
PRX QUANTUM 4, 020321 (2023)

Quantum Low-Density Parity-Check Codes for Modular Architectures

Armands Strikis 1,2,* and Lucas Berent 3,†

1
Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom

2
Quantum Motion, 9 Sterling Way, London N7 9HJ, United Kingdom

3
Chair for Design Automation, Technical University of Munich, Germany

 (Received 9 November 2022; accepted 4 April 2023; published 5 May 2023)

In efforts to scale the size of quantum computers, modularity plays a central role across most quantum
computing technologies. In the light of fault tolerance, this necessitates designing quantum error-
correcting codes that are compatible with the connectivity arising from the architectural layouts. In this
paper, we aim to bridge this gap by giving a novel way to view and construct quantum low-density parity-
check (LDPC) codes tailored for modular architectures. We demonstrate that if the intra- and intermodular
qubit connectivity can be viewed as corresponding to some classical or quantum LDPC codes then their
hypergraph product code fully respects the architectural connectivity constraints. Finally, we show that
relaxed connectivity constraints that allow twists of connections between modules pave a way to construct
codes with better parameters.

DOI: 10.1103/PRXQuantum.4.020321

I. INTRODUCTION

In classical computing it has become standard to design
architectures that divide the necessary processing power
into smaller components instead of only increasing the
power of a single system [1,2]. A similar trend can be
observed in recent proposals around scaling quantum com-
putation. A multitude of quantum computing platforms
have natural limitations, e.g., on how many qubits may
be contained within a single ion trap or a superconducting
chip, whereas each instance of such a platform is referred
to as a module [3–7]. Scaling up existing systems is the
main hurdle in current research. Therefore, modular archi-
tectures that consist of many similar modules will likely be
necessary [8–13].

To execute large-scale quantum algorithms, fault-
tolerant quantum computation (FTQC) is essential [14]. A
crucial component of FTQC is the error-correcting code,
which describes how to encode quantum information in a
redundant way with the goal of lowering the error rates
of computation [15,16]. Recent results have shown the
existence of quantum low-density parity-check (QLDPC)
codes with asymptotically good parameters [17–21]. This

*armands.strikis@mansfield.ox.ac.uk
†lucas.berent@tum.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

is a strong indication that QLDPC codes may play a key
role in lowering the qubit overhead necessary for FTQC.
It is known that well-performing QLDPC codes require
“long-range” qubit connectivity if it is desired to embed the
system in some finite-dimensional Euclidean space [22].
In fact, the asymptotic scaling of code parameters is upper
bounded by the scaling of long-range qubit connectivity
[23,24].

When specifically considering the practical setting of
modular architectures of a quantum computer (with a
finite number of qubits), we may expect that some degree
of long-range interactions that scale with the code size
is physically feasible [25–28]. These can be long-range
interactions within each module or between the modules
themselves. Because of this less-constrained connectivity,
the question of whether it is useful and practical to favor
QLDPC codes of finite size over the surface code—the cur-
rent gold standard for many quantum computing platforms
[29–36]—is important. To answer this question, a multi-
tude of aspects of FTQC need to be considered, such as the
implementation of fault-tolerant logic, decoding, and the
code performance. Most of these questions are still open
for QLDPC codes. Previous works have mentioned the
compatibility of QLDPC codes and modular architectures,
but without providing the exact details for the code con-
struction or the partition of the qubits into modules [37].
Alternatively, past works have described in detail how to
use a surface code for modular architectures [38], but do
not consider general QLDPC codes.

In this paper, we explore aspects around fault tol-
erance for modular architectures with a focus on code

2691-3399/23/4(2)/020321(14) 020321-1 Published by the American Physical Society

https://orcid.org/0000-0003-4264-2995
https://orcid.org/0000-0002-2973-1689
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.4.020321&domain=pdf&date_stamp=2023-05-05
http://dx.doi.org/10.1103/PRXQuantum.4.020321
https://creativecommons.org/licenses/by/4.0/


ARMANDS STRIKIS and LUCAS BERENT PRX QUANTUM 4, 020321 (2023)

constructions. In a formal and general way, we show how
QLDPC codes tailored to modular architecture connectiv-
ity constraints can be constructed. This gives a correspon-
dence between product constructions of QLDPC codes and
modular architectures by viewing the intra- and intermod-
ular connectivities as Tanner graphs or, equivalently, as
chain complexes of classical or quantum LDPC codes.
First, we give a formal perspective on the recently intro-
duced looped pipeline architecture [39]. We prove that it
can be slightly extended to produce a three-dimensional
(3D) surface code. This immediately shows a valuable con-
tribution of our formalism to practically highly relevant
work around modular architectures. We then extend the
construction to more general hypergraph product codes.
Finally, we show that a broader class of product codes
with potentially better code parameters can be constructed
for architectures that allow twisted modular connectivity.
With this work, we take a further step towards closing
the gap between physical “low-level” system architec-
ture questions and recent theoretical breakthroughs around
asymptotically good quantum codes [17,18,20,21,40]. Fur-
thermore, we want to emphasize the need for investi-
gations around practical applications of general QLDPC
codes [41].

The rest of this work is structured as follows. First,
modular architectures and a formal viewpoint is given
in Sec. II. Notation and fundamental background is pre-
sented in Sec. III. The looped pipeline architecture, the 3D
surface code construction, and our first main theorem is
discussed in Sec. IV. Stepwise generalizations are subse-
quently given in Sec. V, where the intramodular connec-
tivity is generalized, in Sec. V B, where the intermodular
connectivity is generalized, and in Sec. VI, where the
allowed connections between the modules are generalized.
Finally, we conclude with a short discussion and outlook
in Sec. VII.

II. MODULAR ARCHITECTURES

In this paper we consider various qubit connectivity con-
straints that may arise in a quantum computer based on a
modular architecture. Taking the constraints into account,
we provide a novel recipe on how to construct quantum
LDPC codes that respect a certain modular architecture.

Let us first concretely define what we mean by a mod-
ular architecture. Consider a quantum computer with a
(finite) collection of qubits {qN }. In a modular architecture,
each qubit is assigned to one and only one module, where
the (finite) collection of such modules is given as {Mk}; see
Fig. 1. We assume that the modules are equivalent copies
of each other. Therefore, we can partition the collection of
qubits into disjoint sets {qi}k such that {qN } = ⋃

k{qi}k, and
we suppose that each module contains a finite and equal
number of qubits n, i.e., |{qi}k| = n for all k. To simplify
the notation, we use the same canonically ordered index

1

M6

M3

M4

M5

M2

M1

FIG. 1. Here, quantum computing architectures where mod-
ules {Mk} have a defined sparse intermodular connectivity are
considered. Each module contains a finite and equal number of
qubits with the same connectivity constraints.

set for each module and hence drop the subscript k alto-
gether. With this in mind, we can define the intramodular
qubit connectivity in the usual sense as follows.

Definition 1: A qubit qi ∈ Mk is connected to a qubit qj ∈
Mk if the architecture allows us to directly implement two-
qubit entangling operations between these qubits for all k.

Generally, we consider entangling gates such as
controlled-not that are required for most syndrome circuits.
However, entangling operations using measurements, e.g.,
in using photonic links, or otherwise are just as valid.
We only require that these gates allow the construction of
a syndrome extraction circuit required for quantum error
correction.

In this work, we investigate cases where the qubit
intramodular interactions are given by a connectivity graph
that can be viewed as a Tanner graph of some classical or
quantum code.

A (quantum) Tanner graph is a graph that has edges
between nodes representing parity checks and data (qu)bits
if and only if the (qu)bit is in the support of the parity
check. See Fig. 2 for a Tanner graph of a seven-qubit
Steane code and Sec. III for a more technical introduction
to Tanner graphs. As an example, nearest-neighbor con-
nectivity for a 1D chain of qubits corresponds to a Tanner
graph of a classical repetition code.

In a modular architecture, each module may be con-
nected to some number of other modules in a specific way.
We define the intermodular connectivity as follows.

Definition 2: A module Mk is connected to a module Mj
if the architecture allows us to directly implement two-
qubit entangling operations between a qubit qi ∈ Mk and
its respective qubit qi ∈ Mj for all i.

