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Oblivious transfer (OT) is an important cryptographic primitive. Any multiparty computation can be
realized with OT as building block. XOR oblivious transfer (XOT) is a variant where the sender Alice
has two bits and a receiver Bob obtains either the first bit, the second bit, or their XOR. Bob should not
learn anything more than this and Alice should not learn what Bob has learnt. Perfect quantum OT with
information-theoretic security is known to be impossible. We determine the smallest possible cheating
probabilities for unrestricted dishonest parties in noninteractive quantum XOT protocols using symmetric
pure states and present an optimal protocol, which outperforms classical protocols. We also “reverse” this
protocol, so that Bob becomes sender of a quantum state and Alice the receiver who measures it, while still
implementing oblivious transfer from Alice to Bob. Cheating probabilities for both parties stay the same
as for the unreversed protocol. We optically implement both the unreversed and the reversed protocols,
and cheating strategies, noting that the reversed protocol is easier to implement.
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I. INTRODUCTION

Oblivious transfer (OT) is an important cryptographic
primitive for two nontrusting parties. It is universal for
multiparty computation, i.e., it can be used as a build-
ing block to implement any multiparty computation [1,2].
1-out-of-2 oblivious transfer (1-2 OT) is probably the most
well-known variant, defined by Even et al. [3]. Here, a
sender holds two bits and a receiver obtains one of them.
The sender should not know which bit the receiver has
received and the receiver should only get to know one of
the two bits. A few years earlier, oblivious transfer was
informally described by Wiesner as a method “for trans-
mitting two messages either but not both of which may be
received” [4]. Other variants of oblivious transfer include
Rabin oblivious transfer [5], 1-out-of-n oblivious transfer
[6], generalized oblivious transfer [7], and XOR oblivious
transfer [7].
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Unfortunately, one-sided two-party computation is
impossible with information-theoretic security, both in the
classical and in the quantum setting [8,9]. Only with addi-
tional restrictions on dishonest parties is perfect quantum
oblivious transfer possible; e.g., with bounded quantum
storage [10] or relativistic constraints [11,12]. Another
approach to achieve perfect quantum oblivious transfer is
to assume that secure bit commitment exists [13]. Bit com-
mitment is impossible with information-theoretic security,
both in the classical and in the quantum setting, but com-
mitment protocols with computational security are pos-
sible. The assumption of bounded quantum storage also
makes bit commitment possible, essentially because adver-
saries can then no longer delay committing, e.g., to a
choice of what measurement basis to use. Nevertheless,
the cheating probabilities are bounded in quantum obliv-
ious transfer protocols, even if the sender and receiver are
only constrained by the laws of quantum mechanics. For
1-2 OT, 2/3 is a general lower bound on the greater of the
sender’s and the receiver’s cheating probabilities [14,15].
If pure symmetric states are used to represent the sender’s
bit values, the bound can be increased to approximately
0.749. By combining a protocol achieving this bound with
a trivial classical protocol, the cheating probabilities for
both sender and receiver can be made equal to approxi-
mately 0.729 [15]. This shows that protocols using pure
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symmetric states are not optimal. However, except for 1-2
OT protocols using pure symmetric states (which are thus
known to be suboptimal), there are no known quantum
protocols for quantum oblivious transfer where the lower
bounds have been proven to be tight.

In this paper, we focus on XOR oblivious transfer (XOT),
which is less investigated but which also is universal for
multiparty computation. Here, a sender holds two bits and
a receiver obtains either the first bit, the second bit, or their
XOR. As in 1-2 OT, the receiver should not learn anything
else and the sender should not know what the receiver
has learnt. To our knowledge, it is unclear whether XOT
and 1-out-of-2 OT are equivalent in the quantum setting.
For imperfect quantum oblivious transfer, one can argue
that the “quantum advantage” is greater for noninteractive
quantum XOT protocols than for noninteractive 1-out-of-2
OT protocols (see Sec. III).

We also introduce a way of “reversing” quantum obliv-
ious transfer protocols, so that oblivious transfer can be
implemented both ways, while quantum states are still sent
from one party to the other party. This is of importance
for applications. “Reversing” the protocol can be under-
stood in terms of a shared entangled state, similar to how
one can reimagine [16,17] the original Bennett-Brassard-
84 (BB84) protocol [18] for quantum key distribution.
Unlike for quantum key distribution, though, for oblivi-
ous transfer, the two parties do not trust each other. For
OT, therefore, it matters who prepares the entangled state;
this party could, if they so wished, prepare a different
state. Cheating probabilities can therefore be different in
the “original” and “reversed” protocols. For our XOT
protocol, however, they turn out to be the same.

In Sec. II, we examine general noninteractive quan-
tum XOT protocols which use pure symmetric states and
give cheating probabilities for the sender and receiver. In
Sec. III, we present an optimal protocol, showing that it
achieves lower cheating probabilities than classical XOT
protocols. Arguably, the quantum advantage is larger for
XOT than for 1-2 OT. The protocol is a practical appli-
cation of quantum state elimination [19,20], just as is
the 1-out-of-2 OT protocol in Ref. [15], since an honest
receiver needs to exclude two of the sender’s four possi-
ble bit combinations. The XOT protocols are semirandom
[15], meaning that the receiver obtains the sender’s first
bit, second bit, or their XOR at random. Semirandom and
“standard” XOT protocols are, however, equivalent to each
other with classical postprocessing; details of this are given
in Appendix B.

We discuss a “reversed” version of the protocol in
Sec. IV, where the sender of the quantum state becomes
the receiver of a state and vice versa, while oblivious
transfer is still implemented in the same direction as in
the unreversed case. In the reversed protocol, the receiver
similarly obtains their bit values at random. This is again
equivalent to a nonrandom protocol by using classical

postprocessing (see Appendix B). Finally, in Sec. V, we
present the experimental implementation of both the unre-
versed and the reversed XOT protocols and the respective
optimal cheating scenarios.

II. QUANTUM XOT WITH SYMMETRIC STATES

We consider quantum XOT protocols that satisfy certain
properties.

(1) They are noninteractive protocols, where Alice
sends Bob a quantum state |ψx0x1〉, encoding her bit
values x0, x1, and Bob measures it.

(2) Alice’s states |ψx0x1〉 are pure and symmetric. That
is, |ψ01〉 = U |ψ00〉, |ψ11〉 = U |ψ01〉, and |ψ10〉 =
U |ψ11〉, for some unitary U with U 4 = 1̂.

(3) Each of Alice’s bit combinations is chosen with
probability 1/4.

(4) When measuring each state |ψx0x1〉, Bob obtains x0,
x1, or x2 = x0 ⊕ x1 with probability 1/3.

As for the two first conditions, our results also give lower
bounds on the cheating probabilities for interactive pro-
tocols, where in the last step of the protocol, Bob needs
to distinguish between symmetric states. As for the two
last conditions, biased protocols are of course possible but
are usually not considered. Any bias can be exploited by
cheating parties.

The states |ψx0x1〉 need to be chosen so that it is possible
for Bob to obtain either x0, x1, or x2 = x0 ⊕ x1 correctly.
We denote an honest Bob’s measurement operators by
�0∗, �1∗, �∗0, �∗1, �XOR=0, and �XOR=1, corresponding
to Bob obtaining x0 = 0, x0 = 1, x1 = 0, x1 = 1, x2 = 0,
and x2 = 1, respectively. Bob should obtain either the first
or second bit, or their XOR, each with probability 1/3. The
probability of obtaining outcome m is

pm = 〈ψjk|�m |ψjk〉 ,

for m ∈ {0∗, 1∗, ∗0, ∗1, XOR = 0, XOR = 1}. This probabil-
ity should be equal to 1/3 when an outcome is possible and
otherwise be equal to 0. In Appendix A 1, we derive nec-
essary conditions that Alice’s states |ψx0x1〉 have to satisfy
in order for Bob to be able to correctly obtain either x0, x1,
or x2 = x0 ⊕ x1 with probability 1/3 each. For example, it
has to hold that

|F| ≤ 1
3

, |G| ≤ 1
3

,

where F and G are given by

〈ψ01|ψ00〉 = 〈ψ11|ψ01〉 = 〈ψ10|ψ11〉 = 〈ψ00|ψ10〉 = F ,

〈ψ00|ψ11〉 = 〈ψ01|ψ10〉 = G. (1)

F is in general complex but since the states are symmetric,
G must be real.
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Usually, in oblivious transfer, it is assumed that the
sender and receiver are choosing their inputs at random.
Here, Bob will obtain either x0, x1, or x0 ⊕ x1 at random.
Using the terminology in Ref. [15], we have a semirandom
XOR oblivious transfer (XOT) protocol, defined in general
as follows.

Definition 1 (semirandom XOR oblivious transfer). Semi-
random XOT is a two-party protocol where:

(1) Alice chooses her input bits (x0, x1) ∈ {0, 1} uni-
formly at random, thereby also specifying their XOR
x2 = x0 ⊕ x1, or she chooses Abort.

(2) Bob outputs the value b ∈ {0, 1, 2} and a bit y, or
Abort.

(3) If both parties are honest, then they never abort, y =
xb, Alice has no information about b and Bob has no
information about x(b+1) mod 3 or about x(b+2) mod 3.

As we show in Appendix B, implementing semirandom
XOT allows us to realize standard XOT and vice versa,
since these two variants of XOT are equivalent up to clas-
sical postprocessing. That is, classical postprocessing can
be used to allow Bob to nevertheless make an active (but
random from Alice’s point of view) choice of whether he
receives x0, x1, or x0 ⊕ x1, without changing the cheating
probabilities of either party.

There will be a trade-off between Alice’s and Bob’s
cheating probabilities, as there also is for 1-2 OT [14,
15,21]. Broadly speaking, when the states become more
distinguishable, Bob’s cheating probability increases and
Alice’s decreases. A cheating Bob aims to guess both x0
and x1, which then also implies knowledge of x0 ⊕ x1;
knowledge of any two bit values implies knowledge of
the third one. Bob can always cheat at least with probabil-
ity 1/2 by following the protocol and randomly guessing
the bit value(s) he does not obtain. It is standard to define
this as “cheating.” In cryptographic protocols, we are often
concerned with the probability that a dishonest party will
succeed in doing something they are not supposed to do.
A random guess of information one does not hold, and
subsequent actions using this guessed information, is a
cheating strategy that is always possible. The cheating
strategy that maximizes Bob’s probability to correctly
learn both x0 and x1 is evidently a minimum-error mea-
surement. His optimal measurement is a square-root mea-
surement [22,23], since he wants to distinguish between
equiprobable, pure, and symmetric states. The square-root
measurement has the measurement operators

�x0x1 = ρ−1/2
ave |ψx0x1〉 〈ψx0x1 | ρ−1/2

ave ,

where ρave = (1/4)
∑

x0x1
|ψx0x1〉 〈ψx0x1 | is the average

density matrix sent to Bob by Alice. Using, e.g., an
approach from Ref. [24], Bob’s cheating probability can
be shown to be

BOT = 1
16

∣
∣
∣
√

1 + G + 2 Re F + √
1 + G − 2 Re F

+ √
1 − G + 2 Im F + √

1 − G − 2 Im F
∣
∣
∣
2
. (2)

When F → −F , keeping G the same, Bob’s cheating prob-
ability is unchanged. For fixed |F| and |G|, Bob’s cheating
probability is minimized for real F if G ≤ 0 and for purely
imaginary F if G ≥ 0. One way to see this is to examine√

BOT as a function of θF , with F = |F|eiθF ; it is easy to
verify that the maxima and minima of this function are
as just described. Broadly speaking, Bob’s cheating prob-
ability increases with decreasing |F| and |G|, which means
that the states become more distinguishable. If F = G = 0,
the states are perfectly distinguishable and Bob’s cheating
probability is equal to 1. If |F| = |G| = 1, Bob’s cheat-
ing probability as given by Eq. (2) would be equal to
1/4. Bob’s cheating probability will, however, never be
this low, since the states |ψx0x1〉 have to be chosen so that
Bob can obtain one of Alice’s bits correctly. As mentioned
above, even with a random guess, Bob can also always
cheat at least with probability 1/2. Since it has to hold that
|F|, |G| ≤ 1/3 (see Appendix A 1), Bob’s cheating prob-
ability is in fact never lower than 3/4. This occurs for
F = ±1/3, G = −1/3 and for F = ±i/3, G = 1/3.

A cheating Alice aims to guess whether Bob has
obtained x0, x1, or x2 = x0 ⊕ x1. Even if following the
protocol, Alice can always cheat at least with probability
1/3 with a random guess. One can consider two different
types of protocol. Either Bob does not test the states Alice
sends to him, in which case a dishonest Alice can send
him any state; or, similar to the procedure in the 1-2 OT
protocol in Ref. [15], Alice can send Bob a sequence of
states and Bob asks her to declare what a fraction of them
are. Bob then checks that his measurement results agree
with Alice’s declaration, which can restrict Alice’s avail-
able cheating strategies. In the latter scenario, it is Alice’s
average cheating probability that is bounded, instead of her
cheating probability for each individual position. Gener-
ally, Alice’s cheating probability when Bob does not test
is at least as high as when he does test.

In the case when Bob tests a fraction of the states that she
sends him, a dishonest Alice must use an equal superposi-
tion of the states that she is supposed to send, entangled
with a system that she keeps on her side, in order to
pass Bob’s tests. In Appendix A 2, we show that when
Bob is testing Alice’s states, her cheating probability is
bounded as

AOT ≥
{

1
3 + 1

2 |Im F| + 1
2 max(|Re F|, |G|), if G ≤ 0,

1
3 + 1

2 |Re F| + 1
2 max(|Im F|, |G|), if G > 0.

