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We study multiparameter sensing of two-dimensional (2D) and three-dimensional (3D) vector fields
within the Bayesian framework for SU(2) quantum interferometry. We establish a method to determine
the optimal quantum sensor, which establishes the fundamental limit on the precision of simultaneously
estimating multiple parameters with an N -atom sensor. Keeping current experimental platforms in mind,
we present sensors that have limited entanglement capabilities and yet significantly outperform sensors
that operate without entanglement and approach the optimal quantum sensor in terms of performance.
Furthermore, we show how these sensors can be implemented on current programmable quantum sensors
with variational quantum circuits by minimizing a metrological cost function. The resulting circuits pre-
pare tailored entangled states and perform measurements in an appropriate entangled basis to realize the
best-possible quantum sensor given the native entangling resources available on a given sensor platform.
Notable examples include a 2D and 3D quantum “compass” and a 2D sensor that provides a scalable
improvement over unentangled sensors. Our results on optimal and variational multiparameter quantum
metrology are useful for advancing precision measurements in fundamental science and ensuring the sta-
bility of quantum computers, which can be achieved through the incorporation of optimal quantum sensors
in a quantum feedback loop.
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I. INTRODUCTION

The goal of quantum metrology [1–4] is to enable
and enhance measurements of parameters of physical sys-
tems using quantum systems that serve as probes. Quan-
tum physics limits the performance of sensors employ-
ing uncorrelated (classical) input states, establishing the
so-called standard quantum limit (SQL). At the same
time, quantum physics provides us with entanglement as
a resource to overcome the SQL and approach the ulti-
mate limits for measurement precision in quantum sensing,
which define the optimal quantum sensor (OQS). Iden-
tifying and eventually building such an OQS is one of
the outstanding challenges in quantum metrology. This
involves, first, the identification of optimal entangled input
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states and measurements for a given sensing task. Sub-
sequently, the question arises of how quantum sensors
operating close to the limits defined by the OQS can be
implemented on specific quantum sensor platforms given
the experimental (entangling) resources.

For single-parameter quantum metrology, there is a
clear theoretical understanding of the OQS [2,5,6] and
recent experiments with programmable quantum sensors
have demonstrated close-to-optimal N -atom Ramsey inter-
ferometry with low-depth entangling quantum circuits
[7]. In contrast, we are interested below in multiparam-
eter quantum metrology [8–12], which deals with the
precise estimation of several parameters simultaneously
and hence is relevant for numerous practical applications
[13–19], e.g., vector-field sensing [20–22], which is related
to magnetometry [23–30] or electrometry [31–33].

A fundamental difference between multiparameter and
single-parameter metrology arises from the potential
incompatibility of optimal measurements for different
parameters encoded by noncommuting Hamiltonians. This
distinctive feature of multiparameter quantum metrology
has been studied primarily within the framework of quan-
tum Fisher information (FI), where the sensor precision is
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tightly lower bounded by the Holevo Cramér-Rao (HCR)
bound [1,9,34] as the number of measurement repetitions
of the same signal tends to infinity. Instead, we are inter-
ested here in measurement scenarios that are limited to one
or a few measurement repetitions, as is relevant, e.g., for
sensing time-varying signals [35]. The problem of finding
a sensor that maximizes the precision of a single mea-
surement in a given range of parameter values can be
formulated in the framework of Bayesian quantum metrol-
ogy [1,5,9,36,37]. However, solving Bayesian multiparam-
eter quantum metrology for noncommuting Hamiltonians
remains a longstanding challenge. So far, only a handful of
special problems with an underlying group symmetry have
been addressed in this framework [38–41].

In the present work, we study the paradigmatic mul-
tiparameter quantum metrology problem of vector-field
sensing [20–22] within the Bayesian framework. While
entangled field sensors for one-dimensional (1D) sens-
ing have already been experimentally realized [42–45],
we consider the open problem of sensing two-dimensional
(2D) and three-dimensional (3D) fields in the context of
entangled Ramsey interferometry with N atoms. We estab-
lish a method to determine the OQS that sets the ultimate
achievable precision limit for simultaneous estimation of
the components of the vector field from a single mea-
surement with a given number of atoms. The latter is of
particular importance when the number of atoms cannot be
arbitrarily increased, e.g., to maintain a high spatial reso-
lution. Keeping current experimental capabilities in mind,
we consider sensors with limited experimental quantum
control that nevertheless approach the OQS in terms of per-
formance and significantly outperform the SQL, defined
by sensors operating without entanglement. Programmable
sensors can be realized on a variety of sensing platforms,
including trapped ions [7,18], laser-excited Rydberg atoms
[46,47], atoms in optical cavities [48], polar molecules
[49,50], color centers [51,52], and photons with orbital
angular momentum [19,53,54]. Considering the example
of one-axis-twisting (OAT) interactions [55], which is
available, e.g., for trapped ions, we optimize variational
quantum circuits [56] that point to a practical route to
implement entangled quantum sensors [7].

This work is organized as follows. In Sec. II, we intro-
duce SU(2) interferometry to measure the components of
a vector field and we set the stage for OQSs in the frame-
work of Bayesian multiparameter estimation. Section III
discusses theoretical aspects, provides (numerical) algo-
rithms for finding the OQS, and defines quantum circuit
models. In Sec. IV, we introduce one-partite (1p) and
two-partite (2p) quantum sensors as quantum sensors with
limited entangling capabilities. This leads to the discussion
of variational low-depth quantum circuits approximating
the OQS in Sec. V. While most of the results presented
in this work are for 2D field sensing, Sec. VI discusses
aspects of 3D field sensing, followed by conclusions.

II. BAYESIAN MULTIDIMENSIONAL FIELD
SENSING

In this section, we review the theory of multiparame-
ter estimation using multidimensional field sensing as an
example. We focus on the Bayesian framework of phase
estimation, which accounts for prior uncertainty about the
parameters being measured. We define the OQS as the
sensor that minimizes a Bayesian cost function.

A. Vector-field sensing with SU(2) interferometers

We study the problem of estimating all components of
a vector field B = (Bx, By , Bz)

T in SU(2) interferometry
[57], where we assume that the field is uniformly cou-
pled to an ensemble of N identical two-level atoms. The
physical sensing scenarios we have in mind can be, e.g.,
dc magnetic fields or ac magnetic and electric fields. In
Appendix A, we elaborate on experimental settings that
realize the model system consider below.

In our model, the atoms couple to the vector field
according to the Hamiltonian

H = B · J ≡
∑

ν

BνJν . (1)

Here, Jν = ∑N
k=1 σ

ν
k /2 are the collective spin operators

and σ νk are the Pauli operators of the kth atoms, with
ν = x, y, z. After an evolution time T, the phases φ = B T
are imprinted on the input state |ψin〉 by the unitary SU(2)
operator

U(φ) = exp [−i φ · J ] (2)

such that |ψφ〉 = U(φ) |ψin〉. Here, we assume that the
coherence time of the field τ � T is long compared to T,
i.e., the field remains effectively constant during the evo-
lution. Finally, a measurement of the two-level atoms in
the state |ψφ〉 is performed to estimate the phases φ and
thus infer the field B. While we focus here on measure-
ments at discrete times, an alternative approach based on
continuous measurements is discussed in Ref. [58].

The most general measurement is described by a
positive operator-valued measure (POVM), i.e., a set
{Mμ} of positive Hermitian operators, Mμ � 0, such that∑

μ Mμ = 1. In the following, we contrast POVMs with
the less general but experimentally more accessible pro-
jective measurements, denoted by �μ. For a given vector
of phases φ, the measurement outcomes, labeled μ, are
realized with probabilities

p(μ|φ) = Tr{Mμ |ψφ〉 〈ψφ|}. (3)

Based on the result μ, one estimates the phases using an
estimator ξμ = (ξ x

μ, ξ y
μ, ξ z

μ)
T. The deviation of the estima-

tion from the actual value φ is characterized by an error
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(or loss) function ε(φ, ξμ), commonly chosen to be the
squared error:

ε(φ, ξμ) = (
φ − ξμ

) · (
φ − ξμ

)
. (4)

Finally, the figure of merit, which accounts for measure-
ment statistics, is given by the average estimation error (or
risk) for a given φ. In our case, it takes the form of the
mean-squared error (MSE):

MSE(φ) =
∑

μ

ε(φ, ξμ) p(μ|φ). (5)

Note that the SU(2) phase encoding U(φ) is periodic,
which means that the phase vector can only be estimated
modulo 2π . Since we want to infer the vector field from
the estimated phases according to Best ∼ ξ/T, it is crucial
to take this ambiguity into account. Therefore, we con-
sider phases in the interval 0 < |φ| < ∞ and we explicitly
choose the squared error given in Eq. (4), which is a non-
periodic error function to strongly penalize phases that
slip outside the sphere |φ| ≤ π of unambiguous phase
estimation.

B. Bayesian multiparameter estimation

In the Bayesian approach, the parameter vector φ to be
estimated is assumed to be a random variable. Knowledge
about the phases to be estimated is represented by the prior
probability density P(φ). By estimating the phases, we
infer information and the prior density is updated to the
posterior probability density.

The quantity central to our discussion is the Bayes
mean-squared error (BMSE), defined as the MSE given in
Eq. (5) averaged over the prior probability density:

BMSE ≡ C =
∫

dφ MSE(φ)P(φ). (6)

Below, the BMSE plays the role of a cost function C, which
depends on the input state |ψin〉, the POVMs {Mμ}, and the
estimators {ξμ}.

We use the Bayes theorem, p(φ|μ) = p(μ|φ)P(φ)/
p(μ), to interpret C as the posterior expected error of the
phase estimation. In particular, C can be rewritten as

C =
∑

μ

p(μ)
∫

dφ ε(φ, ξμ) p(φ|μ), (7)

where p(μ) = ∫
dφ p(μ|φ)P(φ) is the probability of mea-

suring μ. The integral over the phase vector φ represents
the expected squared error, i.e., the squared error averaged
with respect to the posterior probability density p(φ|μ),
where the latter represents our knowledge of φ given that
the outcome of the measurement is μ.

