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Quantum dynamics can be simulated on a quantum computer by exponentiating elementary terms from
the Hamiltonian in a sequential manner. However, such an implementation of Trotter steps has gate com-
plexity depending on the total Hamiltonian term number, comparing unfavorably to algorithms using
more advanced techniques. We develop methods to perform faster Trotter steps with complexity sub-
linear in the number of terms. We achieve this for a class of Hamiltonians whose interaction strength
decays with distance according to power law. Our methods include one based on a recursive block encod-
ing and one based on an average-cost simulation, overcoming the normalization-factor barrier of these
advanced quantum simulation techniques. We also realize faster Trotter steps when certain blocks of
Hamiltonian coefficients have low rank. Combining with a tighter error analysis, we show that it suf-
fices to use

(
η1/3n1/3 + n2/3/η2/3

)
n1+o(1) gates to simulate uniform electron gas with n spin orbitals and η

electrons in second quantization in real space, asymptotically improving over the best previous work. We
obtain an analogous result when the external potential of nuclei is introduced under the Born-Oppenheimer
approximation. We prove a circuit lower bound when the Hamiltonian coefficients take a continuum range
of values, showing that generic n-qubit two-local Hamiltonians with commuting terms require at least
�(n2) gates to evolve with accuracy ε = �(1/poly(n)) for time t = �(ε). Our proof is based on a gate-
efficient reduction from the approximate synthesis of diagonal unitaries within the Hamming weight-2
subspace, which may be of independent interest. Our result thus suggests the use of Hamiltonian struc-
tural properties as both necessary and sufficient to implement Trotter steps with lower gate complexity.
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I. INTRODUCTION

Many-body Hamiltonians can be efficiently simulated
on digital quantum computers using either product for-
mulas (such as the Lie-Trotter-Suzuki formulas) or more
advanced simulation algorithms. While short steps of prod-
uct formulas (known as Trotter steps) typically require an
implementation cost proportional to the number of Hamil-
tonian terms, a host of techniques have been developed
in recent years to implement other quantum simulation
algorithms with significantly reduced complexities.
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The purpose of this work is to develop methods for
performing Trotter steps that go beyond the sequential cir-
cuit implementation mentioned above, leading to faster
quantum simulation algorithms. We focus on two-local
Hamiltonians with power-law decaying interactions—all-
to-all interactions whose strengths decay with distance x
according to a power law 1/xα (α > 0)—for concrete-
ness. Many systems of physical relevance can be modeled
by power-law interactions, such as trapped ions, Rydberg
atoms, ultracold atoms and molecules, nitrogen-vacancy
centers, and superconducting systems.

We first develop a block-encoding-based method to sim-
ulate power-law Hamiltonians with efficiently computable
coefficients. While a block encoding introduces a slow-
down factor proportional to the 1-norm of Hamiltonian
coefficients, which is large for power-law interactions, we
overcome this barrier by recursively decomposing the sys-
tem using product formulas to effectively reduce the norm.
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We obtain further improvements by simulating commut-
ing Hamiltonian terms with an average combination cost.
This gives simulations with complexities almost linear in
the spacetime volume for α ≥ 2 and improved scalings for
α < 2. We also implement faster Trotter steps when cer-
tain off-diagonal blocks of Hamiltonian coefficients exhibit
low-rank properties. In particular, we achieve a nearly
linear spacetime volume scaling for all α ≥ 1 using a
recursive low-rank decomposition of the Hamiltonian. We
extend our recursion techniques to κ-local Hamiltonians
and more general fermionic models. In these cases, the
exact complexity is determined by the tensor structure of
the Hamiltonian coefficients and depends on the problem
at hand.

We apply our methods to simulate electronic structure
Hamiltonians in second quantization in real space. Com-
bining with a tight Trotter error analysis, we show that(
η1/3n1/3 + n2/3/η2/3

)
n1+o(1) gates suffice to simulate uni-

form electron gas with n spin orbitals and η electrons,
improving the best results from previous work. An anal-
ogous result holds when the external potential of nuclei is
included from the Born-Oppenheimer approximation.

Performing faster Trotter steps for Hamiltonians with
arbitrary coefficients is a challenging task in general. To
confirm this intuition, we prove a gate-complexity lower
bound. Specifically, we construct a class of n-qubit two-
local Hamiltonians with commuting Pauli-Z terms whose
coefficients take a continuum range of values. We show
that these Hamiltonians require at least�(n2) gates to sim-
ulate with accuracy ε = �(1/ poly(n)) for time t = �(ε);
thus the best method one can hope for is to sequentially
exponentiate all the �(n2) terms. Our proof depends on a
gate-efficient reduction from the approximate synthesis of
diagonal unitaries within the Hamming weight-2 subspace,
which we then address by adapting a volume-comparison
technique from previous work. Our result thus suggests
the use of structural properties of the target Hamiltonian
as both necessary and sufficient to achieve lower gate
complexity for implementing Trotter steps.

A. Quantum algorithms for quantum simulation

Simulating many-body physical systems is one of the
most promising applications of digital quantum computers.
Indeed, the idea of quantum computing as originally pro-
posed by Feynman [1], Manin [2], and others is strongly
motivated by quantum simulation. Efficient quantum sim-
ulations can be used to extract statical and dynamical prop-
erties of physical systems, which has potential applications
in various areas, such as condensed-matter physics [3],
chemistry [4–6], and high-energy physics [7]. Meanwhile,
recent developments in quantum simulation algorithms
have also provided technical tools that influenced the
design of other quantum algorithms [8–12] and proofs of
other results in areas beyond quantum computing [13–17].

There are many quantum algorithms one can use to per-
form quantum simulation. At a high level, these algorithms
can be categorized according to their default input models.
Common Hamiltonian input models include the following:
(i) Linear combinations of Hermitians (LCH), where the
target Hamiltonian takes the form

H =
�∑

γ=1

Hγ , (1)

with Hγ Hermitian and the exponentials e−itHγ imple-
mentable on a quantum computer. Simulation algorithms
that work in this input model include one based on prod-
uct formulas [18,19] (such as the Lie-Trotter formula and
its higher-order extensions), as well as a more recent
algorithm based on random sampling [20]; and (ii) lin-
ear combinations of unitaries (LCU), where the target
Hamiltonian takes the form

H =
�∑

γ=1

βγUγ , (2)

with Uγ unitary, βγ > 0 and the controlled operators
|0〉〈0| ⊗ I + |1〉〈1| ⊗ Uγ implementable on a quantum
computer. There are also various algorithms working in the
LCU model, including one based on implementing trun-
cated Taylor series [21] and one based on qubitization [22].
For our purpose, we mainly focus on the algorithm based
on product formulas as well as the qubitization algorithm,
which we review in more detail in Secs. II B and II C.

Naturally, there is no silver-bullet method that solves
all simulation problems of interest with the optimal gate
complexity. Choices of algorithms should thus be made
on a case-by-case basis. There are in fact a few common
desirable features shared among many algorithms men-
tioned above. For instance, it has been well known that
many LCU approaches such as the Taylor-series algorithm
and qubitization have complexities (nearly) linear in the
simulation time and logarithmic in the inverse accuracy.
But similar scalings can also be achieved using product
formulas by taking linear combinations of formulas with
different step sizes and repetition numbers [23]. LCU-
type algorithms also have the appealing feature that they
can be used to design other functions of Hamiltonians
[24], which applies to problems beyond quantum simula-
tion [11,25], such as solving linear systems of equations
[8,26], preparing ground states [10,27,28], and perform-
ing phase estimation [25,29]. Again, these problems can
be well solved using algorithms in the LCH model (and
can sometimes be more resource friendly) as demonstrated
in recent work, such as Refs. [30,31].

However, there is one question concerning the gate com-
plexities of implementing these approaches, which has not
been satisfactorily answered so far. View a sufficiently
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long-time Hamiltonian evolution as a concatenation of
short-time steps, and consider the complexity of simulat-
ing each short evolution. Then a host of techniques are
recently developed to implement LCU approaches with
cost depending on the target system size as opposed to
the number of Hamiltonian terms [32,33]; a similar goal
may be realized for the randomized method via an impor-
tance sampling [20,34,35]. By contrast, how to provably
achieve a similar complexity for product formulas was
somewhat under investigated: we review related work on
the implementation of Trotter steps in Sec. I B.

For an n-qubit system with two-local interactions, one
has that the total number of terms scales like�(n2) but the
system size is only linear in n. This comparison becomes
�(nκ) versus n for a κ-local Hamiltonian. In light of this
gap, it is natural to ask when and how one can imple-
ment product formulas with cost scaling better than the
sequential method. We address this question by present-
ing necessary and sufficient conditions under which faster
Trotter steps are possible. As an application, we give a
simulation algorithm for electronic structure Hamiltoni-
ans in second quantization in real space with complexity(
η1/3n1/3 + n2/3/η2/3

)
n1+o(1)—asymptotically the fastest

real-space simulation to date.

B. Previous related work

We now discuss prior work on implementing Trotter
steps that are relevant to our paper.

First, there are previous studies on the so-called fast-
forwardability of Hamiltonian evolution [36–39]. Some
of those techniques, such as introducing efficiently com-
putable phases and diagonalizing quadratic Hamiltonians,
can also be used to perform Trotter steps. However, their
fundamental goal is quite different from ours. In quantum
fast-forwarding, one is asked to simulate the target Hamil-
tonian for a sufficiently long time, and the goal is to reduce
the scaling of time in the gate complexity (potentially at
the cost of increasing the system-size scaling). In contrast,
each Trotter step approximates only the ideal evolution for
a short time, and so the scaling with time is no longer a key
contribution to the complexity. Instead, our main goal here
is to reduce the dependence on the size of the simulated
system.

For electronic structure models represented under arbi-
trary basis, the number of terms in the Hamiltonian typi-
cally scales like �(n4) for n spin orbitals, so a sequential
implementation of Trotter steps would have cost scaling
�(n4). To address this, recent work developed quantum
circuits based on low-rank factorizations of such systems
[40,41] (see Refs. [42,43] for more recent developments of
such a method). Specifically, they apply product formulas
to decompose the Hamiltonian into multiple components,
each of which has coefficients with certain low-rank prop-
erties and can be further implemented by diagonalization.

The gate complexity of the resulting circuits would then
depend on the value of rank as opposed to the number of
Hamiltonian terms, which significantly reduces the cost
per time step. However, those works did not rigorously
analyze the total complexity of the proposed methods, and
it is unclear how much overall advantage their approach
can offer. In fact, their factorization does not seem to
preserve the commutation relations between Hamiltonian
terms and could potentially introduce a Trotter error larger
than the sequential approach (so more Trotter steps would
be required to reach the same simulation accuracy).

Another related approach to reducing the complexity
of quantum simulation is to truncate Hamiltonian terms
of small sizes. Such truncations are useful for not only
performing Trotter steps [44–46], but also implementing
more advanced quantum simulation algorithms [47–49].
Generally speaking, the error introduced in the trunca-
tion will grow linearly with time, so the simulation is
accurate only when the evolution is sufficiently short.
In particular, for rapidly decaying power-law interactions
with exponent α > 2, a truncation is possible only when
t = O (

n(α−2)/(α−1)
)

[44]. For simulations of chemistry and
material models, truncation thresholds can often be deter-
mined empirically under certain assumptions of the model
Hamiltonians.

Here, our work considers simulating two-local Hamil-
tonians with interaction strength decaying according to
power law, and we study the cost of implementing one
short Trotter step as well as the entire long-time sim-
ulation, using the so-called block-encoding technique
and recursive and hierarchical low-rank decompositions
[50,51]. Our motivation for using the low-rank decomposi-
tion partly overlaps with that of a recent work by Nguyen
et al. [52], but the main problems we study are different.
Instead of Hamiltonian simulation, they studied the block
encoding of kernel matrices of the form

K =
n∑

j ,k=1

βj ,k|j 〉〈k|, (3)

where βj ,k can be power-law functions such as 1/|j − k|α .
The matrix K is an n-dimensional operator and has spec-
tral norm ‖K‖ = ‖β‖ = �(1) for α > 1 [53]. Instead, our
problem centers around the simulation of

H =
n∑

j ,k=1

βj ,kXj Yk, (4)

which is a 2n-dimensional operator and has spectral norm
generally scaling with the vector 1-norm of coefficients:
‖H‖ = �(‖β‖1) = �(n) for α > 1. Thus, a naive block
encoding of our H will have an intrinsically worse normal-
ization factor than that of their K ; see Sec. II C for further
explanations of how such normalization factors affect the
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complexity of quantum simulation. Nevertheless, we over-
come this technical obstacle by recursively decomposing
the Hamiltonian using product formulas, which signifi-
cantly reduces the 1-norm while maintaining the overall
scaling of gate count.

Finally, we note that there is a large body of previous
work analyzing and optimizing the concrete resources for
implementing Trotter steps, for both near-term and fault-
tolerant quantum computers (see Refs. [3,54,55] as well as
other work citing and cited by these papers). We do not
attempt to optimize the constant factors of the complexity
of our methods, but we consider such optimizations to be
an interesting subject for future investigation.

C. Faster Trotter steps by recursion

Consider a Hamiltonian H with � terms H = ∑�
γ=1 Hγ .

If each Hamiltonian term can be exponentiated on a quan-
tum computer with cost O(1), then one can simulate the
evolution of H for a short time using product formulas, and
the complexity would scale like O(�). We identify scenar-
ios in which improved implementations of Trotter steps are
possible with gate complexities sublinear in �.

We focus on a class of two-local Hamiltonians in one
spatial dimension with all-to-all interactions and magni-
tude of the coefficients decaying with distance x accord-
ing to power law 1/xα (α > 0). We describe how our
results can be extended to higher spatial dimensions in
Appendix C, and to more general local and fermionic mod-
els (though the amount of improvement largely depends on
the tensor structure of the Hamiltonian coefficients, which
has not been fully understood). We restrict to power-law
models because product formulas are known to provide the
fastest method for simulating this class of Hamiltonian, so
we can directly compare our result with the state of the art.
Examples of power-law interactions include the Coulomb
interaction between charged particles and the dipole-dipole
interaction between molecules, both of which are ubiqui-
tous in quantum chemistry—a primary target application
of quantum computation. In physics, impressive controls
in recent experiments with trapped ions [56,57], Ryd-
berg atoms [58], and ultracold atoms and polar molecules
[59,60] have enabled the possibility to study new phases
of matter with power-law interactions [61–66] and con-
tributed to a growing interest in simulating such systems.
In fact, we describe a direct application of our method
in Sec. VI for faster simulations of electronic structure
Hamiltonians in real space.

Assume that the coefficients of the target Hamiltonian
are efficiently computable. As explained above, there have
been a host of techniques developed recently based on the
notion of block encoding, which enables simulation with
complexities depending only on the system size. One may
ask if these techniques also lead to faster Trotter steps with

a similar cost scaling. Unfortunately, the answer is nega-
tive in general. This is because a block encoding typically
introduces a normalization factor proportional to the 1-
norm of the Hamiltonian coefficients, and we thus need to
repeat a corresponding number of times to perform Trot-
ter steps. For instance, one can block-encode power-law
Hamiltonians with gate complexity �(n), but this intro-
duces a normalization factor proportional to the 1-norm,
which is generally �(n) for power-law interactions with
α > 1. Meanwhile, a Trotter step for the power-law mod-
els has an almost constant evolution time. So one roughly
needs a total number of

n︸︷︷︸
block encoding

· n︸︷︷︸
effective time

= n2
︸︷︷︸

Trotter step complexity

(5)

gates to implement a single Trotter step, which has no ben-
efit over the sequential implementation. See Sec. III A for
a more detailed explanation of this issue [67].

We develop a method based on block encoding that
overcomes the above technical issue. The key observation
is that product formulas can be used to reduce the 1-norm
of Hamiltonian coefficients “almost for free”: we apply
product formulas to recursively decompose the Hamil-
tonian into multiple groups, but such a coarse-grained
decomposition introduces a Trotter error no larger than
the sequential approach. We choose the decomposition
to significantly reduce the 1-norm of each group while
maintaining the overall scaling of the gate complexity,
giving an efficient block-encoding circuit. The resulting
simulation has gate complexity (nt)1+o(1) when α ≥ 2,
and n3−α+o(1)t1+o(1) when α < 2. We formally state this
theorem as Theorem 1 in Sec. III and preview it below.

Theorem 1: (Faster Trotter steps using block encoding).
Consider two-local Hamiltonians

H =
∑

σ ,σ ′∈{i,x,y,z}

∑

1≤j<k≤n

β
(σ ,σ ′)
j ,k P(σ )j P(σ

′)
k ,

where
∣∣∣β(σ ,σ ′)

j ,k

∣∣∣ ≤ 1/|j − k|α for some constant α > 0 and

P(σ ) (σ = i,x, y, z) are the identity and Pauli matrices.
Let t > 0 be the simulation time and ε > 0 be the target
accuracy. Assume that the coefficient oracle

Oβ,σ ,σ ′ |j , k, 0〉 = |j , k,β(σ ,σ ′)
j ,k 〉 (6)

can be implemented with gate complexity O (polylog
(nt/ε)). Then H can be simulated using the algorithm
of Sec. III C with O (log(nt/ε)) ancilla qubits and gate
complexity

nt
( nt
ε

)o(1) , α ≥ 2,

n3−αt
( nt
ε

)o(1) , 0 < α < 2.
(7)
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The Hamiltonian decomposition we study has an addi-
tional feature that all the terms within each group com-
mute with each other. Such terms can be simulated from
block encodings of their subcomponents with an aver-
age combination cost, similar to the interaction-picture
simulation [26,68] but without an exponentially growing
factor. We leverage this observation to further improve
the complexity to n2−α/2+o(1)t1+o(1) for 1 ≤ α < 2 and
n5/2−α+o(1)t1+o(1) for α < 1. We summarize our result in
Theorem 2 previewed in the following and describe the
details in Sec. IV.

Theorem 2: (Faster Trotter steps using average-cost sim-
ulation). Consider two-local Hamiltonians

H =
∑

σ ,σ ′∈{i,x,y,z}

∑

1≤j<k≤n

β
(σ ,σ ′)
j ,k P(σ )j P(σ

′)
k ,

where
∣∣∣β(σ ,σ ′)

j ,k

∣∣∣ ≤ 1/|j − k|α for some constant α > 0 and

P(σ ) (σ = i,x, y, z) are the identity and Pauli matrices.
Let t > 0 be the simulation time and ε > 0 be the target
accuracy. Assume that the coefficient oracle

Oβ,σ ,σ ′ |j , k, 0〉 = |j , k,β(σ ,σ ′)
j ,k 〉 (8)

can be implemented with gate complexity O (polylog
(nt/ε)). Then H can be simulated using the algorithm
of Sec. IV C with O (log(nt/ε)) ancilla qubits and gate
complexity

n2−α/2t
( nt
ε

)o(1) , 1 ≤ α < 2,

n5/2−αt
( nt
ε

)o(1) , 0 < α < 1.
(9)

We also realize faster Trotter steps when certain blocks
of Hamiltonian coefficients exhibit low-rank properties.
Such assumptions were studied in the context of block-
encoding kernel matrices [52]. Under the same hierarchical
low-rank assumptions [50,51], we directly implement the
diagonalization procedure without using block encoding

to achieve gate complexity (nt)1+o(1) nearly linear in the
spacetime volume for all α ≥ 1. This is summarized in
Theorem 3 and restated below. See Sec. V for details.
We summarize our improvements (in a simplified form) in
Table I for simulating power-law Hamiltonians in general
d spatial dimensions.

Theorem 3: (Faster Trotter steps using low-rank decom-
position). Consider two-local Hamiltonians

H =
∑

σ ,σ ′∈{i,x,y,z}

∑

1≤j<k≤n

β
(σ ,σ ′)
j ,k P(σ )j P(σ

′)
k ,

where
∣∣∣β(σ ,σ ′)

j ,k

∣∣∣ ≤ 1/|j − k|α for some constant α > 0 and

P(σ ) (σ = i,x, y, z) are the identity and Pauli matrices.
Let t > 0 be the simulation time and ε > 0 be the target
accuracy. Then H can be simulated using the algorithm
of Sec. V B with O (log(nt/ε)) ancilla qubits and gate
complexity

ρnt
( nt
ε

)o(1) , α ≥ 1,
ρn2−αt

( nt
ε

)o(1) , 0 < α < 1.
(10)

Here, 1 ≤ ρ ≤ n defined in Eq. (127) is the maximum trun-
cation rank of certain off-diagonal blocks of coefficient
matrices (ρ = O (log(nt/ε)) if the coefficient distribution
exactly matches a power law in one spatial dimension).

Although we achieve various speedups for simulating
power-law Hamiltonians based on different techniques, we
use recursion in the development of all our methods, and
the core idea behind our improvements can all be under-
stood through the so-called “master theorem” [69–72].
Specifically, to solve a problem of size n using recursion,
we divide the problem into m subproblems, each of which
can be seen as an instance of the original problem of size

TABLE I. Comparison of our results and the best previous results for simulating power-law interactions 1/xα in d spatial dimensions.
Upper bounds are used for some gate complexity expressions for presentational purpose. The truncation result of Ref. [44] holds only
for a sufficiently short time and is thus not compared here. Both the block encoding and the average-cost simulation method assume that
the coefficients of the Hamiltonian are efficiently computable. The low-rank method has a dependence on the maximum truncation rank
1 ≤ ρ ≤ n, which is polylogarithmic in the input parameters for all power-law models in one spatial dimension and many power-law
models, such as Coulomb interactions in higher spatial dimensions.

