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The pair-coherent state (PCS) is a theoretical extension of the Glauber coherent state to two harmonic
oscillators. It is an interesting class of non-Gaussian continuous-variable entangled state and it is also at
the heart of a promising quantum error-correction code: the pair-cat code. Here, we report an experimen-
tal demonstration of the pair-coherent state of microwave photons in two superconducting cavities. We
implement a cross-cavity pair-photon driven-dissipation process, which conserves the photon-number dif-
ference between cavities and stabilizes the state to a specific complex amplitude. We further introduce a
technique of quantum subspace tomography, which enables direct measurements of individual coherence
elements of a high-dimensional quantum state without global tomographic reconstruction. We character-
ize our two-mode quantum state with up to four photons in each cavity using this subspace tomography
together with direct measurements of the photon-number difference and the joint Wigner function. We
identify the spurious cross-Kerr interaction between the cavities and our dissipative reservoir mode as a
prominent dephasing channel that limits the steady-state coherence in our current scheme. Our experi-
ment provides a set of reservoir-engineering and state-characterization tools to study quantum optics and
implement multimode bosonic codes in superconducting circuits.

DOI: 10.1103/PRXQuantum.4.020319

I. INTRODUCTION

The use of continuous-variable states of bosonic modes
as a platform for quantum information processing, orig-
inating in quantum optics [1,2], is rapidly advanc-
ing in superconducting circuit quantum electrodynamics
(cQED) [3,4]. While many of the exotic states envisioned
decades ago remain challenging to implement in the opti-
cal domain, they have become practical and valuable
resources in the microwave domain due to the ability to
engineer a wide range of mode couplings and nonlineari-
ties in Josephson circuits [5]. For example, the Schrödinger
cat states [6–8] and the Gottesman-Kitaev-Preskill (GKP)
grid states [9] have not only been realized but also actively
pursued for encoding logical qubits with error suppression
or correction capabilities.
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One interesting class of bosonic states yet to be studied
experimentally is the pair-coherent state (PCS), an exam-
ple of a Barut-Girardello generalized coherent state [10].
This state has gained theoretical interest as an example of
a highly entangled two-mode state [11,12] and was initially
proposed to explain a suppression of amplified sponta-
neous emission in an atomic system [13]. Analogous to
the Glauber coherent state, |α〉 = N ∑∞

n=0 α
n/

√
n! |n〉, a

PCS can be written in the Fock-state basis of two harmonic
oscillators (a and b) as

|γ , δ〉 = N
∞∑

n=0

γ n+δ/2
√

n!(n + δ)!
|n + δ〉a |n〉b , (1)

where δ is an integer describing the photon-number dif-
ference (PND) between the two modes, γ is a complex
number describing the amplitude and phase of the state,
and N is a normalization factor. This state is both an eigen-
state of the pair-photon annihilation operator âb̂ and the
PND operator δ̂ = â†â − b̂†b̂:

âb̂ |γ , δ〉 = γ |γ , δ〉 , δ̂ |γ , δ〉 = δ |γ , δ〉 . (2)

A PCS is inseparable and already in the form of a Schmidt
decomposition [12]. The |γ , 0〉 state resembles a two-mode
squeezed state in terms of photon-number correlation [14]
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but has a Poisson-like photon-number distribution approx-
imately centered around γ .

PCSs form the basis of a recently proposed quantum
error-correction (QEC) code called the pair-cat code [15].
This code promises autonomous QEC of all types of first-
order physical errors associated with loss and dephasing
by encoding a logical qubit in the superposition of PCSs
| ± γ , δ〉 of two oscillators. The scheme involves stabi-
lizing PND to correct the quantum jumps of photon loss
events while simultaneously stabilizing the PCS manifold
with a two-mode four-photon dissipation process.

Despite progress in universal control [16–18] and mea-
surement feedback [9,19–21] in bosonic cavity systems,
there is a clear need for new tools for multimode quan-
tum operations. For example, unitary preparation of a PCS
using a dispersively coupled ancilla qubit with the cur-
rent standard technique, numerical optimal control pulses
[16], becomes prohibitively difficult for modest photon
numbers. On the other hand, reservoir engineering [22]
has been of particular interest for its ability to stabilize
nonclassical oscillator states in a resource-efficient man-
ner [23]. Moreover, engineered dissipation can provide
us with not only encoded qubits with high noise bias
[15,24] but also a set of bias-preserving gates for hardware-
efficient quantum computing [25–28]. In cQED, realiza-
tion of nonlinear dissipation operators have led to stabi-
lization of the cat-state manifolds [29–31] and autonomous
QEC of photon losses [32] in a single cavity. However,
engineered nonlinear dissipation across two cavity modes
remains to be explored.

Similarly, characterization of multimode bosonic states
poses substantial challenges beyond their single-mode
counterparts. Although multimode Wigner tomography
using joint parity or joint photon-number measurements
has been previously demonstrated [7,18,33,34], such a pro-
cess shares similar scalability challenges as in multiqubit
state tomography and additionally lacks the convenience
to arrange an orthogonal measurement basis for efficient
information extraction. In order to explore the space of
multimode bosonic QEC codes such as the pair-cat code
or the two-mode binomial [35,36] and GKP codes [37],
it is crucial to develop efficient tools to characterize the
relevant metrics of the states.

In this work, we present an experimental realization of
the PCS and efficient characterization of its coherence.
We expand the toolbox of quantum reservoir engineering
by realizing an effective dissipation operator that removes
photon pairs from two superconducting cavities and stabi-
lizes the complex amplitude of the PCS. This pair-photon
dissipation is realized using a pumped superconducting
transmon ancilla for nonlinearity and a short-lived oscil-
lator mode as the reservoir. To characterize the two-cavity
state, we use three levels of the transmon ancilla to iso-
late selected subspaces of the large Hilbert space before
Ramsey-style tomographic measurements. We use this

subspace-tomography technique to independently measure
the quantum coherence between individual pairs of Fock
components of the two-cavity state. Our characterization
reveals the phase distortion and limited coherence of the
stabilized PCS, which we attribute to the spurious cavity-
reservoir cross-Kerr interactions. We further demonstrate
an effective method of measuring the PND without fine
matching of system parameters, which may be used for dis-
crete or continuous tracking of error syndromes in future
implementation of the pair-cat code.

This paper is organized as follows. In Sec. II, we dis-
cuss a model of the pair-photon driven-dissipation process
in our cQED system while introducing our experimental
setup. In Sec. III, we present experimental characterization
of our PCS stabilization process. This includes measure-
ments of the pair-photon population dynamics, direct PND
measurements, a demonstration of manifold stabilization,
and joint Wigner tomography. In Sec. IV, we introduce and
implement the subspace tomography that leads to quantita-
tive understanding of the nonideality of the stabilized PCS.
We conclude in Sec. V with a brief summary and outlook.

II. PCS STABILIZATION SCHEME IN cQED

Our approach to generating and stabilizing a PCS is
based on the application of a pair-photon drive coun-
terbalanced by engineered pair-photon dissipation and a
cross-Kerr interaction. To understand how the PCS nat-
urally emerges as the steady state under their combined
effect, the two-mode system dynamics can be compared
or mapped to (1) the textbook example of the stabilized
Glauber coherent state of a driven damped oscillator, and
(2) previous demonstrations of stabilized single-mode cat-
state manifolds [8,29]. The correspondence of relevant
Hamiltonian and dissipator terms are listed in Table I.

While the pair-photon drive Ĥd = εabâ†b̂† + c.c., also
known as the two-mode squeezing drive [40], has long
been a workhorse in quantum optics, stabilization of the
PCS requires either a strong (nonunitary) pair-photon loss
mechanism or a strong (unitary) cross-Kerr interaction
(strong relative to the single-photon decay rates). These
two possible strategies are analogous to the stabilized “dis-
sipative cat” [29,31] and “Kerr cat” [8,41], respectively, in
the single-mode two-photon processes. In fact, the dissipa-
tive and unitary effects play the roles of real and imaginary
components of the restoring force and are mutually com-
patible (see Table I). Inspired by both types of cat-state
stabilization, our system combines both effects while gen-
eralizing this coherent stabilization to the two-mode sce-
nario. The three-dimensional (3D) cQED architecture is
ideal for realizing this driven-dissipation process due to the
availability of strong coupling between modes, the four-
wave-mixing (FWM) capability of the Josephson junction,
and the wide range of mode lifetimes achievable in the
same system.
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TABLE I. A comparison of multiphoton steady states under driven dissipative processes constructed with different operators, ô =
â, â2 and âb̂. For each of the three cases, we consider cavity dynamics following the master equation ρ̇ = − i

�
[Ĥ0 + Ĥd, ρ] + D(ρ)

written in the rotating frame of the drives, where D is the Lindblad superoperator with ô as its jump operator. In the textbook example
of the driven damped quantum oscillator, the mode detuning� and single-photon loss κ jointly counter the driving force and determine
the complex amplitude of the unique steady state of the system. In two-photon dynamics, the complex amplitude of the steady states
is analogously determined by the one-mode or two-mode squeezing drives countered by the corresponding two-photon loss rates and
confining Kerr Hamiltonian [38]. Our experiment produces PCSs under both dissipative and cross-Kerr Hamiltonian confinement, with
the effective cross-Kerr Keff a few times stronger than the pair dissipation κab. Notably, two steady states exist (with even or odd photon-
number parity 	) for the case of cat-state stabilization, while there are infinitely many steady states (with different photon-number
difference δ) for the case of stabilizing PCSs.

Process category Drive Hamiltonian Ĥd/� Dissipator D Hamiltonian Ĥ0/� Steady state(s)

Single-photon ε∗â + εâ† κD[â] �â†â Coherent state |α〉, α = ε
iκ/2−�

Single-mode two-photon ε∗
2 â2 + ε2â†2 [39] κ2D[â2] [29] Kaâ†2â2 [8] Cat states |α,	 = ±1〉, α =

√
ε2

iκ2/2−Ka

Two-mode pair-photon ε∗
abâb̂ + εabâ†b̂† [40] κabD[âb̂] Keffâ†âb̂†b̂ PCSs |γ , δ ∈ Z〉, γ = εab

iκab/2−Keff

As shown in Fig. 1(a), our system contains two
cylindrical-post cavity modes a and b (with single-photon
loss rates κa/2π = 0.30 kHz and κb/2π = 0.74 kHz), a
strip-line resonator r (with decay rate κr/2π = 0.78 MHz)
used for readout and as a Markovian reservoir, and an
ancilla transmon q. The device architecture is similar to
that in Ref. [7] except that the two cavity posts share the
same elliptical cavity body to allow strong transmon-cavity
couplings with a relatively small transmon antenna (see
Appendix A). The cavity and resonator modes have anni-
hilation operators â, b̂, and r̂. The leading-order terms of
the static system Hamiltonian in the rotating frame are

Ĥ0 = Ĥdisp + Ĥsk + Ĥrk, (3)

where

Ĥdisp/� = −
∑

m=a,b,r

(
χm |e〉 〈e| + χ f

m |f 〉 〈f | )m̂†m̂ (4)

are the dispersive interaction terms between the lowest
three transmon levels (|g〉 , |e〉 , |f 〉) and the cavity and res-
onator modes, which we use for characterization of the
cavity bosonic states,

Ĥsk/� = −Kabâ†âb̂†b̂ − Kaa

2
(â†â)2 − Kbb

2
(b̂†b̂)2 (5)

are the cross-Kerr and self-Kerr nonlinearities of the stor-
age cavities, and

Ĥrk/� = −(Karâ†â + Kbrb̂†b̂)r̂†r̂ − Krr

2
(r̂†r̂)2 (6)

are the Kerr terms involving the reservoir mode, which
are spurious nonlinearities in this experiment. The device
is measured in a dilution refrigerator at a nominal base
temperature of 20 mK. All device parameters are listed in

Table II (see Appendix A), with the general rates hierarchy
of χm � κr � Kmn � κa,b (where m, n = a, b, r).