The minimum MSE estimator, defined by minimizing
the expected squared error and thus the BMSE, is given by

ξ ∗
μ =

∫
dφ φ p(φ|μ) = 〈φ〉p(φ|μ), (8)

which corresponds to the mean value of the posterior
probability density p(φ|μ).

If the estimators {ξμ} are chosen to be the minimum
MSE estimators {ξ∗

μ}, the BMSE is the posterior variance


2 ≡ C|ξ=ξ∗ =
∑

μ

p(μ)
〈
ε
(
φ, 〈φ〉p(φ|μ)

) 〉

p(φ|μ)
, (9)

i.e., the variances of the posterior densities averaged
according to the probability p(μ) of measuring μ.

In the following, the posterior uncertainty 
2 is the
quantity of interest that evaluates performance and allows
comparison of various quantum sensors for a given prior
density P(φ). By minimizing the metrological cost func-
tion given in Eq. (6), we implicitly minimize the posterior
variance of the sensor. Hence, our results are presented as
plots that compare the ratio of the posterior uncertainty

 to the prior uncertainty for different sensor models (see
Figs. 2, 6, and 7). The smaller the value of this ratio, the
more information we can gain about the phases φ in a
single measurement.

Before proceeding, we comment on our choice of
the prior probability density P(φ). In Bayesian quantum
metrology, the B field to be sensed has a prior density that
reflects the statistical properties of the unknown field and
that translates into a density for the phases φ. The prior
is therefore sensor and task dependent. For instance, in
atomic clocks, the prior is determined by the statistical
properties of the laser noise, which are well characterized
[6,59]. Alternatively, the prior distribution can be obtained
through previous measurements of the same signal using a
less accurate sensor.

As mentioned earlier, we assume the field B to be
quasistatic during the evolution time T. Hence, the rela-
tionship between field values and phases can be expressed
as φ = BT, where the sensor interaction time T is a tunable
parameter that controls the width of the prior distribution
of phases. By choosing T appropriately, it is possible to
ensure that the estimated phases are uniquely mapped to
the vector field, i.e., there are no phase slips.

To be specific, we assume below a prior for the field in
the form of an isotropic Gaussian density centered around
the origin with prior width (δ|B|). The corresponding prior
probability density for the phases is thus

Pδ(φ) = 1
(√

2π δ
)d exp

[
−φ · φ

2δ2

]
, (10)
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(a) (b) (c)

(d) (e) (f)

FIG. 1. Quantum sensing of a vector field B using SU(2) interferometry. We consider Ramsey interferometry with entangled atoms,
where the vector of phases φ are encoded in the quantum system via the SU(2) unitary U(φ) that carries information about the vector
field B (see Sec. II A). (a)–(c) Three interferometers, discussed in more detail in Secs. III B and IV, which differ in the level of control
available for manipulating atomic entanglement in an experimental setup. (d)–(f) Operational definitions of the interferometers in
terms of quantum circuits and projective measurements. The entangler Uen and decoder Ude transform the quantum state of the system
before and after the phase encoding. The projective-measurement outcomes σ , m, and mA(B) are converted into an estimate ξ of the
true phase vector φ. (a),(d) The most general N -atom sensor assumes universal control of atoms, which allows realization of the OQS
(see Sec. II C). (b),(e) The atoms in the one-partite quantum sensor (1p QS; see Sec. IV A 1) are controlled uniformly. The sensor
dynamics are thus constrained to the permutation symmetric subspace of N atoms, i.e., the atomic ensemble can be represented by a
single macrospin with angular momentum J = N/2. One-partite control is realized by circuits composed of collective rotation Rx(y)
and the one-axis-twisting (OAT) gate T . (c),(f) The atoms in the two-partite quantum sensor (2p QS; see Sec. IV A 2) are grouped into
two partitions, A and B, and controlled uniformly within each partition, which includes uniform control of the entire atomic ensemble.
The system is thus equivalent to two entangled macrospins with angular momenta J A = J B = N/4. two-partite control is realized by
circuits composed of collective rotations RA(B)

x(y) and OAT gates T A(B)
z acting on each partition and Tz on the full ensemble.

where d is the dimension of the vector φ. For 2D field sens-
ing, we take d = 2 and assume that Bz T = φz = 0. In this
particular example, the prior is defined by a single param-
eter δ ∼ (δ|B|)T. We treat δ as a free parameter that can
be optimized to improve the performance of the sensors,
as discussed in the following sections. While we focus
on isotropic prior distributions corresponding to no prior
knowledge regarding the orientation of the field, it is worth
noting that the ensuing discussion can consider other prior
distributions that match specific quantum sensor setups and
objectives. For further details, refer to Appendix B.

C. Optimal quantum sensors

We define the OQS as the sensor that minimizes the
metrological cost function BMSE given in Eq. (6) over
all input states |ψin〉, measurements {Mμ}, and estimators
{ξμ} for a given prior density Pδ(φ). Thus, the posterior
variance of the OQS,


2
OQS = min

|ψin〉,Mμ,ξμ
C, (11)

represents the fundamental limit on the posterior variance
achievable by any N -atom sensor for a given prior Pδ(φ).

As a first result, in Sec. III we develop a method
that allows us to efficiently find the OQS for vector-field

sensing, i.e., to perform a numerical optimization that
scales only polynomially with the number of atoms N .

While the OQS is defined via unconstrained optimiza-
tion over (entangled) input states and measurements, the
practical realization of the “best-possible” quantum sen-
sors will be constrained by limited experimental quantum
resources and imperfections. This leads us to discuss OQSs
with limited (experimental) entangling capabilities, i.e.,
identifying the best-possible quantum sensors given exper-
imental constraints. Similar to the OQS, the performance
of these sensors is characterized by the minimum pos-
terior variance 
2 defined as in Eq. (11) but evaluated
by imposing relevant constraints on the input states and
measurements.

Figure 1 gives an overview of quantum sensors with dif-
ferent levels of control and entanglement capabilities, the
performance of which we compare in Fig. 2. An opera-
tional definition of these quantum sensors is given in terms
of a quantum circuit model (see Sec. III B). This includes,
in Fig. 1(a), a quantum sensor with universal (N -partite)
control of the N -atom quantum system, which subsumes
the OQS. We contrast this in Fig. 1(b) with a one-partite
quantum sensor (1p QS) defined by uniform control of the
N atoms and in Fig. 1(c) with a two-partite quantum sensor
(2p QS) with uniform control on the level of two parti-
tions of the atomic ensemble (for details, see Secs. IV B 1
and IV B 2, respectively). We see below that the optimal
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FIG. 2. Bayesian quantum sensing of a 2D field. (a) The ratio
of the posterior width 
 to the prior width

√
2δ versus δ for

N = 8 atoms. The OQS sets the ultimate performance limit; the
gray-shaded region is unattainable for any quantum sensor with
N atoms. The optimal 1p QS, the 2p QS, and the 2p CS are
shown for comparison. The asymptotic bounds for the classi-
cal (blue dotted line) and quantum (black dotted line) sensors
are predicted by the Bayesian Heisenberg-like limit given in
Eqs. (C7) and (C9). In Figs. 3 and 4, we illustrate the working of
the optimal sensors indicated here by the colored triangles. Inset:
the performance of variational circuits (purple lines) defined in
Sec. V for an increasing number of decoding layers nde and a
fixed entangler depth of nen = 2.

2p QS operates close to the OQS for 2D field sensing inde-
pendent of the width of the prior density and this motivates
our search for variational approximations to the relevant
quantum circuits.

Finally, we comment on the relationship between the
Bayesian and FI approaches to multiparameter quantum
metrology [9] in relation to the present work (for a more
detailed discussion, see Appendix C). The metrological
cost function in the latter approach is the MSE of a locally
unbiased estimator, which is lower bounded by the HCR
bound. In other words, the sensitivity is considered locally
around a given value φ0 of the phase vector, which is
in contrast to the BMSE, which averages the MSE over
a range of phase values. However, in the limiting case
of small prior widths

√
dδ, when the Bayesian approach

becomes local, the two approaches can be connected [36]
via the van Trees inequality given in Eq. (C3). In the
FI framework, the sensitivity of any N -atom multidimen-
sional field sensor is lower bounded by a Heisenberg-like
limit, which in turn limits the BMSE through the van
Trees inequality (see Appendix C). For the examples con-
sidered in the following, the OQS saturates these bounds
[20,22,60] in the small δ limit, which highlights the fact
that the OQS is also optimal from the FI point of view.

III. THEORY OF THE OPTIMAL QUANTUM
SENSOR

In this section, we solve the mathematical problem of
minimizing the BMSE (6) as the metrological cost func-
tion, which defines the OQS and underlies the numerical
results for the OQS presented in Figs. 2, 6, and 7. We

conclude the section by introducing a quantum circuit
model that describes practical realizations of (optimal)
quantum sensors.

A. Identifying the OQS

To find the OQS, one minimizes the metrological cost
function given in Eq. (6) over an unconstrained set of input
states, measurements, and estimators, as in Eq. (11). In
general, solving such a mathematical problem is difficult,
given the exponentially large number of degrees of free-
dom associated with a quantum system of N atoms, the
corresponding measurements, and the estimators. Here, we
show that optimal Bayesian solutions can be found using
computational resources that scale only polynomially in
the size of the system N . Our approach is based on three
key observations presented in the following and further
detailed in Appendices D–F.