Method Hamiltonian

α ≥ 2d d ≤ α < 2d 0 < α < d

Sequential [44] n2+o(1)t1+o(1) n2+o(1)t1+o(1) n3−α/d+o(1)t1+o(1)

Block encoding (Sec. III) (nt)1+o(1) n3−α/d+o(1)t1+o(1) n3−α/d+o(1)t1+o(1)

Average cost (Sec. IV) — n2−α/2d+o(1)t1+o(1) n5/2−α/d+o(1)t1+o(1)

Low rank (Sec. V) ρ(nt)1+o(1) ρ(nt)1+o(1) ρn2−α/d+o(1)t1+o(1)
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n/m, so

costrec(n) = m costrec

( n
m

)
+ cost(n), (11)

where cost(n) quantifies the additional cost to combine
solutions of the subproblems in the current layer of recur-
sion and costrec(n) denotes the total cost of the recur-
sion. Then the master theorem asserts that, under certain
assumptions of the cost function, the scaling of costrec(n)
is the same as that of cost(n) up to a logarithmic factor, i.e.,

costrec(n) = O (cost(n) log(n)+ n) .

See Lemma 1 of Sec. II A for a more formal description of
this result. However, performing the combination step can
often be much simpler than directly solving the full prob-
lem, and one then expects to get a better costrec(n) when
cost(n) is improved. We show that improved recursions
are indeed possible for power-law systems by reducing the
normalization factor of the Hamiltonian and by exploit-
ing low-rank properties of certain blocks of the Hamilto-
nian coefficients, leading to faster quantum simulation by
recursion.

The electronic structure Hamiltonian is one of the most
widely studied candidate models in quantum simulation
[4–6]. An efficient simulation of such Hamiltonians could
provide insights to various problems in chemistry and
material science. Here, we focus on a simulation in real
space, an idea investigated by Kassal et al. [73] and sub-
sequently pursued by later work, such as Refs. [74–78].
Although the full Hamiltonian does not satisfy power laws,
the Coulomb potential part can be represented in second
quantization with the magnitude of coefficients decaying
as 1/x, to which our method applies. In particular, we
can choose ρ = O (log(nt/ε)) in the low-rank decomposi-
tion [79] to efficiently implement Trotter steps. Combining
with an improved Trotter error analysis, we show that(
η1/3n1/3 + n2/3/η2/3

)
n1+o(1) gates suffice to simulate the

uniform electron gas with n spin orbitals and η electrons;
we obtain an analogous result when the external poten-
tial of nuclei is introduced under the Born-Oppenheimer
approximation. This improves the best previous results for
simulating electronic structures. We describe this applica-
tion in Sec. VI, with the improved Trotter error analysis
detailed in Appendix B.

D. Circuit lower bound

It is worth noting that all our above methods hold under
certain additional assumptions on the target Hamiltonian:
we assume that either the Hamiltonian coefficients are effi-
ciently computable or certain blocks of them have low
rank. If no such structural properties are available, we
are then faced with Hamiltonians with arbitrary coeffi-
cients, and intuitively there would be no implementation
of Trotter steps better than the sequential method.

We prove a circuit lower bound to justify this intuition.
Specifically, we consider a class of two-local Hamiltonians
of the form

H =
∑

1≤j<k≤n

βj ,kZj Zk, (12)

where Zj denotes the Pauli-Z operator on the j th qubit
and coefficients are arbitrarily chosen from a continuum
range of values |βj ,k| ≤ t. Subclasses of such Hamiltonians
are of interest in areas beyond quantum simulation [80].
Even for such commuting H , we show the gate-complexity
lower bound �

(
n2/ log(b|K|)) to evolve with accuracy

ε = �(1/ poly(n)) for t = �(ε), using quantum circuits of
b ≥ n qubits with a gate set K of finite size |K|. For circuits
with a continuous gate set, we can first compile them using
a finite universal gate set (say applying the Clifford+T syn-
thesis [81] or the Solovay-Kitaev theorem [82]) and invoke
the above bound. We discuss the circuit lower bounds in
detail in Sec. VII with the result summarized in Corollary
1 and previewed here.

Corollary 1: (Simulating two-local commuting Hamilto-
nians). Consider two-local Hamiltonians

H =
∑

1≤j<k≤n

βj ,kZj Zk,

where coefficients take values up to |βj ,k| ≤ t. Given accu-
racy 0 < ε < 1/3, number of qubits b ≥ n, and two-qubit
gate set K of finite size |K|, if t = �(ε),

min {g | ∀2-local Hamiltonian H , ∃ circuit V on

b qubits with g gates from K,
∥∥e−iH − V

∥∥ ≤ ε
}

= �

(
n2

log
(
b|K|) − n polylog

(n
ε

))

. (13)

Under the same assumption but choosing K to be the set
of arbitrary two-qubit gates,

min {g | ∀2-local Hamiltonian H , ∃ circuit V on

b qubits with g gates from K,
∥∥e−iH − V

∥∥ ≤ ε
}

= �

(
n2

log b
− n polylog

(n
ε

))
. (14)

Underpinning our circuit lower bound proof is an effi-
cient reduction from the approximate synthesis of diago-
nal unitaries within the Hamming weight-2 subspace, up
to a gate overhead of O (n polylog(n/ε)). We describe
this reduction in Sec. VII B (with the circuit illustrated
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in Fig. 4). The Hamming weight-2 subspace has dimen-
sions

(n
2

) = �(n2), so our problem is reduced to studying
diagonal operators

Dθmax =
{
∑

x

eiθx |x〉〈x|, |θx| ≤ θmax

}

(15)

for �(n2) values of x. We then show in Sec. VII A that
such diagonal unitaries require roughly n2 gates to approx-
imately implement, generalizing a previous lower bound
for exact synthesis due to Bullock and Markov [83,84].
See also recent work [85] for a related bound expressed
in terms of measure. Our argument is based on an adaption
of a technique of Knill [86]. Knill proved asymptotic cir-
cuit lower bounds for synthesizing the full unitary group
using a volume-comparison technique, but here we con-
sider only diagonal unitaries whose volume can be easily
evaluated in closed form (see Sec. II D). The volume of
diagonal unitaries predominantly depends on the dimen-
sionality �(n2), which leads to our desired lower bound
scaling.

Additionally, we prove a second lower bound in
Appendix A showing that any approximate realization of
the coefficient oracle Oβ requires �(n2) gates in the worst
case. Combining both our upper and lower bounds, we
conclude that the use of structural properties of the Hamil-
tonian is both necessary and sufficient to achieve lower
gate complexity for implementing Trotter steps.

We briefly summarize in Sec. II the preliminaries of our
paper and present in Sec. VIII a collection of questions
related to our result for future work.

II. PRELIMINARIES

A. Notation and terminology

We now introduce notation and terminology to be used
in the remainder of our paper.

We use lowercase Latin letters as well as the Greek
alphabet (in both upper and lower cases) to denote scalars,
and we save uppercase Latin letters for matrices and oper-
ators. For instance, we use n for the system size, t for
the evolution time (assuming t > 0 without loss of gen-
erality), ε for the simulation accuracy, and we write H
to denote the target Hamiltonian, X , Y, Z to denote Pauli
operators, and I to denote the identity matrix. When dis-
cussing fermionic Hamiltonians, we use A†, A, and N to
represent fermionic creation, annihilation, and occupation-
number operators, respectively [87]. We write the commu-
tator of matrices B and C as [B, C] := BC − CB when the
multiplications are well defined. When multiplying non-
commutative quantities, we use abbreviations like

∏n
j =1 to

denote the ordering where the smallest index appears on
the right, e.g.,

∏n
j =1 Uj = Un · · · U1. We let a summation

be zero and a product be one if their lower limits exceed the

upper limits. We interchangeably use the decimal represen-
tation |x〉 (x = 0, . . . , 2n − 1) and the binary representation
|xn−1, . . . , x0〉 (xj = 0, 1) of computational basis states if no
ambiguity arises.

We also construct vectors of scalars and operators and
use subscripts to index them, e.g., βj ,k and Zj . We then
define the transpose operation β�

j ,k := βk,j . Our focus is
on simulating two-local systems throughout the paper,
so the Hamiltonian coefficients will typically have no
more than two subscript indices. We assume that coef-
ficients in an n-qubit Hamiltonian can be represented in
binary using O(log(nt/ε)) bits, for otherwise we may trun-
cate the binary representation and simulate the truncated
Hamiltonian with error at most O(ε).

Our analysis requires various norms defined for vec-
tors and matrices. For [βj ,k], we define the vector
1-norm ‖β‖1 := ∑

j ,k |βj ,k|, the max-norm ‖β‖max :=
maxj ,k |βj ,k|, the Euclidean norm ‖β‖ :=

√∑
j ,k |βj ,k|2

and the induced 1-norm |||β|||1 := maxj
∑

k |βj ,k|. We also
need a restricted version of the induced 1-norm defined as

|||β|||1,[η] := max
j

max
k1<···<kη

(∣∣βj ,k1

∣∣+ · · · + ∣∣βj ,kη

∣∣) . (16)

By definition, this norm |||β|||1,[η] sums only the largest η
elements in a row (maximized over all rows), and is thus
always upper bounded by the induced 1-norm. We see later
in the quantum chemistry application that the gap between
these two norms can be significant. We use ‖B‖ to denote
the operator norm of B; this is also known as the spectral
norm and its value is given by the largest singular value
of B.

We use calligraphic uppercase letters to denote
(un)structured sets. For instance, we use H to represent
an arbitrary finite-dimensional Hilbert space with (normal-
ized) quantum states |ψ〉 ∈ H (we write Cm or Rm if the
dimensionality m is explicitly provided). Given an under-
lying n-qubit system, we denote Wη to be the subspace
spanned by computational basis states with Hamming
weight η (dim(Wη) = (n

η

)
); Wη also denotes the subspace

spanned by states with η particles for second-quantized
fermionic systems. We may then define the operator norm
restricted to the Hamming weight-η subspace

‖B‖Wη
:= max

|φη〉,|ψη〉∈Wη

∣∣〈φη|B|ψη〉
∣∣ (17)

for an arbitrary n-qubit operator B. Given [βj ,k] and a col-
lection B ⊆ Z × Z of pairs of indices (u, v), we define the
restricted max-norm and 1-norm as

‖β‖max,B := max
(u,v)∈B

∣
∣βu,v

∣
∣ , ‖β‖1,B :=

∑

(u,v)∈B

∣
∣βu,v

∣
∣ .

(18)
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And as introduced earlier, the set Dθmax is the set of
diagonal unitaries with phase angles between −θmax and
θmax.

We say an operator G : G → H is an isometry if G†G =
I . By definition, G is necessarily injective and G† is
necessarily surjective, whereas GG† is an orthogonal pro-
jection on H with image im(GG†) = im(G) and kernel
ker(GG†) = ker(G†). We thus obtain the Hilbert-space iso-
morphism G ∼= im(GG†) ⊆ H specified by the operators G
and G†. Choosing any orthonormal basis that respects this
isomorphism, we have the matrix representation

G =
[

I
0

]
, G†= [

I 0
]

. (19)

Examples of isometries include the following: (i) unitary
operators U; (ii) quantum states |ψ〉; (iii) tensor product
G1 ⊗ G2 if G1 and G2 are isometries; and (iv) composition

G2G1 if G1 and G2 are isometries and the composition is
well defined. Isometries will be used later in Sec. II C to
describe block encodings and the qubitization algorithm.

Finally, we use O(·) and �(·) to mean asymptotically
bounded above and below respectively, write �(·) if both
relations hold, and use the tilde symbol to suppress poly-
logarithmic factors. This is similar to the notation of a
previous work on Trotter error analysis [44], except we do
not need their O(·) for order conditions. To analyze the
scaling of functions satisfying recurrence relations, we use
the following version of the master theorem adapted from
Refs. [69–72].

Lemma 1: (Master theorem). Let cost, costrec : Z≥1 →
R≥0 be non-negative functions defined for positive inte-
gers, such that there exist constant γ ≥ 0, m1, m2 ∈ Z≥1,
and n0 ∈ Z≥1 for which

costrec(n) ≤ γ , 1 ≤ n ≤ n0,
costrec(n) ≤ m1 costrec

(
� n

m1+m2
�
)

+ m2 costrec

(
� n

m1+m2
�
)

+ cost(n), n > n0. (20)

If cost(n) = O (
nc logk(n)

)
for some c ≥ 0 and k ∈ Z≥0,

then

costrec(n) =

⎧
⎪⎨

⎪⎩

O (n) , 0 ≤ c < 1,
O (

n logk+1(n)
)

, c = 1,
O (

nc logk(n)
)

, c > 1.
(21)

Thus, we have costrec(n) = O (cost(n) log(n)+ n) in all
the cases.

B. Product formulas

Consider a Hamiltonian given in the LCH form H =∑�
γ=1 Hγ . We can well approximate the evolution under

H for a short time using product formulas with error
high order in time. A longer evolution can then be simu-
lated by repeating the short-time steps. Product formulas
provide a simple yet surprisingly efficient approach to
quantum simulation. Indeed, recent work has shown that
product formulas: (i) can simulate geometrically local lat-
tice systems [88] with nearly optimal gate complexity
[89]; (ii) have the lowest asymptotic cost for electronic
structure Hamiltonians in second quantization in the plane-
wave basis [87]; and (iii) are advantageous for simulating
general κ-local Hamiltonians [44] (although our work
achieves further improvements regarding this last point).
In addition, product formulas have also been widely used
in classical simulations of quantum systems and in areas
beyond quantum computing [90].

By definition, the cost of the product-formula approach
is determined by both the repetition number of short-time
steps and the complexity of implementing each step. To
elaborate, first consider a simple example where we use
the Lie-Trotter formula e−itBe−itA to simulate a two-term
Hamiltonian H = A + B. Then it holds that

e−itBe−itA − e−it(A+B)

=
∫ t

0
dτ1

∫ τ1

0
dτ2e−i(t−τ1)(A+B)e−iτ1B

× eiτ2B[iB, iA
]
e−iτ2Be−iτ1A, (22)

which implies the Trotter error bound

∥∥e−itBe−itA − e−it(A+B)
∥∥ ≤ t2

2
‖[A, B]‖ . (23)

This approximation error is small for a sufficiently short-
time Trotter step. For a longer simulation, we apply r
repetitions of the same step with time t/r, obtaining

∥∥
∥
(
e−i(t/r)Be−i(t/r)A)r − e−it(A+B)

∥∥∥

≤ r
∥∥e−i(t/r)Be−i(t/r)A − e−i(t/r)(A+B)

∥∥ ≤ t2

2r
‖[A, B]‖ .

(24)

020323-8



COMPLEXITY OF IMPLEMENTING TROTTER STEPS PRX QUANTUM 4, 020323 (2023)

To achieve an error at most ε, it thus suffices to take

r =
⌈‖[A, B]‖ t2

2ε

⌉
. (25)

We now have a total of 2r elementary exponentials, where
r is the number of Trotter steps determined by the error
bound Eq. (23).

In general, we can simulate the Hamiltonian H =∑�
γ=1 Hγ using a pth-order product formula Sp(t), where

p is a positive integer that can be arbitrarily large. Similar
to above, we need to bound the cost of implementing Trot-
ter steps, as well as the repetition number r, which is in
turn determined by the analysis of Trotter error. We intro-
duce the following Trotter error bound with a commutator
scaling established by Ref. [44]. Although Trotter error
analysis can be further tightened using additional assump-
tions of the quantum simulation problem [91–99], those
improvements are not relevant to our results and are not
further discussed here.

Lemma 2: (Trotter error with commutator scaling). Let H = ∑�
γ=1 Hγ be a Hamiltonian in the LCH form and Sp(t) be

a pth-order product formula with respect to this decomposition. We have

∥∥Sp(t)− e−itH
∥∥ = O

⎛

⎝
�∑

γ1,γ2,...,γp+1=1

∥∥∥
[
Hγp+1 , . . .

[
Hγ2 , Hγ1

]]∥∥∥ tp+1

⎞

⎠ . (26)

Furthermore, if H is a fermionic Hamiltonian in second quantization and Hγ are number preserving,

∥∥Sp(t)− e−itH
∥∥
Wη

= O
⎛

⎝
�∑

γ1,γ2,...,γp+1=1

∥∥∥
[
Hγp+1 , . . .

[
Hγ2 , Hγ1

]]∥∥∥
Wη

tp+1

⎞

⎠ . (27)

We denote the sum of nested commutators as

βcomm :=
�∑

γ1,γ2,...,γp+1=1

∥∥∥
[
Hγp+1 , . . .

[
Hγ2 , Hγ1

]]∥∥∥ . (28)

Then to simulate for time t with accuracy ε, it suffices to
take r = O (

βcomm
1/p t1+1/p/ε1/p

)
, which simplifies to

r = βcomm
o(1)t1+o(1)

εo(1) (29)

by choosing p sufficiently large. For the fermionic case, we
can simply replace the spectral norm ‖·‖ by its restriction
to the Hamming weight-η subspace ‖·‖Wη

.
A sequential implementation of Trotter steps has an

asymptotic cost of O(�), giving total gate complexity
O(r�). The purpose of this work is to identify conditions
under which the cost of Trotter steps does not explic-
itly scale with �. We present three methods, one based
on the block-encoding technique (Sec. III), one based on
an average-cost simulation (Sec. IV) and one based on
a recursive low-rank decomposition (Sec. V). We review
the basic notion of block encoding as well as the related
qubitization algorithm in the next subsection.

C. Block encoding and qubitization

Block encodings, together with the related qubitization
algorithm, provide a versatile framework for simulating
Hamiltonians in the LCU form and beyond. Such tech-
niques enable quantum simulation with a complexity linear
in the evolution time and logarithmic in the inverse accu-
racy [100], and can be extended to solve problems other
than simulation [11,25] (although these goals are some-
times also achievable via product formulas as explained
in Sec. I A). In addition, these techniques have been uti-
lized by recent work to design classical algorithms for
simulating quantum systems [101].

To explain the idea of block encoding and qubitiza-
tion, we use the notion of isometries. Specifically, consider
two isometries G0 : G0 → H, G1 : G1 → H and a unitary
U : H → H. We say an operator B : G0 → G1 is block
encoded by G0, G1, and U if

B = G†
1UG0. (30)

Of course, this unitary dilation is mathematically feasi-
ble if and only if ‖B‖ ≤ 1 [102, 2.7.P2]. However, there
are many scenarios where additional normalization factors
will be introduced when such block encodings are realized
by quantum circuits. If we choose two bases with respect to
the orthogonal decompositions H = im(G0G†

0)k im(I −
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G0G†
0) = im(G1G†

1)k im(I − G1G†
1) with k being the

orthogonal direct sum, then U has a matrix representation
that looks like

U =
[

B ·
· ·

]
, (31)

where B is exhibited as the top-left matrix block; hence the
name block encoding.

For quantum simulation, we fix G0 = G1 = G to be the
target system space and we let G†

1UG0 be Hermitian to rep-
resent physical Hamiltonians. Then, we have the following
qubitization algorithm to perform quantum simulation of
block-encoded operators [22].

Lemma 3: (Hamiltonian simulation by qubitization). Let G0, G1 : G → H be isometries and U : H → H be a unitary
such that G†

1UG0 is Hermitian. Given a target evolution time t and accuracy ε, there exists a unitary Vϕ : C2 ⊗ C2 ⊗ H →
C2 ⊗ C2 ⊗ H parameterized by angles ϕ1, . . . ,ϕr such that

∥∥∥∥∥

(

〈+| ⊗ 〈0| ⊗ G†
0+〈1| ⊗ G†

1√
2

)

Vϕ

(
|+〉 ⊗ |0〉 ⊗ G0 + |1〉 ⊗ G1√

2

)
− e−itG†

1UG0

∥∥∥∥∥
≤ ε. (32)

The number of steps r is an even integer with the asymptotic scaling

r = O
(

t + log
(

1
ε

))
, (33)

and Vϕ is explicitly defined as

Vϕ :=
r/2−1∏

k=0

(
V†
ϕ2k+2

Vϕ2k+1

)
,

Vϕj := (
e−iϕj Z/2 ⊗ I

)
(|+〉〈+| ⊗ I + |−〉〈−| ⊗ V)

(
eiϕj Z/2 ⊗ I

)
,

V := (X ⊗ I)
(|0〉〈0| ⊗ U + |1〉〈1| ⊗ U†)

(

I − 2
|0〉 ⊗ G0 + |1〉 ⊗ G1√

2

〈0| ⊗ G†
0+〈1| ⊗ G†

1√
2

)

. (34)

Note that by our definition of O, the complexity expression Eq. (33) is valid for t sufficiently large and ε sufficiently
small. This expression may be modified if other parameter regimes are of interest.