To implement the pair-photon excitation and dissipa-
tion, we apply two stabilization drives to our system: a
strong off-resonance FWM pump that coherently converts
reservoir photons with pairs of photons in a and b and a

(a) (b)

(d)(c)

FIG. 1. PCS generation: the system and protocol. (a) Cartoon
of the 3D cQED system containing two high-Q cylindrical-
post cavities a and b (blue and orange), the transmon ancilla q
(magenta), and the strip-line low-Q reservoir r (green). (b) The
four-wave mixing pump p , with frequency ωp ≈ ωa + ωb − ωr,
coherently converts reservoir excitations with pairs of a and b
excitations mediated by the ancilla junction. The ancilla junction
also converts the reservoir decay (dotted green arrow) into an
effective pair-photon dissipative process (dotted blue and orange
arrows). Note that the two drawings of the junction depict two
processes that happen with the same junction. After adiabatic
elimination of the reservoir, the storage-cavity dynamics are
shown in the dotted box. (c) Cartoon of the mode frequencies
and line widths (not to scale). The strong off-resonance pump
tone p and the weak on-resonance (ωd ≈ ωr) reservoir drive d
are shown as vertical arrows. (d) A schematic diagram of δ = 0
states under pair-photon drive (double-headed arrow) and pair
dissipation (dotted arrow). Fock states are written as |nanb〉 and
the vertical bars represent a PCS distribution.

020319-3



JEFFREY M. GERTLER et al. PRX QUANTUM 4, 020319 (2023)

weaker drive approximately on resonance with the reser-
voir [Figs. 1(b) and 1(c). Under these two drives, the
Hamiltonian gains an interaction term under the rotating-
wave approximation:

Ĥint/� = gabâ†b̂†r̂ + εdr̂†+h.c., (7)

where εd is the rate of the reservoir drive and gab is
the four-wave mixing rate activated by the off-resonance
pump. If we assume that the transmon remains in the
ground state and then adiabatically eliminate the reservoir
due to its fast relative dynamics, we obtain a Lindblad mas-
ter equation for the reduced density matrix ρ of the two
storage cavities:

∂ρ

∂t
= − i

�

[
(εabâ†b̂†+Keffâ†âb̂†b̂ + h.c.), ρ

]

+ D
[√
κabâb̂ + ζaâ†â + ζbb̂†b̂

]
(ρ), (8)

where we combine the storage Kerr terms (Ĥsk) as a sin-
gle Keff term (valid in the limit of γ � δ). D[ô](ρ) is the
Lindblad superoperator with a composite jump operator
ô = √

κabâb̂ + ζaâ†â + ζbb̂†b̂, where ζa and ζb are com-
plex coefficients related to Ĥrk. In the limit of gab �
Kar, Kbr, ζa and ζb become negligible, this jump opera-
tor is reduced to the desirable form of two-photon loss,
ô ∝ âb̂, and the system is stabilized to the PCS manifold
as described in Table I.

Unlike previous analyses of two-photon driven dissipa-
tion [29,31], we emphasize that Eq. (8) is valid even when
the reservoir mode is driven far away from vacuum (i.e.,
displaced to a large coherent state when εd > κr) as long
as the adiabatic condition, κr � gab, Kmn, is satisfied. The
effective pair-photon drive εab and pair-photon loss rate
κab both increase with the four-wave mixing rate, εab =
−2igabεd/κr, κab = 4|gab|2/κr, while only the pair-photon
drive increases with the reservoir drive. Unexpectedly,
at least initially, the reservoir nonlinearity, Ĥrk, enters as
dephasinglike modifications added to the pair-photon loss
operator

√
κabâb̂ in Eq. (8), which contributes significantly

to the experimental outcome. For the analytical derivation
of the system dynamics, see Appendix B.

III. GENERAL CHARACTERIZATION OF
PAIR-PHOTON STABILIZATION

A. Pair-photon population dynamics

To characterize the pair-photon-driven dissipative
dynamics, we first measure the two-cavity photon-number
distributions for any prepared state. To do this, we per-
form spectroscopy of the ancilla transmon, the frequency
of which is shifted by −χa,b for every photon in cavity
a or b. A frequency-selective rotation of the ancilla at
a detuning �ωq = −naχa − nbχb maps the probability of

being in Fock state |nanb〉 to the ancilla excitation, which
can then be read out. Here, we write the two-cavity Fock
state |n〉a ⊗ |m〉b as |nm〉 in short, a convention that is
used for the rest of the paper. To find an optimal condi-
tion to create a PCS in the presence of an ac Stark shift,
we sweep the frequency of the four-wave mixing pump
while measuring probabilities of various δ = 0 photon-
number states [Fig. 2(b)]. After 15 µs of pumping with
calibrated drive rates of gab/2π = 60 kHz and εd/2π =
780 kHz, we observe the full spectroscopy of the ancilla
[Fig. 2(c)], which illustrates the Poisson-like distribution
of a PCS. We can also track these photon population prob-
abilities over time to understand how the system converges
to a quasisteady state with a pair-photon drive and pair-
photon dissipation [Fig. 2(d)] or how it decays under the
pair-photon dissipation alone [inset of Fig. 2(d)]. The spec-
troscopy measurements use ensemble-averaged dispersive
readout, where the complex transmission coefficient of the
readout pulse (at frequency ωr) is converted to the pop-
ulation of various cavity states through a normalization
procedure as described in Appendix A.

Fitting these time-domain data of pair-photon popula-
tion dynamics to numerical simulations of Eq. (8) (see
Appendix C), we extract the pair-photon dissipation rate
κab/2π = 12.5 kHz (from Fig. 2(d), inset) and subse-
quently the pair-photon drive rate εab/2π = 99 kHz [from
Fig. 2(d)], in good agreement with values expected from
adiabatic elimination. Together with the effective cross-
Kerr of the system (Keff/2π = −86 kHz), these rates are
significantly faster than the undesirable single-photon loss
rates κa and κb. Therefore, we experimentally create a qua-
sisteady state resembling a PCS with |γ | = 2.3 and δ = 0
under these driven-dissipation conditions. Single-photon
loss eventually decoheres the state by altering δ over a
time scale dictated by the combined cavity lifetimes and
average photon numbers (estimated to be about 80 µs
here).

We note that different combinations of na and nb can,
in principle, result in a similar dispersive shift to the
ancilla, causing ambiguity in our measurement of the
cavity-photon population. However, for our system with
3χqa ≈ χqb, this ambiguity arises only when the underly-
ing Fock state |nanb〉 deviates from its expected δ by at
least 4, which is highly unlikely to occur over time scales
shorter than the single-photon losses.

A prominent feature of the population dynamics in
Fig. 2(d) is oscillations between states, which are then
damped to a steady state. The oscillations arise from
the underdamped Kerr dynamics of the storage cavities,
κab < |Keff|, and are due to the sudden turn-on of the
stabilization drives not allowing the storage cavities to
adiabatically evolve in the ground state of the Kerr Hamil-
tonian as in Ref. [8]. Nevertheless, the pair-photon dissi-
pation plays a crucial role in relaxing the system to the
steady state, allowing us to bypass the otherwise slow
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FIG. 2. PCS characterization: the population and time dynamics. (a) A pulse sequence using selective ancilla rotation to analyze the
photon population dynamics. We use an ancilla π pulse with a frequency as shown to measure the population of a two-cavity state |mn〉
after waiting for 1 µs for the reservoir to relax. (b) The populations of two-cavity states |00〉 through |44〉 after pumping a vacuum
state for t = 15 µs at different FWM pump frequencies (while keeping the reservoir drive constant). The remaining experiments are
carried out under the condition shown as �ωfwm = 0 here. (c) Transmon spectroscopy after 15 µs of pumping with cw FWM and
reservoir tones. The dark vertical lines correspond to δ = 0 states while the light vertical lines correspond to error states caused by
single-photon loss. (d) Time-domain photon population measurements with both cw tones applied for a variable time t. The inset shows
a time-domain measurement of the pair-photon decay (without pair-photon drives) by keeping only the FWM pump on for a variable
amount of time after the two-tone pumping for t = 15 µs (vertical dashed line). The dashed curves are numerical fits to the pair-photon
dynamics model [see Eq. (8)] plus single-photon losses, including only two free parameters: εab/2π = 99 kHz and κab = (12.7 µs)−1.
(e) Measurement of the photon-number difference δ, where the probability of δ = ±1 is measured over variable time t to show the
effects of single-photon loss from the storage cavities. The nonzero initial populations are due to imperfect cavity reset. The dashed
lines are simulation results with the same parameters as in (d). Note that all population values are inferred from a normalized readout
procedure (applies to all figures), as discussed in Appendix A.

ramping of the pump tones required for adiabatic state
preparation. This hybrid implementation of dissipation and
Hamiltonian stabilization is analogous to recent proposals
of combining Kerr-cat qubits with engineered dissipation
to further improve robustness against unwanted excitations
[25,38,42]. The spurious dephasinglike contributions in the
jump operator in Eq. (8) also contributes to the conver-
gence to a steady state, which, however, is accompanied
with loss of coherence, as is discussed later.

B. Measurement of photon-number difference

Single-photon loss is a fundamental decoherence chan-
nel in superconducting cavities that is not stabilized by the
pair-photon-driven dissipation. Quantum nondemolition

measurement of PND followed by autonomous or digital
feedback is a crucial component of the pair-cat QEC code
[15]. An existing proposal for PND measurement requires
an exact negative χ -matching condition, χa = −χb, which
allows direct mapping of the probability of the two-cavity
state in a targeted δ onto the ancilla excitations via a simple
selective rotation [15]. For a transmon ancilla, this neg-
ative χ -matching condition does not occur naturally but
can be achieved with additional strong off-resonant pumps
[43]. It should be noted that managing multiple strong
off-resonant pumps in cQED devices without incurring
instabilities remains an active challenge [44].

Here, we demonstrate an alternative method of PND
measurement without χ matching. We apply a comb
of number-selective π pulses to excite the ancilla at
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frequencies corresponding to the dispersive shifts for all
cavity states (below a reasonable truncation) with a tar-
geted δ. Subsequent readout of the ancilla informs whether
or not the PND of the two-cavity state is equal to δ. For
instance, we could superimpose pulses at ωq − nχa − (n +
1)χb, where 0 ≤ n ≤ 5, to inquire whether the system is in
δ = −1. In Fig. 2(e), we use this measurement to probe the
populations in the δ = ±1 states, which shows the effect of
single-photon loss. While our experimental setup does not
have a quantum-limited amplifier to perform the necessary
demonstration, this technique of PND measurement is, in
principle, quantum nondemolition as long as the phases of
the π pulses are tuned to be effectively equal after compen-
sating for any ac Stark shift and Kerr effects. It can then be
used to repetitively monitor single-photon loss from a state
with known δ so long as |00〉, |10〉, and |01〉 are number
resolved and a recovery operation can be applied before
the next photon loss occurs. Therefore, it provides a prac-
tical avenue for QEC of single-photon loss in the pair-cat
code, hence relaxing one of its demanding requirements
for implementation. The comb-based PND measurement
may also be converted to an autonomous QEC protocol
to correct photon-loss errors [32]. However, without the
negative χ -matching condition, this simple and effective
method of PND mapping is not fault tolerant with respect
to ancilla T1 error, which may require other means of
protection.

