ρ], (18)

where the first equality holds by Lemma 2 in Appendix A,
the second equality holds because D[E] is self-adjoint, and
the third equality holds by our definition of Bayes’ rule. In
other words, E�ρ = E∗, which provides some justification
for the notation that we use for a Bayesian inverse.

More importantly, this result has significant implications
toward our understanding of time-reversal symmetry in
quantum theory. Indeed, it has often been argued that uni-
tal quantum channels are the only channels for which a
canonical notion of time reversal is possible [45,46] and,
in such a case, the canonical time reversal is provided by
the Hilbert-Schmidt adjoint. Such a claim, however, is at
odds with classical probability theory, as not all classical
channels are bistochastic and yet they have a well-defined
notion of time-reversal symmetry furnished by the classi-
cal Bayes’ rule. It then seems plausible that there may exist
a more general notion of time reversal for quantum chan-
nels, which not only agrees with the Bayesian inverse for
classical channels but also reduces to the Hilbert-Schmidt
adjoint for bistochastic channels. And while no-go theo-
rems have recently been proved in Refs. [45,46] stating
that there is no such notion of time reversal for arbitrary
quantum channels, it has recently been shown in Ref. [44]
via an explicit construction that time reversal is possible
for all quantum channels once a prior state is incorpo-
rated into the data of the theory (the explicit construction
is discussed in more detail later in this work). The per-
spective gained from Ref. [44] is that when considering
time reversal in quantum theory, one should be work-
ing in the category of states on multimatrix algebras and
state-preserving channels, as opposed to the category of
channels on their own.

We can therefore provide a possible explanation as
to why bistochastic channels are often viewed as the
only reversible operations in quantum theory. Indeed, our
results show that there is a unique Bayesian inverse for
any bistochastic channel with the uniform prior and this
result is independent of the channel and a choice of a state-
over-time function (as long as the state-over-time function
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satisfies the classical-limit axiom). Moreover, this canoni-
cal Bayesian inverse is, in fact, the Hilbert-Schmidt adjoint
of the original channel, which agrees with the standard
time-reversal map when the channel is unitary. However,
the Hilbert-Schmidt adjoint is rarely a Bayesian inverse
with respect to a state-over-time function when one has
a nonuniform prior and an arbitrary quantum channel [8]
and it is precisely this more general situation in which one
needs additional input to specify time-reversal symmetry
and Bayesian inverses and that input is the (noncanonical)
choice of a state-over-time function.

As such, one might hope to find a state-over-time
function whose associated Bayesian inverses simultane-
ously extend both classical Bayesian inversion for arbitrary
stochastic channels and the Hilbert-Schmidt adjoint for all
unital quantum channels. We consider such examples soon,
but first, we give some examples of states over time that
forget correlations and entanglement.

C. The uncorrelated state over time

The assignment

(E , ρ)
��→ ρ ⊗ E(ρ) (19)

is a state-over-time function, called the uncorrelated state
over time, that is positive (and hence also Hermitian) and
process linear. However, it is not state linear, it is not asso-
ciative [76], and, most importantly, it does not satisfy the
classical-limit axiom.

A Bayesian inverse E�ρ must satisfy the equation

ρ ⊗ E(ρ) = E�ρ
(E(ρ))⊗ E(ρ). (20)

Thus, any CPTP map E�ρ : B→ A such that E�ρ
(E(ρ)) =

ρ is a Bayesian inverse of (E , ρ). There are many CPTP
maps that satisfy this condition, one of which is simply
the map that sends B to tr(B)ρ. This, however, is not a
very good candidate for Bayesian inversion, since it loses
the information of most other states and essentially ignores
the evolution E in its description. Such a state over time
therefore treats ρ and E(ρ) as independent and, as such, it
does not encode any correlations between ρ and E(ρ).

Furthermore, although there might be a better choice
among the many state-preserving CPTP maps that satisfy
Bayes’ rule in this example, this state over time does not
offer us any guide as to which of those CPTP maps to
choose unless we impose further constraints. As such, the
uncorrelated state-over-time function does not provide a
robust formulation of Bayesian inversion.

D. The separable compound state and the quantum
state marginal problem

There is an improvement on the uncorrelated state over
time due to Ohya [52], which is henceforth called Ohya’s

compound state over time, following similar terminology
in Refs. [52,53]. For matrix algebras A =Mm and B =
Mn, it is defined as follows [77].

Given any state ρ ∈ A, let ρ =∑
α λαPα be the spectral

decomposition, where each Pα is the projection onto the λα
eigenspace. Then, for any E ∈ CPTP(A,B), set

E � ρ =
∑

α

λαPα ⊗ E
(

Pα
tr(Pα)

)
. (21)

This then defines a state over time that is positive and pro-
cess linear and therefore gives a solution to the marginal
state problem. It is neither state linear nor does it sat-
isfy our classical-limit axiom. However, we note that if
the nonzero eigenvalues of ρ have multiplicity 1, then
the classical-limit axiom does hold for (E , ρ) for arbitrary
E ∈ CPTP(A,B) such that

[
ρ ⊗ 1B, D[E]

] = 0. Although
the compound state over time is not completely uncorre-
lated, it is still separable [78] and hence seems unlikely to
keep track of quantum entanglement over time.

E. The causal states of Leifer and Spekkens and the
Petz recovery map

The assignment sending (E , ρ) ∈ CPTP(A,B)× S(A)
to

(√
ρ ⊗ 1B

)
D[E]

(√
ρ ⊗ 1B

)
(22)

is called the Leifer-Spekkens state over time [20,21,25,37,
38]. The Leifer-Spekkens state-over-time function is pro-
cess linear, Hermitian, locally positive, and satisfies the
classical-limit axiom, but it is not in general positive or
associative [25,38]. One might argue that the reason for
the lack of positivity is because we choose to use the
Jamiołkowski channel state D[E] as opposed to the Choi
matrix for E [79]. However, the Choi matrix suffers from
a few problems in our context. One is that it depends on
a choice of basis and, hence, it would require additional
data to specify a general state over time. In addition, if
we had used the Choi matrix, the marginal density matrix
trA(E � ρ) would not be E(ρ), as it would be E(ρT), where
T denotes the transpose with respect to that chosen basis
[31] (repeated eigenvalues prevent one from choosing a
canonical basis of eigenvectors for ρ as is done in Ref.
[31] for their construction of a positive compound state).

A Bayesian inverse E�ρ to the Leifer-Spekkens state-
over-time function must satisfy the equation

γ
((√

ρ ⊗ 1B
)
D[E]

(√
ρ ⊗ 1B

))

=
(√

E(ρ)⊗ 1A
)

D
[E�ρ

] (√E(ρ)⊗ 1A
)

, (23)
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which has the unique solution

D
[E�ρ

] =
(√

E(ρ)−1 ⊗√ρ
)

D[E∗]
(√

E(ρ)−1 ⊗√ρ
)

(24)

whenever E(ρ) is nonsingular. Solving this using Lemma
2 in Appendix A yields

E�ρ = Adρ1/2 ◦ E∗ ◦ AdE(ρ)−1/2 , (25)

which is the Petz recovery map (sometimes called the
transpose channel) [51,57,80].

This map has appeared in the context of sufficient quan-
tum statistics and equality conditions for relative entropy
[80–83], approximate quantum error correction [84,85],
operational time reversal in quantum theory [44,86,87],
earlier approaches toward extending Bayesian inversion
to the quantum setting [20,21], coarse-grained or observa-
tional entropy [88], quantum fluctuation relations [89,90],
the renormalization group in quantum field theory [91],
entanglement wedge reconstruction and proposals for a
resolution of the black-hole information paradox [26,92–
94], and many other contexts. The Petz recovery map has
recently been shown to define the only presently known
quantum retrodiction functor [44], which, in particular,
says that it is compositional in the sense that

(F ◦ E)�ρ = E�ρ ◦F �
E(ρ) (26)

for a composable pair A E−→ B F−→ C of CPTP maps and an
initial state ρ ∈ S(A).

1. The quantum Bayes’ rule of Fuchs

In the case of a POVM E : Mn → C
X given by E =⊕

x∈X tr(Mx · ) and prior density matrix ρ ∈Mn, our quan-
tum Bayes’ rule for the Leifer-Spekkens state-over-time
function yields (by calculations similar to the above)

⊕

x∈X

pxρx =
⊕

x∈X

√
ρMx
√
ρ, (27)

where ρx = E�ρ(δx) and px = tr(Mxρ) for all x ∈ X . The
above equation then yields the quantum Bayes’ rule of
Fuchs [17, Section 5], namely,

ρx =
√
ρMx
√
ρ

px
, (28)

which has also been derived using the formalism of condi-
tional states in Ref. [25].

F. The t-rotated family and rotated Petz recovery
maps

For each t ∈ R, the assignment sending (E , ρ) to

(ρ1/2−it ⊗ 1B)D[E](ρ1/2+it ⊗ 1B) (29)

defines a state-over-time function, called the t-rotated state
over time, that is process linear, locally positive, and sat-
isfies the classical-limit axiom for all t ∈ R. The Bayesian
inverse E�ρ in this case is given by

E�ρ = Adρ1/2−it ◦ E∗ ◦ AdE(ρ)−1/2+it , (30)

which is the rotated Petz recovery map [68]. This map, and
averaged versions of it, have become especially important
in the context of information recovery and the strengthen-
ing of data-processing inequalities [67–70,95,96].

