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The ground state of the spin-1 Affleck, Kennedy, Lieb, and Tasaki (AKLT) model is a paradigmatic
example of both a matrix product state and a symmetry-protected topological phase and additionally
holds promise as a resource state for measurement-based quantum computation. Having a nonzero corre-
lation length, the AKLT state cannot be exactly prepared by a constant-depth unitary circuit composed of
local gates. In this work, we demonstrate that this no-go limit can be evaded by augmenting a constant-
depth circuit with fusion measurements, such that the total preparation time is independent of system size
and entirely deterministic. We elucidate our preparation scheme using the language of tensor networks
and, furthermore, show that the Z2 × Z2 symmetry of the AKLT state directly affords this speed-up over
previously known preparation methods. To demonstrate the practical advantage of measurement-assisted
preparation on noisy intermediate-scale quantum (NISQ) devices, we carry out our protocol on an IBM
Quantum processor. We measure both the string order and entanglement spectrum of prepared AKLT
chains and, employing these as metrics, find improved results over the known (purely unitary) sequential
preparation approach. We conclude with a demonstration of quantum teleportation using the AKLT state
prepared by our measurement-assisted scheme. This work thus serves to provide an efficient strategy to
prepare a specific resource in the form of the AKLT state and, more broadly, experimentally demon-
strates the possibility for realizable improvement in state preparation afforded by measurement-based
circuit depth reduction strategies on NISQ-era devices.
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I. INTRODUCTION

The efficient preparation of physically interesting and
useful quantum states is a vital ingredient across quan-
tum information science, from the fundamental study of
quantum phases of matter [1,2] to varied applications such
as measurement-based quantum computation (MBQC)
[3,4], quantum error correction [5], and quantum sensing
[6]. Consequently, the development of resource-efficient
state-preparation routines is a task of great importance,
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particularly for implementation on noisy intermediate-
scale quantum (NISQ) devices. Especially advantageous
are protocols capable of deterministically preparing non-
trivial entangled resource states in constant time, i.e., with
a total run time independent of the size of the state.

However, many states of interest—particularly those
with nontrivial topological properties—cannot be prepared
from a product state by a constant-depth circuit composed
of unitary local gates, instead requiring a circuit of depth
scaling with system size [7,8]. This presents a major road-
block for the preparation, study, and application utility
of classically intractable many-body states on quantum
computers, particularly in the NISQ era, where quantum
processors are limited to relatively shallow circuits due to
decoherence.

A notable instance of a state that cannot be prepared
exactly by a constant-depth local unitary circuit is the
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ground state of the spin-1 Affleck-Kennedy-Lieb-Tasaki
(AKLT) model. Here referred to simply as the AKLT state,
it is a paradigmatic example of both a matrix product
state (MPS) and a symmetry-protected topological (SPT)
phase [9] and additionally holds promise as a resource
for MBQC [10–14]. While its SPT order prohibits its
constant-time preparation from a product state with local
unitary gates preserving symmetry, because the AKLT
state has a nonzero correlation length, a stronger statement
can be made: it cannot be prepared by any constant-
depth (local) unitary circuit. This is due to the fact that,
under evolution of a constant-depth circuit, the correlator
of any two local operators vanishes outside of a causal
light cone [7]. Known methods to prepare the AKLT
state include sequential unitary, [15,16], dissipative [17],
adiabatic [18], and nondeterministic measurement-based
[13,19,20] schemes, all of which require preparation times
that scale with the system size. In this work, we overcome
this limitation.

Although purely unitary circuits provide a natural
framework for the preparation (and classification) of quan-
tum phases of matter from a quantum many-body perspec-
tive [8], general quantum computational tasks leverage a
broader toolbox consisting of local operations and classical
communication (LOCC) and efforts to classify states under
this paradigm are under way [21,22]. To that end, several
recent theoretical proposals have shown that measurement,
in addition to unitary evolution, can aid in the prepara-
tion of certain long-range entangled states including the
Greenberger-Horne-Zeilinger (GHZ) state, toric code, and
states with non-Abelian topological orders [23–26].

Here, we blend together LOCC-assisted circuits and
tensor-network representations to demonstrate that the
spin-1 AKLT state can be prepared using a constant-depth
circuit augmented by measurements, such that the total
preparation time is independent of the system size. The
core idea behind our scheme is to use a variant of the
sequential MPS preparation protocol outlined in Ref. [15]
to prepare small AKLT chains and subsequently “fuse”
them together using Bell measurements, similar in spirit
to recent proposals for fusion-based quantum computa-
tion [27]. While the individual measurement outcomes are
inherently probabilistic, we show that, remarkably, the pro-
tocol can be made entirely deterministic by leveraging the
on-site Z2 × Z2 symmetry of the AKLT state, thus stand-
ing in contrast to known probabilistic measurement-based
schemes to prepare the AKLT state [13,19,20].

We demonstrate the practical advantage of our
measurement-based approach to state preparation by car-
rying out experiments on IBM Quantum processors. We
prepare AKLT states of up to N = 6 spin-1 sites using our
measurement-assisted preparation scheme (requiring 18
qubits in total) and, for comparison, carry out companion
experiments using a purely unitary sequential approach.
We thoroughly validate prepared states by measuring both

their string order and entanglement spectra. We find that
our measurement-assisted scheme outperforms the purely
unitary preparation, even for the small system sizes studied
here. To further validate the prepared state and demon-
strate that our measurement-assisted scheme leaves ample
circuit depth for postpreparation utility, we carry out a
quantum teleportation protocol using the prepared AKLT
state. For our longest prepared chains, we demonstrate
teleportation fidelities above 76% for all target states, sur-
passing the classical limit of 2/3 [28]. Finally, we show
that teleportation fidelities can be further enhanced to
exceed 99% when combined with purification techniques
in postprocessing.

The aim of this paper is twofold. First, we propose
and experimentally demonstrate the measurement-assisted
constant-time preparation of a specific topologically non-
trivial resource state, useful for applications ranging from
quantum teleportation and MBQC [10–13] to blind quan-
tum computation [29] and remote state preparation [30].
Second, and more broadly, this work serves as an exper-
imental demonstration of the practical utility and readily
available advantage that measurement-assisted prepara-
tion schemes—a topic of rapidly advancing theoretical
interest [23–26]—can provide over their purely unitary
counterparts, even for relatively small system sizes.

The remainder of this work is organized as follows.
In Sec. II, we briefly review the AKLT model and dis-
cuss the properties of its ground state. In Sec. III, we
present our measurement-assisted scheme to prepare the
AKLT state. We begin with a detailed discussion of the
sequential preparation of a generic translationally invariant
MPS (Sec. III A) and follow this with a sequential prepa-
ration scheme specific to the AKLT state (Sec. III B). We
build upon these results to demonstrate how individually
prepared MPSs can be fused together using Bell mea-
surements with probabilistic outcomes. We follow with a
recipe that leverages Z2 × Z2 symmetry to convert this
probabilistic approach into one that is entirely determin-
istic for the AKLT state, thereby enabling its preparation
with a constant-depth circuit augmented by measurements
(Sec. III C).

In Sec. IV, we present our experiments on IBM
devices, beginning with the preparation of our “building-
blocks”—AKLT chains of two sites (Sec. IV A). We
follow this with a presentation of experiments prepar-
ing longer chains of up to N = 6 sites. We use string
order and entanglement spectrum measurements to val-
idate the preparation and, furthermore, compare results
from the measurement-assisted and sequential approaches
(Sec. IV B). Finally, we carry out quantum teleportation
experiments on an IBM device using the AKLT state pre-
pared by our measurement-assisted approach as a resource
(Sec. IV C). We conclude in Sec. V with a discussion of
our findings and some brief comments on future directions,
including possible extension to higher dimensions.
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II. REVIEW OF THE AKLT MODEL

The AKLT model describes a one-dimensional (1D)
spin-1 chain imbued with both bilinear and biquadratic
nearest-neighbor interactions:

H =
∑

i

�Si · �Si+1 + 1
3
(�Si · �Si+1)

2. (1)

Initially proposed to gain insight into Haldane’s conjec-
ture that the Heisenberg model has a finite energy gap and
exponentially decaying correlations for integer spin, the
AKLT model has remained of considerable interest since
its introduction more than three decades ago.

The AKLT model provides a paradigmatic example of
SPT order [9,31], i.e., it’s ground state (the AKLT state)
cannot be prepared by a constant-depth local unitary cir-
cuit that preserves its protecting symmetry. In the case of
the Haldane phase (which encompasses the AKLT model),
it has been shown that any one of time-reversal symmetry,
spatial reflection symmetry, or dihedral Z2 × Z2 symmetry
(corresponding to local π rotations about two orthogonal
axes at every site) is sufficient for protection [9,32]. Con-
sequently, the AKLT state displays features emblematic of
a SPT phase, such as fractionalized excitations at the edges
and a hidden string order.