(3)

As expected, the bound on Alice’s cheating probabil-
ity increases with larger |F| and |G|. The bound is also

020320-3



LARA STROH et al. PRX QUANTUM 4, 020320 (2023)

unchanged if F → −F , keeping G the same. Now sup-
pose that we fix |F| and |G|. If G < 0, we see that we
should choose Im F = 0 in order to minimize the bound
on Alice’s cheating probability and if G > 0, we should
choose Re F = 0. If G = 0, a real F and a purely imag-
inary F with the same |F| will give the same bound. As
we have already seen, if |F| and |G| are fixed, also Bob’s
cheating probability is minimized for these same choices
of θF . The analysis of Alice’s cheating probability when
Bob is not testing her states below will further confirm
that these are the optimal choices of θF for quantum XOT
protocols using symmetric pure states.

While the bound on Alice’s cheating probability in
Eq. (3) increases with |F| and |G|, Bob’s cheating proba-
bility in Eq. (2) is larger for smaller |F| and |G|. Together,
Eqs. (2) and (3) give a trade-off relation between Alice’s
and Bob’s cheating probabilities for noninteractive quan-
tum XOT protocols using pure symmetric states when Bob
is testing Alice’s states.

When Bob is not testing, it is optimal for Alice to send
him the pure state, within the subspace spanned by the
states that she is supposed to send him, for which Bob’s
probability of obtaining either x0, x1, or x2 is maximized.
In Appendix A 3, we show that the largest p(x0) and p(x1)

Alice can achieve is equal to

p(x0)max = p(x1)max = max(λ̃00, λ̃01), (4)

where

λ̃00 = 1
(1 + G)2 − 4(Re F)2

⎡

⎣1
3
(1 + G)− 2(Re F)2 +

√
(

1
3

+ G
)2

(Re F)2 + [(1 + G)2 − 4(Re F)2](Im F)2

⎤

⎦ ,

λ̃01 = 1
(1 − G)2 − 4(Im F)2

⎡

⎣1
3
(1 − G)− 2(Im F)2 +

√
(

1
3

− G
)2

(Im F)2 + [(1 − G)2 − 4(Im F)2](Re F)2

⎤

⎦ , (5)

and the largest p(x2) is

p(x2)max =
⎧
⎨

⎩

1/3+G
1+G−2|Re F| , if G ≥ |Im F|−|Re F|

2−3|Re F|−3|Im F| ,
1/3−G

1−G−2|Im F| , if G <
|Im F|−|Re F|

2−3|Re F|−3|Im F| .
(6)

Alice’s overall cheating probability is then the larger of
p(x0)max = p(x1)max and p(x2)max.

The expressions for p(x0) and p(x1) in Eq. (5) are some-
what complicated but can be numerically investigated and
plotted. In Fig. 1, we plot Alice’s cheating probabilities
for G = −1/3, G = −1/6, and G = 0. One can note that
p(xi)max do not depend on the sign of Re F and Im F and
that Alice’s cheating probabilities are unchanged if Re F
and Im F are interchanged, with G changing to −G.

When F is real, Alice’s cheating probabilities reduce to

p(b = 0)max =

p(b = 1)max =
⎧
⎨

⎩

(i) 1/3+|F|
1−G , if G ≥ −|F|,

(ii) 1/3+|F|
1+G+2|F| , if G ≤ −|F|

(7)

and

p(b = 2)max =
⎧
⎨

⎩

(iii) 1/3+G
1+G−2|F| , if G ≥ −|F|

2−3|F| ,

(iv) 1/3−G
1−G , if G ≤ −|F|

2−3|F| .
(8)

Alice’s overall cheating probability is again the largest of
the four expressions in Eqs. (7) and (8). For G ≤ −|F|,
the largest probability is expression (iv) for p(b = 2), and
for G ≥ −|F|, the largest expression is either expression
(i) for p(b = 0)max = p(b = 1)max or expression (iii) for
p(b = 2), depending on F and G. Expression (i) is greater
than (iii) when G > |F| or G < 1/3 − 2|F|. This means
that in the region F > 0, (iii) is the largest expression in
the hourglass-shaped region in between the lines G = F
and G = 1/3 − 2F and (i) is the largest expression in the
two wedges at either side (see Fig. 2). In the region F < 0,
the hourglass and wedges are instead formed by the lines
G = −F and G = 1/3 + 2F .

Broadly speaking, Alice’s cheating probability increases
when |F| and |G| increase, that is, when the states that
she sends become less distinguishable to Bob; this is also
the case for a cheating Alice when Bob does test. Bob’s
cheating probability in Eq. (2) is never smaller than 3/4.
This occurs for F = ±1/3, G = −1/3 and for F = ±i/3,
G = 1/3. In all of these cases, Alice’s cheating probabil-
ity is equal to 1/2, irrespective of whether Bob tests her
states or not. Her cheating probability can be made smaller
than 1/2, at the expense of further increasing Bob’s cheat-
ing probability, which already is relatively large at 3/4.
In Ref. [25], Osborn and Sikora present general lower
bounds for Alice’s and Bob’s cheating probabilities in
quantum XOT, that is, BOT � 0.5073 or AOT � 0.3382. It
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(a) (b) (c)

(d) (e) (f)

FIG. 1. Alice’s optimal cheating probabilities in Eqs. (5) and (6) for different values of G: (a),(d) G = −1/3; (b),(e) G = −1/6;
(c),(f) G = 0. The plots (a)–(c) show top-down views of (d)–(f), respectively.

is, however, not known if protocols exist that are tight with
those bounds. The expressions in Eq. (2) and Eqs. (3)–(6)
give actual cheating probabilities, not bounds, as a function
of the pairwise overlaps between the states that an honest
Alice sends.

III. A NONINTERACTIVE QUTRIT XOT
PROTOCOL

We present a protocol that can thus be said to be opti-
mal among noninteractive protocols using pure symmetric
states, since it achieves the smallest possible cheating
probability 3/4 for Bob and the smallest possible cheating
probability 1/2 for Alice, given that Bob’s cheating proba-
bility is 3/4. In our protocol, Alice encodes two bit values

x0 and x1 in one of the four nonorthogonal states

|φx0x1〉 = 1√
3
(|0〉 + (−1)x1 |1〉 + (−1)x0 |2〉). (9)

These states are symmetric, in the sense that |φ01〉 =
U |φ00〉, |φ11〉 = U 2 |φ00〉, and |φ10〉 = U 3 |φ00〉 for

U =
⎛

⎝
1 0 0
0 0 −1
0 1 0

⎞

⎠ , (10)

for which it holds that U 4 = 1̂. The states |φx0x1〉 are
selected so that it is possible to unambiguously exclude
two of them, meaning that it is possible to learn either
x0, x1, or x0 ⊕ x1. Because the states are nonorthogonal,
it is not possible to unambiguously determine which single

(a) (b)

FIG. 2. Alice’s optimal cheating probabilities for real F in Eqs. (7) and (8). The region plot in (a) is the top view of the 3D plot in
(b), both showing the regions for which (i), (iii), or (iv) are the largest, respectively.
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TABLE I. Bob’s measurement operators and outcomes.

Outcome bit Eliminated states Measurement operator

x0 = 0 |φ11〉 and |φ10〉 �A = 1
4
(|0〉 + |2〉)(〈0| + 〈2|)

x0 = 1 |φ00〉 and |φ01〉 �B = 1
4
(|0〉 − |2〉)(〈0| − 〈2|)

x1 = 0 |φ11〉 and |φ01〉 �C = 1
4
(|0〉 + |1〉)(〈0| + 〈1|)

x1 = 1 |φ00〉 and |φ10〉 �D = 1
4
(|0〉 − |1〉)(〈0| − 〈1|)

x2 = 0 |φ01〉 and |φ10〉 �E = 1
4
(|1〉 + |2〉)(〈1| + 〈2|)

x2 = 1 |φ00〉 and |φ11〉 �F = 1
4
(|1〉 − |2〉)(〈1| − 〈2|)

state was received, meaning that it is impossible for Bob to
perfectly learn both bits x0 and x1.

After choosing her bits (x0, x1) ∈ {0, 1} uniformly at ran-
dom, Alice sends the respective state to Bob, who makes
an unambiguous quantum state elimination measurement
to exclude two of the four possible states. There are six
different pairs of states that he can exclude. Each excluded
pair corresponds to learning either x0, x1, or x0 ⊕ x1, with
either the value 0 or 1. To construct Bob’s measurement
operators, we need six states, each one orthogonal to a
pair of states in Eq. (9). The measurement operators are
then proportional to projectors onto these six states, nor-
malized so that their sum is equal to the identity matrix.
For instance, the measurement operator�A = (1/4)(|0〉 +
|2〉)(〈0| + 〈2|) will exclude the states |φ11〉 and |φ10〉, so
that Bob’s outcome bit will be x0 = 0, and similarly for the
other operators. Table I gives the excluded pairs, the corre-
sponding measurement operators, and the deduced output
bits for Bob.

To summarize, our XOT protocol proceeds as fol-
lows:

(1) The sender Alice uniformly at random chooses the
bits (x0, x1) ∈ {0, 1} and sends the corresponding
state |φx0x1〉 to the receiver Bob.

(2) Bob performs an unambiguous state elimination
measurement, excluding two of the possible states
with certainty, from which he can deduce either x0,
x1, or x2 = x0 ⊕ x1.

Bob’s and Alice’s cheating probabilities are obtained
from the expressions in Eq. (2) and Eqs. (3)–(6), with F =
1/3 and G = −1/3. A dishonest Bob can cheat with prob-
ability BOT = 3/4. Alice’s cheating probability is AOT =
1/2, whether or not Bob tests the states that Alice sends.
Our noninteractive XOT protocol has the same cheating
probabilities as protocol (3) given by Kundu et al. [26].
That protocol, however, uses entanglement and is inter-
active, that is, quantum states are sent back and forth

between sender and receiver. Our protocol achieves the
same cheating probabilities but is easier to implement,
since it is noninteractive and does not require entangle-
ment. In Appendix C, we show how our protocol can be
related to the protocol in Ref. [26].

A. Comparison to classical XOT protocols

To compare our quantum XOT protocol to classical pro-
tocols, we consider a combination of two trivial classical
XOT protocols. In one, Alice can cheat perfectly and in the
other, Bob can cheat perfectly, similarly to the two “bad”
classical XOT protocols presented in Ref. [26].

Protocol 1. Alice has the two bits (x0, x1) and chooses
to send Bob either x0, x1, or x2 = x0 ⊕ x1. Subsequently,
Alice “forgets” what she has done.

Obviously, in this protocol, Alice can cheat with prob-
ability 1, while Bob can only cheat with probability 1/2.
This is his probability to correctly guess the value of the
bit that he did not receive and the XOR of Alice’s bits.

Protocol 2. Alice sends all of (x0, x1, x2 = x0 ⊕ x1) to
Bob, who chooses to read one of these bits and discards
the other two without looking at them.

Obviously, Bob can now cheat with probability 1, since
he could read out both x0 and x1. Alice, on the other hand,
can only cheat with probability 1/3 by guessing which bit
Bob has chosen to read out.

Protocol 3 is a combination of Protocols 1 and 2, follow-
ing Ref. [14]. Alice and Bob conduct an unbalanced weak
coin-flipping protocol. Its outcome will specify which of
the two protocols is implemented. The result is effectively
as follows.

Protocol 3. Protocol 1 is implemented with probability
s and Protocol 2 is implemented with probability (1 − s).

The cheating probabilities for Alice and Bob in Protocol
3 are given by

Ac
OT = 1

3
+ 2

3
s and Bc

OT = 1 − 1
2

s. (11)

Eliminating s, we obtain the trade-off relation

3Ac
OT + 4Bc

OT = 3
(

1
3

+ 2
3

s
)

+ 4
(

1 − 1
2

s
)

= 5. (12)

If a quantum protocol achieves 3AOT + 4BOT < 5, it has a
quantum advantage. As shown earlier, we have AOT = 1/2
and BOT = 3/4 in our quantum XOT protocol. Thus, we
obtain 3AOT + 4BOT = 9/2 < 5, meaning that it beats the
considered classical protocols.

Arguably, the quantum advantage is larger for XOT than
for 1-out-of-2 OT, where analogously defined classical
protocols satisfy AOT + BOT = 3/2 and a quantum pro-
tocol achieves AOT + BOT ≈ 3/4 + 0.729 = 1.479 [15].
Since 1-out-of-2 OT and XOT are different functionali-
ties, we cannot directly compare their trade-off relations
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and quantum advantages in cheating probabilities. How-
ever, we can make a reasonable comparison as follows.
The lhs in the trade-off relation in Eq. (12) for XOT is
3Ac

OT + 4Bc
OT, which would take the maximal value of 7 if

both Alice and Bob could cheat perfectly: AOT = BOT = 1.
The corresponding maximal value in the trade-off rela-
tion AOT + BOT = 3/2 for “classical” 1-out-of-2 OT is 2.
It would therefore not be fair to directly compare the dif-
ference between 5 and 9/2 (between the rhs in Eq. (12)
and the value 9/2 achieved for our quantum XOT proto-
col) with the difference between 3/2 and 1.479 (which are
the corresponding values for classical and quantum 1-out-
of-2 OT). But if we multiply the difference for the XOT
protocol by 2 and the difference for the 1-out-of-2 proto-
col by 7, the comparison can be said to be fair. That is,
since (5 − 9/2)× 2 = 1 > (3/2 − 1.479)× 7 = 0.147, it
is justifiable to say that the quantum advantage is larger
for XOT than for 1-out-of-2 OT. We could also make
the comparison instead using the cheating probabilities
in ideal protocols. For ideal XOT, we have AOT = 1/3
and BOT = 1/2, giving 3AOT + 4BOT = 3 as the rhs of
the trade-off relation. For an ideal 1-out-of-2 OT proto-
col, we have AOT = BOT = 1/2 and AOT + BOT = 1. The
“scaled” quantum advantages then become 5 − 9/2 = 1/2
for XOT, which is greater than (3/2 − 1.479)× 3 = 0.063
for 1-out-of-2 OT.