To simulate an n-qubit Hamiltonian H = ∑�
γ=1 βγUγ in the LCU form, we define

G : C
2n → C

� ⊗ C
2n

, G = 1
√‖β‖1

�∑

γ=1

√
βγ |γ 〉 ⊗ I ,

U : C
� ⊗ C

2n → C
� ⊗ C

2n
, U =

�∑

γ=1

|γ 〉〈γ | ⊗ Uγ ,

(35)

which implies

G†UG : C
2n → C

2n
, G†UG = H

‖β‖1
. (36)

We thus see that the target Hamiltonian is block encoded
by G (a state preparation subroutine) and U (an operator
selection subroutine), but with a normalization factor that

depends on the vector 1-norm ‖β‖1, which slows down
quantum simulation. To approximate e−itH , we then need
to invoke Lemma 3 with an effective evolution time of
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‖β‖1 t. This implies that the number of steps will now
scale as

r = O
(

‖β‖1 t + log
(

1
ε

))
. (37)

The preparation of a �-dimensional state naively requires
O(�) gates to implement [103] and the selection of �
terms has cost O(�) [3, Appendix G.4], assuming each
controlled-Uγ has constant cost. This gives a total com-
plexity of O(r�) for qubitization.

Having introduced the qubitization algorithm, we now
make a few remarks about its circuit implementation.

First, qubitization approximately simulates the time evo-
lution with a certain probability, and both the approxima-
tion error and the success probability can be analyzed using
the condition Eq. (32). Indeed, an argument based on the
triangle inequality shows that the qubitization algorithm
succeeds with probability at least (1 − ε)2 ≥ 1 − 2ε, and
the postmeasurement state has an error at most

√
1 + ε −√

1 − ε ≤ √
2ε [3, Lemma G.4 and Appendix H.1]. It

therefore suffices to adjust the value of ε to meet the
desired error and probability requirements.

Second, in our above LCU example, we define G and
U that faithfully block encode H/ ‖β‖1. More realisti-
cally, we may consider state preparation and operator
selection circuits that have lower cost but introduce error
to the block encoding. Specifically, suppose G̃†ŨG̃ =
H̃/

∥∥β̃
∥∥

1, then we are effectively block encoding an erro-
neous Hamiltonian with error growing at most linearly in
time:

∥∥∥e−it‖β̃‖1G̃†ŨG̃ − e−itH
∥∥∥ ≤ t

∥∥H − H̃
∥∥. And we can

suppress this error accordingly by increasing the accuracy
of block encoding.

We focus on the complexity of the state preparation and
operator selection subroutines for the remainder of our
paper. There is also an additional cost in qubitization to
implement the operations in between these subroutines, but
that cost is typically logarithmic in � and makes only a
mild contribution to the total gate complexity. In particu-
lar, one can check that this holds for our block encodings
of power-law Hamiltonians to be described in Sec. III
and Sec. IV. So there is no loss of rigor to ignore this
subdominant contribution in our analysis.

Finally, we point out that a host of techniques have
been recently developed to improve the circuit implemen-
tation of block encoding and qubitization over the naive
approach. For instance, if the target Hamiltonian consists
of tensor product of Pauli operators, then the selection sub-
routine U = U† is both unitary and Hermitian, so we can
reduce 1 ancilla from the qubitization circuit in Lemma
3. Even when this Hermitian condition is not satisfied,
one may still improve the implementation of the bidirec-
tional control |0〉〈0| ⊗ U + |1〉〈1| ⊗ U† using explicit struc-
tures of U. Also, the qubitization algorithm we introduce
in Lemma 3 is mainly for dynamical simulation. When

qubitization is used as a subroutine in quantum phase
estimation, we need only to implement the operator V in
Eq. (34) as opposed to the full circuit [104–106]. There
are also some flexibilities about block encoding the LCU
Hamiltonian beyond the standard approach of Eq. (35),
such as allowing garbage registers [107], performing unary
encodings [21], or using even more advanced circuit com-
pilation tricks [108]. Additionally, given a block encoding
G0, G1 : G → H and U : H → H, there always exists uni-
tary W : H → H such that WG1 = G0. Any such W satis-
fies G†

1UG0 = G†
0(WU)G0 and hence gives an alternative

block encoding with only one isometry, simplifying the
circuit implementation.

But perhaps the most significant improvement comes
from the following observation: terms in the LCU Hamil-
tonian are sometimes indexed by vectors with a product
structure, i.e.,

Uγ = Uγ1 · · · Uγs , γj = 1, . . . ,�1/s. (38)

In this case, the selection subroutine takes a product form

�∑

γ=1

|γ 〉〈γ | ⊗ Uγ

=
�1/s∑

γ1,...,γs=1

|γ1 · · · γs〉〈γ1 · · · γs| ⊗ Uγ1 · · · Uγs (39)

and can be implemented with complexity O(s�1/s) as
opposed to O(�). Meanwhile, we can sometimes exploit
the structure of Hamiltonian coefficients to also perform
the preparation subroutine faster than the naive approach.
This then yields a step of qubitization with complexity
sublinearly in the number of terms �.

However, the above discussion ignored the scaling of
the normalization factor ‖β‖1, which determines the num-
ber of repetition steps and is still the bottleneck of qubiti-
zation. In fact, the reduction of the 1-norm has been the
central technical problem studied by many recent work of
quantum simulation [32,33,109,110]. We show in Sec. III
that this 1-norm can be significantly reduced using product
formulas “almost for free,” which leads to new methods for
simulating power-law Hamiltonians that improve the state
of the art.

D. Volume of diagonal unitaries

In this section, we review techniques for computing the
volume of a parameterized object in a high-dimensional
Euclidean space. In particular, we compute the volume of
diagonal unitaries with phase angles taking a continuum
range of values between −θmax and θmax, which will be
used later in Sec. VII to prove our circuit lower bound.
These calculations can be seen as generalizations of line
and surface integrals defined for low-dimensional spaces.
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Let M ⊂ Rm be a subset and f : M → Rq (m ≤ q)
be a mapping. Here, f = [f1 · · · fq] consists of q scalar
functions and we can think of it as a parameterized descrip-
tion of a high-dimensional geometrical object, where M
is the set of all possible parameters. Then, given a subset
of parameters A ⊂ M, we may compute the volume of
f (A) as

vol (f (A)) =
∫

A
dθ
√

det(Gf ), (40)

where Gf is the Gramian whose element in the xth row and
yth column is given by the inner product

[
∂f1
∂θx

· · · ∂fq
∂θx

]
⎡

⎢⎢
⎣

∂f1
∂θy
...
∂fq
∂θy

⎤

⎥⎥
⎦ . (41)

For the above formula to hold mathematically, we require
that M is open, A is Lebesgue measurable, and f is
continuously differentiable and injective on A. We refer
the reader to standard analysis textbooks for a detailed
explanation of this formula [111,112].

Now, consider the set of diagonal unitaries

Dθmax :=
{

m−1∑

x=0

eiθx |x〉〈x|, |θx| ≤ θmax < π

}

. (42)

We may view them as objects in the Euclidean space R2m

by choosing the parameterization

f (θ0, . . . , θm−1)

= [
cos θ0 sin θ0 · · · cos θm−1 sin θm−1

]
. (43)

Then, the Gramian matrix is simply the identity matrix

Gf =

⎡

⎢⎢
⎣

− sin θ0 cos θ0 0 0 · · · 0 0
0 0 − sin θ1 cos θ1 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · − sin θm−1 cos θm−1

⎤

⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

− sin θ0 0 · · · 0
cos θ0 0 · · · 0

0 − sin θ1 · · · 0
0 cos θ1 · · · 0
...

...
...

...
0 0 · · · − sin θm−1
0 0 · · · cos θm−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

= I ,

(44)

and as a result we obtain the volume formula

vol
(Dθmax

) = (2θmax)
m . (45)

Alternatively, we may also consider the mapping

ϕ : θ = [θ0 · · · θm−1] �→
m−1∑

x=0

eiθx |x〉〈x| (46)

that parameterizes all diagonal unitaries with phase angles
−π ≤ θx < π . This is a bijection, and we may define the
pushforward measure on the set of diagonal unitaries using
the Lebesgue measure λ as

ϕ∗(λ)(B) = λ(ϕ−1(B)). (47)

The measure ϕ∗(λ) can be verified to be invariant under
multiplication and, up to a constant factor, is the unique
Haar measure for the group of diagonal unitaries. This then
gives the volume ϕ∗(λ)

(Dθmax

) = (2θmax)
m the same as

our previous formula.

III. FASTER TROTTER STEPS USING BLOCK
ENCODING

We now introduce our first method to perform faster
Trotter steps based on block encoding. The structure of
this section is as follows. We describe how to reduce
the 1-norm of Hamiltonian terms using product formulas
in Sec. III A, removing the bottleneck of the qubitiza-
tion algorithm. We then give a circuit implementation of
the preparation and selection subroutines in Sec. III B,
assuming that the Hamiltonian coefficients are efficiently
computable. This gives simulations with complexity nearly
linear in the spacetime volume for power-law exponent
α ≥ 2. Readers who wish to see the overall algorithm may
skip ahead to Sec. III C.

A. Reducing the 1-norm of Hamiltonian coefficients

Consider an n-qubit Hamiltonian H = ∑
1≤j<k≤n Hj ,k,

where Hj ,k are two-local terms acting nontrivially only
on sites j and k with norm

∥∥Hj ,k
∥
∥ ≤ 1/|j − k|α . Our aim

is to implement Trotter steps using block encodings and
qubitization. To this end, we rewrite the Hamiltonian in
the Pauli basis:
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H =
∑

1≤j<k≤n

β
(xx)
j ,k Xj Xk +

∑

1≤j<k≤n

β
(xy)
j ,k Xj Yk +

∑

1≤j<k≤n

β
(xz)
j ,k Xj Zk +

∑

1≤j<k≤n

β
(yx)
j ,k Yj Xk +

∑

1≤j<k≤n

β
(yy)
j ,k Yj Yk

+
∑

1≤j<k≤n

β
(yz)
j ,k Yj Zk +

∑

1≤j<k≤n

β
(zx)
j ,k Zj Xk +

∑

1≤j<k≤n

β
(zy)
j ,k Zj Yk +

∑

1≤j<k≤n

β
(zz)
j ,k Zj Zk +

∑

1≤j ≤n

β
(x)
j Xj

+
∑

1≤j ≤n

β
(y)
j Yj +

∑

1≤j ≤n

β
(z)
j Zj + β(i)I , (48)

where the coefficients have the scaling [44, Theorem H.1]

β
(σ ,σ ′)
j ,k = O

(
1

|j − k|α
)

, β
(σ)
j =

⎧
⎪⎨

⎪⎩

O(1), α > 1,
O(log n), α = 1,
O(n1−α), 0 < α < 1,

β(i) =

⎧
⎪⎨

⎪⎩

O(n), α > 1,
O(n log n), α = 1,
O(n2−α), 0 < α < 1,

(49)

for σ �= σ ′ ∈ {x, y, z}. Since β(i)I commutes with all the
other terms and its evolution only introduces a global
phase, we may separate out this term without introducing
error. We then use product formulas to make a coarse-
grained decomposition of the remaining evolution into
exponentials of 12 groups of terms. The commutator norm
Eq. (28) corresponding to this decomposition has the
scaling [44, Theorem H.2]

βcomm
o(1) =

{
no(1), α ≥ 1,
n1−α+o(1), 0 < α < 1,

(50)

which implies

r =
{

no(1)t1+o(1)

εo(1) , α ≥ 1,
n1−α+o(1)t1+o(1)

εo(1) , 0 < α < 1.
(51)

In particular, the Trotter error bound corresponding to this
coarse-grained decomposition is never larger than that of
the fine-grained decomposition [in which all �(n2) terms
are split].

Note that all on-site terms from the same group pair-
wise commute and can be exponentiated with complexity
O(n). So without loss of generality, we consider only
Hamiltonians of the form [113]

H =
∑

1≤j<k≤n

βj ,kXj Yk. (52)

The coefficients of this Hamiltonian have vector 1-norm
scaling like [44, Lemma H.1]

‖β‖1 =
∑

1≤j<k≤n

∣∣βj ,k
∣∣ =

⎧
⎪⎨

⎪⎩

O(n), α > 1,
O(n log n), α = 1,
O(n2−α), 0 < α < 1.

(53)

For α > 1, even if we use an improved qubitization circuit
with product structure like in Eq. (39), we still need a cost
roughly

n︸︷︷︸
block encoding

· n
(

t
r

)o(1)

︸ ︷︷ ︸
effective time

= n2
(

t
r

)o(1)

︸ ︷︷ ︸
Trotter step complexity

(54)

to simulate for an almost constant time, to implement a
single Trotter step. Thus, block encoding does not seem to
offer a significant benefit over the sequential approach. In
what follows, we show that product formulas can be used
to reduce the 1-norm of Hamiltonian coefficients, which
resolves this technical obstacle and, when combined with
block encoding, provide a fast implementation of Trotter
steps.

To simplify the discussion, we assume that the system
size n is a power of 2. We also use

H[j ,k] :=
∑

j ≤u<v≤k

βu,vXuYv (1 ≤ j < k ≤ n),

H[j ,k]:[l,m] :=
∑

j ≤u≤k
l≤v≤m

βu,vXuYv (1 ≤ j ≤ k < l ≤ m ≤ n)

(55)

to represent terms within a specific interval and across two
disjoint intervals of sites. Then, we define a decomposition
via the recurrence relation

H[j ,k] = H[j ,� j +k
2 �]:[� j +k

2 �+1,k] + H[j ,� j +k
2 �] + H[� j +k

2 �+1,k],

(56)
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which unwraps to

H = H[1,n]

= H[1,n/2]:[n/2+1,n] + H[1,n/2] + H[n/2+1,n]

= H[1,n/2]:[n/2+1,n] + H[1,n/4]:[n/4+1,n/2]

+ H[n/2+1,3n/4]:[3n/4+1,n] + H[1,n/4]

+ H[n/4+1,n/2] + H[n/2+1,3n/4] + H[3n/4+1,n]

= · · ·

=
log n−1∑

�=1

2�−1−1∑

b=0

H[2b(n/2�)+1,(2b+1)n/2�]:[(2b+1)n/2�+1,2(b+1)n/2�]. (57)

Here, the variable � labels the layer of the decom-
position and b indexes the pairs of neighboring
intervals within layer �. See Fig. 1 for an illus-
tration of this recursion for � = 1, 2, 3. Correspond-
ingly, we apply product formulas to decompose the
entire evolution into exponentials of each individual
H[2b(n/2�)+1,(2b+1)n/2�]:[(2b+1)n/2�+1,2(b+1)n/2�]. Similar to the
above analysis, this coarse-grained decomposition gives a
Trotter error bound no larger than that of the fine-grained
decomposition and implies the scaling Eq. (51) as well.

To proceed, we take a closer look at this recursive
decomposition and collect some of its features below.

(i) There are log n − 1 = O(log n) layers in the decom-
position, all indexed by �.

(ii) For a fixed layer �, there are 2� consecutive intervals
each of length n/2�.

FIG. 1. Illustration of the recursive decomposition of∑
j<k βj ,kXj Yk with three layers. The black dots represent qubits

and the curves correspond to the interactions between them. In
each layer, we cut the system into equal halves (dashed lines)
and consider only the interactions across the cuts. The colors
indicate whether the interaction consists of Pauli X (shaded
orange) or Pauli Y (green).

(iii) Within each layer �, even and odd intervals are fur-
ther grouped into 2� − 1 pairs (indexed by b). Terms
across intervals from the same pair are denoted
by H[2b(n/2�)+1,(2b+1)n/2�]:[(2b+1)n/2�+1,2(b+1)n/2�]. The
total number of pairs of intervals is O(n) by the
master theorem Lemma 1.

(iv) When � = 1, . . . , log n − 1 and b = 0, . . . , 2�−1 −
1, H[2b(n/2�)+1,(2b+1)n/2�]:[(2b+1)n/2�+1,2(b+1)n/2�] pro-
vide a partition of all the terms in the original
Hamiltonian H .

We may use these features to further simplify our discus-
sion. For instance, since we have only two-local terms of
the same Pauli-type acting across disjoint intervals, we can
simultaneously change the basis and consider only Pauli-Z
interactions without loss of generality:

H[2b(n/2�)+1,(2b+1)n/2�]:[(2b+1)n/2�+1,2(b+1)n/2�]

=
∑

2b(n/2�)+1≤u≤(2b+1)n/2�

(2b+1)n/2�+1≤v≤2(b+1)n/2�

βu,vZuZv. (58)

Also, due to the nature of the recursive decomposi-
tion, it suffices to focus on implementing a specific
H[2b(n/2�)+1,(2b+1)n/2�]:[(2b+1)n/2�+1,2(b+1)n/2�]: we have sim-
ilar complexities cost (·) for all pairs of intervals from
different layers, so the total complexity

costrec(n) =
log n−1∑

�=1

2�−1 cost
( n

2�−1

)
(59)

can be immediately bounded by the master theorem
Lemma 1. For simplicity, we choose � = 1, b = 0
and we study the complexity cost(n) of exponentiating
H[1,n/2]:[n/2+1,n].

We note that prior work has utilized the above fea-
tures of the recursive decomposition to develop measure-
ment schedules for local quantum observables [114]. For
the purpose of quantum simulation, we however need an
additional key observation.

(i) Coefficients of H[1,n/2]:[n/2+1,n] have the vector 1-
norm scaling:

‖β‖1 =
∑

1≤u≤n/2
n/2+1≤v≤n

∣∣βu,v
∣∣ =

⎧
⎪⎨

⎪⎩

O(1), α > 2,
O(log n), α = 2,
O(n2−α), 0 < α < 2.

(60)

Comparing Eq. (60) with Eq. (53), the coefficients of
H[1,n/2]:[n/2+1,n] have a significantly smaller 1-norm than
that of the full Hamiltonian H . In particular, the 1-
norm in Eq. (60) is asymptotically constant for α > 2,
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a factor of n smaller than that of the original Hamil-
tonian. Therefore, exponentiating H[1,n/2]:[n/2+1,n] would
also take a factor of n fewer quantum gates than expo-
nentiating H . Meanwhile, the gate complexity of block
encoding remains asymptotically the same: we show
in Sec. III B that block encoding can be implemented
for the pair of intervals [1, n/2] and [n/2 + 1, n] with
cost(n) = O(n polylog(nt/ε)), which gives the total cost
by applying the master theorem to Eq. (59). This leads to
the desired faster Trotter steps for simulating power-law
Hamiltonians.

B. Preparation and selection subroutines

In the previous subsection, we reduce the 1-norm of
power-law Hamiltonians by applying a recursive decom-
position using product formulas. For completeness, we
now give an explicit circuit for block encoding and apply
qubitization to simulate the decomposed Hamiltonian.

To be precise, our goal is to simulate the following
Hamiltonian acting across the intervals [1, n/2] and [n/2 +
1, n]:

H[1,n/2]:[n/2+1,n] =
∑

1≤u≤n/2
n/2+1≤v≤n

βu,vZuZv, (61)

where the coefficients |βu,v| ≤ 1/|u − v|α . Additionally,
we assume that the coefficients are logarithmically

computable, meaning the oracle

Oβ |u, v, 0〉 = |u, v,βu,v〉 (62)

can be implemented with cost O (polylog(nt/ε)) [115].
Note that by making this assumption, we implicitly
assume certain structural properties of the Hamiltonian
coefficients. For example, when βu,v = 1/ |u − v|α decays
exactly as a power law, the oracle Oβ can be imple-
mented with cost O (polylog(nt/ε)), fulfilling this require-
ment. This can be achieved by performing elementary
arithmetics such as subtraction, multiplication, and divi-
sion on the binary representation of u and v [which has
length O (log(nt/ε))]. However, when Hamiltonian coef-
ficients are arbitrarily given, we prove a lower bound
in Appendix A showing that at least approximately
n2 gates are required to implement Oβ in the circuit
model.

In what follows, we analyze the number of queries to
Oβ as well as additional interquery gates. We aim to block
encode H[1,n/2]:[n/2+1,n] with its 1-norm scaling close to
Eq. (60). As suggested in Sec. II C, we may simply choose
the selection subroutine to have the product structure

∑

1≤u≤n/2
n/2+1≤v≤n

|uv〉〈uv| ⊗ ZuZv. (63)

However, some extra efforts are needed to define the preparation subroutine. In particular, the following black-box state-
preparation subroutine

1
n/2

∑

1≤u≤ n
2

n
2 +1≤v≤n

|u〉|v〉 Oβ�→ 1
n/2

∑

1≤u≤n/2
n/2+1≤v≤n

|u〉|v〉|βu,v〉

�→ 1
n/2

∑

1≤u≤n/2
n/2+1≤v≤n

|u〉|v〉|βu,v〉
(√|βu,v||0〉 +√

1 − |βu,v||1〉
)

O†
β�→ 1

n/2

∑

1≤u≤n/2
n/2+1≤v≤n

(√|βu,v||u〉|v〉|0〉 +√
1 − |βu,v||ψ⊥〉|1〉

)
(64)

does not work since it enlarges the 1-norm of block encod-
ing by a factor of n/2, preventing us from achieving the
scaling in Eq. (60).

