
PRX QUANTUM 4, 020328 (2023)

Optimizing Graph Codes for Measurement-Based Loss Tolerance

Thomas J. Bell ,1,2,* Love A. Pettersson ,3 and Stefano Paesani3,†

1
Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical and

Electronic Engineering, University of Bristol, BS8 1FD, United Kingdom
2
Quantum Engineering Centre for Doctoral Training, University of Bristol, United Kingdom

3
Center for Hybrid Quantum Networks (Hy-Q), Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17,

Copenhagen DK-2100, Denmark

 (Received 15 December 2022; accepted 13 April 2023; published 17 May 2023)

Graph codes play an important role in photonic quantum technologies as they provide significant protec-
tion against qubit loss, a dominant noise mechanism. Here, we develop methods to analyze and optimize
measurement-based tolerance to qubit loss and computational errors for arbitrary graph codes. Using these
tools we identify optimized codes with up to 12 qubits and asymptotically large modular constructions.
The developed methods enable significant benefits for various photonic quantum technologies, as we
illustrate with novel all-photonic quantum repeater states for quantum communication and high-threshold
fusion-based schemes for fault-tolerant quantum computing.

DOI: 10.1103/PRXQuantum.4.020328

Quantum information is fragile and its control can be
easily impaired by dissipation in the physical environ-
ment. Quantum error correction (QEC) and fault tolerance
aim at reducing the impact of noise, provided the phys-
ical error rate is below a certain threshold, enabling the
control of quantum information in spite of physical imper-
fections [1–3]. Optimizing codes to the specific platform
used and targeting the native noise mechanisms and oper-
ations to reduce the operational overheads is key to make
QEC practical for near-term and future quantum hardware.
In photonics, the dominant noise mechanism is photon
loss, which irreversibly erases the state of the associ-
ated physical qubit. Although photon loss is an error that
can be directly detected, unlike conventional gate errors,
it nevertheless poses stringent hardware requirements
for practical applications. For example, current architec-
tures for fault-tolerant photonic quantum computing need
losses to be below a threshold of approximately 2% [4],
very challenging for photonic setups. A possible modular
approach to improve these requirements is to encode each

*tj.bell@bristol.ac.uk
†stefano.paesani@nbi.ku.dk

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

computational qubit in a loss-tolerant code, as pictured
in Fig. 1. The encoding and decoding are typically
measurement-based, i.e., obtained by sequential destruc-
tive measurements on part of an entangled resource state
to protect the remaining unmeasured components from
errors—an approach particularly suitable for photonics
[4,7–9]. As we show in this work, codes with moderate
size, less than a few tens of qubits, can already provide sig-
nificant measurement-based suppression of logical errors
due to photon loss on encoded qubits. Previous proposals
have considered various types of loss-tolerant codes, e.g.,
tree graph codes [6] [see Fig. 1(a)] and Bacon-Shor codes
[10], whose code structures allow the loss tolerance to be
readily analyzed. The use of these codes was proposed
and investigated, for example, in the context of photonic
measurement-based quantum communication [11–14] and
computation [4,15]. Identifying resource-efficient codes
with high loss tolerance could bring significant practical
benefits to these technologies. Here, we address this goal
by developing methods to analyze the loss and error tol-
erance in general graph codes and use them to design and
implement optimization techniques. We fully characterize
measurement-based fault-tolerant properties and optimize
graph codes with up to 12 qubits, and investigate general-
izations to larger graphs with modular structures. We find
optimized codes that can provide significant advantages in
various photonic applications, including improved repeater
graph states for quantum communication and fusion-based
schemes for fault-tolerant photonic quantum computing
with loss thresholds up to 10.5% using standard linear
optical fusions.

2691-3399/23/4(2)/020328(20) 020328-1 Published by the American Physical Society

https://orcid.org/0000-0001-6856-2702
https://orcid.org/0000-0003-1504-8165
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.4.020328&domain=pdf&date_stamp=2023-05-17
http://dx.doi.org/10.1103/PRXQuantum.4.020328
https://creativecommons.org/licenses/by/4.0/

BELL, PETTERSSON, and PAESANI PRX QUANTUM 4, 020328 (2023)

(a)

(b)

FIG. 1. (a) Graph codes can encode quantum information
with inherent robustness to qubit loss. Example of loss-tolerant
graphs include the Raussendorf lattice [5] and tree graphs [6].
In this work we develop tools to analyze the loss tolerance for
arbitrary graph codes. (b) Graph codes with improved perfor-
mance can enable designing better modules for modular photonic
applications, including computation or communication schemes.

I. GRAPH CODES

A. Encoding a logical qubit

Graph codes, introduced in Ref. [16,17], are quantum
codes with graph states as codewords, a class of quantum
states that can be conveniently described in terms of graphs
and graph transformations [8,18]. The quantum state asso-
ciated to an undirected and unweighted graph G = (V, E)
with vertices V and edges E is

|G〉 =
∏

(i,j)∈E

CZi,j |+〉⊗|V|, (1)

where CZi,j represents a controlled-Z operation between
qubits i and j , and is represented by edge between the asso-
ciated vertices. Graph states are stabilizer states [2] with
stabilizer generators Ki = Xi

∏
k∈Ni

Zk, where i runs over
the graph nodes and Ni is the neighborhood of qubit i.
Throughout this work, we use X , Y, Z to indicate Pauli
operators. The generators generate the Abelian group of
stabilizer operators S = 〈Kj 〉n

j =1, meaning that each stabi-

lizer S ∈ S is a product of generators S = ∏n
i=1 Kbi

i , with
bi ∈ {0, 1}.

A possible method to encode an arbitrary qubit state
|ψ〉 = α|0〉 + β|1〉 in an n-qubit graph code is pictured in
Fig. 2(a). We initially prepare the n physical code qubits in
a graph state |G〉 and an additional input qubit in the tar-
get state |ψ〉 = α|0〉 + β|1〉. The logical encoding is then
performed by applying controlled-Z operations between

the input qubit and a subset B of the code qubits, and
then measuring the input qubit in the X basis. As these
operations are all in the Clifford group, we can track the
stabilizers and logical operations on the state according
to the usual stabilizer transformation rules [2], obtaining
the n-qubit code in the logical state |ψ〉 = α|0〉 + β|1〉
if the measurement outcome is +1, and Z|ψ〉 on out-
come −1. The bar will be used throughout to denote
logical elements. Here |0〉 = |G〉 and the logical opera-
tors are given by X = ∏

b∈B Zb and Z = Kb0 for some
choice of b0 ∈ B [see Fig. 2(c)]. The updated code stabiliz-
ers are S = 〈Kb0Kb, Kb′ 〉b∈B\b0,b′ /∈B, with Ki the stabilizer
generators of |G〉 [8]. As products of a logical operator
with stabilizers also form valid logical operators of the
code, we can write the set of all logical operators as L =
(X , Z, Y = iX Z) · S . Note that an equivalent approach to
encoding can be obtained by initializing the input qubit
in |+〉 before applying the controlled-Z operations to the
code qubits in B, and then measuring it in the qubit basis
{|ψ∗〉, |ψ∗

⊥〉} (which in general can be non-Clifford), as pic-
tured in Fig. 2(b). Here we define |ψ∗〉 = α∗|0〉 + β∗|1〉
to be the complex conjugate of |ψ〉. In this way, the
encoding can be described as starting from a fixed progen-
itor graph G′ = (V + {input}, E + ({input}, B)) with n + 1
nodes, and then measuring the input node in the targeted
basis. This can be simply observed by writing the initial
graph state as |G′〉 = (|0〉in|G〉 + |1〉in

∏
b∈B Zb|G〉) /√2 =(|0〉in|0〉 + |1〉in|1〉) /√2 with codewords and logical oper-

ators defined as above, for which projective measurement
of the input qubit into |ψ∗〉 prepares the logical code state
in the conjugate state |ψ〉, as desired. The two pictures are
equivalent but, depending on the protocol under study, ana-
lyzing the encoding in the progenitor picture may be more
convenient as it permits description of the encoding and
decoding of a logical qubit entirely through the stabilizers
of the progenitor graph. In fact, the stabilizer generators of
the progenitor graph that act as Xin and Zin on the input
qubit are transformed in the logical operators X and Z
of the code, respectively, upon measurement of the input.
That is, X ↔ K ′

in and Z ↔ K ′
b0

, where K ′
i are the stabilizer

generators of the progenitor graph G′ and b0 ∈ B. Note that
the encoding methods discussed above rely on physical
operations on the input qubit, and could thus be noisy, as
loss or error in the input physical qubit may correspond to
logical errors. Therefore, while convenient analysis tools
and potentially noise tolerant in specific implementations,
they are not general prescriptions for fault-tolerant state
preparation.

B. Measurement-based decoding

Measurement-based approaches process logical quan-
tum information by only performing destructive single-
qubit measurements on the code qubits and classical feed
forward. In the context of QEC, the constraints imposed by

020328-2

OPTIMIZING GRAPH CODES. . . PRX QUANTUM 4, 020328 (2023)

(a)

(b)

(c) (d)

(e)

FIG. 2. Encoding in graph states. (a) State injection picture, where the logical state is encoded by preparing it on an ancilla qubit,
followed by entangling operations and an X measurement on the ancilla. (b) Progenitor picture, where the same encoding is performed
measuring the input qubit of the progenitor graph in the targeted state. (c) The prepared graph code in the logical state |ψ〉, and
associated codewords. Loop edges represent Z Pauli operations on the associated qubits [19]. (d) Modular schemes for measurement-
based operations, where computational qubits are encoded in graph codes and computational qubit measurements correspond to logical
measurements on the graph codes. (e) Physical modularization of resource states, obtained substituting each computational qubits with
a virtual qubit, the input of the associated graph code, to be measured in X .

operating a single destructive measurement per qubit add
significant limitations with respect to repeatedly perform-
ing parity checks in circuit-based approaches. Namely,
given a single-qubit measurement pattern M on the phys-
ical qubits, the only stabilizers that will be accessible are
those that commute qubitwise with M , i.e., the stabilizers
in

SM = {S ∈ S | [Si, Mi] = 0 for each qubit i}, (2)

with S the initial code stabilizers. Note that SM ⊆ S forms
a stabilizer subgroup of S (Appendix E). Therefore, the
effect of these constraints is effectively to induce a reduced
code SM compatible qubitwise with the measurement M .
This can also be regarded, more abstractly, as a gauge-
fixing procedure [20,21]. Measurement-based decoding of
gate errors, i.e., the inference of qubit errors from the mea-
sured syndromes, can then be performed equivalently as
one would do in standard QEC by considering the reduced
code SM induced by M .