First, we note that the dynamics of a sensor compris-
ing N atoms, which is uniformly coupled to the field B
according to Eq. (1), are restricted to an effective Hilbert
space with dimension scaling as N 3. This is in contrast to
the full 2N -dimensional Hilbert space describing N spin-
1/2 atoms. The simplification originates in the SU(2) and
atom-permutation symmetry of the unitaries U(φ) that
encode the phases. The idea is to consider the N -atom
space using irreducible representations of the SU(2) group.
For example, by adding angular momenta, one can rep-
resent two spin-1/2 representations as a direct sum of
two orthogonal subspaces corresponding to a spin-1 rep-
resentation (triplet) and a spin-0 representation (scalar),
1/2 ⊗ 1/2 = 1 ⊕ 0. The addition of more than two angular
momenta leads to multiple orthogonal subspaces, corre-
sponding to the same spin-j representation, e.g., for three
spin-1/2 representations, we have two equivalent spin-1/2
representations, 1/2⊗3 = 3/2 ⊕ 1/2 ⊕ 1/2. The number
of equivalent representations j of spin-j grows expo-
nentially with the number of added spin-1/2 representa-
tions and thus exceeds the number of degrees of free-
dom of a single spin-j subspace, dj = 2j + 1. Since the
SU(2) unitaries do not couple different angular momenta
j and their equivalent representations, we can utilize no
more than dj ≤ j equivalent representations by entan-
gling them. The other j − dj equivalent representations
remain unpopulated and cannot be used for sensing, thus
reducing the effective Hilbert space dimension of an SU(2)
sensor to scale as N 3 [39,40,61]. We present details in
Appendix D.

The second observation is the multiconvex nature of the
sensor-optimization problem. As we show in Appendix E,
this means that minimization of the metrological cost given
in Eq. (6) is a convex-optimization problem [62] with
respect to each of the three sets (|ψin〉, {Mμ}, and {ξμ}) of
variables, if the other two are fixed. The hardest of the cor-
responding subproblems is the optimization over POVMs
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for a fixed input state and fixed estimators. It can be recast
as a semidefinite program, which is solvable in polyno-
mial time for our problem of polynomial size in N [63],
as discussed above.

The optimization algorithm is based on block coordinate
descent, which is a local optimization method widely used
in practice for multiconvex problems [64]. The algorithm
aims to iteratively minimize the metrological cost by fix-
ing two out of three sets of variables (state, measurement,
and estimators) at each step. This ensures that the problem
remains convex, making it possible to minimize it effi-
ciently using numerical methods. The algorithm follows
these steps. Starting from a random initial state, POVM,
and estimators, the algorithm solves the convex subprob-
lems iteratively until the solution converges to the optimal
sensor (with |ψ�

in〉, {M �
μ}, and {ξ �μ}) that minimizes the

metrological cost given in Eq. (6). We present formal
definitions of the corresponding convex subproblems in
Appendix E.

Finally, on the more technical side, we observe that reli-
able convergence to the optimal solution can be achieved
by eliminating symmetric degrees of freedom from the
search space. In order to do so, we identify a covariant
ansatz for input states, generalized measurements, and esti-
mators that describes the optimal sensor in the case of
an unknown field direction, as reflected in the isotropic
prior density given by Eq. (10), which we consider. The
covariant ansatz is detailed in Appendix F for the optimal
two-partite 2D field sensor. The general case of the OQS
for 2D and 3D field sensing will be considered in Ref. [65].

B. Quantum circuit model of a quantum sensor

Practical realizations of a quantum sensor will rely on
unitary quantum circuits that manipulate the quantum state
of the sensor and projective measurements performed on
the atoms, as illustrated in Fig. 1. In our quantum circuit
model of a sensor, the initial state

|ψin〉 = Uen |ψ0〉 (12)

is prepared by an entangling unitary Uen from a prod-
uct state, e.g., |ψ0〉 = |↓〉⊗N . On the other hand, the
decoding unitary Ude can be viewed as transform-
ing the projective-measurement basis given by |σ 〉 =
|σ1, . . . , σN 〉, where each atom j is projected into σj =
|↑〉 or σj = |↓〉. Therefore, the conditional probability
p(σ |φ) = Tr{�σ |ψφ〉 〈ψφ|} of obtaining the measurement
outcome σ can be expressed in terms of the effective
measurement projectors

�σ = U†
de |σ 〉 〈σ |Ude. (13)

A general POVM underlying the discussion of OQS can be
implemented in the circuit model with additional ancillary

atoms that are not involved in the actual sensing process.
Interestingly, we observe that, for sufficiently large N , the
optimal POVM acting on the OQS subspace of polynomial
dimension scaling as N 3, can be realized as projective mea-
surements on the full N -atom space. The N -atom Hilbert
space has an exponential number of degrees of freedom,
2N , which can be used instead of the ancillary atoms. This
suggests that the OQS can be faithfully represented as a
quantum circuit if we assume universal quantum control
at the level of individual atoms, as shown in Fig. 1(a).
Our numerical results suggest that the OQS for 2D fields
can be realized without using ancillary atoms for sensors
comprising N � 8 atoms.

IV. OPTIMAL FEW-PARTITE QUANTUM
SENSORS

In Sec. III, we discussed general aspects of the OQS
for multidimensional field sensing in SU(2) interferom-
etry with N atoms. In the present section, we introduce
and discuss few-partite quantum sensors and compare their
performance to the OQS. These sensors are defined by par-
titioning N atoms representing the sensor into subensem-
bles. In particular, we consider the 1p QS and the 2p QS
indicated in Figs. 1(b), 1(e) and 1(c), 1(f), respectively.
For the 1p QS, we assume that the atomic ensemble is
uniformly controlled, while the 2p QS assumes uniform
control at the level of partitions A and B.

The motivation for introducing few-partite quantum
sensors is twofold. First, we observe that the wave function
of the OQS does not always occupy the full Hilbert space
of an N -atom SU(2) interferometer (see Appendix G).
The specific structure of the occupied subspace suggests
that the OQS for 2D field sensing can be approximated
by few-partite quantum sensors. Second, few-partite quan-
tum sensors require limited quantum control to implement
entangling and decoding unitaries in our quantum circuit
model [see Figs. 1(e), 1(f)]. We discuss such implementa-
tions in Sec. V, where we study variational approximations
to the corresponding quantum circuits that can be realized
with current experimental techniques.

A. Few-partite quantum sensors

1. One-partite quantum sensor (1p QS)

The 1p QS and the corresponding quantum circuit model
are sketched in Figs. 1(b) and 1(e), respectively. We
assume global control so that the dynamics of the 1p QS,
i.e., the action of the 1p-QS unitaries U1p

en(de) and the phase
encoding U(φ) on |ψ0〉, are confined to the permutation
invariant subspace H1p = CN+1 of the N -atom Hilbert
space (C2)⊗N . Therefore, the system is equivalent to a sin-
gle “macrospin” with angular momentum J = N/2 [66].
The eigenstates |m〉 of Jz, which satisfy Jz |m〉 = m |m〉
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with m = −J , −J + 1, . . . , J , form a basis of the 1p-QS
Hilbert space.

In this basis, the initial state and the measurement
projectors in Fig. 1(e) are defined as

|ψin〉 = U1p
en |m = −J 〉 , (14)

�m = U1p
de

† |m〉 〈m|U1p
de . (15)

The optimal 1p QS is characterized by the posterior vari-
ance


2
1p QS = min

U1p
en ,U1p

de , ξm

C. (16)

Details of the optimization are presented in Appendix H.

2. Two-partite quantum sensor (2p QS)

The 2p QS and the corresponding quantum cir-
cuit are displayed in Figs. 1(c) and 1(f), respectively.
Here, the sensor dynamics are confined to a subspace
H2p = CN/2+1 ⊗ CN/2+1. This setup is equivalent to a pair
of macrospins J A = N/4 and J B = N/4, which can be
entangled through bipartite uniform control.

Here, the basis states |mA, mB〉 are defined as the simul-
taneous eigenstates of J A

z , J B
z satisfying J A(B)

z |mA, mB〉 =
mA(B) |mA, mB〉, with mA(B) = −J A(B), . . . , J A(B). The initial
state and the measurement projectors are now

|ψin〉 = U2p
en |mA = −J A, mB = −J B〉 , (17)

�mA,mB = U2p
de

† |mA, mB〉 〈mA, mB|U2p
de . (18)

The optimal 2p QS is characterized by the posterior vari-
ance (see Appendix H)


2
2p QS = min

U2p
en ,U2p

de , ξmA ,mB

C. (19)

3. Two-partite classical sensor (2p CS)

We contrast the 2p QS with a two-partite classical sen-
sor (2p CS), defined by further restricting U2p

en (de) to allow
only collective rotations of all atoms within each ensem-
ble. This implies that there is no entanglement between the
atoms. We use the corresponding 
2

2p CS to define the SQL
for two-partite sensors.

B. Results: 2D field sensing with few-partite quantum
sensors

Our main results on 2D sensing, where B = (Bx, By , 0)T,
are summarized in Fig. 2. We plot the ratio of posterior and
prior widths, 
/(

√
2 δ), as a function of δ for the OQS

representing the ultimate quantum limit, the optimal 2p
CS defining the SQL, and the optimal 1p QS and 2p QS.

The results are presented for N = 8 atoms, which is large
enough to demonstrate a reasonable sensitivity gain [67].

In this figure, there are two limits where the Bayesian
update following the measurement does not provide infor-
mation about the signal, i.e., the ratio 
/(

√
2 δ) goes to

1. The first is the limit δ → 0, where quantum measure-
ment fluctuations overwhelm the signal, and the second
is the regime δ � 1, where the signal is dwarfed by a
large estimation error due to phases that slip outside the
unambiguous estimation region |φ| � π . As a result, each
sensor has an optimal operating point δ∗ at which the infor-
mation gain per measurement is maximized. For large prior
widths exceeding the optimal operational point (δ > δ∗),
the figure of merit [the ratio 
/(

√
2 δ)] has a positive

slope, indicating that estimation error is dominated by
phase slips. This results in unstable phase estimation and
a more detailed stochastic simulation of the sensing pro-
tocol may be required for accurate evaluation of sensor
performance in this regime [6,59,68]. Therefore, we limit
our analysis to values of δ that do not exceed 1.