More generally, for each ρ ∈ S(A), choose a unitary
Uρ ∈ A such that [Uρ , ρ] = 0. Then, the assignment send-
ing (E , ρ) to

(
U†
ρρ

1/2 ⊗ 1B
)
D[E]

(
ρ1/2Uρ ⊗ 1B

)
(31)

defines a state over time that is process linear, locally pos-
itive, and satisfies the classical-limit axiom. It is referred
to as the Sutter-Tomamichel-Harrow (STH) state over time
based on its appearances in Refs. [44,96]. The Bayesian
inverse E�ρ in this case is given by

E�ρ = Ad
U†
ρρ

1/2 ◦ E∗ ◦ AdUE(ρ)E(ρ)−1/2 , (32)

which is a generalization of the rotated Petz recovery map
(the special case of the rotated Petz is Uρ = ρ it for some
t ∈ R).

Although the above rotated Petz recovery maps can be
obtained by a judicious choice of state-over-time func-
tion, an open question is: what state-over-time function
has the universal recovery map of Junge et al. [69,95]
as the Bayesian inverse? Or, more generally: what state-
over-time functions have averaged rotated Petz recovery
maps, as defined in Ref. [44], as their Bayesian inverses?
Since the universal recovery map of Refs. [69,95] has been
claimed to provide a quantum generalization of Bayes’ rule
in Ref. [26] (based on results from Ref. [97]), we expect
that this arises within our framework.

IV. MEASUREMENT

Measurement in quantum mechanics involves hybrid
classical-quantum systems. Therefore, our definitions of
states over time and Bayesian inverses should specialize
to such settings. In this section, we illustrate this with
two key examples. The first example involves preparation,
evolution, and then measurement. The second example is
the state-update rule associated with the measurement of a
quantum system in terms of quantum instruments.
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A. Prepare-evolve-measure scenarios

Let X be a finite set, let P : C
X →Mn be a CPTP

map, and set ρ = P(p) for some probability distribution
p ∈ C

X . Such data determine a preparation of the state ρ
given by

ρ =
∑

x∈X

pxρx, (33)

where ρx = P(δx). Now suppose that the state ρ is to
evolve according to a CPTP map E : Mn →Mm and let
M : Mm → C

Y be a POVM on the output Mm of E , so
that M =⊕

y∈Y tr(My · ) for a collection of positive oper-
ators My summing to the identity, indexed by some finite
set Y. We then refer to the four-tuple (p ,P , E ,M) as a
prepare-evolve-measure (PEM) scenario.

Given a PEM scenario (p ,P , E ,M), we can naturally
define a classical channel f : C

X → C
Y given by f =

M ◦ E ◦ P (see Fig. 2), which we refer to as the clas-
sical dynamics of the PEM scenario (p ,P , E ,M). The
conditional probabilities fyx associated with f are then
interpreted as the predictive probability of measuring out-
come y via the POVM M given that the state ρx was
prepared and then evolved under the channel E . Con-
versely, the classical Bayesian inverse g : C

Y → C
X of f

is given by

gxy = fyxqy

px
, (34)

where qy := tr
(
MyE(ρ)

)
gives the probability of obtain-

ing outcome y assuming the probabilistic preparation from
p and P . The conditional probability gxy may be inter-
preted as the retrodictive probability that ρx was prepared
given a measurement outcome of y. Furthermore, if we
set σ = E(ρ) and let � be the Leifer-Spekkens state-over-
time function, then (q,M�

σ , E�ρ ,P�
p ) is a PEM scenario

and compositionality of the Petz recovery map implies
that g is the classical dynamics associated with the PEM
scenario (q,M�

σ , E�ρ ,P�
p ), which may be viewed as an

inferential time-reverse of the PEM scenario (p ,P , E ,M)

[98]. This makes mathematically precise a sense in which
measurement and preparation are time reversals of one
another, even when there is nonunitary evolution between
the prepared state and the measured state.

In the special case where X = {1, . . . , n}, Y = {1, . . . , m}
and the sets {|i〉〈i| ≡ Pi := P(δi)}i∈X and {|k〉〈k| ≡ Mk}k∈Y
are chosen to be the orthogonal rank-1 projections associ-
ated with spectral decompositions of ρ and σ , respectively,
then the Bayesian inverses P�

p and M�
σ are independent

of the state-over-time function provided that it satisfies
the classical-limit axiom. Indeed, the Bayesian inverses
are simply given by the Hilbert-Schmidt adjoints in this
case, so that M�

σ =M∗ and P�
p = P∗. However, since E

is not assumed to have a particularly simple structure with

C
X

Mn

C
Y

Mm

P

E

M

f
p

ρ

q

σ

P

E

M

C
X

Mn

C
Y

Mm

P�
p

E�
ρ

M�
σ

g

FIG. 2. Given a PEM scenario (p ,P ,E ,M), we can use the
latter three maps to define a classical channel f : C

X → C
Y via

f =M ◦ E ◦ P . This equality is expressed by saying that the
diagram on the left commutes (this terminology of a commut-
ing diagram should not be confused with commutativity of a
set of operators). The diagram in the middle depicts the evolu-
tion of the state p along preparation to ρ, evolution to σ , and
measurement to q. One can then use the probability p and the
classical channel f to define the (classical) Bayesian inverse g :
C

Y → C
X . However, one can compute another map C

Y → C
X

via P�
p ◦ E�ρ ◦M�

σ by using the Leifer-Spekkens state over time
to Bayesian invert each of the pairs (M, σ), (E , ρ), and (P , p),
where σ = E(ρ) and ρ = P(p), to arrive at the CPTP maps
M�

σ , E�ρ , and P�
p (note that the Bayesian inverse of a prepara-

tion is a measurement and vice versa, so that (q,M�
σ , E�ρ ,P�

p )

defines another PEM scenario). The two stochastic channels g
and P�

p ◦ E�ρ ◦M�
σ , are equal, i.e., the diagram on the right com-

mutes, because the Petz recovery map is compositional. This
compositionality can also be viewed a quantum generalization
of Jeffrey’s probability kinematics [44,88,99].

respect to these eigenstates, its Hilbert-Schmidt adjoint is
not a suitable “reverse” operation in general. By using the
Leifer-Spekkens state-over-time function, we find such a
suitable “reverse” operation E�ρ for which the conditional
probabilities 〈i|E�ρ(Mk)|i〉 indeed satisfy Bayes’ rule (see
Fig. 2), namely,

〈k|E(Pi)|k〉pi = 〈i|E�ρ(Mk)|i〉qk. (35)

We note that this resolves an issue brought up by Barandes
and Kagan in Ref. [100], where it is stated that the classical
Bayes’ theorem in this context does not hold in general due
to the “generic irreversibility” of E . So not only does our
notion of Bayesian inversion restore the classical Bayes’
theorem in such a context by providing a suitable time
reversal of E but it does so for any PEM scenario, i.e., for
arbitrary preparations, evolutions, and measurements.

An interesting result in this context, which is a reformu-
lation in the language of states over time of a result first
proved by Leifer [20], is that the classical state over time
f � p associated with the classical dynamics f of the PEM
scenario (p ,P , E ,M) may be obtained from the quantum
state over time E � ρ. Indeed, one may show that for all
(x, y) ∈ X × Y,

(f � p)(x, y) = tr
(
(Nx ⊗My)(E � ρ)

)
, (36)

where Nx and My are the positive operators corresponding
to the POVMs N := P�

p and M, respectively.
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Finally, we briefly mention that the quantum Bayes’ rule
of Schack, Brun, and Caves [16] can be viewed as a PEM
scenario, when one appropriately extends our definitions
to C∗-algebras. The need for this extension to C∗-algebras
is because the probability p is replaced by a prior (Radon)
probability measure on X = S(A), the compact Hausdorff
space of states in a matrix algebra A [101,102]. Namely,
C

X is replaced with C(X ), the C∗-algebra of continuous C-
valued functions on X , while the preparation P : C(X )→
A is replaced by a canonical classical-to-quantum gen-
eralization of the sampling map from classical statistics
[28,103]. Once a measurement outcome is obtained, the
prior can then be updated. Such a scenario appears in
the context of adaptive strategies for optimal quantum
state determination [104,105]. The details of this will be
expounded upon elsewhere.

B. Instruments, measurement, and the state-update
rule

If σ ∈ A is an initial quantum state that undergoes mea-
surement associated with some instrument F : A→ B ⊗
C

X and outcome x ∈ X is measured, then the state-update
rule dictates that the quantum state of the system becomes
[13,17,40,54,58,106–108]

σ �→ Fx(σ )

tr
(Fx(σ )

) (37)

after the measurement has been performed. Here, Fx :
A→ B is the CP map of the instrument associated with
outcome x, so that the sum

∑
x∈X Fx defines a CPTP map

from A to B. It is often the case that Fx is assumed to be
a Kraus rank-1 CP map, i.e., it can be written in the form
Fx = AdVx . The special case where the Vx form projection
operators gives the Lüders–von Neumann measurement
[12,39,109].