The issue with the naive preparation subroutine is that
we prepare uniform superposition states at the beginning
which ignore the power-law decaying pattern of βu,v . To
address this issue, we group the coefficients into multiple

boxes. We take the number of boxes to be logarithmic
in the system size n so we can prepare superposition
states over these boxes efficiently. Meanwhile, we ensure
that the coefficients within each box are approximately
uniform so we can again prepare the corresponding super-
position state efficiently. This idea was previously used
for the efficient block encoding of the plane-wave-basis
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electronic structure Hamiltonian in first quantization [116].
Here, we describe a variant of this technique to efficiently
block-encode power-law Hamiltonians.

To simplify the notation, we shift the lattice and con-
sider the rectangle region (−n/2, −1] × [1, n/2). We then
divide it into boxes

Bμ,ν := {
(u, v)| − 2μ+1 < u ≤ −2μ, 2ν ≤ v < 2ν+1}

(65)

for μ, ν = 0, 1, . . . , log n − 2. With the restricted max
norm

‖β‖max,Bμ,ν = max
−2μ+1<u≤−2μ

2ν≤v<2ν+1

∣∣βu,v
∣∣ , (66)

we describe a state-preparation subroutine whose com-
plexity depends on the ratio between ‖β‖1 and

‖β‖1,box :=
log n−2∑

μ,ν=0

2μ+ν ‖β‖max,Bμ,ν . (67)

Thus, our approach is efficient if the coefficients are almost
uniformly distributed within each box. The boundary terms
can be handled separately without changing the asymptotic
complexity scaling.

We start by preparing the state

1
√‖β‖1,box

log n−2∑

μ,ν=0

√
2μ+ν ‖β‖max,Bμ,ν |eμ〉|eν〉, (68)

where we use unary encoding to represent μ and ν. This
state can be prepared using O(log2 n) gates. Conditioned
on the unary value of μ and ν, we prepare the uniform
superposition

1
√‖β‖1,box

log n−2∑

μ,ν=0

√
2μ+ν ‖β‖max,Bμ,ν |eμ〉|eν〉

1√
2μ

⊗
∑

−2μ+1<u≤−2μ

|u〉 1√
2ν

∑

2ν≤v<2ν+1

|v〉, (69)

where we represent u and v in binary. We can achieve this
by first transforming |eμ〉 and |eν〉 into run-length unary
representation, and performing a sequence of O(log n)
controlled Hadamard gates to generate the superposition.

We now introduce an auxiliary uniform superposition state

1
√‖β‖1,box

log n−2∑

μ,ν=0

√
2μ+ν ‖β‖max,Bμ,ν |eμ〉|eν〉

1√
2μ+ν

⊗
∑

−2μ+1<u≤−2μ

2ν≤v<2ν+1

|u〉|v〉 1√
�

�−1∑

ξ=0

|ξ〉 (70)

and test the inequality

ξ

�
<

|βu,v|
‖β‖max,Bμ,ν

. (71)

This can be performed with one query to the coefficient
oracle Oβ and mild uses of other gates as follows. We first
apply Oβ to load the coefficients βu,v . We also load the
values of ‖β‖max,Bμ,ν via the transformation

|eμ, eν , 0〉 �→ |eμ, eν , ‖β‖max,Bμ,ν 〉. (72)

Note that there are only O(log2 n) different values of
‖β‖max,Bμ,ν , each of which can be represented using at most
O(log(nt/ε)) bits, so we can efficiently perform this trans-
formation. The inequality test can then be performed with
a complexity scaling with the maximum size of the inputs.
Assuming� is sufficiently large, the state after the inequal-
ity test (omitting the failure part and garbage registers)
becomes

1
√‖β‖1,box

log n−2∑

μ,ν=0

√
2μ+ν ‖β‖max,Bμ,ν |eμ〉|eν〉

1√
2μ+ν

⊗
∑

−2μ+1<u≤−2μ

2ν≤v<2ν+1

√
|βu,v|

‖β‖max,Bμ,ν

|u〉|v〉

= 1
√‖β‖1,box

log n−2∑

μ,ν=0

∑

−2μ+1<u≤−2μ

2ν≤v<2ν+1

√|βu,v||eμ〉|eν〉|u〉|v〉.

(73)

In practice, we choose a finite value of �, which results
in an erroneous block encoding that can be analyzed as
in our second remark in Sec. II C. To achieve an overall
error of at most ε, it suffices to set � = poly(nt/ε). Under
this nested-boxes representation, the selection subroutine
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becomes

log n−2∑

μ,ν=0

∑

−2μ+1<u≤−2μ

2ν≤v<2ν+1

|eμeν〉〈eμeν | ⊗ |uv〉〈uv| ⊗ Zμ,uZν,v .

(74)

Again, this operation has a product structure and can
be implemented with gate complexity O (n log n) per
Sec. II C.

It is clear that we have prepared a state proportional
to the desired state for block encoding when all βu,v >

0. If βu,v < 0, we simply introduce a minus sign in the
implementation of the selection subroutine. The success
probability is given by

∑log n−2
μ,ν=0

∑
−2μ+1<u≤−2μ

2ν≤v<2ν+1
|βu,v|

‖β‖1,box
= ‖β‖1

‖β‖1,box
. (75)

To boost this success probability to close to 1, we can
perform O(√‖β‖1,box / ‖β‖1) steps of amplitude amplifi-
cation. In other words, the complexity of state preparation
will indeed depend on the ratio between ‖β‖1,box and ‖β‖1
as previously claimed.

If the distribution of Hamiltonian coefficients exactly
matches a power law, we have

‖β‖1 =
∑

−n/2<u≤−1
1≤v<n/2

∣∣βu,v
∣∣ =

⎧
⎪⎨

⎪⎩

�(1), α > 2,
�(log n), α = 2,
�(n2−α), 0 < α < 2.

(76)

Furthermore, ‖β‖1 differs from ‖β‖1,box by at most a
constant factor. This is because

log n−2∑

μ,ν=0

2μ+ν min
−2μ+1<u≤−2μ

2ν≤v<2ν+1

|βu,v|

≤
log n−2∑

μ,ν=0

∑

−2μ+1<u≤−2μ

2ν≤v<2ν+1

|βu,v| = ‖β‖1

≤ ‖β‖1,box =
log n−2∑

μ,ν=0

2μ+ν max
−2μ+1<u≤−2μ

2ν≤v<2ν+1

|βu,v|, (77)

where the first and last quantities differ termwise by at most
a factor of 2α = O(1). Therefore, the number of amplitude
amplification steps is constant. The cost of the preparation
subroutine is then dominated by the query to the oracle
Oβ , which costs O (polylog(nt/ε)) to implement by our
assumption.

We now use qubitization (Lemma 3) to simulate
H[1,n/2]:[n/2+1,n] for time t/r with accuracy O (ε/(rn)),
where

r =

⎧
⎪⎪⎨

⎪⎪⎩

no(1)t1+o(1)

εo(1) , α ≥ 1,

n1−α+o(1)t1+o(1)

εo(1) , 0 < α < 1,
(78)

with the selection and preparation subroutine defined
above. We bound the gate complexity cost(n) as follows:

cost(n) = O
(

‖β‖1
t
r

+ log
(rn
ε

))

︸ ︷︷ ︸
number of qubitization steps

·

⎛

⎜⎜⎜⎜
⎝
O(n log n)
︸ ︷︷ ︸

selection

+O
(√

‖β‖1,box

‖β‖1
n polylog(nt/ε)

)

︸ ︷︷ ︸
preparation

⎞

⎟⎟⎟⎟
⎠

=
{O (( t

r + 1
)

n polylog
( nt
ε

))
, α ≥ 2,

O ((
n2−α t

r + 1
)

n polylog
( nt
ε

))
, 0 < α < 2.

(79)

By using the same evolution and target accuracy with different values of n and invoking the master theorem (Lemma 1),
we obtain the gate complexity of implementing one Trotter step

costrec(n) =
log n−1∑

�=1

2�−1 cost
( n

2�−1

)
=
{O (( t

r + 1
)

n polylog
( nt
ε

))
, α ≥ 2,

O ((
n2−α t

r + 1
)

n polylog
( nt
ε

))
, 0 < α < 2.

(80)
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This then gives the complexity of the entire quantum simulation:

nt
( nt
ε

)o(1) , α ≥ 2,

O (
n3−αt polylog

( nt
ε

))+ nt
( nt
ε

)o(1) , 1 ≤ α < 2,

O (
n3−αt polylog

( nt
ε

))+ n2−αt
( nt
ε

)o(1) , 0 < α < 1.

(81)

In general, the complexity of block encoding will depend on the closeness of distribution of Hamiltonian coefficients to a
power-law distribution. To quantify this, we let λblock be the maximum ratio between ‖β‖1,box and ‖β‖1, maximized over
all pairs of intervals in the recursive decomposition Eq. (57). More explicitly,

λblock := max
σ �=σ ′∈{x,y,z}

max
�=1,...,log n−1

max
b=0,...,2�−1−1

∥∥∥β(σ ,σ ′)
∥∥∥

1,box,I�,b∥∥β(σ ,σ ′)
∥∥

1,I�,b
, (82)

where ‖·‖1,I�,b and ‖·‖1,box,I�,b are the above norms defined with respect to the region

I�,b :=
{
(u, v)| 2b

n
2�

+ 1 ≤ u ≤ (2b + 1)
n
2�

, (2b + 1)
n
2�

+ 1 ≤ v ≤ 2(b + 1)
n
2�

}
. (83)

Then, the complexity of quantum simulation should be revised to

(√
λblock + n

)
t
( nt
ε

)o(1) , α ≥ 2,
(√
λblock + n

) (O (
n2−αt polylog

( nt
ε

))+ t
( nt
ε

)o(1)
)

, 1 ≤ α < 2,
(√
λblock + n

) (O (
n2−αt polylog

( nt
ε

))+ n1−αt
( nt
ε

)o(1)
)

, 0 < α < 1.

(84)

It is clear that when the distribution of coefficients is close to a power law, Eq. (77) implies that λblock = O(1) so we have
recovered the cost scaling claimed earlier. When coefficients deviate significantly from a power-law distribution, our gate
complexity will enlarge by a factor of

√
λblock due to the use of amplitude amplification. However, we always have

‖β‖1,box

‖β‖1
=

∑log n−2
μ,ν=0 2μ+ν max−2μ+1<u≤−2μ

2ν≤v<2ν+1
|βu,v|

∑log n−2
μ,ν=0

∑
−2μ+1<u≤−2μ

2ν≤v<2ν+1
|βu,v|

≤
n2 ∑log n−2

μ,ν=0 max−2μ+1<u≤−2μ

2ν≤v<2ν+1
|βu,v|

∑log n−2
μ,ν=0 max−2μ+1<u≤−2μ

2ν≤v<2ν+1
|βu,v|

= n2,

which implies
√
λblock ≤ n. So the preparation subroutine still costs less than the selection subroutine, even when we

perform the amplitude amplification. Thus our asymptotic gate complexity remains the same.

C. Summary of the algorithm

We now summarize the block-encoding method for implementing faster Trotter steps:

1. Construct a preamplified preparation subroutine for Eq. (73).
2. Perform O(√λblock) steps of amplitude amplification to construct the actual preparation subroutine with λblock

defined in Eq. (82).
3. Define the selection subroutine according to Eq. (74).
4. Use qubitization (Lemma 3) to simulate for time t/r with accuracy O (ε/(rn)), with r scaling like Eq. (51).
5. Perform qubitization for all combinations of Pauli operators σ , σ ′ = x, y, z, layers indexed by � = 1, . . . , log n − 1

and pairs of intervals indexed by b = 0, . . . , 2�−1 − 1, to implement a single Trotter step.
6. Repeat r Trotter steps to simulate the entire evolution.
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Theorem 1: (Faster Trotter steps using block encoding). Consider two-local Hamiltonians

H =
∑

σ ,σ ′∈{i,x,y,z}

∑

1≤j<k≤n

β
(σ ,σ ′)
j ,k P(σ )j P(σ

′)
k ,

where
∣∣∣β(σ ,σ ′)

j ,k

∣∣∣ ≤ 1/|j − k|α for some constant α > 0 and P(σ ) (σ = i,x, y, z) are the identity and Pauli matrices. Let t > 0
be the simulation time and ε > 0 be the target accuracy. Assume that the coefficient oracle

Oβ,σ ,σ ′ |j , k, 0〉 = |j , k,β(σ ,σ ′)
j ,k 〉 (85)

can be implemented with gate complexity O (polylog(nt/ε)). Then H can be simulated using the algorithm of Sec. III C
with O (log(nt/ε)) ancilla qubits and gate complexity

nt
( nt
ε

)o(1) , α ≥ 2,

O (
n3−αt polylog

( nt
ε

))+ nt
( nt
ε

)o(1) , 1 ≤ α < 2,

O (
n3−αt polylog

( nt
ε

))+ n2−αt
( nt
ε

)o(1) , 0 < α < 1.

(86)

IV. FASTER TROTTER STEPS USING AVERAGE-COST SIMULATION

In the previous section, we have described a block-encoding-based method to simulate power-law Hamiltonians with
efficiently computable coefficients. The complexity of our method is almost linear in the spacetime volume (nt)1+o(1) for
α ≥ 2 and is close to n3−α+o(1)t1+o(1) for α < 2, both of which improve the best results from previous work.

In this section, we obtain a further improvement by performing an average-cost quantum simulation of commuting
terms. We explain the basic idea of this technique in Sec. IV A, with further details on the circuit implementation presented
in Sec. IV B. Readers may skip ahead to Sec. IV C for a summary of the entire algorithm.

A. Simulating commuting terms with average combination cost

We now show that gate complexities can be further reduced, using the simple fact that commuting Hamiltonian terms
can be simulated with an average-cost linear combination. To elaborate, consider a Hamiltonian H = ∑�

γ=1 Hγ with

Hermitian Hγ and suppose we have block encodings G†
γ ,1UγGγ ,0 = Hγ /βγ , where βγ > 0, and Gγ ,0, Gγ ,1 : G → H and

Uγ : H → H can be implemented with cost cγ > 0. Then, H can be block encoded by defining

G0 : G → C
� ⊗ H, G0 = 1

√‖β‖1

�∑

γ=1

√
βγ |γ 〉 ⊗ Gγ ,0

G1 : G → C
� ⊗ H, G1 = 1

√‖β‖1

�∑

γ=1

√
βγ |γ 〉 ⊗ Gγ ,1

U : C
� ⊗ H → C

� ⊗ H, U =
�∑

γ=1

|γ 〉〈γ | ⊗ Uγ ,

G†
1UG0 : G → G, G†

1UG0 = H
‖β‖1

.

(87)

This block encoding has a normalization factor of ‖β‖1 and can be implemented with cost
∑

γ cγ (plus some additional
cost for preparing the ancilla state 1/

√‖β‖1
∑�

γ=1

√
βγ |γ 〉). Invoking Lemma 3, we can simulate H for time t with
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accuracy ε with a cost scaling like

O
⎛

⎝
(

‖β‖1 t + log
(

1
ε

))
·
⎛

⎝
�∑

γ=1

cγ

⎞

⎠

⎞

⎠ , (88)

which reduces to approximately t
(∑

γ βγ

) (∑
γ cγ

)
ignoring the error scaling. This is a worst-case combination because

we are paying the same total cost
∑

γ cγ for each of the approximately t
∑

γ βγ qubitization steps.
This worst-case cost scaling may sometimes be avoided by recursively performing simulation in the interaction

picture [26,68]. Roughly speaking, the recursive interaction-picture approach has a cost scaling like approximately
t
(∑

γ βγ cγ
)

log2�−1 (t ‖β‖max
)
. Thus we achieve the desired average-case combination cost, but also pick up a factor

that scales exponentially with the number of terms �, which prevents the approach from being useful in many cases.
Instead, we make the following simple yet important observation about simulating commuting terms using block

encodings and qubitization.

Lemma 4: (Simulating commuting terms with average combination cost). Let Gγ ,0, Gγ ,1 : G → H be isometries and
Uγ : H → H be unitaries such that G†

γ ,1UγGγ ,0 = Hγ /βγ are Hermitian with βγ > 0. Assume that Hγ pairwise commute.
Given a target evolution time t and accuracy ε, there exist unitaries Vϕγ : C2 ⊗ C2 ⊗ H → C2 ⊗ C2 ⊗ H parameterized
by angles ϕγ ,1, . . . ,ϕγ ,rγ such that

∥∥∥∥∥∥

�∏

γ=1

((

〈+| ⊗ 〈0| ⊗ G†
γ ,0+〈1| ⊗ G†

γ ,1√
2

)

Vϕγ

(
|+〉 ⊗ |0〉 ⊗ Gγ ,0 + |1〉 ⊗ Gγ ,1√

2

))

− e−itH

∥∥∥∥∥∥
≤ ε. (89)

The number of steps rγ are even integers with the asymptotic scaling

rγ = O
(
βγ t + log

(
�

ε

))
, (90)

and Vϕγ are obtained by applying Lemma 3 to simulate G†
γ ,1UγGγ ,0 for time βγ t with accuracy ε/�.

In essence, we are just using the first-order Lie-Trotter formula e−itH = e−itH� · · · e−itH1 with each exponential further
simulated by the qubitization algorithm. Because Hamiltonian terms pairwise commute, there is no Trotter error intro-
duced in this decomposition. As a result, we can simulate the target Hamiltonian with an average-case combination cost
approximately t

(∑
γ βγ cγ

)
, without the unwanted exponential factor from the interaction-picture approach [117].

For power-law Hamiltonians with α < 2, recall from Sec. III A that we can without loss of generality consider

H(−n/2,−1]:[1,n/2) =
∑

−n/2<u≤−1
1≤v<n/2

βu,vZuZv, (91)

where we drop the subdominant terms and shift the intervals for notational convenience. Such a Hamiltonian term is
directly block encoded and simulated by qubitization in Sec. III B. We now show how that result can be further improved
using the average-cost simulation technique. To this end, we divide each interval into m subintervals at ±l1, . . . , ±lm and
define

Cj ,k := {
(u, v)| − lj +1 < u ≤ −lj , lk ≤ v < lk+1

}
. (92)

See Fig. 2 for an illustration of the corresponding decomposition of Hamiltonian. For terms corresponding to Cj ,k, we
have that the 1-norm is asymptotically bounded by

‖β‖1,Cj ,k
= O

((
lj +1 − lj

)
(lk+1 − lk)

(
lj + lk

)α

)

. (93)
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FIG. 2. Illustration of the interaction
pairs in Cj ,k defined in Eq. (92). For
convenience, we relabel the sites to
−n/2, . . . , −1 and 1, . . . , n/2.

We describe in Sec. IV B how to block encode the Hamiltonian terms within Cj ,k with 1-norm scaling exactly as above.
Specifically, we show that up to polylogarithmic factors the preparation and selection subroutines have a total cost of

Õ (
1 + (

lj +1 − lj
)+ (lk+1 − lk)

)
. (94)

In our above analysis, we omit a factor of λavg due to the use of amplitude amplification. Just like Sec. III B, this factor is
close to 1 when the distribution of Hamiltonian coefficients are close to a power-law distribution. We assume this is the
case to simplify the following discussion, and present the full complexity expression in Sec. IV B.

We use the uniform division lj = �(j (n/m)) here for simplicity, although other divisions may lead to circuits with
lower cost. Choosing the evolution time t/r and ignoring the polylog(nt/ε) scaling, we estimate the cost of simulating
H(−n/2,−1]:[1,n/2) (for α < 2) as

Õ
⎛

⎝
m∑

j ,k=1

( ( n
m

)2 t
r(

j n
m + k n

m

)α + 1

)(
1 + n

m

)
⎞

⎠ = Õ
⎛

⎝

⎛

⎝
m∑

j ,k=1

( n
m

)2−α t
r

(j + k)α
+ m2

⎞

⎠
(

1 + n
m

)
⎞

⎠

= Õ

⎛

⎜
⎝

⎛

⎜
⎝

⎛

⎝
m∑

j =1

1
j α/2

⎞

⎠

2
( n

m

)2−α t
r

+ m2

⎞

⎟
⎠
(

1 + n
m

)
⎞

⎟
⎠

= Õ
(((

m1− α
2

)2 ( n
m

)2−α t
r

+ m2
)(

1 + n
m

))

= Õ
((

n2−α t
r

+ m2
)(

1 + n
m

))
. (95)

We balance the two scalings in the first parentheses to optimize the gate complexity, which implies

m =
⎧
⎨

⎩

�
(
n1−α/2) , 1 ≤ α < 2,

�
(

n
1
2

)
, 0 < α < 1.

(96)

For all values of α < 2, one can verify that m = �(1) and m = O(n) [in fact m = O(√n)], so this choice of m is indeed
valid. We give a slightly better (yet more complicated) choice of m in Sec. IV B.

The remaining analysis proceeds similarly as in Sec. III B. We use qubitization (Lemma 3) to simulate all m2 pairs of
subintervals in H[1,n/2]:[n/2+1,n] for time t/r with accuracy O (

ε/(rm2n)
)
, where

r =
{

no(1)t1+o(1)

εo(1) , α ≥ 1,
n1−α+o(1)t1+o(1)

εo(1) , 0 < α < 1,
(97)

with an average-case combination cost as discussed above. We have the cost function

O (
n2−α/2 polylog

( nt
ε

))
, 1 ≤ α < 2,

O (
n3/2 polylog

( nt
ε

))
, 0 < α < 1.