The results in Fig. 2(a) show that the OQS reaches
its optimal operating point in the large-prior-width
regime δ ∼ 1, corresponding to an interrogation time
T ∼ (δ|B|)−1. Another relevant regime is that of small
prior widths, δ � 1/N , where the OQS performance is
limited by a Bayesian Heisenberg-like limit, which fol-
lows from minimizing the van Trees inequality over all
states (see Appendix C). The corresponding small evo-
lution times T ∼ (δ|B|N )−1 allow us to monitor more
rapidly time-varying signals, since the requirement τ �
T on the coherence time τ of the fields is consequently
relaxed.

While the 1p QS can realize the OQS for small prior
widths, its improvement over the classical 2p CS is only
marginal in the regime of larger prior widths. In contrast,
the 2p QS exhibits superior performance compared to the
2p CS for any prior width and performs close to the OQS
for any δ. Moreover, the 2D field-sensing capability of
the 2p QS, coupled with its limited experimental control
requirements, makes it an attractive candidate for imple-
mentation on a programmable quantum sensor. In Sec. V,
we explore the practical implementation of the 2p QS using
variational quantum circuits.

In the following, we take a closer look at the interplay
between the optimal input states, measurement projectors,
and estimators to understand how these sensors achieve
(near-)optimal sensitivity at various prior widths. In partic-
ular, we rely on the Wigner quasiprobability distributions
[69] to represent states |ψin〉 〈ψin| and measurement pro-
jectors �m on a generalized Bloch sphere corresponding
to the macrospin representation of the sensor. Wigner
distributions rotate as rigid objects under the action of
U(φ) and the overlap between the Wigner distribution of
the rotated state |ψφ〉 〈ψφ| and the projective measure-
ment �m integrated over the Bloch sphere corresponds
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FIG. 3. Optimal 1p QS for 2D fields. The sensor is optimal for
the prior width δ indicated by the red triangle in Fig. 2. We show
the Wigner distributions of the input state |ψin〉 [prepared by the
unitary U1p

en given in Eq. (14)] and a representative projective-
measurement operator �m [realized by the unitary U1p

de given in
Eq. (15)]. For visual clarity, here we show the Wigner distribu-
tions for N = 32, which are qualitatively the same for any atom
number in the regime δ � 1/N . The measurement outcomes m
are mapped to estimators ξm in the φx-φy plane and the one
corresponding to the displayed �m is highlighted by a purple
frame.

to the probability p(m|φ) of observing the corresponding
measurement outcome m.

1. Optimal 1p QS

The 1p QS is optimal for sensing in the regime of small
prior widths δ � 1/N . In this regime, the optimal entan-
gled input state is |m = 0〉, i.e., a permutation symmetric
state with an equal number of atoms in |↑〉 and |↓〉 (we
consider even N ). The Wigner distribution of this state is
shown in Fig. 3 and represents a ring around the equator of
the generalized Bloch sphere, which implies that the state
is invariant under z rotations and is equally sensitive to
rotations around any axis in the x-y plane. Remarkably,
the optimal measurement in this regime of 2D field sens-
ing is projective. Figure 3 shows a representative projector
�m, which has the greatest overlap with the input state
rotated about the x axis. The corresponding measurement
outcome m is consequently mapped to a phase estimate ξm
that indicates a field oriented along the x axis.

The N + 1 possible measurement outcomes are mapped
to phase estimates that are uniformly spaced in a circle.
This means that, in the small-prior-width limit, the 1p QS
operates like a “compass,” that is, a single measurement
provides information only on the direction but not the mag-
nitude of φ, and hence also of B. The high sensitivity of the
2D “compass” to small rotations is particularly suitable for
monitoring rapidly changing signals. This is analogous to
the Greenberger-Horne-Zeilinger- (GHZ) state interferom-
eter [70] in 1D field sensing, which in a single measure-
ment can estimate only the sign but not the strength of a
1D field. Note that the field magnitude is encoded in the

FIG. 4. Optimal 2p QS for 2D fields. The sensor is opti-
mal for the prior width δ indicated by the green triangle in
Fig. 2. We show the Wigner distributions of the input state
|ψin〉 [prepared by the unitary U2p

en given in Eq. (17)] and rep-
resentative projective-measurement operators �mA ,mB [realized
by the unitary U2p

de given in Eq. (18)]. We visualize projec-
tions onto the spin-j representations of the 2p-QS space, with
j = 0, 1, . . . , N/2 (for further details, see Sec. IV B 2). The mea-
surement outcomes mA and mB are mapped to estimators ξmA ,mB

in the φx-φy plane and the ones corresponding to the displayed
�mA ,mB ’s are highlighted by purple frames.

probabilities of the different measurement outcomes. Thus,
repeated measurements with the “compass” will enable us
to access full information about the vector field.

2. Optimal 2p QS

In Fig. 4, we visualize the state, projectors, and esti-
mators at the optimal operating point of the 2p QS,
i.e., at the minimum of the green curve in Fig. 2,
around δ ≈ 0.75. To show the Wigner distributions, we
use the addition of angular momentum to represent
the Hilbert space of the two equal-sized macrospins
as the direct sum of spin-j representations, i.e., H2p =
CN/2+1 ⊗ CN/2+1 = ⊕N/2

j =0 C2j +1. We project the opera-
tors onto the different angular-momentum manifolds and
show Wigner distributions corresponding to each of the
j -manifolds. This means that coherences between differ-
ent j -manifolds are not represented in the resulting Wigner
distributions. Nevertheless, the distributions give an intu-
itive picture of how the sensor works. The optimal input
state of the 2p QS consists of equatorial rings in all spin
representations, which is an approximation of the optimal
covariant 2p QS (see Appendix F) that is a superposition
of |j , m = 0〉 states. The use of different spin manifolds
enables the 2p QS to extend the range of detectable field
strengths.

The projective-measurement outcomes mA and mB cor-
responding to the entangled projectors�mA,mB are assigned
to one of the evenly distributed estimators, which approx-
imate N/2 + 1 concentric rings. The rings shown in the
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estimator plot in Fig. 4 are predicted from the optimal
covariant 2p QS. In contrast to the 2D “compass,” a single
measurement by the optimal 2p QS provides information
on both field strength and direction. The three representa-
tive projectors visualized in Fig. 4 detect rotations around
the x axis with increasing strength, i.e., they have a large
overlap with |ψin〉 〈ψin| after it is increasingly rotated
around the x axis.

V. VARIATIONAL QUANTUM CIRCUITS

Today’s programmable quantum sensors are noisy
intermediate-scale quantum (NISQ) [71] devices, imple-
mented on various platforms that support a reduced
instruction set of native gates, which can nevertheless
be executed with high fidelity and are typically scalable
to tens, and potentially hundreds, of atoms. A practical
implementation of a quantum sensor—and, in particular,
a quantum circuit model—must therefore rely on a decom-
position of the entangling and decoding unitaries into this
native set of gates. This can be achieved in an approximate
manner via variational quantum circuits. Here, an ansatz is
made for Uen and Ude in terms of low-depth quantum cir-
cuits, which are parametrized by a set of variational param-
eters θ and ϑ for the entangler and decoder. Given such
a variational ansatz, the optimal entangler and decoder
within a class of variational quantum circuits correspond
to the minimum of the metrological cost function


2
var = min

θ ,ϑ ,ξ
C (≥ 
2

OQS), (20)

thus defining the best-possible quantum sensor for the
given (entangling) resources, i.e., the resource gate set,
circuit design, and circuit depth. The practical aspects of
the variational minimization are discussed in Appendix I.
This optimization can be performed within the theoretical
model of the sensor or by optimizing the variational param-
eters in a quantum feedback loop on the actual physical
device [7]. The latter case provides us with the opportunity
to optimize the quantum sensor even when the correspond-
ing quantum circuits are challenging to simulate classically
and in the presence of control errors and noise.

Below, we present a study of variational quantum cir-
cuits of increasing depth, which allows us to approach
the performance of the OQS in multiparameter quan-
tum metrology. As a native gate set, we assume OAT
operations as entangling gates and uniform spin rota-
tions as single-atom gates. This is motivated by the
feasibility of realizing programmable quantum sensors
using strings of trapped ions, where OAT is natively
implemented as a Mølmer-Sørensen gate [72,73] and
spin rotations are performed via laser or microwave
driving. The 1p QS and 2p QS can be implemented
directly as circuits made of the natively available gates

in such a setup. We note that a similar set of quan-
tum resources is also available in cavity-QED setups
[74] and spin mixtures of Bose-Einstein condensates
[75,76].

To be specific, our discussion focuses on the 2p QS
illustrated in Fig. 1(c). In Sec. IV, we showed that the
2p QS has close-to-optimal performance for 2D field sens-
ing. Here, we show that low-depth variational circuits built
from OAT and spin rotations provide good approximations
to the optimal 2p QS, and enable a significant enhancement
over unentangled sensors (see Fig. 2).

A. Resource gate set for 2p QS

The 2p QS assumes that we have a native set of gate
operations available that act independently on partitions A
and B [see Fig. 1(c)]. This includes, first, uniform rotation
of spins in the partitions:

RA(B)
ν (θ) = e−iθJ A(B)

ν with ν = x, y, z. (21)

Furthermore, we assume entanglement operations in the
form of OAT. These include

T A(B)
z (θ) = e−iθ

(
J A(B)

z
)2

, (22)

which, respectively, entangle the atoms within the parti-
tions A and B, while the entanglement between A and B is
generated with

Tz(θ) = e−iθ
(

J A
z +J B

z

)2

, (23)

which completes the gate set [77]. Such gates can be real-
ized on trapped-ion platforms, such as the one used to
demonstrate optimal 1D field sensing [7].