This state-update rule has often been called a quan-
tum generalization of Bayes’ rule [11,13–15,23,110,111].
Some have also argued that the state-update rule is not a
quantum generalization Bayesian conditioning and that it
is more a combination of belief propagation and condi-
tioning on a measurement outcome [25, Sections V.A.2.
and V.B.]. In the present section, we illustrate how one
is inevitably led to the state-update rule from Bayesian
inverses associated with any state-over-time function that
satisfies the classical-limit axiom. In other words, our work
supports the idea that the state-update rule is indeed a
quantum generalization of Bayes’ rule. Nevertheless, we
still agree with Ref. [25] in the statement that this does
not produce a retrodictive state, since the state-update rule
does not tell us what the state of the quantum system might
have been before the act of measurement. Furthermore,
we find that the state-update rule is indeed conditioning
on a measurement, where the concept of conditioning is

made precise in terms of operator-algebraic conditional
expectations [108,112,113].

To state our result precisely, we introduce additional
notation besides what is specified above. First, set E :
B ⊗C

X → C
X to be the partial trace map that traces out

the B system, i.e., E = trB ≡ tr⊗ idCX . Let ρ ∈ B ⊗C
X

be any state, which we decompose as

ρ =
∑

x∈X

ρx ⊗ δx, (38)

where ρx ∈ B is some positive element for all x ∈ X and
δx is the unit vector the x component of which is 1 while
other components are 0.

Proposition 1.—Let � be any state-over-time function
satisfying the classical-limit axiom and assume that ρx �=
0 for all x ∈ X . Then, using the notation of the previous
paragraph, a Bayesian inverse of (E , ρ) with respect to �
exists, is unique, and is given by

E�ρ(δx) = ρx

tr(ρx)
⊗ δx (39)

for all x ∈ X .
We first prove this result before discussing the relevance

to the state-change associated with a measurement.
Proof.—Explicitly computing D[E] ∈ (B ⊗C

X )⊗C
X

(the parentheses are used to distinguish the input and
output algebras) gives

D[E] =
∑

x∈X

1B ⊗ δx ⊗ δx. (40)

Therefore, [ρ ⊗ 1CX , D[E]] = 0, so that

E � ρ = (ρ ⊗ 1CX )D[E] =
∑

x∈X

ρx ⊗ δx ⊗ δx (41)

and

τ(E � ρ) =
∑

x∈X

δx ⊗ ρx ⊗ δx. (42)

Furthermore, since E(ρ) ∈ C
X lives in a commutative

C∗-algebra, E(ρ)⊗ 1B⊗CX necessarily commutes with
every element of C

X ⊗ B ⊗C
X . In particular,

[E(ρ)⊗
1B⊗CX , D[E�ρ]

] = 0, so that

E�ρ � E(ρ) =
(E(ρ)⊗ 1B ⊗ 1CX

)
D[E�ρ]

=
(
∑

x∈X

tr(ρx)δx ⊗ 1B ⊗ 1CX

)

D[E�ρ]. (43)

Bayes’ rule τ(E � ρ) = E�ρ � E(ρ) then yields

D[E�ρ] =
∑

x∈X

δx ⊗ ρx

tr(ρx)
⊗ δx, (44)
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so that the Bayesian inverse E�ρ is given by the map that
sends δx, representing the outcome x, to

E�ρ(δx) = ρx

tr(ρx)
⊗ δx. (45)

�
Using this result, we can relate the state-update rule

to state-preserving conditional expectations and Bayesian
inverses associated with a state-over-time function satisfy-
ing the classical-limit axiom.

Theorem 1.—Let σ ∈ A be a state, F : A→ B ⊗C
X

an instrument, and E : B ⊗C
X → C

X the partial trace,
and set ρ = F(σ ). Suppose that tr(Fx(σ )) �= 0 for all x ∈
X . Furthermore, define the following maps:

(1) Let � : C
X → B ⊗C

X be the state-update map
defined as the unique linear extension of

�(δx) = Fx(σ )

tr
(Fx(σ )

) ⊗ δx. (46)

(2) Let E�ρ : C
X → B ⊗C

X be the Bayesian inverse of
(E , ρ) associated with any state-over-time function
� satisfying the classical-limit axiom (cf. Proposi-
tion 1).

(3) Let � : C
X → B ⊗C

X be the Hilbert-Schmidt
adjoint of a state-preserving conditional expecta-
tion associated with the map E and state ρ, i.e.,
�(E(ρ)) = ρ and E ◦� = idCX (cf. Ref. [114]).

Then, � = � = E�ρ .
Proof.—The equivalence between items 1 and 2, and

hence the equality � = E�ρ , follows from Proposition 1
by setting ρx = Fx(σ ). As for the relationship to state-
preserving conditional expectations, first note that

�
(E(ρ)) = �

(
∑

x

tr(ρx)δx

)

=
∑

x∈X

tr(ρx)�(δx)

=
∑

x∈X

tr(ρx)

(
ρx

tr(ρx)
⊗ δx

)
=

∑

x

ρx ⊗ δx

= ρ. (47)

Second, we have

(E ◦�)(δx) = E
(

ρx

tr(ρx)
⊗ δx

)
= tr(ρx)

tr(ρx)
δx = δx (48)

for each x ∈ X . By linear extension, this shows that E ◦
� = idCX . Thus, � satisfies the definition of a state-
preserving conditional expectation. By the uniqueness of
state-preserving conditional expectations for faithful states
[27,57,113], � = � = E�ρ . �

Note that by definition of �, if one acquires soft evi-
dence from the measurement in the form of a probability
distribution r ∈ C

X , then

�(r) =
∑

x∈X

rxFx(σ )

tr
(Fx(σ )

) ⊗ δx. (49)

Note that the ⊗δx term is merely used as a book-keeping
device to separate the possible state-updates depending
on each outcome. Namely, by tracing out over C

X , one
obtains the barycenter

(idB ⊗ trCX )
(
�(r)

) =
∑

x∈X

rxFx(σ )

tr
(Fx(σ )

) (50)

as the updated density matrix in B after the measurement
has been performed and the outcome is only given by soft
evidence r. This is a quantum generalization of Jeffrey’s
rule [7,99]. Nevertheless, this is a special case of Bayesian
inverses from our perspective due to the hybrid classical-
quantum nature of the channels involved. The full quantum
generalization of Bayes’ rule is the main definition pro-
vided in this work. The point here is that the Bayesian
inverse for every state-over-time function satisfying the
classical-limit axiom must reproduce this special version
of quantum Bayes’ rule.

V. NONPOSITIVE BAYESIAN INVERSES

To incorporate even more instances of Bayes’ rule,
we extend state-over-time functions to a larger domain.
One reason to do this is because there may exist solu-
tions E�ρ to Bayes’ rule E � ρ = τ(E�ρ � E(ρ)) that are not
necessarily completely positive and these solutions may
nevertheless have useful applications and/or interpreta-
tions. A second reason is to incorporate a wider vari-
ety of examples in the literature as instances of states
over time and Bayes’ rule. These include the two-state
formalism [41,42,48], time-dependent correlators [49,50],
generalized conditional expectations [32], and many more.

We first consider a solution E�ρ to Bayes’ rule for a
state-over-time function where E�ρ is not necessarily CP,
but is †-preserving, in the sense that E�ρ(B†) = (E�ρ(B))†
for all inputs B. In this case, we allow more flexibil-
ity in our earlier definition of a state-over-time func-
tion by requesting that it is a family of functions each
of the form � : HPTP(A,B)× S(A)→ A⊗ B, where
HPTP(A,B) denotes the set of †-preserving and trace-
preserving (HPTP) maps from A to B. An HPTP solution
E�ρ to Bayes’ rule is called a Bayes map. Our primary
example is the Jordan-product state-over-time function.

A. The Jordan-product state over time

The symmetric bloom (or Jordan product) state-over-
time function is defined on (E , ρ) ∈ HPTP(A,B)× S(A)
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by

E � ρ = 1
2
{
ρ ⊗ 1B, D[E]

}
, (51)

where {X , Y} = XY + YX denotes the Jordan product
(anticommutator). The symmetric bloom state-over-time
function is Hermitian, bilinear, associative, and satisfies
the classical-limit axiom (these statements are all proved
in Ref. [37]). The symmetric bloom has recently been
shown to define a quantum state-over-time function that
bypasses the no-go theorem of Ref. [38], which claims
the nonexistence of a state-over-time function satisfying
these properties. While the no-go theorem of Ref. [38]
is mathematically correct, it assumes a larger domain for
state-over-time functions than is physically necessary. The
symmetric bloom then bypasses the statement in Ref. [38]
by being defined on a smaller, more physically relevant,
domain.

A Bayes map E�ρ for the symmetric bloom must satisfy
the equation

τ
({
ρ ⊗ 1B, D[E]

}) = {E(ρ)⊗ 1A, D[E�ρ]
}
, (52)

which is equivalent to
{
1B ⊗ ρ, D[E∗]} = {E(ρ)⊗ 1A, D[E�ρ]

}
(53)

because ρ is self-adjoint and E is CP. This is a linear-
algebra problem of the form B = {A, X }, where A and B
are known and X is desired.