We also note that the bounds on cheating probabilities
for XOT hold for every individual implementation of the
protocol, while for the 1-out-of-2 OT protocol in Ref. [15],
the bound is only for the average cheating probability. In
particular, the sender could cheat perfectly in any individ-
ual 1-out-of-2 OT round, with a negligible probability of
being caught, as long as they cheat only in a sufficiently
small number of rounds. In this sense too, XOT gives a
greater quantum advantage than the 1-out-of-2 quantum
OT protocol in Ref. [15].

IV. “REVERSING” THE XOT PROTOCOL

It is useful to be able to implement oblivious transfer
between two parties “both ways.” One party might only be
able to prepare and send quantum states and the other party
might only be able to detect them. This has also been noted
in Ref. [27]. We now show that it is possible to “reverse”
our noninteractive protocol, so that XOR oblivious transfer
from Bob to Alice can be achieved by Alice sending quan-
tum states to Bob, who measures them. Alternatively, XOR
oblivious transfer from Alice to Bob can be implemented
by Bob sending quantum states to Alice, who measures
them. Such a “reversal” of a noninteractive quantum OT
protocol, using the procedure we describe, is generally pos-
sible, but cheating probabilities may be different in the
“original” and “reversed” protocols. For our specific XOT
protocol, we show that they nevertheless end up being the
same.

We consider noninteractive XOT from Alice to Bob,
implemented so that Bob sends Alice one of six states
depending on his randomly chosen x0, x1, or x2 = x0 ⊕ x1
and its value. Alice learns x0 and x1 by performing a
measurement on Bob’s state. For the reversed noninter-
active XOT protocol, Bob’s measurement operators given
in Table I become his states, when normalized to 1, and
Alice’s states given in Eq. (9) become her measurement
operators, when renormalized so that they sum to the iden-
tity operator. The XOT protocol is then performed as
follows:

(1) Bob randomly chooses one of the six states

|φx0=0〉 = 1√
2
(|0〉 + |2〉),

|φx0=1〉 = 1√
2
(|0〉 − |2〉),

|φx1=0〉 = 1√
2
(|0〉 + |1〉),

|φx1=1〉 = 1√
2
(|0〉 − |1〉),

|φx2=0〉 = 1√
2
(|1〉 + |2〉),

|φx2=1〉 = 1√
2
(|1〉 − |2〉) (13)

and sends it to Alice. This choice determines the val-
ues of b and bit xb, i.e., Bob’s input and output in
“standard” nonrandom XOT.

(2) Alice performs a measurement on the state that
she has received from Bob, learning the bit values
(x0, x1). Her measurement operators �x0x1 are

�00 = 1
4
(|0〉 + |1〉 + |2〉)(〈0| + 〈1| + 〈2|),

�01 = 1
4
(|0〉 − |1〉 + |2〉)(〈0| − 〈1| + 〈2|),

�11 = 1
4
(|0〉 − |1〉 − |2〉)(〈0| − 〈1| − 〈2|),

�10 = 1
4
(|0〉 + |1〉 − |2〉)(〈0| + 〈1| − 〈2|).

(14)

In terms of x0 and x1, Alice’s measurement operators
can be written �x0x1 = |�x0x1〉 〈�x0x1 |, where |�x0x1〉 =
(1/2)(|0〉 + (−1)x1 |1〉 + (−1)x0 |2〉). As in the unreversed
XOT protocol, when both parties act honestly, Alice will
have two bits, but will not know whether Bob knows
her first bit, her second bit, or their XOR. Bob will have
one of x0, x1, or x2 = x0 ⊕ x1 but will not know any-
thing else, since he can only deduce one bit of information
with certainty, based on the state that he has sent (if he is
honest).
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In the reversed XOT protocol, Alice cannot choose her
bit values, whereas in the unreversed protocol, Bob could
not directly choose b. However, as for the unreversed pro-
tocol, it is possible to add classical postprocessing to turn
the reversed protocol into “standard” nonrandom XOT,
where Alice can choose her bit values and where Bob can
consequently only choose b but not the value of the bit
that he obtains. In Appendix B, we describe this classical
postprocessing as well.

The aim of cheating parties in the reversed protocol
stays unchanged, i.e., dishonest Alice still wants to learn
which output Bob has obtained and dishonest Bob still
wants to learn not just one bit but any two of x0, x1, or
x0 ⊕ x1. In the reversed protocol, he wants to know exactly
which of the four two-bit combinations Alice has obtained.
The cheating probabilities are derived in Appendix D.
Alice cheats by distinguishing between the three mixed
states obtained by pairing up the states in Eq. (13) that
correspond to the same output. A minimum-error measure-
ment gives her a cheating probability of Ar

OT = 1/2. As in
the unreversed protocol, for the cheating sender of the state
(now Bob), there are two scenarios: one where the receiver
of the state (now Alice) tests the state and another where
she does not test. Also here, Bob’s cheating probability
for both scenarios is the same, that is, we have Br

OT = 3/4
in both cases. When Alice is not testing, Bob can achieve
this by sending an eigenvector corresponding to the largest
eigenvalue of one of Alice’s measurement operators. If
Alice does test, however, he needs to send a superposition
of the states he is supposed to send, entangled with some
system that he keeps.

All in all, we have a noninteractive reversed XOT pro-
tocol, implementing XOT from a party who only needs to
detect quantum states to a party who only needs to send
states. The receiver of the quantum states does not need to
test a fraction of the received states. The cheating probabil-
ities for the two parties are the same as in the unreversed
version of the protocol.

A. Original and reversed protocols in terms of a
shared entangled state

Instead of preparing and sending one of the states |φx0x1〉
as in the original protocol, Alice could prepare the state

|	ent〉AB = 1
2
(|a〉A |φ00〉B + |b〉A |φ01〉B

+ |c〉A |φ11〉B + |d〉A |φ10〉B) , (15)

where |a〉A , |b〉A , |c〉A , |d〉A is an orthonormal basis for
a system that she keeps on her side. She sends the B
system to Bob. If Alice measures the A system in the
|a〉A , |b〉A , |c〉A , |d〉A basis, then this prepares one of the
states |φx0x1〉B on Bob’s side. From both Bob’s and Alice’s
viewpoints, this is equivalent to the original protocol and

their cheating probabilities remain the same. Using the
definitions of |φx0x1〉 in Eq. (9), the entangled state in
Eq. (15) can also be written

|	ent〉AB = 1√
3
(|0〉A |0〉B + |1〉A |1〉B + |2〉A |2〉B),

where

|0〉A = 1
2
(|a〉A + |b〉A + |c〉A + |d〉A),

|1〉A = 1
2
(|a〉A − |b〉A − |c〉A + |d〉A),

|2〉A = 1
2
(|a〉A + |b〉A − |c〉A − |d〉A),

|3〉A = 1
2
(|a〉A − |b〉A + |c〉A − |d〉A),

(16)

are orthonormal states and we define a fourth basis ket
|3〉A. Both Alice’s and Bob’s state spaces for the state
|	ent〉AB are three dimensional; its Schmidt number is 3.
Alice’s measurement in the |a〉A , |b〉A , |c〉A , |d〉A basis can
be understood as a realization, with a Neumark exten-
sion using the auxiliary basis state |3〉A, of her generalized
quantum measurement in the “reversed” protocol, with
measurement operators given in Eq. (14).

If, instead, Bob prepares the state |	ent〉AB, sends the
A system to Alice, and measures his B system using the
measurement that he makes in the original protocol, then
this prepares one of the states |φxi=b〉 on Alice’s side. This
is equivalent to the reversed protocol. That is, starting
from the entangled state |	ent〉AB, either the original or the
reversed protocol can be implemented. In both cases, Alice
makes the measurement she would make in the reversed
protocol and Bob makes the measurement he would make
in the original protocol. What determines whether the pro-
cedure is equivalent to the original or reversed protocol
is who prepares the state |	ent〉AB. This matters, because
Alice and Bob are not guaranteed to follow the protocol
and could prepare some other state if they were dishonest.

In order to illustrate the generality of this procedure,
let us “reverse” the protocol in Ref. [15]. Here, Alice
sends one of the two-qubit states |0〉 |0〉, |+〉 |+〉, |1〉 |1〉,
or |−〉 |−〉 to Bob, encoding her bit values 00, 01, 11, and
10, respectively, with |±〉 = (|0〉 ± |1〉)/√2. Since each of
Alice’s four states are symmetric under exchange of the
two qubits, the state space is actually three dimensional.
Bob measures one qubit in the |0〉 , |1〉 basis and the other
one in the |+〉 , |−〉 basis, which allows him to rule out two
of the four possible states, so that he can infer the value of
either Alice’s first bit or her second bit (never their XOR).
Here, we use an equivalent set of four states with the same
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pairwise overlaps,

|φ′
x0x1

〉 = 1√
2

|0〉 + (−1)x1
1
2

|1〉 + (−1)x0
1
2

|2〉 , (17)

making it immediately clear that the state space is three
dimensional. Alice could now instead prepare the state

|�′
ent〉 = 1

2
(|a〉A |φ′

00〉B + |b〉A |φ′
01〉B

+ |c〉A |φ′
11〉B + |d〉A |φ′

10〉B)

= 1√
2

|0〉A |0〉B + 1
2

|1〉A |1〉B + 1
2

|2〉A |2〉B , (18)

with the same definition of the states |0〉A, |1〉A, and |2〉A as
in Eq. (16), and send the B system to Bob. If Alice mea-
sures the A system in the |a〉A , |b〉A , |c〉A , |d〉A basis—or
makes the equivalent four-outcome generalized measure-
ment in the three-dimensional (3D) space spanned by the
states |0〉A, |1〉A, and |2〉A—then this prepares one of the
states |φ′

x0x1
〉 on Bob’s side. This is then equivalent to

Alice’s actions in the protocol in Ref. [15]. Preparing the
above entangled state is also how a dishonest Alice would
cheat in Ref. [15]. She can then always revert to effectively
sending Bob one of the states that she should have sent
him, if Bob decides to test the state that she has sent. If she
does go ahead with cheating, she measures the A system in
a way that optimally lets her deduce which bit value (x0 or
x1) Bob has obtained, in which case she can learn this with
probability 3/4. If Bob does not test the states that Alice
sends, one can show that she can in fact cheat with proba-
bility 1 (and that it does not help if Bob randomly chooses
which qubit he measures in what basis). If Bob is dishon-
est, he can determine which one of the four states |φ′

x0x1
〉

Alice has sent him with probability approximately 0.729.
If, instead, Bob were to prepare the entangled state and

send the A system to Alice, we would obtain a reversed
version of the protocol in Ref. [15]. One can show that the
measurement that an honest Bob makes prepares one of the
four states

|φ′
x0=0〉 = 1√

2
(|a〉A + |b〉A),

|φ′
x1=0〉 = 1√

2
(|a〉A + |d〉A),

|φ′
x0=1〉 = 1√

2
(|c〉A + |d〉A),

|φ′
x1=1〉 = 1√

2
(|b〉A + |c〉A)

(19)

on Alice’s side. If Bob is dishonest, he can send Alice some
other state(s) in the three-dimensional state space spanned
by these states; the state (|a〉A − |b〉A − |c〉A + |d〉A)/2 is

orthonormal to all of the above four states. It is neces-
sary to reanalyze what the cheating probabilities are in the
reversed 1-2-OT protocol, since they may change when
a protocol is reversed. Bob’s cheating probability could
increase, since more cheating strategies are available to
him, while Alice’s cheating probability could decrease. In
this case, it can be shown that Alice’s cheating probability
is 3/4, the same as in the unreversed protocol when Bob
was testing the states that she sends. Bob’s cheating prob-
ability increases to 3/4 if Alice does not test the states that
he sends and is equal to 0.729 if Alice does test the states
that he sends (the same as Bob’s cheating probability in the
unreversed protocol).

V. EXPERIMENT

A. Both parties honest

In the case where both parties are honest, Alice pre-
pares one of the qutrit states given in Eq. (9) and sends
it to Bob. In our experimental implementation, these states
are encoded into spatial and polarization degrees of free-
dom of a single photon using the setup depicted in Alice’s
part of Fig. 3, which consists of half-wave plates and a
calcite beam displacer (it shifts the horizontally polarized
beam). The basis state |0〉 is represented by the horizontally
polarized mode in the upper output, |1〉 by the horizontally
polarized mode in the lower output, and |2〉 by the ver-
tically polarized mode in the lower output. The photons
incoming from a single-photon source have a horizontal
linear polarization. The settings of the angles of the wave-
plate axes corresponding to all of Alice’s states are listed
in Table II.

Bob’s six measurement operators are defined in Table I,
for unambiguously eliminating pairs of states. This
measurement can be implemented by a projective von
Neumann measurement {|ξi〉〈ξi|}F

i=A in an extended six-
dimensional Hilbert space, where

|ξA〉 = 1
2
(|0〉 + |2〉 + |3〉 − |5〉) ,

|ξB〉 = 1
2
(|0〉 − |2〉 + |3〉 + |5〉) ,

|ξC〉 = 1
2
(|0〉 + |1〉 − |3〉 + |4〉) ,

|ξD〉 = 1
2
(|0〉 − |1〉 − |3〉 − |4〉) ,

|ξE〉 = 1
2
(|1〉 + |2〉 − |4〉 + |5〉) ,

|ξF〉 = 1
2
(|1〉 − |2〉 − |4〉 − |5〉) ,

(20)

are orthogonal states, with |3〉, |4〉, and |5〉 being the basis
states in the additional dimensions represented by modes
added on Bob’s side.
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FIG. 3. The experimental setup for the XOT protocol when Bob is honest. The green boxes labeled with black numbers represent
half-wave plates (HWPs). The large semitransparent cyan boxes represent beam displacers. Next to HWP10, there is a polarizing beam
splitter. Note that HWP4 is ring shaped and that polarization of the central beam is not affected. The detectors are labeled according
to the corresponding POVM operators. The settings for Alice’s half-wave plates are listed in Table II for when she is honest and in
Table III for when she is cheating. The settings for Bob’s half-wave plates are HWP3= 0◦, HWP4=HWP5=HWP7=HWP8=HWP10=
22.5◦, and HWP6=HWP9= 45◦. The beams marked in red have horizontal linear polarization and the beams marked in blue have
vertical polarization. Purple indicates general polarization states.