Not unrelated to its SPT order [33,34], the AKLT state
has been shown to be a useful resource state for quan-
tum information science. Most notably, it was one of the
first discovered entangled resources for MBQC beyond the
cluster state model [10,11]. As the AKLT state is the exact
gapped ground state of a Hamiltonian with two-body inter-
actions (in contrast to the parent Hamiltonian of the cluster
state, which has higher-body interactions [35]), it carries
significant potential as a practically realizable resource
with protection against local symmetry-preserving Hamil-
tonian noise [12,13]. Although a single 1D AKLT state
encodes just a single qubit and is therefore not sufficient for
universal MBQC, a hybrid scheme that combines multiple
1D AKLT states with circuit-model logical two-qubit gates
to achieve universal computation has been proposed [12].
Furthermore, the spin-3/2 AKLT state on a honeycomb
lattice has been shown to be universal [14,36].

As shown in Fig. 1, the spin-1 AKLT state can be under-
stood as a chain of virtual spin-1/2 pairs (i.e., subsystems
with dimension D=2) alternating between a singlet and
triplet configuration, with the latter corresponding to indi-
vidual spin-1 sites. Using this intuition, the AKLT state
can be written exactly as an MPS, here with open boundary
conditions:

|�〉 =
∑

�m
〈L| Pm1SPm2S . . .PmN |R〉 | �m〉,

=
∑

�m
〈L| Am1Am2 . . .AmN−1PmN |R〉 | �m〉. (2)

(a)

(b)

FIG. 1. (a) An illustration of the spin-1 AKLT state as a
valence-bond solid. The ground state of the AKLT state is most
intuitively constructed by considering each spin-1 site as being
composed of virtual spin-1/2 pairs (gray circles), with intersite
pairs in the singlet state and intrasite pairs projected onto the
triplet subspace. (b) A diagram of the MPS representation of the
AKLT state, with left and right boundary conditions |L〉 and |R〉
corresponding to the state of the free edge qubits. For each ten-
sor, vertical legs represent physical indices and horizontal legs
represent virtual indices. The connected horizontal lines between
adjacent tensors indicates contraction.

In the above, S and Pmi are 2 × 2 matrices encoding
coefficients of singlet and triplet states (e.g., such that
|s〉 = ∑

ij Sij |ij 〉 is the singlet state for the qubits labeled
i and j ) and �m is shorthand for the ensemble of physical
indices mi ∈ {+, 0, −} corresponding to the three distinct
eigenstates of Sz with eigenvalues +1, 0, and −1, respec-
tively. In the second line, we define Ami = PmiS, where
A− = −√

2/3 σ−, A0 = −√
1/3 σ z and A+ = √

2/3 σ+.
The AKLT state |�〉 is thus an MPS of bond dimension
D = 2 and physical dimension d = 3, the former referring
to the dimensions of the contracted indices and the latter to
the physical spin-1 degrees of freedom.

For the case of open boundary conditions, the ground
state of the AKLT model is fourfold degenerate, here
understood through the invariance of 〈�|H |�〉 upon par-
ticular choice of boundary conditions 〈L| and |R〉. This
freedom is a manifestation of fractionalized spin-1/2
degrees of freedom at the edges, a phenomenon symp-
tomatic of the underlying SPT order [2,37]. Remarkably,
these degrees of freedom are physical and observable
[38,39], despite the uncoupled system consisting of only
spin-1 particles. In the case of periodic boundary condi-
tions, the ground state is unique and corresponds to the
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edge spins being in the singlet state,

|�〉 =
∑

�m
Tr

(
Am1Am2 . . .AmN−1AmN

) | �m〉. (3)

Although the exponential decay of spin-spin correla-
tions 〈Sz

i Sz
i+�〉 ∼ e−�/ξ suggests an apparent featurelessness

of the AKLT chain, further inspection reveals a hidden
antiferromagnetic ordering of the spin-1 sites, explained as
follows: using +, −, and 0 to denote the spin-1 eigenstates
of Sz with eigenvalues +1, −1 and 0, the AKLT state is
composed only of configurations where + and − alternate,
with any number of intermediate sites in the state 0. For
example, the configuration | + 0 − 0 0 + −〉 is allowed,
whereas | + + − 0 0 + −〉 is disallowed. This hidden order
is characterized by the string-order parameter [40],

〈Oz
str〉i,i+� = 〈Sz

i

i+�−1∏

j =i+1

eiπSz
j Sz

i+�〉 , (4)

which takes on a finite value throughout the Haldane
phase, approaching −4/9 for � → ∞ at the AKLT
point [41].

III. PREPARING THE AKLT STATE

In this section, we introduce our measurement-assisted
procedure. For completeness, we note that several
approaches to prepare the AKLT state are known, includ-
ing sequential unitary, [15,16], dissipative [17], adiabatic
[18], and nondeterministic measurement-based [13,19,20]
strategies, all of which require preparation times that scale
with the system size.

A particularly straightforward (nondeterministic)
approach involves preparation of intersite qubit pairs in
the singlet state and subsequent probabilistic application
of the (nonunitary) triplet subspace projector to intrasite
pairs, in analogy to the virtual spin-1/2 construction of
the AKLT state in Fig. 1. This strategy has originally
been employed in Ref. [13] in a photonic platform and
more recently implemented on an IBM Quantum device
in Ref. [20] by invoking ancilla qubits to explicitly block
encode the triplet projectors. However, the success proba-
bility of this approach exponentially decays approximately
as (3/4)N , introducing a significant repetition overhead for
all but the smallest chains. This approach therefore stands
in stark contrast to the method introduced and experimen-
tally demonstrated here, which is entirely deterministic,
with a preparation time independent of N .

We begin by reviewing the sequential preparation of
a generic translationally invariant MPS [15] and, follow-
ing this, we illustrate its application to the spin-1 AKLT
state. Building upon this framework, we show how Bell
measurements, together with the Z2 × Z2 symmetry of
the AKLT state, can be leveraged to deterministically

fuse individual AKLT chains and ultimately convert the
sequential (linear-depth) preparation algorithm into one
that is constant depth and deterministic.

A. Sequential preparation of a generic MPS

For both completeness and clarity, it is simplest to first
consider the sequential generation of an arbitrary trans-
lationally invariant MPS with bond dimension D of the
form

|�〉 =
∑

�m
〈L| Am1Am2Am3 . . .AmN |R〉 | �m〉 , (5)

describing a 1D chain of spin-s particles. While |R〉 and
〈L| correspond to the right and left boundary conditions
of the spin chain, it is helpful to reinterpret them as the
initial and final states of some subsystem in a fictitious
Hilbert space of dimension D, often termed the bond, vir-
tual, or correlation space. Through this lens, the matrices
Am appear as (possibly nonunitary) operators acting on a
virtual subsystem.

This analogy is made stronger by tracing out the spin-
s degrees of freedom, revealing that the reduced density
matrix evolves according to the map �(ρ) = ∑

m AmρAm†.
We note that any MPS can be cast into canonical form
such that

∑
m Am†Am = 1 (which we assume to be the case

without loss of generality in the remainder of this work),
in which case � becomes a completely positive trace-
preserving (CPTP) map, or quantum channel, and Am the
corresponding Kraus operators.

Because its evolution is described by a CPTP map, it is
always possible to embed the bond-space subsystem in a
larger Hilbert space that evolves unitarily (via the Stine-
spring dilation theorem). We take as our larger Hilbert
space that of the bond-space subsystem and the spin-s
chain and assume all spin-s sites to be initialized in the
state |ψ0〉. We note that the particular choice of |ψ0〉 is
arbitrary and therefore may be chosen for convenience
according to the experimental platform.

We next define a unitary U such that it transforms the
input spin-s state |ψ0〉 (and arbitrary bond-space state)
according to U |ψ0〉 〈ψ0| = ∑

m Am ⊗ |m〉 〈ψ0|. The action
of U on other spin-s states can be chosen freely without
loss of generality. Sequential application of U to the initial
state |�0〉 = |R〉 ⊗ |ψ0〉⊗N yields

U1U2 . . .UN |�0〉 =
∑

�m
Am1Am2 . . .AmN |R〉 | �m〉 , (6)

where Ui denotes application to the bond-space ancilla,
initially in the state |R〉, and the ith “physical” spin-s
site. In this scheme, the ancilla serves as a memory that
propagates correlations between the physical sites, allow-
ing us to prepare a generic MPS without joint operations
between the physical spin sites. Crucially, the required size
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of the memory is given by the bond dimension, highlight-
ing an intuitive correspondence between the complexity
of the memory and the maximum entanglement entropy
contributed per cut bond, log(D) [42,43].

In general, the bond-space ancilla will be left entangled
with the physical degrees of freedom upon application of
the sequence of unitaries in Eq. (6). Notably, the bipartite
entanglement content between the physical and bond sub-
systems is physically equivalent to that of a semi-infinite
chain with an entanglement cut adjacent to the last pre-
pared physical site [44,45]. This feature is exploited later
in this work to experimentally characterize and validate
preparation of the AKLT state via measurements of its
entanglement spectrum.

For the present goal of preparing a finite chain, the
physical and bond subsystems may be disentangled by
measuring the memory ancilla (equivalent to a left projec-
tion of the form |L〉 〈L|), collapsing the physical degrees
of freedom onto the state Eq. (5) for some left boundary
condition |L〉. While the determination of |L〉 is probabilis-
tic for a generic MPS, a slight variation of this approach
can achieve specific boundary conditions (for details, see
Ref. [15]).