In Sec. VI A, this requirement will be slightly gen-
eralized to allow for twists of the connections between
modules to construct better quantum codes (see Definition
3 below). Similarly to the intramodular connectivity case,
we choose the graph defining the intermodular connec-
tivity to correspond to a Tanner graph of a potentially
different quantum or classical code. Finally, we say that the

020321-2



QUANTUM LOW-DENSITY PARITY-CHECK CODES. . . PRX QUANTUM 4, 020321 (2023)

q1 q2 q3 q4 q5 q6 q7

c1 c2 c3

c4 c5 c6

FIG. 2. Tripartite quantum Tanner graph of a seven-qubit
Steane code. Set {qi} denotes the data qubits, while {cj } denotes
the X parity checks (blue) and Z parity checks (green). Edges are
drawn between them if and only if the data qubit is in the support
of the check.

code respects the connectivity constraints if we can asso-
ciate a physical qubit in our quantum system to every parity
check and data qubit of the code such that the parity-check
qubits are connected to the data qubits in their support.

In the following, we describe a way to create new
codes that respect the overall architectural connectivity
constraints as defined above. We only require that the intra-
and intermodular connectivities are formulated as Tanner
graphs of some codes. To keep this formulation as general
as possible, we employ the language of chain complexes.

III. PRELIMINARIES

In this section, we discuss quantum codes and how to
view them in terms of a (F2) homological perspective [31,
40,42,43].

A. Classical and quantum codes

Since quantum LDPC codes have an interesting corre-
spondence to classical codes, let us briefly discuss their
classical analogue: binary linear codes.

A classical binary linear [n, k] code is a subspace C ⊆
Fn

2. The set of codewords is called the codespace and cor-
responds to the k-dimensional subspace ker H of a binary
matrix H called the parity-check matrix:

C = {x ∈ Fn
2 | Hx = 0}.

It is useful to describe code C with its Tanner graph. This
is a bipartite graph T (C) whose adjacency matrix is H .

Since stabilizer codes [44] play a central role in quantum
error correction (QEC), let us recall some fundamental def-
initions. We consider an n-qubit Hilbert space (C2)⊗n =
C2n

. Let Pn denote the (non-Abelian) group of n-qubit
Pauli operators defined as

Pn = 〈i, Xj , Zj | j ∈ [n]〉 =
{

φ

n⊗

j =0

Pj

}

,

where φ ∈ {±1, ±i} and Pj is a single-qubit Pauli operator
Pj ∈ {I , X , Y, Z}. The weight wt(P) of a Pauli operator P is
the number of nonidentity components in the tensor prod-
uct representation of P. A stabilizer group S is an Abelian
subgroup of Pn such that −I /∈ S . Elements of S are called
stabilizers and the group is generated by m independent
stabilizer generators S = 〈S1, . . . , Sm〉.

The main idea of the stabilizer codes is to use a common
+1 eigenspace of all elements of a stabilizer group S ⊂ Pn
as the code space of a code C. Therefore, an [[n, k, d]]-
quantum stabilizer code C is a 2k-dimensional subspace of
(C2)⊗n. Parameter d denotes the minimal distance of C,
given by the minimal weight of a Pauli operator that com-
mutes with all stabilizers Si but is not in the stabilizer group
S.

Each n-qubit Pauli operator can be written as
a binary vector. More formally, the quotient group
Pn/{±I⊗n, ±iI⊗n} is isomorphic (up to phases) to F2n

2
by the isomorphism that sends an n-qubit Pauli opera-
tor corresponding to a tensor product of X - and Z-Pauli
operators to a binary vector representation (x | z) ∈ F2n

2 .
Thus, P, Q ∈ Pn commute if and only if, for their binary
representations P ∼= (x | z), Q ∼= (x′ | z′), it holds that

〈x, z′〉 + 〈z, x′〉 = 0. (1)

This representation can also be naturally applied to the m
stabilizer generators S1, . . . , Sm of a code C, which yields
an m × 2n matrix H = (HX | HZ). Each row of H corre-
sponds to the binary representation of a stabilizer generator
Si. As for classical codes, matrix H is the parity-check
matrix of C. By Eq. (1), ker H is exactly the set of vec-
tors (z | x) ∈ F2n

2 such that their reordered form (x | z) is
the binary representation of a Pauli operator that commutes
with all stabilizer generators S1, . . . , Sm.

An important subclass of stabilizer codes are Calderbank-
Shor-Steane (CSS) codes, which is considered in this work
if not stated otherwise. These are stabilizer codes where all
nonidentity components of stabilizer generators are either
all X or all Z. Hence, the commutativity relation [Eq. (1)]
can be written as

HX H T
Z = 0, (2)

or, equivalently, C⊥
Z ⊆ CX . Since the rows of a parity-

check matrix correspond to the checks of the code, ele-
ments of HX and HZ are called X and Z checks, respec-
tively. A CSS code is called a LDPC code if all checks
have constant weight and each qubit is involved in a con-
stant number of checks, i.e., if the parity-check matrix
(matrices) is sparse.

Let us now introduce an alternative perspective on codes
that was essential in recent results around asymptotically
good quantum and locally testable classical codes [17–21],
and has become standard.

020321-3



ARMANDS STRIKIS and LUCAS BERENT PRX QUANTUM 4, 020321 (2023)

B. Chain complexes

A chain complex of vector spaces is a collection of
vector spaces {Ci} together with linear maps

∂i : Ci → Ci−1

with the condition that squared boundary maps vanish, i.e.,

∂i∂i+1 = 0. (3)

Equation (3) is equivalent to requiring that Im ∂i+1 ⊆
ker ∂i. Elements in Ci are called i-chains and

Zi(C) = ker ∂i ⊂ Ci, (4)

Bi(C) = Im ∂i+1 ⊂ Ci, (5)

Hi(C) = Zi(C)/Bi(C) (6)

are the i-cycles, i-boundaries, and the ith homology of
complex C, respectively. For instance, when considering
chain complexes arising from simplicial complexes, 2-
chains correspond to formal linear combinations of faces,
1-chains to formal sums of edges, and 0-chains to formal
sums of vertices. Intuitively, 1-cycles are loops that start
and end in the same vertex and boundaries are those cycles
that are a boundary of a set of faces.

A classical binary linear code C can be viewed as a two-
term chain complex:

C = C1
∂1−→ C0 (7)

with C1 = Fn
2 and ∂i = H the parity-check matrix. Then

code C is the space of 1-cycles, i.e.,

C = Z1(C) = ker ∂1,

and the space of 0-chains is the space of checks acting on
C. Note that H0(C) = 0 if the checks are linearly inde-
pendent. For classical codes, this representation does not
yield any new insights and is hence rarely used. However,
a quantum CSS code necessitates commutation relations
between the bit-flip and phase-flip parity-check matrices
HX and HZ [Eq. (2)]. Thus, there is a bijection between
CSS codes and chain complexes. A CSS code corresponds
to a three-term chain complex:

C = Ci+1
∂i+1−−→ Ci

∂i−→ Ci−1 (8)

with ∂i+1 = H T
Z and ∂i = HX . Thus, qubits are associated

with 1-chains and X and Z checks with 0- and 2-chains,
respectively. A prototypical example is a toric code, where
C2, C1, and C0 are vector spaces of faces, edges, and

vertices, obtained from a square cellulation of a torus.
Conversely, given an arbitrary chain complex

· · · −→ Ci+1
∂i+1−−→ Ci

∂i−→ Ci−1 −→ · · · , (9)

we can pick a dimension i to associate the space of qubits
with and view the corresponding three-term chain com-
plex as a CSS code. The code parameters are n = dim Ci,
k = dim Hi and the minimum weight d of a nontrivial
representative of Hi.

To a three-term chain complex we can associate a quan-
tum Tanner graph by considering a simple mapping. A
quantum Tanner graph G is a tripartite graph with a vertex
set V = PZ � Q � PX , where vertices Q are associated with
qubits and vertices PX (Z) are associated with X (Z) parity
checks. Then, for an arbitrary three-term chain complex C,
we define a one-to-one mapping where the basis elements
of the vector space Ci+1 are mapped to vertices in PZ , the
basis elements of Ci to Q, and the basis elements of Ci−1 to
PX . Finally, the edges between vertex partitions PZ and Q
are given by ∂i+1 such that an edge exists between vertices
p ∈ PZ and q ∈ Q if and only if q ∈ Ci, which is the corre-
sponding basis element of q, is in the span of ∂i+1p , where
p ∈ Ci+1 and corresponds to vertex p . Edges between PX
and Q are defined in an analogous manner using ∂i. Note
that there are no edges between any two vertices within the
same partition or between partitions PX and PZ . Graphi-
cally, if the chain complex is drawn as an object with faces,
edges, and vertices, then each individual face and edge is
replaced by a vertex. The partition of vertices is naturally
induced from this mapping and edges exist only between
those pairs of vertices that correspond to adjacent faces and
edges (or vertices and edges) in the original chain complex.