C. Effects of qubit loss

The effect of qubit loss detected during measurements
can be described similarly to the enforcement of a mea-
surement pattern M described above. If a qubit is lost, all
stabilizers and logical operators that act nontrivially on that
qubit are no longer measurable. This enforces a qubitwise
constraint similar but stronger to Eq. (2) as compatibility
now requires an identity on a lost qubit rather than just a
commuting operator. To maintain a concise notation when
describing the effects of loss, we write Mi = � to indicate

that qubit i was lost, and use the convention that [A, �] = 0
iff A = 1. With this notation, we can write the set of sta-
bilizers SM compatible with M , which now includes also
lost qubits, again exactly as Eq. (2). Also in this case SM
is a stabilizer subgroup of the initial stabilizer group S; the
presence of losses has the effect of reducing it further (see
Appendix E for more details). However, qubit losses also
pose constraints on logical operators of the code as they
cannot have support on a lost qubit. These constraints can
be included in a very similar way as for the stabilizers by
writing the induced set of logical operators as

LM = {L ∈ L | [Li, Mi] = 0 for each qubit i}, (3)

again using the convention Mi = � if qubit i is lost. In the
progenitor graph picture, the conditions in Eq. (3) can be
conveniently included by directly applying Eq. (2) to the
stabilizers of the progenitor graph. The main idea behind
loss-tolerant measurement-based QEC is that, if losses are
not excessive, the set LM remains nontrivial and SM con-
tains enough stabilizers to protect the encoded logical state
from errors. In general, the code performance depends on
the chosen single-qubit measurement pattern M , as well
as on the initial graph code. If losses are heralded, i.e.,
which qubits are lost is known before their measurement,
the measurement pattern M can be conveniently optimized
beforehand to achieve the best available SM and LM [22].
However, losses are often unheralded: loss of a qubit is
detected only upon its measurement and not before. This
loss model is relevant to most quantum platforms (e.g.,
photonics), and we focus on it in this work. Finding ini-
tial graph codes and measurement strategies that provide

020328-3

BELL, PETTERSSON, and PAESANI PRX QUANTUM 4, 020328 (2023)

good tolerance to unheralded loss is in general a complex
task and is investigated in the next sections.

II. LOSS-TOLERANT LOGICAL
MEASUREMENTS WITH GRAPH CODES

In measurement-based approaches, computational oper-
ations are implemented via single-qubit measurements. We
start describing general methods to perform these measure-
ments loss tolerantly when encoding each computational
qubit into an arbitrary graph code, as depicted in Figs.
2(d)–2(g).

A. Loss-tolerant logical Pauli measurements

As stabilizers are based on the Pauli group, logical mea-
surements in the Pauli bases are the simplest to analyze
within the framework we describe: it corresponds to mea-
suring a logical operator L ∈ {X , Y, Z}. In the progenitor
picture, this can be seen as a nondestructive Pauli measure-
ment on the input qubit without having to directly measure
it, often referred to as an indirect measurement [6]. Let
us consider, for example, an indirect measurement of the
X logical operator. In the presence of qubit loss, a mea-
surement pattern M on the physical qubits successfully
measures it if the set L[X]M , obtained applying the con-
dition in Eq. (3) to the set L[X] of all possible logical X
operators of the code, is nonempty. Equivalently, it means
there exists a logical operator X ∈ L[X]M that can be
obtained from the single-qubit measurements performed
in M and with no support on lost qubits (i.e., X i = 1 if
Mi = �). Identical conditions apply for Y and Z indirect
measurements. A simple example is the indirect logical X
measurement on star-graph codes, i.e., graph codes with a
star-graph progenitor [see Fig. 3(a)]. From the definitions
in Sec. I, it is evident that a single-qubit operator Xi on
any code qubit i provides a valid logical Z operator, i.e.,
L[Z] = {Xi}n

i=1. Therefore, choosing the measurement pat-
tern M = ∏

i Xi, if at least one code qubit is not lost then
L[Z]M is nonempty and the logical operator is success-
fully measured. The probability of failing to measure Z,
which we call logical loss, is thus �[Z] = �n where n is
the number of physical code qubits and � the qubit loss
probability. Such strong robustness for Z measurements
for the star graphs comes at the expense of weak perfor-
mance for X and Y measurements. In fact, both X and Y
are weight-n operators, meaning that all physical qubits
need to exist to obtain a successful logical measurement,
so �[X] = �[Y] = 1 − (1 − �)n.

In arbitrary graph codes, the optimality of a measure-
ment pattern M on the remaining undetected qubits may
depend on the losses detected on already-measured qubits.
Therefore, given a graph code, an important task is now
finding a decoding strategy that optimizes the probability
to achieve a measurement pattern M providing a success-
ful logical measurement. Specifically, while decoding in

(a) (b) (c)

FIG. 3. Optimal graphs for individual logical Pauli measure-
ments. (a) Star graph providing optimal loss tolerance for mea-
suring Z, (b) branched star graph for X , and (c) star graph for Y.
Considering n code qubits, for any of these graph structures the
success probability to measure the associated logical operator is
1 − �n, although for the remaining two logical Pauli operators it
decreases exponentially as (1 − �)n, with � the physical loss rate.

the presence of unheralded loss we need to consider: (1)
a single-qubit measurement pattern M consistent with the
measurements already performed, (2) a rule that deter-
mines which of the unmeasured qubits should be measured
next, (3) a rule that allows us to update the decoding strat-
egy as new qubit loss is detected. The general structure
for the algorithm we consider to optimize loss-tolerant
decoding strategies is described in Algorithm 1. It is an
iterative algorithm where at each iteration a new mea-
surement is decided via a NextMeas function, and the
available operators L[A] updated via UpdateDecoder,
which implements the constraints in Eq. (3). For moderate-
size codes we can analyze the decoding procedure in
terms of a decision tree describing the evolution of the
decoder status conditional on the qubit measurements. The
resource-intensive process of building the decision tree can
be done offline prior to execution, such that runtime costs
are reduced to up to n queries of a look-up table, each
possibly followed by adjustment of measurement bases.
Such structures also provide us an analytical formula for

Initialize

ALGORITHM 1. Pauli measurement decoder.

020328-4

OPTIMIZING GRAPH CODES. . . PRX QUANTUM 4, 020328 (2023)

(a) (c)

(b)

FIG. 4. Loss-tolerant logical measurements with the pentagon graph. (a) Progenitor graph for the pentagon code, with its two logical
operators and the list of stabilizer generators. (b) Performance of the pentagon code for all logical Pauli measurements (red) and logical
measurements in an arbitrary basis (blue). Physical loss is shown as a dotted black line, with break-even points obtained at 38% and
23% for Pauli and arbitrary measurements, respectively. (c) Exemplary decision tree for decoding an arbitrary measurement on the
pentagon graph tolerating the loss of any single qubit. Green arrows represent successful qubit measurements, red arrows represent
loss of the measured qubits. At each measurement, the number of valid measurement strategies remaining is reduced.

the logical success probability in terms of the qubit loss �
by summing the conditional probabilities of all paths in the
tree that end in a successful logical measurement, as exem-
plified in Fig. 4(c) for the pentagon code. More details on
the algorithm and decoding procedures are described in
Appendix A.

When testing the graphs in Fig. 3 we retrieve the
expected loss tolerance with scaling � = �n, optimal for
a single logical Pauli measurement. A more interesting
problem is instead to find codes with good loss tolerance
for any logical Pauli A ∈ {X , Y, Z} measurement, and as
such we consider as our metric the worst-case logical loss
rate, �[Pauli] = min{�[X], �[Y], �[Z]}. The fact that loss
tolerance is invariant in locally equivalent graphs [18,23]
(see Appendix D) allows us to make the optimization pro-
cedure more efficient, as we have to only analyze one
representative graph state per local-equivalence class for a
comprehensive analysis. Detailed categorization of graph-
state equivalence classes have been performed for graphs
with up to 12 qubits [24,25], which we use to carry out
an exhaustive search of small-scale (up to n = 11 code
qubits, i.e., progenitor graphs with 12 qubits) graph codes.
We find that 12-qubit progenitor graph states can be ana-
lyzed typically in a few seconds on a standard laptop, but
due to the large number of equivalence classes (>106) we
take advantage of the high-performance computing cluster
BlueCrystal at the University of Bristol. We identify the
pentagon code, shown in Fig. 4(a), as the smallest code
(n = 4) showing loss tolerance simultaneously for more

than one logical Pauli measurement. For this graph we
obtain the same logical success probability η = 2η2 − η4

for logical measurements of any Pauli operator, plotted in
Fig. 4(b), where η = 1 − � is the physical transmittivity
and η = 1 − �. When the physical loss is below �∗ � 38%
loss tolerance begins to appear as the logical loss is lower
than the physical one. This value is denoted the break-
even point, where the graph encoding outperforms the bare
physical qubit, and is often similar but not necessarily
equal to the code’s loss threshold under concatenation, see
Sec. IV. At low-loss rates � ∼ 4�2 [see Fig. 4(b) inset],
indicating the code is able to protect against the loss of any
single qubit. We show in Figs. 5(a)–5(c) the results of the
optimization for progenitor graphs with up to 12 qubits. In
Fig. 5(a) we report some of the graph states (see Appendix
F for a complete list) we identify with optimized loss tol-
erance at loss values much smaller than the break-even
point, where we are well within the subthreshold regime
(i.e., optimizing at a physical loss level � = 1%). The asso-
ciated performances are plotted in Fig. 5(b). Break-even
points up to 50% can already be achieved for these graph
codes of moderate size. In some cases, further improve-
ments can also be obtained considering graphs optimized
at loss levels close to the break-even point (i.e., � � 30%,
depending on the code size), represented by the dashed
lines in Fig. 5(c), with the associated graph states reported
in Appendix F. These two parameter regimes are found to
well represent code performance and any improvements
from optimizing at different loss values are found to be

020328-5

BELL, PETTERSSON, and PAESANI PRX QUANTUM 4, 020328 (2023)

small. The tools presented here allow identification of
optimized graphs tailored to the noise rates of the physical
system.

B. Logical measurements in an arbitrary basis

In the measurement-based framework, Pauli mea-
surements correspond to Clifford operations. In order
to perform universal quantum computations, we also
require measurements in an arbitrary basis on the Bloch-
sphere equator A(θ) = X cos(θ)+ Y sin(θ) providing non-
Clifford operations [26]. In order to perform this operation
loss tolerantly on a graph code, the idea we consider can
be regarded as adaptive teleportation of the encoded state
into a single code qubit preemptively measured in A(θ). If
we know from the start that a physical qubit is not lost,
which we call the output qubit, then a sufficient condition
for measuring A(θ) on |ψ〉 is to measure the other code
qubits such that the encoded state is teleported onto the
output qubit [22]. However, we can also think of invert-
ing the order of these operations: first attempt to measure
A(θ)out and then do the teleportation only if the output
photon is successfully detected, and otherwise try again
with a different output qubit [6]. The two orderings pro-
vide the same outcome up to a feed-forward operation on
the output. Care is hence required to account for the Pauli
frame update imposed by the outcome of intermediate
measurements. This may be done with classical postpro-
cessing of measurement outcomes in some cases, in other
cases more sophisticated correction circuits may need to
be employed, for example, those discussed in Refs. [6,27].
Procedures to perform arbitrary logical measurements can
thus be obtained by adapting techniques for loss-tolerant
teleportation in graph states to the case where the output is
not a fixed qubit. In particular, Ref. [22] provides a suffi-
cient condition for a measurement pattern M to teleport the
encoded state to a fixed output qubit, called the stabilizer
pathfinding conditions (SPCs). In terms of the constraints
in Eq. (3), SPCs can be stated as follows: a measure-
ment pattern M of local Pauli operators on code qubits
not including the output (Mout = 1) teleports the encoded
state to the output qubit, up to a random but known local
unitary Uout ∈ {1, X , Y, Z}, if LM contains two anticom-
muting logical operators. For logical measurements, to this
condition we need to add the successful initial measure-
ment of the output in A(θ)out. The SPC can be included
in the decoder very similarly as in the Pauli measurement
decoder discussed in the previous section (Algorithm 1).
The main differences are as follows: (1) we now need to
consider the set of all logical operators L, instead of a
single logical Pauli, and (2) we require it to contain at
least two anticommuting operators at the end, instead of
just being nonempty. The approach is thus modified to a
decoder structure as described in Algorithm 2, with more
details reported in Appendix A.