B. Sequential preparation of the AKLT state

We now turn to the particular details of the sequential
preparation of the AKLT state. As the AKLT state con-
sists of physical spin-1 sites, we take inspiration from its
virtual spin-1/2 representation [see Fig. 1(a)] and use pairs
of qubits to compose each spin-1 site. For the remainder
of this work, we adopt the notation |+〉, |0̄〉, and |−〉 for

the spin-1 eigenstates of Sz with corresponding eigenval-
ues +1, 0, and −1, respectively, and |s〉 for the singlet state.
Here, the bar in the spin-1 state |0̄〉 is used to differentiate
from the qubit state |0〉 wherever clarification is needed.

Recalling that the AKLT state is an MPS of bond dimen-
sion D = 2, a single “memory qubit” (terminology that
we adopt for the bond-space subsystem throughout the
remainder of this paper) is sufficient to prepare the AKLT
state with a definite right-boundary condition |R〉 and an
indefinite left boundary condition 〈L|; the choice of the
former is equivalent to choosing a particular initial state
for the memory, while the latter is determined upon mea-
surement of the memory qubit after all spin-1 sites have
been prepared.

Here, we alter this strategy in order to reduce circuit
depth. Taking advantage of the spatial inversion symme-
try of the AKLT state (see Appendix B), we utilize two
initially entangled memory qubits—one that ultimately
encodes the left boundary condition 〈L| and the other the
right-boundary condition |R〉. We emphasize that these
boundary conditions reflect more than just mathematical
choice: they encode the physical state of the left and right
edge modes of the AKLT chain. As will become clear,
the action of enforcing a particular boundary condition via
measurement, albeit probabilistically, is a crucial ingredi-
ent of our measurement-aided constant-time preparation
scheme.

Figure 2 summarizes our scheme to sequentially prepare
an arbitrary-length AKLT chain with a linear-depth cir-
cuit. The memory qubits are first prepared in the singlet
state |s〉 = (|01〉 − |10〉)/√2 and we choose as an initial
starting state for each spin-1 site |ψ0〉 = |0̄〉. Although not

FIG. 2. Sequential preparation of the AKLT state with a linear depth circuit. Each time step consists of applying the site prepara-
tion unitary U to two qubits composing a spin-1 site (gray circles) and a memory qubit (green circles). The latter is responsible for
propagating correlations between spin-1 sites. To reduce the overall circuit depth, our sequential procedure takes advantage of spatial
inversion symmetry to grow the AKLT state simultaneously at both ends, using the two memory qubits in parallel.
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yet explicitly enforced, we later choose an encoding such
that |0̄〉 corresponds to both qubits being in the ground
state. As in the generic MPS case, the primary ingredient
of the circuit is the unitary U that prepares each site and
imprints this history on the memory. Recalling the compos-
ing matrices of the MPS representation of the AKLT state,
A+ = √

2/3 σ+, A0 = −√
1/3 σ z, and A− = −√

2/3 σ−,
this unitary takes the form

U =
√

1
3
(σ+S+−σ−S−−σ zI)+ C, (7)

where S+, S− and Sz are raising, lowering, and z-
component spin-1 operators, and C is a unitary completion
operator that obeys C |0̄〉 = 0 and enforces unitarity of U
but is otherwise arbitrary.

As explained above, this particular form of U derives
from the MPS representation of the AKLT state, although
it may also be intuitively appreciated from the perspective
of the well-known hidden antiferromagnetic ordering of
the AKLT state (see the discussion in Sec. II). To see this,
note that the first (second) term will prepare a site in the
|+〉 (|−〉) state and paired with this is the raising (lower-
ing) of the memory qubit via σ+ (σ−). Because σ+ and σ−
each return 0 when acted twice, preparing a site in the state
|+〉 must necessarily be followed by either preparation of
|−〉 or |0̄〉. Furthermore, preparation of a second subse-
quent site in the state |+〉 cannot occur until a site has been
prepared in the state |−〉, lowering the state of the mem-
ory. Repeated application of U to a chain of sites therefore
results in exactly the hidden antiferromagnetic ordering of
the AKLT state, where spins of alternating polarization are
diluted with sites in the state |0̄〉.

After preparation of all N sites, the state of the compos-
ite system consisting of both the spin chain and memory
qubits is

|�seq〉 =
∑

ij

∑

�m
〈i|Am1Am2 . . .AmN−1PmN |j 〉 |ij 〉 | �m〉 , (8)

the AKLT state with boundary conditions entangled with
the two memory qubits, labeled by indices i and j . Similar
to the case of a single memory qubit, particular bound-
ary conditions are enforced upon measurement of memory
qubits. Here, however, both the left and right boundary
conditions are enforced upon final measurement of mem-
ory qubits, as opposed to the latter corresponding to the
initial state of a single memory qubit. As shown later
in this work, this feature plays an important role in our
measurement-assisted preparation scheme.

We additionally note the possibility of measuring the
two memory qubits in a basis such that they become entan-
gled, consequently entangling the AKLT edge spin-1/2s
via entanglement swapping. For example, the SWAP test
can be used to measure the exchange symmetry of the two

memory qubits. In the case in which the asymmetric sin-
glet state is measured, a singlet bond is teleported to the
pair of edge spin-1/2s and the spin chain collapses onto
the AKLT state with periodic boundary conditions [see
Eq. (3)]. Interestingly, failure to measure the singlet does
not prohibit successful preparation of the AKLT state with
periodic boundary conditions, as one can recover upon pro-
jection onto the symmetric subspace—such a possibility is
due to the SPT order of the AKLT state and, in particu-
lar, its Z2 × Z2 symmetry (for details, see Appendix A). In
the following section, we take advantage of this same sym-
metry to show that AKLT chains can be deterministically
fused together using Bell measurements, thereby enabling
the constant-time preparation of arbitrarily large chains.

C. Measurement-assisted preparation of the AKLT
state in constant time

We now demonstrate that by augmenting the above
procedure with measurements, it is possible to determin-
istically prepare the AKLT state using a constant-depth
circuit. The core idea is to prepare multiple small AKLT
states and, using the fact that the memory qubits encode
boundary conditions, subsequently stitch them together
with fusion measurements. To illustrate our procedure
most clearly, we first consider the parallel preparation of
two independent AKLT chains each of length n ≡ N/2.
We then generalize to the most efficient scenario of fusing
N/2 independent two-site chains. While here our focus is
the AKLT state, we note that the general procedure follows
in an equivalent fashion for other MPSs with appropriate
symmetries. For more examples, see Appendix D.

1. Probabilistic fusion of two AKLT chains

Following the procedure outlined in Sec. III C, two
sequentially prepared AKLT chains (with boundary con-
ditions still entangled with memory qubits) can be written
as

|�〉 =
∑

ijk�

∑

�m
〈i|Am1Am2 . . .Amn−1Pmn |j 〉

× 〈k|Amn+1Amn+2 . . .AmN−1PmN |�〉 |ijk�〉 | �m〉 , (9)

where the indices i, j , k, and � denote the state of the
four memory qubits and �m = {m1, m2, . . .mN } is a com-
posite index for the two chains. We note that while we
choose to group together all N physical indices of the MPS,
the two independent chains of length n are, at this stage,
unentangled.

By projecting the memory qubits labeled j and k onto
a Bell pair, a maximally entangled bond is teleported to
the edge qubits of the two AKLT chains. To see this, it
is helpful to imagine measuring the middle pair of mem-
ory qubits in the state |φ〉 = ∑

ij φij |ij 〉. This collapses the
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FIG. 3. The fusion of two AKLT states via Bell measurement.
After preparation, the edge spin-1/2s of each MPS are each
entangled with a memory qubit. Through entanglement swap-
ping, Bell measurement of memory qubits belonging to different
chains “fuses” the two independent MPSs, teleporting a partic-
ular tensor M = {I , X , Y, Z} to the intermediate bond. Using the
fact that Am = PmS and S ∝ Y, this amounts to a longer AKLT
state with the local Pauli defect B ∝ YM .

above state onto

|� ′〉 =
∑

i�

∑

�m
〈i|Am1Am2 . . .Amn−1PmnMAmn+1Amn+2 . . .

× AmN−1PmN |�〉 |i�〉 | �m〉 ⊗ |φ〉 , (10)

where M ∝ ∑
jk φjk |j 〉 〈k| and the ordering of tensor prod-

ucts is rearranged for clarity. In other words, the state
|�〉 collapses onto an N -site MPS with a probabilisti-
cally determined matrix M at its center. Recalling the
relation Am = PmS, it is not hard to see that measurement
of the antisymmetric (singlet) Bell state |�−〉 = (|01〉 −
|10〉)/√2) yields the desired outcome: M = S, and |� ′〉
becomes exactly the N -site AKLT state with boundaries
still entangled with edge memory qubits (and in a product
state with the measured memory qubits).

However, it is not guaranteed that the two memory
qubits are measured in a singlet—each Bell state is equally
probable [46] and it is therefore imperative to consider the
resulting MPS for each case. Ignoring global phases and
normalization coefficients, measurement of each Bell state
results in M becoming one of the four Pauli matrices. Not-
ing that S ∝ Y and that the Pauli matrices form a closed
group under multiplication, this ensures that the state |� ′〉,
regardless of measurement result, can always be written in
the form

|� ′〉 =
∑

i� �m
〈i|Am1 . . .AmnBAmn+1 . . .PmN |�〉 |i�〉 | �m〉 ,

(11)

where we discard the state of the memory qubits |φ〉, as
they play no further role in the preparation. |� ′〉 is thus
exactly the AKLT state up to the defect matrix B, as

TABLE I. The possible measurement results and the corre-
sponding matrix M inserted into the MPS. In each case, M ∝ SB,
where S is the desired singlet matrix and B is a residual Pauli
defect. Global phases are ignored in defining M and B.