C. Manifold stabilization

An important property of the pair-photon driven-
dissipation process is conservation of the photon-number
difference δ: it stabilizes γ while allowing δ to be the one
and only degree of freedom inherited from arbitrary ini-
tial values and it may allow quantum operations in the
presence of stabilizing pumps. For example, the photon-
number distribution in Fig. 2 corresponds to the unique
steady state of the two-cavity system within the δ = 0
subspace and its δ is inherited from the initial vacuum
state before the pair-photon pumping is applied. To cre-
ate a PCS with δ = 1 or −1, we can use a selective
number-dependent arbitrary-phase (SNAP) gate [45] to pre-
pare a |10〉 or |01〉 initial state before applying the same
pumping conditions. The resultant photon-number distri-
butions are shown in Fig. 3, corresponding to PCSs of
|δ = 1, |γ | ≈ 2.4〉 and |δ = −1, |γ | ≈ 2.2〉, respectively.
More generally, the pair-photon dynamics of Eq. (8), in
the ideal limit of ζa, ζb = 0, confine the two-cavity state to
a quantum manifold (Hilbert subspace) spanned by a series
of PCSs with a fixed γ and an arbitrary integer δ. Any
coherent superpositions of these PCSs are steady states
allowed by the driven dissipation, although the coherence
is not protected against single-photon loss, which shifts the
value of δ between neighboring integers.

D. Joint Wigner measurements

To demonstrate the nonclassicality and coherence of
these stabilized states, we measure the joint Wigner
function of the two-cavity state ρ [46]:

W(α,β) = 4
π2 Tr[ρD̂a(α)D̂b(β)P̂J D̂†

b(β)D̂
†
a(α)], (9)

where P̂J = eπ i(â†â+b̂†b̂) is the joint photon-number parity
operator and D̂a(α) and D̂b(β) are the phase-space dis-
placement operators of the two cavities, respectively. We
take advantage of our approximately matched dispersive
shift of the |e〉-|f 〉 transmon transition, χ f

a − χa = χ
f
b −

χb, to measure the joint photon-number parity, the expecta-
tion value of which following cavity displacements in the
four-dimensional (4D) phase space (α,β) can be directly
scaled to the joint Wigner function [7,47].

In Fig. 4(b), with a two-dimensional (2D) angular cut
of the joint Wigner function at fixed displacement ampli-
tudes, we first demonstrate an interesting property of PCSs
(or any eigenstates of δ̂ in general): invariance with respect
to the differential cavity phase W(α,β) = W(αeiφ ,βe−iφ).
This is because the product of the cavity rotation oper-
ators R̂a(φ)R̂b(−φ) = eiφâ†âe−iφb̂†b̂ = eiφδ̂ ≡ I for a PCS
up to a global phase. On the other hand, oscillation with
respect to the total phase is a signature of phase coher-
ence of the two-cavity state. Choosing the common phase

[  ]

γ = 0 γ = γ

γ

δ = 0

δ = 1

δ = −1

Δω

[
 ]γ

(a) (b)

(c)

FIG. 3. The manifold of stabilized PCSs. (a) A conceptual
representation of the different δ subspaces of the two-cavity sys-
tem under pair-photon-driven dissipation. Each subspace has a
unique steady state |γ∞, δ〉, which functions as an attractor in
a generalized phase plane. In general, the system is stabilized
to the manifold of states represented by the vertical string γ =
γ∞. (b),(c) Ancilla spectroscopy that demonstrates the photon-
number distribution of the stabilized (b) δ = 1 and (c) δ = −1
PCSs. These measurements are performed by preparing initial
states of |10〉 and |01〉, respectively, and then applying the exact
same stabilization drives as used in Fig. 2(c) for t = 15 µs. For
each plot, the dark vertical lines indicate the desired states while
the light vertical lines mark error states due to single-photon loss
or imperfect initial-state preparation.
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1/2(arg[α] + arg[β]) where the Wigner function takes the
maximum value, we show measured 2D phase-space cuts
of the joint Wigner function of the experimental δ = 0, +1,
and −1 PCSs to be compared to the closest-matched ideal
PCS [Figs. 4(d)–4(i)]. These Wigner data are acquired
after t = 15 µs of stabilizing drives and an additional
tw = 4.5 µs of wait time. We note that tw � 5/κr = 1 µs

is necessary to allow the reservoir photons to fully decay
and the wait time here is chosen to reach the first phase
revival of an approximate PCS after cavity Kerr dynamics
[48]. The characteristic interference fringes of the PCS are
clearly visible, indicating appreciable coherence and con-
sistent multiphoton phases. The even-parity (δ = 0) and
odd-parity (δ = ±1) states show opposite Wigner contrasts
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  α
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  α

β  
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(c) (d) (e)

(f) (g)

(h) (i)

(j)

FIG. 4. The joint Wigner tomography of PCSs. (a) The pulse sequence for Wigner-function measurements. The two cw tones
are applied for t = 15 µs to prepare and stabilize a state that is then evolved under no pump tones for tw = 4.5 µs to reach the
first phase revival of an approximate PCS under cavity Kerr dynamics (and for the reservoir to relax to vacuum). The joint parity
mapping uses a Ramsey sequence with an evolution time of π/χef , where χef ≈ χ

f
a − χa ≈ χ

f
b − χb. (b) The Wigner function,

π2

4 W(α,β), of the stabilized δ = 0 state with constant displacement amplitudes |α| = |β| = 0.3 and sweeping over the angle of both
displacements. (c) The measured Re[α]-Re[β] cut of the joint Wigner function for the approximate |γ = 2.3, δ = 0〉 PCS (with the
real axes redefined such that arg[γ ] = 0). This can be compared to the same Wigner-function cuts of (d) the ideal PCS |2.3, 0〉 and (e)
the experimentally measured density-matrix block [as shown in (j)] of this stabilized state. (f),(h) The measured Re[α]-Re[β] cut of
the joint Wigner function for the approximate |γ = 2.4, δ = 1〉 and |γ = 2.2, δ = −1〉 PCSs stabilized under the same condition, to be
compared to (g),(i) the corresponding ideal PCSs, respectively. (j) The δ = 0 block of the density matrix of the stabilized δ = 0 state
at the same effective free-evolution time, measured with quantum subspace tomography (note that this is independent from the Wigner
measurements) as discussed in Sec. IV. The blue bars are the diagonal elements indicating the population distribution, whereas the
off-diagonal coherence elements are shown by orange (green) for nearest (next-nearest) neighboring Fock-state pairs. Other coherence
elements are small and hence are not measured in the experiment. The phases of the coherence elements are shown numerically over
the bars.
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as expected, and the differences in the slope of the fringes
are striking features indicating the different PNDs of the
states.

The technique of direct joint Wigner tomography in
principle allows full reconstruction of the two-cavity den-
sity matrix but faces a multitude of practical challenges.
First, tomographic reconstruction requires a very large
amount of data. Even if we impose a low cutoff of four
photons per cavity, the tomography still requires accu-
rate measurements at a minimum of 625 (typically many
more) different phase-space sampling points. Second, the
joint parity measurement contains some photon-number-
dependent systematic errors caused by the storage-readout
cross-Kerr, the sixth-order dispersive shift of the transmon,
and nonperfect χ matching for joint parity extraction. Last
but not least, even with sufficient brute force, it is challeng-
ing to prevent small stochastic and systematic errors from
propagating badly in the matrix pseudoinversion problem
of reconstruction due to the presence of singularities. In
our experiment, primarily to limit spurious readout sig-
nals due to a large Kbr, we limit our cavity displacements
to |α|, |β| < 1 in Wigner-function measurements as in
Fig. 4, which contains nearly all the salient features of the
PCS. However, a full Wigner reconstruction would require
cumulative measurements of highly diluted features over a
much larger extent of the 4D phase space.

IV. QUANTUM SUBSPACE TOMOGRAPHY

Quantitative insight into our experimental two-cavity
state is enabled by a new characterization tool focusing on
specific subspaces of interest. The goal is to completely
characterize the projected density matrix ρSS = P̂ρP̂, with
projection operator P̂ for subspace S of the system. For
d-dimensional subspace S, we only need to perform d2

measurements for subspace tomography. Using a three-
level ancilla, one can effectively isolate S from the rest of
the Hilbert space using the |g〉-|e〉 transition of the ancilla,
and using the |e〉-|f 〉 transition to perform tomography.
A general protocol for this method is discussed in
Appendix D.

A. Implementation of 2D subspace tomography

We demonstrate this subspace-tomography technique
with a direct and self-calibrated measurement of the pair-
wise coherence between the constituent states of the sta-
bilized δ = 0 state. This approximate PCS state obtained
in the experiment [the Wigner-function cut of which is
shown in Fig. 4(c)] and its density matrix to be determined
are both referred to as ρM . In this tomographic protocol,
we entangle only two Fock components, e.g., |11〉 and
|22〉, with |e〉 of the transmon using number-selective π
pulses. Within this 2D subspace, since the diagonal ele-
ments of the density matrix, which we denote as ρ11 and
ρ22, are measured via transmon spectroscopy (Fig. 2), the

complex-valued off-diagonal element ρ11,22 is the only
unknown. We then displace both cavities D̂a(|α|eiφ)D̂b(|β|eiφ)

with fixed amplitudes (typically |α| and |β| < 0.5) and
vary the common phase φ, which redistributes the photon
populations in the |e〉 manifold and shows constructive or
destructive interference in each Fock component depend-
ing on ρ11,22 and φ [Fig. 5(b)]. Using number-selective
|e〉-|f 〉 rotation of the transmon, we can measure the pop-
ulation of any individual target state after displacement,
such as |11e〉, which oscillates as a function of φ. Alterna-
tively, we can also measure the oscillation in other observ-
ables, such as the joint parity [Fig. 5(c)]. The amplitude
and phase of such oscillations can be directly converted
to ρ11,22 following a comparison with easily calculable
properties of the state D(α,β)(

√
ρ11 |11〉 + √

ρ22 |22〉).
Repeating the same procedure for different pairs of states,
we obtain the δ = 0 block of ρM by direct measure-
ment of its individual off-diagonal elements as shown in
Fig. 4(j). In practice, we run numerical calculations to
find the optimal |α|, |β|, and measurement observable
for each pair of states, to maximize the visibility of the
oscillations.

Experimental implementation of the subspace-tomo-
graphy technique requires careful tracking of rotating
frames and phase accumulation of different branches of
states. To ensure self-consistent phase measurements, we
work in the two-cavity rotating frame set by two cw sta-
bilization drives (the drive frame) and require the four fre-
quencies of the tomographic pulses to precisely sum up to
0 (Fig. 10). Since the pulse frequencies for selective trans-
mon rotations have no freedom for adjustment, we apply
our fast cavity displacement drives at deliberately detuned
frequencies in order to exactly compensate for the irregu-
lar detunings of all other tones due to various Stark shifts
and higher-order nonlinearity of the system (Appendix
E). This strategy allows us to measure the phases of off-
diagonal density-matrix elements that are unambiguously
defined relative to the two stabilization drives. As shown
in Fig. 6(a), following t = 15 µs pumping, our measured
phases of ρ00,11, ρ11,22, ρ22,33, and ρ33,44 all evolve over the
wait time tw as expected from the frequencies of the cor-
responding transitions in the drive frame. Note that their
frequencies differ due to the Kerr Hamiltonian of the stor-
age cavities [see Eq. (5)]. Figure 6(b) further shows that
the measured phases are constant over extended pumping
times t.