A unitary transformation between states {|ξi〉}F
i=A and the

computational basis {|j 〉}5
j =0 can be realized by a symmet-

ric beam-splitter network (consisting of six 50:50 beam
splitters), which can be further translated into a setup
consisting of half-wave plates and a beam displacer that
combines spatial and polarization modes of light. The
first beam displacer on Bob’s side in Fig. 3 just trans-
fers the incoming polarization and spatial modes into three
separate paths. The following half-wave plates—“double”
HWP4 and HWP5—turned by 22.5◦ play the role of “beam
splitters”, mixing the original three modes with the addi-
tional three “empty” (vacuum) modes. Each wave plate
mixes two polarization modes. Behind the next beam dis-
placer there are two half-wave plates turned by 45◦, which
just swap horizontal and vertical linear polarizations, and
two half-wave plates turned by 22.5◦, which represent the
other two “beam splitters.” The last “beam splitter” of the
network is implemented by a half-wave plate turned by
22.5◦, followed by a polarizing beam splitter in the right
part of the figure.

To prevent the injection of higher-dimensional states
into Bob’s apparatus (so that Alice only has access to the
subspace spanned by her legitimate states), there should be
a linear polarizer placed in the upper input port. However,
in our proof-of-principle experiment, we omit it in order to
simplify the setup.

TABLE II. The wave-plate angles for Alice’s state preparation
if Alice is honest. The angle of HWP1 is always zero (it only
compensates for path differences). These settings also hold for
cheating Bob in the reversed protocol.

|φ00〉 |φ01〉 |φ10〉 |φ11〉
HWP0 −27.37◦ −27.37◦ 27.37◦ 27.37◦
HWP2 −25.50◦ 25.50◦ 25.50◦ −25.50◦

The measurement results are shown in Table V of
Appendix E. This gives the absolute numbers of detec-
tor counts, the corresponding relative frequencies, and
theoretical probabilities for comparison. The digits in
parentheses represent one standard deviation at the final
decimal place. The states in Eq. (9) are being prepared
with equal probabilities. The average error rate caused
by experimental imperfections is 0.01249(8). It is cal-
culated as (

∑
i,j ∈Ei

Cij )/(
∑

i,j Cij ), where i indexes input
states, j indexes measurement results, the Cij are measured
numbers of counts, and Ei denotes the sets of erroneous
outcomes (outcomes that should not occur).

B. Alice cheating

Bob is honest, so his measurement is the same as in
the previous case. To guess which of the three bits Bob
will obtain, Alice sends the states |0〉, |1〉, or |2〉. The
corresponding angles of the wave plates are listed in
Table III.

The measurement results are shown in Table VI of
Appendix E. Alice’s states are being prepared with equal
probabilities. Her average probability of correctly guessing
which one of the three bits Bob obtained (i.e., his value of
b), estimated from the experiment, is 0.4999(3). It is calcu-
lated as (

∑
i,j ∈Ci

Cij )/(
∑

i,j Cij ), where Ci denotes the sets
of correct guesses. The theoretical prediction is 1/2.

TABLE III. The angles for wave plates for Alice’s state prepa-
ration, if Alice is cheating. The angle of HWP1 is always
zero.

|0〉 |1〉 |2〉
HWP0 0◦ 45◦ 45◦
HWP2 0◦ 45◦ 0◦
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C. Bob cheating

Alice is honest, so she sends her states exactly as in the
described case above, when both parties were honest. To
guess all three bits (equivalently, any two bits), Bob applies
the square-root measurement consisting of four positive
operator-valued measure (POVM) elements, which are
actually the same as that expressed in Eq. (14). This
POVM can be implemented by projectors {|ξi〉〈ξi|}11

i=00 in a
four-dimensional Hilbert space spanned by |0〉, |1〉, |2〉, |3〉,
where

|ξ00〉 = 1
2
(|0〉 + |1〉 + |2〉 + |3〉) ,

|ξ01〉 = 1
2
(|0〉 − |1〉 + |2〉 − |3〉) ,

|ξ10〉 = 1
2
(|0〉 + |1〉 − |2〉 − |3〉) ,

|ξ11〉 = 1
2
(|0〉 − |1〉 − |2〉 + |3〉) ,

(21)

are orthogonal states. The implementation of this projec-
tive measurement is shown in Fig. 4. The angles of the
wave plates are listed in the figure caption.

The measurement results are shown in Table VII of
Appendix E. Alice’s states are being prepared with equal
probabilities. Bob’s average probability of guessing all
bits, estimated from the experiment, is 0.7431(3). The
theoretical value is 3/4.

D. Reversed protocol—both parties honest

In the reversed protocol, Bob prepares and sends one
of the six nonorthogonal qutrit states defined in Eq. (13).
These states can be prepared in a similar way as Alice’s
states were being prepared in the unreversed protocol.
The corresponding angles for the wave plates are listed in
Table IV.

TABLE IV. The reversed protocol. The wave-plate angles for
Bob’s state preparation, if Bob is honest. The angle of HWP1 is
always zero. x2 = x0 ⊕ x1.

|φx0=0〉 |φx0=1〉 |φx1=0〉 |φx1=1〉 |φx2=0〉 |φx2=1〉
HWP0 −22.5◦ 22.5◦ 22.5◦ −22.5◦ 45.0◦ 45.0◦
HWP2 0.0◦ 0.0◦ 45.0◦ 45.0◦ −22.5◦ 22.5◦

In this case, Alice is the receiver. To learn the bit val-
ues, she performs a POVM measurement, the components
of which are defined in Eq. (14). We already know how
to implement this measurement, because it is exactly the
same as the measurement for cheating Bob in the unre-
versed protocol. So the corresponding higher-dimensional
projective measurement consists of the projectors onto the
states in Eq. (21). Therefore, the setup for the reversed pro-
tocol in the case when both parties are honest is actually the
same as the setup for the unreversed protocol when Bob is
cheating (see Fig. 4) except that the roles of Alice and Bob
are interchanged.

The measurement results are shown in Table VIII of
Appendix E. Bob’s states are being prepared with equal
probabilities. The average error rate caused by experimen-
tal imperfections is 0.00428(4).

E. Reversed protocol—Alice cheating

Bob honestly prepares his quantum states but cheating
Alice wants to know which bit Bob has actually learned.
In this case, Alice’s optimal strategy is to use the mea-
surement defined in Eq. (D6). These POVM operators are
actually statistical mixtures of the projectors onto the basis
states |0〉, |1〉, and |2〉. This means that Alice can make a
projective measurement followed by classical postprocess-
ing. For example, if she obtains the result corresponding to
|0〉〈0|, she knows that Bob has either the value of bit x0 or
the value of bit x1, each with 50% probability. The scheme
of the setup implementing Alice’s measurement if she is

FIG. 4. The experimental setup for the XOT protocol when Bob is cheating. The notation is the same as in Fig. 3. The settings for
the receiver’s half-wave plates are HWP3 = HWP7 = HWP8 =22.5◦, HWP4 =45◦, and HWP5= 90◦. The same setup is used for the
reversed protocol when Alice is honest but in that case, Bob is the sender and Alice is the receiver (names in parentheses). The settings
of the sender’s half-wave plates for honest Alice in the unreversed protocol, or for cheating Bob in the reversed protocol, are listed in
Table II, and for honest Bob in the reversed protocol in Table IV.
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FIG. 5. The experimental setup for the reversed XOT protocol when Alice is cheating. The notation is the same as in Fig. 3. The
settings of Alice’s half-wave plates are HWP3 = HWP4 = HWP10 = 0◦, HWP5 = 90◦, and HWP6 = HWP7 = HWP9 = 45◦.

cheating is shown in Fig. 5. The angles of the wave plates
are listed in the figure caption.

The measurement results are shown in Table IX of
Appendix E. Bob’s states are being prepared with equal
probabilities. The average probability of Alice guessing
Bob’s b, estimated from the experiment, is 0.4992(2). The
theoretical value is 1/2.

F. Reversed protocol—Bob cheating

In this case, Alice behaves honestly but cheating Bob
wants to obtain the values of both x0 and x1 (and their XOR).
To estimate these values, Bob uses a set of four “fake”
states, which are equivalent to the states in Eq. (9). Clearly,
the experimental setup, as well as the state preparation and
measurement, are the same as that for the unreversed pro-
tocol with cheating Bob (see Fig. 4). Therefore, it is not
necessary to repeat the measurement because the results
have already been obtained. They are shown in Table VII
of Appendix E. The average probability of Bob guessing
all bits, estimated from the experiment, is 0.7431(3). The
theoretical value is 3/4.

G. Technical description of the setup

We use a heralded single-photon source. The heralding
is based on the detection of one photon from a time-
correlated pair. Photon pairs are generated using type-II
spontaneous parametric down-conversion in a periodically
poled potassium titanyl phosphate (KTP) crystal and their
wavelength is 810 nm. The photons enter the setup with
linear horizontal polarization. Single-photon detection is
implemented as coincidence measurements with the trig-
ger signal heralding photon creation. The coincidence win-
dow used is 2.5 ns. If more detectors click together with
the trigger signal, only one result is randomly selected and
counted. However, such situations occur at most once in
2000 measurements.

Each qutrit used in the protocol is represented by a
single photon that can occur in a superposition of three
optical modes. The protocol requires an interferometric
network that allows coupling of these modes with each
other and with a vacuum. Our implementation, depicted in
Fig. 6, is based on calcite beam displacers, which allow us
to construct passively stable interferometers [28]. We use
spatial and polarization degrees of freedom to encode the
qutrits. This encoding enables us to realize a tunable beam

FIG. 6. The detailed scheme of the experimental setup. The green boxes labeled with black numbers represent HWPs. The small
orange rectangles are glass plates that serve for phase compensation. The large semitransparent cyan boxes represent beam displacers.
Next to HWP10, there is a polarizing beam splitter. Note that HWP1, HWP2, HWP4, and HWP10 are ring shaped and that polarization
of the central beam is not affected. The insets show the actual arrangement of the half-wave plates.
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splitter simply with a half-wave plate that couples horizon-
tally and vertically polarized optical modes. The calcite
beam displacers spatially separate horizontally and verti-
cally polarized components into two parallel beams with 6
mm lateral distance.

Although there are multiple optical paths, only four
interferometric phases are important for the tested proto-
cols. To adjust these phases, we use auxiliary wave-plate
settings such that the output optical signal is sensitive to
the optical phase. The first relative optical phase is set by
tilting the second beam displacer using a piezo-stack actu-
ator attached to the prism turntable. Then we adjust the
second phase by tilting the third beam displacer. The third
phase is set by tilting the glass plate in the bottom arm.
Finally, we set the last optical phase by tilting the fourth
beam displacer. The phases have to be set in this order due
to the sharing of optical paths.

Using strong laser light, we characterize the phase sta-
bility of the largest interferometer formed by the outermost
optical paths between the first and the fourth beam dis-
placers, which merge at the sixth displacer. We set the
optical phase roughly to π/2, cover the setup with a card-
board box, and monitor the output intensity for 1 h. The
observed drift speed is 0.5◦/min. The amplitude of fast
phase fluctuation is roughly 5◦ peak to peak.

There are several sources of experimental error. The
most significant of them is the unequal fiber-coupling
efficiencies at the output of the interferometric network,
spanning from 0.75 to 0.85. Furthermore, the efficien-
cies of the used single-photon detectors are also unequal.
The largest relative difference is 0.12. We compensate for
these inequalities using detection electronics. The inaccu-
rate retardance of half-wave plates causes the discrepancy
between the expected and actual coupling ratios for a given
angular position. We try to compensate for this imper-
fection by slight modifications of the angular positions.
Also, we use wave plates to exchange the polarization
modes. The imperfect retardance limits the ability to turn
the horizontal into vertical polarization. It consequently
causes undesired losses and residual coupling in our exper-
iments. Furthermore, the slight variation in the length of
the beam displacers causes imperfect overlap of optical
beams, reducing the interferometric visibility. The worst
visibility that we observe is 0.85. Fortunately, coupling
the beams into single-mode optical fibers serves as spatial
filtering and restores interferometric visibility. The worst
observed visibility of the fiber-coupled signal is 0.99. We
also observe that different optical paths suffer from slightly
unequal optical losses (the largest difference is 0.02), but
we do not directly compensate for this imperfection.

The counts Cij are accumulated during 10-s measure-
ments for each input state. Relative frequencies are cal-
culated as fij = Cij /

∑
j Cij , where i is indexing the input

states and j is indexing the measurement results. The
shown errors of the relative frequencies are determined

using the standard law of error propagation under the
assumption that the detection events obey the Poisso-
nian distribution and thus the standard deviations of Cij

can be estimated as
√

Cij . The key part of the experi-
ment is a stable optical realization of the required POVM
measurements.