Measurement result |φ〉 M ∝ ∑
ij φij |i〉 〈j | Defect B

|�+〉 = 1√
2
(|00〉 + |11〉) I Y

|�−〉 = 1√
2
(|00〉 − |11〉) Z X

|�+〉 = 1√
2
(|01〉 + |10〉) X Z

|�−〉 = 1√
2
(|01〉 − |10〉) Y I

illustrated in Fig. 3. All possible outcomes for the Bell
measurement and corresponding matrices M and B are
summarized in Table I.

Naively, the probabilistic outcome of the measurement
indicates that this strategy cannot be used to determinis-
tically prepare the AKLT state. We now show, however,
that one can always recover from a “failed” measurement
and remove the defect B by leveraging the on-site Z2 × Z2
symmetry of the AKLT state.

2. Leveraging the Z2 × Z2 symmetry of the AKLT state
to remove defects

To explain, let us first discuss the physical intuition of
this symmetry and, in particular, how it relates to the edge
states of the AKLT chain. We first note that the Hamilto-
nian in Eq. (1) is invariant upon rotation of each spin-1 site
by an angle π . To see this, one can conjugate the Hamil-
tonian by

∏N
j =1 exp(iπSx

j ) which, in effect, transforms each
spin-1 operator as (Sx

j , Sy
j , Sz

j ) → (Sx
j , −Sy

j , −Sz
j ), leaving

the Hamiltonian unchanged. To establish the correspond-
ing symmetry group, it is sufficient to consider rotation
about two orthogonal axes (e.g., exp(iπSx

j ) and exp(iπSy
j ),

as rotation about the third, exp(iπSz
j ), can always be gener-

ated through their combination). As a result, the Hamilto-
nian has a global on-site Z2 × Z2 symmetry, also referred
to as a dihedral symmetry D2 [9].

The symmetry of the AKLT ground state itself, however,
is more subtle. Here, we wish to merely elucidate a connec-
tion between the hidden Z2 × Z2 symmetry breaking [47]
in the Haldane phase and the presence of edge states, the
latter of which play an important role in our preparation
scheme. For an accessible in-depth discussion, we refer to
Ref. [9].

Each on-site rotation can be simply written in terms of
its action on Sz eigenstates:

UX = eiπSx = − |+〉 〈−| − |0̄〉 〈0̄| − |−〉 〈+| ,

UY = eiπSy = |+〉 〈−| − |0̄〉 〈0̄| + |−〉 〈+| ,

UZ = eiπSz = − |+〉 〈+| + |0̄〉 〈0̄| − |−〉 〈−| ,

UI = I = |+〉 〈+| + |0̄〉 〈0̄| + |−〉 〈−| ,

(12)
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where we also define the spin-1 identity operator as UI for
reasons that will soon become clear. Taking UX = eiπSx

as an example, application of this unitary operator to each
site of the AKLT state with periodic boundary conditions
will leave the state invariant up to a global phase—each
configuration of the many-body state has a partner with
the same amplitude but with all spins flipped.

In the case of open boundary conditions, however, this
same procedure results in a nonidentity operation at the
edges. To see this, consider application of UX to the AKLT
ground state with edge spin-1/2s together in the m = +1
triplet state |00〉 (i.e., Eq. (2) with L = R = 0). Because
all bulk intersite pairs are in the singlet state, the entire
chain is initially in the +1 eigenstate of the total spin oper-
ator Sz

tot = ∑N
i Sz

i . Application of UX to each site flips all
spin-1s and the entire chain is consequently transformed
to a −1 eigenstate of Sz

tot. Noting that the energy cannot
change due to invariance of the Hamiltonian, this final state
is necessarily an AKLT ground state with edge spins in
the m = −1 triplet state |11〉 (Eq. (2) with L = R = 1). In
other words, application of UX to every site leaves the bulk
invariant but ultimately corresponds to a nontrivial action
on the edge spin-1/2s.

The core principle behind our preparation algorithm is
the ability to correct this nontrivial action on the edges
by applying an additional unitary operation to the memory

qubits, which effectively serve as a control for the edge
states. We now make this more concrete by directly appeal-
ing to the MPS representation of the AKLT state and, in
particular, how its Z2 × Z2 symmetry is manifest in the
structure of the local tensor A. Noting that the Pauli matri-
ces form a projective representation of Z2 × Z2, the tensor
A necessarily obeys the relation [31,32,42]

∑

m

(UB)mm′Am′ = eiθBB†AmB (13)

for Pauli operators B = {I , X , Y, Z} and corresponding
spin-1 operators UB defined in Eq. (12). This equality is
shown pictorially in Fig. 4(a). We note that the global
phase eiθB is unimportant for our discussion but nonethe-
less here takes on the value ±1 and is physically relevant
to the degeneracy of the entanglement spectrum [32].

This property—that the global on-site Z2 × Z2 symme-
try of the AKLT state is reflected in the local tensors A
as the ability to “push” the operator UB onto the virtual
level—is a direct consequence of the SPT order of the
Haldane phase and many related properties may be under-
stood through this lens (e.g., string order, hidden symmetry
breaking, edge excitations, entanglement spectrum degen-
eracy) [9,31,32,42]. Clarity is particularly added to the
prior discussion of symmetry breaking at the edges, as

(a)

(c)

(b)

FIG. 4. The measurement-assisted preparation of the AKLT state. (a) The manifestation of Z2 × Z2 symmetry at the level of the
local tensor A. Conjugation by B applied to the virtual legs is equivalent to application of UB on the physical leg. (b) The circuit diagram
of our measurement-assisted preparation. We begin by applying a single time step of the sequential preparation, forming many two-site
AKLT states in parallel. We then fuse together independent chains through Bell measurement of their memory qubits, introducing the
Pauli defect B. This defect is then removed by applying the symmetry action of (a). Notably, this final step does not have to be carried
out on quantum hardware, as the unitary UB merely permutes the encoding of the spin-1 basis states. (c) A tensor-network illustration
of the removal of the defect B using the Z2 × Z2 symmetry of the AKLT state.
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application of UX to every site clearly leaves the state
invariant up to the modified boundary conditions |L〉 →
X |L〉 and |R〉 → X |R〉. We note that similar relations exist
for the time-reversal and spatial-inversion symmetries of
the Haldane phase [32]. While we do not explicitly rely on
the former, the latter enables our use of two memory qubits
in parallel, as explained in Appendix B.

Finally, we now describe the procedure for removing
a defect B from the fused AKLT chain pair in Eq. (11).
Recalling Table I, each Bell-measurement result yields the
AKLT state up to a defect operator B (with boundary
conditions entangled with any residual memory qubits).
Importantly, this defect B is one of the four Pauli oper-
ators. As shown in Fig. 4(c), we exploit the Z2 × Z2
symmetry—in particular, its manifestation at the level of
the tensor A—to push the operator B from the intermediary
bond teleported into the chain through fusion measurement
to one of the edge states. Taking the state in Eq. (11) as a
starting point, application of the unitary UB on all sites to
the left of the defect translates it from the measured link
to the far virtual leg of the left edge qubit and applying B†

[48] to the left memory qubit removes it entirely:

|� ′′〉 = B†⊗I ⊗ U⊗n
B ⊗ I⊗N−n |� ′〉

=
∑

i� �m
〈i|BAm1 . . .AmN−1PmN |�〉 (B†⊗I) |i�〉 | �m〉

=
∑

i� �m
〈i|Am1 . . .AmN−1PmN |�〉 |i�〉 | �m〉 . (14)

In the top line, the first two operators are applied to the
memory qubits and all others to the spin-1 sites. The choice
of permuting the defect to the left is arbitrary and applying
UB to all sites to the right of the defect is equally valid.

To see that the final equality in Eq. (14) is true, it
is helpful to rearrange the second line and note that∑

i B† |i〉 〈i| B = ∑
i |i〉 〈i| for any unitary B. Alternatively,

the final line may be viewed as a change of summation
basis with respect to the second line. Nonetheless, the final
state |� ′′〉 is identical to the sequentially prepared state
|�seq〉 in Eq. (8), thus demonstrating that it is possible to
deterministically fuse two AKLT chains and remove any
measurement-induced defects. As described in detail in
Sec. III B, measurement of the remaining memory qubits
enforces boundary conditions for the AKLT chain, with
all outcomes yielding a particular state in the fourfold-
degenerate ground-state space of the AKLT Hamiltonian
with open boundary conditions.

3. Summary of the preparation algorithm

We now combine these ingredients to demonstrate one
of the main results of this work: an algorithm to determin-
istically prepare an N -site AKLT chain using a constant-
depth circuit augmented by fusion measurements.

Due to the spatial inversion symmetry of the AKLT
state, a single chain can be prepared using both mem-
ory qubits in parallel (see Appendix B). As a result, the
most (depth) efficient preparation of large chains consists
of fusing many two-site chains, each requiring a single
application of U per memory qubit. In total, we require 3N
qubits—two to encode each spin-1 site plus one additional
(memory) qubit per site.