A key advantage of this d = 2 subspace-tomography
technique is that it maps individual density-matrix ele-
ments of interest to individual experimental signatures in
an intuitive manner, making the experimental uncertain-
ties of the tomographic measurements highly transparent.
For example, from the sinusoidal fits in Fig. 5(c), we
can unambiguously report the uncertainly of the amplitude
(3%) and phase (0.05 radian) for ρ11,22, which would be
extremely challenging to obtain in traditional tomographic
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FIG. 5. The subspace-tomography protocol. (a) An example schematic for tomography in subspace S = span{|11〉 , |22〉}. Photon-
number-selective transmon π pulses (2-µs-long Gaussian) are applied to isolate the two Fock components in the |e〉 manifold. Cavity
displacement pulses are then applied to induce interference, followed by mapping an observable M̂ (e.g., the joint parity) to |f 〉. (b)
Spectroscopy of the |e〉-|f 〉 transition of the transmon after the cavity displacements D̂a(|α|eiφ) and D̂b(|β|eiφ) in (a) with two different
displacement phases φ = φ0 and φ0 + π/2, where φ0 is chosen to minimize the M̂ = P̂11 measurement; thus φ0 + π/2 will maximize
it. The difference in photon-number distribution in the two cases demonstrates the presence of interference. The |21〉 and |12〉 peaks
overlap to appear as a single peak due to the approximately matched dispersive shift of the |e〉-|f 〉 transmon transition. Note that the y
axis represents the relative fraction of population within the subspace S. (c) The population of |11〉 (blue), the sum of the populations
of |21〉 and |12〉 (orange), and the photon-number parity of the displaced state in the |e〉 manifold (green), all being examples of a
general measurement operator M̂ , measured as a function of the common displacement phase φ. All fit curves correspond to the scaled
coherence element ρ11,22/

√
ρ11ρ22 = 0.63e0.84i.

reconstruction. Furthermore, it is relatively straightfor-
ward to extend our scheme to d > 2 by applying more
than two selective ancilla π pulses in isolating the sub-
space, although extra care must be taken in accounting for
phase accumulations if the selective pulses are not exactly
equally spaced in frequency.

Using the 2D subspace-tomography technique, we can
in principle measure the entire density matrix ρM element
by element. However, since ρM is sparse, in practice it is
neither efficient nor interesting to measure the vast number
of small off-diagonal elements. Since our system dynamics
cannot generate superpositions between states of different
PNDs, we can write ρM in block-diagonal form,

ρM =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

. . .
ρ[−1]

ρ[0]
ρ[1]

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (10)

where ρ[δ] is the projection of ρ onto the subspace with
a definite PND of δ. After measuring the population ele-
ments and the most prominent coherence elements, we
can construct all matrix blocks ρ[δ] by simply setting
unmeasured elements to 0 [Fig. 8(a)] and treat potential
deviations from 0 as uncertainties bound by physical-
ity constraints (e.g., off-diagonal elements cannot exceed
the geometric mean of corresponding diagonal elements).

Since the state predominantly resides in the δ = 0 sub-
space described by the extensively measured ρ[0] block
[Fig. 4(j)], this treatment is sufficient for extracting various
global metrics of the quantum state to a good approxima-
tion, such as the fidelity and entanglement measures to be
discussed in Sec. IV B.

B. Understanding deviations from an ideal PCS

With the capability of direct pairwise coherence mea-
surements, we can track the amplitude and phase of
selected coherence elements in the two-cavity state as
a function of the stabilization pumping time t. We find
that the cavities indeed converge to a quasisteady state
(except for the slow process of single-photon loss) with
persistent coherence [Fig. 6(c)]. However, the magnitude
of the steady-state coherence is far lower than the ideal
values |ρnn,mm| = √

ρnnρmm. Moreover, the stabilized cav-
ity phases, which we can extrapolate backward in time
from data such as Fig. 6(a), also differ considerably
from the ideal PCS, which should have equal superposi-
tion phases between neighboring Fock components, i.e.,
arg[ρnn,(n+1)(n+1)] = arg[γ ]). Due to the Kerr evolution of
the storage cavities during idle time (Keff = −86 kHz),
we expect a stabilized PCS to collapse and revive every
5.8 µs [48], making tw = 5.8 µs the first optimal timing
to observe the PCS in Wigner measurements. However,
the measured pairwise phases of the stabilized state sug-
gests that the two-cavity state most resembles a PCS at
tw ≈ 4.5 µs, which has been confirmed by the joint Wigner
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measurements. This skewness in phases and loss of coher-
ence is caused by the relatively large cross-Kerr term of the
reservoir mode, Kbr/2π = 58 kHz, which is comparable to
the competing mixing drive rate gab/2π = 60 kHz (while
Kar/2π = 7 kHz is much smaller).

Remarkably, this spurious effect from the reservoir
cross-Kerr can be captured well by the simple reduced
model of the pair-photon dynamics [see Eq. (8)],
which features a composite jump operator ô = √

κabâb̂ +
ζaâ†â + ζbb̂†b̂. Through adiabatic elimination of the r

mode (Appendix B), we find ζb =
√

4K2
brr

2
0/κr (and sim-

ilarly for ζa), where r0 is the complex displacement
amplitude of the r mode during the stabilization process.
This coefficient is identical to that of photon-shot-noise
dephasing of qubits [49], with Kbr taking the place of
the qubit-cavity dispersive shift. Indeed, if the mixing
drive is turned off (hence κab = 0), any initial storage-
cavity state ρ should be dephased by the fluctuating photon
numbers in a driven r mode, which can be described by
the usual dephasing jump operators â†â and b̂†b̂. In our
experiment, |r0| = 1.8, which gives rise to a dephasing
rate |ζb|2/2 ≈ 2π · 28 kHz, while the effect of ζa is much
less significant. Intuitively, the finite steady-state coher-
ence of the system in Fig. 6 can be understood from the
competition between the PCS stabilization mechanism and
the spurious dephasing effects.

It is important to note that the pair-photon dissipa-
tion and the two dephasinglike terms constitute a single
jump operator ô, not separate ones. This is because the
three events are all directly originating from the same

stochastic event of reservoir photon loss. As a result, the
relative phases between the terms in ô play a crucial role in
skewing the stabilized state from the ideal PCS, including
a larger state size, a broader distribution of photon num-
bers, and the varying phases between neighboring Fock
components. A numerical simulation of Eq. (8) using this
composite jump operator reproduces the prominent coher-
ence elements of the pumped two-cavity state, which is
in good agreement with the experimental data in Fig. 6,
with no free parameters except for a two-cavity global
frame rotation of 1.5 rad (which can be attributed to the
difference in cable electrical length between the stabiliza-
tion drive lines and the cavity displacement lines together
with a small additional cavity rotation during the reservoir
ring-down before the tomography).

For the experimental state ρM , we find that its
fidelity against the closest ideal δ = 0 PCS |ψ0〉 is F =
〈ψ0| ρM |ψ0〉 = 〈ψ0| ρ[0] |ψ0〉 = 41.5 ± 1.3%. The uncer-
tainty of F represents one standard error of the mean,
which can be directly calculated by combining uncor-
related measurement uncertainties of individual density-
matrix elements in ρ[0]. Tomographic measurements (or
the lack thereof) outside the ρ[0] block do not contribute
to F because the target state |ψ0〉 contains no probabilities
outside the δ = 0 subspace. Since ρM retains about 82%
population in ρ[0] (with the rest leaked primarily to ρ[+1]
and ρ[−1] due to a single-photon loss) and shows about
50% relative coherence on average between elements in
the ρ[0] block (due to the cross-Kerr dephasing previously
mentioned), the measured state fidelity is fully explained
by these two dominant error channels at play. While this
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FIG. 6. The evolution of the pair-photon phases and coherence informed by subspace tomography. (a) Phases of selected off-diagonal
elements of the two-cavity state ρM , measured with the d = 2 subspace tomography, as a function of the wait time tw after state
preparation with the stabilizing drives for t = 15 µs. The phase evolution agrees with the cavity Kerr terms Ĥsk and the cavity detuning
in the drive frame. The dashed lines are linear fits, which allow us to interpolate or extrapolate the phases of these states to different
tw. The vertical dashed line corresponds to the time at which the density-matrix block is plotted in Fig. 4(j). In order to compare
with Wigner data in Fig. 4, note that the effective free-evolution time of the two-cavity state here is tw + 2 µs, accounting for the
duration of the selective transmon |g〉-|e〉 pulses in the subspace-tomography protocol [Fig. 5(a)]. (b),(c) The (b) phases and (c)
relative coherence of selected off-diagonal density-matrix elements of the two-cavity state for different stabilization pumping times t,
measured with subspace tomography after tw = 1 µs. The solid lines show parameter-free numerical-simulation results of the storage
pair-photon dynamics according to Eq. (8), which does not contain the reservoir mode and captures all prominent features of the data.
The two-photon dissipation and drive rates used in the simulation are obtained from the fits in Fig. 2(d).
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fidelity indicates a significant need for improvement, we
note that our experiment spans a large Hilbert space (i.e.,
25 dimensions, assuming a photon-number cutoff of 4 in
each cavity) in the context of an initial demonstration
of dissipative stabilization of multiphoton entanglement.
By comparison, the first studies of dissipatively stabilized
entanglement in qubits have reported Bell-state fidelity in
the range of 60–70% for a Hilbert space dimension of 4
[50–52].

To quantify entanglement in this nonideal quantum
state, we compute the logarithmic negativity, which gives
an upper bound on the distillable entanglement. It is
defined as EN (ρ) = log2||ρTa ||1, where Ta is the partial
transpose with respect to cavity a and ||.||1 is the trace
norm. If we neglect any coherence within the ρ[±1] blocks
of ρM for simplicity (i.e., not allowing their off-diagonal
elements to vary from 0), we obtain EN = 1.05 ± 0.06.
The likely presence of stabilized coherence within the
slightly populated ρ[±1] blocks is found to produce a posi-
tive but rather small additional contribution to EN (up to
0.02 under physicality constraints). Therefore, the mea-
sured EN for our experimental PCS is much smaller than
that of an ideal PCS of similar size (EN ≈ 2.4) but is
already comparable or greater than an ideal Bell pair
(EN = 1) despite its very limited coherence.

To improve the quality of the stabilized PCS, it is neces-
sary to suppress the spurious dephasing terms in the com-
posite jump operator ô. Ideally, this can be accomplished
by engineering a Josephson circuit without the reser-
voir cross-Kerr, analogous to the asymmetrically threaded
superconducting quantum interference device (SQUID)
circuit for dissipative cat-state stabilization [31]. In our
current transmon-based device, this may be accomplished
by either an extra Kerr-cancellation pump tone [53] or
by detuning the two stabilization drives a few (reservoir)
line widths away to reduce photon-number fluctuations in
the r mode. The former also suppresses |Keff| and hence
boosts the state size and the dissipative nature of the stabi-
lization scheme. The latter suppresses κab and moves our
PCS stabilization deeper into the regime relying on Hamil-
tonian confinement. Given the full understanding of the
pair-photon dynamics at the conclusion of this experiment,
we believe that both strategies can yield improved fidelity
for the stabilized PCS in our device, although new forms
of nonlinear ancillas are needed to realize spurious-free
pair-photon processes at faster rates.