Conceptually, the same mapping to a graph can be
applied to an arbitrary length chain complex. For example,
a two-term chain complex would be mapped to a classi-
cal Tanner graph. Because of this bijection we refer to
chain complexes, their boundaries, or their correspond-
ing Tanner graphs (sometimes called connectivity graphs)
interchangeably for the rest of the paper.

IV. LOOPED PIPELINE ARCHITECTURE

To form a better intuition about our construction of
codes for modular architectures, we first recap basic ideas
of a recent result around QEC on a looped pipeline archi-
tecture [39]. This constitutes the basis from which we build
more involved and better quantum codes as we soften the
constraints of the intra- and intermodular connectivities
and generalize the construction.

The work by Cai et al. [39] considered a surface code
layout (qubits are put on edges, Z checks on faces, and
X checks on vertices) as depicted in Fig. 3(a) of a quan-
tum chip where every data qubit and every ancilla qubit
are replaced by a rectangular loop of a fixed number of

020321-4



QUANTUM LOW-DENSITY PARITY-CHECK CODES. . . PRX QUANTUM 4, 020321 (2023)

(c)(b)(a)

FIG. 3. A stack of 2D surface codes can be generated by replacing every data qubit (black), Z parity-check qubit (green), and X
parity-check qubit (blue) of the regular surface code (a) by a loop of corresponding qubits (b). The qubits communicate (entangle) with
each other once they enter the dashed regions depicted in (c).

qubits as sketched in Fig. 3(b). All types of qubits are
moved along the loop in the clockwise direction at the
same frequency. Once the qubits approach another qubit
from a different loop, they interact to become entangled in
a way that corresponds to the syndrome extraction circuit
as illustrated in Fig. 3(c). After the ancilla qubits have gone
around the full loop, they are measured to read out the syn-
drome. The authors showed that this forms a stack of 2D
surface codes, where the stack size is given by the number
of qubits within each loop.

In their work, the authors Cai et al. [39], and indepen-
dently M. Fogarty [45], identified that the stack of 2D
surface codes may be used to generate a 3D surface code,
but did not provide an explicit construction. In the rest of
the section we show how the looped pipeline architecture
can be extended to implement a single 3D surface code
(explained below) by assuming an additional connectivity
within each qubit loop. Finally, we formalize and general-
ize this construction to the setting of modular architectures.
This will allow us to construct quantum LDPC codes for
more general connectivity constraints.

FIG. 4. We replace all loops with a loop that has both ancilla
(blue) and data (black) qubits. Additionally, we allow for nearby
qubits in the loop to communicate. For example, the nearby
qubits entangle whenever both of them enter the orange dashed
box.

A. 3D surface code

Consider a single data qubit loop from the looped
pipeline architecture described above. Each qubit in this
loop is part of a separate 2D surface code. If we extend the
connectivity between the nearby qubits within each loop
then we obtain a stack of surface codes linked together into
a single block. This construction does not immediately pro-
duce a 3D surface code. For example, it links ancilla qubits
to other ancilla qubits within the same loop.

Instead, to produce a valid 3D surface code, we addi-
tionally need to reidentify the qubits within each loop. In
this regard, we form three different types of loops—face,
edge, and vertex loops—where the naming will parallel
the chain complexes. They are laid out in a similar pat-
tern as previously with face loops replacing the Z ancilla
loops, edge loops replacing the data qubit loops, and ver-
tex loops replacing the X ancilla loops. Each of these
loops may contain both data and ancilla qubits of the 3D
surface code; hence, they must also contain measurement
devices as described in Ref. [39] to extract the syndrome
(see Fig. 4). We assume that the total number of qubits per
loop is even. Then, depending on the type of loop and the
position within the loop, each qubit can be given an assign-
ment. These assignments can be found in Table I. The even
or odd parity of the qubit corresponds to its index i within
the loop, where the indexing is such that any qubit qi of
any loop gets to interact with qubits qi of the neighboring
loops. Note that we can exclude the even qubits in the face
loop as they have no assignment.

By viewing the modular architecture in terms of chain
complexes that describe codes, we can prove that such an
assignment indeed produces a 3D surface code. In order to
do so, we use tensor products of chain complexes.

Remark: The presented construction of a 3D surface code
by shuttling the qubits around in loops will not have a

020321-5



ARMANDS STRIKIS and LUCAS BERENT PRX QUANTUM 4, 020321 (2023)

TABLE I. Qubit assignments of different loops to generate a
3D surface code. Even and odd assignments of qubits indicate
their position in the qubit chain within the loop. Numbers in
parentheses indicate the weight of the stabilizer.

Loop label Odd qubits Even qubits

Vertex X stabilizer (6) Data
Edge Data Z stabilizer (4)
Face Z stabilizer (4) · · ·

threshold in general. Since the entangling and measure-
ment operations are done on a one-by-one basis, the time it
takes to extract the syndrome is proportional to the number
of qubits within each loop. A slightly altered scheme was
proposed by Cai et al. [39], where the qubits in adjacent
loops circulate in opposite directions and all qubits on the
same side of the loop are being entangled at the same time
with their respective qubits in other loops. If this was sup-
plied with a number of measurement devices that scale in
proportion with the number of qubits in the loop, the whole
syndrome extraction would require O(1) operations (e.g.,
one operation constitutes moving qubits to a new side of
the loop). However, from a physical perspective, one could
argue that, in general, as the number of qubits per loop
increases, so does the size of the loop that is needed. There-
fore, the physical time it takes for a qubit to be shuttled at
a finite speed to a new side of the loop (to perform a single
operation) scales with the number of qubits per loop and,
hence, the syndrome extraction time scales with the total
number of qubits. In turn, errors accumulate faster than
they can be corrected and the threshold for the code would
not exist. This might be a general consequence for any non-
concatenated quantum code for which the shuttling is used
to do long-range entangling gates locally (the same conclu-
sion was reached by numerical analysis for a conceptually
similar setup in Ref. [46]). Some ideas, like those pre-
sented in a recent work on hierarchical memories [47], may
be used to overcome this challenge. Note that the afore-
mentioned drawback only applies to this specific scheme
based on shuttling. The main ideas in the remainder of this
manuscript do not share the same consequences.

B. Tensor product of chain complexes

Quantum codes can be constructed from products of
chain complexes that describe other codes [48,49]. Let
us discuss the construction in the following. The double
complex C � D is defined as

(C � D)p ,q = Cp ⊗ Dq (10)

with vertical boundary maps ∂v
i = ∂C

i ⊗ idD and horizon-
tal boundary maps ∂h

i = idC ⊗ ∂D
i such that ∂v

i ∂v
i+1 = 0,

∂h
i ∂h

i+1 = 0, and ∂v
i ∂h

j = ∂h
j ∂v

i . An example double com-
plex where C, D are 2-term complexes is visualized in

C1 ⊗ D1 C1 ⊗ D0

C0 ⊗ D1 C0 ⊗ D0

idC⊗∂D
1

∂C
1 ⊗idD ∂C

1 ⊗idD

idC⊗∂D
1

FIG. 5. A commuting diagram representing a double chain
complex of two 2-term chain complexes C, D.

Fig. 5. The total complex arises when we collect vec-
tor spaces of equal dimensions, i.e., “summing over the
diagonals” in the double complex as

Tot(C � D)n =
⊕

p+q=n

Cp ⊗ Dq = En, (11)

where the boundary maps are ∂E = ∂v ⊕ ∂h. Then, the ten-
sor product complex C ⊗ D is defined as Tot(C � D). For
the example given in Fig. 5, the tensor product complex is

C1 ⊗ D1
∂2−→ C0 ⊗ D1 ⊕ C1 ⊗ D0

∂1−→ C0 ⊗ D0,

where

∂2 =
(

∂C
1 ⊗ idD

idC ⊗ ∂D
1

)

,

∂1 = (idC ⊗ ∂D
1 | ∂C

1 ⊗ idD).

As the homology of a chain complex is related to the
parameters of the corresponding code, the Künneth for-
mula is central. It gives a method to compute the homology
of a double complex, from the homology of the vertical and
horizontal complexes:

Hn(C ⊗ D) ∼=
⊕

p+q=n

Hp(C) ⊗ Hq(D). (12)

C. 3D surface code in the chain complex formalism

While the previous construction of a 3D surface code
may seem arbitrary at first, we can naturally describe
it in the language of chain complexes. This description
allows us to further generalize the construction of codes
for modular architectures and gives a strong intuition for
which codes may or may not be constructed given the
connectivity constraints.