Algorithm 2. Arbitrary measurement decoder

The loss tolerance of graph codes under arbitrary basis
measurements is again preserved between locally equiva-
lent graphs (see Appendix D), allowing for a streamlined
optimization procedure. The smallest code displaying loss
tolerance we identify is again the pentagon progenitor
graph in Fig. 4(a). The logical success probability for arbi-
trary A measurement with this graph is η = 4η3 − 3η4 [see
Fig. 4(b)]. Loss tolerance is observed below a physical loss
breakeven point of �∗ ≈ 23%, and we observe a subthresh-
old scaling of the logical loss as approximately 6�2 indi-
cating tolerance against the loss of any single code qubit.
It can be noted, also comparing the behaviors in Fig. 4(b),
that the loss-tolerance performance is worse than logical
measurements of Pauli operators, as expected. In Fig. 4(d)
we report, for various code sizes, the graphs we iden-
tify, which optimize the loss tolerance for arbitrary logical
measurements in the subthreshold regime. Their logical
loss behavior is shown in Fig. 4(e). We again observe
improved loss tolerance for larger codes, and break-even
points that are higher by a few percent when optimizing
in this regime, as shown in Fig. 4(f). For the largest size
explored, n = 11 code qubits (12-qubit progenitor graphs),
we obtain a break-even point of �∗ � 40%.

020328-6

OPTIMIZING GRAPH CODES. . . PRX QUANTUM 4, 020328 (2023)

(a) (b) (c)

(d) (e) (f)

FIG. 5. Optimized graph codes for loss-tolerant measurements. (a) Progenitor graphs of the graph codes optimized for Pauli-basis
measurements in the subthreshold regime for different code sizes, with the associated performance shown in (b). Each graph is a
representative with minimum edge number in its local-equivalence class. (c) Comparison of near-break-even performance for graphs
optimized for their loss break-even point (dashed lines) and the subthreshold-optimized graphs (solid lines). (d)–(f) Analogous plots
for arbitrary basis measurements.

III. MEASUREMENT-BASED ERROR
CORRECTION IN LOSS-TOLERANT GRAPHS

Qubit errors arising from imperfect gates and
measurements can also be simultaneously corrected with
graph codes. Unlike photon loss, they cannot be directly
detected, so need to be inferred using the code stabilizers
SM and operators LM induced by the measurement pattern
M , as described in Sec. I.

For logical Pauli measurements, measurement-based
error correction corresponds to updating the Pauli frame,
meaning that the correction can be done by postprocessing
the logical measurement outcome. Specifically, after infer-
ring an error E from a decoder, the outcome of L is flipped
if the supports of E and L share an odd number of qubits (if
no L exists due to losses, we consider it a logical error as
well). For arbitrary logical measurements, the situation is
similar but considers both logical operators (L, K) in a pair
satisfying the SPCs, as described in Sec. II. Note, however,
that in this case we cannot identify and correct errors on the
physical Aout(θ) measurement of the output qubit, as that
operation is outside the stabilized space (unless Aout(θ) is
a Pauli measurement). Therefore, the logical error rate for
arbitrary measurements cannot be smaller than the phys-
ical rate on the output qubit. This is related to the fact

that in the measurement-based framework logical arbitrary
measurements Aout(θ) correspond to arbitrary non-Clifford
single-qubit operations, and stabilizer codes possess only a
limited set of natively fault-tolerant gates [28,29].

To maintain generality for arbitrary graph codes, we
implement error decoding via maximum likelihood, which
is computationally viable for the moderate-size codes con-
sidered here, and consider a phenomenological error model
of independent identically distributed (IID) Pauli errors
on each qubit, corresponding to the depolarizing channel
ρ → (1 − 3λ) ρ + λ (X ρX + YρY + ZρZ). More details
on the decoding procedure can be found in Appendix
A. The error correction is again invariant for locally
equivalent graphs, up to permutations of the Pauli bases,
which arise from local complementations on the progeni-
tor graph, which effectively act as Clifford operations on
the logical operators (see Appendix D). We can thus ana-
lyze individual graphs from local-equivalence classes to
characterize codes of increasing size, now using models
where errors and loss are simultaneously present. Consid-
ering indirect Pauli measurements, the smallest progenitor
graph found to exhibit fault tolerance against both errors
and losses is the cube graph, shown in Fig. 6(a), which
generates a code locally equivalent to the seven-qubit

020328-7

BELL, PETTERSSON, and PAESANI PRX QUANTUM 4, 020328 (2023)

Steane code [30]. As shown in Fig. 6(b), when noises are
individually present, it outperforms the bare qubit for
losses below 50%, saturating the bound of the measure-
ment complementarity principle [31], and for physical
errors λ ≤ 3.2%. In Fig. 6(c) we plot the overall fault prob-
ability in the presence of loss and Pauli errors, where the
fault probability is the probability of at least one error type
occurring during measurement. In Fig. 6(d) we show the
ratio between the logical and physical fault probabilities,
where now a break-even curve can be observed and shows
a remarkable robustness for this code.

As mentioned above, it is not possible to reduce logi-
cal errors below the single-qubit level for arbitrary basis
measurements. Still, we find examples of graphs that satu-
rate this linear bound at low error rates. For example, we
show in Fig. 6(e) the decorated pentagon graph, which is
loss tolerant for arbitrary measurements with a break-even
point of 32% [see Fig. 6(f)] while simultaneously having
logical error rates ε/ε → 1 as ε → 0.

IV. EXTENDING TO LARGER GRAPHS BY
MODULARIZATION

To analyze the performance of larger codes efficiently,
we consider two modular approaches: cascading and con-
catenating small unit graphs, which can be fully character-
ized using the previously described techniques.

A. Cascaded graphs

We define cascaded graphs as layered graphs con-
structed by recursively appending unit graphs to code

qubits. In particular, by embedding each code qubit in the
kth layer with a unit graph to which it is the input qubit,
then the code qubits of all the added unit graphs repre-
sent the qubits in the (k + 1)th layer. This step can then
be repeated to recursively build larger graphs in a modu-
lar approach, where the unit graphs used can also vary at
different layers. Examples of cascaded graphs are shown
in Figs. 7(b) and 7(g). The inspiration for the cascaded
graphs’ construction comes from tree-graph codes [6],
which can be seen as cascades of star graphs [see Fig. 3(a)],
locally equivalent to Greenberger-Horne-Zeilinger (GHZ)
states. Cascaded graphs are a generalization of tree-graph
structures using arbitrary graphs as modules.

The structure of cascaded graphs is such that the anal-
ysis of their loss and error tolerance properties can be
efficiently obtained once the performance of the small-size
unit graphs is known. The idea is to consider the measure-
ment patterns suggested on the top-layer graph, and modify
them recursively when going to deeper layers. In fact, the
cascaded structure allows us to leverage indirect measure-
ments of qubits in upper layers via the measurement of
qubits in deeper layers. For example, if a top-layer qubit
is to be measured in the Z basis, it can equally be mea-
sured indirectly using qubits restricted to the second layer
of the graph, so loss of the qubit can be tolerated. In fact,
for any lost qubit at depth k of a cascaded structure, one
can attempt to recover an indirect Z measurement by mea-
suring depth k + 1 qubits. Measurements in non-Z bases,
however, necessarily require additional indirect measure-
ments of deeper qubits, as logical non-Z operators in the
progenitor graph have always support on the code qubits

(a)

(c) (d)

(b) (e) (f)

(g) (h)

FIG. 6. Simultaneous correction of loss and errors on graph codes. (a) The cube graph is the smallest progenitor graph able to
perform logical measurements in all Pauli bases correcting simultaneously losses and errors. (b) Logical error probability for each
noise type in isolation, and (c) when both are simultaneously present. (d) Ratio of encoded to bare error rates, highlighting the region
(in red) where error suppression occurs. (e)–(h) Analogous plots for arbitrary basis measurements. The smallest graph able to correct
losses and to saturate the scaling ε/ε → 1 at low error rates is the decorated pentagon graph.

020328-8

OPTIMIZING GRAPH CODES. . . PRX QUANTUM 4, 020328 (2023)

(a) (c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(b)

FIG. 7. Performance of cascaded and concatenated codes. (a) Modular construction using the cube graph code, and (b) the resulting
progenitor graph state with two layers. The qubits in layer 1, shown in purple, are physical for the cascaded construction, and virtual
X -measured qubits for the concatenated one. (c) Loss-tolerance performance, considering a loss-only noise model, for logical Pauli
measurements self-concatenating the cube graph code at different layers, showing a threshold at 50% loss. The performance for
equivalent cascaded constructions is shown in the inset. (d) Performance for error tolerance, with an IID error-only model, showing a
threshold at λ � 3.2% (e) Overall fault probability in the presence of both noise types for concatenations of up to depth 4, showing the
emergence of a threshold curve. (e)–(j) Equivalent plots for the decorated pentagon code for arbitrary basis measurements.

[the set B in Fig. 2(c)]. Such measurements are effectively
disentangling deeper layers, analogously as in tree graphs
[6]. The asymmetry between Z and non-Z bases can thus
be attributed to the geometry of the stabilizers in the full
graph; X - and Y-type stabilizers penetrate between layers,
whereas Z-type stabilizers do not.

Using the properties described above, we can perform
the decoding process for cascaded graphs recursively using
only the properties of unit graphs at different layers in the
cascade. We report such recursive functions, for decod-
ing both losses and errors, in Appendix B 1. In Figs.
7(c) and 7(d) (insets) we report an example of improved
logical losses and error rates obtained by cascaded
graph structures. Here the unit graph is taken to be the

smallest graph we identified in Sec. III with tolerance to
both loss and errors for logical Pauli measurements—the
cube progenitor graph.