V. SUMMARY AND OUTLOOK

There is a growing history of cQED experiments
inspired by the field of quantum optics. The convenience
of microwave systems and the powerful nonlinearity of
superconducting circuitry has paved new ways toward the
study of exotic bosonic states that may be otherwise pro-
hibitively challenging to implement. Owing to the identical

nature of bosons, bosonic quantum states offer the opportu-
nity of hardware-efficient dissipation engineering schemes
but also pose unique challenges requiring new charac-
terization techniques. Both aspects are reflected in our
experiments. Unlike earlier demonstrations of two-mode
non-Gaussian states such as the entangled cat state [7] or
the N00N state [33], the PCS should contain more than
one e-bit (EPR pair) of entanglement. It would be interest-
ing to further develop efficient tools to calibrate and distill
the entanglement in such states.

The pair-cat code, a recent addition to the zoo of
bosonic QEC codes, offers the tantalizing prospect to cor-
rect both photon loss and dephasing errors (to the first
order) autonomously and fault tolerantly [15]. Our exper-
imental realization of the PCS, demonstration of the first
cross-cavity dissipator, and introduction of a convenient
(although not fault-tolerant) PND measurement are all
valuable steps toward a pair-cat code. However, fully
implementing and utilizing the advantages of the pair-cat
code will require schemes to suppress forward propagation
of ancilla errors and upgrading the pair-photon dissipation
to a four-photon cross-cavity dissipator, which involves a
leap in experimental complexity.

As a first attempt toward a two-mode bosonic code, our
work suggests several challenges moving from one mode
to two. Unlike the concatenation of a smaller multiqubit
QEC code to a larger one, two-mode bosonic code states
generally cannot be created from concatenating single-
cavity bosonic qubits using cavity-cavity logic gates. The
generation of two-mode states in cQED requires specific
cross-cavity nonlinear interactions, which is implemented
in our work with a relatively simple hardware setup but
not without spurious effects and difficult parameter trade-
offs. Future experiments will have to tailor the cross-cavity
nonlinear interactions, likely using Josephson circuits with
a strong third-order nonlinearity [54], while suppressing
unwanted fourth-order terms. In addition, since two-mode
states reside in a much larger Hilbert space, their imple-
mentation requires both effective confinement to preferred
subspaces and efficient methods to diagnose imperfec-
tions. With regard to the latter, our work demonstrates
a valuable tool in subspace tomography, which provides
a general framework for future experiments to isolate
key components of a high-dimensional quantum state for
characterization.
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APPENDIX A: EXPERIMENTAL SETUP AND
METHODS

1. Device architecture and transmon fabrication

The system consists of two post cavities dispersively
coupled to a fixed-frequency transmon ancilla, which is
then dispersively coupled to a strip-line λ/2 resonator that
is used for readout and as reservoir in the experiment.
The posts are made using high-quality aluminum inside
a cavity, as shown in Fig. 7(b). The cavity has a tunnel
opening on one of the sides, which is where the sapphire
chip containing the qubit and resonator is held with a chip
clamp. This high-quality superconducting cavity is made
with 5N (99.999%) purity aluminum and it shields the
qubit from magnetic field lines that can degrade the coher-
ence. The ancilla qubit and the cavity modes each have
their own drive ports. The readout signal is collected from
another port that is coupled strongly with the strip-line res-
onator. The coupling strengths between all the modes and
the coherence numbers for the modes are listed in Table II.
The setup with the cavities and chip is initially simulated in
the electromagnetic solver software ANSYS HFSS to design
the frequencies of the modes and interactions between
them that are needed for the experiment.

The simulated chip design is fabricated in a cleanroom
facility for nanofabrication using the standard procedure.
We use a 30-keV JEOL JSM-7001F SEM to perform
electron-beam lithography to define the transmon and the
strip-line resonator in one step. The aluminum thin film is
evaporated on the sapphire chip using Plassys MEB550S.
The transmon has a single Al-AlOx-Al Josephson junction
produced by the Dolan-bridge method, where the alu-
minum is deposited at two different angles while allowing
some time in between for it to oxidize.

2. Measurement setup

The measurement setup is designed to generate
microwave signals that drive all the four modes in the
system and to receive signals from the readout port that
are digitized to read the qubit state. We use the basic
microwave engineering technique of mixing signals from
the signal generator and the arbitrary waveform generator
(AWG), using an in-phase and quadrature (IQ) mixer to

modulate the sidebands. The filtered rf output from each
mixer then goes into the fridge to the input ports, as shown
in Fig. 7(a). The signal collected from the readout port goes
to a three-port mixer for demodulation and then to a digi-
tizer. In addition to drives for the modes of the system, the
setup also produces a continuous four-wave mixing tone
and a reservoir tone that satisfy the frequency-matching
condition as discussed in the main text to create a PCS.
Inside the fridge, all the input signals are attenuated by 20
dBm at the 4 K plate, 10 dBm at the Still plate, and 30
dBm at the mixing chamber (MXC) and then go through
the eccosorb filters (made in house) along with a low pass
filter as the last level of filtering before going into the input
ports.

We want to study the coherence of the prepared entan-
gled state in the storage cavities by probing them to
measure 2D slices of joint Wigner functions as shown in
Figs. 4(b)–4(d). The use of different generators to pump
and probe the cavities would cause the phase of the state in
the storage cavities to not be locked to the cavity displace-
ment drives used to measure the Wigner functions, thus

TABLE II. The measured system parameters.

Symbol Value

Transmon frequency ωq/2π 5378 MHz
Transmon anharmonicity αq/2π 204 MHz
Transmon T1 T1q 40 µs
Transmon T∗

2 Ramsey T∗
2q 18 µs

Transmon T2 echo T2q 60 µs
Transmon |e〉q population 2% (3.5%†)

Reservoir frequency ωr/2π 7409 MHz
Reservoir-transmon coupling χr/2π 3.09 MHz
Reservoir anharmonicity Krr/2π 12 kHz
Reservoir decay rate κ/2π 0.78 MHz
Cavity a frequency ωa/2π 4072 MHz
Cavity a-transmon |g〉-|e〉 shift χa/2π 1.89 MHz
Cavity a-transmon |g〉-|f 〉 shift χ

f
a /2π 5.81 MHz

Cavity a anharmonicity Kaa/2π 8 kHz∗

Cavity a T1 T1a 530 µs
Cavity a T2 T2a 400 µs
Cavity a |1〉a population ∼ 2%
Cavity b frequency ωb/2π 6094 MHz
Cavity b-transmon |g〉-|e〉 shift χb/2π 6.26 MHz
Cavity b-transmon |g〉-|f 〉 shift χ

f
b /2π 9.76 MHz

Cavity b anharmonicity Kbb/2π 71 kHz (81 kHz†)
Cavity b T1 T1b 216 µs
Cavity b T2 T2b 200 µs
Cavity b |1〉b population ∼ 1%
Cavity a-b cross-Kerr Kab/2π 48 kHz (53 kHz†)
Cavity a-r cross-Kerr Kar/2π 7 kHz
Cavity b-r cross-Kerr Kbr/2π 58 kHz

† Values measured in the presence of the relatively strong four-
wave mixing tone.
∗ Kaa is estimated from the measured Kab and Kbb.
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(a)

(b)

Eccosorb

FIG. 7. (a) The refrigerator and measurement wiring diagram. We have four signal generators which, with eight AWG channels,
make input signals for all the modes and FWM tone. The measurement setup shows that the drive signal for cavity b is generated by
mixing the signals from cavity a, the reservoir, and the FWM generators with three-port mixers and using the correct sideband filters.
(b) The high-purity aluminum cavity used in the experiment. The posts that give the storage-cavity modes are seen inside the aluminum
body, with the sapphire chip entering the cavity from a side tunnel. The chip is held by an aluminum clamp and the transmon-qubit
antenna is at equal distance from both of the posts. The cavity is mounted on a bracket that is placed inside a high-permeability
magnetic shield thermalized to the mixing chamber.

smearing out any phase coherence. We therefore eliminate
a phase degree of freedom by generating cavity b drive
from a reservoir, cavity a, and the four-wave mixing gener-
ators. As shown in Fig. 7(a), the signal from the generators
for the four-wave mixing pump and the cavity a drive are
mixed with a three-port mixer which, with a low-pass filter,
produces an output signal at ωa − ωp . This signal is again
mixed with the signal from the reservoir-drive generator
with a three-port mixer and a low-pass filter on the output
to produce ωr − ωa + ωp , thus generating a local oscilla-
tor for the IQ mixer, modulating the sideband for driving
cavity b.

3. Pump tuneup procedure

Given the presence of the storage-reservoir cross-Kerr
interaction, there is no perfect experimental pumping con-
dition that can exactly stabilize the PCS. In our exper-
imental procedure, with the intention of studying driven
dissipative dynamics, we aim to maximize the pair-photon
dissipation rate κab while empirically obtaining a steady
state with relatively large photon numbers and minimal
undesirable heating effects.

In order to maximize the ratio of the two-photon dis-
sipation rate to the single-photon loss rate in the cavities
κab/κa,b, a relatively strong FWM pump amplitude gab is
needed. We set the power of the FWM pump at a value
at which we start to observe a small measurable rise of
the excited state population of the ancilla transmon. The
power of the reservoir drive is set to displace the reservoir
to a few photons in its steady state, as can be measured
via the Stark shift and dephasing of the transmon. We start
by setting the frequency of the reservoir and FWM drive
to be on resonance with the reservoir ωr and the FWM
condition ωp = ωa + ωb − ωr, respectively. We also use
spectroscopy measurements to calibrate the Stark-shifted
mode frequencies, which give us improved estimates of the
pumping frequency condition. These two crudely set tones
allow preparation of some nontrivial pair-photon states
(e.g., with substantial |11〉 and |22〉 states) after 10–20 µs
of pumping time.

To calibrate the optimal frequency for the FWM pump
that maximizes κab, we start with the above crudely pre-
pared state and then attempt to apply only the mixing pump
at varying frequencies to evacuate photons in pairs. We
finely sweep through the FWM frequencies and measure
the population of |00〉 after a fixed amount of pumping
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FIG. 8. The density matrix from experiment versus the simulation. (a) The experimental density matrix ρM measured using the
quantum subspace-tomography method discussed in the main text for d = 2 after pumping for t = 15 µs and with a wait time of
tw = 4.5 µs. (b) The simulated density matrix with the system parameters in Table II and rates extracted from the time-domain data
fits as in Fig. 2, with the same t and tw.
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time. The FWM detuning �p at which we get the largest
|00〉 state gives the maximum κab. Experimentally, we
find �p = −125 kHz relative to the expected value from
undriven mode frequencies ωp = ωa + ωb − ωr, primarily
due to the Stark shift. We can extract the two-photon dis-
sipation rate κab from these decay measurements by fitting
them to simulations as discussed in Appendix C.

The next step is to tune the amplitude and frequency of
the reservoir drive to make a relatively large δ = 0 pair-
photon state with a Poisson-like distribution of Fock-state
amplitudes in line with the PCS distribution. We find that
the optimal reservoir-drive frequency is about −185 kHz
detuned from its bare frequency, which can be explained
by the cross-Kerr effect Ĥrk in the presence of storage pho-
tons and the ac Stark effect from the pump tone. Finally, in
a verification experiment depicted in Fig. 2(b), we measure
the cavity-photon population distribution after 15 µs of
stabilization drives with a fixed reservoir-drive condition
while varying the FWM frequency. This figure shows that
indeed the pair-photon drive is also most efficient when
we pump at the FWM frequency tuned up to the previ-
ously determined �p based on maximizing pair-photon
dissipation.