First, consider a single loop of qubits with nearest-
neighbor connectivity between them. It is natural to view
the loop as a classical repetition code where half of the
qubits are assigned to be data qubits and the other half
ancilla qubits, as depicted in Fig. 4. As mentioned in
Sec. III, we may use a two-term chain complex C =
C1

HX−→ C0 to describe the repetition code, where the data
and ancilla qubits are elements (chains) of C1 and C0,

020321-6



QUANTUM LOW-DENSITY PARITY-CHECK CODES. . . PRX QUANTUM 4, 020321 (2023)

(a) (b)

FIG. 6. A single loop corresponds to a two-term chain com-
plex and a layout of loops to a three-term chain complex repre-
senting a repetition code (a) and a surface code (b), respectively.

respectively, and HX is the parity-check matrix of the code;
see Fig. 6(a).

Moreover, the 2D layout of the loops can be considered

as a two-term chain complex D = D2
HT

Z−→ D1
HX−→ D0 rep-

resenting a 2D surface code. In this language, each loop is
labeled as an element of either D2, D1, or D0, which rep-
resent Z checks (faces), data qubits (edges), or X checks
(vertices), respectively; see Fig. 6(b).

Using such a layout of loops, we have effectively created
a new code E . As outlined in Eq. (11), E is represented by
a chain complex

E = C ⊗ D, (13)

where C corresponds to the code within the loop and D
corresponds to the code describing the layout of the loops.
In more detail, we associate two vector spaces Ci and Dj
with each qubit in our system. In this example, Ci describes
whether the qubit in the repetition code is an ancilla (i = 0)
or data (i = 1) qubit, while Dj describes whether the qubit
belongs to the face (j = 2), edge (j = 1), or vertex (j =
0) loop. See Fig. 7 for a schematic explanation of qubits
in the edge loop. Furthermore, we assign each qubit to a
vector space Ek, with k = i + j , which form the sequence
of vector spaces for a new four-term chain complex

E = E3
∂3−→ E2

∂2−→ E1
∂1−→ E0, (14)

where

E3 = C1 ⊗ D2,

E2 = C0 ⊗ D2 ⊕ C1 ⊗ D1,

E1 = C0 ⊗ D1 ⊕ C1 ⊗ D0,

E0 = C0 ⊗ D0.

This chain complex E describes a 3D surface code, as
per the tensor product of a repetition code and a surface
code [49,50]. Here, for example, we can identify the data

FIG. 7. Our observations allow us to readily identify which
vector spaces each qubit belongs to. The ancilla qubits of the
repetition code are elements (chains) of C0, while the data qubits
are chains of C1. The loop itself has an assignment as an edge
loop; therefore, every qubit in it belongs to D1.

qubits with chains in E1, and, hence, Z (X ) stabilizers with
chains in E2 (E0). Then, parity-check matrices are given
as boundary operators ∂2 = H T

Z and ∂1 = HX . Note that
in this construction one of the boundaries of the surface
is periodic and, also, that we are free to identify the data
qubits with chains either in E2 or E1. This freedom corre-
sponds to the choice of having the logical X (Z) operators
to be planar (string)-like on the 3D surface or the other way
around.

As an example, consider an L × L surface code as
the layout of the loops. It has parameters [[2(L2 − L) +
1, 1, L]]. The respective chain complex D has homol-
ogy H1(D) ∼= Z2 and H0(D) is trivial. Similarly, con-
sider a length-L classical repetition code inside the loop
with parameters [L, 1, L]. The respective chain com-
plex C has homology H1(C) ∼= Z2 and H0(C) ∼= Z2
since one of the checks is linearly dependent. Then,
for the chain complex of a 3D surface code E = C ⊗
D, by identifying the elements of E1 as data qubits,
we find that n = dim E1 = dim(C1 ⊗ D0 ⊕ C0 ⊗ D1) =
L(L2 − L) + L(2(L2 − L) + 1), where D0 and C0 are vec-
tor spaces associated with X parity checks. The number
of encoded qubits is given by the dimension of the first
homology H1(E). We can compute it using the Künneth
formula [Eq. (12)],

k = dim H1(E)

= dim(H0(C) ⊗ H1(D) ⊕ H1(C) ⊗ H0(D))

= 1.

The distance of the code is still L; hence, the resulting 3D
surface code has parameters [[3L(L2 − L) + L, 1, L]]. As an
example, for L = 20, the parameters are [[22 820, 1, 20]].

Note that in this construction qubits that were previously
data qubits may be reassigned to parity-check qubits and
vice versa. More importantly, the intra- and intermodular
connectivity requirements of E correspond to the connec-
tivity requirements given by codes C and D. We can prove
this for general tensor products of chain complexes.

Theorem 1. Let C and D be a two- or three-term chain
complexes representing classical or quantum codes C,D,

020321-7



ARMANDS STRIKIS and LUCAS BERENT PRX QUANTUM 4, 020321 (2023)

respectively. Let their boundaries ∂C and ∂D define the
intra- and intermodular connectivities, respectively. Then
a quantum code E corresponding to the chain complex
E = C ⊗ D respects the connectivity constraints of the
architecture.

Proof. The chain complex E (corresponding to E) is at
least a three-term chain complex given that both C and D
are at least two-term chain complexes. Therefore, we can
identify chains of Ei with data qubits, Ei+1 with Z parity
checks, and Ei−1 with X parity checks. The required qubit
connectivity of E is defined by its parity-check matrices,
which are given by the boundary operators

∂E = ∂h ⊕ ∂v = idC ⊗ ∂D ⊕ ∂C ⊗ idD. (15)

Note that i-chains of C label the qubit c within each mod-
ule and that i-chains of D label each module d. We can
ensure that E respects the connectivity constraints of the
architecture if both terms of Eq. (15) match the given qubit
connectivity. We do so by looking at both of the terms
separately.

The basis elements are pairs of chains (c, d) ∈ C × D on
which the first term acts as ∂h : (c, d) → (idC(c), ∂D(d))

for all c, d. By linear extension, this defines a map on
C ⊗ D. It is equally stated that each qubit c in a mod-
ule d is connected to its respective qubits c in adjacent
modules given by ∂D for all d. This matches Definition
2 for the intermodular connectivity. Similarly, the second
term in Eq. (15) defines a map that acts on basis ele-
ments as ∂v : (c, d) → (∂C(c), idD(d)) for all c, d. This is
equally stated as in each module d a qubit c is connected
to qubits ∂C(c) for all c. This matches Definition 1 for
intramodular connectivity. Therefore, the required qubit
connectivity of E is given by some additive combination of
terms that define the intra- and intermodular connectivities,
respectively. �

Furthermore, it is clear that Theorem 1 still applies
whenever boundaries ∂C and ∂D define any subgraphs
of intra- and intermodular connectivities, respectively. If
the subgraphs are proper then some connectivity that is
allowed by the architecture is not required. Note that our
qubit assignment in the chain complex formalism com-
pletely matches the assignments given in Table I if we
identify the data qubits with the vector space E1 and ignore
qubits in E3. Since the qubit assignments and the qubit
interactions match between both perspectives, the stabiliz-
ers of the code match as well. This proves that our previous
construction in Sec. IV A produced a 3D surface code.

The correspondence between modular architectures and
quantum codes obtained from product constructions is very
natural and gives an intuitive way of designing codes
that obey architectural connectivity constraints. In the
next sections we propose generalizations of this idea in a

step-by-step fashion. First, we generalize the intramodular
connectivity by considering a less local code within each
module. Then we similarly generalize the intermodu-
lar connectivity. Finally, we elaborate on more general
product code constructions by allowing twists between
intermodular connections.

V. HYPERGRAPH PRODUCT CODES

In the previous section it was shown that the proposed
formalization of the looped pipeline architecture enables
us to obtain a 3D surface code that can be viewed in a
rigorous way as the tensor product of two chain complexes
C ⊗ D, where C corresponds to the loop structure and D to
the (gridlike) layout.

In this section, we further elaborate on the tensor prod-
uct code construction and extend it to the setting of more
general intramodular and intermodular connectivities.

A. Generalized intramodular connectivity

The first generalization of the proposed formalization of
the looped pipeline architecture is to replace the loops of
qubits with modules admitting a more general intramodu-
lar connectivity. Similarly to viewing the loops of qubits as
repetition codes, we view this connectivity as a chain com-
plex corresponding to some code C, for instance, a simple
classical linear block LDPC code. Note that in general this
implies that a higher degree of intramodular connectivity
is needed.