A circuit diagram of the full algorithm is shown in
Fig. 4(b). The individual steps are as follows:

(1) Initialization. Initialize all N spin-1 sites in the |0̄〉
state. Prepare all N/2 memory qubit pairs in the
singlet state.

(2) Preparation of two-site chains. Apply U to each
spin-1 site and memory qubit, resulting in N/2 two-
site chains, each with edge modes (or, equivalently,
boundary conditions) entangled with unmeasured
edge memory qubits.

(3) Fusion measurement. Perform a Bell measurement
on each pair of intersite memory qubits, fusing each
MPS with a probabilistically determined Pauli bond
tensor Mi, each reducible to a Pauli defect Bi (see
Table I).

(4) Correction of defects (postprocessing). Remove
each Pauli defect B by commuting it to one of
the remaining memory qubits via application of
UB to each intermediate spin-1 site [see Fig. 4(c)].
We emphasize that this step need not be carried
out on quantum hardware and may alternatively
be handled in postprocessing without the need
for classical feed-forward of measurement results
(see below).

While the final step seems to require classical feed-
forward, the simplicity of the operators UB [see Eq. (12)]
allows for removal of defects through permutation of the
encoded basis states. For the encoding that we use on
IBM-Q processors (|+〉 = |10〉, |−〉 = |01〉, |0̄〉 = |00〉),
application of UB amounts to a Pauli frame change for each
individual qubit. Details regarding the postprocessing are
included in the Supplemental Material [49].

Crucially, the circuit depth of this algorithm is inde-
pendent of N , reflecting a significant advantage over the
known sequential preparation of MPSs [42], as well as
other recently proposed dissipative [17], adiabatic [18],
and nondeterministic measurement-based algorithms [19,
20] to prepare the AKLT state, each requiring total prepa-
ration times that scale with N .

It is important to note that this speed-up does not
come without trade-offs: due to the additional mem-
ory qubits, 3N + (N mod 2) qubits are required in the
measurement-assisted approach, compared to 2N + 2 for
its sequential counterpart. Furthermore, because each
subchain is prepared using the sequential approach, there
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are no savings in terms of entangling gates; in fact,
the measurement-assisted approach requires more entan-
gling operations due to the �(N − 1)/2� fusion measure-
ments (for optimized CNOT gate counts, see the Sup-
plemental Material [49]). Still, these are modest trade-
offs for a constant-depth algorithm, particularly in the
NISQ era, when processors are limited to fairly shallow
circuits.

IV. PREPARATION OF THE AKLT STATE ON IBM
QUANTUM PROCESSORS

We now illustrate that the speed-up afforded by our
algorithm amounts to a realizable improvement in state
preparation on NISQ hardware. To show this, we carry
out several experiments on IBM Quantum processors. In
all cases, we encode spin-1 Sz eigenstates in the compu-
tational basis of a pair of qubits: |+〉 = |10〉, |0̄〉 = |00〉,
and |−〉 = |01〉. Such a choice allows for straightforward
measurement in the Sz basis, while also lending to a par-
ticularly efficient implementation of the site preparation
gate U [see Fig. 6(b)] and minimizing relaxation errors,
as the disallowed “singlet” state corresponds to |s〉 = |11〉.
Importantly, this encoding choice has no consequence on
the SPT order of the state (or its usefulness as a resource
for, e.g., MBQC), as a local single-site unitary exists that
transforms from the chosen encoding to the more conven-
tional triplet basis, |+〉 = |00〉, |−〉 = |11〉, |0̄〉 = (|10〉 +
|01〉)/√2.

We first demonstrate the high-fidelity preparation of the
“building blocks” of the measurement-based protocol. In
particular, we carry out quantum state-tomography exper-
iments for small chains composed of two and three sites.
Following this, we prepare longer chains of up to N = 6
sites (consisting of 12 qubits) using our measurement-
assisted protocol on a 27-qubit device. To benchmark the
state preparation, we measure the string-order parameter
〈Oz

str〉 [see Eq. (4)] and entanglement spectrum of the pre-
pared chains, demonstrating good agreement with theoret-
ical expectation. For comparison, we carry out companion
experiments using the sequential preparation protocol out-
lined in Fig. 2 and find that the measurement-assisted
scheme outperforms the sequential approach on an IBM
Quantum processor, even for the relatively small system
sizes studied here. Finally, we demonstrate postpreparation
utility of the AKLT state by carrying out quantum tele-
portation experiments following our measurement-assisted
scheme.

We note that the results presented in this section corre-
spond to our best runs for both measurement-assisted and
sequential approaches across repeated experiments over
the course of several months. Although we find that the
quality of the experimental results varies between device
calibrations, we observe that the measurement-assisted
approach reliably outperforms its sequential counterpart.

For further examples of representative experimental
data across repeated experiments, see the Supplemental
Material [49].

A. Tomography experiments on small chains

We first benchmark the preparation of small AKLT
chains of two and three sites with periodic boundary con-
ditions on the seven-qubit processor IBMQ_JAKARTA. To
reduce the total number of qubits required, we employ
a measurement scheme that ultimately incorporates the
memory qubits into the chain as an additional spin-1 site.

In brief, this approach takes advantage of the previously
discussed effect that measurement of the two edge mem-
ory qubits enforces particular boundary conditions for the
chain with which they are entangled. Consequently, one
may use a SWAP test to project the memory qubits onto
either the singlet (antisymmetric) or triplet (symmetric)
subspace. The former leaves the chain in the AKLT ground
state with periodic boundary conditions. In contrast, the
latter outcome enforces a particular superposition of triplet
ground states; crucially, such a measurement leaves the
memory qubits themselves in the triplet subspace, now
effectively an additional spin-1 site. Using the Z2 × Z2
symmetry of the AKLT state, it is possible to “insert” this
additional spin-1 site into the chain such that the entire
state is the AKLT state with periodic boundary conditions.
For details, we defer to Appendix A.

Due to the associated overhead of performing the SWAP
test on physical hardware [50], we incorporate the mem-
ory qubits into the chain as a spin-1 site through projection
onto the symmetric subspace during postprocessing. The
projection onto the spin-1 subspace thus serves a dual pur-
pose: (1) it encompasses an error-mitigation strategy for all
sites, where we postselect for shots where all sites are in
valid spin-1 states; and (2) it enforces particular boundary
conditions, where the memory qubits themselves become
a spin site and are “inserted” into the AKLT chain by
leveraging its Z2 × Z2 symmetry.

Figure 5 displays tomography results for AKLT chains
of N = 2 and N = 3 sites, with panels Figs. 5(a) and 5(b)
displaying Hinton diagrams for the experimentally recon-
structed density matrix for each case, with the exact theo-
retical density matrices shown for comparison in Fig. 5(c).
We carry out a full set of Pauli measurements for each
qubit, requiring 81 distinct measurement circuits for the
N = 2 (four qubits in total) and 729 distinct measure-
ment circuits for the N = 3 (six qubits in total). Each
circuit is carried out for 105 shots and the state of the sys-
tem is reconstructed according to ρ = ∑42N

i=1 Pi 〈Pi〉 /22N ,
where each Pi is a Pauli operator of weight 2N , estimated
from readout-error-corrected [51] measurement results.
The density matrix ρ is then projected onto the spin-1 sub-
space and McWeeny purification [52,53], defined by the
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(a) (b) (c)

(d) IBMQ_ JAKARTA

FIG. 5. The reconstructed density matrix of AKLT chains with periodic boundary conditions prepared on an IBM Quantum pro-
cessor. For both N = 2 and N = 3 sites, we perform a full set of Pauli measurements, each consisting of 105 shots. We postselect
on measurement of valid spin-1 states and use McWeeny purification to obtain a maximum-likelihood pure state ρ. The computed
likelihood of ρ is 88% and 65% for N = 2 and N = 3, respectively. In both cases, Im(ρ) is expected to vanish. (a) A Hinton dia-
gram of Re(ρ) for N = 2 sites, with max(Im(ρ)) = 0.019 and fidelity F(ρ, ρAKLT) = 0.997 between the maximum-likelihood pure
state ρ and the exact AKLT state ρAKLT. (b) A Hinton diagram of Re(ρ) for N = 3 sites, with max(Im(ρ)) = 0.034 and fidelity
F(ρ, ρAKLT) = 0.993. (c) Exact theoretical density matrices for the N = 2 (top) and N = 3 (bottom) site AKLT ground state with
periodic boundary conditions. (d) The qubit connectivity graph of the seven-qubit device IBMQ_JAKARTA. The preparation circuits are
transpiled such that physical qubits in green encode the memory qubits for all but the initial entangling step, while pairs of gray qubits
encode a spin-1 site. For N = 3, we additionally postselect on measurement of the yellow ancillary qubit to ensure a successful swap
after entangling the memory qubits, with a rejection rate of approximately 2%.

iteration

ρn+1 = 3ρ2
n − 2ρ3

n , (15)

is applied in order to extract a maximum-likelihood esti-
mate for a pure state from the reconstructed impure density
operator.