B. Concatenated graphs

Modular extensions of graph codes can also be per-
formed via graph-code concatenation, where each code
qubit is itself encoded in another code—a standard
approach in QEC. Concatenation of graph codes can be
described by simple graph operations and be used for
constructing concatenated quantum codes of increasing
size [32]. A concatenated graph code can be also easily
described starting from the cascaded construction of the

020328-9

BELL, PETTERSSON, and PAESANI PRX QUANTUM 4, 020328 (2023)

previous section: it corresponds to considering every qubit
in intermediate layers as virtual qubits measured in the X
basis and with +1 outcome obtained. The measurement-
based decoding procedures can also be performed similarly
in a recursive fashion, with the only difference that now all
measurements performed on intermediate layers are indi-
rect and direct measurements are only performed on the
qubits in the deepest layer (see Appendix B 2 for details).
Note in fact that virtual qubits do not have to exist in
practice and are only useful in describing the concatenated
graph; only the lowest depth qubits are physical. We show
examples of concatenated codes in an encoding is shown
in Figs. 7(b) and 7(g) for self-concatenations of the cube
(Steane) and decorated pentagon graph codes.

In Figs. 7(c)–7(e) we report the performance for con-
catenated cube graph codes in the presence of losses and
errors, for up to 4 layers of concatenation when performing
Pauli-basis measurements. We observe a threshold appear-
ing for losses at 50%, saturating the bound set by the
measurement complementarity principle (see Appendix
C), and an error threshold of λ = 3.2%. Figures 7(h)–7(j)
show equivalent plots but for arbitrary logical measure-
ments concatenating the decorated pentagon graph. As the
decoding procedure described above can easily incorpo-
rate the concatenation of different unit graphs at different
layers, we can optimise the combination of unit graphs to
obtain higher noise tolerance at various number of code
qubits. In Fig. 8 we plot the results of such optimization for
concatenated graphs at different loss levels, for both log-
ical Pauli and arbitrary measurements. The optimization
was performed by directly testing all combinations for up
to four layers of unit graphs from the set of all loss-tolerant
graphs we identified from the analysis in Sec. II. For com-
parison, we also report the performance of optimized tree
graphs from Ref. [6]. Already in the regime with few tens
of qubits, we see orders of magnitude improvement in the
logical loss of the optimized concatenated graphs against
tree graphs for the tested physical transmission rates in the
0.7–0.95 range.

V. LOGICAL GRAPH-STATE FUSIONS

The techniques described in previous sections for single-
qubit logical measurements can also be used to analyze
another key operation for photonic measurement-based
approaches: fusion gates [4,34,35]. Introduced in Ref. [34],
they are probabilistic two-qubit entangling gates that can
be implemented using simple linear-optical circuits, and
have the effect of joining two photonic graph states with a
destructive measurement on two photons, one from each
graph. Standard fusion operations, implementable with
simple linear circuits and no ancillary resources, succeed
with a probability of 50% [34], which can be boosted by
using ancillary photons [36–38]. In particular, Ref. [36]
shows that using 2m − 2 entangled ancillary photons it is

FIG. 8. Resource scaling for optimized concatenated graph
codes for logical Pauli (blue) and arbitrary A(α) (red) measure-
ments, compared with the performance of optimized tree graphs
(dashed black) from Ref. [33]. For tree graphs, the worst-case
logical loss rate of a Pauli measurement (Y basis) is the same as
for A(α). Semitransparent points correspond to logical losses for
all the combinations of concatenated graphs tested in the opti-
mization procedure, and solid lines correspond to the optimized
scaling from the best concatenation configurations obtained. The
numerical scaling data, which considers exclusively losses, is
reported for different values of the per-photon transmission η.
Note the scale for all plots is log versus loglog.

possible to achieve a success probability (1 − pfail)η
1/pfail ,

where pfail = 2−m is the probability of gate failure and η
is the transmission. In operator terms, a successful fusion
measurement retrieves two parity measurements for the
operators XX and ZZ. If the gate fails, only one of the
two outcomes is available, and single-photon operations
can be used to choose it to be ZZ or XX , while the other
outcome is erased. If either of the qubits is lost, the gate
fails completely and neither operator is recovered. The two
mechanisms of qubit loss and gate failure are thus inequiv-
alent and with different consequences for the growth of
clusters. Graph codes can be used to make the fusion of
the encoded logical qubits robust against both mechanisms
[4,39–42]. A logical fusion of two encoded qubits is a
measurement providing joint parity checks X X and ZZ.
In contrast to logical single-qubit measurements, this oper-
ation requires physical fusion gates between qubits from
the two codes, i.e., physical fusion gates. Nevertheless, as
we show, these can be readily included with the techniques
developed in previous sections. We consider two different
strategies for it, as illustrated in Fig. 9(a) and described
below.

020328-10

OPTIMIZING GRAPH CODES. . . PRX QUANTUM 4, 020328 (2023)

(a) (b)

FIG. 9. Logical fusion measurements. (a) Two approaches to
perform logical fusion operations are to perform physical fusion
transversally in a ballistic manner (top), or using an adaptive
strategy requiring only a single successful physical fusion and
with single-qubit measurements on the remaining qubits (bot-
tom). (b) The probability of logical fusion psucc is plotted for the
adaptive (solid lines) and transversal (dashed) approaches, for
varying code sizes. Standard physical fusions with 50% success
probability are considered between physical qubits. For compar-
ison, we also report the optimal performance of boosted fusion
measurements (black dotted line) using 2m−1 ancilla qubits for
m ≤ 8.

A. Transversal physical fusions

Considering two identical graphs encoding the log-
ical qubits to be fused, we first consider a ballistic
method where physical fusions are attempted transversally
between all code qubits in one graph and the equiva-
lent qubits in the other, as shown in Fig. 9(a). Each
physical fusion can be successful, fail, or be erased due
to loss of one of the photons with respective probabili-
ties η1/pfail(1 − pfail), η1/pfailpfail, and 1 − η1/pfail . Once all
transversal fusions are performed, the logical fusion is suc-
cessful if the obtained operators can generate both X X
and ZZ, fails if only one of them can be generated, or is
completely lost if neither of them can. We numerically
calculate the probability for each of these three logical
outcomes by considering all possible combinations of the
three outcomes from fusing all n pairs of code qubits in
the graphs. The total logical fusion success probability
is obtained by summing the probability associated to all
combinations that lead to a successful fusion, and simi-
larly for the logical failure and logical loss probability. We
allow the measurement recovered on physical fusion fail-
ure to be chosen independently for each qubit, which is
precompiled using maximum likelihood before runtime to
maximize the probability of successful fusion. We report
in Fig. 9(b) results for logical transversal fusion on the
graphs optimized at subthreshold loss rates for arbitrary
single-qubit measurements up to n = 9 [see Fig. 5(d)].
Despite the approach being nonadaptive, these small codes
present success probabilities that significantly outperform
typical boosted fusion schemes, which we also report in the
black dashed curve, in terms of loss tolerance. For exam-
ple, using standard physical fusions with 50% success

probability, we obtain logical fusion measurements with
success probability psucc > 0.8 for physical loss � = 5%
and psucc > 0.95 at � = 1%.

B. Adaptive physical fusions

A second approach we investigate for logical fusions
is an adaptive strategy based on the ideas introduced for
performing logical arbitrary basis measurements in Sec.
II B. Recall that the SPC identifies pairs of logical oper-
ators that anticommute on a single qubit [22], which we
denote as output qubit. Taking two copies of a graph code,
a logical fusion can be achieved by fusing an identified out-
put qubit with the corresponding qubit in the other graph,
followed by single-qubit measurements on the remain-
ing qubits. The decoder for adaptive fusion is similar to
that presented in Algorithm 2: the idea, in the progeni-
tor graph picture, is to teleport the virtual input qubits of
the two codes into some output qubits, which have been
prefused together. Explicitly, a physical fusion measure-
ment is attempted between pairs of output qubits, and
once a fusion is successful single-qubit Pauli measure-
ments are attempted sequentially on the remaining qubits
of each code, effectively implementing a separate decoder
as in Algorithm 2 for each graph. This approach leads to
improved loss tolerance compared to the transversal case
as, when performing single-qubit measurements, the loss
of either qubit in a pair does not erase the information
obtainable from the other. The use of single-qubit mea-
surements to increase the loss tolerance of logical fusions
has been suggested for tree graphs [42], here we extend to
general graphs.

In Fig. 9 we report the performance of the adaptive strat-
egy using the graphs identified in Sec. II B, which are
optimized for arbitrary single-qubit measurements up to
n = 9 [see Fig. 5(d)]. It can be observed that the adaptive
strategy generally provides better performance compared
to the transversal one and boosted fusions. For example,
using standard physical fusions with 50% success prob-
ability, we can reach logical fusion success probabilities
of psucc = 0.86 already at a physical loss of � = 10%, and
psucc > 0.99 at � = 1%.

VI. APPLICATIONS

To benchmark the tools we develop for analyzing and
optimizing general loss-tolerant graph codes, we investi-
gate how they can be used in two exemplary applications.

A. Optimizing repeater graphs

Repeater graph states (RGSs) have been introduced in
Ref. [11] as an approach to making all-optical two-way
quantum repeaters in a quantum network. The graph struc-
ture originally proposed is shown in Fig. 10(a), and the

020328-11

BELL, PETTERSSON, and PAESANI PRX QUANTUM 4, 020328 (2023)

(a)

(b)

(c)

(d)

FIG. 10. Generalized repeater graph states. (a) Operation of
the N = 3 repeater graph state (RGS, in the yellow box) intro-
duced in Ref. [11]. Single-qubit Pauli and fusion measurements
are performed on qubits to fuse each RGS with its neighbors
at consecutive repeater stations (red boxes). (b) The progenitor
graph construction of RGSs, where logical fusions are performed
at each repeater station between progenitor graphs whose input
qubits have been joined via a controlled-phase gate. (c) General-
ization of RGS states constructed from loss-tolerant graph codes
with n = 4 and n = 8 code qubits. (d) Link success probability as
a function of the physical loss rate for graph codes with adaptive
nonboosted physical fusions (solid lines), with varying numbers
of code qubits, against an instance of the RGS construction with
90 physical qubits (n = 45), shown inset. The yellow qubits are
logically encoded in a tree graph with branching ratios [4, 1].

repeater protocol works by transversely fusing the left-
ward leaf (i.e., single-edged) qubits from a repeater station
with the right-ward leaf qubits from the previous station.
The inner qubits are measured in X if the associated leaf
is the first to be successfully fused, or otherwise in Z to
remove unsuccessful or redundant fusions [11].