Formally, we consider a tensor product E = C ⊗ D of a
chain complex C corresponding to some classical or quan-
tum code and a three-term chain complex D corresponding
to a surface code, describing the overall layout of mod-
ules. This yields a four- or five-term chain complex E that
can be viewed as a surface code layout of modules, where
each module is replaced by an arbitrary code given by the
chain complex C. In general, this does not yield a nice 3D
geometry as in the more simple 3D surface code case.

As an explicit example, we consider intramodular con-
nectivity that corresponds to a classical linear code. We
obtain a code by generating a random sparse parity-
check matrix with dimensions 51 × 60. Through exhaus-
tive search over all codewords we find the code parameters
[60, 9, 20]. Its maximum row or column weight is 8, but,
on average, each check has a support of approximately
5 bits. See Ref. [51] for the full parity-check matrix.
The respective chain complex C has homology dimension
dim(H1(C)) = 9 since it encodes 9 bits and H0(C) is trivial
as all parity checks are linearly independent. The homolog-
ical properties of the chain complex D associated with the
surface code describing the intermodular layout are given
in the previous example. Note that H2(D) is trivial and, for
this example, we choose a surface code with length L =
20. Then, for the resulting chain complex E = C ⊗ D, by
identifying the elements of E2 as data qubits, we find that

020321-8



QUANTUM LOW-DENSITY PARITY-CHECK CODES. . . PRX QUANTUM 4, 020321 (2023)

n = dim E2 = dim(C1 ⊗ D1 ⊕ C0 ⊗ D2) = 65 040, where
D2 and C0 are vector spaces associated with Z and X par-
ity checks, respectively. The number of encoded qubits is
given by the dimension of the second homology H2(E).
We can compute it using the Künneth formula [Eq. (12)],

k = dim H2(E)

= dim(H1(C) ⊗ H1(D) ⊕ H0(C) ⊗ H2(D))

= 9.

Generally, finding the distance of the code is not triv-
ial, and thus, usually, Monte Carlo simulations or sim-
ilar approaches are employed. For general hypergraph
products of arbitrary length chain complexes, Zeng and
Pryadko [49] proposed methods to compute upper and
lower bounds on the distance of the hypergraph product
complex from the distances of the individual complexes
in the product. Moreover, for the special case where one
of the chain complexes in the hypergraph product is a
one-term complex, given by a binary check matrix, Zeng
and Pryadko showed that their result allows one to com-
pute the distance exactly. Recall that the homological dis-
tance di is the minimum Hamming weight of a nontrivial
representative in the ith homology group.

Theorem 2 (Ref. [49]). Let A be an m chain complex with
distances di for 0 ≤ i ≤ m and let B be a two-term chain
complex. Then,

di(A ⊗ B) = min(di−1(A)d1(B), di(A)d0(B)).

Applying Theorem 2 to the previous example, we find
that the Z distance of the code is

d2(E) = min(d1(D)d1(C), d2(D)d0(C)) = 400,

where, by convention, di(A) = ∞ if Hi(A) is trivial. Fur-
thermore, we find the X distance of the code using
cohomology:

d2(E) = min(d1(D)d1(C), d2(D)d0(C)) = 20.

Therefore, code E = C ⊗ D has parameters [[65 040, 9, 20]].
Given that this code is constructed as a tensor product of
a quantum and a classical code, and moreover, that the Z
distance is d2 = 400, we choose to compare it to the tra-
ditional 3D surface code with distance 20 as it matches
both the X and Z distance parameters. In comparison to the
3D surface code (with full parameters given in Sec. IV C)
one can see that our example code encodes 9 times more
qubits at the cost of increasing the overall number of phys-
ical qubits by a factor of about 3. We would expect such
favorable trade-offs for architectures with higher qubit
connectivity.

This idea can be generalized to more connected mod-
ules, by considering a connectivity inside each module that
corresponds to a quantum code, i.e., a three-term chain
complex. Note that this may imply an even higher degree
of intramodular connectivity and a higher number of qubits
associated with each module. The latter implies that there
are more connections between modules as per Definition 2.
Because of the generality of the chain complex formalism,
this construction is equivalent to the previous case, with
the only difference that the resulting product is a five-term
chain complex.

B. Beyond planar surface layouts

In a similar fashion to the discussion on higher
intramodular connectivity, we can generalize the layout
of the modules. This can be done by considering layouts
of modules corresponding to a general code given by a
chain complex D. We examine three-term chain complexes
describing quantum codes, but the same reasoning is appli-
cable to classical codes. The 2D grid layout (corresponding
to a surface code) has the advantage of planarity, which
implies a sparse nearest-neighbor connectivity. However,
the same planarity clearly limits the code parameters of the
derived product codes. Additionally, some architectures
(e.g., based on photonic links between modules) might not
even be subject to nearest-neighbor communication con-
straints and hence would have no benefit from a planar
layout of modules. In such cases, as long as it holds that
modules communicate with a few other modules each, it is
not crucial that they are located close to each other phys-
ically and we can use less geometrically local codes to
describe the layout of the modules. We consider a modular
layout given by a chain complex

D = DF
∂2−→ DE

∂1−→ DV.

For illustrative purpose, we call the vector spaces of the
chain complex the spaces of faces, edges, and vertices.
Here D can be made to correspond to the given intermod-
ular connectivity by associating modules with each i-chain
of D. That is, the spaces DF , DE , DV are associated with a
set of modules {m1, . . . , m|V|+|E|+|F|} and the modules are
connected corresponding to the boundary maps of D. In
other words, the differentials ∂2, ∂1 are the incidence matri-
ces associating faces and edges, and edges and vertices,
respectively. If C denotes the chain complex describing the
intramodular connectivity then, by Theorem 1, the tensor
product complex C ⊗ D represents a quantum code that
respects the connectivity of the overall architecture. This
idea is illustrated in Fig. 8.

We are now able to formally describe codes arising from
modular architectures using the following recipe. We take
an arbitrary CSS code representing the intramodular con-
nectivity (depending on the desired degree of connectivity,

020321-9



ARMANDS STRIKIS and LUCAS BERENT PRX QUANTUM 4, 020321 (2023)

(a) (b)

FIG. 8. (a) We represent the intramodular qubit connectivity
with a chain complex C, where the qubits sit on all i-chains.
(b) Similarly, we represent the intermodular connectivity with
a chain complex D, where modules are placed on every i-
chain. Some elements of the chain complex are highlighted.
Code E = C ⊗ D fully respects the connectivity constraints of
the architecture (Theorem 1).

number of qubits, and code parameters) and another CSS
code that represents the intermodular connectivity. Then,
using the tensor product chain complex, we construct a
new code satisfying the architectural connectivity con-
straints. This can already give moderately good codes for
a specific modular architecture, depending on the chosen
seed codes and the allowed degree of connectivity between
modules.

C. From codes to modular architectures

Let us briefly note a slightly different view on the con-
struction presented above. An architecture might allow an
“all-to-all” connectivity between modules, or a connectiv-
ity that is not constrained other than requiring that each
module may only be connected to a constant number of
other modules. Then, we can ask: given these “weak” con-
straints, how should we arrange the modules in order to
generate a good code tailored for the architecture? This
can be done by choosing a code defined by a chain com-
plex C and mapping it to the respective connectivity graph
as introduced in Sec. III B. This graph in turn, defines the
overall modular layout as depicted in Fig. 9.

FIG. 9. We can take any chain complex (on the left) to describe
the intermodular connectivity of our architecture by replacing
every element of the chain complex by a module (on the right).

VI. BALANCED PRODUCT CONSTRUCTIONS

In the previous section we showed how modular archi-
tectures can be viewed as tensor products of chain com-
plexes (that describe codes). This perspective corresponds
to having intramodular connectivity—the layout of qubits
within each module—and intermodular connectivity—the
layout of modules themselves—being determined by such
codes. In order to further generalize the previous construc-
tions, we consider modular architectures where the inter-
modular connections are not constrained to be between the
respective qubits only. Instead, these connections can be
tweaked (twisted) in some way that will be dictated by the
product construction. Hence, we redefine the intermodular
connectivity as follows.

Definition 3: A module Mk is connected to a module Mj
if the architecture allows us to directly implement two-
qubit entangling operations between a qubit qi ∈ Mk and
its respective qubit ql ∈ Mj for all i, l.