B. Circuit design for 2p QS

Variational circuits approximating the optimal entangler
and decoder of the 2p QS [see Fig. 1(c)] are compiled from
the above elementary gates. In particular, we consider cir-
cuits that are constructed by stacking multiple layers. Each
layer is described by a unitary

L(θk) = RA
y

(
θ
(4)
k

)
RB

y

(
−θ(4)k

)
RA

x

(
θ
(3)
k

)
RB

x

(
θ
(3)
k

)

× T A
z

(
θ
(2)
k

)
T B

z

(
θ
(2)
k

)
Tz

(
θ
(1)
k

)
(24)

that depends on the four parameters contained in the vector

θ k =
(
θ
(1)
k , . . . , θ(4)k

)T
. The parameters within each layer

are correlated (i.e., θ(4)k , θ(3)k , and θ(2)k , respectively, appear
in two consecutive gates), so that the resulting circuits pre-
serve a symmetry that we identify in the optimal 2p-QS
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FIG. 5. Convergence of estimators of optimized variational
circuits. The estimators ξmA ,mB of the optimized N = 8 atoms
variational circuits for δ ≈ 0.75, with nen = 2 and nde =
1, 10, 32. The estimators are colored according to the corre-
sponding measurement outcomes, mA and mB. The corresponding
sensitivity is shown in Fig. 2.

solution. Therefore, the unitaries will not explore the entire
Hilbert space H2p of the 2p QS, which reduces the number
of variational parameters required for a given circuit depth
of the 2p QS.

We parametrize entangling unitaries consisting of nen
layers through a 4nen-dimensional parameter vector θ =(
θ1, . . . , θnen

)T as

U2p
en (θ) = L

(
θnen

) · · ·L (
θn1

)
RA

y

(
π
2

)
RB

y

(
π
2

)
(25)

and decoding unitaries consisting of nde layers through a
(4nde + 2)-dimensional parameter vector ϑ =

(
ϑ
(1)
0 ,ϑ(2)0 ,

ϑ1, . . . , ϑnen

)T as

U2p
de (ϑ) = RA

x

(
ϑ
(1)
0

)
RB

x

(
ϑ
(1)
0

)
RA

y

(
ϑ
(2)
0

)
RB

y

( − ϑ
(2)
0

)

× L†(ϑ1) · · ·L†(ϑnde). (26)

The first two π/2 rotations of the entangling unitary U2p
en (θ)

are required to match the symmetry of the optimal solution.
Therefore, a sensor with an entangler and decoder depth of
(nen, nde) depends on a total number of 4(nen + nde)+ 2
variational parameters. The parameters of the circuit are
variationally optimized using the cost function given in
Eq. (20) to find the best-performing sensor for a given
circuit with depth (nen, nde).

C. Results: Variational optimization of 2p QS

In the inset of Fig. 2, we examine how closely the opti-
mized variational circuits approximate the performance
of the optimal 2p QS comprising N = 8 atoms. With
increasing decoder depth, the variational circuits consis-
tently approach the optimal 2p QS and eventually con-
verge to it for large nde. Interestingly, optimal sensitivity
is achieved for the shallow depth of the entangler nen =
2, indicating that it is significantly more challenging to
implement optimal decoding unitaries than to implement

4 8 16 32 64
−8

−6

−4

−2

N

11 .

33 1010
3232 100100

FIG. 6. Performance scaling of variational 2D field sensors.
The scaling of the minimum value of the posterior to prior
uncertainty ratio as a function of system size N . The purple
lines correspond to variational quantum sensors with different
numbers of decoding layers nde at a fixed entangler depth of
nen = 2. Reliable convergence of the circuits can be challenging
when N and nde are relatively large and thus the various curves
are truncated at different N . For comparison, we also show the
performance of the 2p CS (blue line) and the optimal 2p QS
(green line).

optimal entangling unitaries. This is due to the fact that the
entangler unitary only needs to transform |ψ0〉 to |ψin〉,
while the decoder needs to transform all measurement
bases to the desired bases simultaneously, imposing sig-
nificantly more constraints on the optimal unitary.

To understand how the variational circuits approach the
2p QS, it is insightful to study the optimal estimators and
see how they change as the depth of the decoder increases.
In Fig. 5, we show the estimators of the optimized vari-
ational circuits. The minimal depth circuit nde = 1 results
in an asymmetric distribution of estimators in the φx-φy
plane, indicating that the sensor is not equally sensitive to
φx and φy . Increasing the depth to nde = 10, the estimators
become more evenly distributed, whereas the estimator
pattern for nde = 32 is very close to the optimal 2p QS
shown in Fig. 4.

An important question for currently available quantum
sensors is how much sensitivity gain we can expect for
a fixed circuit depth. We address this by determining the
minimum value of the ratio 
/

√
2δ at the optimal operat-

ing value of δ for a given circuit depth. In Fig. 6, this value
is shown as a function of the system size N . Interestingly,
we find that even for nde = 1, there is an improvement in
performance that appears to scale with N . As the depth of
the circuit increases, the sensitivity and scaling improve
steadily.

VI. 3D FIELD SENSING

While, so far, our focus has been on 2D field sens-
ing, the techniques developed in the previous sections are
readily extended to 3D. Here, we present first results and
observations for optimal and variational 3D field quantum
sensors.

We observe that the OQS solution in 3D makes use
of the full effective Hilbert space of an SU(2) sensor
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FIG. 7. Bayesian quantum sensing of a 3D field. The ratio
of the posterior width 
 to the prior width

√
3δ versus δ for

N = 6 atoms. The black marker shows one preliminary data
point obtained for the OQS at δ = 0.75. This point matches well
with the sensitivity of a Np QS (dark-gray line). The asymptotic
bound on quantum (black dotted line) and classical (blue dot-
ted line) sensors are predicted by the Bayesian Heisenberg-like
limit given in Eqs. (C7) and (C9). In Fig. 8, we illustrate the
working of the optimal sensor, indicated here by the red triangle.
Inset: the performance of variational circuits (purple lines) with
an increasing total number of layers nl = nen + nde.

(dimension scaling as N 3) (see Appendix G). This sug-
gests that sensors made of a few partitions do not closely
approximate the OQS for 3D sensing of fields with arbi-
trary prior widths. Nevertheless, few-partite sensors can
provide a significant improvement over classical sensors
and even perform optimally at small prior widths, as we
demonstrate below.

Figure 7 shows the performance of various sensors with
N = 6 atoms, quantified by the ratio 
/

√
3δ, as δ is

scanned. The 1p QS and 2p QS are both significantly less
sensitive than the OQS in the large-prior regime and only
the full N -partite quantum sensor (Np QS), relying on uni-
versal control, approaches the OQS. Here, we extend the
discussion to a three-partition quantum sensor (3p QS),
with uniform control at the level of three partitions. How-
ever, the 3p-QS performance is still appreciably different
from that of the OQS, highlighting the added complexity
of the 3D OQS near its optimal operating point. To com-
pare the few-partite sensors with a classical reference, we
study a three-partite classical sensor (3p CS), where the
atoms are unentangled. Here, we find that each partition
is primarily sensitive to one component. In comparison
to the 3p CS, the 2p QS and 3p QS show a considerable
improvement by using entanglement between the sensor
atoms.

A. Optimal 1p QS

In the regime of small prior widths δ � 1/N , the perfor-
mance of the 1p QS is indistinguishable from the optimal
performance. To gain insight into the 1p-QS solution, we
visualize the optimal state, measurement projectors, and
estimators in Fig. 8. The optimal state shows a regular dis-
tribution of maxima and minima on the generalized Bloch
sphere, highlighting the high degree of symmetry in this

FIG. 8. Optimal 1p QS for 3D fields. The sensor is optimal for
the prior width δ indicated by the red triangle in Fig. 7. We show
the Wigner distributions of the input state |ψin〉 [prepared by
the unitary U1p

en given in Eq. (14)] and representative projective-
measurement operators �m [realized by the unitary U1p

de given
in Eq. (15)]. The measurement outcomes m are mapped to esti-
mators ξm in the φxφyφz-space and the ones corresponding to
the displayed �m are highlighted by colored frames. The pur-
ple arrows illustrate that the Wigner distribution of the projectors
resemble approximate rotated versions of the Wigner distribu-
tion of the input state, when it is rotated about the axis along the
vector specified by the corresponding estimator ξm.

state. Notably, the estimators are found to lie on a sphere.
As a result, they provide only directional information and
therefore the sensor acts as a 3D “compass.” The visualized
measurement projectors resemble the input state rotated
around the axis specified by the respective estimator. In
other words, each projector is sensitive to rotations around
a different axis.

We conclude that the optimal sensor at small prior
widths displays a universal compasslike behavior for 1D,
2D, and 3D fields. However, a key difference is that while
GHZ (|m = 0〉) states are optimal independent of N in 1D
(2D), the optimal state for 3D field sensing changes with
N similar to the states discussed in Refs. [53,60,78–80].

B. Variational optimization of 1p QS

The performance of the 1p QS motivates us to study
variational circuits to approximate the optimal 1p QS. As
sketched in Fig. 1(e), we consider circuits that parametrize
U1p

en(de) according to

U1p
en (θ) = L

(
θnen

) · · ·L (
θn1

)
(27)

U1p
de (ϑ) = L†(ϑ1) · · ·L†(ϑnde). (28)

Here, the unitaries are constructed by repeated application
of layers containing three elementary gates:

L(θ) = Tz
(
θ(3)

)
Ry

(
θ(2)

)
Rx

(
θ(1)

)
. (29)

The number of variational parameters at a given circuit
depth is therefore 3(nen + nde). In the inset of Fig. 7, we
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plot the performance of variational circuits with varying
depths and indeed find that circuits with modest depths can
approach the optimal 1p-QS performance. These results
highlight the potential for implementing a 3D quantum
“compass” with currently available resources.