4. Readout

We perform a dispersive readout by measuring the com-
plex transmission coefficient from the reservoir mode that
we interpret as a point in the IQ plane. This is done by
preparing the qubit in the two states to be distinguished
(either |g〉-|e〉 or |e〉-|f 〉, where |g〉 is just an equilibrium
state reached after sufficient wait time; thus it includes a
small amount of thermal excitations) and then performing
a transmission measurement through the readout cavity to
determine the IQ point and repeating this process with suf-
ficient averaging. These two points are used to define a
projective axis that can be normalized such that the point
along this axis can be interpreted as the probability of
the qubit state. Our readout is placed at the reservoir fre-
quency corresponding to the qubit in |e〉 because this yields
good distinguishability for both |g〉-|e〉 and |e〉-|f 〉 for our
experimental parameter regime of χr > κ . Our measure-
ment efficiency is low due to the lack of a first-stage
parametric amplifier before the 4-K stage and additional
technical noise. As a result, our readout pulse has a rela-
tively long duration length of 6 µs, chosen to balance the
qubit relaxation error and the signal-to-noise ratio.

For spectroscopy measurements, as in Figs. 2 and 3, the
measured spectrum is fitted to a sum of Gaussian peaks
(since the qubit pulse is Gaussian) with a background off-
set value. The sum of the Gaussian peaks is then used
to renormalize the data to take into account experimental
imperfections (namely, incomplete rotations). The heights
of these normalized Gaussian peaks, which are roughly
(not exact due to higher-order nonlinearities) at frequency

−nχa − mχb, can then be interpreted as the population
of the |nm〉 state. Due to noise and imperfect calibration
of offset and peak height parameters in our fittings along
with small phase drifts, these fluctuations can lead to small
unphysical negative values, as seen in the spectroscopy
measurements.

Subspace-tomography measurements are, in essence,
spectroscopy measurements of the |e〉-|f 〉 transition for
selected components of the quantum state that have been
placed in the |e〉 manifold. In these tomographic mea-
surements, the |f 〉 state probability from the readout is
normalized by the sum of the two Gaussian peaks in the
same |e〉-|f 〉 spectroscopy without tomographic displace-
ment pluses. This normalization yields the relative fraction
of population within the subspace S (as plotted in Fig. 5)
in a self-calibrated manner, which is then used to com-
pute the relative coherence between the original two Fock
components.

For Wigner-tomography measurements, to symmetrize
systematic bias caused by transmon decoherence, each
data point is computed from the difference between two
measurements where the mapping of joint parity of the
storage modes and the qubit state is even (odd) → |e〉 (|f 〉)
and even (odd) → |f 〉 (|e〉) for the first and second runs,
respectively, thus mapping the values to the parity scale
between 1 and −1.

APPENDIX B: DRIVEN HAMILTONIAN AND
ADIABATIC ELIMINATION

1. Rotating-frame Hamiltonian transformation

In this appendix, we derive the four-wave mixing effect
of the off-resonant pump tone on the Josephson circuit
under the rotating-wave approximation, arriving at the
drive Hamiltonian in the rotating-frame equation [see Eq.
(7)]. This procedure is similar to various previous experi-
ments [29,32,55].

We start by writing our Hamiltonian as a sum of our
four modes (reservoir, r; qubit, q; storage a, a; storage b,
b) coupled to a Josephson junction with two drives (FWM
pump, p; reservoir drive, d) applied to the reservoir mode
[5]:

Ĥfull/� =
∑

m=q,r,a,b

ω̄mm̂†m̂ − EJ (cos(φ̂)+ φ̂2/2)

+ 2Re(εpe−iωp t + εde−iωdt)(r̂ + r̂†) (B1)

φ̂ =
∑

m=q,r,a,b

φm(m̂†+m̂). (B2)

The first term in Eq. (B1) represents the linear character of
each mode corresponding to ai. The Josephson junction is
represented by the cosine term, with EJ as the Josephson
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energy and φ̂ as the phase across the junction, decomposed
into the contributions from each mode with the contribu-
tion of φm to the zero-point fluctuations of φ̂. The two
drive terms are acting on the reservoir mode with complex
amplitudes εd and εp and frequencies ωd and ωp , respec-
tively, where the pump is a strong off-resonant tone and
the drive is a weak near-resonant tone with the reservoir
mode.

We are in a regime where the following inequality holds:

ωp ,ωd, ω̄m � εp � EJ

�
||φ̂||4/4!. (B3)

We now want to make a change of frame using
the following unitary to eliminate the fastest time
scales:

U = eiω̄qtq̂†q̂eiωdtr̂† r̂eiωdatâ†âeiωdbtb̂†b̂e−ξ̃p r̂†+ξ̃p ∗ r̂. (B4)

We are rotating out the qubit frequency ω̄q simply for con-
venience, as it does not change the rest of the analysis
in any meaningful way. We then rotate out the drive fre-
quency ωd on the reservoir mode so that the drive term is
stationary in the chosen frame. We then want to put our
storage modes in the drive frame of ωd + ωp . We can do
this by rotating out frequency ωda(ωdb) from mode a(b).
Any ωda,ωda that satisfy ωda + ωdb = ωd + ωp puts us in
the correct drive frame; thus there is some freedom as
to which frequencies we choose. Here, we choose a con-
stant offset(�sd/2) of ωda,ωdb from ω̄a, ω̄b, respectively,
such that ω̄a − ωda = ω̄b − ωdb = �sd/2. Finally, we want
to apply a displacement unitary to eliminate the time-
dependent amplitude (ξ̃p ) in the reservoir caused by the
pump tone to bring the effect of this amplitude into the φ̂
operator, allowing the effects on the other modes to become
directly apparent. Looking at times on the order or greater
than 1/κr, we can ignore the reservoir transient dynamics
and look at the steady-state response of our displacement
amplitude, as done in Ref. [29]:

ξ̃p = ξpe−iωp t,

ξp = −iεp

κr/2 + i(ω̄r − ωp)
≈ −iεp

κr/2 + i(ωr − ωp)
.

(B5)

The Hamiltonian in this new frame (Ĥ ′
full) now becomes

Ĥ ′
full/� = (ω̄r − ωd)r̂†r̂ +�sdâ†â

+�sdb̂†b̂ − EJ

�
(cos( ˜̂φ)+ ˜̂

φ2/2), (B6)

˜̂
φ =

∑

m=q,r,a,b

φm( ˜̂m + ˜̂m†)+ (ξ̃p + ξ̃p
∗
)φr, (B7)

˜̂q = q̂e−iω̄qt, ˜̂r = r̂e−iωdt,

˜̂a = âe−iωdat, ˜̂b = b̂e−iωdbt.
(B8)

We now expand the cosine term to fourth order, keep
only nonrotating terms in alignment with the rotating-wave
approximation, and separate the Hamiltonian into three
parts (Ĥ ′

full = Ĥfreq + ĤKerr + Ĥdrive) as defined below:

Ĥfreq = (−χqr|ξp |2)q̂†q̂

+ (ωr − ωd − 2Krr|ξp |2)r̂†r̂

+ (�sd − Kar|ξp |2)â†â

+ (�sd − Kbr|ξp |2)b̂†b̂, (B9)

ĤKerr =
∑

m=r,a,b

−Kmm

2
(m̂†m̂)2 − αq(q̂†q̂)2 − χqrq̂†q̂r̂†r̂

− Karâ†âr̂†r̂ − Kbrb̂†b̂r̂†r̂ − Kabb̂†b̂â†â (B10)

Ĥint = gabâ†b̂†r̂ + εdr̂†+h.c. (B11)

Hfreq gives the frequency shifts to all the elements and
the shifts from terms containing |ξp |2 are the ac Stark
shift effects from the pump tone. HKerr corresponds to
both the self- and cross-Kerr coupling terms, where Kmm =
EJ /(�)φ

4
m/2 and Kmm′ = EJ /(�)φ

2
mφ

2
m′ , in which m �= m′

and gab = φaφbφ
2
r ξp . Note that H0 in Eq. (3) is analogous

to HKerr with just a truncation of the allowed qubit states to
the |f 〉 state.

2. Semiclassical analysis of reservoir state

In this section, we perform a semiclassical analysis of
the Langevin equations of motion for the reservoir and
storage modes and show that the impact of the storage
states on the reservoir dynamics is quite small and warrants
treating the effect as a small perturbation. This condi-
tion forms the basis for the adiabatic elimination of the
reservoir mode in Appendix B 3.

We first assume that the qubit is in the ground state
during the stabilization. This leads us to work with the
Hamiltonian:

Ĥ = �dr̂†r̂ +�aâ†â +�bb̂†b̂

−
∑

m=r,a,b

Kmm

2
(m̂†m̂)2 − Kabâ†âb̂†b̂

− Karâ†âr̂†r̂ − Kbrâ†âr̂†r̂ + Ĥint, (B12)

where �d = (ωr − ωd − 2Krr|ξp |2),�a = (�sd − Kar
|ξp |2),�b = (�sd − Kbr|ξp |2). For simplicity, in the fol-
lowing analysis we focus on analyzing the δ = 0 storage
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state but the conclusion, as is explained later, is general.
In this state, our â†â and b̂†b̂ terms are equivalent; thus we
can group the storage-cavity self- and cross-Kerr terms into
one Kerr term, Keffâ†âb̂†b̂, where Keff = −Kab − Kaa/2 −
Kbb/2. This yields the following simplified Hamiltonian
(Ĥδ0) for a δ = 0 state:

Ĥδ0 =�dr̂†r̂ +�aâ†â +�bb̂†b̂

− Krr

2
(r̂†r̂)2 + Keffâ†âb̂†b̂

− Karâ†âr̂†r̂ − Kbrâ†âr̂†r̂ + Ĥint. (B13)

We now want to motivate the statement that the effect of
the storage modes on the reservoir is quite small compared
to both the effects of the pumping (gab) and the reservoir-
storage cross-Kerr (Kar, Kbr). The pumping effects can be
seen by looking at the Langevin equations for the classi-

cal amplitude analogs of 〈r̂〉 → r and
√

〈âb̂〉 → s in this
Hamiltonian. We can then obtain the steady-state solutions
to these Langevin equations:

d
dt

r = −iεd − (κr/2 + i�d)r − ig∗
abs2 = 0,

d
dt

s = −2igabs∗r + 2iKeff|s|2s = 0.
(B14)

From this, we can solve algebraically for the steady-state
mode amplitude:

r = εd

−|gab|2
Keff

+ i(κr+2i�d)
2

. (B15)

We are in the limit of |κr + 2i�d| � 2|gab|2/Keff, so we
can look at the mode amplitude as an uncoupled driven
mode with a perturbation from the coupling to the storage
cavity as

r ≈ r0 + δdisp,

r0 = 2εd

i(κr + 2i�d)
,

δdisp = − 4εd|gab|2
Keff(κr + 2i�d)2

.|δdisp| � 1

(B16)

For our experimental parameters, |r0| = 1.8. We note that
the storage-reservoir Langevin equation Eq. (B14) takes
a similar form as in previous single-mode two-photon
driven-dissipation experiments [29,31] but our system is
in a different parameter regime due to the presence of a
large Keff. In the absence of Keff, the steady-state r would
be close to 0 even if |r0| > 1.