Note that many quantum computing platforms that con-
sider linking modules together with photonic links or
similar already allow this degree of freedom. For this set-
ting, we consider more general products than standard
hypergraph products. Specifically, we show that the newly
defined intermodular connectivity allows us to construct
codes that can be described in the language of balanced
product codes [19]. As before, these codes fully respect the
architectural connectivity constraints. Before proceeding
to the proof, let us shortly introduce the notion of balanced
products of chain complexes.

A. Balanced product chain complexes

Breuckmann and Eberhardt (BE) introduced balanced
product codes, which are analogously constructed to the
balanced (or mixed) product of topological spaces [19].
This and related constructions can be used to construct
asymptotically good quantum codes [17–21].

In order to define the balanced product of chain com-
plexes, we need to discuss the balanced product of vector
spaces. Let V, W be vector spaces with linear right and
left actions, respectively, of a finite group G. The balanced
product is defined as the quotient

V ⊗G W = V ⊗ W/〈vg ⊗ w − v ⊗ gw〉,

where v ∈ V, w ∈ W, and g ∈ G. If V and W have bases
X and Y, and G maps basis vectors to basis vectors then
the basis of V ⊗G W is given by X ×G Y = X × Y/ ∼. The
equivalence relation “∼” is defined as (x, y) ∼ (xg, g−1y)

for all x ∈ X , y ∈ Y, and g ∈ G. We can now extend this
notion to chain complexes. Let C and D be chain com-
plexes where C has a linear right action and D has a linear
left action of a group G. The balanced product double

020321-10



QUANTUM LOW-DENSITY PARITY-CHECK CODES. . . PRX QUANTUM 4, 020321 (2023)

complex C �G D is defined via

(
C �

G
D

)

p ,q
= Cp ⊗G Dq

with horizontal and vertical differentials defined analo-
gously to the double complex [Eq. (10)] that act on the
quotients Cp ⊗G Dq of vector spaces Cp and Dq. The bal-
anced product complex is the corresponding total complex:

C ⊗G D = Tot
(

C �
G

D
)

.

We limit the discussion to cases where the vector spaces
Ci, Di are based and the action of G restricts to an action
on these bases [19]. If G is a finite group of odd order,
BE [19] gave a version of the Künneth formula that can be
applied to the balanced product complex:

Hn

(
C ⊗G D

) ∼=
⊕

p+q=n

Hp(C) ⊗G Hq(D). (16)

We want to emphasize that, for certain cases, the balanced
product is equivalent to related constructions such as the
lifted product [41,52] and the fiber bundle construction
[53].

B. Architecture-tailored codes from balanced products

To prove that the more general intermodular connectiv-
ity including twists allows us to construct better quantum
codes than those constructed as hypergraph products, we
consider cases where we can cast the balanced product
C ⊗G D as a fiber bundle complex B ⊗ϕ D. In this com-
plex, B denotes the base, D denotes the fiber, and ϕ denotes
the connection that describes the twists of the fiber along
the base. Using the homological language, the connection
ϕ represents an automorphism on the fiber D that alters the
horizontal differentials of the double complex B � D. Sim-
ilarly to other products, the fiber bundle complex can be
used to describe a quantum error-correcting code once we
identify the data qubits and the parity checks correspond-
ingly. Such codes are called fiber bundle codes [53]. In
our modular architecture setting, it is crucial to correctly
identify the base and fiber chain complex to ensure that
connections are twisted between modules only. This idea is
depicted in Fig. 10. Note that, twisting connections in the
“other direction” (i.e., the connections are twisted between
layers of respective qubits across all modules) generally
results in a low connection count in each module. For
many quantum platforms, the intramodular connections are
considered to be faster to implement and less noisy, and,
therefore, preferential over the qubit connections between
distinct modules [11,54,55].

BE showed that, when C is a two-term complex and H is
Abelian and acts freely on the bases of each Ci, then there

M1 M2 M1 M2

(a) (b)

FIG. 10. Allowing twists of intermodule connections allows
us to create better codes and yields a more general formulation.

exists a connection ϕ such that C ⊗G D = B ⊗ϕ D, where
Bi = Ci/〈cg − c〉 [19]. Therefore, a wide range of codes
constructed from balanced products can be recast into the
language of fiber bundle codes. Here we restrict ourselves
to these cases and cast the following theorem in terms of
fiber bundle codes.

Theorem 3. Let D be a two-term and C a two- or three-
term chain complex. Let their boundaries ∂C and ∂D define
the intra- and intermodular connectivities as given in Def-
initions 1 and 3, respectively. Then, a fiber bundle code E
corresponding to the chain complex E = D ⊗ϕ C respects
the connectivity constraints of the architecture.

Proof. The resulting chain complex E (corresponding to
E) is at least a three-term chain complex given that both
C and D are at least two-term chain complexes. Therefore,
we can identify chains of Ei with data qubits, Ei+1 with Z
parity checks, and Ei−1 with X parity checks. The required
qubit connectivity of E is defined by the parity-check
matrices H E , which are given by the boundary operators

∂E = ∂h ⊕ ∂v = ∂ϕ ⊕ idD ⊗ ∂C, (17)

where

∂ϕ(d1 ⊗ c) =
∑

d0∈∂Dd1

d0 ⊗ ϕ(d1, d0)(c)

with di ∈ Di and c any i-chain of C. Here, ϕ denotes
the connection and hence ϕ(d1, d0) describes a specific
element of the automorphism group acting on fiber C.

Note that i-chains of C label qubit c within each mod-
ule and that i-chains of D label each module d. We can
ensure that E respects the connectivity constraints of the
architecture if both terms of Eq. (17) match the given
qubit connectivity. We do so by looking at both of the
terms separately. The first term in Eq. (17) indicates that
each qubit c in a module d1 is connected to qubits labeled
ϕ(d1, d0)c = c′ in adjacent modules d0 ∈ ∂D(d1) for all d.
This connectivity requirement is fully satisfied by our new
definition of intermodular connectivity (Definition 3). For
this exact reason, we consider the base of the fiber bundle
to represent the code describing the intermodular connec-
tivity as we want to twist connections only between the

020321-11



ARMANDS STRIKIS and LUCAS BERENT PRX QUANTUM 4, 020321 (2023)

modules. The basis elements of the second term in Eq. (17)
are pairs of cells (d, c) ∈ D × C on which the boundary
operator acts as ∂v : (d, c) → (idD(d), ∂C(c)) for all d, c.
By linear extension, this defines a map on D ⊗ C. This is
equally stated as in each module d, a qubit c is connected
to qubits ∂C(c) for all c. This matches our Definition 1 for
intramodular connectivity. Therefore, the required qubit
connectivity of E is given by some additive combination of
terms that define the intra- and intermodular connectivities,
respectively. �

Theorem 3 thus establishes a correspondence between
modular architectures (including intermodular connectiv-
ity) and quantum codes that can be described using bal-
anced product construction. While the proof considers
balanced product codes that are equivalent to fiber bun-
dle codes, we expect that a wider range of these codes
respect the connectivity constraints—depending on the
chosen group and group action.

As a simple example, we construct a balanced product
code from two classical codes represented by chain com-
plexes C and D. Complex C describes the intramodular
connectivity and corresponds to a d = 15 cyclic repe-
tition code as presented in Sec. IV. Code D describes
the intermodular connectivity and is obtained by gener-
ating a random sparse parity-check matrix with dimen-
sions 255 × 450 and a cyclic symmetry of order 15. It
encodes dim(H1(D)) = 195 bits. Since both codes share
the cyclic symmetry, we take the balanced product over
group Z15. The product can be recast as a fiber bun-
dle code and therefore satisfies Theorem 2. The result-
ing code D ⊗Z15 C has n = 705 qubits and encodes at
least k = dim(H1(D/Z15)) = 195/15 = 13 logical qubits,
where the calculation follows from the Künneth formula
for fiber bundle codes [53]. The X and Z parity checks
have approximate average weights of 10 and 6, respec-
tively. An exhaustive probabilistic distance search with
QDistRnd [56] showed that the code distance is at most
15; we believe that this bound is saturated. Hence, the bal-
anced product code has expected parameters [[705, 13, 15]]
and all qubits (including check qubits) can be partitioned
into 47 modules with 30 qubits each. In comparison,
encoding 13 qubits into rotated surface codes with the
same distance requires 2925 data qubits. The parity-check
matrix used for code D and parity-check matrices HX and
HZ for the balanced product code can be found online
[51].