VII. CONCLUSIONS AND OUTLOOK

In this work, we identify fundamental bounds and study
the performance of practically feasible sensors for the
sensing of 2D and 3D vector fields within the Bayesian
framework for SU(2)-quantum interferometry. We estab-
lish a procedure to determine the OQS that sets the
fundamental bound on the performance of an N -atom
sensor. Furthermore, we introduce sensors with limited
experimental control, namely, the 1p QS and 2p QS,
and study their ability to approach the OQS. As a fur-
ther step toward practical realization, we also simulate
the variational optimization of sensors with limited entan-
gling capabilities, considering the resources available on
state-of-the-art trapped-ion systems.

Our study of 2D field sensing reveals important similar-
ities and differences between single- and multiparameter
metrology. In the case of 1D sensing, the OQS operates in
the atom-permutation-symmetric subspace of the N atoms
and hence the 1p QS is optimal at all prior widths. Here,
we find that the 1p QS is optimal for 2D sensing only in
the regime of small prior widths. In this regime, it operates
like a 2D “compass,” providing information only on the
field direction. This is similar to the GHZ-state interferom-
eter, optimal for 1D sensing with small prior widths, which
only provides information on the sign of the 1D field. In
contrast to the 1D case, we find that the 2p QS approaches
the OQS performance for 2D field sensing at large prior
widths.

Although such a sensor requires more experimental con-
trol than a 1p QS, it can nevertheless be realized on
state-of-the-art sensing platforms, as we demonstrate by
simulating a variational-circuit optimization of the 2p QS.
Our simulation reveals that sensors made of low-depth
circuits provide appreciable improvements over classi-
cal (unentangled) sensors, while deeper circuits may be
required to achieve optimal performance. This is in con-
trast to 1D sensing, where low-depth variational circuits
have previously been shown theoretically and experimen-
tally to achieve optimal performance. Nevertheless, these
results have promising implications for small-scale sensors
as well as for those that involve a macroscopic number
of atoms; current technology provides excellent coherent
control of a small number of atoms, enabling the realiza-
tion of deep circuits that can reach the 2p-QS limit for
small quantum sensors. Such sensors may be relevant for
practical applications where spatial resolution is important.
On the other hand, for sensors operating with a large num-
ber of atoms, our results demonstrate that shallow-depth

circuits can significantly improve performance compared
to unentangled sensors.

Although our study focuses on using infinite-range OAT
as an entangling resource, many promising quantum sens-
ing platforms host finite-range interactions, e.g., solid-state
systems or neutral atoms in tweezer arrays [81–84]. Vari-
ational optimization of the metrological cost function can
be directly generalized to finite-range interactions, as done
in Refs. [6,85–87] for other metrological cost functions.
However, in that case, the classification into few-partite
quantum sensors does not apply and simulating the full
many-body problem is challenging for classical algo-
rithms, which makes feedback-loop optimization on the
physical quantum device even more desirable. Further-
more, the N -atom 1p QS and 2p QS can also be realized,
respectively, as a single large macrospin [66] of length
J = N/2 or two entangled macrospins [88] of length J =
N/4 each, allowing for a route to optimal sensing with
qudit-based quantum sensors.

We also briefly extend our study to the problem of 3D
field sensing. Here, we find an appreciable difference in
the performance of sensors with a few partitions and the
optimal sensor. Therefore, it is an open challenge to find
circuits that efficiently approximate the OQS for 3D field
sensing. However, in the regime of small prior widths, we
once again find that the 1p QS is essentially optimal. Sim-
ilar to the 1D and 2D cases, it operates as a 3D “compass”
in this regime, with the estimators arranged on the surface
of a sphere. Furthermore, we show that such a 3D “com-
pass” can be well approximated with low-depth variational
circuits, paving the way for their experimental realization.

In conclusion, we highlight the importance of finding
OQSs, which operate at the ultimate precision allowed by
quantum physics, and implementing them as variational
quantum sensors. This is crucial not just for uncovering
new physics through precision measurements [89] but also
for practical applications such as quantum computing. Pro-
grammable atomic sensors, discussed in this paper, can
be integrated with atomic quantum computing systems
by utilizing common quantum resources, such as entan-
gling quantum gates. In this way, an OQS for electromag-
netic fields embedded in the system can precisely detect
and monitor noise fields, contributing to the stability of
quantum devices through an optimal feedback mechanism.
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APPENDIX A: PHYSICAL IMPLEMENTATION OF
VECTOR-FIELD SENSORS

Section II A provides a formal description of an SU(2)
interferometer to sense vector fields. There, the discus-
sion is phrased as an ensemble of N two-level atoms,
described by collective angular-momentum operators J ,
coupled uniformly to a static (dc) vector field B given by
the Hamiltonian in Eq. (1). In Appendix A 1, we summa-
rize various physical scenarios where such a Hamiltonian
arises in the context of magnetometry. Furthermore, in
Sec. IV, we define limited control sensors where the N
two-level atoms are equivalent to one or two “macrospins”
with large angular momenta (see Fig. 1). Accordingly, in
Appendix A 2, we provide examples of vector-field sensors
implemented directly using macrospins.

1. Vector-field sensing with ensembles of N two-level
atoms

a. dc magnetometry

For a single atom, the magnetic field couples to Zee-
man levels provided by a fine (or hyperfine) structure
manifold J (or F) according to HM = −μB · B. Here,
the magnetic dipole moment μB = μBgJ /� is given by
the Bohr magneton μB, the Landé g factor g, and the
total-angular-momentum operator J (or F ). This Zeeman
Hamiltonian is valid within degenerate perturbation theory
in the given angular-momentum manifold, resulting in a
Zeeman splitting linear in the magnetic field.

An example of a Zeeman manifold representing a two-
level atom is the 32S1/2 ground state of 40Ca ions, as used
in trapped-ion programmable quantum sensor experiments
[7]. For N atoms, summing over these single-atom contri-
butions leads to the Hamiltonian given in Eq. (1) and thus
sensing the three components of a (static) magnetic field.

b. ac magnetometry

Experiments commonly apply a bias field B0 that defines
a quantization axis and lifts the degeneracy of Zeeman
states, as in NMR. Continuing with the example of the
2S1/2 manifold, a static bias field will introduce a Zeeman
splitting ω defining a z axis. This Zeeman transition can
be driven by a transverse ac magnetic field. Within the
validity of the rotating-wave approximation and going to
a rotating frame leads to a static Hamiltonian, which for N

atoms is of the form of Eq. (1). In this case, the three com-
ponents of the magnetic field to be sensed are the static
magnetic field deviation from the bias field, and the in-
phase and out-phase components of the driving magnetic
field (Rabi frequencies).

In the ac-field-measurement example, the origins of
the effective longitudinal and transverse components (with
respect to the bias field) are different and thus our prior
knowledge of these terms is generally not the same. There-
fore, the assumption of an isotropic prior density as given
in Eq. (10) and used in the main text may not be accu-
rate. In Appendix B, we discuss how the results described
in the main text can be generalized to anisotropic prior
probability densities.

The above discussion can be generalized to pairs of
atomic levels belonging to different Zeeman manifolds
with different Landé g factors, which, however, leads to
anisotropic coupling Hamiltonians.

2. Vector-field sensing with macroscopic spins

In Sec. IV, we define limited control sensors, i.e., the 1p
QS and 2p QS (see Fig. 1). In the 1p QS, the N atoms are
uniformly controlled and hence it is equivalent to a sensor
consisting of a single macrospin with angular momen-
tum J = N/2. In the case of the 2p QS, the N atoms are
partitioned into two equal-sized partitions A and B, with
uniform control at the level of each partition and over the
entire ensemble. Thus, the 2p QS is equivalent to a sen-
sor consisting of two physical entangled “macrospins,”
each with angular momenta J A = J B = N/4. Here, we
briefly elaborate on the direct physical implementation of
macrospins in large-angular-momentum manifolds. These
are available as large-angular-momentum Zeeman mani-
folds, SO(4)-symmetric manifolds in Rydberg atoms for
electric field sensing, and in photon interferometry with
large-orbital-angular-momentum states.

a. Large Zeeman manifolds for magnetometry

As already noted in Appendix A 1, large Zeeman fine
and hyperfine manifolds available in trapped-ion and
atomic tweezer experiments lead to a Hamiltonian of the
form given in Eq. (1). An example is provided by the
32D5/2 manifold of 40Ca+ [90], which can be manipulated
and entangled in qudit operations. Other platforms that
qualify for proof-of-principle experiments for ac magne-
tometry with Zeeman qudits are dysprosium atoms [66],
with an electronic spin of J = 8, or holmium [91,92] and
erbium [93].

b. Electrometry with Rydberg atoms

Highly excited large-orbital-angular-momentum Ryd-
berg states display a linear Stark effect, which is described
by a linear coupling of the electric field to the Runge-Lenz
vector. The states belonging to a given n-manifold, where
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n is the principal atom number, show Stark splitting highly
sensitive to the applied electric field [46]. As outlined in
Ref. [88], the resulting Hamiltonian for coupling of the
electric field to Rydberg states can again be written in the
form of Eq. (1), where the effective angular momentum of
the manifold scales as J ∼ n.

c. Photons with orbital angular momentum

Another platform that can be used as a test bed for proof-
of-principle multidimensional SU(2) sensors is that of pho-
tons, where a qudit of tunable dimension can be encoded
into the orbital-angular-momentum degree of freedom of
each photon [19]. State preparation, unitary phase encod-
ing, and measurement can be realized [54]. However, it
is a challenge to create entanglement between different
photons.

APPENDIX B: GENERALIZATION TO OTHER
PRIOR PROBABILITY DENSITIES

In the main text, we consider a prior probability den-
sity [see Eq. (10)] of the phase vector, which is isotropic in
φ. In many practical applications, knowledge of the field
components, and hence the phases, might not be isotropic.
Note that 1D and 2D sensing are anisotropic cases of a 3D
field, where we have complete knowledge of two and one
components of the field, respectively. Therefore, depend-
ing on the degree of anisotropy, the 1D or 2D solution can
be used as a starting point to find optimal solutions for a
given anisotropic prior density. Variational circuits for 1D
sensing are discussed in Ref. [6].