VI. CONCLUSIONS

We analyze and realize protocols for quantum XOR
oblivious transfer. The protocols are noninteractive, do
not require entanglement, and make use of pure symmet-
ric states. We present particular optimal quantum proto-
cols, showing that they outperform classical XOR oblivious
transfer protocols, and obtain cheating probabilities for the
sender and receiver for general noninteractive symmetric-
state protocols. The cheating probabilities for the protocols
are the same as for a previous protocol [26], which is inter-
active and requires entanglement. Noninteractive protocols
that do not require entanglement are, however, simpler to
implement. In our protocol, Bob obtains Alice’s first bit,
her second bit, or their XOR at random. Thus, we introduce
the concept of semirandom XOT protocols, analogous to
the definition of semirandom 1-2 OT protocols given in
Ref. [15], proving that a semirandom XOT protocol can
be changed into a standard XOT protocol and vice versa
by adding classical postprocessing, keeping the cheating
probabilities the same.

One can argue that the “quantum advantage” for the pre-
sented quantum XOT oblivious transfer protocol is greater
than that of the quantum 1-out-of-2 oblivious transfer pro-
tocol in Ref. [15]. In addition, the cheating probabilities
for the protocol in Ref. [15] are average cheating probabil-
ities for many rounds of oblivious transfer. A sender can
cheat with probability 1 in any single round, with negli-
gible probability of being caught, as long as the average
cheating probability obeys the bound. For the XOR oblivi-
ous transfer protocol that we present, the sender’s cheating
probability in every single round is bounded by 1/2.

We also introduce the concept of “reversing” a proto-
col, which means that the sender of the quantum state
instead becomes a receiver of quantum states and vice
versa, while keeping their roles in the XOT protocol the
same. This is useful if one party only has the ability to pre-
pare and send quantum states, while the other party can
only measure them. This is frequently the case in quantum
communications systems. The “original” and “reversed”
protocols can be connected by viewing them in terms of a
shared entangled state. Because the two parties do not trust
each other in oblivious transfer, or in multiparty computa-
tion more generally, unlike for quantum key distribution,
the cheating probabilities can be different depending on
who prepares the entangled state. For our XOT protocol,
however, the cheating probabilities are the same in the
unreversed protocol and in its reversed version.
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We optically realize both the unreversed and the
reversed version of our optimal noninteractive quantum
XOT protocol, including Alice’s and Bob’s optimal cheat-
ing strategies. The experiment involves the implementa-
tion of the generalized quantum measurements made by
the receiver Bob in the unreversed protocol and the sender
Alice in the reversed protocol. This is achieved through
extending the Hilbert space using an auxiliary basis state,
which is coupled to the other basis states using a particular
unitary transform. The experimental work involves align-
ing and stabilizing several concatenated Mach-Zehnder
interferometers, which is not trivial. Generalized mea-
surements are still quite rare in quantum communication
and quantum cryptographic protocols, which mostly use
standard projective quantum measurements. The achieved
experimental data match our theoretical results very well,
thus demonstrating the feasibility of both protocols.
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APPENDIX A: QUANTUM XOT WITH
SYMMETRIC STATES: DETAILS OF

DERIVATIONS

1. Conditions involving pairwise overlaps

We first give a number of useful relations. For a set of
symmetric pure states, the pairwise overlaps obey

〈ψ01|ψ00〉 = 〈ψ11|ψ01〉 = 〈ψ10|ψ11〉 = 〈ψ00|ψ10〉 = F ,

〈ψ00|ψ11〉 = 〈ψ01|ψ10〉 = G.
(A1)

Since |ψ11〉 = U 2 |ψ00〉 and the eigenvalues of U are the
fourth roots of unity, G is always real but F is in general
complex. We denote an honest Bob’s measurement opera-
tors by �0∗, �1∗, �∗0, �∗1, �XOR=0, and �XOR=1 (using
different indices than in Sec. III, in order to distinguish
these more general measurement operators from the spe-
cific ones in Sec. III). Bob should obtain either the first or
second bit, or their XOR, each with probability 1/3. The
probability of obtaining outcome m is

pm = 〈ψjk|�m |ψjk〉 ,

for m ∈ {0∗, 1∗, ∗0, ∗1, XOR = 0, XOR = 1}. This probabil-
ity should be equal to 1/3 when an outcome is possible and

otherwise be equal to 0. Moreover, it holds that

〈ψ01|�0∗ |ψ00〉 = 〈ψ10|�1∗ |ψ11〉 =
〈ψ00|�∗0 |ψ10〉 = 〈ψ11|�∗1 |ψ01〉 = F ,

〈ψ00|�XOR=0 |ψ11〉 = 〈ψ01|�XOR=1 |ψ10〉 = G. (A2)

The above relations can be obtained by writing �0∗ =∑
k λk |λk〉 〈λk| in terms of its eigenstates and eigenvalues

and similarly for the other measurement operators. It then
holds, for example, that

0 = 〈ψ10|�0∗ |ψ10〉 =
∑

k

λk| 〈ψ10|λk〉 |2, (A3)

meaning that 〈ψ10|λk〉 = 0 ∀ k. Using this and other
analogous conditions, we have

F = 〈ψ01|ψ00〉 = 〈ψ01|
∑

m

�m |ψ00〉 = 〈ψ01|�0∗ |ψ00〉 .

(A4)

The other conditions in Eq. (A2) can be obtained anal-
ogously. Furthermore, it has to hold that |F| ≤ 1/3 and
|G| ≤ 1/3. This is necessary for the states to be distin-
guishable enough, so that an honest Bob can learn either
x0, x1, or x0 ⊕ x1 correctly. To show this, define a vector X
with elements xk = √

λk 〈ψ01|λk〉 and a vector Y with ele-
ments yk = √

λk 〈ψ00|λk〉. Then, |X|2 = |Y|2 = 1/3 and it
holds that

|F|2 = |
∑

k

λk 〈ψ01|λk〉 〈λk|ψ00〉 |2 = |
∑

k

xky∗
k |2

≤ |X|2|Y|2 = 1
9

. (A5)

|G| ≤ 1/3 can be proven analogously.

2. Alice’s cheating probability when Bob is testing her
states

In order to always be able to pass Bob’s tests, a dishonest
Alice must use an equal superposition of the states that she
is supposed to send, entangled with a system that she keeps
on her side. That is a state of the form

|	cheat〉 = a |0〉A ⊗ |ψ00〉 + b |1〉A ⊗ |ψ01〉
+ c |2〉A ⊗ |ψ11〉 + d |3〉A ⊗ |ψ10〉 , (A6)

where |0〉A , |1〉A , |2〉A , |3〉A is an orthonormal basis for
her kept system and |a|2 + |b|2 + |c|2 + |d|2 = 1. If Alice
measures her system in this basis, she can always pass any
tests that Bob might conduct. It will appear to Bob as if
Alice is sending one of the four states that she should send
if she is honest.
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We set a = b = c = d = 1/2, which we conjecture is
actually optimal for Alice. Any cheating strategy for Alice
will nevertheless give a lower bound on her cheating
probability. Honest Bob performs a measurement with
measurement operators �0∗, �1∗, �∗0, �∗1, �XOR=0, and
�XOR=1 on the system that he receives. Using the condi-
tions in Eq. (A2), we can express the equiprobable states
Alice holds, conditioned on Bob’s b, as

μb=0
A = 1

4

⎛

⎜
⎝

1 3F 0 0
3F∗ 1 0 0

0 0 1 3F
0 0 3F∗ 1

⎞

⎟
⎠ ,

μb=1
A = 1

4

⎛

⎜
⎝

1 0 0 3F∗
0 1 3F 0
0 3F∗ 1 0

3F 0 0 1

⎞

⎟
⎠ ,

μb=2
A = 1

4

⎛

⎜
⎝

1 0 3G 0
0 1 0 3G

3G 0 1 0
0 3G 0 1

⎞

⎟
⎠ ,

(A7)

corresponding to Bob obtaining x0, x1, or x2 = x0 ⊕ x1.
Here,

μb=0
A

= TrB
[
(�0∗+�1∗)1/2 |	cheat〉 〈	cheat| (�0∗+�1∗)1/2

]

p0∗ + p1∗
,

where

p0∗ + p1∗ = Tr[|	cheat〉 〈	cheat| (�0∗ +�1∗)] = 1
3

and analogously for b = 1 and b = 2. These states are
mirror symmetric, meaning that the unitary transforma-
tion that takes |0〉 → |3〉, |3〉 → |2〉, |2〉 → |1〉, and |1〉 →
|0〉, takes μb=0

A to μb=1
A and vice versa, and keeps μb=2

A
unchanged. The minimum-error measurement is known for
some sets of mirror-symmetric states [29,30] but this is
not one of them. Alice’s minimum-error measurement can
nevertheless be found by making a basis transform using
a unitary transform U proportional to a 4 × 4 Hadamard-
Walsh matrix:

U = 1
2

⎛

⎜
⎜
⎜
⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞

⎟
⎟
⎟
⎠

. (A8)

If we interpret the four basis states as two-qubit states
so that |0〉 ≡ |00〉, |1〉 ≡ |01〉, |2〉 ≡ |10〉, and |3〉 ≡
|11〉, this is the same as writing the density matri-
ces in the |++〉 , |+−〉 , |−+〉 , |−−〉 basis, where |±〉 =
(|0〉 ± |1〉)/√2. The density matrices in Eq. (A7) then
become

μb=0
A = 1

4

⎛

⎜
⎝

1 + 3 Re F −3i Im F 0 0
3i Im F 1 − 3 Re F 0 0

0 0 1 + 3 Re F −3i Im F
0 0 3i Im F 1 − 3 Re F

⎞

⎟
⎠ ,

μb=1
A = 1

4

⎛

⎜
⎝

1 + 3 Re F 3i Im F 0 0
−3i Im F 1 − 3 Re F 0 0

0 0 1 − 3 Re F −3i Im F
0 0 3i Im F 1 + 3 Re F

⎞

⎟
⎠ ,

μb=2
A = 1

4

⎛

⎜
⎝

1 + 3G 0 0 0
0 1 + 3G 0 0
0 0 1 − 3G 0
0 0 0 1 − 3G

⎞

⎟
⎠ .

(A9)

All three density matrices are block diagonal. This means
that the minimum-error measurement can be performed
by first projecting on the subspaces corresponding to each
block, which is the same as measuring the first qubit in
the |+〉 , |−〉 basis. Depending on the outcome, one then
distinguishes between the resulting three density matrices

in that subspace. In each subspace, μb=2
A is proportional

to an identity matrix. This means that no measurement
will tell Alice anything more about the likelihood that her
state was μb=2

A other than what she already knows. The
optimal measurement in each subspace is then the mea-
surement that optimally distinguishes between μb=0

A and
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μb=1
A . Depending on the outcome, Alice’s best guess might

still be b = 2.
To summarize, the measurement that distinguishes

between μb=0
A ,μb=1

A , and μb=2
A with minimum error, and

therefore maximizes Alice’s cheating probability, is a
projection on the states |+R〉, |+L〉, |−+〉, and |−−〉,
where |R〉 = (|0〉 + i |1〉)/√2 and |L〉 = (|0〉 − i |1〉)/√2.
The probabilities for the different outcomes, conditioned
on what density matrix Alice holds, are

p(+, R|μb=0
A ) = p(+, L|μb=1

A ) = 1
4
(1 + 3 Im F),

p(+, L|μb=0
A ) = p(+, R|μb=1

A ) = 1
4
(1 − 3 Im F),

p(+, L|μb=2
A ) = p(+, R|μb=2

A ) = 1
4
(1 + 3G),

p(−, +|μb=0
A ) = p(−, −|μb=1

A ) = 1
4
(1 + 3 Re F),

p(−, −|μb=0
A ) = p(−, +|μb=1

A ) = 1
4
(1 − 3 Re F),

p(−, +|μb=2
A ) = p(−, −|μb=2

A ) = 1
4
(1 − 3G).

(A10)

Given one of the four outcomes, Alice chooses the most
likely value of b. Her cheating probability is then bounded
as

AOT ≥
{

1
3 + 1

2 |Im F| + 1
2 max(|Re F|, |G|), if G ≤ 0,

1
3 + 1

2 |Re F| + 1
2 max(|Im F|, |G|), if G > 0,

(A11)

as given in Eq. (3).

3. Alice’s cheating probability when Bob is not testing
her states

It is optimal for Alice to send Bob the pure state, within
the subspace spanned by the states that she is supposed to
send him, for which Bob’s probability of obtaining either
b = 0, b = 1, or b = 2 is maximized. Alice’s state can be
written

|	cheat〉 = α |ψ00〉 + β |ψ01〉 + γ |ψ11〉 + δ |ψ10〉 , (A12)

where α, β, γ , and δ are complex coefficients, chosen
so that the state is normalized. Bob’s probabilities of
obtaining b = 0, b = 1, and b = 2 are

p(b = 0) = 〈	cheat|�0∗ +�1∗ |	cheat〉 ,

p(b = 1) = 〈	cheat|�∗0 +�∗1 |	cheat〉 ,

p(b = 2) = 〈	cheat|�XOR=0 +�XOR=1 |	cheat〉 ,

(A13)

which, using the conditions in Eq. (A2), can be written

p(b = 0) = 1
3
(|α|2 + |β|2 + |γ |2 + |δ|2)

+ (αβ∗ + γ δ∗)F + (α∗β + γ ∗δ)F∗,

p(b = 1) = 1
3
(|α|2 + |β|2 + |γ |2 + |δ|2)

+ (α∗δ + βγ ∗)F + (αδ∗ + β∗γ )F∗,

p(b = 2) = 1
3
(|α|2 + |β|2 + |γ |2 + |δ|2)

+ (α∗γ + β∗δ + αγ ∗ + βδ∗)G. (A14)

Alice should choose α, β, γ , and δ so as to maximize
one of these probabilities. Normalization means that p(b =
0)+ p(b = 1)+ p(b = 2) = 1.