VII. CONCLUSION

We have proposed a novel correspondence between two
concepts from distinct, rapidly evolving domains: QLDPC
product code constructions and modular quantum comput-
ing architectures. Using tools from homological algebra
that have been used in constructions of product codes, we
give a novel way to view modular architectures as chain

complexes and show that valid quantum codes that respect
the given architectural constraints can be constructed from
products of such chain complexes. Our results consti-
tute an essential further step towards closing the gap
between recent theoretical breakthroughs around asymp-
totically good quantum codes and practical applications of
QLDPC codes. In particular, due to the formalization of the
looped pipeline architecture, we show practical relevance
of our work.

As a direct extension of this work, it may be possi-
ble to generalize the considered constructions by allowing
modules to have different intermodular connectivities. This
renders the construction more complex and product con-
structions such as those used in this work might a priori
not be applicable. Moreover, a further generalization of our
approach could be considered by investigating layouts of
modular architectures. That is, by considering layouts of
layouts of modules. It may be possible that such construc-
tions can also be described using product constructions
as described in this work, but we leave an exact formu-
lation open for future work. On a more practical note, it
would be valuable to find small instances of QLDPC codes
that can readily be realized on currently available architec-
tures in order to draw comparisons to recent experimental
breakthroughs around surface code realizations.

In general, many open questions around practical
aspects of QLDPC codes remain. An important exam-
ple is how to do fault-tolerant logic on QLDPC codes.
Investigating further areas of their potential and more prac-
tically relevant regimes around QLDPC codes is a crucial
area of research towards scalable fault-tolerant quantum
computing.

ACKNOWLEDGMENTS

The authors would like to thank Nikolas P. Breuck-
mann for insightful discussions throughout this project
and comments on the first draft. Furthermore, the authors
would like to thank Simon Benjamin, Zhenyu Cai, and
Michael Fogarty for helpful discussions at the initial
stages of this project. A.S. acknowledges support from the
European Union’s Horizon 2020 research and innovation
programme under Grant Agreement No. 951852 (QLSI).
L.B. acknowledges funding from the European Research
Council (ERC) under the European Union’s Horizon 2020
research and innovation program (Grant Agreement No.
101001318). This work is part of the Munich Quantum
Valley, which is supported by the Bavarian state govern-
ment with funds from the Hightech Agenda Bayern Plus,
and is supported by the BMWK on the basis of a decision
by the German Bundestag through project QuaST, as well
as by the BMK, BMDW, and the State of Upper Austria in
the frame of the COMET program (managed by the FFG).
This research was funded in part by the UKRI grant num-
ber EP/R513295/1. For the purpose of Open Access, the

020321-12



QUANTUM LOW-DENSITY PARITY-CHECK CODES. . . PRX QUANTUM 4, 020321 (2023)

author has applied a CC BY public copyright licence to
any Author Accepted Manuscript (AAM) version arising
from this submission.

[1] R. Buyya, High Performance Cluster Computing: Pro-
gramming and Applications, Vol. 2 (Prentice Hall, 1999).

[2] D. Singh and C. K. Reddy, A survey on platforms for big
data analytics, J. Big Data 2, 1 (2015).

[3] C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown,
P. Maunz, L.-M. Duan, and J. Kim, Large-scale modular
quantum-computer architecture with atomic memory and
photonic interconnects, Phys. Rev. A 89, 022317 (2014).

[4] S. Bartolucci, P. Birchall, H. Bombin, H. Cable, C. Dawson,
M. Gimeno-Segovia, E. Johnston, K. Kieling, N. Nicker-
son, and M. Pant et al., Fusion-based quantum computation,
arXiv preprint arXiv:2101.09310 (2021).

[5] A. Gold, J. Paquette, A. Stockklauser, M. J. Reagor, M. S.
Alam, A. Bestwick, N. Didier, A. Nersisyan, F. Oruc, and
A. Razavi et al., Entanglement across separate silicon dies
in a modular superconducting qubit device, Npj Quantum
Inf. 7, 1 (2021).

[6] D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Deb-
nath, S. M. Clark, and C. Monroe, Modular entanglement
of atomic qubits using photons and phonons, Nat. Phys. 11,
37 (2015).

[7] B. Buonacorsi, Z. Cai, E. B. Ramirez, K. S. Willick,
S. M. Walker, J. Li, B. D. Shaw, X. Xu, S. C. Ben-
jamin, and J. Baugh, Network architecture for a topolog-
ical quantum computer in silicon, Quantum Sci. Technol.
4, 025003 (2019).

[8] S. Bravyi, O. Dial, J. M. Gambetta, D. Gil, and Z. Nazario,
The future of quantum computing with superconducting
qubits, arxiv:2209.06841 (2022).

[9] K. Brown, Modular architectures for quantum computers,
Bull. Am. Phys. Soc. 2022, F37.0062 (2022).

[10] H. Bombin, I. H. Kim, D. Litinski, N. Nickerson, M.
Pant, F. Pastawski, S. Roberts, and T. Rudolph, Inter-
leaving: Modular architectures for fault-tolerant photonic
quantum computing, arXiv preprint arXiv:2103.08612
(2021).

[11] J. Ramette, J. Sinclair, N. P. Breuckmann, and V. Vuletić,
Fault-tolerant connection of error-corrected qubits with
noisy links, arXiv preprint arXiv:2302.01296
(2023).

[12] J. Niu, L. Zhang, Y. Liu, J. Qiu, W. Huang, J. Huang,
H. Jia, J. Liu, Z. Tao, and W. Wei et al., Low-loss inter-
connects for modular superconducting quantum processors,
Nat. Electron. 6, 235 (2023).

[13] S. Bartolucci, P. Birchall, H. Bombin, H. Cable, C. Dawson,
M. Gimeno-Segovia, E. Johnston, K. Kieling, N. Nick-
erson, M. Pant, Fernando Pastawski, Terry Rudolph, and
Chris Sparrow, Fusion-based quantum computation, Nat.
Commun. 14, 912 (2023).

[14] J. Preskill, Fault-tolerant quantum computation (World Sci-
entific, 1998), p. 213.

[15] D. A. Lidar and T. A. Brun, Quantum error correction
(Cambridge University Press, 2013).

[16] B. M. Terhal, Quantum error correction for quantum mem-
ories, Rev. Mod. Phys. 87, 3075 (2015).

[17] P. Panteleev and G. Kalachev, in Proceedings of the 54th
Annual ACM SIGACT Symposium on Theory of Computing
(2022), p. 375.

[18] I. Dinur, M.-H. Hsieh, T.-C. Lin, and T. Vidick, Good quan-
tum ldpc codes with linear time decoders, arXiv preprint
arXiv:2206.07750 (2022).

[19] N. P. Breuckmann and J. N. Eberhardt, Balanced product
quantum codes, IEEE Trans. Inf. Theory 67, 6653 (2021).

[20] A. Leverrier and G. Zémor, Quantum Tanner codes, arXiv
preprint arXiv:2202.13641 (2022).

[21] T.-C. Lin and M.-H. Hsieh, Good quantum LDPC codes
with linear time decoder from lossless expanders, arXiv
preprint arXiv:2203.03581 (2022).

[22] M. A. Tremblay, N. Delfosse, and M. E. Beverland,
Constant-Overhead Quantum Error Correction with Thin
Planar Connectivity, Phys. Rev. Lett. 129, 050504 (2022).

[23] N. Baspin and A. Krishna, Connectivity constrains quan-
tum codes, Quantum 6, 711 (2022).

[24] N. Baspin and A. Krishna, Quantifying Nonlocality: How
Outperforming Local Quantum Codes is Expensive, Phys.
Rev. Lett. 129, 050505 (2022).

[25] F. M. Gambetta, C. Zhang, M. Hennrich, I. Lesanovsky, and
W. Li, Long-Range Multibody Interactions and Three-Body
Antiblockade in a Trapped Rydberg Ion Chain, Phys. Rev.
Lett. 125, 133602 (2020).

[26] K. A. Landsman, Y. Wu, P. H. Leung, D. Zhu, N. M. Linke,
K. R. Brown, L. Duan, and C. Monroe, Two-qubit entan-
gling gates within arbitrarily long chains of trapped ions,
Phys. Rev. A 100, 022332 (2019).

[27] H. Häffner, C. F. Roos, and R. Blatt, Quantum computing
with trapped ions, Phys. Rep. 469, 155 (2008).

[28] S. H. Choe and R. Koenig, Long-range data transmission
in a fault-tolerant quantum bus architecture, arXiv preprint
arxiv:2209.09774 (2022).

[29] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, Topolog-
ical quantum memory, J. Math. Phys. 43, 4452 (2002).

[30] A. Y. Kitaev, Fault-tolerant quantum computation by
anyons, Ann. Phys. (N. Y) 303, 2 (2003).