To avoid cumbersome indices, we now restrict to the
case where A =Mm and B =Mn are matrix algebras.
In addition, to avoid a discussion of measure zero and
noncommutative almost-everywhere equivalence [27], we
restrict our attention to the cases where E(ρ) is nonsingular
(has only nonzero eigenvalues). Let

E(ρ) =
n∑

k=1

qk|wk〉〈wk| (54)

be a spectral decomposition into one-dimensional projec-
tions (so that some of the qk may repeat).

Using this and the above equation in terms of the Jordan
product, one obtains

E�ρ
(|wk〉〈wl|

) = (qk + ql)
−1

{
ρ, E∗(|wk〉〈wl|

)}
. (55)

Since the {|wk〉} form a basis, this determines E�ρ as a
linear operator. In fact, E�ρ is †-preserving because ρ is
self-adjoint, the {qk} are real, the anticommutator is †-
preserving, and E is †-preserving. It is not presently known
to us what necessary and sufficient conditions guarantee
complete positivity of E�ρ in the case of the symmetric
bloom.

1. The symmetric bloom approximates Leifer-Spekkens

Interestingly, the symmetric bloom state over time pro-
vides the linear approximation to the Leifer-Spekkens state
over time near the maximally mixed state [37]. Let ρ0 :=
1A/tr(1A) denote the uniform state in a multimatrix alge-
bra A, let E : A→ B be a CPTP map, and let �LS and
�J denote the Leifer-Spekkens and symmetric bloom state-
over-time functions, respectively. Then for any A ∈ Asa

such that tr(A) = 0, one has

E �LS (ρ0 + εA)− E �LS ρ0 = ε(E �J A)+O(ε2) (56)

for sufficiently small ε. Note that we linearly extend �J
from S(A) to Asa in the second argument to make sense
of the right-hand side of this identity. Equivalently,

lim
ε→0

(E �LS (ρ0 + εA)− E �LS ρ0

ε

)
= E �J A. (57)

This, combined with the work of Ref. [37], shows that the
symmetric bloom state over time maintains some of the
physically relevant features of the Leifer-Spekkens state
over time but, in addition, satisfies a larger number of
convenient properties, including associativity. At present,
we do not know what this says about the relationship
between the Petz recovery map and the Bayes map for the
symmetric bloom.

2. An operational interpretation of the symmetric bloom

In Refs. [49,115], the symmetric bloom state over time,
in the special case where the channel is the identity,
appears as the real part of the ideal two-point quantum
correlator (for more details, see Sec. V D). The symmetric
bloom state over time, when viewed as a function of its sec-
ond argument, defines a map idA � · : S(A)→ A⊗A.
This map is given an operational interpretation by decom-
posing it via a generalized Kraus decomposition into a
quantum instrument, which in turn allows one to com-
pute expectation values associated with the input state and
instrument [49, Proposition 1]. A unique such decomposi-
tion into a quantum instrument can be chosen by specifying
that the sum of the absolute values of the associated statis-
tical errors is minimized [49, Proposition 2]. In this special
case of the symmetric bloom, this unique decomposition is
expressed in terms of symmetric and antisymmetric opti-
mal cloners [49, Proposition 3]. In fact, Ref. [49] has
proposed an optical experiment with polarized photons to
operationally determine the symmetric bloom.

B. Bayes’ rule and linear Bayes maps

We may even go beyond †-preserving maps by find-
ing linear solutions to Bayes’ rule. To make sense of this,
we therefore need to extend state-over-time functions to
be definable on arbitrary trace-preserving linear maps. We

020334-12



FROM TIME-REVERSAL SYMMETRY TO QUANTUM BAYES’ RULES PRX QUANTUM 4, 020334 (2023)

also find that the quantum time-reversal symmetry τ for
states over time, given by the swap map γ and adjoint †,
is not enough for a robust Bayes’ rule in this more general
setting. In all that follows, let TP(A,B) denote the space
of trace-preserving linear maps from A to B.

Definition 4.—An extended state-over-time function
associates every pair (A,B) of multimatrix algebras with a
map � : TP(A,B)× S(A)→ A⊗ B, the value of which
on (E , ρ) is denoted by E � ρ, such that � preserves
marginals in the sense that

trB (E � ρ) = ρ and trA (E � ρ) = E(ρ). (58)

In such a case, the element E � ρ ∈ A⊗ B is referred to as
the state over time associated with � and the input (E , ρ).

As before, the word “state” is abusive, since the element
E � ρ need not be a state. One can extend the properties
from Definition 2 to extended state-over-time functions as
follows: property (1) allows E ∈ HPTP(A,B), properties
(4) and (7) allow E ∈ TP(A,B), property 5 allows λ ∈ C

and E ,F ∈ TP(A,B), and properties (2), (3), and (6) are
the same as originally stated. For brevity, we also hence-
forth drop the word “extended” from our phrasing unless
emphasis is needed.

Definition 5.—Let � be a state-over-time function. Given
a density matrix ρ ∈ S(A) and a CPTP map E : A→ B,
a Bayes map associated with (E , ρ) is a trace-preserving
linear map E�ρ : B→ A such that

E � ρ = τ (Ẽ�ρ � E(ρ)
)

, (59)

where Ẽ�ρ := † ◦ E�ρ ◦ † is defined by [116]

Ẽ�ρ(B) := (E�ρ(B†)
)†. (60)

Note that when E�ρ is †-preserving, then Ẽ�ρ = E�ρ . We
have already seen a special case of this when discussing
the symmetric bloom.

Remark 1.—Note that by taking the partial trace trB of
both sides of our generalized Bayes’ rule, we find that

ρ = trB
(
τ(Ẽ�ρ � E(ρ)

) =
(
Ẽ�ρ

(E(ρ))
)†

= E�ρ
(E(ρ)†) = E�ρ

(E(ρ)), (61)

so that E�ρ takes the prediction E(ρ) back to the prior ρ.
This would not necessarily be the case had we used E�ρ
instead of Ẽ�ρ in our definition of Bayes’ rule. More reasons
for the importance of using Ẽ�ρ as opposed to just E�ρ in
Bayes’ rule are provided in the upcoming examples.

C. The (r, s)-parametrized family

We now simultaneously generalize both the Leifer-
Spekkens and Jordan state-over-time functions by viewing

them as special cases inside a family. For each r, s ∈ [0, 1],
the assignment sending (E , ρ) ∈ TP(A,B)× S(A) to

s(ρr ⊗ 1B)D[E](ρ1−r ⊗ 1B)

+ (1− s)(ρ1−r ⊗ 1B)D[E](ρr ⊗ 1B) (62)

defines a state-over-time function that is process linear
and that satisfies the classical-limit axiom for all r, s ∈
[0, 1]. Process linearity follows from the linearity of the
channel state in its argument. As for the classical-limit
axiom, note that by the functional calculus for matrices,
if [ρ ⊗ 1B, D[E]] = 0, then [ρr ⊗ 1B, D[E]] = 0. Tem-
porarily introducing the notation s⊥ := 1− s and r⊥ :=
1− r, this implies that

s(ρr ⊗ 1B)D[E](ρr⊥ ⊗ 1B)

+ s⊥(ρr⊥ ⊗ 1B)D[E](ρr ⊗ 1B)

= s(ρ ⊗ 1B)D[E]+ (1− s)(ρ ⊗ 1B)D[E]

= (ρ ⊗ 1B)D[E], (63)

so that the classical-limit axiom holds.
This parametrized family specializes to the Leifer-

Spekkens state over time for r = 1/2 and s arbitrary, the
symmetric bloom for r ∈ {0, 1} and s = 1/2, and many
other cases that have appeared in the literature. These
include the left and right blooms, which specialize to the
two-state formalism and time-dependent correlators, as is
described next.

D. The right bloom

The cases (r, s) = (1, 1) or (r, s) = (0, 0) yield E � ρ =
(ρ ⊗ 1B)D[E], the bloom from Ref. [37], which is referred
to here as the right bloom [117]. The right bloom is also
state linear, so that it is in fact bilinear, and associative.

A Bayes map E�ρ for the right bloom must satisfy the
equation

E � ρ = γ
((
(† ◦ E�ρ ◦ †) � E(ρ))†

)
, (64)

which, by applying † to both sides and using the fact that
γ is † preserving, gives

D[E](ρ ⊗ 1B) = γ
((E(ρ)⊗ 1A

)
D[† ◦ E�ρ ◦ †]

)

= (
1A ⊗ E(ρ))D[

(E�ρ)∗
]

(65)

by Lemma 3 in Appendix A. If we assume that E(ρ) is
strictly positive, this gives the unique solution

D
[E�∗ρ

] = (
1A ⊗ E(ρ)−1)D[E](ρ ⊗ 1B)

= D
[
LE(ρ)−1 ◦ E ◦Lρ

]
(66)

by Lemma 3 in Appendix A (as in Lemma 2, L denotes
left multiplication).
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Since the channel state assignment D is a linear isomor-
phism, the inputs are equal, i.e., E�∗ρ = LE(ρ)−1 ◦ E ◦Lρ .
Taking the Hilbert-Schmidt adjoint therefore gives the
solution

E�ρ = L ∗
ρ ◦ E∗ ◦L ∗

E(ρ)−1 = Lρ ◦ E∗ ◦LE(ρ)−1 , (67)

where we use the general fact that L ∗
A = LA† . Explicitly,

this means that E�ρ is given by the formula

B � B
E�ρ�→ ρE∗(E(ρ)−1B

)
, (68)

which agrees with the Bayes map of Refs. [28–30,118].
We make two important remarks regarding the right-

bloom state-over-time function and the associated Bayes
map.