While this is derived under the steady state and with
a δ = 0 state to more concretely illustrate the point, one

can more generally consider the “pull” that the storage
modes have on the reservoir as |gab|2/Keff, compare this
to the loss rate κr, and see that we are in a regime where
κr � |gab|2/Keff; thus the effect of the storage modes on
the reservoir state via the pumping effects is quite small.
Now, the storage-reservoir cross Kerr effects must be taken
into account. The cross-Kerr values will simply add a fur-
ther detuning on top of �d to the reservoir amplitude for
each number state of the storage. Since our pair-coherent-
state amplitude γ is on the order of the photon number
in each mode in the system for the δ = 0 state that we
are analyzing, we use this to represent the average pho-
ton number in the inequality. Thus, we must satisfy the
inequality κr � γ (Kar + Kbr) to ensure that the effects of
the storage-reservoir cross Kerr can be treated as a pertur-
bation on top of the bare reservoir amplitude. Since our
parameter regime satisfies κr � γ (Kar + Kbr), |gab|2/Keff,
we are well motivated to treat the reservoir amplitude as
an uncoupled amplitude r0 with a perturbation added to
account for the effect from the storage modes.

3. Adiabatic elimination of the reservoir mode

In this section, we use the above analysis of the reser-
voir dynamics as an uncoupled amplitude with a small
perturbation accounting for the storage mode effects to
adiabatically eliminate the reservoir mode. We do this by
going into a displaced frame of the reservoir mode using
the uncoupled mode amplitude r0, in which the resulting
reservoir state is solely from the perturbation effects of the
storage mode and hence remains close to vacuum. This
small resulting reservoir amplitude allows us to write the
density matrix as a perturbative expansion in the reser-
voir states. Then, using the fast time scale of κr, we can
adiabatically eliminate the reservoir mode, to arrive at
Eq. (8).

Using the above analysis of the reservoir mode, we
can apply a unitary transformation Udisp = e−r0 r̂†+r∗0 r̂ to Ĥ ,
resulting in Ĥ ′ = UdispĤU†

disp, to go into a frame where the
coherent state displacement on the reservoir mode is repre-
sented by just δdisp in addition to the effect on the amplitude
from the reservoir-storage cross-Kerr effects, which are
also small:

Ĥ ′ = �d(r̂†r̂ + r̂†r0 + r̂r∗
0 + |r0|2)+�aâ†â

+�bb̂†b̂ −
∑

m=r,a,b

Kmm

2
(m̂†m̂)2 − Kabâ†âb̂†b̂

− (Karâ†â + Kbrb̂†b̂)(r̂†r̂ + r̂†r0 + r̂r∗
0 + |r0|2)

+ gabâ†b̂†(r̂ + r0)+ εd(r̂†+r∗
0)

+ g∗
abâb̂(r̂†+r∗

0)+ ε∗
d (r̂ + r0). (B17)

We can first omit all constant-energy offset terms and
then combine the �dr0r̂† + h.c. terms with the resulting
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κr Lindbladian loss-operator terms of the same order from
the same unitary transformation to cancel out the εd terms,
yielding the following simplified Ĥ ′:

Ĥ ′ = �dr̂†r̂ +�aâ†â +�bb̂†b̂

−
∑

m=r,a,b

Kmm

2
(m̂†m̂)2 − Kabâ†âb̂†b̂

− (Karâ†â + Kbrb̂†b̂)(r̂†r̂ + r̂†r0 + r̂r∗
0 + |r0|2)

+ gabâ†b̂†(r̂ + r0)+ g∗
abâb̂(r̂†+r∗

0). (B18)

Now, we can group terms that are small and say that the
dimensionless quantities (γ (Kar + Kbr))/κr, δdisp, κa(b)/κr,
gab/κr, and Kaa(bb)/κr are on the order of ε, where ε � 1
and r0 ≈ O(1). Since, as explained earlier, our reservoir
state size is small, O(ε), in this displaced frame, to a good
approximation we can decompose our full density matrix
with both storage modes and the reservoir (ρabr) as follows,
where ρij signifies the reduced density-matrix element of
the storage cavities alone entangled with the reservoir state
|i〉 〈j |:

ρabr = ρ00 |0〉 〈0| + ε(ρ01 |0〉 〈1| + ρ10 |1〉 〈0|)
+ ε2(ρ11 |1〉 〈1| + ρ02 |0〉 〈2| + ρ20 |2〉 〈0|). (B19)

We now take �d = (�a − Kar|r0|2) = (�b − Kbr|r0|2) =
0 because, experimentally, we drive the reservoir on res-
onance after the Stark shift is accounted for and we cal-
ibrate our drives such that 2�sd = Kar|r0|2 + Kbr|r0|2 +
Kar|ξp |2 + Kbr|ξp |2. For a δ = 0 state: this calibrated
equality is analogous to setting (�a − Kar|r0|2) = (�b −
Kbr|r0|2) = 0. This brings us to the following master
equation for our density matrix ρabr:

d
dt
ρabr = −i[Ĥ ′, ρabr] + κrD[r̂]ρabr

+ κaD[â]ρabr + κbD[b̂]ρabr. (B20)

We can now use this to derive the dynamics of just the
storage cavities (ρ) from obtaining Trr[ρabr] = ρ00 + ε2ρ11
up to second order in ε. First, looking at the evolution of
ρ00 by multiplying our master equation by 〈0| and |0〉, we
obtain

1
κr

d
dt
ρ00 = − i

κr
〈0| [Ĥ ′, ρabr] |0〉 + ε2ρ11

+ κa

κr
D[â]ρ00 + κb

κr
D[b̂]ρ00

= −iε2(Â†ρ10 − ρ01Â)

− i
[

−Kaa

2κr
(â†â)2 − Kbb

2κr
(b̂†b̂)2 − Kab

κr
â†âb̂†b̂

+gab

κr
â†b̂†(r0)+ gab

κr

∗
âb̂(r∗

0), ρ00

]

+ ε2ρ11 + κa

κr
D[â]ρ00 + κb

κr
D[b̂]ρ00, (B21)

where A ≡ 1/εκr(g∗
abâb̂ − Karr0â†â − Kbrr0b̂†b̂), thus mak-

ing ||A|| ≈ O(1). Now, we can find similar evolution
equations for ρ10 and ρ11, working only up to zeroth order
in ε:

1
κr

d
dt
ρ10 = −iÂρ00 − 1

2
ρ10 + O(ε),

1
κr

d
dt
ρ11 = −i(Âρ01 − ρ01Â†)− ρ11 + O(ε).

(B22)

Looking at the equation for ρ10, we can see that the first
term involving ρ00 is time dependent, making an exact
solution difficult, but the time rate of change can be seen
to be slow, on the order of ε, whereas the second term,
which acts as a damping term, is of order unity. Since the
effective driving term is slowly changing and the damping
term is relatively much stronger, we can impose an adia-
batic elimination and take ρ10 to be in its steady state. The
same argument would apply to ρ11, yielding

ρ10 = −2iÂρ00 + O(ε),
ρ11 = −i(Âρ01 − ρ10Â†)+ O(ε) = 4Âρ00Â† + O(ε).

(B23)

Substitution of the above expressions for ρ00, ρ10, and ρ01
into Eq. (B21) yields the following master equation:

d
dt
ρ = −i[Ĥred, ρ] + κaD[â]ρ + κbD[b̂]ρ

+ D
[

2g∗
ab√
κr

âb̂ − 2Karr0√
κr

â†â − 2Kbrr0√
κr

b̂†b̂
]

ρ,

(B24)

where

Ĥred = −Kaa

2
(â†â)2 − Kbb

2
(b̂†b̂)2

− Kabâ†âb̂†b̂ + εabâ†b̂† + ε∗
abâb̂ (B25)

εab = gabr0, κab = 4|gab|2
κr

. (B26)
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4. Ideal steady-state PCS without reservoir cross-Kerr

In this section, we show that the ideal pair-photon
driven-dissipation process, in the absence of spurious
reservoir cross-Kerr and single-photon loss, stabilizes a
PCS as discussed in Table I.

Starting from Eqs. (B24) and (B25), this ideal scenario
results in the equation of motion

ρ̇ = −i(Ĥidealρ − ρĤ †
ideal)+ κabâb̂ρâ†b̂†, (B27)

Ĥideal = ε∗
abâb̂ + εabâ†b̂†+Keffâ†b̂†âb̂ − i

κab

2
â†b̂†âb̂.

(B28)

If the system is in a PCS, |γ , δ〉, we can write the instanta-
neous density-matrix time evolution as

ρ̇ =(ε∗
abγ − εabγ

∗ + iκab|γ |2)ρ
+ (εab + Keffγ − i

κab

2
γ )â†b̂†ρ

− (ε∗
ab + Keffγ

∗ + i
κab

2
γ ∗)ρâb̂. (B29)

Setting the terms that distort ρ to 0 will give a steady-state
solution that yields the following expression for the PCS
state size γ :

γ = εab
iκab

2 − Keff
. (B30)

APPENDIX C: NUMERICAL SIMULATION
METHODS

We numerically simulate the PCS stabilization with two-
photon pumping and dissipation that compares well with
the experiment. The data shown in Fig. 2(d) are a mea-
surement of the storage-cavity population while pumping
the PCS for variable time and the inset is measuring the
population when only the FWM drive is on, causing two-
photon dissipation to start in a PCS. The Hamiltonian used
in the simulation to fit the two-photon pumping and dissi-
pation is unitary transformed, so that the PCS is stationary
in the drive frame. The reservoir mode is adiabatically
eliminated, resulting in a reduced Hamiltonian used in the
master equation [see Eq. (8)] in the main text. We rewrite
the master equation with the single-photon loss operators
for both the storage cavities:

∂tρ = −i[Ĥsk + (εabâ†b̂† + h.c.), ρ]

+ D[
√
κabâb̂ + ζaâ†â + ζbb̂†b̂]ρ

+ D[
√
κaâ]ρ + D[

√
κbb̂]ρ, (C1)

where Ĥsk is defined in Eq. (5) and

ζa = −2Karr0√
κr

, ζb = −2Kbrr0√
κr

.

The storage-cavity single-photon loss rates, κa = 1/T1a
and κb = 1/T1b, Kerr, and cross-Kerr values measured
during pumping are listed in Table II. The complex param-
eter r0 = 2εd/(iκr − 2�d), first defined in Eq. (B16), is
the reservoir displacement. We displace the reservoir with
εd/2π = 780 kHz at a detuning �d/2π = −185 kHz
which, with κr/2π = 780 kHz, results in |r0| = 1.8.

Starting in a PCS |γ , δ = 0〉 as shown in Fig. 2(c), we
measure the population of states at different times tw for
which only the FWM tone is on [Fig. 2(d inset)]. In the
absence of the reservoir drive, the FWM drive should
only cause two-photon dissipation D[

√
κabâb̂]. Using Eq.

(C1) with κab as the only fit parameter and no drive
term, εab = 0, the time scale for two-photon dissipation
can be extracted. The dephasing rates ζa = ζb = 0, since
there are no photons in the reservoir and thus there is
no dephasing caused by the storage-reservoir cross-Kerr
Kar/br. In the second part, we fix the two-photon dissipation
κab/2π = 12.5 kHz and vary εab. We estimate the dephas-
ing rates from cavities a and b, |ζa|2/2 = 2π × 0.4 kHz
and |ζb|2/2 = 2π × 28 kHz, respectively. We find the two-
photon pumping rate to be εab/2π = 99 kHz. The oscilla-
tions in the pumping time-domain data are the result of
the weak dissipation rate compared to Keff. The simulation
shows that with Keff � κab, the damping of the oscillation
from two-photon dissipation alone should be slower than
we see in the experiment and the state is predicted by the
equation for γ as in Table I. The state is smaller, with
more PCS-like distribution. However, the modified dissi-
pation operator to include dephasing effects of the cross-
Kerr as derived in Appendix B produces faster damping,
mimicking the experimental PCS distribution and size.