Bob’s probabilities in Eq. (A14) can also be written as

p(b = 0) =
(

1
3

− |F|
)

(|α|2 + |β|2 + |γ |2 + |δ|2)

+ |F| (|αeiθF + β|2 + |γ eiθF + δ|2) ,

p(b = 1) =
(

1
3

− |F|
)

(|α|2 + |β|2 + |γ |2 + |δ|2)

+ |F| (|αe−iθF + δ|2 + |β + γ e−iθF |2) ,

p(b = 2) =
(

1
3

− |G|
)

(|α|2 + |β|2 + |γ |2 + |δ|2)

+ |G| (|α ± γ |2 + |β ± δ|2) , (A15)

where in the expression for p(b = 2), we have “+” if
G > 0 and “−” if G < 0. From the above expressions,
we see that if |F| = |G| = 1/3, then Alice can cheat per-
fectly unless F = ±1/3 and G = −1/3, or F = ±i/3 and
G = 1/3. Unless one of these conditions hold, Alice can
make p(b = 2) and either p(b = 0) or p(b = 1) equal
to zero, while the remaining probability is equal to 1.
To make p(b = 1) = p(b = 2) = 0 when G = 1/3, for
example, Alice chooses α = −δeiθF = βeiθF = −γ . Then
p(b = 0) = 1, unless it holds that e2iθF = −1, which is the
case for F = ±i/3. As we show, for F = ±1/3, G = −1/3
or F = ±i/3, G = 1/3, Alice’s cheating probability is
equal to 1/2 whether Bob tests the state that she sends him
or not. We have already seen that these choices of phases
for F and G, when |F| = |G| = 1/3, also minimize Bob’s
cheating probability in Eq. (2). We now find that they
are the optimal—or even the only sensible—choices more
generally whenever |F| = |G| = 1/3, when Bob does not
test Alice’s state (since otherwise Alice can cheat with
probability 1).

We now derive Alice’s cheating probabilities as a func-
tion of F and G. Bob’s probabilities p(b = 0), p(b = 1),

020320-16



NONINTERACTIVE XOR QUANTUM OBLIVIOUS TRANSFER PRX QUANTUM 4, 020320 (2023)

and p(b = 2) can be written in bilinear form as

p(b = i) = (α∗,β∗, γ ∗, δ∗)Mi(α,β, γ , δ)T, (A16)

where i = 0, 1, 2, and the matrices M0, M1, and M2 are
given by

M0 =

⎛

⎜
⎝

1/3 F∗ 0 0
F 1/3 0 0
0 0 1/3 F∗
0 0 F 1/3

⎞

⎟
⎠ ,

M1 =

⎛

⎜
⎝

1/3 0 0 F
0 1/3 F∗ 0
0 F 1/3 0

F∗ 0 0 1/3

⎞

⎟
⎠ ,

M2 =

⎛

⎜
⎝

1/3 0 G 0
0 1/3 0 G
G 0 1/3 0
0 G 0 1/3

⎞

⎟
⎠ .

(A17)

The normalization condition is then written

(α∗,β∗, γ ∗, δ∗)(M0 + M1 + M2)(α,β, γ , δ)T = 1 (A18)

and can be viewed as an ellipsoid in a four-dimensional
complex space. The conditions

p(b = 0) = C0, p(b = 1) = C1, p(b = 2) = C2, (A19)

where C0, C1, and C2 are some real constants, similarly
define ellipsoids in a complex four-dimensional space.

To maximize p(b = i) subject to the normalization con-
straint in Eq. (A18) is then equivalent to finding the largest
Ci for which the ellipsoid for p(b = i) still shares points
with the normalization ellipsoid defined by Eq. (A18). The
ellipsoids will then be tangent to each other.

In order to find the corresponding maximal values of
C0, C1, and C2, we first express all ellipsoids in the
basis corresponding to the major axes of the ellipsoid for
M0 + M1 + M2. Then, we rescale these axes so that the
normalization ellipsoid becomes a sphere with radius 1 in
four-dimensional complex space (the lengths of all major
axes are the same). This will “squash” the ellipsoids corre-
sponding to M0, M1, and M2 but they remain ellipsoids.
The largest possible value for Ci will then be obtained
when the normalization ellipsoid—now a sphere—is just
contained inside the transformed ellipsoid corresponding
to Mi, with the ellipsoid tangent to the sphere. This will be
the case when the shortest major axis of the transformed
ellipsoid for Mi has length 1 (the same length as the radius
of the normalization sphere).

The major axes of an ellipsoid can be found from the
eigenvectors of the corresponding matrix and the lengths

of the major axes can be found from the respective eigen-
values. In the eigenbasis of the corresponding matrix, the
equation for an ellipsoid can be written

∑

i

λi|xi|2 = C, (A20)

where the λi are the eigenvalues of the corresponding
matrix, the xi are the coordinates expressed in the eigen-
basis, and C is a constant. The lengths of the major axes of
this ellipsoid are given by

√
C/λi. The shortest major axis

corresponds to the largest λi = λmax. If the shortest major
axis has length 1, then the largest possible value of C is
equal to λmax.

We therefore need to find the eigenvalues of the trans-
formed M0, M1, and M2 for the corresponding squashed
ellipsoids. The largest possible p(b = i)Alice can obtain is
then given by the largest of these eigenvalues. The matrix
M0 + M1 + M2 is circulant and hence its eigenvectors are
the “finite Fourier transform (FFT) vectors”

|λ0〉 = 1
2
(1, 1, 1, 1)T, |λ1〉 = 1

2
(1, i, −1, −i)T,

|λ2〉 = 1
2
(1, −1, 1, −1)T, |λ3〉 = 1

2
(1, −i, −1, i)T.

(A21)

The corresponding eigenvalues are

λ0 = 1 + G + 2Re F , λ1 = 1 − G + 2Im F ,

λ2 = 1 + G − 2Re F , λ3 = 1 − G − 2Im F .
(A22)

We now define a matrix V, with columns given by the FFT
vectors in Eq. (A21), and a diagonal matrix

Dsq = diag(
√
λ0,

√
λ1,

√
λ2,

√
λ3). (A23)

It then holds that

D−1
sq V†(M0 + M1 + M2)VD−1

sq = diag(1, 1, 1, 1), (A24)

that is, a 4 × 4 identity matrix. This transformation cor-
responds to writing the normalization ellipsoid in scaled
coordinates where it corresponds to a sphere. In these same
coordinates, the equation for the ellipsoid corresponding to
a matrix M is

(α̃∗, β̃∗, γ̃ ∗, δ̃∗)D−1
sq V†MVD−1

sq (α̃, β̃, γ̃ , δ̃)T = C, (A25)

where C is a constant and

(α̃, β̃, γ̃ , δ̃)T = DsqV†(α,β, γ , δ)T (A26)

are the coordinates in the transformed basis.
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The matrix M2 is diagonal in the same basis as M0 +
M1 + M2 and the calculation is simpler in this case. The
eigenvalues of the transformed matrix D−1

sq V†M2VD−1
sq are

λ̃20 = 1/3 + G
1 + G + 2Re F

, λ̃21 = 1/3 − G
1 − G + 2Im F

,

λ̃22 = 1/3 + G
1 + G − 2Re F

, λ̃23 = 1/3 − G
1 − G − 2Im F

,

(A27)

which are simply the eigenvalues of M2 divided by the cor-
responding eigenvalues of M0 + M1 + M2. It follows that
the largest p(b = 2) that Alice can achieve is

p(b = 2)max =
⎧
⎨

⎩

1/3+G
1+G−2|Re F| , if G ≥ |Im F|−|Re F|

2−3|Re F|−3|Im F| ,
1/3−G

1−G−2|Im F| , if G <
|Im F|−|Re F|

2−3|Re F|−3|Im F| .
(A28)

The matrices V†M0V and V†M1V are given by

V†M0V =

⎛

⎜
⎜
⎝

1
3 + Re F 0 iIm F 0

0 1
3 + Im F 0 −iRe F

−iIm F 0 1
3 − Re F 0

0 iRe F 0 1
3 − Im F

⎞

⎟
⎟
⎠,

V†M1V =

⎛

⎜
⎜
⎝

1
3 + Re F 0 −iIm F 0

0 1
3 + Im F 0 iRe F

iIm F 0 1
3 − Re F 0

0 −iRe F 0 1
3 − Im F

⎞

⎟
⎟
⎠,

(A29)

from which the matrices D−1
sq V†M0VD−1

sq and
D−1

sq V†M1VD−1
sq can be obtained by dividing the element

in position (j , k) by
√
λj λk. Both matrices are block diag-

onal, which can be seen more readily if permuting, e.g.,
the middle two rows and columns. The eigenvalues of
D−1

sq V†M0VD−1
sq are given by

λ̃00/02 = 1
(1 + G)2 − 4(Re F)2

⎡

⎣1
3
(1 + G)− 2(Re F)2 ±

√
(

1
3

+ G
)2

(Re F)2 + [(1 + G)2 − 4(Re F)2](Im F)2

⎤

⎦ ,

λ̃01/03 = 1
(1 − G)2 − 4(Im F)2

⎡

⎣1
3
(1 − G)− 2(Im F)2 ±

√
(

1
3

− G
)2

(Im F)2 + [(1 − G)2 − 4(Im F)2](Re F)2

⎤

⎦ ,

(A30)

where the plus sign is chosen for λ̃00 and λ̃01 and the minus
sign for λ̃02 and λ̃03. Clearly, λ̃00 and λ̃01 are the larger
pair of eigenvalues and one of these will give the largest
probability that Alice can achieve for p(b = 0). The eigen-
values for D−1

sq V†M1VD−1
sq are identical and hence Alice’s

cheating probability for b = 1 is the same as for b = 0:

p(b = 0)max = p(b = 1)max = max(λ̃00, λ̃01). (A31)

Alice’s overall cheating probability is the larger of p(b =
0)max = p(b = 1)max and p(b = 2)max.

APPENDIX B: EQUIVALENCE BETWEEN
SEMIRANDOM XOT AND STANDARD XOT

Implementation of a semirandom XOT protocol with
cheating probabilities AOT and BOT allows us to realize
a standard XOT protocol with the same cheating prob-
abilities, when adding classical postprocessing. We now
show that this holds true, using similar arguments as in
Refs. [15,21], where it has been shown that the vari-
ants of random, semirandom, and standard 1-2 OT are
equivalent. A random version of 1-2 OT has also already
been previously considered in Ref. [31].

Proposition 1. A semirandom XOT protocol with cheat-
ing probabilities AOT and BOT is equivalent to hav-
ing a standard XOT protocol with the same cheating
probabilities.

Proof. We examine both directions, i.e., constructing a
semirandom XOT from a standard XOT protocol and con-
structing a standard XOT protocol from a semirandom
XOT protocol; i.e., the situation in which the parties pos-
sess the means to implement standard XOT but both of
them instead wish to implement semirandom XOT or vice
versa.

Case 1. Let P be a standard XOT protocol with cheat-
ing probabilities AOT(P) and BOT(P). We can construct
a semirandom XOT protocol Q with the same cheating
probabilities in the following way:

(1) Alice picks x0, x1 ∈ {0, 1} uniformly at random. Bob
generates b ∈ {0, 1, 2} uniformly at random (in such
a way that he no longer actively chooses b).

(2) Alice and Bob perform the XOT protocol P where
Alice inputs x0, x1, and x2 = x0 ⊕ x1 and Bob inputs
b. Let y be Bob’s output.
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(3) Alice and Bob abort in Q if and only if they abort
in P. Otherwise, the outputs of protocol Q are (b, y)
for Bob.

Evidently, Q implements semirandom XOT if both parties
follow the protocol. Furthermore, because of the way in
which Q is constructed, Alice can cheat in Q if and only
if she can cheat in P, and the same for Bob cheating. The
cheating probabilities for Alice and Bob are therefore equal
in P and Q, AOT(Q) = AOT(P), and BOT(Q) = BOT(P).

Case 2. Let P be a semirandom XOT protocol with
cheating probabilities AOT(P) and BOT(P). We can con-
struct a standard XOT protocol Q with the same cheating
probabilities in the following way:

(1) Alice has inputs X0 and X1, with X2 = X0 ⊕ X1, and
Bob has input B ∈ {0, 1, 2}.

(2) Alice and Bob perform the semirandom XOT proto-
col P where Alice inputs x0 and x1, with x2 = x0 ⊕
x1, whereby she chooses x0, x1 ∈ {0, 1} uniformly at
random. Let (b, y) be Bob’s outputs.

(3) Bob sends r = (b + B + B) mod 3 to Alice. Let
x′

c = x(c+r) mod 3 for c ∈ {0, 1, 2}.
(4) Alice sends (s0, s1) to Bob, whereby sc = x′

c ⊕ Xc
for c ∈ {0, 1} and s2 = s0 ⊕ s1. Let y ′ = y ⊕ sB.

(5) Alice and Bob abort in Q if and only if they abort in
P. Otherwise, the output of protocol Q is y ′ for Bob.

If Alice and Bob are honest, then y = xb. Note that x′
B =

x(B+r) mod 3 = x(B+b+B+B) mod 3 = xb. Hence,

y ′ = y ⊕ sB = xb ⊕ sB = x′
B ⊕ x′

B ⊕ XB = XB,

i.e., y ′ is indeed equal to XB. This also holds for B = 2,
since

s2 = s0 ⊕ s1 = x′
0 ⊕ X0 ⊕ x′

1 ⊕ X1

= x0 ⊕ x1 ⊕ X0 ⊕ X1 = x2 ⊕ X2 = x′
2 ⊕ X2.

With respect to the classical postprocessing described in
steps 3 and 4 and security against Alice and Bob, we can
conclude the following:

(a) If Alice is honest, she knows r but has no infor-
mation about b. From r = (b + B + B) mod 3, she
can deduce that 2B = (r − b) mod 3 but she cannot
obtain any information about B from this. Hence,
the classical postprocessing does not give an honest
Alice any more information about which bit Bob has
obtained.