This protocol can also be interpreted as sequences of
logical fusion operations described in Sec. V, and can be
readily analyzed in the progenitor graph picture as depicted
in Fig. 10(b). The left-ward and right-ward qubits each
correspond to physical qubits in a graph code encoding
a single logical qubit. Entanglement swapping between
successive repeater stations simply corresponds to a log-
ical fusion operation using the right-ward and left-ward
codes. Within the repeater graph, the transmission of the
logical information between the left-ward and right-ward
codes can be simply described, again using the progeni-
tor graph picture, as adding a link (i.e., a controlled-phase
gate) between the input qubits of the left-ward and right-
ward codes and then measuring both of them in X to
transmit the encoded logical qubit between left and right
[6]. In practice, the inputs are just treated as virtual qubits,
and we directly consider the total repeater graph, i.e., the
graph obtained after the controlled-phase and the X mea-
surements are performed. The probability to successfully
transmit between two consecutive stations thus simply

corresponds to the logical fusion success probability of the
underlying code as analyzed in Sec. V.

For the repeater graph considered in Ref. [11], it is
easy to see that, up to local operations [43], it corresponds
to using tree-graph codes with a branching ratio [N/2, 1]
as both left-ward and right-ward codes [see Fig. 10(b)],
with N the branching of the repeater graph [11]. How-
ever, as discussed in the previous sections, tree codes are
suboptimal for loss tolerance, and better performance can
be obtained using codes optimized for logical fusion suc-
cess probability. Using the construction presented above,
we show in Fig. 10(c) the repeater graphs obtained from
two optimized codes for logical fusion with n = 4 (the
pentagon graph) and n = 8. The metric used in this opti-
mization is the total success probability of the logical
fusion, i.e., the probability to obtain both XX and ZZ. Their
performance with adaptive fusion strategies is reported in
Fig. 10(d), in which we also show for comparison the per-
formance of standard RGSs. We see that comparable link
generation probability can be achieved using general graph
states with vastly fewer physical qubits, compared to tra-
ditional tree-based encodings, showing that our tools can
bring significant improvements in the design of all-optical
repeater schemes.

B. Fusion-based fault-tolerant schemes

Fusion-based quantum computation (FBQC) is a vari-
ant of measurement-based quantum computing where the
computation is performed via probabilistic fusion gates
between separate resource states rather than single-qubit
measurements on large entangled cluster states [4]. It
has been recently introduced as a convenient picture to
describe photonic quantum computation as it facilitates
a direct description of probabilistic fault-tolerant archi-
tectures fusing small resource states, enabling a simple
treatment of failed fusion operations and qubit loss. How-
ever, in the constructions from the original proposals [4],
the per-photon loss thresholds are limited to <1%, also
requiring highly boosted fusions. To improve them, con-
catenating qubits with a (2,2) Shor code was proposed,
whereby a loss-tolerance threshold of 2.7% per photon is
achieved for boosted physical fusions with 75% success
probability. To obtain better performances, we can use the
techniques developed in previous sections to consider con-
catenating resource states with more general graph codes,
as shown in Figs. 11(a) and 11(b).

In FBQC, the XX and ZZ parity measurement outcomes
obtained from qubit fusions are used to construct the pri-
mal and dual syndrome graphs of a RHG lattice. The
probability of logical error of the topological qubit depends
on the probability that XX and ZZ measurement outcomes
are erased. A difference with the logical fusion analyses
performed in previous sections is that now we need to dif-
ferentiate an unsuccessful fusion due to gate failure, where

020328-12

OPTIMIZING GRAPH CODES. . . PRX QUANTUM 4, 020328 (2023)

(a) (b) (c)

FIG. 11. Fusion-based fault tolerance. (a) Construction of a fault-tolerant fusion network for FBQC via fusing six-qubit hexagonal
resource state, from Ref. [4]. (b) Concatenation of the fusion network with graph codes to enable logical fusions tolerant to loss and
failure. (c) Per-photon loss-tolerance thresholds for concatenations with optimized graph codes of varying sizes, using the adaptive
decoding strategy (solid lines) and the transversal strategy (dashed). The performance of the (2,2) Shor encoding presented in Ref. [4]
is also shown as the black dotted line.

only one of XX and ZZ is erased, with the unsuccessful
case due to the loss, where both outcomes are erased. In
fact, randomizing the erased outcome in failed cases as
in Ref. [4], which for general graph codes can be done
via local Clifford operations, a failed fusion still has 50%
chance to provide the outcome required for either the pri-
mal or dual syndrome graph. Therefore, in unsuccessful
cases, we seek to enhance logical failure instead of logical
loss, leading to a different optimization strategy.

To focus on a specific architecture, we consider the
fault-tolerant fusion network constructed from fusing
six-qubit hexagonal resource states from Ref. [4] [see
Fig. 11(a)], which has the highest measurement erasure
threshold amongst the reported FBQC schemes, i.e., 12%.
The loss threshold per photon is then the threshold at
which X X and ZZ erasure probabilities are simultane-
ously suppressed below 12%. Such thresholds in general
also depend on the failure rate of the physical fusions
employed, as boosting the success probability of the gate
requires an increasing number of ancillary photons, none
of which are permitted to be lost. It is therefore important
to consider the trade-off between fusion failure rates and
loss tolerance. These trade-offs result in concave curves
for loss thresholds as a function of physical failure rates
[4], as the ones shown in Fig. 11(c). In our analysis we
optimize graphs considering only standard physical fusion
gates, i.e., with 50% success probability, but for complete-
ness we report the performance also for boosted cases. By
parallelizing the optimization procedure using the Blue-
Crystal high-performance computing cluster, we optimize
for graph states with up to n = 10 (i.e., 11-qubit progenitor
graphs), considering both transversal and adaptive fusions.
The identified graphs, chosen to maximize the resultant
loss-tolerance threshold, are shown in Appendix F, provide
the loss thresholds reported in Fig. 11(c). For the adaptive
approach, the thresholds reach 10.5% for qubit graph codes

with n = 10, considering nonboosted physical fusions, and
4.9% for the transversal approach.

VII. DISCUSSION

We have shown how developing methods to analyze
the measurement-based loss tolerance, as well as error-
correction properties, for arbitrary graph states can provide
logical qubits with significantly higher noise tolerance and
fewer physical qubits. This is observed both for mod-
ules with � 10 qubits and in the asymptotic regime where
orders of magnitude improvements are observed with
respect to tree graphs. An immediate implication of these
results is to show that most of the graph modules currently
considered in various photonic-based applications, such as
tree-based encodings for one-way and two-way quantum
repeater protocols [11–13,44] and Bacon-Shor codes for
logical fusions in FBQC architectures [4], are suboptimal.
Significant improvements can be obtained by using graphs
optimized for the targeted functionality. We illustrate these
advantages for a few applications in Sec. VI, but expect it
to be relevant to improve a large part of photonic quantum
applications based on graph states. To this scope, we make
the Python code utilized for all the analysis in this work
freely accessible [45]. As an example, the per-photon-loss
threshold of 10.5% for fault-tolerant FBQC, obtained con-
sidering only standard nonboosted fusion gates, is a signif-
icant improvement with respect to the previous 2.7% value
with boosted fusions from Ref. [4], potentially bringing
fault tolerance much closer to the capabilities of near-term
photonic hardware. Moreover, this threshold is obtained
considering the fusion network construction from Ref. [4]
based on fusing six-qubit hexagons as resource states,
and we expect it to improve further by developing fusion
networks with higher tolerance to fusion erasure [46].

020328-13

BELL, PETTERSSON, and PAESANI PRX QUANTUM 4, 020328 (2023)

Technologies that are in principle well suited for the
generation of graph codes include all-optical approaches,
which when equipped with feed-forward and multiplex-
ing could generate graph resource states deterministically
[34,35,47], and approaches based on quantum emitters,
where photonic entanglement can be directly generated via
spin-photon interfaces [48–50]. In particular, high-fidelity
spin-photon systems have been recently developed in a
variety of platforms, including quantum dots, supercon-
ducting circuits, atoms in optical cavities, and N-V centers
[51–57], with demonstrations of deterministic generation
of graph states with up to 14 photons [57].

The tools developed here allowed us to identify loss-
tolerant graph codes with minimal requirement in terms of
the number of qubits, and can be readily adapted to incor-
porate hardware-specific restrictions and error models. We
expect such capabilities to be significantly valuable in
developing near-term experiments targeting loss tolerance
in the photonic platform. Such demonstrations will pro-
vide truly loss-tolerant photonic qubits, a milestone yet to
be achieved that promise to unlock important opportunities
for scaling photonic quantum technologies.

ACKNOWLEDGMENTS

We thank B. Brown, H. Shapourian, J.C. Adcock,
A.E. Jones, B. Flynn, J. Borregaard, M.C. Löbl, A.S.
Sørensen, and P. Lodahl for fruitful discussions. T.J.B.
acknowledges support from UK EPSRC (EP/SO23607/1).
S.P. acknowledges funding from the Cisco University
Research Program Fund (nr. 2021-234494) and from the
Marie Skłodowska-Curie Fellowship project QSun (nr.
101063763). Part of this work was carried out using
the computational facilities of the Advanced Computing
Research Centre, University of Bristol [58].

APPENDIX A: DECODERS

1. Loss-only decoding

The decoding strategy for arbitrary basis measurements
on graph codes implemented in this work is outlined in
Algorithm 2, with small modifications to that algorithm for
Pauli basis or fusion measurements. The general strategy
is as follows. Firstly, all possible measurement are initial-
ized. For the case of Pauli measurements, this is simply the
set of logical operators L, whereas for A(θ) or fusion mea-
surements, it is an operator satisfying the SPC [22] on the
progenitor graph for any choice of output qubit, combined
with physical A(θ) or fusion measurements on that qubit.
Inspired by Ref. [22] we construct measurements from
only nontrivial stabilizers and logical operators, i.e., those
which cannot be decomposed into a smaller weight oper-
ator multiplied by a stabilizer with nonoverlapping sup-
port, reducing the number of operators to consider. Then
the optimal first measurement is determined according to

a cost function—typically by choosing the measurement
with the lowest weight, and selecting a random qubit from
its support. On attempting the measurement, the outcome
is recorded (±1 or null for a lost qubit), as well as the
attempted basis. Now the set of available measurements
is updated in response to the outcome, according to Eq.
(2). These three steps are repeated until a measurement
has succeeded or no possible strategies remain. Performing
this search for every configuration of lost qubits consti-
tutes building a decision tree for the decoder offline so
that real-time decoding is simply a look-up table, which is
queried up to n times during measurement of an n-qubit
graph code. The tree is built using a depth-first search,
and the termination conditions of the decoder mean that
not all loss configurations need be examined. Every leaf of
the tree is an outcome of the decoding procedure, with an
associated set of measured qubits A, lost qubits B, and an
outcome ∈ {success, fail}. If we call the set of successful
leaves as Q, the probability of a successful measurement
for the graph state G is

η = F(η) =
∑

q∈Q

Pq(η) =
∑

q∈Q

η|Aq|(1 − η)|Bq|. (A1)

This gives us analytic expressions for the effective trans-
mission rates for various basis measurements on qubits
encoded in graph codes.