For these small systems, the success of projecting the
memory qubits into the symmetric and antisymmetric sub-
space is dependent on N : for N = 2, the symmetric sub-
space is theoretically guaranteed, while for N = 3 the
triplet is measured with a probability of 1/3. Upon pro-
jection of the memory qubits, we find a rejection rate of
5.1% (31.0%) for N = 2 (N = 3), in good agreement with
the theoretical expectation. Furthermore, we reject an addi-
tional 1.1% (2.7%) of shots upon postselection of valid
spin-1 states for all other sites.

The experimentally reconstructed and McWeeny puri-
fied density matrix shows excellent agreement for both
N = 2 and N = 3 sites, with fidelities of F = 0.997 and
F = 0.993 computed with respect to the exact AKLT

ground state with periodic boundary conditions. With-
out purification, we find F = 0.940 and F = 0.808, still
demonstrating good agreement with theory but nonethe-
less exhibiting the utility of McWeeny purification as a
postprocessing technique.

B. Measurement-assisted preparation of the AKLT
state

We now demonstrate the primary result of this work:
the deterministic measurement-assisted preparation of the
AKLT state on a noisy quantum processor. The exper-
iments are carried out on the 27-qubit IBM Quantum
Falcon processor IBM_HANOI. To account for the heavy-
hex qubit connectivity graph of this device [Fig. 6(a)],
we adapt the three-qubit unitary U such that the mem-
ory qubit is additionally swapped with the prepared spin-1
site [Fig. 6(b)] and is therefore in a position for either
a fusion measurement [measurement-assisted preparation,
Fig. 4(b)] or a subsequent application of U (sequential
preparation, Fig. 2). This implementation has an associated
overhead of two CNOTs per application of U but ultimately
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(a) (c)

(b)

IBMQ_HANOI

FIG. 6. Preparation of the AKLT state and measurement of the string order on IBM_HANOI. For all presented data, sampling uncer-
tainties (estimated by bootstrapping measurement results acquired across 105 shots per circuit) are found to lie within the displayed
markers and are therefore not shown. (a) The qubit connectivity on IBM_HANOI. The qubit colors indicate final qubit locations after
measurement-assisted preparation of a N = 6 site AKLT state, the gray, green, and white circles corresponding to site, memory,
and unused qubits, respectively. (b) The implementation of U, adapted to permute the memory qubit to the far edge, enabling both
measurement-assisted and sequential preparation schemes with only linear connectivity. (c) The measured string order 〈Oz

str〉i,i+�−1
after sequential (red) and measurement-assisted (green) preparation, compared to the theoretical expectation (dashed black line). The
left-hand panels display the string order measured from edge to edge (i = 1, � = N ) for a length N chain, with the top and bottom
distinguishing between postselection upon measurement of symmetric (|L〉 = |R〉) and asymmetric (|L〉 = X |R〉) boundary conditions.
The right-hand panels show measured values of | 〈Oz

str〉i,i+�−1 | for N = 6 and varying string lengths �. The small transparent markers
represent individual measurements for varying i, while the large bold markers indicate their average value for each � and the dashed
lines correspond to their best fit to an exponential curve Ae−�/�̃ + B to guide the eye. The best-fit values for �̃ are shown in the legend,
with coefficients A and B reported in the Supplemental Material [49].

allows for the transpilation of both measurement-assisted
and sequential preparation schemes with only linear con-
nectivity and without additional swapping on physical
hardware.

We prepare AKLT chains of up to N = 6 sites (12
qubits) along the “loop” of qubits along the perime-
ter of the heavy-hex unit cell, as indicated in Fig. 6(a),
where gray and green qubits indicate the final positions
of spin-1-site and memory qubits. In total, our implemen-
tation of measurement-assisted preparation requires 3N +
(N mod 2) qubits whereas, by comparison, the sequential
preparation requires just 2N + 2 qubits. We note, however,
that it is possible to reduce qubit waste in the former (at the
expense of a constant gate-count overhead and nondeter-
ministic prepared chain length) by implementing SWAP-test
fusion measurements in place of Bell measurements (for
details, see Appendix A).

1. Measurement of string order

To validate the measurement-assisted preparation of the
AKLT state and benchmark it against both sequential
preparation and theory, we first measure the string order

〈Oz
str〉i,j = 〈Sz

i
∏j −1

k exp(iπSz
k)S

z
j 〉 between sites i and j .

This parameter is finite throughout the Haldane phase [40]
and, at the AKLT point, has the special property that for
a chain of fixed length N , 〈Oz

str〉i,j is constant, indepen-
dent of i and j . Its particular value, however, is dependent
upon boundary conditions and, furthermore, oscillates with
respect to N about the well-known N → ∞ value of −4/9
[40]. Measurement of the string order is straightforward
in our encoding, as the eigenstates of Sz are compu-
tational basis states. Consequently, estimating the string
order amounts to a measurement of all site qubits in the
Z basis.

We batch and execute circuits on IBM_HANOI using
QISKIT RUNTIME [54]. Each circuit is run for 105 shots and
measurement-error mitigation [51] is applied. We posts-
elect on valid spin-1 states, discarding shots where the
(encoded) singlet |11〉 is measured at a spin-1 site. In
addition, we reject shots where measured boundary con-
ditions (enforced by the residual edge memory qubits)
are inconsistent with the boundaries of the spin-1 chain
[49]. Crucially, we do not postselect on known information
about the AKLT state, such as its hidden antiferromagnetic
ordering, or spatial inversion symmetry.
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Figure 6(c) displays the string-order parameter mea-
sured for the AKLT state prepared by both measurement-
assisted and sequential algorithms. The left-hand panels
show expectation values 〈Oz

str〉1,N measured edge-to-edge
for symmetric (top) and asymmetric (bottom) boundary
conditions (BC). The former correspond to triplet ground
states with edges spin-1/2s in the same state |L〉 = |R〉
(i.e., the ±1 eigenstates of Sz

tot), while the latter corre-
spond to edge spin-1/2s in the opposite state |L〉 = X |R〉,
superpositions of which compose the symmetric (triplet)
and antisymmetric (singlet) eigenstates of Sz

tot with eigen-
value 0.

While it can be reasonably expected that the constant-
depth measurement-assisted scheme will outperform
linear-depth sequential preparation for large N , we find
that even for N ≤ 6 the former produces a state with an
estimated string order that is markedly improved over the
latter. This is notable, as readout error is a primary source
of noise in present-day superconducting devices [55,56]
and the success of our measurement-assisted preparation
algorithm is inherently dependent on reliable fusion and
identification of Pauli defects through measurement. This
also underlines the importance of measurement-error mit-
igation for measurement-assisted circuits—as shown in
the Supplemental Material [49], we find substantively
improved agreement upon inclusion of such strategies.

The top-right and bottom-right panels of Fig. 6(c) show
companion measurements of |〈Oz

str〉i,i+�−1| for varying
indices i and string lengths � for an N = 6 chain, acquired
simultaneously with the data in the left-hand panels. For
the sequential preparation, we find that the string order fol-
lows a clear exponential decay for increasing string length
�. This can intuitively be understood as follows. For the
sequential preparation, the role of the memory qubit is
to propagate correlations from site-to-site. Consequently,
the length scale of the string order is inherently limited
by the decoherence of the memory qubit. Contributing to
this decoherence is not only the T1 and T2 of individual
qubits (on the order of approximately 100–200 µs for most
IBM_HANOI qubits throughout these experiments) but, in
addition, the cumulative decohering effect of any errors
introduced by single- and two-qubit gates while the mem-
ory qubit is swapped along the chain and used to prepare
spin-1 sites.

For our best runs of the sequential preparation, expo-
nential fits to the decay of |〈Oz

str〉i,i+�−1| for increasing
string length � yields a characteristic coherence length
scale �̃ on the order of 2.5–3.0 sites. In contrast, our
measurement-assisted approach uses each memory qubit to
locally prepare a single site and all correlations are propa-
gated via a single layer of Bell measurements. We find that
this approach leads to, at worst, a comparatively slower
decay of string order with increasing � [49] or, in the case
of Fig. 6(c), no obvious decay up to � = 6.

2. Measurement of the entanglement spectrum

To further validate the prepared state, we measure its
entanglement spectrum [57] and compare against known
theoretical results for the AKLT state [32,58–60]. Inspired
by arguments presented in Ref. [45], we achieve this
through state tomography of the residual boundary mem-
ory qubits following preparation of the spin-1 chain.

To understand the relation between the state of the mem-
ory and entanglement of the prepared MPS, it is helpful
to consider the sequential preparation scheme outlined in
Sec. III B and illustrated in Fig. 2 (although the argument
also holds for our measurement-assisted scheme). For clar-
ity of explanation, we specialize to the case in which we
have just one memory qubit, the initial and final state of
which encode right and left boundary conditions.

After preparation of the ith spin-1 site, the “outgoing”
memory qubit encodes complete information to prepare all
subsequent sites j > i. As a result, the bipartite entangle-
ment between sites j ≤ i and the outgoing memory qubit
exactly coincides with the bipartite entanglement between
sites j ≤ i and j > i in a fictitiously prepared spin chain
[44,45]. In other words, we can probe the entanglement
between sites j ≤ i and j > i entirely from the reduced
density matrix of the memory. While this is at first surpris-
ing due to the dimension mismatch between the memory
and that of all spin-1 sites j > i, it is helpful to recall
that the dimension of the memory, D = 2, by construction
corresponds to the maximum Schmidt rank at an intersite
entanglement cut, equal to the bond dimension (D = 2) of
the AKLT state. Remarkably, this equivalence allows us to
experimentally probe the entanglement content of a semi-
infinite (or, in the case of dual parallel memory qubits,
infinite) 1D AKLT state via tomography of the memory
[45].