(b) If Alice is dishonest, she can correctly guess b with
probability AOT(P). She knows r. Since 2B = (r −
b) mod 3, guessing 2B—or, equivalently, guess-
ing B—is equivalent to guessing b. Therefore,
AOT(Q) = AOT(P).

(c) If Bob is honest, he knows (s0, s1), s2 = s0 ⊕ s1,
and r but has no information about x(b+1) mod 3 and
x(b+2) mod 3. He cannot learn anything about the other
two of Alice’s bits, X(B+1) mod 3 and X(B+2) mod 3,
since

X(B+1) mod 3 = x′
(B+1) mod 3 ⊕ s(B+1) mod 3

= x(B+1+r) mod 3 ⊕ s(B+1) mod 3

= x(b+1) mod 3 ⊕ s(B+1) mod 3,

X(B+2) mod 3 = x′
(B+2) mod 3 ⊕ s(B+2) mod 3

= x(B+2+r) mod 3 ⊕ s(B+2) mod 3

= x(b+2) mod 3 ⊕ s(B+2) mod 3.

Hence, the classical postprocessing does not give an
honest Bob any more information about the other
two bits that Alice has sent.

(d) If Bob is dishonest, he can guess x(b+1) mod 3 and
x(b+2) mod 3 with probability BOT(P). He knows
(s0, s1), s2 = s0 ⊕ s1, and r. We have sc = x′

c ⊕
Xc = x(c+r) mod 3 ⊕ Xc for c ∈ {0, 1, 2}. Thus, Xc =
x(c+r) mod 3 ⊕ sc and, for Bob, guessing (X0, X1, X2)

is equivalent to guessing (x0, x1, x2). Therefore,
BOT(Q) = BOT(P).

�
In the classical postprocessing given above, Alice needs

to define her actual bit values as the bits X0 and X1, with
X2 = X0 ⊕ X1. The bits x0, x1, and x2 = x0 ⊕ x1 used in
the semirandom XOT protocol, on the other hand, are
“dummy” values that she chooses uniformly at random.
The value of r will tell Alice how to permute the bits x′

c
before computing and sending (s0, s1), so that Bob can
learn the bit XB that he wants to learn. For example, if
r = 0, then b = B and the order is fine, so Alice needs to
do nothing before computing and sending (s0, s1). If r = 1,
then b �= B and Alice needs to shift the bits one place to the
left, i.e., (x′

1, x′
2, x′

0), before computing and sending (s0, s1),
so that s0 = x′

1 ⊕ X0 and s1 = x′
2 ⊕ X1. Lastly, if r = 2,

then b �= B as well and Alice needs to shift the bits one
place to the right, i.e., (x′

2, x′
0, x′

1), before computing and
sending (s0, s1), so that s0 = x′

2 ⊕ X0 and s1 = x′
0 ⊕ X1. In

all these cases, it holds that s2 = s0 ⊕ s1 and the respective
changes due to the order of the x′

c, for c ∈ {0, 1, 2}, follow.
The value of sB will in turn tell Bob what to do with the
value of y, so that he can learn his chosen bit. If sB = 0,
then he keeps the value as it is, and if sB = 1, then he flips
the bit value.

As mentioned in Sec. IV, classical postprocessing can
also be added to the reversed XOT protocol. In this way,
it is possible for Alice to choose which bit values she
wants to obtain. The postprocessing is straightforward and
involves only classical communication from Alice to Bob.
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For brevity, we outline it without full formal proofs. Sup-
pose that Alice has obtained the two bits (x0, x1) from the
reversed XOT protocol but her desired bits are (X0, X1).
If either x0 or x1 is not the bit value that she wants, she
needs to ask Bob to flip the corresponding bit value, if he
holds it. This obviously gives Bob no more information
about Alice’s bit values X0 and X1 than what he already
has about x0 and x1 and also gives Alice no more infor-
mation about what Bob has learnt. Defining tc = xc ⊕ Xc
for c ∈ {0, 1, 2}, Alice sends (t0, t1) to Bob (it holds that
t2 = x2 ⊕ X2 = t0 ⊕ t1). From the reversed XOT protocol,
Bob holds the values of b and bit xb, and calculates Xb =
xb ⊕ tb as his final bit value. Since Bob does not know
x(b+1) mod 3 and x(b+2) mod 3, t(b+1) mod 3 and t(b+2) mod 3 do not
help him at all to learn about X(b+1) mod 3 or X(b+2) mod 3. He
can correctly guess X(b+1) mod 3 or X(b+2) mod 3 with the same
probability as he can guess x(b+1) mod 3 or x(b+2) mod 3. Thus,
this classical postprocessing does not increase Bob’s cheat-
ing probability. It also does not increase Alice’s cheating
probability, since she receives no communication from
Bob during the postprocessing.

APPENDIX C: REWORKING AN INTERACTIVE
XOT PROTOCOL INTO A NONINTERACTIVE

PROTOCOL

Starting with the interactive XOR oblivious transfer pro-
tocol defined as protocol (3) by Kundu et al. [26], which
uses entangled states, we show how to rework it into a non-
interactive XOT protocol that requires no entanglement. In
protocol (3), the sender Alice has two input bits, x0 and
x1, and the receiver Bob prepares one of three possible
entangled two-qutrit states |ψ+

b 〉,

|ψ+
0 〉 = 1√

2
(|00〉 + |22〉),

|ψ+
1 〉 = 1√

2
(|11〉 + |22〉),

|ψ+
2 〉 = 1√

2
(|00〉 + |11〉),

(C1)

depending on his randomly chosen input b ∈ {0, 1, 2},
which specifies whether he will learn the first bit x0, the
second bit x1, or their XOR x2 = x0 ⊕ x1. Bob then sends
one of the qutrits to the sender Alice, who performs a
unitary operation

U(x0,x1) = (−1)x0 |0〉 〈0| + (−1)x1 |1〉 〈1| + |2〉 〈2| (C2)

on it, depending on her randomly chosen input bits (x0, x1),
before sending it back to Bob. Finally, Bob performs the
two-outcome measurement {|ψ+

b 〉 〈ψ+
b | , 1 − |ψ+

b 〉 〈ψ+
b |}

and obtains either x0, x1, or x2, depending on his previous
choice of b.

We can rework this interactive protocol into a noninter-
active protocol, with only one quantum state transmission
between Alice and Bob. That this is possible without
affecting the cheating probabilities for Alice and Bob is
far from evident but it turns out that the cheating proba-
bilities do remain unchanged in this particular case. First,
instead of preparing one of the three states that he prepares
in protocol (3), Bob could instead prepare the entangled
state

1√
6

[
(|00〉 + |22〉)⊗ |0〉 + (|11〉 + |22〉)⊗ |1〉

+ (|00〉 + |11〉)⊗ |2〉 ]
. (C3)

If Bob measures the last qutrit in the {|0〉 , |1〉 , |2〉} basis,
he effectively prepares one of the three states in protocol
(3), with probability 1/3 each. The only difference is that
his choice of b is now determined by his measurement out-
come, rather than being an active choice for Bob. If starting
with the state in Eq. (C3), he can also just as well delay
his measurement of the final qutrit to the end of the pro-
tocol. As we show, classical postprocessing can be used
to allow Bob to nevertheless make an active (but random
from Alice’s point of view) choice of b.

Whether he has measured the final qutrit or not, Bob
could then send one of the two first qutrits to Alice. If Alice
applies her unitary operation to one of the first two qutrits,
then, depending on the values of x0 and x1, the overall state
becomes

|φx0x1〉 = 1√
6

[(
(−1)x0 |00〉 + |22〉 ) ⊗ |0〉

+ (
(−1)x1 |11〉 + |22〉 ) ⊗ |1〉

+ (
(−1)x0 |00〉 + (−1)x1 |11〉 ) ⊗ |2〉 ]

. (C4)

Alice can now send the qutrit back to Bob after her unitary
transformation and Bob makes a measurement eliminating
two out of the four possible states in order to learn either
x0, x1, or x2.

Since the state in Eq. (C3) is known to both Bob and
Alice, we might ask what changes if Alice prepares the
state instead of Bob. She could then apply her unitary
transforms or she could straightaway create one of the
states in Eq. (C4) (if she is honest). Apart from the fact
that Bob randomly obtains either x0, x1, or x2 = x0 ⊕ x1,
Alice’s cheating probability might then increase, since she
may have additional cheating strategies available to her.
Similarly, Bob’s cheating probability might decrease, since
he will have fewer cheating strategies at his disposal. The
advantage is that there is no need for entanglement any-
more, as was the case in the interactive version of this pro-
tocol. Instead of an entangled state of three qutrits, Alice
could use a single quantum system; since there are four
possible pure states in Eq. (C4), at most four dimensions
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would be needed. In this case, the state space is actu-
ally only three dimensional. The states in Eq. (C4) have
the same pairwise overlaps as the qutrit states in Eq. (9).
The reworked protocol (3) therefore becomes equivalent
to our XOT protocol in Sec. III. In Sec. III, it is shown
that this protocol has the same cheating probabilities as the
interactive protocol (3) in Ref. [26]. The price for the non-
interactivity is that in the XOT protocol in Sec. III, Bob
cannot actively choose if he wants to receive the first bit,
the second bit, or the XOR. As we show in Appendix B,
however, it is possible to let Bob actively choose b by
implementing classical postprocessing.

APPENDIX D: CHEATING PROBABILITIES IN
THE REVERSED PROTOCOL

1. Bob cheating in the reversed protocol

Dishonest Bob’s aim still is to learn not just one bit but
any two of x0, x1, or x2 = x0 ⊕ x1. In the reversed protocol,
he wants to know exactly which of the four two-bit combi-
nations Alice has obtained. As in the unreversed protocol,
we can consider two scenarios: one where the receiver of
the state (now Alice) tests the state and another where the
receiver of the state does not test.

a. Alice not testing

When Alice does not test, Bob’s optimal cheating strat-
egy is to send Alice the eigenstate corresponding to the
largest eigenvalue of one of Alice’s measurement opera-
tors. Each of the four measurement operators in Eq. (14)
is proportional to a pure-state projector and their largest
eigenvalues are all equal to 3/4. Therefore, Bob’s highest
cheating probability is Br

OT = 3/4, which is the same as
his cheating probability in the unreversed noninteractive
protocol.

b. Alice testing

When Alice tests, Bob needs to send a state that will
pass her test. The testing is analogous to the one applied by
Bob in the unreversed protocol. Alice tests a fraction of the
states that she receives, to see if her measurement results
match Bob’s declarations for this fraction of states. She
aborts the protocol if there are mismatches and otherwise
continues with the rest of the protocol with the remaining
states. For the same reasons as earlier, the state that a dis-
honest Bob has to send, if he wants to pass the test every
time, needs to be a superposition of the states that he is
supposed to send, entangled with a system that he keeps.
This is a state of the form

|�r
cheat〉 = a |0〉B ⊗ |φx0=0〉 + b |1〉B ⊗ |φx0=1〉

+ c |2〉B ⊗ |φx1=0〉 + d |3〉B ⊗ |φx1=1〉
+ e |4〉B ⊗ |φx2=0〉 + f |5〉B ⊗ |φx2=1〉 , (D1)

where {|0〉B , |1〉B , |2〉B , |3〉B , |4〉B , |5〉B} is an orthonormal
basis for the system that Bob keeps and |a|2 + |b|2 +
|c|2 + |d|2 + |e|2 + |f |2 = 1.

After Alice has made her measurement, Bob’s system
on his side is prepared in one of four states, depending on
whether Alice has obtained 00, 01, 11, or 10. The states
that he needs to distinguish between are the pure states

|θ00〉 = 1
√

|a|2 + |c|2 + |e|2
(
a |0〉B + c |2〉B + e |4〉B

)
,

|θ01〉 = 1
√

|a|2 + |d|2 + |f |2
(
a |0〉B + d |3〉B − f |5〉B

)
,

|θ11〉 = 1
√

|b|2 + |d|2 + |e|2
(
b |1〉B + d |3〉B − e |4〉B

)
,

|θ10〉 = 1
√

|b|2 + |c|2 + |f |2
(
b |1〉B + c |2〉B + f |5〉B

)
,

(D2)

corresponding to Alice obtaining 00, 01, 11, or 10.
The states occur with probabilities (|a|2 + |c|2 + |e|2)/2,
(|a|2 + |d|2 + |f |2)/2, (|b|2 + |d|2 + |e|2)/2, and (|b|2 +
|c|2 + |f |2)/2 for |θ00〉, |θ01〉, |θ11〉, and |θ10〉, respectively.

In general, it holds that the less equiprobable the states
one needs to distinguish between are, the better, since,
when one state occurs more often than the others, one
can be more certain to guess correctly. Here, the issue for
Bob is that if he makes the probabilities of the states in
Eq. (D2) more unequal, some pairwise overlaps become
larger, i.e., the states are closer together, which makes dis-
tinguishing between them harder. Thus, we expect (and
are able to prove) that it is best for Bob to choose the
constants such that the states are all equiprobable with a
probability of 1/4, e.g., a = b = c = d = e = f = 1/

√
6.