2. Loss and unitary errors

At a qubit level, mitigation of unitary errors is done
by measurement of code qubits remaining after the target
measurement has been completed—these are additional
resources that we leverage to gain more information about
the target measurement outcome. The decoder is accord-
ingly adapted such that we no longer terminate after the
loss-only decoder is finished, but instead determine which
additional stabilizer measurements can be implemented
to check the obtained outcome. When the optimal check
measurements have been identified, they are attempted in
succession, and as before after each the strategy is updated
according to its success or failure. This effectively extends
the decision tree, reflecting the increased computational
overhead of simultaneous error and loss correction.

Choosing optimal check measurements is a nontrivial
task. From the set of remaining valid stabilizers, a set of
valid check operators must commute qubitwise with one
another, and with the set of measurements already per-
formed. To choose a check set, we use heuristic methods,
and pick the largest qubitwise commuting set with the
greatest overlap with the target measurement. It should be
noticed that this is not necessarily optimal.

The error-tolerant performance of this approach is deter-
mined numerically. For each successful leaf of the decision
tree, there is an associated target measurement, and a (pos-
sibly empty) set of check measurements. As detailed in

020328-14

OPTIMIZING GRAPH CODES. . . PRX QUANTUM 4, 020328 (2023)

the main text, we consider the phenomenological noise
model, in which Pauli operators are randomly applied to
each code qubit with probability λ. This may result in
flipped measurement outcomes, which is a logical error on
the measurement. To find the probability of a logical error,
we consider all configurations of measurement error on all
code qubits, which are binary strings of length n, denoted
e. Their probability is calculated, for the phenomenolog-
ical model the probability of a flipped Pauli-basis mea-
surement is εPauli = 2λ, as there are two anticommuting
Pauli errors, and for an arbitrary basis measurement εA =
3λ, so Pe = ∑n

i=1 ε
ei
i (1 − εi)

(1⊕ei). The syndrome is found
from the outcomes of the check measurements, Synd(e) =
{π(eCj)}, where j indexes the j th check operator, and
π(x) denotes the parity of the string x. We also determine
whether a logical error occurred on the target measure-
ment, from the parity of e on the target measurement. From
this, we can find the most probable error Pmax on the target
given a particular syndrome, and so given a particular syn-
drome (which occurs with known probability) we correct
for the most likely error pattern, succeeding with proba-
bility Pmax. Summing over all syndromes gives the total
error rate. This process needs to be done for each suc-
cessful leaf of the decision tree, as the target and check
measurements will differ, with the overall performance of
the graph being the logical error probability for each leaf
weighted by the probability of obtaining that configuration
[Eq. (A1)]. Note that for logical arbitrary basis measure-
ments we need to know the signs of two measurements to
correctly decode the result, adding additional difficulty to
the decoding process. Again, the computationally expen-
sive parts of this decoding can be done offline, resulting in
look-up table runtime costs.

APPENDIX B: ADAPTING MEASUREMENT
PATTERNS IN CASCADED AND

CONCATENATED GRAPHS

1. Cascaded graphs

Suppose we want to implement a local Pauli measure-
ment pattern M on a graph G, in order to implement either
an indirect Pauli measurement or a SPF-based teleportation
strategy. How do the required measurements change when
another graph is appended to each qubit of G (except the
input)? The strategies outlined in this work are constructed
from stabilizers, so we can consider how stabilizers from
GU are modified by moving to the cascaded graph. By
decomposing the stabilizer into products of generators as
outlined in Sec. I A, we see that if bt = 0, the modified
measurement on the cascaded graph can have no weight
on GL, as GL is only adjacent to qubit t. bt = 0 addition-
ally implies M [t] = Z or 1, so Z measurements do not
need to be modified when switching to the cascaded graph.
This is intuitive from the graphical perspective as well,
the Zt measurement deletes that vertex from the graph,

and GL is disconnected from GU. For the same reasons,
indirect Zt measurements, denoted Z(ind)

t , can be performed
by measuring qubits in GL only, leading to the improved
loss tolerance of cascaded graphs. If instead bt = 1 and
M [t] = X or Y, the corresponding stabilizer in the cascaded
graph penetrates in to GL. The measurement pattern on
the graph GL is

∏
j ∈N (t) Zj , an indirect X measurement on

qubit t. Any X measurement on an intermediate layer code
qubit therefore requires an additional indirect X basis mea-
surement on deeper qubits, to disentangle them from the
graph. This can be multiplied by any stabilizer of GL + t
that does not include the generator Kt(GL + t), the genera-
tor corresponding to qubit t in the graph (GL + t), to ensure
the measurements in GU are unaffected. If we multiply by
an odd number of stabilizer generators in the neighbor-
hood of t, this alters the required measurement on qubit
t. For an arbitrary basis measurement, we can derive the
measurement update rules by inspecting the changes to
the stabilizers involved in constructing the measurement
pattern (as outlined in Sec. II B). At least one of these sta-
bilizers will include the generator of the output qubit, so
in cascading this generator is modified as for X or Y mea-
surements outlined above. These updates are then given by
Eq. (B1).

X −→ XtX
(ind)

t (GL) or YtY
(ind)
t (GL),

Y −→ YtX
(ind)

t (GL) or XtY
(ind)
t (GL),

Z −→ Zt1GL or 1tZ
(ind)
t (GL),

A −→ AtX
(ind)

t (GL) or ÃtY
(ind)
t (GL),

(B1)

where Ã represents a modified basis. For the cases of X ,
Y, and A the two options are incompatible, so one must
choose which to attempt in advance. It is clear to see that
both the direct and indirect measurements must succeed for
one of these measurements to be successfully performed.
The probability of successfully measuring a qubit in basis
M �= Z becomes

η
(k)
M ,casc = ηF(r(k+1); Gk, M), (B2)

where F(r(k+1); Gk, M) gives the probability of success-
fully performing a logical M basis measurement as a func-
tion r(k+1) = {η(k+1)

X , η(k+1)
Y , η(k+1)

Z , η(k+1)
A } on graph Gk at

depth k in the cascade. η is the physical transmission prob-
ability. This function can be calculated analytically by
considering the small unit graphs that make up the cascade.
For a Z-basis measurement, the two options in Eq. (B1) are
compatible, so we can try both. The logical transmission is
then calculated via

η
(k)
Z,casc = η + (1 − η)F(r(k+1); Gk, Z). (B3)

020328-15

BELL, PETTERSSON, and PAESANI PRX QUANTUM 4, 020328 (2023)

FIG. 12. A Pauli measurement on an intermediate-layer qubit t
has additional requirements when we move to a cascaded graph.
t is a “bottleneck” qubit between the upper and lower graphs
GU, GL. We can find the properties of the casaded graph by con-
sidering the performance of the graphs GU, GL + t for SPF and
indirect Pauli measurements.

2. Concatenated graphs

In concatenated graphs the picture is similar, except now
every every “bottleneck” qubit is a virtual qubit—it has
already been measured in the X basis, and the +1 out-
comes obtained. The only measurement patterns than can
be kept are then those compatible with Xt measurements
(using the same naming conventions as in Fig. 12). For
Pauli-basis measurements, these are simply read off from
Eq. (B1). For the arbitrary basis measurement the situation
is slightly different, as now we choose an output qubit in
the deepest layer of the concatenation. As described in the
main text, we can think of this as teleporting to a depth
k qubit, and then instead of measuring it in the arbitrary
basis, teleporting it deeper into the concatenation via the
already performed X measurement of the virtual bottle-
neck qubits. Hence one can think of measuring the virtual
qubit in an arbitrary basis by performing a teleportation
measurement pattern on the qubits in the k + 1th layer.

X −→ XtX
(ind)

t (GL),

Y −→ XtY
(ind)
t (GL),

Z −→ Z(ind)
t (GL),

A −→ A(ind)
t (GL).

(B4)

It can be seen directly from these expressions that the
effective transmission parameters for virtual qubits at depth
k is simply the probability of performing indirect measure-
ments on qubits in the layer below, so can be recursively
calculated according to the expression

η
(k)
M ,conc = F(r(k+1); Gk, M). (B5)

This form enables us to recover true loss-tolerance thresh-
olds for MBQEC under code concatenation if the F are

(a)

(b)

FIG. 13. Cascaded and concatenated graphs. (a) Logical
against physical loss rates for arbitrary measurements on cas-
caded pentagon graphs. Inset is a depth-2 cascade with 20 phys-
ical qubits (purple qubits are physical). (b) shows the analogous
performance for concatenated pentagons, for which the depth-2
concatenation has 16 physical qubits (purple qubits virtual).

the same for all measurements in the target pattern. This
is seen in the Steane code thresholds for MBQEC Pauli-
basis measurements discussed in the main text, where
F(r; Steane, X) = F(r; Steane, Y) = F(r; Steane, Z).

In Fig. 13 we compare cascaded and concatenated per-
formance for an exemplary graph, here chosen to be the
smallest progenitor graph with loss tolerance for arbitrary
basis measurements—the pentagon graph. Both methods
suppress logical error rates, but we see that the concate-
nated graphs have lower loss rates and fewer code qubits.
In this work we have not considered how to physically real-
ize these modular code constructions—it may be that the
concatenated approach suffers from greater overhead dur-
ing the preparation stage. This would be an interesting and
useful avenue for further investigations.

APPENDIX C: MEASUREMENT
COMPLEMENTARITY PRINCIPLE

By the uncertainty principle, one cannot perform
measurements in different bases on a single qubit

020328-16

OPTIMIZING GRAPH CODES. . . PRX QUANTUM 4, 020328 (2023)

FIG. 14. The optimised graphs for loss-tolerant logical qubit measurements (top), for break-even and subthreshold regimes, and
optimized graphs for logical fusion measurements (bottom).

simultaneously, which has implications for the loss-
tolerance thresholds of quantum codes, in particular that
the thresholds may not exceed 50%. Consider an [[n, 1, d]]
stabilizer code, with stabilizer group S and logical oper-
ators X , Z. If there exists a bipartition of the physical
qubits into sets A1, A2 such that there exist logical opera-
tors whose support is restricted to each set�(X) ⊆ A1 and
�(Z) ⊆ A2, the two logical operators would be simultane-
ously measurable, violating the uncertainty principle. This
shows that every pair of logical operators shares support
on at least one qubit, �(X) ∩�(Z) �= ∅. One could imag-
ine losing the set A2 of physical qubits to a third party.
If either party is able to perform a measurement using
only their qubits, the above argument necessitates that the
other party can only recover the same measurement on
their set. To relate this to loss thresholds, we need to dis-
tinguish between the break-even point and the threshold.
The break-even point refers to the point at which �(�b) =
�b for a given code, whereas the threshold l∗ denotes
the loss below which code concatenation increases the
probability of measurement success. Given a deep concate-
nation, the success probability in the subthreshold regime
approaches 1. The above argument places no restriction on
the break-even point of the codes, but requires that for any
two different measurements P and Q, the loss-tolerance
thresholds must satisfy �∗[P] + �∗[Q] ≤ 1—referred to as
the measurement complementarity principle. Hence, the

threshold for arbitrary basis measurements cannot exceed
50%. This is an analogous restriction to the gate comple-
mentarity principle [31], which applies to the probability
of successfully performing logical gates.