We experimentally probe two distinct entanglement cuts
of our system, as illustrated in Fig. 7. Following the prepa-
ration of a spin-1 chain of length �, we carry out a complete
set of Pauli measurements for the two edge memory qubits,
with each measurement circuit repeated for 105 shots.
We again postselect upon measurement of valid triplet
states at spin-1 sites and we subsequently reconstruct the
state of the memory qubits (ρLR) following the procedure
outlined in Sec. IV A (although here without McWeeny
purification, as we expect a mixed state). This procedure is
repeated for lengths up to � = 6. All experiments are car-
ried out on IBM_HANOI using QISKIT RUNTIME. In order to
mitigate for device parameter variability between calibra-
tions, we batch both measurement-assisted and sequential
preparation circuits as a single job.

In Fig. 7(a), we probe the entropy across the bond just
after site N given complete knowledge of the left bound-
ary condition |L〉. This last point is subtle, yet crucial, for
the validation of the prepared state: without enforcement
of a left boundary condition, such a partition emulates
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(a)

(b)

FIG. 7. The entanglement spectrum for varying entanglement
cut lengths �, experimentally determined via state tomography of
memory qubits. The left-hand axes display eigenvalues λi of (a)
ρR|L and (b) ρLR, while the right-hand axes show the correspond-
ing entanglement spectrum − ln(λi). As in Fig. 6, the uncertain-
ties are computed via bootstrap methods and found to fall within
the displayed markers. (a) The entanglement spectrum estimated
from the state of the right qubit given the measured state of
the left, ρR|L. Such a measurement emulates the entanglement
cut of a semi-infinite spin chain, in analogy to the holographic
measurement scheme presented in Ref. [45]. The dashed green
line displays a least-squares best fit of 1

2 ± Ae−�/ξ to the experi-
mentally measured eigenvalues λi for the state prepared via our
measurement-assisted approach, with ξ = 0.9172(4)—in excel-
lent agreement with the exact correlation length of the AKLT
state, ξAKLT = 1/ ln(3) ≈ 0.9102. (b) The experimentally mea-
sured entanglement spectrum (bottom) and the entanglement
entropy (top), extracted from tomographic measurement of both
memory qubits (ρLR). This measurement corresponds to a bulk
length-� entanglement cut of an infinite AKLT chain, expected
to (exponentially quickly) converge to a fourfold degenerate
entanglement spectrum and entropy S(ρLR) = 2 for increasing �
[58,59].

that of an infinite AKLT chain. Consequently, the right
memory qubit ρR is expected to be in a maximally mixed
state independent of �, yielding the doubly degenerate

entanglement spectrum characteristic of the Haldane phase
[32]. Experimentally measuring ρR to be a maximally
mixed state on a noisy device, however, provides little
assurance that the memory has not simply decohered and
become entangled with the environment.

To mitigate for this, we introduce and study the impact
of boundary effects [59] in a semi-infinite AKLT chain by
conditioning the state of the right memory qubit on the
outcome of the left:

ρR|L = 〈L|ρLR|L〉, (16)

where L =∈ {0, 1}. Intuitively, the eigenvalues of ρR|L con-
vey information concerning the correlations between the
left and right boundary spin-1/2s, expected to decay expo-
nentially with increasing � at a rate corresponding to the
correlation length of the AKLT state, ξAKLT = 1/ ln(3)
[60].

Figure 7(a) displays the measured eigenvalues λi of ρR|L
[and the corresponding entanglement spectrum − ln(λi)]
as a function of �, averaged over left boundary conditions
L. For the AKLT state prepared via measurement-assisted
preparation, we find excellent agreement with theory and
observe a clear exponential decay toward a twofold degen-
eracy for large �. To verify this, we perform a least-
squares fit of λi to 1/2 ± Ae−�/ξ . Remarkably, we find ξ =
0.9172(4), differing from the well-known value of ξAKLT =
1/ ln(3) ≈ 0.9102 by just over 0.6%. We additionally find
a sensible best-fit coefficient A = 0.461, the deviation of
which from 1/2 indicates imperfect preparation of the ini-
tial singlet state between memory qubits. We emphasize
that we find this exceptional agreement with theory to be
repeatable: two additional runs that yield measured corre-
lation lengths of ξ = 0.9221(16) and ξ = 0.9102(10) are
included in the Supplemental Material [49].

By contrast, the eigenvalues λi measured upon sequen-
tial preparation of the AKLT state agree less favor-
ably with theory for � > 3 and overall diverge from the
expected trend (1 ± e−�/ξAKLT)/2. We emphasize that both
the measurement-assisted and sequential preparation cir-
cuits are executed within a single job and, in principle, are
subject to comparable single-qubit and multiqubit errors
(although each involves a different number of qubits and
the comparison is therefore imperfect). For all � ≥ 4, we
find the right memory qubit to be biased toward the ground
state |0〉, independent of the measured state of the left, sug-
gesting the likely role of relaxation errors. This finding
is in contrast with the measurement-assisted preparation
scheme, where |0〉 and |1〉 are approximately equally likely
for large �. Finally, we note that while agreement appears
to improve for � = 5 and � = 6, we reemphasize that cau-
tion must be exercised in its interpretation—disagreement
for � = 4 necessarily implies imperfect preparation of � >
4 for a sequentially prepared state. As a result, the apparent
trend gives little confidence that the agreement for � > 4 is
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not in part due to decoherence of the memory, nor does it
suggest that this enhanced agreement will persist.

As shown in Fig. 7(b), we also measure the eigenval-
ues of the composite density matrix ρLR of both memory
qubits for the same run displayed in Fig. 7(a). Such a mea-
surement emulates a partitioning that encircles � sites from
the bulk of an infinite MPS, expected to reveal a fourfold
degeneracy in the case of the AKLT state for � � ξAKLT.
For finite-entanglement cuts, boundary effects lift this four-
fold degeneracy and, instead, three of the eigenvalues are
exactly degenerate, with the fourth approaching degener-
acy for large � [58,59]. Intuitively, this is understood as
a biasing of the edge states toward the triplet (singlet) for
odd (even) chains.

We find that the measured entanglement spectrum
agrees favorably with the theoretical expectation, with
the state prepared via the measurement-assisted circuit
once again outperforming the sequential preparation past
� = 3. In the upper panel, we compare the entangle-
ment entropy S(ρLR) with the theoretical prediction of
Ref. [58]. We observe good agreement with the expected
exponential trend for � < 4, past which the measured
value of 2 − S(ρLR) appears to plateau with minimum
measured values of 3.6 × 10−4 and 2.6 × 10−3 for the
measurement-assisted and sequential preparation, respec-
tively. This observed “noise floor” can be understood as
arising from qubit decoherence, readout errors, and gate
errors, all of which can all appreciably lift the expected
degeneracy of an SPT state prepared on a noisy quan-
tum computer [61] but which nonetheless appear to have
lesser impact on the measurement-based preparation as
compared to its sequential counterpart.

C. Quantum teleportation with the AKLT state

While our focus has thus far narrowed on the task of
state preparation, we reemphasize the practical utility of
the AKLT state as a resource state for MBQC [12,13]. In
this section, we demonstrate that our measurement-assisted
scheme prepares the AKLT state with sufficient coher-
ence for such applications. In particular, we carry out the
simplest possible version of a MBQC protocol: quantum
teleportation.

We note that the same core mechanism underlies
both quantum teleportation and MBQC with the AKLT
state—the former can be simply viewed as a particular
instance of the latter, with only identity operations applied.
However, MBQC requires feed-forward to adapt the mea-
surement bases to past measurement outcomes [3], while
teleportation can be achieved without feed-forward. The
implementation of feed-forward is a challenging and active
area of development for current quantum devices [62,63].
We therefore focus on teleportation here, leaving a general
demonstration of MBQC as a future direction.

The full details of our teleportation protocol are
described in Appendix C. In brief, the core idea is to tele-
port a quantum state |ψ〉 from Alice to Bob, using the
AKLT state as a “quantum wire” [64,65]. Beginning with
the resource state in Eq. (14) (i.e., the AKLT state with
boundaries still entangled with memory qubits), Alice first
prepares the right spin-1/2 edge state in the target state
|ψ〉 by measuring the right memory qubit in an appropriate
basis and postselecting on the outcome.

Next, all spin-1 sites are measured in the basis
{|x〉 , |y〉 , |z〉}, where

|x〉 = (|+〉 − |−〉)/
√

2,

|y〉 = (|+〉 + |−〉)/
√

2,

|z〉 = |0̄〉 ,

(17)

such that the local tensors Am collapse onto one of three
Pauli operators: Ax = √

2/3 X , Ay = i
√

2/3 Y, or Az =
−√

2/3 Z. After all spin-1 sites have been measured, it
can then be shown that the left memory qubit (which we
assume to be in Bob’s possession) is in the state |L〉 =
� |ψ〉, where � ∝ {I , X , Y, Z} is a known Pauli byprod-
uct operator that can be removed (or accounted for upon
measurement of |L〉) by Bob. Thus, the target state |ψ〉
is teleported from Alice to Bob up to the known Pauli
byproduct operator �.