Substituting these values into Eq. (D2), the states’ pair-
wise overlaps match the pairwise overlaps of the states in
Eq. (9). Thus, |θ00〉, |θ01〉, |θ11〉, and |θ10〉 are equivalent to
the states in Eq. (9) and Bob’s measurement is equivalent
to distinguishing between the pure states

|φ00〉 = 1√
3
(|0〉 + |1〉 + |2〉),

|φ01〉 = 1√
3
(|0〉 − |1〉 + |2〉),

|φ11〉 = 1√
3
(|0〉 − |1〉 − |2〉),

|φ10〉 = 1√
3
(|0〉 + |1〉 − |2〉),

(D3)

corresponding to Alice obtaining 00, 01, 11, or 10 and
where each state occurs with a probability of 1/4.
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Bob’s best measurement is once again a minimum-
error measurement. The square-root measurement is opti-
mal, as the states are equiprobable and symmetric.
The measurement operators are �′

00 = 3/4 |φ00〉〈φ00|,
�′

01 = 3/4 |φ01〉〈φ01|, �′
11 = 3/4 |φ11〉〈φ11|, and �′

10 =
3/4 |φ10〉〈φ10|. With this measurement, Bob’s cheating
probability Br

OT, when Alice is testing the states that he
has sent to her, is

Br
OT = 1

4
[

Tr(ρ00�
′
00)+ Tr(ρ01�

′
01)

+ Tr(ρ11�
′
11)+ Tr(ρ10�

′
10)

] = 3
4

. (D4)

We can conclude that our choice for a, b, c, d, e, and f
is an optimal choice, since we know that Bob can never
cheat with a higher probability when Alice tests a fraction
of the states that Bob sends her than he can do when Alice
does not test any of his states. Since Br

OT = 3/4 for the
case with no tests as well, there is no better way for Bob to
choose the constants a, b, c, d, e, and f (there may be other
choices that do just as well). The cheating probability for
Bob in the reversed protocol is therefore the same as in the
unreversed protocol.

2. Alice cheating in reversed protocol

As in the unreversed protocol, a dishonest Alice wants
to learn whether Bob has obtained the first or the second bit
or their XOR. In this case, however, she is the receiver of
the quantum state. Alice will have to distinguish between
the three states

ρx0 = 1
2

|φx0=0〉 〈φx0=0| + 1
2

|φx0=1〉 〈φx0=1|

= 1
2

|0〉 〈0| + 1
2

|2〉 〈2| ,

ρx1 = 1
2

|φx1=0〉 〈φx1=0| + 1
2

|φx1=1〉 〈φx1=1|

= 1
2

|0〉 〈0| + 1
2

|1〉 〈1| ,

ρx2 = 1
2

|φx2=0〉 〈φx2=0| + 1
2

|φx2=1〉 〈φx2=1|

= 1
2

|1〉 〈1| + 1
2

|2〉 〈2| . (D5)

These mixed states all have prior probability 1/3, since
Bob sends each of his six states with probability 1/6.
One choice of optimal measurement for Alice has the
measurement operators

�x0 = 1
2

|0〉 〈0| + 1
2

|2〉 〈2| ,

�x1 = 1
2

|0〉 〈0| + 1
2

|1〉 〈1| ,

�x2 = 1
2

|1〉 〈1| + 1
2

|2〉 〈2| .

(D6)

This gives Alice a cheating probability Ar
OT of

Ar
OT = 1

3
[

Tr(ρx0�x0)+ Tr(ρx1�x1)+ Tr(ρx2�x2)
] = 1

2
,

(D7)

which is the same cheating probability as the one Alice
can achieve in the unreversed protocol. Measuring in
the |0〉 , |1〉 , |2〉 basis, with b = i corresponding to |i〉, is
another optimal measurement for Alice.

APPENDIX E: EXPERIMENTAL DATA

Here, we present the measurement results of the
experiments. The tables contain measured counts C,

TABLE V. The measured counts C, relative frequencies f , and corresponding theoretical probabilities pt for the situation when both
the parties are honest. x2 = x0 ⊕ x1.

Bob

�A �B �C �D �E �F
Alice x0 = 0 x0 = 1 x1 = 0 x1 = 1 x2 = 0 x2 = 1

C 166 443 5 562 167 526 719 167 691 1 389
|φ00〉 f 0.3268(7) 0.0109(1) 0.3289(7) 0.00141(5) 0.3292(7) 0.00273(7)

pt 1/3 0 1/3 0 1/3 0
C 167 799 4 375 272 167 383 1 001 166 933

|φ01〉 f 0.3305(7) 0.0086(1) 0.00054(3) 0.3296(7) 0.00197(6) 0.3288(7)
pt 1/3 0 0 1/3 0 1/3
C 4 540 167 803 167 806 446 1 189 168 087

|φ10〉 f 0.0089(1) 0.3291(7) 0.3291(7) 0.00087(4) 0.00233(7) 0.3297(7)
pt 0 1/3 1/3 0 0 1/3
C 3 791 166 615 317 166 221 167 797 1 789

|φ11〉 f 0.0075(1) 0.3289(7) 0.00063(4) 0.3282(7) 0.3313(7) 0.00353(8)
pt 0 1/3 0 1/3 1/3 0
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TABLE VI. The measured counts C, relative frequencies f , and corresponding theoretical probabilities pt for the situation when
Alice is cheating. x2 = x0 ⊕ x1.

Bob

�A �B �C �D �E �F
Alice x0 = 0 x0 = 1 x1 = 0 x1 = 1 x2 = 0 x2 = 1

C 126 264 135 006 124 653 121 434 29 30
|0〉 f 0.2488(6) 0.2661(6) 0.2457(6) 0.2393(6) 0.00006(1) 0.00006(1)
x0, x1 pt 1/4 1/4 1/4 1/4 0 0

C 10 189 127 189 129 235 131 522 121 722
|1〉 f 0.000020(6) 0.00037(3) 0.2495(6) 0.2535(6) 0.2580(6) 0.2387(6)
x1, x2 pt 0 0 1/4 1/4 1/4 1/4

C 130 304 124 349 93 26 119 256 132 601
|2〉 f 0.2572(6) 0.2454(6) 0.00018(2) 0.00005(1) 0.2354(6) 0.2617(6)
x0, x2 pt 1/4 1/4 0 0 1/4 1/4

relative frequencies f , and corresponding theoretical prob-
abilities pt. The digits in parentheses represent one stan-
dard deviation at the final decimal place.

In Table V, we show the experimental data for the unre-
versed XOT protocol when both parties are honest. Alice
sends states |φ00〉, |φ01〉, |φ11〉, and |φ10〉 and Bob makes an
unambiguous quantum state elimination measurement.

In Table VI, we show the experimental data for the case
of a dishonest Alice in the unreversed XOT protocol. Alice
sends states |0〉, |1〉, |2〉, while Bob honestly makes an
unambiguous quantum state elimination measurement.

In Table VII, we show the experimental data for the case
of a dishonest Bob in the unreversed XOT protocol. While
Alice honestly sends the correct states, Bob applies the
square-root measurement. In fact, it also shows the experi-
mental data for the reversed XOT protocol with a dishonest

TABLE VII. The measured counts C, relative frequencies f ,
and corresponding theoretical probabilities pt for the situation
when Bob is cheating. These results also correspond to the
reversed protocol with cheating Bob—the roles of sender and
receiver are then swapped (see the names in parentheses).

Bob (Alice)

Alice
(Bob) �00 �01 �10 �11

C 377 482 41 178 38 173 43 299
|φ00〉 f 0.7547(6) 0.0823(4) 0.0763(4) 0.0866(4)

pt 3/4 1/12 1/12 1/12
C 40 908 359 828 52 461 41 808

|φ01〉 f 0.0826(4) 0.7268(6) 0.1060(4) 0.0844(4)
pt 1/12 3/4 1/12 1/12
C 41 904 39 478 378 828 41 595

|φ10〉 f 0.0835(4) 0.0787(4) 0.7548(6) 0.0829(4)
pt 1/12 1/12 3/4 1/12
C 50 901 42 306 38 995 368 643

|φ11〉 f 0.1016(4) 0.0845(4) 0.0779(4) 0.7360(6)
pt 1/12 1/12 1/12 3/4

Bob, only interchanging the sender and receiver roles (see
names in parentheses).

In Table VIII, we show the experimental data for the
reversed XOT protocol when both parties are honest. Bob
sends states |φx0=0〉, |φx0=1〉, |φx1=0〉, |φx1=1〉, |φx2=0〉, and
|φx2=1〉 and Alice performs a POVM measurement.

In Table IX, we show the experimental data for the case
of a dishonest Alice in the reversed XOT protocol. While
Bob honestly sends the correct states, Alice performs a
projective measurement and classical postprocessing.

TABLE VIII. The reversed protocol. The measured counts C,
relative frequencies f , and corresponding theoretical probabili-
ties pt for the situation when both the parties are honest. x2 =
x0 ⊕ x1.

Alice

Bob �00 �01 �10 �11

C 249 402 239 442 1 636 1 806
|φx0=0〉 f 0.5066(7) 0.4864(7) 0.00332(8) 0.00367(9)

pt 1/2 1/2 0 0
C 3 028 762 249 215 246 373

|φx0=1〉 f 0.0061(1) 0.00153(6) 0.4991(7) 0.4934(7)
pt 0 0 1/2 1/2
C 249 097 802 246 042 1 069

|φx1=0〉 f 0.5012(7) 0.00161(6) 0.4950(7) 0.00215(7)
pt 1/2 0 1/2 0
C 1 019 241 863 1 840 246 310

|φx1=1〉 f 0.00208(6) 0.4926(7) 0.00375(9) 0.5016(7)
pt 0 1/2 0 1/2
C 255 968 38 301 249 572

|φx2=0〉 f 0.5060(7) 0.00008(1) 0.00060(3) 0.4933(7)
pt 1/2 0 0 1/2
C 29 237 407 264 287 213

|φx2=1〉 f 0.00006(1) 0.4730(7) 0.5265(7) 0.00042(3)
pt 0 1/2 1/2 0
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TABLE IX. The reversed protocol. The measured counts C,
relative frequencies f , and corresponding theoretical probabili-
ties pt for the situation when Alice is cheating. x2 = x0 ⊕ x1.

Alice

|0〉〈0| |1〉〈1| |2〉〈2|
Bob x0, x1 x1, x2 x0, x2

C 266 828 23 260 337
|φx0=0〉 f 0.5061(7) 0.000044(9) 0.4938(7)

pt 1/2 0 1/2
C 266 040 13 261 456

|φx0=1〉 f 0.5043(7) 0.000025(7) 0.4956(7)
pt 1/2 0 1/2
C 264 336 255 114 172

|φx1=0〉 f 0.5087(7) 0.4910(7) 0.00033(3)
pt 1/2 1/2 0
C 267 393 255 628 151

|φx1=1〉 f 0.5111(7) 0.4886(7) 0.00029(2)
pt 1/2 1/2 0
C 1 240 257 057 262 665

|φx2=0〉 f 0.00238(7) 0.4934(7) 0.5042(7)
pt 0 1/2 1/2
C 1 192 254 941 262 185

|φx2=1〉 f 0.00230(7) 0.4919(7) 0.5058(7)
pt 0 1/2 1/2
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Fiurášek, and M. Mičuda, Experimental realization of SWAP
operation on hyper-encoded qubits, Opt. Express 26, 8443
(2018).

[29] E. Andersson, S. M. Barnett, C. R. Gilson, and K.
Hunter, Minimum-error discrimination between three
mirror-symmetric states, Phys. Rev. A 65, 052308 (2002).

[30] C. L. Chou, Minimum-error discrimination among mirror-
symmetric mixed quantum states, Phys. Rev. A 70, 062316
(2004).

[31] C. Crépeau, in Advances in Cryptology—CRYPTO ’87
(Springer-Verlag, Berlin, 1988), p. 350.

020320-24

https://doi.org/10.1145/3812.3818
https://doi.org/10.1145/1008908.1008920
https://doi.org/10.1007/s00145-002-0146-4
https://doi.org/10.1103/PhysRevLett.78.3414
https://doi.org/10.1103/PhysRevA.56.1154
https://doi.org/10.1137/060651343
https://doi.org/10.1103/PhysRevA.93.062346
https://doi.org/10.1103/PhysRevA.98.032327
https://doi.org/10.1103/PRXQuantum.2.010335
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevLett.68.557
https://doi.org/10.1103/PhysRevResearch.2.013256
https://doi.org/10.26421/QIC13.1-2-910.5555/2481591.2481600
https://doi.org/10.1080/09500349414552221
https://doi.org/10.1007/BF02435921
https://doi.org/10.1103/PhysRevA.91.042334
https://arxiv.org/abs/2203.08268
https://doi.org/10.22331/q-2022-05-30-725
https://doi.org/10.1364/OE.26.008443
https://doi.org/10.1103/PhysRevA.65.052308
https://doi.org/10.1103/PhysRevA.70.062316

	I.. INTRODUCTION
	II.. QUANTUM XOT WITH SYMMETRIC STATES
	III.. A NONINTERACTIVE QUTRIT XOT PROTOCOL
	A.. Comparison to classical XOT protocols

	IV.. “REVERSING” THE XOT PROTOCOL
	A.. Original and reversed protocols in terms of a shared entangled state

	V.. EXPERIMENT
	A.. Both parties honest
	B.. Alice cheating
	C.. Bob cheating
	D.. Reversed protocol—both parties honest
	E.. Reversed protocol—Alice cheating
	F.. Reversed protocol—Bob cheating
	G.. Technical description of the setup

	VI.. CONCLUSIONS
	. ACKNOWLEDGMENTS
	. APPENDIX A: QUANTUM XOT WITH SYMMETRIC STATES: DETAILS OF DERIVATIONS
	1.. Conditions involving pairwise overlaps
	2.. Alice's cheating probability when Bob is testing her states
	3.. Alice's cheating probability when Bob is not testing her states

	. APPENDIX B: EQUIVALENCE BETWEEN SEMIRANDOM XOT AND STANDARD XOT
	. APPENDIX C: REWORKING AN INTERACTIVE XOT PROTOCOL INTO A NONINTERACTIVE PROTOCOL
	. APPENDIX D: CHEATING PROBABILITIES IN THE REVERSED PROTOCOL
	1.. Bob cheating in the reversed protocol
	a.. Alice not testing
	b.. Alice testing

	2.. Alice cheating in reversed protocol

	. APPENDIX E: EXPERIMENTAL DATA
	. REFERENCES


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>
    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