[31] S. B. Bravyi and A. Y. Kitaev, Quantum codes on a lat-
tice with boundary, arXiv preprint arXiv:quant-ph/9811052
(1998).

[32] S. Krinner, N. Lacroix, A. Remm, A. Di Paolo, E. Genois,
C. Leroux, C. Hellings, S. Lazar, F. Swiadek, and J.
Herrmann et al., Realizing repeated quantum error cor-
rection in a distance-three surface code, Nature 605, 669
(2022).

[33] C. K. Andersen, A. Remm, S. Lazar, S. Krinner, N. Lacroix,
G. J. Norris, M. Gabureac, C. Eichler, and A. Wallraff,
Repeated quantum error detection in a surface code, Nat.
Phys. 16, 8755 (2020).

[34] J. Marques, B. Varbanov, M. Moreira, H. Ali, N. Muthusub-
ramanian, C. Zachariadis, F. Battistel, M. Beekman, N.
Haider, and W. Vlothuizen et al., Logical-qubit opera-
tions in an error-detecting surface code, Nat. Phys. 18, 80
(2022).

[35] Z. Chen, K. J. Satzinger, J. Atalaya, A. N. Korotkov,
A. Dunsworth, D. Sank, C. Quintana, M. McEwen, R.
Barends, and P. V. Klimov et al., Exponential suppression

020321-13

https://doi.org/10.1186/s40537-014-0008-6
https://doi.org/10.1103/PhysRevA.89.022317
https://arxiv.org/abs/2101.09310
https://doi.org/10.1038/nphys3150
https://doi.org/10.1088/2058-9565/aaf3c4
https://arxiv.org/abs/2209.06841
https://arxiv.org/abs/2103.08612
https://arxiv.org/abs/2302.01296
https://doi.org/10.1038/s41928-023-00925-z
https://doi.org/10.1038/s41467-023-36493-1
https://doi.org/10.1103/RevModPhys.87.307
https://arxiv.org/abs/2206.07750
https://doi.org/10.1109/TIT.2021.3097347
https://arxiv.org/abs/2202.13641
https://arxiv.org/abs/2203.03581
https://doi.org/10.1103/PhysRevLett.129.050504
https://doi.org/10.22331/q-2022-05-13-711
https://doi.org/10.1103/PhysRevLett.129.050505
https://doi.org/10.1103/PhysRevLett.125.133602
https://doi.org/10.1103/PhysRevA.100.022332
https://doi.org/10.1016/j.physrep.2008.09.003
https://arxiv.org/abs/2209.09774
https://doi.org/10.1063/1.1499754
https://doi.org/10.1016/S0003-4916(02)00018-0
https://arxiv.org/abs/quant-ph/9811052
https://doi.org/10.1038/s41586-022-04566-8
https://doi.org/10.1038/s41567-020-0920-y
https://doi.org/10.1038/s41567-021-01423-9


ARMANDS STRIKIS and LUCAS BERENT PRX QUANTUM 4, 020321 (2023)

of bit or phase errors with cyclic error correction, Nature
595, 383 (2021).

[36] R. Acharya, I. Aleiner, R. Allen, T. I. Andersen, M. Ans-
mann, F. Arute, K. Arya, A. Asfaw, J. Atalaya, and R. Bab-
bush et al., Suppressing quantum errors by scaling a sur-
face code logical qubit, arXiv preprint arXiv:2207.06431
(2022).

[37] E. T. Campbell, B. M. Terhal, and C. Vuillot, Roads
towards fault-tolerant universal quantum computation,
Nature 549, 172 (2017).

[38] N. H. Nickerson, Y. Li, and S. C. Benjamin, Topological
quantum computing with a very noisy network and local
error rates approaching one percent, Nat. Commun. 4, 1
(2013).

[39] Z. Cai, A. Siegel, and S. Benjamin, Looped pipelines
enabling effective 3D qubit lattices in a strictly 2D device,
arXiv preprint arXiv:2203.13123 (2022).

[40] N. P. Breuckmann and J. N. Eberhardt, Quantum Low-
Density Parity-Check Codes, PRX Quantum 2, 040101
(2021).

[41] P. Panteleev and G. Kalachev, Degenerate quantum LDPC
codes with good finite length performance, Quantum 5, 585
(2021).

[42] H. Bombin and M. Martin-Delgado, Topological quantum
error correction with optimal encoding rate, Phys. Rev. A
73, 062303 (2006).

[43] M. H. Freedman, D. A. Meyer, and F. Luo, Z2-systolic
freedom and quantum codes, in Mathematics of quantum
computation (2002), p. 303.

[44] D. Gottesman, Stabilizer codes and quantum error correc-
tion (1997).

[45] M. Fogarty, personal communication (2022-04-01).
[46] N. Delfosse, M. E. Beverland, and M. A. Tremblay, Bounds

on stabilizer measurement circuits and obstructions to local

implementations of quantum LDPC codes, arXiv preprint
arXiv:2109.14599 (2021).

[47] C. A. Pattison, A. Krishna, and J. Preskill, Hierarchical
memories: Simulating quantum LDPC codes with local
gates (2023), arXiv:2303.04798 [quant-ph].

[48] J.-P. Tillich and G. Zémor, Quantum LDPC codes with pos-
itive rate and minimum distance proportional to the square
root of the blocklength, IEEE Trans. Inf. Theory 60, 1193
(2013).

[49] W. Zeng and L. P. Pryadko, Higher-Dimensional Quantum
Hypergraph-Product Codes with Finite Rates, Phys. Rev.
Lett. 122, 230501 (2019).

[50] O. Higgott and N. P. Breuckmann, Improved single-shot
decoding of higher dimensional hypergraph product codes,
arXiv preprint arXiv:2206.03122 (2022).

[51] https://github.com/PurePhys/QuantumPCMs (2022).
[52] P. Panteleev and G. Kalachev, Quantum LDPC codes with

almost linear minimum distance, IEEE Trans. Inf. Theory
68, 213 (2021).

[53] M. B. Hastings, J. Haah, and R. O’Donnell, in Proceedings
of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing (2021), p. 1276.

[54] E. T. Campbell, Distributed quantum-information process-
ing with minimal local resources, Phys. Rev. A 76, 040302
(2007).

[55] L. J. Stephenson, D. P. Nadlinger, B. C. Nichol, S. An,
P. Drmota, T. G. Ballance, K. Thirumalai, J. F. Goodwin,
D. M. Lucas, and C. J. Ballance, High-Rate, High-Fidelity
Entanglement of Qubits Across an Elementary Quantum
Network, Phys. Rev. Lett. 124, 110501 (2020).

[56] L. P. Pryadko, V. A. Shabashov, and V. K. Kozin, QDis-
tRnd: A gap package for computing the distance of quan-
tum error-correcting codes, J. Open Source Software 7,
4120 (2022).

020321-14

https://arxiv.org/abs/2207.06431
https://doi.org/10.1038/nature23460
https://doi.org/10.1038/ncomms2773
https://arxiv.org/abs/2203.13123
https://doi.org/10.1103/PRXQuantum.2.040101
https://doi.org/10.22331/q-2021-11-22-585
https://doi.org/10.1103/PhysRevA.73.062303
https://arxiv.org/abs/2109.14599
https://arxiv.org/abs/2303.04798
https://doi.org/10.1109/TIT.2013.2292061
https://doi.org/10.1103/PhysRevLett.122.230501
https://arxiv.org/abs/2206.03122
https://github.com/PurePhys/QuantumPCMs
https://doi.org/10.1109/TIT.2021.3119384
https://doi.org/10.1103/PhysRevA.76.040302
https://doi.org/10.1103/PhysRevLett.124.110501
https://doi.org/10.21105/joss.04120

	I.. INTRODUCTION
	II.. MODULAR ARCHITECTURES
	III.. PRELIMINARIES
	A.. Classical and quantum codes
	B.. Chain complexes

	IV.. LOOPED PIPELINE ARCHITECTURE
	A.. 3D surface code
	B.. Tensor product of chain complexes
	C.. 3D surface code in the chain complex formalism

	V.. HYPERGRAPH PRODUCT CODES
	A.. Generalized intramodular connectivity
	B.. Beyond planar surface layouts
	C.. From codes to modular architectures

	VI.. BALANCED PRODUCT CONSTRUCTIONS
	A.. Balanced product chain complexes
	B.. Architecture-tailored codes from balanced products

	VII.. CONCLUSION
	. ACKNOWLEDGMENTS
	. REFERENCES


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
    /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