(98)
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By using the same evolution time and target accuracy with different values of n and invoking the master theorem (Lemma
1), we obtain the gate complexity of implementing one Trotter step

costrec(n) =
log n−1∑

l=1

2l−1 cost
( n

2l−1

)
=
{O (

n2−α/2 polylog
( nt
ε

))
, 1 ≤ α < 2,

O (
n3/2 polylog

( nt
ε

))
, 0 < α < 1.

(99)

This then gives the complexity of the entire quantum simulation:

n2−α/2+o(1)t1+o(1)

εo(1) , 1 ≤ α < 2,
n5/2−α+o(1)t1+o(1)

εo(1) , 0 < α < 1.
(100)

B. Preparation and selection subroutines

We now describe a circuit that achieves the average-case combination cost for block-encoding power-law Hamiltonians
claimed in the previous subsection.

Specifically, let lj , lj +1, lk, lk+1 be arbitrary integers such that 1 ≤ lj < lj +1 ≤ n/2 and 1 ≤ lk < lk+1 ≤ n/2. Our goal is
to block encode the Hamiltonian

H(−lj +1,−lj ]:[lk ,lk+1) =
∑

−lj +1<u≤−lj
lk≤v<lk+1

βu,vZuZv , (101)

where |βu,v| ≤ 1/|u − v|α and we shift the intervals for notational convenience. Additionally, we assume that the
coefficients are logarithmically computable [118], meaning the oracle

Oβ |u, v, 0〉 = |u, v,βu,v〉 (102)

can be implemented with cost O (polylog(nt/ε)). By making this oracle assumption, we implicitly assume certain underly-
ing structure of the Hamiltonian coefficients: in Appendix A we show that one needs approximately n2 gates to implement
Oβ in the circuit model when structural properties of coefficients are unavailable. The selection subroutine can simply be
chosen as

∑

−lj +1<u≤−lj

∑

lk≤v<lk+1

|u, v〉〈u, v| ⊗ ZuZv . (103)

Due to the product structure of this operation, we can implement it with gate complexity O (n/m).
In what follows, we analyze the preparation subroutine. Here, we consider only the uniform division lj = �(j (n/m)),

as this is enough to justify the gate complexity claimed in Sec. IV A. We use the naive black-box state-preparation
technique, because coefficients within the divided subintervals are already close to uniform. We start by preparing the
uniform superposition

1
√

lj +1 − lj

∑

−lj +1<u≤−lj

|u〉 1√
lk+1 − lk

∑

lk≤v<lk+1

|v〉. (104)

Then we invoke the black-box state-preparation subroutine

1
√(

lj +1 − lj
)
(lk+1 − lk)

∑

−lj +1<u≤−lj
lk≤v<lk+1

|u, v〉

Oβ�→ 1
√(

lj +1 − lj
)
(lk+1 − lk)

∑

−lj +1<u≤−lj
lk≤v<lk+1

|u, v〉|βu,v〉

�→ 1
√(

lj +1 − lj
)
(lk+1 − lk)

∑

−lj +1<u≤−lj
lk≤v<lk+1

|u, v〉|βu,v〉
(√

|βu,v|
‖β‖max

|0〉 +
√

‖β‖max − |βu,v|
‖β‖max

|1〉
)

, (105)
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where the last step can be realized using inequality test in a way similar to Sec. III B. There is no need to uncompute
the ancilla register |βu,v〉, as the uncomputation is automatically performed in the qubitization algorithm. It is clear that
we prepare a state proportional to the desired state for block encoding when all βu,v > 0. If some βu,v < 0, we simply
introduce a minus sign in the implementation of the selection subroutine. The success probability is given by

∑
−lj +1<u≤−lj

lk≤v<lk+1

|βu,v|
(
lj +1 − lj

)
(lk+1 − lk) ‖β‖max

= ‖β‖1(
lj +1 − lj

)
(lk+1 − lk) ‖β‖max

. (106)

To boost this probability to close to 1, we can perform O
(√(

lj +1 − lj
)
(lk+1 − lk) ‖β‖max / ‖β‖1

)
steps of amplitude

amplification.
If the distribution of Hamiltonian coefficients exactly matches a power law, we have

‖β‖1 =
∑

−lj +1<u≤−lj
lk≤v<lk+1

|βu,v| ≥
(
lj +1 − lj

)
(lk+1 − lk)

(
lj +1 + lk+1

)α , ‖β‖max ≤ 1
(
lj + lk

)α , (107)

so the number of amplification steps scales like

O
⎛

⎝

√(
lj +1 − lj

)
(lk+1 − lk) ‖β‖max

‖β‖1

⎞

⎠ = O
⎛

⎝

√√√√
(
lj +1 + lk+1

)α
(
lj + lk

)α

⎞

⎠ = O (1) , (108)

which justifies the previous claim in Eq. (94). In general, the complexity of block encoding will depend on the closeness
of the distribution of Hamiltonian coefficients to a power-law distribution. To quantify this, we let λavg be the maximum
ratio between

(
lj +1 − lj

)
(lk+1 − lk) ‖β‖max and ‖β‖1, maximized over all pairs of intervals in the decomposition Eq. (57)

with a further uniform division. More explicitly,

λavg := max
σ �=σ ′∈{x,y,z}

max
�=1,...,log n−1

max
b=0,...,2�−1−1

max
j ,k=1,...,m

(
l�,b,j +1 − l�,b,j

) (
l�,b,k+1 − l�,b,k

) ∥∥∥β(σ ,σ ′)
∥∥∥

max,I�,b,j ,k∥∥β(σ ,σ ′)
∥∥

1,I�,b,j ,k

, (109)

where l�,b,j are the uniform division points, and ‖·‖max,I�,b,j ,k and ‖·‖1,I�,b,j ,k are the max- and 1-norm restricted to the region

I�,b,j ,k :=
{
(u, v)| (2b + 1)

n
2�

− l�,b,j +1 < u ≤ (2b + 1)
n
2�

− l�,b,j , (2b + 1)
n
2�

+ l�,b,k ≤ v ≤ (2b + 1)
n
2�

+ l�,b,k+1

}
.

(110)

With this definition, the cost of simulating H(−n/2,−1]:[1,n/2) for time t/r should be revised to

cost(n) = Õ
((

n2−α t
r

+ m2
)(√

λavg + n
m

))
. (111)

However, we always have
(
lj +1 − lj

)
(lk+1 − lk) ‖β‖max

‖β‖1
≤
( n

m

)2 ‖β‖max

‖β‖max
=
( n

m

)2
,

which implies
√
λavg ≤ n/m. So the preparation subroutine still costs less than the selection subroutine, even when we

perform the amplitude amplification. We balance the first term by choosing

m = max

{

�

(

n1−α/2
(

t
r

)1/2
)

, 1

}

, (112)
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which implies through the master theorem (Lemma 1) that the total simulation has complexity

Õ
((

n2−αt + r
)

min
{

nα/2
(r

t

)1/2
, n
})

. (113)

Inserting the scaling of r from Eq. (51), we obtain the cost scaling

min
{

n2− α
2 t
( nt
ε

)o(1) , O (
n3−αt polylog

( nt
ε

))+ nt
( nt
ε

)o(1)
}

, 1 ≤ α < 2,

min
{

n5/2−αt
( nt
ε

)o(1) , O (
n3−αt polylog

( nt
ε

))+ n2−αt
( nt
ε

)o(1)
}

, 0 < α < 1.
(114)

C. Summary of the algorithm

We now summarize the average-cost simulation method for implementing faster Trotter steps:

1. Construct a preamplified preparation subroutine for Eq. (105).
2. Perform O(√λavg) steps of amplitude amplification to construct the actual preparation subroutine with λavg defined

in Eq. (109).
3. Define the selection subroutine according to Eq. (103).
4. Use qubitization (Lemma 3) to simulate for time t/r with accuracy O (

ε/(rn2)
)
, with r scaling like Eq. (51).

5. Perform qubitization for all combinations of Pauli operators σ , σ ′ = x, y, z, layers indexed by � = 1, . . . , log n − 1,
intervals indexed by b = 0, . . . , 2�−1 − 1 and pairs of subintervals indexed by j , k = 1, . . . , m, to implement a single
Trotter step.

6. Repeat r Trotter steps to simulate the entire evolution.

Theorem 2: (Faster Trotter steps using average-cost simulation). Consider two-local Hamiltonians

H =
∑

σ ,σ ′∈{i,x,y,z}

∑

1≤j<k≤n

β
(σ ,σ ′)
j ,k P(σ )j P(σ

′)
k ,

where
∣∣∣β(σ ,σ ′)

j ,k

∣∣∣ ≤ 1/|j − k|α for some constant α > 0 and P(σ ) (σ = i,x, y, z) are the identity and Pauli matrices. Let t > 0
be the simulation time and ε > 0 be the target accuracy. Assume that the coefficient oracle

Oβ,σ ,σ ′ |j , k, 0〉 = |j , k,β(σ ,σ ′)
j ,k 〉 (115)

can be implemented with gate complexity O (polylog(nt/ε)). Then H can be simulated using the algorithm of Sec. IV C
with O (log(nt/ε)) ancilla qubits and gate complexity

min
{

n2− α
2 t
( nt
ε

)o(1) , O (
n3−αt polylog

( nt
ε

))+ nt
( nt
ε

)o(1)
}

, 1 ≤ α < 2,

min
{

n5/2−αt
( nt
ε

)o(1) , O (
n3−αt polylog

( nt
ε

))+ n2−αt
( nt
ε

)o(1)
}

, 0 < α < 1.
(116)

V. FASTER TROTTER STEPS USING LOW-RANK DECOMPOSITION

In the previous sections, we show how the 1-norm of Hamiltonian coefficients can be reduced via a recursive decom-
position using product formulas, which results in faster circuit implementation of Trotter steps. We further improve our
result by simulating commuting terms with an average-case combination cost. Assuming Hamiltonian coefficients are
efficiently computable, these techniques together enable simulations of power-law systems with complexity nearly linear
in the spacetime volume for α ≥ 2, whereas the cost becomes n2−α/2+o(1)t1+o(1) for 1 ≤ α < 2 and n5/2−α+o(1)t1+o(1) for
0 < α < 1.

In this section, we describe a method for implementing a Trotter step through a recursive decomposition of the Hamil-
tonian using its hierarchical low-rank structure [50,51]. This low-rank structure was previously used in Ref. [52] to
block-encode kernel matrices. Here, we directly use the recursive decomposition in Sec. V A to construct circuits without
block encoding. The overall algorithm and its complexity are then summarized in Sec. V B.
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A. Recursive low-rank decomposition

The initial steps of our method are the same as that of Sec. III A. In particular, we expand the power-law Hamiltonian
in the Pauli basis as in Eq. (48), and use product formulas to perform a coarse-grained decomposition. Without loss of
generality, we may focus on two-local terms

H =
∑

1≤j<k≤n

βj ,kXj Yk, (117)

as the on-site terms can be implemented with subdominant cost and the remaining two-local terms can be handled similarly
by a change of basis. As before, we assume that the system size n is a power of 2 and use

H[j ,k] :=
∑

j ≤u<v≤k

βu,vXuYv (1 ≤ j < k ≤ n),

H[j ,k]:[l,m] :=
∑

j ≤u≤k
l≤v≤m

βu,vXuYv (1 ≤ j ≤ k < l ≤ m ≤ n) (118)

to represent terms within a specific interval and across two disjoint intervals of sites.
However, we now use a decomposition different from that of Sec. III A. Specifically, we use the recurrence relation

H[j ,k] = H[j ,j +δ−1]:[j +2δ,j +3δ−1] + H[j ,j +δ−1]:[j +3δ,k] + H[j +δ,j +2δ−1]:[j +3δ,k] + H[j ,j +2δ−1] + H[j +δ,j +3δ−1] + H[j +2δ,k]

− H[j +δ,j +2δ−1] − H[j +2δ,j +3δ−1] (119)

with δ = �(k − j + 1)/4�, which unwraps to layer h = �(log n) as

H = H[1,n]

= H[1,n/4]:[n/2+1,3n/4] + H[1,n/4]:[3n/4+1,n] + H[n/4+1,n/2]:[3n/4+1,n] + H[1,n/2] + H[n/4+1,3n/4] + H[n/2+1,n]

− H[n/4+1,n/2] − H[n/2+1,3n/4]

= · · ·

=
h∑

�=2

2�−1−2∑

b=0

(
H[1+2b(n/2�),(2b+1)n/2�]:[1+(2b+2)n/2�,(2b+3)n/2�] + H[1+2b(n/2�),(2b+1)n/2�]:[1+(2b+3)n/2�,(2b+4)n/2�]

+ H[1+(2b+1)n/2�,(2b+2)n/2�]:[1+(2b+3)n/2�,(2b+4)n/2�]

)
+

2h−1∑

b=0

H[1+b(n/2�),(b+1)n/2�]

+
2h−2∑

b=0

H[1+b(n/2�),(b+1)n/2�]:[1+(b+1)n/2�,(b+2)n/2�]. (120)

See Fig. 3 for an illustration of this decomposition at the first nontrivial layer � = 2.
We observe the following features of the decomposition that are helpful to describe our circuit implementation:

1. There are h − 1 = �(log n) layers in the decomposition, all indexed by �.
2. For a fixed layer �, there are 2� consecutive intervals each of length n/2�.
3. Within each layer �, intervals are further divided into 2�−1 blocks (indexed by b). Within each pair of consecutive

blocks, we keep only the three terms that act on intervals with distance at least n/2�. They are

H[1+2b(n/2�),(2b+1)n/2�]:[1+(2b+2)n/2�,(2b+3)n/2�],

H[1+2b(n/2�),(2b+1)n/2�]:[1+(2b+3)n/2�,(2b+4)n/2�],

H[1+(2b+1)n/2�,(2b+2)n/2�]:[1+(2b+3)n/2�,(2b+4)n/2�].

The total number of pairs of intervals is O(n) by the master theorem Lemma 1.
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FIG. 3. Illustration of one iteration [Eq. (119)] in the low-rank decomposition. We repeatedly apply Eq. (119) to the remaining terms
in the second row to arrive at the final decomposition Eq. (120).

4. When � = 2, . . . , h and b = 0, . . . , 2�−1 − 2, the decomposition provides a partition of all the terms in the
Hamiltonian with distance at least n/2h.

As in Sec. III A, we may use these features to simplify our analysis. For instance, since we have only two-local terms with
the same type of Pauli operators acting across disjoint intervals, we can simultaneously change the basis and consider
only Pauli-Z interactions, e.g.,

H[1+2b(n/2�),(2b+1)n/2�]:[1+(2b+2)n/2�,(2b+3)n/2�] =
∑

1+2b(n/2�)≤u≤(2b+1)n/2�

1+(2b+2)n/2�≤v≤(2b+3)n/2�

βu,vZuZv. (121)

Also, due to the nature of the recursive decomposition, it suffices to focus on the implementation of a spe-
cific term such as H[1+2b(n/2�),(2b+1)n/2�]:[1+(2b+2)n/2�,(2b+3)n/2�]. We show momentarily that all the decomposed terms
can be implemented with similar complexities cost(·), while the remaining terms such as H[1+b(n/2�),(b+1)n/2�] and
H[1+b(n/2�),(b+1)n/2�]:[1+(b+1)n/2�,(b+2)n/2�] act on constant-size intervals and can be handled by a sequential implementation
using product formulas. This means the total complexity can be bounded as

costrec(n) =
h∑

�=2

3
(
2�−1 − 1

)
cost

( n
2�−1

)
+ O(n), (122)

which again reduces to the study of cost(·) because of the master theorem (Lemma 1). For simplicity, we choose � = 2,
b = 0 and we study the complexity cost(n/2) of simulating H[1,n/4]:[n/2+1,3n/4].

Our main motivation to consider this decomposition is made clear through the following rank assumption of
H[1,n/4]:[n/2+1,3n/4]:

(i) Coefficients of H[1,n/4]:[n/2+1,3n/4], when organized into an n/4-by-n/4 matrix, have rank at most ρ, i.e.,
rank

(
[βu,v]

) ≤ ρ.

Because of this low-rank property, the coefficient matrix admits the thin singular value decomposition [102, Theorem
7.3.2]

βu,v =
ρ∑

s=1

μu,sσsνv,s (123)
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for u = 1 . . . , n/4 and v = n/2 + 1, . . . , 3n/4, where μ and ν, when viewed as n/4-by-ρ matrices, have real orthonormal

columns, and σs are singular values bounded by the induced 1-norm of β and β�: 0 ≤ σs ≤
√

|||β|||1
∣∣∣∣∣∣β�∣∣∣∣∣∣

1 [102, 5.6.P21].
Correspondingly, the exponential of H[1,n/4]:[n/2+1,3n/4] can be rewritten as

e−itH[1,n/4]:[n/2+1,3n/4] = e−it
∑ρ

s=1 σs
(∑n/4

u=1 μu,sZu
)(∑3n/r

v=n/2+1 νv,sZv
)

. (124)

With respect to the computational basis, our target exponential has the action

e−itH[1,n/4]:[n/2+1,3n/4] |zn, . . . , z1〉 = e−it
∑ρ

s=1 σs
(∑n/4

u=1 μu,s(−1)zu
)(∑3n/r

v=n/2+1 νv,s(−1)zv
)

|zn, . . . , z1〉. (125)

This suggests a circuit implementation as follows. We first introduce an ancilla register of size O(log(nt/ε)), and compute
the following function in superposition:

[
zn · · · z1

] �→
ρ∑

s=1

σs

( n/4∑

u=1

μu,s(−1)zu

)⎛

⎝
3n/r∑

v=n/2+1

νv,s(−1)zv

⎞

⎠ . (126)

Note that the function values are real numbers of size at most O(poly(n)) and can thus be approximately stored in the
O(log(nt/ε))-qubit ancilla register. We then use a sequence of controlled rotations to introduce the phase. We may now
uncompute the ancilla register by reverting the circuit. This implements the desired exponential e−itH[1,n/4]:[n/2+1,3n/4] .

Our above circuit has a gate complexity of cost (n/2) = O (nρ polylog(nt/ε)) for simulating one pair of intervals in the
recursive decomposition. To implement the Trotter step, we redefine ρ to be the maximum truncation rank of coefficient
matrices, maximized over all pairs of intervals in the decomposition Eq. (57). Explicitly,

ρ := max
σ �=σ ′∈{x,y,z}

max
�=2,...,h

max
b=0,...,2l−1−2

ρ
(σ ,σ ′)
�,b , (127)

where ρ�,b is the largest truncation rank for the terms

H[1+2b(n/2�),(2b+1)n/2�]:[1+(2b+2)n/2�,(2b+3)n/2�], H[1+2b(n/2�),(2b+1)n/2�]:[1+(2b+3)n/2�,(2b+4)n/2�],

H[1+(2b+1)n/2�,(2b+2)n/2�]:[1+(2b+3)n/2�,(2b+4)n/2�].

By the master theorem (Lemma 1), this implies the circuit for Trotter steps has the same asymptotic cost

costrec(n) =
h∑

�=2

3
(
2�−1 − 1

)
cost

( n
2�−1

)
+ O(n) = O

(
nρ polylog

(
nt
ε

))
. (128)

By simulating for time t/r in each step and repeating r steps where

r =
{

no(1)t1+o(1)

εo(1) , α ≥ 1,
n1−α+o(1)t1+o(1)

εo(1) , 0 < α < 1,
(129)

we obtain the total gate complexity of the low-rank simulation method
⎧
⎨

⎩

ρ(nt)1+o(1)

εo(1) , α ≥ 1,
ρn2−α+o(1)t1+o(1)

εo(1) , 0 < α < 1.
(130)

Before ending this section, we discuss the important question of how the rank ρ is determined in the above decomposition.
For various classes of power-law interactions including the Coulomb interaction, there are rigorous analyses based on the
multipole expansion showing that ρ = O(log(nt/ε)) suffices to guarantee that the simulation is ε accurate [119], which
leads to the gate complexity claimed in Table I. In fact, we soon examine an application of this method to simulating the
real-space electronic structure Hamiltonian in Sec. VI. In practice, one may also run numerical simulations to empirically
determine the rank value ρ. We refer the reader to Ref. [79] and papers citing this work for detailed studies of the low-rank
decomposition in the classical setting.
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B. Summary of the algorithm

We now summarize the low-rank method for imple-
menting faster Trotter steps:

1. Use diagonalization to implement the low-rank
matrix exponential Eq. (125).

2. Perform matrix exponentials for all combinations
of Pauli operators σ , σ ′ = x, y, z, layers indexed
by � = 2, . . . , h and blocks indexed by b =
0, . . . , 2�−1 − 2, as well as the constant-size blocks,
to implement a single Trotter step.