Remark 2.—If E is a ∗-isomorphism (equivalently, E
is an invertible quantum channel, in the sense that E−1

exists and is also a quantum channel), then the Bayes map
satisfies E�ρ = E−1. This property would generally fail if
we had instead defined Bayes’ rule naively as E � ρ =
γ
(E�ρ � E(ρ)

)
without using τ on the right-hand side.

Indeed, if E = AdU is invertible and represented by a
unitary U, then the Bayes map given by Eq. (68) yields

E�ρ(B) = ρAdU†

((
AdU(ρ)

)−1B
)
= ρU†(UρU†)−1BU

= ρU†(U†)−1ρ−1U−1BU = ρρ−1U†BU

= U†BU, (69)

since U−1 = U†. Thus, E�ρ = E−1.
However, if the alternative proposal E � ρ = γ(E�ρ � E(ρ)

)
for Bayes’ rule had been used, then the unique

linear solution would be given by E�ρ(B) = ρE∗
(
BE(ρ)−1

)
.

Plugging in E = AdU into this expression would instead
yield

E�ρ(B) = ρAdU†

(
B
(
AdU(ρ)

)−1
)
= ρU†BUρ−1, (70)

which is not the inverse of E in general. We find many
other reasons supporting the usage of τ (and Ẽ�ρ), as
opposed to just γ , in our definition of Bayes’ rule in later
examples.

Remark 3.—Although E�ρ is not in general CP, Ref.
[30, Proposition 3.2] (see also Ref. [29]) shows that the
following are equivalent:

(1) E�ρ is †-preserving
(2) ρE∗(E(ρ)−1B

) = E∗(BE(ρ)−1
)
ρ for all B ∈ B

(3) E�ρ is CP
(4) AdE(ρ)it ◦ E = E ◦ Adρit for all t ∈ R

In this case, one can rewrite the formula for E�ρ as

E�ρ = Adρ1/2 ◦ E∗ ◦ AdE(ρ)−1/2 , (71)

which agrees with the Petz recovery map.
Note that the last equivalent condition originally

appeared in the work of Accardi and Cecchini [119],
specifically in the context of GNS-symmetric dynamics
and Tomita-Takesaki theory [30,120,121]. However, it
also appears in the physics literature as time-symmetric
covariant quantum channels [122,123] (see also Ref. [44]),
where the time evolution symmetry is generated by the
modular Hamiltonians associated with the initial and final
states.

Interestingly, if we had ignored the dagger in our formu-
lation of Bayes’ rule, the covariance condition would have
instead been AdE(ρ)it ◦ E = E ◦ Adρ−it for all t ∈ R. This
would suggest that the modular flow goes forward in time
for one state but backward in time for the other state, which
seems to be at odds with the natural directionality of time
suggested by the modular flow [124].

1. Weak values and the two-state formalism

In the special case where A =Mm, B = C
X , and

E : A→ B describes a POVM with x component Ex =
tr(Mx · ) for some positive operator Mx, the state over time
associated with the right bloom generalizes the two-state
from Refs. [41,42,48], which has also appeared recently
in the context of holography [125]. In this case, A⊗ B ∼=⊕

x∈X Mm so that

E � ρ = (ρ ⊗ 1CX )

⎛

⎝
∑

i,j

E(m)ij ⊗
(
∑

x∈X

tr
(
MxE(m)ji

)
δx

)⎞

⎠

=
∑

x∈X

(ρ ⊗ 1CX )

⎛

⎝
∑

i,j

(
(Mx)ij E(m)ij

)⊗ δx

⎞

⎠

=
∑

x∈X

(ρMx)⊗ δx ∼=
⊕

x∈X

ρMx. (72)

In the special case where ρ = |ψ〉〈ψ | is the one-
dimensional projection corresponding to a pure state |ψ〉
and similarly for Mx = |φx〉〈φx|, this state over time
becomes

E � ρ ∼=
⊕

x∈X

〈ψ |φx〉|ψ〉〈φx|, (73)

which is the two-state appearing in Ref. [42] (combining
all possibilities indexed by x together with the overlap
coefficient 〈ψ |φx〉) when the Hamiltonian evolution is triv-
ial. This setup is similar to a PEM scenario in that a single
state is prepared and the evolution is trivial. The main dif-
ference, however, is the choice of state-over-time function,
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which in this case yields the two-state and describes pre-
and postselection [48].

In the case where the Hamiltonian is not trivial and there
are three times t0 < t1 < t2 with Ut1←t0 , Ut2←t1 , and Ut2←t0
describing the unitary evolution from t0 to t1, t1 to t2, and
t0 to t2, respectively, (cf. Fig. 3) then, upon setting E ′ :=
E ◦ AdUt2←t0

, |ψ ′〉 := Ut1←t0 |ψ〉, and |φ′x〉 := U†
t2←t1 |φx〉,

we obtain

E ′ � ρ = (ρ ⊗ 1CX )D[E ◦ AdUt2←t0
]

= (ρU†
t2←t0 ⊗ 1CX )D[E](Ut2←t0 ⊗ 1CX )

∼=
⊕

x∈X

ρU†
t2←t0MxUt2←t0

=
⊕

x∈X

|ψ〉〈ψ |U†
t1←t0U†

t2←t1 |φx〉〈φx|Ut2←t1Ut1←t0

=
⊕

x∈X

|ψ〉〈ψ ′|φ′x〉〈φ′x|Ut1←t0 , (74)

where we use Lemma 3 from Appendix A in the second
equality. Therefore,

(
AdUt1←t0

⊗ idCX

) (E ′ � ρ) ∼=
⊕

x∈X

〈ψ ′|φ′x〉|ψ ′〉〈φ′x|. (75)

The intuitive reason for the AdUt1←t0
in front of E ′ � ρ is

because the two-state of Ref. [42] is viewed at time t1
rather than the initial time t0 or the final time t2 (cf. Fig. 3).
As such, it is necessary to propagate our state over time
from time t0 to t1 in order to obtain the two-state of Refs.
[42,126]. The idCX is needed to incorporate all the possible
outcomes due to the measurement.

We now examine what Bayes maps look like for the pre-
vious setup when the unitary evolution is trivial. Since a
Bayes map E�ρ : B→ A must be trace preserving, it must
define an m× m matrix ρx := E�ρ(δx) such that tr(ρx) = 1
for every x ∈ X . Write p := E(ρ) ≡⊕

x px ≡
∑

x pxδx as
the associated probability distribution on X , which is given
by px = tr(Mxρ). Then,

ρx = ρE∗
(E(ρ)−1δx

) = ρE∗(Ex(ρ)
−1δx

)

= ρ
(

1
tr(Mxρ)

)
E∗(δx) = ρMx

px
(76)

whenever px �= 0. Note that E�ρ is not †-preserving and
that it is necessary to use the version of Bayes’ rule from
Definition 5 to derive this result. Also, since E�ρ : C

X →
Mm is a linear trace-preserving map from a classical alge-
bra to a matrix algebra, it can be viewed as a sort of
ensemble (though not technically, since each ρx need not
be a density matrix).

t0

t1

t2

A0

A1

A2

B

AdUt1←t0

AdUt2←t1

E

|ψ〉

|ψ′〉

|φx〉

|φ′
x〉

Ut1←t0

U†
t2←t1

FIG. 3. In this figure, the algebras A0,A1, and A2 are all equal
to some fiducial A and the subscript is meant to label the time.
A state |ψ〉 is initially prepared at time t0. Then, it evolves from
t0 to t2 via Ut2←t0 . Finally, a state |φx〉 is measured at time t2
via the POVM E . The two-state of Refs. [42,126] at some inter-
mediate time t1 is obtained by forward-propagating |ψ〉 to t1 via
Ut1←t0 and back-propagating |φx〉 to t1 via U†

t2←t1 . Taking the
outer product of these two defines the two-state |ψ ′〉〈φ′x|. This
two-state is precisely the state over time associated with our right
bloom (E ◦ AdUt2←t0

) � ρ ∈ A0 ⊗ B after forward-propagating
the latter via Ut1←t0 to get an element of A1 ⊗ B.

In the special case where ρ = |ψ〉〈ψ | corresponds to
a pure state |ψ〉 and, similarly, Mx = |φx〉〈φx| is a one-
dimensional projection, this becomes

ρx = |ψ〉〈ψ |φx〉〈φx|
|〈ψ |φx〉|2 = |ψ〉〈φx|

〈φx|ψ〉 , (77)

which agrees with the normalized two-state from Ref. [42,
Eq. (5)] and the transition matrix from Ref. [125, Eq.
(1.3)]. The expectation value

tr(ρ†
x A) = 〈ψ |A|φx〉

〈ψ |φx〉 (78)

of this normalized two-state on an observable A ∈Mm then
agrees with the weak value of Aharonov, Albert, and Vaid-
man [Ref. [127, Eq. (6)]; see also Ref. [128] ]. To contrast
this with the earlier PEM scenario where the Bayesian
inverse (using the Leifer-Spekkens state over time) of a
measurement was a preparation, the current choice of state-
over-time function provides a Bayes map that in general
lacks positivity and leads to a different interpretation in
terms of weak values.