APPENDIX D: LOCAL CLIFFORD EQUIVALENCE

In this work we consider codes up to local Clifford oper-
ations, such that if two codes can be transformed in to
each other by local Clifford operations they are deemed
equivalent. When searching for optimal loss-tolerant codes
we utilize the fact that the loss tolerance of a graph code
using the decoders implemented here is invariant under
these operations. This is seen by examining how graph
codes are modified under local complementation, a graph
transformation, which inverts the neighborhood of a partic-
ular node. Local complementation on a node α of a graph
is equivalent to application of the following local unitary
[18,23] to the graph state.

ULC
α =

√
−iXα

⊗

β∈Nα

√
iZβ , (D1)

where Nα denotes the neighborhood of qubit α. Con-
sider two graph states related via local complementation
|G(2)〉 = ULC

α |G(1)〉. These are the progenitor graphs of two
locally equivalent graph codes. We show here that the loss

020328-17

BELL, PETTERSSON, and PAESANI PRX QUANTUM 4, 020328 (2023)

tolerance of these graph codes is identical. Upon conjuga-
tion with ULC

α the Pauli operators of a qubit q in the graph
transform as

X Y Z 1

q = α X −Z Y 1

q ∈ Nα −Y X Z 1

q �∈ Nα X Y Z 1

This transformation can be used to readily verify the
stabilizer generators of G(1) transform in to the generators
of G(2). The loss tolerance of G(1) under logical measure-
ments in an arbitrary basis is determined by the set of valid
measurement patterns M = {M }, where M = S(1)1 ∪ S(1)2 ,
such that the two stabilizers anticommute on the input and
output, and commute on all other qubits. Each stabilizer
transforms under local complementation according to the
above table, such that the qubit support is invariant, and
any pair of operators, which are (anti)commuting on a par-
ticular qubit remain (anti)commuting on that qubit. This
means S(2)1 ∪ S(2)2 is a valid measurement pattern on G(2),
where S(2)j = ULC

α S(1)j (ULC
α)

†, and there is a bijective rela-
tion between measurements that perform measurement-
based teleportation on graph states. Furthermore, two mea-
surement patterns that were initially compatible remain so,
and the success probability is thus conserved.

In general, a local Clifford operation preserves the bit-
wise commutativity of two Pauli operators, and the com-
patibility of two measurement patterns is determined by
their bitwise commutation properties, so this argument
applies similarly to measurements in Pauli bases, and to
logical Fusion measurements. For Pauli basis measure-
ments, a local complementation of the progenitor graph
may transform a logical Pauli operator in to a different log-
ical Pauli, indeed the locally equivalent graphs depicted
in Fig. 3 perform differently to one another in each basis.
However, the success probability will be conserved when
averaging over Pauli bases, as all logical Paulis that are
the same type in one graph will also be the same type in
the locally equivalent sibling. The caveat to this invariance
is in the decoder implementation. The decoder may make
arbitrary choices between equally “good” measurement
strategies, biasing the probability of performing measure-
ments in particular bases. A decoder based on heuristic
methods may therefore not choose corresponding strate-
gies in locally equivalent graphs, so while their optimal
loss tolerance is the same, their performance could vary in
practice.

APPENDIX E: STABILIZED SPACES UNDER
MEASUREMENT AND LOSS

Consider a stabilizer code with stabilizer S and logical
operators X and Z. Suppose we perform a measurement

M ∈ Pn on the qubits in the code. The reduced stabilizer
group is given by SM = {S ∈ S | [S[i], M [i]] = 0}. For any
two stabilizers S1, S2 in the reduced group, their prod-
uct S3 = S1S2 is also in the group. From the requirement
that [S[i], M [i]] = 0, we obtain that S[i] = M [i] or 1. The
product S[i]

1 S[i]
2 = M [i] or 1 from the properties of Pauli

operators, and we obtain the commutation relations of S3,
[S[i]

3 , M [i]] = [S[i]
1 S[i]

2 , M [i]] = 0 The product element S3 is
therefore in the group, and it is closed. The identity element
trivially remains in the group, and −1 cannot be added to
the group by discarding elements, so the reduced set SM
forms a stabilizer group. The effect of loss is similar, except
for now we retain only stabilizers that act trivially on the
lost set, i.e., if M [i] = �, [S[i], M [i]] ⇐⇒ S[i] = 1. From
this it is straightforward to see, by using the same argument
as above, that the restricted set of stabilizers satisfying this
condition form a stabilizer group.

APPENDIX F: GRAPH LIBRARY

The best-performing graphs for near break-even and
subthreshold measurements are shown in Fig. 14, for mea-
surements in both Pauli and arbitrary bases. Also shown
in Fig. 14 are the graphs that were found to maximise
the loss threshold in the FBQC scheme of Ref. [4]. All
graphs shown are minimum edge representatives of a class
of locally equivalent graphs.

[1] P. Shor, in Proceedings of 37th Conference on Foundations
of Computer Science (1996), p. 56.

[2] D. Gottesman, Stabilizer codes and quantum error correc-
tion, Preprint ArXiv:quant-ph/9705052 (1997).

[3] E. Knill, R. Laflamme, and W. H. Zurek, Resilient quantum
computation, Science 279, 342 (1998).

[4] S. Bartolucci, P. Birchall, H. Bombín, H. Cable, C. Dawson,
M. Gimeno-Segovia, E. Johnston, K. Kieling, N. Nicker-
son, M. Pant, F. Pastawski, T. Rudolph, and C. Sparrow,
Fusion-based quantum computation, Nat. Commun. 14,
912 (2023).

[5] R. Raussendorf, J. Harrington, and K. Goyal, Topological
fault-tolerance in cluster state quantum computation, New
J. Phys. 9, 199 (2007).

[6] M. Varnava, D. E. Browne, and T. Rudolph, Loss Tolerance
in One-Way Quantum Computation via Counterfactual
Error Correction, Phys. Rev. Lett. 97, 120501 (2006).

[7] R. Raussendorf, D. E. Browne, and H. J. Briegel,
Measurement-based quantum computation on cluster
states, Phys. Rev. A 68, 022312 (2003).

[8] M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Nest,
and H.-J. Briegel, Entanglement in graph states and its
applications, Preprint ArXiv:quant-ph/0602096 (2006).

[9] T. Rudolph, Why I am optimistic about the silicon-photonic
route to quantum computing, APL Photonics 2, 030901
(2017).

[10] P. W. Shor, Scheme for reducing decoherence in quantum
computer memory, Phys. Rev. A 52, R2493 (1995).

020328-18

https://arxiv.org/abs/quant-ph/9705052
https://doi.org/10.1126/science.279.5349.342
https://doi.org/10.1038/s41467-023-36493-1
https://doi.org/10.1088/1367-2630/9/6/199
https://doi.org/10.1103/PhysRevLett.97.120501
https://doi.org/10.1103/PhysRevA.68.022312
https://arxiv.org/abs/quant-ph/0602096
https://doi.org/10.1063/1.4976737
https://doi.org/10.1103/PhysRevA.52.R2493

OPTIMIZING GRAPH CODES. . . PRX QUANTUM 4, 020328 (2023)

[11] K. Azuma, K. Tamaki, and H.-K. Lo, All-photonic quantum
repeaters, Nat. Commun. 6, 6787 (2015).

[12] J. Borregaard, H. Pichler, T. Schröder, M. D. Lukin, P.
Lodahl, and A. S. Sørensen, One-Way Quantum Repeater
Based on Near-Deterministic Photon-Emitter Interfaces,
Phys. Rev. X 10, 021071 (2020).

[13] Y. Zhan, P. Hilaire, E. Barnes, S. E. Economou, and S.
Sun, Performance analysis of quantum repeaters enabled by
deterministically generated photonic graph states, Preprint
ArXiv:2209.11430 (2022).

[14] D. Niu, Y. Zhang, A. Shabani, and H. Shapourian, All-
photonic one-way quantum repeaters, Preprint ArXiv:2210.
10071 (2022).

[15] Z. Li, I. Kim, and P. Hayden, Concatenation schemes for
topological fault-tolerant quantum error correction, Preprint
ArXiv:2209.09390 (2022).

[16] D. Schlingemann and R. F. Werner, Quantum error-
correcting codes associated with graphs, Phys. Rev. A 65,
012308 (2001).

[17] D. Schlingemann, Stabilizer codes can be realized as graph
codes, Preprint ArXiv:quant-ph/0111080 (2001).

[18] M. Hein, J. Eisert, and H. J. Briegel, Multiparty entangle-
ment in graph states, Phys. Rev. A 69, 062311 (2004).

[19] M. Rossi, M. Huber, D. Bruß, and C. Macchiavello, Quan-
tum hypergraph states, New J. Phys. 15, 113022 (2013).

[20] A. Paetznick and B. W. Reichardt, Universal Fault-Tolerant
Quantum Computation with Only Transversal Gates and
Error Correction, Phys. Rev. Lett. 111, 090505 (2013).

[21] B. J. Brown and S. Roberts, Universal fault-tolerant
measurement-based quantum computation, Phys. Rev. Res.
2, 033305 (2020).

[22] S. Morley-Short, M. Gimeno-Segovia, T. Rudolph, and H.
Cable, Loss-tolerant teleportation on large stabilizer states,
Quantum Sci. Technol. 4, 025014 (2019).

[23] M. Van den Nest, J. Dehaene, and B. De Moor, Graphical
description of the action of local Clifford transformations
on graph states, Phys. Rev. A 69, 022316 (2004).

[24] L. E. Danielsen and M. G. Parker, On the classification of
all self-dual additive codes over GF(4) of length up to 12,
J. Comb. Theory Ser. A 113, 1351 (2006).

[25] J. C. Adcock, S. Morley-Short, A. Dahlberg, and J. W.
Silverstone, Mapping graph state orbits under local com-
plementation, Quantum 4, 305 (2020).

[26] R. Raussendorf and H. J. Briegel, A One-Way Quantum
Computer, Phys. Rev. Lett. 86, 5188 (2001).

[27] M. A. Nielsen, Quantum computation by measurement and
quantum memory, Phys. Lett. A 308, 96 (2003).

[28] B. Eastin and E. Knill, Restrictions on Transversal Encoded
Quantum Gate Sets, Phys. Rev. Lett. 102, 110502 (2009).

[29] S. Bravyi and R. König, Classification of Topologically
Protected Gates for Local Stabilizer Codes, Phys. Rev. Lett.
110, 170503 (2013).

[30] A. M. Steane, Error Correcting Codes in Quantum Theory,
Phys. Rev. Lett. 77, 793 (1996).

[31] N. Nickerson and H. Bombín, Measurement based fault
tolerance beyond foliation, Preprint ArXiv:1810.09621
(2018).

[32] S. Beigi, I. Chuang, M. Grassl, P. Shor, and B. Zeing,
Graph concatenation for quantum codes, J. Math. Phys. 52,
022201 (2011).