Using the equation κab/2π = 4|gab|2/κr = 12.5 kHz,
we find gab/2π = 50 kHz. The Stark shift that we mea-
sure on the qubit due to the strong cw tone is approx-
imately 4.3 MHz, which makes the fourth-order FWM
term in the cosine expansion gab/2π = 60 kHz. This value
of gab estimates εab/2π = 120 kHz and κab/2π = 18.4
kHz—which, to a good approximation, is in agreement
with the simulation. With the extracted two-photon dissi-
pation and pumping rates, we simulate the coherence and
phases over time in a subspace of the state [see Figs. 6(b)
and 6(c)].

APPENDIX D: GENERAL PROTOCOL OF
SUBSPACE TOMOGRAPHY

Using a three-level ancilla, we may use the following
protocol for quantum subspace tomography as depicted in
Fig. 9:
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V
1

V
2 V

3

FIG. 9. The general protocol of subspace tomography. The
occupied areas of the rectangles loosely depict nonzero regions
of the cavity density matrices, where ρss and ρs̄s̄ are blocks of
the total-storage density matrix ρ. There are coherence elements
between these two blocks that are not depicted because they do
not impact the experiment at hand. The goal here is to isolate
M̂D̂ρssD̂†M̂ in the |f 〉 subspace using the operations V1, V2, and
V3, as shown in the image.

(0) Start with the system-ancilla state ρ ⊗ |g〉 〈g|.
(1) Perform the unitary evolution V̂1 = exp

[ − i(π)/
(2)P̂ ⊗ (|e〉 〈g| + |g〉 〈e|)], which transforms the
full density matrix into ρ1 = V̂1(ρ ⊗ |g〉 〈g|)V̂†

1 =
ρSS ⊗ |e〉 〈e| + (· · · ), where the terms (· · · ) do not
contribute to |e〉 state population or later measure-
ment.

(2) Perform the unitary evolution that preserves the
ancilla basis states, V̂2 = ∑

j =g,e,f Ûj ⊗ |j 〉 〈j |. For
a bosonic system, we may just apply displace-
ment operation Ûe = D̂, which transforms the den-
sity matrix into ρ2 = V̂2ρ1V̂†

2 = D̂ρSSD̂† ⊗ |e〉 〈e| +
(· · · ).

(3) Choose the readout projector operator M̂ (e.g., the
photon-number state projection |nn〉 〈nn|) and per-
form the unitary evolution V̂3 = exp

[ − i(π)/(2)M̂
⊗ (|f 〉 〈e| + |e〉 〈f |)]. The density matrix becomes
ρ3 = V̂3ρ2V̂†

3 = M̂D̂ρSSD̂†M̂ ⊗ |f 〉 〈f | + (· · · ).
(4) Measure the probability in |f 〉 state, Tr[ρ3 |f 〉 〈f |] =

Tr[M̂D̂ρSSD̂†M̂ ], which is sufficient for subspace
tomography.

In principle, a measurement of the ancilla after step 1
(postselect on |e〉) can be used to physically project the
cavity state to ρSS for subsequent subspace tomography.
However, this requires highly ideal measurement proper-
ties including high single-shot fidelity, quantum nonde-
molition on the ancilla, and no spurious back action on
the cavity system. In comparison, in the above protocol,
the only requirement on the measurement is some degree
of distinguishing ability between |e〉 and |f 〉. The mea-
surement outcome can be scaled from calibrated readout

contrast between |e〉 and |f 〉 and any spurious readout sig-
nal from |g〉 only contributes to a background independent
of D̂ and M̂ .

APPENDIX E: FREQUENCY MATCHING IN
SUBSPACE TOMOGRAPHY

In a typical Ramsey-type experiment, one considers the
rotating frame of a qubit or a cavity set by its first excita-
tion pulse and the phases of its subsequent control pulses
(usually at the same frequency) at any later time can be
defined relative to the first pulse and programmed in the
same rotating frame. In our subspace-tomography proto-
col, because individual pairwise coherence measurements
involve ancilla rotation pulses of different frequencies, it
is nontrivial to ensure that (1) the subspace-tomography
pulse sequence carried out at any time (t or tw) informs the
superposition phase of cavity states consistently in a pre-
defined frame and (2) the superposition phases of different
Fock pairs are extracted consistently in the same rotat-
ing frame and hence can be combined in the same density
matrix.

In our experiment, we enforce a “closed-loop”
frequency-matching condition when choosing the fre-
quency of the cavity displacement pulses (ω3 and ω4) in
each of the 2D subspace-tomography measurements,

ω3 + ω4 = ωp + ωd − (ω1 − ω2), (E1)

where ωp and ωd are the stabilization drive frequencies. ω1
and ω2 are the frequencies of the photon-number-selective
ancilla pulses and they must precisely match the disper-
sively shifted ancilla frequencies, with the dispersive shift

R
ge

1 2Rge

D
a 

D
b 

43

Stabilized state

p
+

d

FIG. 10. A visual depiction of the pulse sequence used for
the subspace tomography to determine the ρ11,22 element while
tracking the |12〉 state as a specific example. The frequencies
of the four pulses applied in this tomographic analysis and
the frequencies of the original cavity stabilization drives sat-
isfy the “closed-loop” condition for phase locking: ω1 − ω2 =
ωp + ωd − ω3 − ω4, which is the same effective equality as in
Eq. (E5). Note that ω1 − ω2 = χ22 − χ11 ≈ χqa + χqb but is not
exactly equal because of the sixth-order dispersive shifts.
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being referred to as −χjk for the Fock state |jk〉 of the
cavities. The closed loop in measuring the |11〉-|22〉 inter-
ference as an example is illustrated in Fig. 10. While one
could in principle account for accumulated phases from the
relative timing and relative frequency difference of indi-
vidual pulses without this condition, this strategy allows
us to conveniently measure the two-cavity state in the
“pump frame” defined by the two stabilization drives self-
consistently. It is important to note that the main reason
why it is important to satisfy this equality experimentally is
that the dispersive shifts on the qubit due to different num-
ber states (χjk) are not equal to the corresponding multiples
of χqa and χqb, i.e., χjk �= jχqa + kχqb, due to higher sixth-
order terms in the cosine expansion of our Hamiltonian that
have been neglected. Due to these neglected higher-order
terms, ω3 and ω4 must be determined from the experimen-
tally measured χjk values for each pair of number states to
satisfy the equality.

In the following, we show how our subspace-
tomography protocol faithfully extracts the superposition
phase �jj −�kk between two Fock components |jj 〉 and
|kk〉 of the cavity state as defined in the pump frame. (The
analysis is easily extensible to δ �= 0 states.) In this anal-
ysis, we work in a rotating frame in which the transmon
rotates with frequency ωq and the two cavities rotate by
a combined frequency ωp + ωd. (More specifically, cav-
ity a rotates by ωa −�sd/2 and cavity b rotates by ωb −
�sd/2 where�sd = (ωa + ωb)− (ωp + ωd)). In this rotat-
ing frame, the frequencies of the four tomography tones,
ω1, ω2, ω3, and ω4 are on the order of the dispersive shifts
and the eigenfrequencies of the joint Fock states |jj 〉 are

ωjjg = j�sd − Kabj 2 − (Kaa + Kbb)j (j − 1)/2, (E2)

ωjje = j�sd − Kabj 2 − (Kaa + Kbb)j (j − 1)/2 − χjj ,
(E3)

for the transmons in |g〉 and |e〉, respectively.
We now track the phase accumulation on the |jj 〉 com-

ponent of the cavity state over the three time steps of
a subspace tomography: first, the wait time (tw a few
microseconds after the PCS is made; next, the duration
of our selective qubit pulse (δtq = 2 μs) that excites it
to be entangled with |e〉; and, finally, the duration of our
displacement cavity pulses (δtd = 24 ns) to create inter-
ference of |jje〉 versus a different cavity state. The short
duration and therefore the broad selectivity of our dis-
placement cavity pulses gives us the freedom to vary their
frequencies to satisfy this closed-loop condition without
needing to worry about the frequencies being too far from
the desired cavity states to be displaced. During the first
wait-time period (tw), the qubit remains in |g〉, thus accu-
mulating a phase ωjjgtw. During the qubit-pulse step (δtq),
the generator for the qubit pulse is rotating in a different

frame with a frequency offset of −χjj , thus leading to a
phase offset of −χjj (tw + δtq) from the phase imparted by
the generator, since the generator would have been accu-
mulating this phase through both time periods tw and δtq.
We can use the same time steps here for different genera-
tors in different frames because they all share a common
reference of how t = 0 is defined, where any reference
point of t = 0 is valid provided that it is consistent among
all generators. For our final time period, we have a state
phase accumulation from the state with the qubit in |e〉
giving ωjjeδtd in addition to the phase imparted by our dis-
placement pulse. The displacement pulses are in different
rotating frames with a combined frequency of ω3 + ω4.
Taking the state that we are interfering with as |kk〉, this
imparts a phase of (ω3 + ω4)|k − j |(tw + δtq + δtd), where
the |k − j | factor comes from the fact that the phase gets
imparted for each excitation traded. With this, we can sub-
tract the accumulated phases between |jj 〉 and |kk〉 over
the total time ttot = tw + δtq + δtd, where we are track-
ing state |jj 〉 so that is the only one that will receive the
ω3 + ω4 term. The state chosen to be tracked here does not
matter, so this is still a general treatment, with the phase
subtraction being

�jj −�kk + (ωjje − ωkke + (ω3 + ω4)|k − j |)ttot

= �jj −�kk + (ωjjg − ωkkg + (χkk − χjj

+ |k − j |(ω3 + ω4))ttot.

(E4)

It is clear that we can simply calibrate our ω3,ω4 for each
set of interference measurements on states |jj 〉 and |kk〉 to
satisfy the equality

χjj − χkk = |k − j |(ω3 + ω4), (E5)

so we can neglect a large part of Eq. (E4), leaving only
�jj −�kk + (ωjjg − ωkkg)ttot. It is important to note that
this cancellation we have imparted gets rid of any terms
that could have contributions from higher-order neglected
terms mentioned earlier and also allows an arbitrary choice
of a consistent t = 0 definition across generators. This
leaves us with the simple linear phase accumulation terms
ωjjg and ωkkg that can be simply calculated and subtracted
away, leaving the desired phase difference of �jj −�kk.
This linear phase accumulation from ωjjg − ωkkg can be
seen for different states in Fig. 6(a) at different tw values,
allowing us to linearly extrapolate the original phase from
the ttot times.

One can think of this method in a more direct intuitive
way by looking at the case of isolating |11〉 and |22〉 to
determine the coherence element ρ11,22 and seeing that on
top of the desired �22 −�11 and (ω22g − ω11g)ttot phase
contributions, there will be a constant phase accumulation
over time with frequency of −χ22 and −χ11 on the |11〉
and |22〉 states, respectively. This is because while the cav-
ity state |11〉 (|22〉) is entangled with the qubit in |g〉, the
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generator that will send the pulse out to flip the state is
rotating with a frequency of −χ11(−χ22), thus imparting
the accumulated phase from this frequency difference, and
after the rotation, there will be the same frequency differ-
ence due to the fact that the qubit is now in |e〉, so it will
also rotate at a frequency of −χ11(−χ22) in this frame;
so in effect this frequency accumulation will always be
present. As mentioned earlier, there will additionally be the
phase imparted from the displacement pulse, so we sim-
ply need to tune the ω3 and ω4 values to satisfy the above
inequality in Eq. (E5) to cancel out the effects from the
−χ11, −χ22 terms, thus leaving only the desired phase dif-
ference of �22 −�11 and the linear phase accumulation
from ω22g − ω11g , which can easily be subtracted away.
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