E. The left bloom

The cases (r, s) = (1, 0) and (r, s) = (0, 1) yield the
bloom E � ρ = D[E](ρ ⊗ 1B) from Refs. [37,129], which
is referred to here as the left bloom. Besides satisfying the
classical-limit axiom, the left bloom is also bilinear and
associative.
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The Bayes maps associated with the left bloom are simi-
lar to those for the right bloom, so only the solution for the
Bayes maps are provided. The unique linear map solving
Bayes’s rule is given by

B � B
E�ρ�→ E∗(BE(ρ)−1)ρ. (79)

This map is CPTP under exactly the same conditions as in
the right-bloom case.

1. The two-time correlator

In the special case where E is the identity channel,
the left bloom appears in the context of two-point quan-
tum correlation functions [49], where it is equal to the
ideal two-point quantum correlator applied to ρ [130].
Although not a positive (or †-preserving) map, the two-
point correlator has been given an operational interpre-
tation in Refs. [49,115] by decomposing it into the sum
of two †-preserving operations, one of which is the sym-
metric bloom state over time and the other of which is
proportional to a commutator (for more details, see Sec.
V A 2).

In the slightly more general case where E describes uni-
tary evolution after some time t, i.e., E = Ade−iHt for some
Hamiltonian H ∈ Asa, then the left bloom defines two-time
correlators [50]. Indeed, the time-dependent correlation
between two observables A, B ∈ Asa, is

〈
B(t)A(0)

〉
ρ

:= tr
(
eiHtBe−iHtAρ

)
, (80)

where A(s) := AdeisH (A) for s ∈ R and similarly for B. If
E � ρ denotes the left-bloom state over time, then

〈
B(t)A(0)

〉
ρ
= tr

(
(E � ρ)†(A⊗ B)

)
(81)

for all A, B ∈ Asa. Indeed,

tr
(
(E � ρ)†(A⊗B)

) = tr
(
(ρ ⊗ 1A)D[AdU†](A⊗ B)

)

= tr
((
(id⊗ AdU†)μ

∗
A(1A)

)
(Aρ ⊗ B)

)

= tr
(
μ∗A(1A)(Aρ ⊗ UBU†)

)

= tr(AρUBU†)

= tr(UBU†Aρ), (82)

where we temporarily set U = eitH . The third equality
follows from self-adjointness of D[AdU†] and μ∗A(1A),
while the fourth equality follows from self-adjointness of
μ∗A(1A) and 1A.

2. Restoring the symmetry between left and right blooms

Note that if we denote the left- and right-bloom state-
over-time functions by �L and �R, respectively, then

E �L ρ = τ
(Ẽ�ρ �L E(ρ)) = γ (E�ρ �R E(ρ)), (83)

where the first equality is Bayes’ rule and the second equal-
ity is the relationship between the left- and right-bloom
states over time [131]. This relationship between left and
right bloom and the connection to Bayes’ rule resolves the
open question of Leifer and Spekkens with regard to the
apparent asymmetry between these two states over time
(cf. the last paragraph in Ref. [25, Section VII.B.1]). In
fact, it is a symmetry.

F. Bayes maps for the (r, s) family

After going through several examples of the (r, s) fam-
ily, here we derive the general formula for the Bayes map.
Since a Bayes map E�ρ must satisfy γ (E � ρ) = (

(† ◦ E�ρ ◦
†) � E(ρ))†, one can show (by similar calculations to the
above) that Bayes’ rule is equivalent to

s(1B ⊗ ρr)D[E∗](1B ⊗ ρr⊥)

+ s⊥(1B ⊗ ρr⊥)D[E∗](1B ⊗ ρr)

= s
(E(ρ)r⊥ ⊗ 1A

)
D[E�ρ]

(E(ρ)r ⊗ 1A
)

+ s⊥
(E(ρ)r ⊗ 1A

)
D[E�ρ]

(E(ρ)r⊥ ⊗ 1A
)

(84)

by Eq. (A10) of Lemma 3. Introducing the same notation
qk and |wk〉 as in the case of the symmetric bloom, Bayes’
rule is equivalent to

∑

k,l

ekl ⊗
(

sρrE∗(elk)ρ
r⊥ + s⊥ρr⊥E∗(elk)ρ

r
)

=
∑

k,l

((
sqr⊥

k qr
l + s⊥qr

kqr⊥
l

)
ekl

)
⊗ E�ρ(elk), (85)

where ekl := |wk〉〈wl|. Since the ekl are linearly indepen-
dent, this gives the solution

E�ρ(ekl) = sρrE∗(ekl)ρ
1−r + (1− s)ρ1−rE∗(ekl)ρ

r

sqr
kq1−r

l + (1− s)q1−r
k qr

l

, (86)

which can be linearly extended to define a Bayes map
for the (r, s) family. Note that E�ρ is †-preserving when
s = 1/2. It is unclear to us if there is a manifestly basis-
independent expression for this Bayes map.

G. Generalized conditional expectations

In Ref. [32], Tsang has argued for the interpretation
of generalized conditional expectations as maps defin-
ing retrodiction and hence as quantum analogs of Bayes’

020334-16



FROM TIME-REVERSAL SYMMETRY TO QUANTUM BAYES’ RULES PRX QUANTUM 4, 020334 (2023)

theorem. Generalized conditional expectations include the
Petz recovery maps, the Bayes maps for the entire (r, s)
family, and many others (see also Ref. [132, Section 6.1]
and the references therein). In the present section, we
show that all of the generalized conditional expectations
described by Tsang are indeed included in our framework
of states over time and Bayes maps. Namely, from the data
used in Refs. [32,132] to define generalized conditional
expectations, we construct state-over-time functions and
then we show that (the Hilbert-Schmidt adjoint of) these
generalized conditional expectation are Bayes maps for
those states over time.

Beyond what we have already mentioned above, our
work also achieves several new insights:

(1) To derive our Bayes map, we do not need to mini-
mize or extremize any distance measures as is done
in Ref. [32, Section III.B]. Namely, we only require
a few consistency conditions and our notion of
time-reversal symmetry.

(2) We complete Tsang’s open remark or question
(posed at the end of Ref. [32, Section III.B]) of relat-
ing his formalism to that of Horsman et al. [38] and
Leifer-Spekkens [25]. We are able to do this pre-
cisely because of our proposed relationship between
states over time and Bayes’ rules (the usages of both
τ and Ẽ�ρ from Definition 5 are crucial here).

(3) We provide an explicit formula for the Bayes map
associated with the (r, s) family.

In what follows, our notation differs from Refs. [32,132]
to avoid any conflicting notation. For every multimatrix
algebra A, let � : S(A)→ Map(A,A) send a state ρ
to a linear map �ρ : A→ A that satisfies the following
axioms (see Refs. [32, Section III.A] and [132, Section
6.1]) [133]:

(T1) �ρ(A) = ρA whenever A ∈ A satisfies [ρ, A] = 0.
(T2) �ρ ◦ E−1 = E−1 ◦�E(ρ) whenever E is a ∗-

isomorphism (e.g., �ρ ◦ AdU† = AdU† ◦�UρU† for
all unitaries U).

(T3) If A′ is another multimatrix algebra, then �ρ⊗ρ′ =
�ρ ⊗�ρ′ for all states ρ ∈ S(A) and ρ ′ ∈ S(A′),
provided that at least one of ρ or ρ ′ are in the center
of A or A′, respectively.

(T4) �ρ is self-adjoint and positive semidefinite with
respect to the Hilbert-Schmidt inner product.

We call such a map � a state-rendering map. Note that
in our notation, we suppress the dependence of � on the
algebra A, as it should be evident from the context.

Remark 4.—The fact that a map � : A→ A is self-
adjoint with respect to the Hilbert-Schmidt inner product
does not imply that � is †-preserving. An example is the
map �(A) = ρA for a state ρ ∈ S(A) that is not in the
center of A (when A =Mm, this means that ρ is not the

maximally mixed state). Conversely, if � is †-preserving,
this does not imply that � is self-adjoint. An example is
the map � = AdU for a unitary U ∈ A not proportional to
the identity. Similarly, the fact that � is positive semidefi-
nite with respect to the Hilbert-Schmidt inner product does
not mean that � is a positive map in the sense that it
takes positive elements to positive elements. An example
is �(A) = ρA for a state ρ that is not maximally mixed.
Conversely, if � is positive, this does not imply � is posi-
tive semidefinite. An example is�(A) = AT, the transpose
map on (complex) matrix algebras.

Theorem 2.—Given a state-rendering map�, the assign-
ment � sending a trace-preserving linear map E : A→ B
and ρ ∈ S(A) to

E � ρ := (�ρ ⊗ idB)
(
D[E]

)
(87)

defines a state-over-time function that is process linear and
satisfies the classical-limit axiom.

We include the proof of this theorem here to illustrate
how the axioms of state-rendering maps are related to those
of state-over-time functions.

Proof.—We first check that E � ρ has the correct
marginals and then we prove the latter two claims.