Another assumption that we make is that the prior den-
sity is centered around zero. In the presence of a known
offset field, this assumption is still valid if we can apply
an additional external field that exactly compensates for
the offset during the interrogation time. In cases where it
is not possible, it is necessary to treat the more general
case where a prior density is centered around a known
phase vector φ0 separately, since φ0 · J and φ · J do not
commute, which distinguishes 2D and 3D from 1D field
sensing. In the 1D case, one can apply a unitary after
the interrogation time to compensate for φ0, which is not
possible for 2D and 3D fields because of the noncommuta-
tivity. Instead, one can try to identify alternative entangler
and decoder circuits that take the effect of φ0 into account.

Finally, for probability densities that are isotropic and
have a single maximum at the origin, we expect the
Gaussian prior solution to be a good approximation.

APPENDIX C: BAYESIAN CRAMÉR-RAO-LIKE
BOUND FOR MULTIDIMENSIONAL FIELD

SENSING

In this appendix, we elaborate on a connection (see
Sec. II C) between the FI framework and the Bayesian
framework adopted in this work. We first recall the

Cramér-Rao (CR) inequality, which lower bounds the per-
formance of multiparameter estimation in the FI approach
[9]. Then, we elaborate on the assumptions that underlie
the FI approach and introduce the van Trees inequality,
which connects the FI matrix with the BMSE. Finally,
we provide the corresponding bounds on the BMSE for
multidimensional field sensing.

Parameter estimation in the FI approach considers esti-
mators ξμ that are locally unbiased around some phase
value φ0 [9]. The corresponding MSE, given in Eq. (5),
is then lower bounded by the CR inequality (bound)

MSE(φ0) ≥ Tr[F(φ0)
−1], (C1)

F(φ) =
∑

μ

∇p(μ|φ)∇Tp(μ|φ)
p(μ|φ) , (C2)

where F(φ) is the (classical) FI matrix of the conditional
probability p(μ|φ) given in Eq. (3), at φ. Here, ∇ =
(∂/∂φx , ∂/∂φy , ∂/∂φz )

T is the gradient operator that contains
partial derivatives with respect to the components of φ.

The FI matrix depends on the input state and the mea-
surement and, therefore, is upper bounded by the quantum
FI (QFI) matrix, FQ(φ), which is obtained by optimizing
the MSE over all measurements {Mμ} allowed by quantum
physics [9]. Note that in the case of multiple param-
eters, the associated quantum CR bound, MSE(φ0) ≥
Tr[FQ(φ0)

−1], cannot generally be achieved due to the
possible incompatibility of the measurements needed to
optimally estimate each parameter. The issue of mea-
surement incompatibility arises only when the genera-
tors—specifically, Jx, Jy , and Jz—do not commute and can
be addressed by the HCR bound [1,9]. However, in the case
of multidimensional field sensing, the quantum CR and the
HCR bounds coincide for optimal sensors comprising an
even number of atoms N [20,21]. This is the case we con-
sider below and thus the quantum CR inequality provides
a tight bound.

In general, not only the unbiased estimators but also the
optimal measurement projectors depend explicitly on φ0,
so that an exact value of φ0 must be known in advance to
optimally measure around this value. This drawback can be
overcome if the measurement can be repeated many times
for the same unknown parameter vector or if many ensem-
bles are available to measure the same parameter vector.
Under these conditions, an adaptive protocol can be per-
formed in which a preliminary estimate is first obtained
using which the optimal measurement strategy can be
executed [94].

In a Bayesian sense, the preliminary estimate can be
understood as prior knowledge about the phases being
measured, which allows for a connection between the
two frameworks in the limiting case of narrow prior den-
sity. This connection is given by the van Trees inequality
[95,96], which defines CR-like bounds for the BMSE.
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The multiparameter generalization [9] lower bounding the
BMSE in Eq. (6) is given by

C ≥ Tr
[(

F + I
)−1

]
, (C3)

where F = ∫
dφ F(φ)P(φ) is the FI matrix averaged over

the prior density and I is the FI matrix of the prior density

I =
∫

dφ
∇P(φ)∇TP(φ)

P(φ) . (C4)

The inequality given in Eq. (C3) provides us with a
Heisenberg-like limit on the sensitivity of a multidimen-
sional field sensor in the Bayesian setting.

In particular, for an N -atom quantum sensor with a
Gaussian prior as in Eq. (10), the inequality in Eq. (C3)
is defined using the following parameters. The FI matrix
of the prior Pδ(φ) reads

I = 1
δ21d, (C5)

where 1d is the d-dimensional identity matrix, in which d
is the B field dimension. The average FI matrix is upper
bounded by the QFI matrix (for even N ) [20,22,60]

F ≤ FQ = N (N + 2)
d

1d. (C6)

Substituting Eqs. (C5) and (C6) into the inequality given
in Eq. (C3), we obtain the Bayesian Heisenberg-like limit


2
OQS ≥ d

N (N + 2)/d + 1/δ2 , (C7)

defining the black dotted line in Figs. 2 and 7.
Finally, the standard quantum limit for the multidimen-

sional field sensing is set by the FI matrix corresponding
to the best classical input state

F ≤ FSQL = N
d
1d, (C8)

which corresponds to N uncorrelated measurements dis-
tributed to measure d parameters. The corresponding
Bayesian SQL reads


2
SQL ≥ d

N/d + 1/δ2 . (C9)

The SQL is shown with the blue dotted line in Figs. 2
and 7.

APPENDIX D: IRREDUCIBLE HILBERT SPACE
OF THE SU(2) SENSOR

In this appendix, we provide details on the Hilbert space
describing an SU(2) sensor (see Sec. III A). A general
quantum system of N atoms is described by a quantum
state living in an exponentially large Hilbert space

(
C2

)⊗N .
Despite this, the symmetry and invariance under atom per-
mutations of the generators Jx,y,z reduce the dimensionality
of the effective Hilbert space explored by the sensor to
polynomial in N .

More precisely, according to Weyl’s theorem [97], the
full N -atom space can be decomposed into orthogonal
subspaces:

(
C

2)⊗N =
N/2⊕

j =0( 1
2 )

C
2j +1 ⊗ C

j , (D1)

where j labels the irreducible representations of SU(2),
with the lower limit in the direct sum given by
0 or 1/2 for even or odd N , respectively. Each
spin-j representation occurs with multiplicity j =( N

N/2−j

)
(2j + 1)/(N/2 + j + 1) [98]. Importantly, the

number j of equivalent spin-j representations exceeds the
number of spin degrees of freedom, j ≥ (2j + 1), for all
but the largest spin representation j = J ≡ N/2. Thus, for
any pure quantum state, one can always find a decomposi-
tion in terms of equivalent spin-j representations in which
the state populates only 2j + 1 instead of all the j repre-
sentations associated with each j [39,40,61]. Since phases
φ are imprinted through unitaries U(φ) ∈ SU(2) that do
not couple different angular momenta j and their equiv-
alent representations, we can, without loss of generality,
describe each j -subspace as a pair of spin-j representations
living in the space C2j +1 ⊗ C2j +1. Here, only the first spin
of each pair is affected by the SU(2) unitary U(φ).

Summing up all spin-j pairs and the single symmetric
subspace (j = J ), we obtain the irreducible Hilbert space
of an SU(2) sensor:

HOQS ≡ C
2J+1 ⊕

J−1⊕

j =0( 1
2 )

C
2j +1 ⊗ C

2j +1. (D2)

The dimension of the space scales only as the cube of the
system size N , i.e., dN = (N + 1)+ ∑N/2−1

j =0(1/2)(2j + 1)2 =
1 + N (N 2 + 5)/6. The polynomial growth of the size of
the irreducible Hilbert space is crucial for the efficient min-
imization of the metrological cost function given in Eq. (6)
with the numerical approach presented in the main text (see
Sec. III A) and detailed in Appendix E.
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APPENDIX E: COST MINIMIZATION AS A
MULTICONVEX PROBLEM

In this appendix, we discuss the multiconvexity of the
sensor-optimization problem and present a corresponding
efficient algorithm for solving Bayesian sensing problems
(see Sec. III A). We start by recasting the cost given in
Eq. (6) in a form that highlights its multiconvexity and
that is suitable for numerical optimization. To this end, it
is convenient to define linear maps:

�0 [•] =
∫

dφ U(φ) • U(φ)†P(φ), (E1)

Λ1 [•] =
∫

dφ φ U(φ) • U(φ)†P(φ), (E2)

where the unitary U(φ) = exp [−iφ · J ] imprints phases φ.
In terms of these maps, Eq. (6) can be expressed as

C = var(P)−
∑

μ

(
2 ξμ · Tr

{
MμΛ1 [ρin]

}

− ξμ · ξμ Tr
{
Mμ�0 [ρin]

})
, (E3)

where var(P) = ∫
dφ φ · φ P(φ) is the variance of the

prior distribution and ρin = |ψin〉 〈ψin|.
Equation (E3) shows that the minimization of the metro-

logical cost function is a convex-optimization problem
with respect to each of the three sets of variables (|ψin〉,
{Mμ}, and {ξμ}) if the other two are kept fixed. More
precisely:

(i) For fixed |ψin〉 and {Mμ}, we have a quadratic mini-
mization problem for estimators {ξμ}. The optimal
solution is explicitly expressed as the minimum
MSE estimator, given in Eq. (8), corresponding to
the average value of the phases with respect to the
posterior probability density p(φ|μ).

(ii) For fixed |ψin〉 and {ξμ}, the cost given in Eq. (E3)
is linear with respect to the measurement opera-
tors {Mμ}, which are positive semidefinite (Mμ � 0)
and subjected to the POVM condition

∑
μ Mμ = 1.