[33] M. Varnava, D. E. Browne, and T. Rudolph, Loss toler-
ant linear optical quantum memory by measurement-based
quantum computing, New J. Phys. 9, 203 (2007).

[34] D. E. Browne and T. Rudolph, Resource-Efficient Linear
Optical Quantum Computation, Phys. Rev. Lett. 95, 010501
(2005).

[35] M. Gimeno-Segovia, P. Shadbolt, D. E. Browne, and
T. Rudolph, From Three-Photon Greenberger-Horne-
Zeilinger States to Ballistic Universal Quantum Computa-
tion, Phys. Rev. Lett. 115, 020502 (2015).

[36] W. P. Grice, Arbitrarily complete Bell-state measurement
using only linear optical elements, Phys. Rev. A 84, 042331
(2011).

[37] F. Ewert and P. van Loock, 3/4-Efficient Bell Measure-
ment with Passive Linear Optics and Unentangled Ancillae,
Phys. Rev. Lett. 113, 140403 (2014).

[38] A. Olivo and F. Grosshans, Ancilla-assisted linear optical
Bell measurements and their optimality, Phys. Rev. A 98,
042323 (2018).

[39] P. Hilaire, L. Vidro, H. S. Eisenberg, and S. E. Economou,
Near-deterministic hybrid generation of arbitrary photonic
graph states using a single quantum emitter and linear
optics, Preprint ArXiv:2205.09750 (2022).

[40] F. Schmidt and P. van Loock, Efficiencies of logical
Bell measurements on Calderbank-Shor-Steane codes with
static linear optics, Phys. Rev. A 99, 062308 (2019).

[41] S.-W. Lee, T. C. Ralph, and H. Jeong, Fundamental building
block for all-optical scalable quantum networks, Phys. Rev.
A 100, 052303 (2019).

[42] P. Hilaire, E. Barnes, S. E. Economou, and F. Grosshans,
Error-correcting entanglement swapping using a practi-
cal logical photon encoding, Phys. Rev. A 104, 052623
(2021).

[43] Formally, the common RGS is an N -qubit fully connected
interior, with leaf qubits on each interior qubit [11]. An
identically performing graph (with the exact same decoding
procedure) is the graph with a “crazy graph” interior, each
with a leaf qubit, which is shown in Fig. 10(a). The progeni-
tor graphs of each of these are the graph with N/2 + 1-qubit
fully connected interior (including the input node) and
leaves on each code qubit, and the tree graph with branch-
ing ratios [N/2, 1], respectively. These progenitor graphs
are locally equivalent and thus have identical loss-tolerance
performance.

[44] P. Hilaire, E. Barnes, and S. E. Economou, Resource
requirements for efficient quantum communication using
all-photonic graph states generated from a few matter
qubits, Quantum 5, 397 (2021).

[45] https://github.com/tomjbell/LTdecode.
[46] S. Paesani and B. J. Brown, High-threshold quantum com-

puting by fusing one-dimensional cluster states, Preprint
ArXiv:2212.06775 (2022).

[47] S. Bartolucci, P. M. Birchall, M. Gimeno-Segovia, E.
Johnston, K. Kieling, M. Pant, T. Rudolph, J. Smith, C.
Sparrow, and M. D. Vidrighin, Creation of entangled pho-
tonic states using linear optics, Preprint ArXiv:2106.13825
(2021).

[48] N. H. Lindner and T. Rudolph, Proposal for Pulsed On-
Demand Sources of Photonic Cluster State Strings, Phys.
Rev. Lett. 103, 113602 (2009).

020328-19

https://doi.org/10.1038/ncomms7787
https://doi.org/10.1103/PhysRevX.10.021071
https://arxiv.org/abs/2209.11430
https://arxiv.org/abs/2210.10071
https://arxiv.org/abs/2209.09390
https://doi.org/10.1103/PhysRevA.65.012308
https://arxiv.org/abs/quant-ph/0111080
https://doi.org/10.1103/PhysRevA.69.062311
https://doi.org/10.1088/1367-2630/15/11/113022
https://doi.org/10.1103/PhysRevLett.111.090505
https://doi.org/10.1103/PhysRevResearch.2.033305
https://doi.org/10.1088/2058-9565/aaf6c4
https://doi.org/10.1103/PhysRevA.69.022316
https://doi.org/10.1016/j.jcta.2005.12.004
https://doi.org/10.22331/q-2020-08-07-305
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1016/S0375-9601(02)01803-0
https://doi.org/10.1103/PhysRevLett.102.110502
https://doi.org/10.1103/PhysRevLett.110.170503
https://doi.org/10.1103/PhysRevLett.77.793
https://arxiv.org/abs/1810.09621
https://doi.org/10.1063/1.3534799
https://doi.org/10.1088/1367-2630/9/6/203
https://doi.org/10.1103/PhysRevLett.95.010501
https://doi.org/10.1103/PhysRevLett.115.020502
https://doi.org/10.1103/PhysRevA.84.042331
https://doi.org/10.1103/PhysRevLett.113.140403
https://doi.org/10.1103/PhysRevA.98.042323
https://arxiv.org/abs/2205.09750
https://doi.org/10.1103/PhysRevA.99.062308
https://doi.org/10.1103/PhysRevA.100.052303
https://doi.org/10.1103/PhysRevA.104.052623
https://doi.org/10.22331/q-2021-02-15-397
https://github.com/tomjbell/LTdecode
https://arxiv.org/abs/2212.06775
https://arxiv.org/abs/2106.13825
https://doi.org/10.1103/PhysRevLett.103.113602

BELL, PETTERSSON, and PAESANI PRX QUANTUM 4, 020328 (2023)

[49] S. E. Economou, N. Lindner, and T. Rudolph, Opti-
cally Generated 2-Dimensional Photonic Cluster State from
Coupled Quantum Dots, Phys. Rev. Lett. 105, 093601
(2010).

[50] M. Gimeno-Segovia, T. Rudolph, and S. E. Economou,
Deterministic Generation of Large-Scale Entangled Pho-
tonic Cluster State from Interacting Solid State Emitters,
Phys. Rev. Lett. 123, 070501 (2019).

[51] M. H. Appel, A. Tiranov, S. Pabst, M. L. Chan, C. Starup,
Y. Wang, L. Midolo, K. Tiurev, S. Scholz, A. D. Wieck, A.
Ludwig, A. S. Sørensen, and P. Lodahl, Entangling a Hole
Spin with a Time-Bin Photon: A Waveguide Approach for
Quantum Dot Sources of Multiphoton Entanglement, Phys.
Rev. Lett. 128, 233602 (2022).

[52] N. Tomm, A. Javadi, N. O. Antoniadis, D. Najer, M. C.
Löbl, A. R. Korsch, R. Schott, S. R. Valentin, A. D. Wieck,
A. Ludwig, and R. J. Warburton, A bright and fast source of
coherent single photons, Nat. Nanotechnol. 16, 399 (2021).

[53] J. Arjona Martínez, R. A. Parker, K. C. Chen, C. M.
Purser, L. Li, C. P. Michaels, A. M. Stramma, R. Debroux,
I. B. Harris, M. Hayhurst Appel, E. C. Nichols, M. E.
Trusheim, D. A. Gangloff, D. Englund, and M. Atatüre,
Photonic Indistinguishability of the Tin-Vacancy Center

in Nanostructured Diamond, Phys. Rev. Lett. 129, 173603
(2022).

[54] I. Schwartz, D. Cogan, E. R. Schmidgall, Y. Don, L. Gantz,
O. Kenneth, N. H. Lindner, and D. Gershoni, Deterministic
generation of a cluster state of entangled photons, Science
354, 434 (2016).

[55] N. Coste, D. Fioretto, N. Belabas, S. C. Wein, P. Hilaire,
R. Frantzeskakis, M. Gundin, B. Goes, N. Somaschi,
M. Morassi, A. Lemaître, I. Sagnes, A. Harouri, S. E.
Economou, A. Auffeves, O. Krebs, L. Lanco, and P. Senel-
lart, High-rate entanglement between a semiconductor spin
and indistinguishable photons, Preprint ArXiv:2207.09881
(2022).

[56] K. Tiurev, M. H. Appel, P. L. Mirambell, M. B. Lauritzen,
A. Tiranov, P. Lodahl, and A. S. Sørensen, High-fidelity
multiphoton-entangled cluster state with solid-state quan-
tum emitters in photonic nanostructures, Phys. Rev. A 105,
L030601 (2022).

[57] P. Thomas, L. Ruscio, O. Morin, and G. Rempe, Efficient
generation of entangled multiphoton graph states from a
single atom, Nature 608, 677 (2022).

[58] Advanced Computing Research Centre, University of Bris-
tol, http://www.bristol.ac.uk/acrc/.

020328-20

https://doi.org/10.1103/PhysRevLett.105.093601
https://doi.org/10.1103/PhysRevLett.123.070501
https://doi.org/10.1103/PhysRevLett.128.233602
https://doi.org/10.1038/s41565-020-00831-x
https://doi.org/10.1103/PhysRevLett.129.173603
https://doi.org/10.1126/science.aah4758
https://arxiv.org/abs/2207.09881
https://doi.org/10.1103/PhysRevA.105.L030601
https://doi.org/10.1038/s41586-022-04987-5
http://www.bristol.ac.uk/acrc/

	I.. GRAPH CODES
	A.. Encoding a logical qubit
	B.. Measurement-based decoding
	C.. Effects of qubit loss

	II.. LOSS-TOLERANT LOGICAL MEASUREMENTS WITH GRAPH CODES
	A.. Loss-tolerant logical Pauli measurements
	B.. Logical measurements in an arbitrary basis

	III.. MEASUREMENT-BASED ERROR CORRECTION IN LOSS-TOLERANT GRAPHS
	IV.. EXTENDING TO LARGER GRAPHS BY MODULARIZATION
	A.. Cascaded graphs
	B.. Concatenated graphs

	V.. LOGICAL GRAPH-STATE FUSIONS
	A.. Transversal physical fusions
	B.. Adaptive physical fusions

	VI.. APPLICATIONS
	A.. Optimizing repeater graphs
	B.. Fusion-based fault-tolerant schemes

	VII.. DISCUSSION
	. ACKNOWLEDGMENTS
	. APPENDIX A: DECODERS
	1.. Loss-only decoding
	2.. Loss and unitary errors

	. APPENDIX B: ADAPTING MEASUREMENT PATTERNS IN CASCADED AND CONCATENATED GRAPHS
	1.. Cascaded graphs
	2.. Concatenated graphs

	. APPENDIX C: MEASUREMENT COMPLEMENTARITY PRINCIPLE
	. APPENDIX D: LOCAL CLIFFORD EQUIVALENCE
	. APPENDIX E: STABILIZED SPACES UNDER MEASUREMENT AND LOSS
	. APPENDIX F: GRAPH LIBRARY
	. REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 33.84000
 33.84000
 33.84000
 33.84000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 9.00000
 9.00000
 9.00000
 9.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