The marginal on A is

trB(E � ρ) =
(
�ρ ⊗ (tr ◦ E)

)(
μ∗A(1A)

)

= (
�ρ ⊗ tr

)(
μ∗A(1A)

)

= �ρ(1A)

= ρ. (88)

The first equality follows from the definition of the channel
state and the definition of the partial trace trB. The second
equality follows from the fact that E is trace preserving.
The third equality is an identity due to the fact that μ∗A is a
(nonpositive) broadcasting map (see the axioms of a quan-
tum Markov category in Refs. [28,118]). The last equality
follows from axiom (T1).

In the case where A =Mm, the marginal on B is

trA(E � ρ) =
∑

i,j

tr
(
�ρ(E

(m)
ij )

)E(E(m)ji )

=
∑

i,j

tr
(
�∗ρ(1A)†E(m)ij

)E(E(m)ji )

=
∑

i,j

tr
(
�ρ(1A)†E(m)ij

)E(E(m)ji )

=
∑

i,j

tr
(
ρE(m)ij )E(E(m)ji )

= E(ρ). (89)
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The second equality follows from the definition of the
Hilbert-Schmidt inner product. The third equality follows
from the self-adjointness of �ρ , which is part of axiom
(T4). The fourth equality follows from axiom (T1) and the
fact that ρ is Hermitian. The last equality follows from the
fact that tr

(
ρE(m)ij ) is precisely the ji-matrix entry of ρ. The

proof when A is an arbitrary multimatrix algebra is left as
an exercise.

Process linearity of � follows from linearity of D and
�ρ .

Finally, to see that the classical-limit axiom for � holds,
suppose that [ρ ⊗ 1B, D[E]] = 0. Then,

[
ρ ⊗ 1B

tr(1B)
, D[E]

]
= 0 (90)

and

E � ρ =
(
�ρ ⊗

(
tr(1B)� 1B

tr(1B)

)) (
D[E]

)

= tr(1B)�ρ⊗ 1B
tr(1B)

(
D[E]

)

= (ρ ⊗ 1B)D[E]. (91)

The first equality follows from axiom (T1). The second
equality follows from linearity of the tensor product and
axiom (T3). The third equality follows from Eq. (90) and
axiom (T1). �

Many of the examples of state-over-time functions that
we have given earlier are special cases of this construction
[134]:

(1) The right and left blooms are obtained from
�R
ρ (A) := ρA and �L

ρ(A) := Aρ, respectively.
(2) The Leifer-Spekkens state over time is obtained

from �LS
ρ (A) := √ρA

√
ρ.

(3) The symmetric bloom state over time is obtained
from �J

ρ(A) := 1
2 {ρ, A} ≡ 1

2 (ρA+ Aρ).
(4) More generally, the (r, s) family is obtained from

�(r,s)
ρ (A) := sρrAρ1−r + (1− s)ρ1−rAρr.

We now introduce the generalized conditional expecta-
tion from Ref. [32, Eq. (3.22)] (see also Refs. [132, Eq.
(6.21)] and [135]), which has been derived in Ref. [32]
by minimizing a certain inner product associated with a
state-rendering map �.

Given a channel E : A→ B, a state ρ ∈ S(A), and a
state-rendering map �, a generalized conditional expecta-
tion is a linear map E�,ρ : A→ B such that

E ◦�ρ = �E(ρ) ◦ E�,ρ . (92)

Theorem 3.—Let E�,ρ be a generalized conditional
expectation as in Eq. (92). Then, E∗�,ρ is a Bayes map
for (E , ρ) associated with the state over time � defined in
Theorem 2.

The proof of Theorem 3 is provided in Appendix B.
Interestingly, we have made no use of axiom (T2) in any
of our results thus far. The importance of this axiom is due
to the next fact, the proof of which is deferred to Appendix
B. It shows that if a quantum channel is a ∗-isomorphism,
then the inverse is a Bayesian inverse.

Proposition 2.—Let � be a state-rendering map and �
its associated state-over-time function. If E : A→ B is a
∗-isomorphism, then E−1 is a Bayesian inverse of (E , ρ)
for every ρ ∈ S(A).

Remark 5.—Proposition 2 and Theorem 3 provide addi-
tional illustrations of the importance of using the dagger
and Ẽ�ρ in the definition of Bayes’ rule. This can be seen
more clearly in their proofs.

VI. DISCUSSION AND CONCLUSIONS

In this work, we have provided a rigorous definition for
a Bayesian inverse using the notion of a state over time
[37,38] in terms of a universal time-reversal-symmetry
map that is independent of the input channel and state.
In particular, this answers an open question of Leifer
and Spekkens [25] on the question about the relationship
between Bayes’ rules and time-reversal symmetry. It also
answers a question posed by Tsang regarding the connec-
tion between states over time and generalized conditional
expectations [32]. Tsang has also attempted to unify many
notions of generalized conditional expectations and our
work includes all of the special cases considered in Ref.
[32] along with several new ones. We have shown how our
definition of a state-over-time function reproduces those
of Leifer and Spekkens [25], the two-state vector for-
malism [41,42,48], the symmetric bloom of the present
authors [37], and others, many of which are summarized
in Table II.

In addition, using our proposed definitions of Bayesian
inverses and, more generally, Bayes maps, associated with
a state-over-time function, we have obtained the normal-
ized two-states of Reznik and Aharonov [42], all the
rotated Petz recovery maps, two-point quantum correla-
tors, the quantum Bayes’ rule of Fuchs [17], and many
more concepts arising in various scenarios. Furthermore,
we have explained how one would unambiguously arrive
at the quantum state-update rule associated with instru-
ments [107] for any state over time satisfying the classical-
limit axiom. This shows how the state-update rule can be
viewed as a quantum Bayes’ rule, which has been advo-
cated by Bub [11], Ozawa [13], Tegmark [23], and many
others. However, we remark that this version of the quan-
tum Bayes’ rule is not as general as our Bayes’ rule, the
latter of which applies to arbitrary maps, not necessarily
special kinds of instruments.

Several open questions should be addressed. Although
some of these are mentioned earlier, we summarize these
questions for convenience and add new ones for further
thought:
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(1) Are there any physically relevant examples of state-
over-time functions that are not process linear?

(2) In regard to Ohya’s compound state over time [52],
is there a canonical way of isolating an extremal
decomposition of every state ρ given a pair (E , ρ),
perhaps by extremizing some information measure?
If so, can the compound state over time be improved
to define a state-over-time function with more
desirable properties?

(3) Is there a state-over-time function the Bayesian
inverses of which are the universal recovery maps
of Junge et al. [69,95]? What about the more gen-
eral averaged rotated Petz recovery maps [44] or the
optimal state retrieval maps of Surace and Scandi
[71]?

(4) Which state-over-time functions give Bayesian
inverses that define retrodiction functors in the sense
of Ref. [44]? Namely, which properties of state-
over-time functions correspond to which axioms
for retrodiction families? For example, what prop-
erties of a state-over-time function imply that the
Bayesian inverses are compositional? This is an
important question to address so that one can choose
a state-over-time function appropriately to achieve
the desired properties of retrodiction.

(5) Just as the two-point correlator can be decomposed
into Hermitian and anti-Hermitian parts, with a min-
imal Kraus decompositions the coefficients of which
can be given an operational meaning [49], can arbi-
trary nonpositive Bayes maps also be decomposed
in a similar way to provide them with operational
meanings? Some progress has recently been made
in this direction [136].

(6) Another approach toward generalizing quantum
states associated with acausally related regions to
causally related ones is the superdensity formalism
[137,138]. One major difference between this line
of development and ours is that we demand our
objects to be defined on the tensor product of the
algebras of the associated regions, whereas in Refs.
[137,138], the algebra is “doubled.” For example,
for the case of two causally related regions with
algebras A and B, our states over time are elements
of A⊗ B, whereas superdensity operators are ele-
ments of A∗ ⊗ B∗ ⊗A⊗ B, where the duals are
with respect to the Hilbert-Schmidt inner products.
As such, we have not yet been able to meaningfully
compare our constructions.

(7) Our present work focuses primarily on the setting of
two times and hence two algebras mediated by some
channel. The associativity axiom, which we alluded
to briefly, is closely related to consistently defining
multitime states over time where one might have
a sequence of composable evolutions, A E−→ B F−→
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C −→ · · · , together with an initial state ρ ∈ S(A).
It is expected that these ideas are closely related to
multitime correlators and multitime measurements
[139,140], though the details have not yet been
worked out.

(8) Just as genuine states in the tensor product A⊗ B
can be given important information measures, such
as entanglement entropy (for a review with applica-
tions to quantum field theory, see Ref. [141]), what
information measures can be assigned to states over
time for causally related regions? Some attempts
to extend entanglement entropy to such scenarios
have been made in Euclidean field theories for the
special case of the right bloom under the name
“pseudoentropy” [125,142–144] or in the context
of superdensity operators [137,138]. Much work
needs to be done to better understand such dynam-
ical information measures. What can these teach us
about temporal correlations [31,36,140,145,146] or
information extraction from black-hole evaporation
[147–149]?

We hope to address these questions, particularly some
from the last item, in subsequent work. We hope that
by answering such questions, we may eventually provide
new methods for detecting and computing temporal cor-
relations that distinguish between classical and quantum
systems. More provocatively, we suspect that these differ-
ences may provide some insight toward our understanding
of quantum information theory and the structure of space
and time, and hence quantum gravity.
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APPENDIX A: USEFUL FACTS ABOUT THE
CHANNEL STATE

In this appendix, we state some important lemmas that
are used in several calculations throughout this work.