Thus, the cost minimization with fixed state and
estimators can be recast as a semidefinite program
(SDP). This is an optimization problem that can
be efficiently implemented with polynomial-time
solvers provided that the size of the problem is
polynomial, as is the case here.

(iii) For fixed {Mμ} and {ξμ}, the optimization problem
is quadratic with respect to the quantum state. This
can be seen by writing the cost given in Eq. (E3) as

C = 〈ψin|ϒ |ψin〉 ,

where the Hermitian operator ϒ reads

ϒ = var(P)−
∑

μ

(
2 ξμ · Λ#

1

[
Mμ

]

− ξμ · ξμ �
#
0

[
Mμ

] )
,

in which �#
0 and Λ#

1 are linear maps adjoint to
Eqs. (E1) and (E2), respectively. The state that min-
imizes the cost function is, therefore, the eigenstate
of ϒ with the lowest eigenvalue.

The multiconvexity of the cost given in Eq. (E3) with
respect to the three sets of parameters (i)–(iii) makes
the problem of finding the optimal multiparameter quan-
tum sensor approachable with numerical algorithms. Even
though multiconvex problems are in general hard to solve
globally, local methods based on block coordinate descent
work well and are widely used in practice [64]. For exam-
ple, in the case of single-parameter metrology, optimiza-
tion of the cost given in Eq. (E3) becomes a biconvex prob-
lem [points (i) and (ii) are combined into a single quadratic
optimization of projective measurements], leading to a fast
and reliable convergence to a unique solution [5].

In the general case, the optimization procedure can
be summarized as follows. The minimization problem is
initialized with a random input state, measurement, and
estimators. After that, we iteratively solve subproblems
(i)–(iii) until reaching convergence to the optimal sensor
solution with |ψ�

in〉, {M �
μ}, and {ξ �μ} minimizing the cost

given in Eq. (E3) [99]. This algorithm combined with a
covariant ansatz for input states and measurements (see
Appendix F) is used to obtain the OQS results presented
in the main text.

APPENDIX F: COVARIANT STATES AND POVMs
FOR 2p QS

Here, we present covariant [1,9] states and measure-
ments for 2D field sensing, B = {Bx, By}, with the 2p QS
(see Sec. III A). This not only illustrates the central ideas,
which can be generalized to the case of the OQS including
3D field sensing, but it also enables us to efficiently deter-
mine the 2p-QS performance limit for large system sizes,
as shown in Fig. 6.

Using the method of Appendix E for the case of 2D
fields with a priori unknown field direction, i.e., P(φ) =
P(|φ|), we obtain the following optimal input state mini-
mizing the cost given in Eq. (E3) for the 2p QS:

|ψ(2p)
in 〉 =

J⊕

j =0

αj |j , 0〉 . (F1)

The state given in Eq. (F1) features a direct sum of the
eigenstates of Jz with eigenvalue zero (we consider even
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N ) of all j -representations, with corresponding amplitudes
αj . Consequently, the state is invariant under rotations
around the z axis. The numerical solution for the isotropic
prior density suggests that the combination of the input
state in Eq. (F1) and the corresponding optimal measure-
ments results in an MSE [see Eq. (5)] that is also invariant
under z rotations. We can impose the rotational symmetry
by using measurements parametrized as

Mqϕ̄ = e−iϕ̄Jz Mqeiϕ̄Jz , (F2)

such that all POVM operators are determined by seed oper-
ators Mq. The corresponding rotationally invariant estima-
tors read ξ qϕ̄ = {rq cos ϕ̄, rq sin ϕ̄}. Here, rq and ϕ̄ are polar
coordinates of the phase estimates that correspond to the
field strength and direction, respectively. The estimators
of the optimal 2p QS are illustrated as concentric rings in
Figs. 3 and 4.

Using the ansatz in Eq. (F1) for the input state and for
the measurements in Eq. (F2), and the corresponding esti-
mators and ϕ-invariant prior [P(r) in polar coordinates],
the cost given in Eq. (E3) can be expressed as

C = var(P)−
∑

q

(
2rqTr

{
Mq�1

} − r2
qTr

{
Mq�0

})
,

(F3)

where var(P) = 2π
∫

r3drP(r) is the variance of the prior
distribution and

�0 =
∫

rdrP(r)dϕ
2π

e−iϕJz |ψr〉 〈ψr| eiϕJz ,

�1 =
∫

r2drP(r)dϕ
2π

cosϕ e−iϕJz |ψr〉 〈ψr| eiϕJz .

Here, we define the state |ψr〉 ≡ e−irJx |ψin〉.
The cost given in Eq. (F3) is linear in {Mq}, which are

semidefinite operators, Mq � 0, with a modified POVM
condition

∑
q

∫
dϕ/(2π)e−iϕJz MqeiϕJz = 1. Thus, as dis-

cussed in Appendix E, minimization of Eq. (F3) for a fixed
state |ψin〉 and estimators {rq} is an SDP.

As a result, the problem of estimation of two param-
eters {φx,φy} with noncommuting generators Jx and Jy
has been decoupled into two separate problems of esti-
mation of the field strength r with generator Jx and the
field direction ϕ with generator Jz. The latter is explic-
itly solved by the corresponding covariant POVM given
in Eq. (F2) and the former single-parameter problem is
amenable to the numerical method of Appendix E. Note
that the resulting single-parameter problem of estimating r
requires optimization over POVMs. This makes it qualita-
tively different from single-parameter metrology problems,
which, in general, are solved with projective measurements
[9].

The remarkable simplification of the original two-
parameter problem to a single-parameter estimation task
allows us to efficiently obtain the optimal two-partite 2D
field sensor. In particular, the optimal solution comprises at
most N/2 + 1 measurement seed operators Mq of rank 1.
A generalization of the covariant ansatz approach to obtain
the OQS for 2D and 3D field sensing will be presented in
Ref. [65].

APPENDIX G: HILBERT SPACE OF 1p QS AND
2p QS

Here, we identify two important subspaces occupied
by the OQS in different regimes, which correspond to
the Hilbert spaces of the 1p QS and 2p QS introduced
in the main text (see Sec. IV). First, we find that in the
limit of small prior widths, δ � 1/N , the OQS for 2D and
3D fields occupies only the maximum spin representation
(J = N/2) in HOQS given in Eq. (D2). The permutation
symmetric subspace describes the 1p QS, such that

H1p ≡ C
2J+1. (G1)

In the case of 2D field sensing at arbitrary prior widths,
we observe that the OQS does not utilize the full HOQS,
given in Eq. (D2), as the optimal input state consists of
weakly entangled pairs of spins in each of the j -subspaces.
Thus, the effective Hilbert space of the 2D field OQS can
be very well approximated by the 2p QS, which contains
j -representations with multiplicity 1:

H2p ≡ C
J+1 ⊗ C

J+1 =
J⊕

j =0( 1
2 )

C
2j +1. (G2)

It follows from the discussion in Ref. [22] that in the limit
of a large number of atoms, N → ∞, the 2p QS saturates
the fundamental bound on 2D field sensing and, thus, con-
verges to the OQS. We will discuss this convergence in
more detail in Ref. [65].

In contrast, the OQS for 3D fields makes use of the
full HOQS [see Eq. (D2)] by employing strongly entan-
gled pairs of spins in the j -subspaces for the optimal input
state. Hence, in general, it cannot be efficiently represented
by a sensor comprising a small and predefined number of
partitions. The optimal partitioning of the 3D field sen-
sor should depend on the sensor size N and represents an
interesting topic for further study.

APPENDIX H: OPTIMIZATION OF SENSORS
WITH LIMITED ENTANGLING CAPABILITIES

In Sec. IV, we discuss the performance of sensors with
limited entangling capabilities, which live in H1p,H2p and
are restricted to operate with projective measurements.
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Here, we describe how the optimization of these sensors
is carried out.

To constrain the optimization to projective measure-
ments, we express the measurement projectors �m and
�mA,mB according to Eqs. (15) and (18) for the 1p QS and
2p QS. We further parametrize the decoding unitary as
U1p

de = e−iH1p
de (U2p

de = e−iH2p
de ), where H 1p

de (H 2p
de ) is a Her-

mitian matrix. Finally, the iterative procedure discussed
in Appendix E is performed, with the key difference that
the optimization over the POVM set {Mμ} is replaced
with optimization over the set of Hermitian matrices {H 1p

de }
[{H 2p

de }].
Unlike the case of general POVMs, the optimization

problem is not convex with respect to the Hermitian matrix
that parametrizes the projective measurements. Typically,
the optimization is performed starting from several ran-
dom initial conditions, iteratively converging to a local
minimum for each starting point, and then selecting the
global minimum from the converged solutions. The “brute-
force” optimization over the elements of the Hermitian
matrix restricts the use of this approach to small sys-
tems. However, the results from this approach provide
a saturable lower limit to the performance of variational
quantum circuits, which are also restricted to projective
measurements.

APPENDIX I: VARIATIONAL OPTIMIZATION

In Secs. V and VI, we present results that are obtained
by optimizing variational quantum circuits where the uni-
taries Uen(de) are parametrized by the parameter vectors θ

and ϑ . The gates considered in this work are all periodic;
nonetheless, the parameter space grows exponentially in
the number of parameters; that is, convergence of the cost
function to the global minimum given in Eq. (20) cannot
be guaranteed if the depth of the circuit grows.

The results in this work are obtained using the gradient-
descent optimization based on exact gradient calculations.
To approach the global minimum, we optimize starting
from a number of initial conditions and keep the best result.
In a first step, we sample random initial parameters and
later refine the variational solution by choosing parameters
that are optimal for other settings of the sensor as starting
points. This involves starting with optimal parameters for
different N and/or δ, adding layers to shorter circuits, and
removing closest-to-identity layers from longer circuits.
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