3. Repeat r Trotter steps to simulate the entire evolu-
tion.

Theorem 3: (Faster Trotter steps using low-rank decom-
position). Consider two-local Hamiltonians

H =
∑

σ ,σ ′∈{i,x,y,z}

∑

1≤j<k≤n

β
(σ ,σ ′)
j ,k P(σ )j P(σ

′)
k ,

where
∣∣∣β(σ ,σ ′)

j ,k

∣∣∣ ≤ 1/|j − k|α for some constant α > 0 and

P(σ ) (σ = i,x, y, z) are the identity and Pauli matrices.
Let t > 0 be the simulation time and ε > 0 be the target
accuracy. Then H can be simulated using the algorithm
of Sec. V B with O (log(nt/ε)) ancilla qubits and gate
complexity

ρnt
( nt
ε

)o(1) , α ≥ 1,
ρn2−αt

( nt
ε

)o(1) , α < 1.
(131)

Here, 1 ≤ ρ ≤ n defined in Eq. (127) is the maximum trun-
cation rank of certain off-diagonal blocks of coefficient
matrices (ρ = O (log(nt/ε)) if the coefficient distribution
exactly matches a power law in one spatial dimension).

VI. APPLICATIONS TO REAL-SPACE QUANTUM
SIMULATION

Simulating electronic structure Hamiltonians is one of
the most widely studied problems in quantum simulation
[4–6]. An efficient solution of the electronic structure prob-
lem could lead to better understandings of catalysts and
materials, which has applications in numerous subareas
of physics and chemistry. Here, we consider mapping the
electronic structure Hamiltonian on a grid and perform-
ing simulation in the second quantization in real space.
Compared to general molecular basis Hamiltonians [32],
the grid-based Hamiltonian contains much fewer terms
with well-structured coefficients, which is useful for reduc-
ing the resource requirement of quantum simulation. We
present an algorithm combining our method for Trotter-
step implementation with a tighter error analysis, which
improves the best simulation results from previous work.

We consider the following class of Hamiltonians:

H = T + V :=
∑

j ,k

τj ,kA†
j Ak +

∑

l,m

νl,mNlNm, (132)

where A†
j , Ak are the fermionic creation and annihilation

operators, Nl are the occupation-number operators, τ , ν are
coefficient matrices, and the summations are over n spin
orbitals. We can represent the real-space electronic struc-
ture Hamiltonians in the above form with specific choices
of coefficients τ and ν; we come back to this point momen-
tarily. Then, we simulate the Hamiltonian using product
formulas by splitting e−itH into products of e−itT and e−itV.
The Trotter error corresponding to this splitting was stud-
ied in Ref. [87]. There, they found that a pth-order product
formula Sp(t) has error scaling like

∥∥Sp(t)− e−itH
∥∥
Wη

= O (
(‖τ‖ + ‖ν‖max η)

p−1 ‖τ‖ ‖ν‖max η
2tp+1) ,

(133)

where recall ‖·‖max is the max norm denoting the largest
matrix element in absolute value, ‖·‖ is the operator norm
and

‖X ‖Wη
:= max

|ψη〉,|φη〉∈Wη

∣∣〈φη|X |ψη〉
∣∣ (134)

is the restriction of the operator norm to the η-electron sub-
space. Furthermore, if the coefficient matrices τ and ν are
s sparse (with at most s nonzero elements in each row and
column), then it holds that
∥∥Sp(t)− e−itH

∥∥
Wη

= O (
(‖τ‖max + ‖ν‖max)

p−1 ‖τ‖max ‖ν‖max sp+1ηtp+1).
(135)

The new bound we prove is as follows:
∥
∥Sp(t)− e−itH

∥∥
Wη

= O
((|||τ |||1 + |||ν|||1,[η]

)p−1 |||τ |||1|||ν|||1,[η]ηtp+1
)

,

(136)

where we use the induced 1-norm and its restricted version

|||τ |||1 := max
j

∑

k

|τj ,k|,

|||ν|||1,[η] := max
j

max
k1<···<kη

(∣∣νj ,k1

∣∣+ · · · + ∣∣νj ,kη

∣∣) . (137)

This new bound is strictly better than Eq. (135) because
for an s-sparse coefficient matrix β, it holds that
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|||β|||1,[η] ≤ |||β|||1 ≤ s ‖β‖max and the equalities are not
always attainable. In fact, as we see momentarily, the gap
between the induced 1-norm |||β|||1,[η] and the max norm
s ‖β‖max is quite significant for the Coulomb interaction,
which is relevant for the electronic structure simulation.
Compared with Eq. (133), our induced 1-norm scaling
|||ν|||1,[η] is again better than ‖ν‖max η, but our dependence
on τ is slightly worse since |||τ |||1 ≥ ‖τ‖ for a Hermitian
τ . Fortunately, this is not an issue with the real-space elec-
tronic structure Hamiltonian. To avoid diluting the main
message of our work, we state our Trotter error bound
below and leave its proof to Appendix B.

Theorem 4: (Trotter error with fermionic induced 1-norm
scaling). Let H = T + V := ∑

j ,k τj ,kA†
j Ak +∑

l,m νl,mNl
Nm be an interacting-electronic Hamiltonian, and Sp(t) be
a pth-order product formula splitting the evolutions under
T and V. Then,
∥∥Sp(t)− e−itH

∥∥
Wη

= O
((|||τ |||1 + |||ν|||1,[η]

)p−1 |||τ |||1|||ν|||1,[η]ηtp+1
)

.

(138)

Here, |||τ |||1 and |||ν|||1,[η] are the (restricted) fermionic
induced 1-norm defined by

|||τ |||1 = max
j

∑

k

∣∣τj ,k
∣∣ ,

|||ν|||1,[η] = max
j

max
k1<···<kη

(∣∣νj ,k1

∣∣+ · · · + ∣∣νj ,kη

∣∣) . (139)

We now apply the above theorem to the simulation of
electronic structure Hamiltonians in real space. In this case,
we have H = T + U + V, where T represents the kinetic
term, U represents the external potential term introduced
by the Born-Oppenheimer approximation, and V represents
the Coulomb potential term. We first consider the uniform
electron gas without the external potential U. The Coulomb
interaction takes the form [77, Eq. (K4)]

V = n1/3

2ω1/3

∑

l,m

1
‖l − m‖NlNm, (140)

where n is the number of spin orbitals, ω is the volume
of the computational cell, l and m are three-dimensional
(3D) vectors with each coordinate taking integer values
between −n1/3 − 1/2 and n1/3 − 1/2. This term can be
represented as V = ∑

l,m νl,mNlNm and it is easy to check
that ‖ν‖max = O (

n1/3/ω1/3
)
. On the other hand, we can

estimate the (restricted) induced 1-norm as follows. For a
fixed value of l, the η spin orbitals nearest to l, if occu-
pied, will have the largest possible coefficients 1/ ‖l − m‖.
These η spin orbitals form a ball of radius O(η1/3), which

is also inside of a cube of linear size O(η1/3). This implies
that [44, Lemma H.1]

|||ν|||1,[η] = O
(
η2/3n1/3

ω1/3

)
. (141)

We thus see that the scaling of |||ν|||1,[η] is strictly less than
η ‖ν‖max, giving a factor of η1/3 improvement over the best
previous result. Meanwhile, the scaling for the kinetic term
is [120]

|||τ |||1 = O
(

n2/3

ω2/3

)
. (142)

This determines the asymptotic scaling of the number of
Trotter steps as

(
η2/3n1/3

ω1/3 + n2/3

ω2/3

)
no(1)t1+o(1)

εo(1) . (143)

To implement each Trotter step, one could sequentially
exponentiate all terms in the Hamiltonian with cost�(n2).
However, note that under the Jordan-Wigner encoding,
the Coulomb potential term is translated to the spin
Hamiltonian

V = n1/3

2ω1/3

∑

l,m

1
‖l − m‖

I − Zl

2
I − Zm

2
, (144)

with interaction coefficients decaying with distance
according to power law. This can be handled by the
recursive low-rank method described in Sec. V for the
one-dimensional (1D) case with straightforward general-
izations in Appendix C 1 to higher spatial dimensions. One
can show using the multipole expansion that the decom-
posed terms can be approximated using matrices with rank
polylogarithmic in the input parameters [79,121]. So the
complexity of implementing the Coulomb potential term
is O (n polylog(nt/ε)).

For the kinetic part, we can either represent it using
a finite-difference scheme [76], or using a diagonal form
in the kinetic basis and fermionic-Fourier-transforming
back [77]. In the first representation, we have geomet-
rically local terms and we can further split them using
product formulas without increasing the asymptotic scal-
ing of Trotter error. Alternatively, we can modify boundary
terms (using product formulas) so that the coefficients are
cyclic, and the kinetic operator can then be implemented
using the fermionic fast Fourier transform [76] (we can
also use this fermionic-Fourier-transform implementation
for the diagonal-form representation in the kinetic basis).
As the first derivatives of the electronic wave function are
not continuous at electron cusps [122], we note that the
error introduced by even a first-order difference scheme
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should not differ asymptotically from high-order differ-
ence schemes, or even an exact diagonalization of the
kinetic part, in the limit of large n. In either case, we
can exponentiate the kinetic part with an asymptotic cost
of O (n polylog(nt/ε)) as well. This gives the total gate
complexity

(
η2/3n4/3

ω1/3 + n5/3

ω2/3

)
no(1)t1+o(1)

εo(1) (145)

for the uniform electron gas, which simplifies to(
η1/3n1/3 + n2/3/η2/3

)
n1+o(1) assuming the density of elec-

trons η/ω = O(1) is fixed.
In second quantization, electronic structure Hamilto-

nians can be simulated in real space by implementing
sequential Trotter steps, which is ancilla-free with the
asymptotic gate complexity

(
n8/3/η2/3 + n7/3η2/3

)
no(1).

This complexity can be further improved by diagonaliz-
ing the Coulomb potential using the (classical) fast Fourier
transform [68,87], although the ancilla space complexity
increases to Õ(n). By contrast, our recursive low-rank
method combined with the tighter Trotter error bound
achieves a strictly lower complexity while using only
O (polylog(n)) ancillas. In first quantization, recent work
[77] gives an algorithm based on the interaction-picture
simulation [68] with complexity Õ (

η8/3n1/3
)
. So our

result, while not dominating in all parameter regimes, is
asymptotically better as long as n = η7/3−o(1). See Table II
for a more detailed comparison.

For the general case, we have the external potential term

U =
∑

m

(
∑

l

ζl

‖̃rl − rm‖

)

Nm (146)

introduced under the Born-Oppenheimer approximation,
where ζl are nuclear charges, r̃l are nuclear coordinates,
and rm are the positions of electrons (rm = ω1/3/n1/3m). In
this case, we have a complexity similar to Eq. (145), but
with an additional contribution from the external potential

that depends on

max
m

∑

l

ζl

‖̃rl − rm‖ . (147)

We note that this is strictly better than the interaction-
picture algorithm from previous work [77], which instead
depends on a larger quantity

(
∑

l

ζl

)

max
l,m

1
‖̃rl − rm‖ = O

(
ηn1/3

ω1/3

)
. (148)

A study of how much this improvement is for practical
electronic structure problems will be left as a subject for
future work.

VII. FIRST CIRCUIT LOWER BOUND

We have presented three methods for implementing
faster Trotter steps and identified applications to electronic
structure simulation in second quantization in real space.
It is worth mentioning that all our methods make use of
structural properties of the Hamiltonian in an essential
way. Without such guarantees, the coefficient oracle in the
block-encoding and average-cost simulation described in
Secs. III and IV would have an implementation cost that
depends on the number of terms�(n2), whereas the blocks
in the recursive decomposition of Sec. V would no longer
have low rank. Consequently, all our methods will reduce
to the sequential circuit implementation of Trotter steps.

In this section, we construct a class of two-local Hamil-
tonians with only Pauli-Z interactions with coefficients
taking a continuum range of values. We show that one
needs at least �(n2) gates to evolve this class of Hamilto-
nians with accuracy ε = �(1/ poly(n)) for time t = �(ε).
This suggests that using structural properties of the Hamil-
tonian is both necessary and sufficient for performing
faster Trotter steps. We prove a related circuit lower bound
in Appendix A to justify the necessity of structural proper-
ties to efficiently implement the coefficient oracle Oβ with
approximate circuit synthesis.

TABLE II. Comparison of our result and previous results for simulating the uniform electron gas with n spin orbitals and η electrons.
We use Õ(·) to suppress polylog(n) factors in the complexity scaling. The complexity of the recursive low-rank method follows from
Theorem 3 (with its 3D extension discussed in Appendix C 1), as well as the tighter Trotter error bound described in Theorem 4.

Simulation algorithms Gate complexity Space complexity

n, η η = �(n) System Ancilla

First-quantized qubitization [116] Õ (
n2/3η4/3 + n1/3η8/3

) Õ (
n3
) Õ (η) Õ (η)

First-quantized interaction picture [116] Õ (
n1/3η8/3

) Õ (
n3
) Õ (η) Õ (η)

Second-quantized interaction picture [68] Õ (
n8/3/η2/3

) Õ (
n2
) Õ (n) Õ (n)

Second-quantized Trotterization [87] (sequential)
(
n8/3/η2/3 + n7/3η2/3

)
no(1) n3+o(1) Õ (n) Õ (1)

Second-quantized Trotterization [87] (fast Fourier transform)
(
n5/3/η2/3 + n4/3η2/3

)
no(1) n2+o(1) Õ (n) Õ (n)

Second-quantized Trotterization (recursive low rank)
(
n5/3/η2/3 + n4/3η1/3

)
no(1) n5/3+o(1) Õ (n) Õ (1)
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The proof of our circuit lower bound is based on a
gate-efficient reduction to the problem of approximately
synthesizing diagonal unitaries in the Hamming weight-2
subspace, which we describe in detail in Sec. VII B. With
this strategy in mind, we first examine the approximate
synthesis of diagonal unitaries in Sec. VII A.

A. Approximate synthesis of diagonal unitaries

We now consider the gate complexity lower bound for
synthesizing diagonal unitaries. The exact version of this
problem was considered by Bullock and Markov [83].
Here, we generalize their lower bound to the approximate
synthesis, by adapting a volume comparison technique of
Knill [86].

To be specific, our goal is to implementμ-qubit diagonal
unitaries with accuracy δ

|xμ, . . . , x2, x1〉 �→ eiθx |xμ, . . . , x2, x1〉, (149)

where the phase angles take values up to |θx| ≤ θmax < π .
Recall that the set of all such unitaries is denoted by Dθmax .
Our circuit acts on a total number of b ≥ μ qubits. We first
prove a lower bound for a two-qubit gate set K of finite
size |K|, and then bootstrap the result to obtain a lower
bound for arbitrary two-qubit gates.

As aforementioned, this lower bound is proved using a
volume comparison argument: we compare the volume of
all the diagonal unitaries within δ distance to the set of
constructable quantum circuits, against the volume of our
target set of diagonal unitaries. A similar argument was
used by Knill to prove a circuit lower bound for synthe-
sizing the full unitary group U(2μ) [86], but our proof
here is significantly simplified as we restrict to the set of
diagonal unitaries whose volume is easier to compute (see
Sec. II D).

We start by bounding the number of b-qubit circuits that
can be constructed using g gates from a finite two-qubit
gate set K. For each of the g gates, we have

(b
2

)
choices for

the locations in which the two-qubit gate acts and, fixing
the locations, we have |K| choices for the specific gate.
This gives the upper bound

((
b
2

)
|K|

)g

(150)

for the number of distinct circuits we can construct.
Now, to synthesize diagonal unitaries with accuracy δ,

we need all of them to fall into the δ ball of some quan-
tum circuits (in spectral norm distance). For each circuit
V, the volume of diagonal unitaries within its δ ball can
be estimated as follows. We take any two diagonal uni-
taries U and Ũ from the δ ball centered at V. By the triangle

inequality,

‖U − V‖ ,
∥∥Ũ − V

∥∥ ≤ δ ⇒ ∥∥Ũ − U
∥∥ ≤ 2δ, (151)

which implies
∣∣∣eiθ̃x − eiθx

∣∣∣ ≤ 2δ (152)

when restricting to the specific diagonal elements indexed
by x. Solving for θ̃x and θx when δ < 1, we have

∣∣θ̃x − θx
∣∣ ≤ arcsin

(
2δ
√

1 − δ2
)

. (153)

This means maxx maxθ̃x ,θx

∣∣θ̃x − θx
∣∣ ≤ arcsin

(
2δ

√
1 − δ2

)
,

so the volume of such diagonal unitaries is upper bounded

by
(

arcsin
(

2δ
√

1 − δ2
))2μ

. We thus have that the total
volume of synthesizable diagonal unitaries is at most

vol ({U|U is diagonal unitary, ∃ circuit V, ‖U − V‖ ≤ δ})

≤
((

b
2

)
|K|

)g

max
circuit V

vol ({U|U is diagonal unitary,

‖U − V‖ ≤ δ})

≤
((

b
2

)
|K|

)g

vol

(

D arcsin
(

2δ
√

1−δ2
)

2

)

=
((

b
2

)
|K|

)g

×
(

arcsin
(

2δ
√

1 − δ2
))2μ

. (154)

On the other hand, we know that the total volume of the
target diagonal unitaries is

vol
(Dθmax

) = (2θmax)
2μ . (155)

For our synthesis to succeed, we require that

{U|U is diagonal unitary, ∃ circuit V, ‖U − V‖ ≤ δ}
⊇ Dθmax , (156)

which implies

((
b
2

)
|K|

)g (
arcsin

(
2δ
√

1 − δ2
))2μ

≥ (2θmax)
2μ ,

g ≥ 2μ ·
log

(
2θmax

arcsin
(

2δ
√

1−δ2
)

)

log
((b

2

)|K|) . (157)

Note that this lower bound is only useful when θmax =
�(δ), for otherwise the right-hand side of the bound
becomes negative. Intuitively, we would simply use the
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identity operator in the circuit synthesis if the target diag-
onal unitary itself is close to identity. On the other hand,
the restriction θmax < π is not fundamental: if θmax ≥ π ,
we can simply reset it to a smaller value.

We have so far proved a circuit lower bound when the
underlying gate set K is of finite size. If we are allowed to
use arbitrary two-qubit gates, then the bound can be modi-
fied as follows. We first synthesize the circuit with respect
to a fixed finite universal gate set K′, say Clifford+T. This
gives a new circuit approximating the original one to accu-
racy δ with a slightly larger gate complexity cg log(g/δ)
for some constant c > 0. We then invoke the above bound
with the number of gates cg log(g/δ), accuracy 2δ and the
gate set K′ = Clifford+T of constant size. This gives

cg log
(g
δ

)
= �

(

2μ · log
(
θmax
δ

)

log b

)

. (158)

Solving g using the Lambert-W function [11, Lemma 59],
we obtain the same asymptotic scaling

g = �

(

2μ · log
(
θmax
δ

)

log b

)

. (159)

We summarize this bound in the following theorem.

Theorem 5: (Approximate synthesis of diagonal uni-
taries). Consider diagonal unitaries

Dθmax =
{
∑

x

eiθx |xμ, . . . , x1〉〈xμ, . . . , x1| | |θx| ≤ θmax<π

}

on μ qubits with phase angles at most θmax < π . Given
accuracy 0 < δ < 1, number of qubits b ≥ μ, and two-
qubit gate set K of finite size |K|,

min {g | ∀U ∈ Dmax, ∃ circuit V on b qubitswith g gates

from set K, ‖U − V‖ ≤ δ}

≥ 2μ ·
log

(
2θmax

arcsin
(

2δ
√

1−δ2
)

)

log
((b

2

)|K|) . (160)

Under the same assumption (with 0 < δ < 1/2 and θmax =
�(δ)) but choosing K to be the set of arbitrary two-qubit
gates,

min {g | ∀U ∈ Dmax, ∃ circuit V on b qubits with g gates

from set K, ‖U − V‖ ≤ δ}

= �

(
2μ

log b

)
. (161)

B. Reduction from simulation in the Hamming
weight-2 subspace

We now show a circuit lower bound for simulating a
class of two-local Hamiltonians with only Pauli-Z inter-
actions. Specifically, we consider H = ∑

1≤j<k≤n βj ,kZj Zk,
where coefficients take a continuum range of values up to
|βj ,k| ≤ t. Suppose first that this evolution can be simu-
lated to accuracy δ using circuits acting on b ≥ n qubits
with gates chosen from a two-qubit gate set K of finite size
|K|. An analogous lower bound holds when the gate set
contains arbitrary two-qubit gates.

The key technical ingredient of our proof is a gate-
efficient reduction from the approximate synthesis of diag-
onal unitaries within the Hamming weight-2 subspace W2.
To elaborate, we rewrite the evolution as

e−iH = ei
∑

j<k βj ,kI e−i
∑

j<k βj ,kZj e−i
∑

j<k βj ,kZk

× e−i
∑

j<k 4βj ,k
I−Zj

2
I−Zk

2 . (162)

It suffices for us to consider only the last exponential
since all the remaining ones can be performed with gate
complexity O(n) (with only logarithmic overhead when
compiled with respect to a fixed finite universal gate set,
say Clifford+T). We have

∑

j<k

βj ,k
I − Zj

2
I − Zk

2
|eu ⊕ ev〉 = βu,v|eu ⊕ ev〉, (163)

for all 1 ≤ u < v ≤ n, where eu represents the n-bit string
with 1 at the uth position and 0 elsewhere and ⊕ denotes
the modulo-2 addition. Using a conversion mapping that
is introduced below, we can then relate the problem of
simulating two-local Hamiltonians with coefficients βj ,k, to
the synthesis of diagonal unitaries with phase angles βj ,k,
within the Hamming weight-2 subspace.