Lemma 1.—Let B be an m× n matrix and let C be an
n× m matrix. Then,

m∑

i,j

E(m)ij ⊗
(

CE(m)ji B
)
=

n∑

k,l

(
BE(n)kl C

)
⊗ E(n)lk . (A1)

Proof.—Writing E(m)ij = |i〉〈j | and using the complete-
ness relations 1n =

∑n
k=1 |k〉〈k| and 1m =

∑m
i=1 |i〉〈i|, we

obtain

m∑

i,j

E(m)ij ⊗
(

CE(m)ji B
)

=
m∑

i,j

n∑

k,l

|i〉〈j | ⊗
(
|l〉〈l|C|j 〉〈i|B|k〉〈k|

)

=
m∑

i,j

n∑

k,l

(
|i〉〈i|B|k〉〈l|C|j 〉〈j |

)
⊗ |l〉〈k|, (A2)

which equals the required expression. �
Lemma 2.—If E : A→ B is a CP map, then

(idA ⊗ E)(μ∗A(1A)
) = (E∗ ⊗ idB)

(
μ∗B(1B)

)
, (A3)

γ
(
D[E]

) = D[E∗], (A4)

and

(A⊗ B)D[E](A′ ⊗ B′) = D[LB ◦RB′ ◦ E ◦LA′ ◦RA]
(A5)

for all A, A′ ∈ A and B, B′ ∈ B. Here, LA′ and RA are left
and right multiplication by A, namely, LA′(X ) = A′X and
RA(X ) = XA for all X ∈ A (and similarly for B).

Proof.—In this proof, we assume A =Mm and B =Mn
for simplicity. Then, Eq. (A3) reads

D[E] =
∑

k,l

E∗(E(n)kl

)⊗ E(n)lk . (A6)

To see that this holds, note that since E is CP, there exist
Kraus operators {Vα} such that E =∑

α AdVα [79]. Hence,

D[E] =
∑

α

∑

i,j

E(m)ij ⊗
(

VαE(m)ji V†
α

)

=
∑

α

∑

k,l

(
V†
αE(n)kl Vα

)
⊗ E(n)lk

= γ (D[E∗]) (A7)
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by Lemma 1. Equation (A4) follows directly from this. For
the last identity, and using Lemma 1 as well, we obtain

(A⊗ B)D[E](A′ ⊗ B′)

=
∑

α

(1A ⊗ BVα)

⎛

⎝
∑

i,j

AE(m)ij A′ ⊗ E(m)ji

⎞

⎠ (1A ⊗ V†
αB′)

=
∑

α

(1A ⊗ BVα)

⎛

⎝
∑

i,j

E(m)ij ⊗ A′E(m)ji A

⎞

⎠ (1A ⊗ V†
αB′)

=
∑

i,j

E(m)ij ⊗
(
BE(A′E(m)ji A)B′

)
, (A8)

which equals (A5). �
We now generalize Lemma 2 to allow for arbitrary linear

maps.
Lemma 3.—If E : A→ B is a linear map, then

(idA ⊗ E)(μ∗A(1A)
) = (

(† ◦ E∗ ◦ †)⊗ idB
)(
μ∗B(1B)

)
,

(A9)

γ
(
D[E]

) = D[† ◦ E∗ ◦ †] = D[E∗]†,
(A10)

(A⊗ B)D[E](A′ ⊗ B′) = D[LB ◦RB′ ◦ E ◦LA′ ◦RA],
(A11)

and

(A† ⊗ B)D[E](A⊗ B†) = D[AdB ◦ E ◦ AdA] (A12)

for all A, A′ ∈ A and B, B′ ∈ B.
Proof.—The first equality can be seen by first taking the

Hilbert-Schmidt adjoints of both sides (1A is viewed as
the unique linear map C→ A sending λ ∈ C to λ1A, and
similarly for B). The claim is then equivalent to [150]

tr ◦ μA ◦ (idA ⊗ E∗) = tr ◦ μB ◦
(
(† ◦ E ◦ †)⊗ idB

)
.

(A13)

But this identity follows immediately from applying the
left map to A⊗ B ∈ A⊗ B, which results in

tr
(
AE∗(B)) = tr

(
(A†)†E∗(B)) = tr

(E(A†)†B
)
. (A14)

The first equality in Eq. (A10) follows from Eq. (A9). The
second equality in Eq. (A10) follows from

D[† ◦ E ◦ †]† =
((

idA ⊗ († ◦ E ◦ †)
)(
μ∗A(1A)

))†

= (
(idA ⊗ E) ◦ (†⊗ †)

)(
μ∗A(1A)

)

= (idA ⊗ E)(μ∗A(1A)
)

= D[E] (A15)

(the string-diagram language of quantum Markov cate-
gories from Ref. [28] makes these identities immediately

apparent). Finally, Eq. (A11) follows from Eq. (A5) in
Lemma 2 together with linearity of the channel state with
respect to its input. This is because every linear map E
is a complex combination of at most four CP maps [79,
151,152]. Indeed, one can first decompose the Choi matrix
C [E] of E into a complex combination of self-adjoint
elements

C [E] = 1
2
(
C [E]+ C [E]†)+ 1

2i
(
iC [E]− iC [E]†)

(A16)

and then further decompose each of these self-adjoint
elements into linear combinations of positive elements.
The end result is a complex combination of the
form

C [E] = C [E]+R−C [E]−R + iC [E]+I−iC [E]−I , (A17)

where C [E]+R, C [E]−R, C [E]+I , C [E]−I are all positive.
Then, by using Choi’s theorem, each of these corresponds
to a CP map, with an overall Kraus decomposition given
by

E =
∑

α

AdVα −
∑

β

AdWβ
+ i

∑

γ

AdXγ − i
∑

δ

AdYδ .

(A18)

Since the channel state is linear in its argument,
this decomposition and Eq. (A5) from Lemma 2
imply Eq. (A11). Equation (A12) is a special case
of Eq. (A11). �

APPENDIX B: PROOFS OF SOME MAIN RESULTS

This appendix contains proofs of our main theorems that
are not included in the main text. Before proving Theorem
3 about the relationship between Bayes maps and gener-
alized conditional expectations, we compute the reverse
orientation state over time [cf. Ref. [116]] in the following
lemma.

Lemma 4.—Let � be a state-rendering map and let
� denote the associated state-over-time function from
Theorem 2. Then,

(Ẽ � ρ)† = (
(† ◦�ρ ◦ †)⊗ idB

)
D[E] (B1)

for all linear maps E : A→ B and states ρ ∈ S(A).

020334-21



ARTHUR J. PARZYGNAT and JAMES FULLWOOD PRX QUANTUM 4, 020334 (2023)

Proof.—By definition of the left-hand side, we have

(Ẽ � ρ)† = (
(† ◦ E ◦ †) � ρ

)†

= (
(�ρ ⊗ idB)D[† ◦ E ◦ †]

)†

= (
(† ◦�ρ ◦ †)⊗ idB

)(
D[† ◦ E ◦ †]†)

= (
(† ◦�ρ ◦ †)⊗ idB

)
D[E], (B2)

where the third equality follows from the properties of the
involution † [153] and the fourth equality follows from
Eq. (A10) of Lemma 3. �

Proof of Theorem 3.—The goal is to prove γ (E � ρ) =(Ẽ∗�,ρ � E(ρ)
)†. Taking the Hilbert-Schmidt adjoint of both

sides of Eq. (92) and using axiom (T4) gives the equivalent
condition:

�ρ ◦ E∗ = E∗�,ρ ◦�E(ρ). (B3)

Using this, we obtain

γ (E � ρ) = γ
((
�ρ ⊗ idB

)(
D[E]

))

= (
idB ⊗�ρ

)
γ
(
D[E]

)

= (
idB ⊗�ρ

)(
D[E∗])

= (
idB ⊗ (�ρ ◦ E∗)

)(
μ∗B(1B)

)

= (
idB ⊗ (E∗�,ρ ◦�E(ρ))

)(
μ∗B(1B)

)

=
((

idB ⊗ E∗�,ρ

) ◦ (idB ⊗�E(ρ)
))(
μ∗B(1B)

)

=
((

idB ⊗ E∗�,ρ

) ◦ ((† ◦�E(ρ) ◦ †)⊗ idB
))(
μ∗B(1B)

)

= (
(† ◦�E(ρ) ◦ †)⊗ idB

)
D[E∗�,ρ]

= (Ẽ∗�,ρ � E(ρ)
)†. (B4)

The second equality follows from the property of the swap
map γ . The third equality follows from Lemma 2. The
fourth equality is the definition of the channel state. The
fifth equality follows from Eq. (B3). The sixth equality
follows from the interchange law relating ◦ and ⊗. The
seventh equality follows from Eq. (A9) of Lemma 3 and
axiom (T4). The eighth equality follows from the inter-
change law and the definition of the channel state. The
ninth equality follows from Lemma 4. �

Proof of Proposition 2.—By axiom (T2), E is a general-
ized conditional expectation for every ρ ∈ S(A). Hence,
E∗ = E−1 is a Bayes map for (E , ρ) by Theorem 3. Since
E−1 is a channel, E−1 is a Bayesian inverse of (E , ρ).
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