To complete the reduction, we need to convert the usual
computational basis states to the basis states of the Ham-
ming weight-2 subspace W2. This can be done using an
inequality test, followed by a binary-to-unary conversion.
Specifically, suppose we have two quantum registers each
of length log n holding the binary representation of j and
k (assuming n is a power of 2). We then use an inequality
test with cost O(log n) to implement

|j 〉|k〉 �→ |j 〉|k〉|j ?k〉 =

⎧
⎪⎨

⎪⎩

|j 〉|k〉|j = k〉, j = k,
|j 〉|k〉|j < k〉, j < k,
|j 〉|k〉|j > k〉, j > k.

(164)

We can introduce arbitrary phases for the first case using
O(n) gates (which can again be compiled using Clifford+T
with only logarithmic overhead). For the case where j < k,
we apply the binary-to-unary conversion with cost O(n)
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� � � �

� � � �

= < < > >

|j〉 ∑
j e−iβj,j |j〉〈j|

|k〉

|0〉 ej ⊕ ek e−i
∑

j<k

βj,k
4 ZjZk e−i

∑
j<k

βj,k
4 (I−Zj−Zk) e−i

∑
k<j

βj,k
4 ZkZj e−i

∑
k<j

βj,k
4 (I−Zk−Zj) ej ⊕ ek

|0〉 j?k j?k

FIG. 4. Illustration of the reduction. This circuit implements diagonal unitaries on registers |j 〉 and |k〉 by simulating two-local
commuting Hamiltonians on an ancilla register (shaded orange). The reduction is gate efficient, so the asymptotic cost of quantum
simulation is the same as that of synthesizing diagonal unitaries.

to get

|j 〉|k〉|j < k〉 �→ |j 〉|k〉|ej ⊕ ek〉|j < k〉, (165)

after which we introduce the desired phases by simulating
the corresponding two-local Hamiltonian with accuracy ε.
The last case j > k can be handled similarly by swapping
the role of j and k. See Fig. 4 for an illustration of this
reduction.

To summarize, we can use the above circuit to imple-
ment arbitrary diagonal unitaries on the two quantum reg-
isters |j 〉|k〉 of total length log n + log n = log(n2) to accu-
racy 3ε with phase angles taking values up to |βj ,k| ≤ t.
Our circuit uses two instances of controlled simulations of
two-local Hamiltonians, together with O(n polylog(n/ε))
additional Clifford+T gates, acting on a total number of
O(b) qubits (recall b ≥ n). In other words, if the simula-
tion uses g gates from K, then we can implement arbitrary
diagonal unitaries using

2g + O (n polylog(n/ε)) (166)

gates from the gate set

K′ = controlled-K ∪ (Clifford+T) . (167)

However, our above lower bound indicates that

�

(
n2

log(b|K′|)
)

(168)

gates are necessary to implement diagonal unitaries act-
ing on b = log(n2) qubits with accuracy 3ε for t =
�(ε). Thus, a similar asymptotic bound applies to the
uncontrolled simulation as well by observing that |K′| =
�(|K|).

Corollary 1: (Simulating two-local commuting Hamilto-
nians). Consider two-local Hamiltonians

H =
∑

1≤j<k≤n

βj ,kZj Zk,

where coefficients take values up to |βj ,k| ≤ t. Given
accuracy 0 < ε < 1/3, the number of qubits b ≥ n, and

two-qubit gate set K of finite size |K|, if t = �(ε),

min
{
g | ∀ 2-local Hamiltonian H , ∃ circuit V on

b qubits with g gates from K,
∥∥e−iH − V

∥∥ ≤ ε
}

= �

(
n2

log
(
b|K|) − n polylog

(n
ε

))

. (169)

Under the same assumption but choosing K to be the set
of arbitrary two-qubit gates,

min
{
g | ∀two-local Hamiltonian H , ∃ circuit V on

b qubits with g gates from K,
∥∥e−iH − V

∥∥ ≤ ε
}

= �

(
n2

log b
− n polylog

(n
ε

))
. (170)

To apply our bound for implementing Trotter steps, we
first divide the evolution into r steps and simulate each
step using product formulas for time t/r with accuracy ε/r.
Depending on the specific definition of the Hamiltonian,
we may perform further decompositions like in Secs. III–V
and apply the bound only to commuting terms. We note
that when the Hamiltonian coefficients have nonuniform
magnitudes, the minimum effective evolution time can
often be much smaller. For instance, the effective time for
power-law interactions scale like �(t/nαr) as the smallest
terms have size �(1/nα). To apply our bound, we would
then require that t = �(nαε), which is a pessimistic esti-
mate. Of course, one can replace the volume formula in
Eq. (155) with a better estimate that takes account of the
nonuniformness of the Hamiltonian coefficients. However,
we emphasize that this modification will not lead to a sig-
nificant improvement to our bound as the dependence on
the magnitude of coefficients is only logarithmic. We leave
a detailed study of such improvement for future work.

VIII. DISCUSSION

In this work, we have developed circuit implementations
of Trotter steps going beyond the sequential approach that
cycles through all terms in the Hamiltonian. We have pre-
sented three methods, one based on the block-encoding
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technique, one based on an average-cost simulation and
one based on a recursive low-rank decomposition. This
allows us to simulate systems with power-law decaying
interactions with significantly lower cost. As an applica-
tion, we have given an algorithm for simulating electronic
structure Hamiltonians in real space, with complexity(
η1/3n1/3 + n2/3/η2/3

)
n1+o(1) for the uniform electron gas

and a similar cost when the external potential is included,
improving over the best results from previous work. In
achieving these speedups, we have made essential use of
structural properties of the system. We further construct
a class of two-local commuting Hamiltonians on n qubits
with continuum range of coefficients whose simulation
requires �(n2) gates. Our results thus suggest that the use
of structural properties of the Hamiltonian is both neces-
sary and sufficient to implement Trotter steps with lower
asymptotic gate complexity.

Although we have employed different techniques to
develop various faster simulation algorithms, the core idea
behind all our improvements is the use of recursion. With
suitable recursive decompositions, we have shown that
the target Hamiltonian can be significantly simplified with
lower 1-norm and smaller rank value, both of which are
useful for quantum simulation. Meanwhile, because of the
master theorem (Lemma 1), recursions introduce only log-
arithmic factors to the overall gate complexity, thus sim-
plifying the target problem “almost for free.” We expect
that recursions will find further applications in reducing
the cost of simulating many-body Hamiltonians.

We have focused on simulating two-local spin models
throughout our paper, and it would be interesting to study
general κ-local models as well as fermionic systems. For
this purpose, previous work [41] utilized different low-rank
decompositions for one- and two-body fermionic opera-
tors, which led to Trotter steps with lower cost. However,
an issue not rigorously addressed in their work is that
the decomposition does not respect the commutation rela-
tions of Hamiltonian terms and could lead to a Trotter
error larger than the naive approach. Thus, some additional
efforts are needed to justify the utility of those methods
in quantum simulation [123]. Note that this drawback can
be slightly alleviated using the phase-gradient construc-
tion [54] if the fault-tolerant resource cost is of interest.
On the other hand, our techniques do apply to other κ-
local models for constant κ and to fermionic systems, as
long as the Hamiltonian can be recursively decomposed
as in Secs. III–V. Preliminary studies of such generaliza-
tions were available in the context of measuring quantum
observables [114], and we hope future work could develop
more efficient Hamiltonian decompositions along this
line.

We have demonstrated that advanced quantum simu-
lation techniques, such as block encoding and qubitiza-
tion, can be used to improve the performance of prod-
uct formulas. Such techniques can be directly applied to
implement Trotter steps; however, this would introduce a

slow-down factor proportional to the 1-norm of Hamilto-
nian coefficients, offering no benefit over the sequential
circuit implementation. We have shown how to overcome
this obstacle for power-law interactions by recursively
decomposing the Hamiltonian using product formulas to
reduce the norm and by implementing an average-case cost
simulation. Our result is complementary to recent results
on the hybridized simulation [124,125], where quantum
algorithms are “hybridized” with the interaction-picture
method to achieve better performance. Our finding indi-
cates that product formulas can be just as effective in
hybridizing with other algorithms for quantum simulation.

In our low-rank method, we have performed a recursive
decomposition of the target Hamiltonian where certain off-
diagonal blocks of coefficients have rank value logarithmic
in the input parameters. Such a decomposition was used
in a different context by Ref. [52] to block-encode ker-
nel matrices. Although their results are potentially useful
for improving electronic structure simulation in first quan-
tization, we are not aware of a simple circuit to realize
this idea. In our problem, the decomposed Hamiltonian
terms can be handled directly, so block encoding is no
longer needed (it would be inefficient anyway due to the
normalization factor issue mentioned above). We apply
this method in Sec. VI to implement the Coulomb poten-
tial term of the electronic structure Hamiltonian in second
quantization in real space, obtaining improvements over
the best previous simulation results. As can be seen from
Table I, this method achieves the lowest gate complexity
among all our algorithms as long as the low-rank condi-
tion is satisfied. This condition can be rigorously justified
using the multipole expansion for all power-law models in
1D and many power-law models such as Coulomb interac-
tions in higher spatial dimensions. For other Hamiltonians
where the rank condition does not hold, faster Trotter steps
are still possible using methods based on block encoding
and average-cost simulation.

When no structural property is available in the target
Hamiltonian, then intuitively the best method one can hope
for is to exponentiate the terms one by one. We justify
this intuition in Sec. VII with a circuit lower bound, show-
ing that a class of two-local commuting Hamiltonians on
n sites requires at least �(n2) gates to simulate. How-
ever, we emphasize that our lower bound is useful only
when the effective evolution time is sufficiently long: if
the effective time is short compared to the accuracy thresh-
old, our bound becomes trivial. However, such failures are
often indications that improved implementations of Trotter
steps exist, as one can truncate the Hamiltonian and replace
small-angle exponentials by identity operators. Previous
work has studied various truncation schemes for product
formulas as well as more advanced quantum algorithms
[44–49]. By exploiting the relative scaling between evo-
lution time and system size, it is plausible to get faster
quantum simulation algorithms with better dependence on
the spacetime volume.
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Although our lower bound is mostly used to argue the
difficulty of implementing product formulas, it is applica-
ble to other simulation algorithms as well. In particular, it
applies to the sampling-based approach [20], as one can
always reproduce classical computations on a quantum
computer, and the use of randomness can be represented
unitarily via the Stinespring dilation. A similar argu-
ment then lower bounds both the classical and quantum
resources used by the simulation. But given the difficulty
of realizing a scalable quantum computer, it would be
beneficial if certain computations can be offloaded classi-
cally, which is exactly a main goal of the sampling-based
algorithm. Looking forward, it would be interesting to fur-
ther study the tradeoffs between classical and quantum
resources in designing quantum algorithms.

Several other related questions are worth further investi-
gation. To simplify our analysis, we have used boxes with
exponentially growing sizes to group each qubit index in
the block-encoding approach, but this may be improved by
using different box definitions. We have also chosen a uni-
form division of intervals in the realization of average-cost
simulation, but improvements might be possible through
a nonuniform division scheme. We have almost exclu-
sively considered the number of arbitrary two-qubit gates
as the cost metric for quantum simulation, and future work
may consider other metrics such as circuit depth, local-
ity [126] and fault-tolerant gate count (although we expect
some of our techniques are useful under those metrics as
well). With these questions in mind, we hope our work
will motivate continuing progress on finding the most effi-
cient methods to solve instances of quantum simulation
problems with practical interest.

ACKNOWLEDGMENTS

Y.S. thanks Ryan Babbush for helpful discussions dur-
ing the initial stages of this work. We thank Wim van
Dam for his comments on an earlier draft. Y.T. acknowl-
edges funding from the U.S. Department of Energy Office
of Science, Office of Advanced Scientific Computing
Research, (DE-NA0003525, and DE-SC0020290). Work
supported by DE-SC0020290 is supported by the DOE
QuantISED program through the theory consortium “Inter-
sections of QIS and Theoretical Particle Physics” at Fer-
milab. The Institute for Quantum Information and Mat-
ter is an NSF Physics Frontiers Center. M.C.T. is sup-
ported by the Defense Advanced Research Project Agency
(DARPA) under Contract No. 134371-5113608 and the
Quantum Algorithms and Machine Learning Grant from
Nippon Telegraph and Telephone (NTT), No. AGMT DTD
9/24/20.

APPENDIX A: SECOND CIRCUIT LOWER BOUND

In Sec. VII, we proved a lower bound on the gate com-
plexity of approximately synthesizing diagonal unitaries,

and bootstrapped it to get a lower bound on the simulation
of two-local commuting Hamiltonians. In this Appendix,
we prove a related lower bound on the cost of synthesizing
the coefficient oracle Oβ used in Secs. III and IV for block
encoding. To this end, we first prove a lower bound for
the approximate synthesis of discrete diagonal unitaries in
Appendix A 1, and then do a reduction from applications of
the coefficient oracle in Appendix A 2. Our result extends
a previous bound of Ref. [107] by allowing approximate
circuit synthesis and use of arbitrary two-qubit gates.

1. Approximate synthesis of discrete diagonal unitaries

We first consider the gate complexity of synthesizing
discrete diagonal unitaries of the form

|x〉 �→ eiβx,m−12m−1+···+βx,0/2m |x〉, (A1)

with accuracy δ. Here, x takes 2μ possible values, and βx
is an m-bit string parameterized by x (so βx,j ∈ {0, 1}). We
use a setup similar to that of Sec. VII. Specifically, our cir-
cuit acts on a total number of b ≥ μ qubits. We first prove
a lower bound for a two-qubit gate set K of finite size |K|,
and then bootstrap the result to obtain a lower bound for
arbitrary two-qubit gates.

As before, the number of distinct b-qubit circuits that
can be constructed using g gates from gate set K is at most

((
b
2

)
|K|

)g

. (A2)

We now repeat our volume argument. To synthesize all dis-
crete diagonal unitaries with accuracy δ, we need all of
them to fall into the spectral norm δ ball of some quan-
tum circuits. Fixing a specific circuit V, we consider any
diagonal unitaries U and Ũ from the δ ball centered at V.
Because of the triangle inequality, we must have

∥∥Ũ − U
∥∥ ≤ 2δ. (A3)

However, the new observation is that our target set is dis-
crete and finite. For δ = O(1) and δ = �(1/2m), these
unitaries have the xth diagonal entries
∣
∣∣eiβ̃x,m−12m−1+···+β̃x,0/2m − eiβx,m−12m−1+···+βx,0/2m

∣∣∣ ≤ 2δ.

(A4)

Solving for the (integers) β̃x and βx, we have

∣∣β̃x − βx
∣
∣ ≤ 2m arcsin

(
2δ
√

1 − δ2
)

, (A5)

which implies that the number of such discrete diagonal
unitaries is at most

O
((

2mδ
)2μ

)
. (A6)
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Using the counting measure #{·}, we thus have that the total number of synthesizable discrete diagonal unitaries is at most

# {U|U is discrete diagonal unitary, ∃ circuit V, ‖U − V‖ ≤ δ}

≤
((

b
2

)
|K|

)g

max
circuit V

# {U|U is discrete diagonal unitary, ‖U − V‖ ≤ δ}

=
((

b
2

)
|K|

)g

O
((

2mδ
)2μ

)
= O

(
b2g|K|g2m2μδ2μ

)
. (A7)

On the other hand, by a counting argument, we know that
the total number of discrete diagonal unitaries is exactly

# {U|U is discrete diagonal unitary} = (
2m)2μ = 2m2μ .

(A8)

For our synthesis to succeed, we require that

{U is discrete diagonal unitary | ∃ circuit V, ‖U − V‖ ≤ δ}
⊇ {U is discrete diagonal unitary} , (A9)

which implies

g = �

(

2μ
log

( 1
δ

)

log (b|K|)

)

. (A10)

If K is the arbitrary two-qubit gate set, we can use the
Lambert-W function in a similar way as in Sec. VII A to get

g = �

(

2μ
log

( 1
δ

)

log b

)

. (A11)

We have thus proved the following.

Theorem 6: (Approximate synthesis of discrete diagonal
unitaries). Consider discrete diagonal unitaries

{
∑

x

eiβx,m−12m−1+···+βx,0/2m |x〉〈x|
}

on μ qubits with phase angles determined by m-bit strings
βx. Given accuracy δ = O(1) and δ = �(1/2m), the num-
ber of qubits b ≥ μ, and two-qubit gate set K of finite size
|K|,

min {g | ∀ discrete diagonal unitary U, ∃ b-qubit circuit

V with g gates from set K, ‖U − V‖ ≤ δ}

= �

(
2μ log

( 1
δ

)

log (b|K|)

)

. (A12)

Under the same assumption but choosing K to be the set
of arbitrary two-qubit gates,

min {g | ∀ discrete diagonal unitary U, ∃ b-qubit circuit

V with g gates from set K, ‖U − V‖ ≤ δ}

= �

(
2μ log

( 1
δ

)

log b

)

. (A13)

2. Reduction from the coefficient oracle

Recall that in the block-encoding method, we use the
following oracle of Hamiltonian coefficients:

Oβ |u, v, 0〉 = |u, v,βu,v〉. (A14)

Here, u and v each take n values and βu,v are m-bit binary
strings. To ensure the efficiency of our method, we assume
that the gate complexity of implementing oracle Oβ is
O(polylog(nt/ε)). Implicitly, this implies the existence of
certain structural properties of βu,v: we now show that if
βu,v are allowed to depend arbitrarily on u and v, then one
needs at least approximately n2 gates to implement this
oracle, resulting in an inefficient block-encoding approach.

The key ingredient of the proof is a reduction from
the application of coefficient oracle to the approximate
synthesis of discrete diagonal unitaries. This is done as
follows:

|u, v, 0〉 Oβ�→ |u, v,βu,v〉
�→ eiβ̃u,v/2m |u, v,βu,v〉
O†
β�→ eiβ̃u,v/2m |u, v, 0〉, (A15)

where in the second step we introduce the approxi-
mate phase factors β̃u,v by applying �(log (1/ε)) rota-
tions |0〉〈0| + ei/2� |1〉〈1| (� = 1, . . . ,�(log (1/ε))). We
thus implement an arbitrary discrete diagonal unitary on
registers |u, v〉 of total length μ = 2 log n using a circuit of
two oracle calls (each with accuracy ε) and �(log (1/ε))
single-qubit gates (which can be compiled with respect
to a fixed gate set like Clifford+T with only logarithmic
overhead).

In summary, suppose Oβ can be implemented to
accuracy ε using a b-qubit circuit of g gates chosen from
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a gate set K of finite size |K|. Then, we can implement
the entire reduction to accuracy 3ε using a b-qubit cir-
cuit of 2g + O (polylog(1/ε)) gates chosen from K′ =
K ∪ (Clifford+T). But our lower bound indicates that

�

(
n2 log

( 1
ε

)

log (b|K′|)

)

= �

(
n2 log

( 1
ε

)

log (b|K|)

)

(A16)

gates are required for the synthesis task. We have thus
proved the following.

Corollary 2: (Approximate synthesis of coefficient ora-
cles). Consider the set of coefficient oracles

{
Oβ | Oβ |u, v, 0〉 = |u, v,βu,v〉

}
,

where u and v each takes n values and βu,v are m-bit
strings. Given accuracy ε = O(1) and ε = �(1/2m), the
number of qubits b ≥ m + 2 log n, and two-qubit gate set
K of finite size |K|,

min
{
g | ∀oracle Oβ , ∃ circuit V on b qubits with

g gates from set K,
∥∥Oβ − V

∥∥ ≤ ε
}

= �

(
n2 log

( 1
ε

)

log (b|K|) − polylog
(

1
ε

))

. (A17)

Under the same assumption but choosing K to be the set
of arbitrary two-qubit gates,

min
{
g | ∀oracle Oβ , ∃ circuit V on b qubits with

g gates from set K,
∥∥Oβ − V

∥∥ ≤ ε
}

= �

(
n2 log

( 1
ε

)

log b
− polylog

(
1
ε

))

. (A18)

We see that implementations of the coefficient oracle
Oβ will generally cost approximately n2 gates as well,
even when approximate circuit synthesis is allowed. Thus,
one needs structural properties of the Hamiltonian not
only to realize faster Trotter steps but to implement faster
coefficient oracles as well.

APPENDIX B: TROTTER ERROR WITH
FERMIONIC INDUCED 1-NORM SCALING

In this Appendix, we prove the fermonic induced 1-
norm scaling of Trotter error claimed in Theorem 4,
which is in turn used in the simulation of real-space elec-
tronic structure Hamiltonians. Specifically, we consider the
Hamiltonian

H = T + V :=
∑

j ,k

τj ,kA†
j Ak +

∑

l,m

νl,mNlNm, (B1)

where A†
j , Ak are the fermionic creation and annihilation

operators, Nl are the occupation-number operators, τ , ν
are coefficient matrices, and the summations are over n
spin orbitals. Let Sp(t) be a pth-order product formula that
splits e−itH into products of e−itT and e−itV. Our goal is
to bound the Trotter error

∥∥Sp(t)− e−iH
∥∥
Wη

restricted to
the η-electron subspace Wη (spanned by basis states with
Hamming weight η).

To describe our proof, we introduce some additional
notations and terminologies. For γ = 0, 1, we let

H (γ ) =
∑

j ,k

μ
(γ )

j ,k H (γ )

j ,k , μ(0) = ν, μ(1) = τ ,

H (0)
j ,k = Nj Nk, H (1)

j ,k = A†
j Ak. (B2)

In other words, H (0) = V, H (1) = T. Then, we have the
commutator scaling of Trotter error from Lemma 2:

∥∥Sp(t)− e−itH
∥∥
Wη

= O
(

max
γ∈{0,1}p+1

max
|ψη〉∈Wη

∣∣〈ψη|
[
H (γp+1), . . .

[
H (γ2), H (γ1)

]] |ψη〉
∣∣ tp+1

)
, (B3)

where we take the expectation value since nested commutators of Hermitian operators are necessarily anti-Hermitian.
Note the following commutation rules for fermionic operators [127]:

[
A†

j Ak, A†
jx

]
= δk,jx A†

j ,
[
A†

j Ak, Aky

]
= −δky ,j Ak,

[
A†

j Ak, Nlz

]
= δk,lz A

†
j Alz − δj ,lz A

†
lz Ak, (B4)

[
NlNm, A†

jx

]
= δm,jx NlA

†
jx+δl,jx A†

jx Nm,
[
NlNm, Akx

] = −δm,kx NlAkx − δl,kx Akx Nm, (B5)

where δj ,k = 1 if and only if j = k. Thus, the nested commutator
[
H
(γp+1)

jp+1,kp+1
, . . .

[
H (γ2)

j2,k2
, H (γ1)

j1,k1

]]
can be written as a linear

combination of products of elementary fermionic operators. Following Ref. [87, Proposition 11], we call each summand
P from the nested commutator a fermionic path and write P �

(
H
(γp+1)

jp+1,kp+1
, . . . , H (γ1)

j1,k1

)
. Then, we have the following

bound:
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∣∣〈ψη|
[
H (γp+1), . . .

[
H (γ2), H (γ1)

]] |ψη〉
∣∣

≤ max
‖c‖1=η

∑

jp+1,kp+1

. . .
∑

j1,k1

∑

P�
(

H
(γp+1)
jp+1,kp+1

,...,H
(γ1)
j1,k1

)

∣∣∣μ
(γp+1)

jp+1,kp+1

∣∣∣ . . .
∣∣∣μ(γ1)

j1,k1

∣∣∣
‖P|c〉‖ + ∥∥P†|c〉∥∥

2
, (B6)

where the maximization is taken over all n-bit strings c
with Hamming weight η, and P|c〉 (P†|c〉) either gives
another basis state or gives the zero vector.

Previous work [87] further proceeds to upper bound
the coefficients by the max norm ‖τ‖max and ‖ν‖max and
counts the number of fermionic paths with nonzero con-
tribution to the summation. This results in a bound with
the max norm scaling asymptotically worse than our result.
To get our improved Theorem 4, we need a more careful
treatment of the summation order as well as the action of
fermionic operators on a fixed basis state.

We now present a proof by induction. The base case
of p = 0 is easy to check. For any n-bit string c with
Hamming weight η, we have

∑

j ,k

∣∣τj ,k
∣∣

∥∥∥A†
j Ak|c〉

∥∥∥+
∥∥∥A†

kAj |c〉
∥∥∥

2
= O (|||τ |||1η) ,

∑

l,m

∣∣νl,m
∣∣ ‖NlNm|c〉‖ + ‖NmNl|c〉‖

2
= O (|||ν|||1,[η]η

)
.

(B7)

This is because in order to make a nonzero contribution,
the right-most fermionic operators only have η possible
choices. This motivates us to choose the summation order-
ing so that the indices of operators on the left are summed
over first:
∑

k

∑

j

∣∣τj ,k
∣∣
∥∥∥A†

j Ak|c〉
∥∥
∥ ,

∑

j

∑

k

∣∣τj ,k
∣∣
∥∥∥A†

kAj |c〉
∥∥
∥ ,

∑

m

∑

l

∣∣νl,m
∣∣ ‖NlNm|c〉‖ ,

∑

l

∑

m

∣∣νl,m
∣∣ ‖NmNl|c〉‖ .

(B8)

Fixing one choice for the right-most operator, the remain-
ing quantity can be upper bounded by either the induced
1-norm |||τ |||1 or the restricted induced 1-norm |||ν|||1,[η],
respectively. This proves the desired bound in the base
case.

For the inductive step, assume that given any fermionic
path P �

(
H (γp )

jp ,kp
, . . . , H (γ1)

j1,k1

)
, we can always reorder the

summation to yield the desired bound. Now take the next
layer of commutator [T, P] or [V, P]. By Eqs. (B4) and (B5)
and a separate induction, P = ∏p+2

q=1 Pυ is the product of at

most p + 2 elementary fermionic operators (which include
A†

j , Ak, Nl), and at any point in the product the number
of creation operators is always smaller than the number
of annihilation operators. Then, the commutation may be
performed sequentially as

[T, P] =
p+2∑

q=1

Pp+2 · · · Pq+1
[
T, Pq

]
Pq−1 · · · P1,

[V, P] =
p+2∑

q=1

Pp+2 · · · Pq+1
[
V, Pq

]
Pq−1 · · · P1. (B9)

Depending on Pq = A†
jx , Aky , or Nlz , we divide the analysis

into five subcases:

(i)
[
A†

j Ak, A†
jx

]
= δk,jx A†

j : we keep the original sum over
jx while introducing a new sum over j on the right.
The summation range of j is set to be over all n
spin orbitals. The number of electrons increases by
1 due to A†

j with the new location determined by
j (as opposed to jx). Asymptotically, this does not
affect the summation of other existing indices and
increases the norm by a factor of |||τ |||1 through the
index j .

(ii)
[
A†

j Ak, Aky

]
= −δky ,j Ak: we keep the original sum

over ky while introducing a new sum over k on the
right. The summation range of k is set to be over all
n spin orbitals. The number of electrons decreases
by 1 due to Ak with the new location determined by
k (as opposed to ky). Asymptotically, this does not
affect the summation of other existing indices and
increases the norm by a factor of |||τ |||1 through the
index k.

(iii)
[
A†

j Ak, Nlz

]
= δk,lz A

†
j Alz − δj ,lz A

†
lz Ak: we keep the

original sum over lz while introducing a new sum
over j (k) on the right, respectively. The summa-
tion range of j (k) is set to be over all n spin
orbitals. The number of electrons remains the same
but the occupation changes with the locations deter-
mined by j (k) and lz. Asymptotically, this does not
affect the summation of other existing indices and
increases the norm by a factor of |||τ |||1 through the
index j (k).
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(iv)
[
NlNm, A†

jx

]
= δm,jx NlA

†
jx + δl,jx A†

jx Nm = δm,jx NlA
†
jx +

δl,jx NmA†
jx − δl,jxδm,jx A†

jx : we keep the original sum
over jx while introducing a new sum over l (m) on
the right, respectively. The summation range of l
(m) is set to be over all occupied spin orbitals. Both
the number and the locations of electrons remain the
same. Asymptotically, this does not affect the sum-
mation of other existing indices and increases the
norm by a factor of |||ν|||1,[η] through the index l (m).

(v)
[
NlNm, Akx

] = − δm,kx NlAkx − δl,kx Akx Nm = − δm,kx
NlAkx − δl,kx NmAkx − δl,kxδm,kx Akx : we keep the orig-
inal sum over kx while introducing a new sum over
l (m) on the right, respectively. The summation
range of l (m) is set to be over all occupied spin
orbitals. Both the number and the locations of elec-
trons remain the same. Asymptotically, this does not
affect the summation of other existing indices and
increases the norm by a factor of |||ν|||1,[η] through
the index l (m).

Note that in the fourth and fifth cases, we implicitly use the
fact that the number of occupied modes is no larger than η.
The proof of Theorem 4 is now complete.

APPENDIX C: GENERALIZATION

1. Higher spatial dimensionality

In the main body of the paper, we have presented faster
methods to perform Trotter steps for simulating power-
law interactions in one spatial dimension. Here, we briefly
describe how to generalize those methods to higher spatial
dimensionality.

Specifically, consider an n-qubit d-dimensional square
lattice L ⊆ Zd. Without loss of generality, we assume n1/d

is a power of 2 and take L = {1, . . . , n1/d}d. Then, the
Hamiltonian has the form H = ∑

j ,k∈L Hj ,k. For power-
law interactions, we have the norm condition

∥∥Hj ,k
∥∥ ≤

1/ ‖j − k‖α for constant α > 0, where ‖j − k‖ is simply
the Euclidean distance between d-dimensional vectors j
and k. Just like in the 1D case, we can expand the Hamilto-
nian with respect to tensor products of Pauli operators and
hereafter assume the Hamiltonian takes the form

H =
∑

j ,k∈L
j �=k

βj ,kXj Yk. (C1)

The commutator norm Eq. (28) corresponding to such
decompositions has the scaling [44, Theorem H.2]

βcomm
o(1) =

{
no(1), α ≥ d,

n1− α
d +o(1), 0 < α < d,

(C2)

which implies

r =
{

no(1)t1+o(1)

εo(1) , α ≥ d,
n1−α/d+o(1)t1+o(1)

εo(1) , 0 < α < d.
(C3)

Depending on the order js < ks or js > ks between each
pair of the corresponding coordinates, we can further
divide the Hamiltonian into 2d subterms. The remaining
degenerate cases where some pair of indices collide js = ks
can be merged accordingly. We assume that

H =
∑

1≤j1<k1≤n1/d

· · ·
∑

1≤jd<kd≤n1/d

βj ,kXj Yk (C4)

in the following discussion, and a similar analysis holds
for other cases with some notation changes.

We now perform a recursive decomposition along each
spatial dimension of the system. So for the first spatial
dimension, we have the term

∑

1≤j1<n1/d/2
n1/d/2≤k1≤n1/d

· · ·
∑

1≤jd<kd≤n1/d

βj ,kXj Yk (C5)

in the first layer and terms

∑

1≤j1<n1/d/4
n1/d/4≤k1<n1/d/2

· · ·
∑

1≤jd<kd≤n1/d

βj ,kXj Yk,

∑

n1/d/2≤j1<3n1/d/4
3n1/d/4≤k1≤n1/d

· · ·
∑

1≤jd<kd≤n1/d

βj ,kXj Yk (C6)

in the second layer and so on. Because of the master
theorem Lemma 1, we may restrict to a single term in
the decomposition, say the one in the first layer. We then
perform another recursive decomposition along the sec-
ond spatial dimension, and once again restrict to only a
specific term in the decomposition using Lemma 1. We
iterate through all the d spatial dimensions. See Fig. 5 for
an illustration of this strategy in the 2D case.

For the block-encoding method in Sec. III, the cost of
circuit implementation depends on the 1-norm of Hamilto-
nian coefficients, which determines the number of steps in
the qubitization algorithm. Specifically, the cost of imple-
menting decomposed Hamiltonian terms should now be
revised to
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(a) (b)

FIG. 5. Illustration of the 2D recursive decomposition. Decomposed terms act across two disjoint cubes. The colors indicate types
of the operator support following the convention in Fig. 1. Subfigure (a) represents terms in the first two layers of the decomposition
of the first spatial dimension. Subfigure (b) recursively decomposes the first layer from (a) in the second spatial dimension.

cost(n) =
⎧
⎨

⎩

O (( t
r + 1

)
n polylog

( nt
ε

))
, α ≥ 2d,

O
((

n2− α
d t

r + 1
)

n polylog
( nt
ε

))
, 0 < α < 2d,

(C7)

which implies that the entire simulation has a complexity of

nt
( nt
ε

)o(1) , α ≥ 2d,

O (
n3−α/dt polylog

( nt
ε

))+ nt
( nt
ε

)o(1) , d ≤ α < 2d,

O (
n3−α/dt polylog

( nt
ε

))+ n2− α
d t
( nt
ε

)o(1) , 0 < α < d.

(C8)

This simulation can be further improved for α < 2d using the average-cost simulation technique described in Sec. IV.
Specifically, for the two cubes sharing a common vertex, we further divide each spatial dimension into m intervals of
equal length; see Fig. 6 for an illustration of this decomposition in 2D. Then, considering evolution time t/r, we have the
modified cost function

cost(n) = Õ
((

n2−α/d t
r

+ m2d
)

n
md

)
, (C9)

which implies that the entire simulation has cost

min
{

n2−α/2dt
( nt
ε

)o(1) , O (
n3−α/dt polylog

( nt
ε

))+ nt
( nt
ε

)o(1)
}

, d ≤ α < 2d,

min
{

n5/2− α
d t
( nt
ε

)o(1) , O
(

n3− α
d t polylog

( nt
ε

))+ n2− α
d t
( nt
ε

)o(1)
}

, 0 < α < d.
(C10)

The generalization of the low-rank method in Sec. V is similar and straightforward, by using higher-dimensional cubes
instead of 1D intervals to perform the recursive decomposition. Unlike the block-encoding method, here we do not have
the issue of normalization factor; the circuit implementation is just a direct translation of classical computations. Moreover,
for Coulomb interactions in higher spatial dimensions, one can show using the multipole expansion that the decomposed

FIG. 6. Illustration of an average-cost block encoding for power-law Hamiltonians in 2D.
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terms can also be approximated with a matrix with rank logarithmic in the input parameters. The resulting implementation
has a complexity similar to that of the 1D case:

{
ρnt

( nt
ε

)o(1) , α ≥ d,

ρn2− α
d t
( nt
ε

)o(1) , α < d.
(C11)

We refer the reader to Ref. [79] for a more detailed discussion of the decomposition.

2. κ-local Hamiltonians

We have focused on the simulation of two-local Hamiltonians in the main body of the paper. In this subsection, we
discuss how to extend our approach to handle more general κ-local Hamiltonians for constant κ .

Specifically, the Hamiltonian takes the form H = ∑
1≤j1<j2<···<jκ≤n Hj1,j2,...,jκ , where operator Hj1,j2,...,jκ acts nontrivially

only on qubits j1, . . . , jκ . Similar to Eq. (48), we can rewrite the Hamiltonian using tensor products of Pauli operators
and decompose the evolution accordingly using product formulas. This introduces a Trotter error no larger than the naive
decomposition where all Hamiltonian terms are decomposed. Thus without loss of generality, we consider

H =
∑

1≤j1<j2<···<jκ≤n

βj1,j2,...,jκP(σ1)
j1 P(σ2)

j2 · · · P(σκ )jκ , (C12)

where P(σb)
jb is a Pauli operator on qubit j labeled by σb = x, y, z.

To describe the recursive decomposition, we introduce the abbreviation

H[j ,k] :=
∑

j ≤u1<···<uκ≤k

βu1,...,uκP(σ1)
u1

· · · P(σκ )uκ ,

H[j1,k1]:[j2,k2]:···:[jκ ,kκ ],κ1:κ2:···:κκ :=
∑

j1≤u1<···<uκ1 ≤k1

∑

j2≤v1<···<vκ2≤k2

· · ·
∑

jκ≤w1<···<wκκ≤kκ

βu1,...,uκ1 ,v1,...,vκ2 ,...,w1,...,wκκ P(σ1)
u1

· · · P(σκ )wκκ
(C13)

to represent terms within a specific interval and across κ disjoint intervals of sites, where j1 ≤ k1 < j2 ≤ k2 < . . . and
κ1, . . . , κκ are non-negative integers summing to κ1 + · · · + κκ = κ . Unlike the two-local case, we now need additional
parameters κ1, . . . , κκ to record the number of indices within each interval. With that, the decomposition used in the
block-encoding method in Sec. III should be modified to

H[1,n] =
∑

κ1+···+κκ=κ∀κb<κ

H[1,n/κ]:[n/κ+1,2n/κ]:···:[(κ−1)n/κ ,n],κ1:κ2:···:κκ +
κ−1∑

b=0

H[b(n/κ)+1,(b+1)n/κ]. (C14)

We assume that κ is also a power of 2, but the general case can be handled by redefining the boundary terms. Now, terms
in the second line can be unwrapped under the same recursion, whereas terms in the first line correspond to degenerate
cases with locality parameter < κ [there are at most

(2κ−1
κ−1

) = O(1) cases] that can be handled by an outer induction on κ .
We may modify the decompositions in Secs. IV and V in a similar way. However, the Hamiltonian coefficients now have
a more complicated tensor structure, so further studies are required to understand the complexity of implementing Trotter
steps using such methods.

3. General fermionic Hamiltonians

Fermionic Hamiltonians that are geometrically local can be mapped to spin models using a locality-preserving encoding
such as Ref. [128] and solved using methods from the previous subsection. However, this strategy does not work for more
general fermionic models, as the number of recursively decomposed Hamiltonian terms scale exponentially with the
locality parameter κ , which is no longer constant under fermionic encodings such as the Jordan-Wigner or Bravyi-Kitaev
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encoding. We now discuss how to potentially apply our techniques to simulating general fermionic Hamiltonians. For
presentational purpose, we examine only the one-body operator in one spatial dimension:

H =
n∑

j ,k=1

βj ,kA†
j Ak, (C15)

where A†
j and Ak are creation and annihilation operators on fermionic modes j and k, respectively. The analysis of higher

spatial dimensionality and many-body fermionic operators may proceed in a similar way as in Appendices C 1 and C 2.
We introduce the following abbreviation:

H[j ,k] :=
∑

j ≤u<v≤k

βu,v
(
A†

uAv + A†
vAu

)
(1 ≤ j < k ≤ n),

H[j ,k]:[l,m] :=
∑

j ≤u≤k
l≤v≤m

βu,v
(
A†

uAv + A†
vAu

)
(1 ≤ j ≤ k < l ≤ m ≤ n). (C16)

This is similar to that used in Secs. III–V, except we add the complex-conjugate terms to make the entire operator
Hermitian. For the recursive decomposition with a reduced 1-norm, we have

H =
log n−1∑

�=1

2�−1−1∑

b=0

H[2b(n/2�)+1,(2b+1)n/2�]:[(2b+1)n/2�+1,2(b+1)n/2�]. (C17)

This decomposition shares similar features as that in Sec. III. In particular, the 1-norm of each summand is significantly
smaller compared to the full Hamiltonian, suggesting that the block-encoding method can be advantageous.

We now explain how to realize an efficient block encoding. Without loss of generality, we choose � = 1, b = 0 and
study the term H[1,n/2]:[n/2+1,n]. This can be block encoded as follows. We define the Majorana operators

Mu,0 := A†
u+Au, Mu,1 := i

(
A†

u−Au
)

, (C18)

using which we rewrite

H[1,n/2]:[n/2+1,n] =
∑

1≤u≤n/2
n/2+1≤v≤n

βu,v
(
A†

uAv + A†
vAu

)

=
∑

1≤u≤n/2
n/2+1≤v≤n

βu,v

(
Mu,0 − iMu,1

2
Mv,0 + iMv,1

2
+ Mv,0 − iMv,1

2
Mu,0 + iMu,1

2

)

=
∑

1≤u≤n/2
n/2+1≤v≤n

iβu,v
(
Mu,0Mv,1 + Mv,0Mu,1

)
. (C19)

The preparation subroutine can now be implemented in a similar way as in Sec. III B. For the selection subroutine, we
need to iterate over products of Majorana operators, which can be realized with cost O(n) (see, for example, Ref. [129,
Sec. III.B]).

For the recursive decomposition described in Sec. V, we have

H =
η∑

�=2

2�−1−2∑

b=0

(
H[1+2b(n/2�),(2b+1)n/2�]:[1+(2b+2)n/2�,(2b+3)n/2�] + H[1+2b(n/2�),(2b+1)n/2�]:[1+(2b+3)n/2�,(2b+4)n/2�]

+ H[1+(2b+1)n/2�,(2b+2)n/2�]:[1+(2b+3)n/2�,(2b+4)n/2�]

)
+

2η−1∑

b=0

H[1+b(n/2�),(b+1)n/2�]

+
2η−2∑

b=0

H[1+b(n/2�),(b+1)n/2�]:[1+(b+1)n/2�,(b+2)n/2�]. (C20)
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Without loss of generality, we choose � = 2, b = 0 and
study the term

H[1,n/4]:[n/2+1,3n/4] =
∑

1≤u≤n/4
n/2+1≤v≤3n/4

βu,v
(
A†

uAv + A†
vAu

)

(C21)

with the coefficient matrix

β̃ =

⎡

⎢
⎣

0 0 β 0
0 0 0 0
β� 0 0 0
0 0 0 0

⎤

⎥
⎦ . (C22)

Note that although the Hamiltonian terms no long com-
mute in the fermionic case, if rank(β) = ρ, then rank(β̃) =
ρ as well, and we can still implement the exponential of
H[1,n/4]:[n/2+1,3n/4] using fermionic Givens rotations with
cost O(ρn) [102, 2.1.P28] (see Ref. [130] for the circuit
implementation). Of course, the circuit complexity will
depend on the target Hamiltonian as well as the decompo-
sition scheme, which become more complicated to analyze
for general fermionic operators. We leave a detailed study
of these generalizations as a subject for future work.
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