We carry out this protocol on IBM_HANOI using AKLT
states of lengths ranging from N = 1 to N = 6, prepared
via our measurement-assisted scheme. We initialize the
target (pure) state |ψ〉 by measuring the right memory
qubit in the basis {|ψ〉 , |ψ⊥〉} and postselecting on the
desired outcome. To assess the fidelity of the teleportation,
we tomographically measure the state of the left memory
qubit ρL (taking into account the byproduct operator �)
and compute the fidelity between the received and target
message, F(ρL, |ψ〉 〈ψ |). Leveraging the knowledge that
the intended message is a pure state, we also compute
the fidelity F(ρ̃L, |ψ〉 〈ψ |), where ρ̃L is the maximum-
likelihood estimate for the received message obtained via
McWeeny purification [52,53] of the raw tomographically
reconstructed state ρL [see Eq. (15)].

While here we restrict our investigation to the telepor-
tation of pure states, we note that mixed states can also be
teleported using the AKLT state with a slight variation of
our protocol. For example, Alice could first entangle her
memory qubit with another subsystem in her possession.
In this scenario, McWeeny purification cannot be used
to boost the teleportation fidelity unless Bob additionally
measures the subsystem with which the teleported qubit is
entangled.

Each circuit is repeated for 105 shots, not accounting
for postselection upon successful initialization of the target
state, which roughly halves the total shot count. As in the
case of the experiments discussed above, we additionally
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FIG. 8. Quantum teleportation fidelity as a function of the AKLT chain length N for an ensemble of target states. The AKLT chains
are prepared using our measurement-assisted scheme and subsequently used as a quantum wire to teleport a chosen target pure state |ψ〉
from the right chain edge to the left. The fidelity between the target and (tomographically reconstructed) received message is plotted
both for the raw (ρL, markers with dashed lines) and the McWeeny purified (ρ̃L, markers with solid lines) received message, with
colors differentiating intended target states. The fidelities between the target and purified received message are additionally tabulated
in the right-hand panel, with digits in parentheses corresponding to 95% confidence intervals computed via 50 bootstrap numerical
experiments, using 105 shots per circuit.

postselect on measurement of valid spin-1 states, rejecting
any shots where the singlet |s〉 = |11〉 is measured (for the
rejection rates, see the Supplemental Material [49]). We
note that Pauli defects arising from fusion measurements
do not need to be corrected in this scheme and, instead, can
be incorporated into �. In carrying out our teleportation
experiments, we choose to fix the physical qubit location
of the right (target) memory qubit for all N , while vary-
ing the physical qubit assignment of the left (receiving)
memory qubit.

Figure 8 shows the teleportation fidelity for a selection
of target states and AKLT chain lengths. Markers with
dashed and solid lines indicate the fidelity computed using
raw (ρL) and McWeeny purified (ρ̃L) density matrices,
respectively. We additionally tabulate the latter fidelities
in the right-hand table, with sampling uncertainties for
the final digits indicated in parentheses. These uncertain-
ties correspond to 95% confidence intervals, estimated
by bootstrapping experimental measurement counts [66].
Corresponding likelihoods are reported in the Supplemen-
tal Material [49].

We find that the raw teleportation fidelities generally
decrease with increasing chain length, following a step-
like pattern where even-length chains teleport the state
as reliably as (and sometimes even more reliably than)
the shorter odd-length chains of one fewer site. Given the
high fidelity with which small chains can be prepared (see
Fig. 5), we expect the fusion measurements to be a primary
source of error for our measurement-assisted preparation
scheme. The observed steplike trend supports this expec-
tation, as a length-N chain involves �(N − 1)/2� fusion
measurements. Consequently, the raw teleportation fidelity
roughly tracks the number of fusion measurements.

In contrast, the fidelity of the purified state ρ̃L is
fairly consistent for all N and |ψ〉. Because McWeeny

purification converges to a density matrix with eigen-
values {0, 1} while leaving the eigenvectors unchanged,
this suggests that incoherent errors are largely respon-
sible for the decreasing raw teleportation fidelity for
increasing N . Despite some variation for different N
and |ψ〉—to be expected due to variable physical qubit
assignment for the receiving memory qubit and the |ψ〉-
dependent gates required to initialize the target—we find
the purified teleportation infidelities to fall well below
1% in most cases, demonstrating the ability to faith-
fully reconstruct a (pure) target state by sampling mul-
tiple uses of the teleportation channel and, more gener-
ally, the utility of purification techniques for NISQ-era
experiments [67].

We emphasize that for our largest chain, consisting of
N = 6 sites, the target state is teleported across 16 inter-
mediate qubits with linear connectivity. For this case, we
observe raw and purified fidelities in excess of 76% and
99% for all target states, the former in agreement with a
rough estimate of the expected error considering both the
total CNOT count and postselection (for more information,
see the Supplemental Material [49]). Crucially, the raw
fidelity exceeds the classical teleportation fidelity limit of
2/3 [28], indicating that our measurement-assisted scheme
not only prepares the AKLT state efficiently but with suf-
ficient coherence for its subsequent use as a resource state
on a NISQ device.

V. CONCLUSION

In this work, we present a constant-depth proto-
col to deterministically prepare the paradigmatic spin-1
AKLT state. This result is notable as the AKLT state,
having a finite correlation length, cannot be prepared
exactly from a product state using a constant-depth circuit
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composed only of local unitary gates, instead requir-
ing a circuit with depth scaling with the system size.
Furthermore, all known methods to prepare the AKLT
state—including sequential unitary, [15,16], dissipative
[17], adiabatic [18], and nondeterministic measurement-
based [13,19,20] strategies—require preparation times that
scale with the system size. Here, we overcome this limi-
tation by augmenting a constant-depth circuit with fusion
measurements.

The core idea behind our approach is to parallelize the
sequential preparation of an MPS [15] by blending tensor-
network representations with LOCC-assisted quantum cir-
cuits. In particular, this is achieved through preparation and
subsequent fusion of small MPSs through Bell measure-
ment of their bond-space ancillas, here termed memory
qubits. While the outcome of fusion measurement is inher-
ently probabilistic, we show that the Z2 × Z2 symmetry of
the AKLT state, along with knowledge of the measurement
result, allows for recovery and deterministic state prepara-
tion regardless of the measurement result. Importantly, all
postmeasurement operations correspond to permutations
of our local encoding and can thus be handled in post-
processing, thereby avoiding the need for feed-forward,
which is an active area of development on current quantum
devices [62,63].

We demonstrate the realizable improvement afforded
by our measurement-based preparation scheme by prepar-
ing the AKLT state of up to N = 6 sites (composed
of 12 qubits) on the 27-qubit IBM Quantum proces-
sor IBM_HANOI, comparing both measurement-assisted and
sequential preparation schemes. We measure both the
string order and the entanglement spectrum of the pre-
pared states and, using these as metrics, find that our
measurement-assisted approach reliably outperforms its
sequential counterpart even for the relatively small system
sizes studied here.

Finally, we carry out quantum teleportation experi-
ments using a prepared AKLT state as a quantum wire.
In particular, we illustrate that our measurement-assisted
preparation scheme leaves ample circuit depth for sub-
sequent use of the state, with raw teleportation fidelities
exceeding 76% for our longest prepared chains, surpassing
the classical teleportation threshold of 2/3 [28]. Further-
more, we show that the teleportation fidelities are enhanced
to 99% when combined with postprocessing purification
techniques, demonstrating the ability to faithfully recon-
struct the intended message upon repeated sampling of the
teleportation channel.

While our approach yields a dramatic reduction in cir-
cuit depth relative to the purely unitary approach, it is
important to note that this does not come without trade-
offs. In addition to a reliance on high-fidelity measure-
ment, our constant-depth scheme requires an additional
two qubits and one entangling gate per fusion measure-
ment compared to the sequential approach. Here, we

demonstrate this trade-off to yield favorable results for
small system sizes on an IBM-Q processor. However, the
degree to which this holds true on other NISQ-era devices
and architectures will be dependent on the strengths and
limitations of that platform.

More broadly, our work sits firmly in the context
of recent work exploring the enhanced state-preparation
capabilities of finite-depth unitary circuits augmented by
LOCC [21,22]. In particular, it has been shown that a
wide array of long-range entangled states—such as the
GHZ state, toric code, and certain non-Abelian topolog-
ical orders — can be prepared by augmenting unitary
evolution with measurement [23–26]. This work thus not
only provides the most efficient known strategy to prepare
a specific nontrivial resource in the AKLT state—useful
for applications ranging from quantum teleportation and
MBQC [10–13] to blind quantum computation [29] and
remote state preparation [30]—but, more broadly, and to
the best of our knowledge, serves as the first experimen-
tal demonstration of deterministic measurement-assisted
preparation of a nonstabilizer state on a NISQ device.
That we find improvement over the known unitary prepa-
ration of the AKLT state, even for the small systems sizes
studied here, illustrates the clear promise of measurement-
based circuit depth reduction strategies for NISQ-era
applications.

We conclude by commenting on a few future directions
opened up by this research. One immediate question is
whether or not the two-dimensional (2D) AKLT state on a
honeycomb lattice, a universal resource for MBQC [14] for
which no sequential state-preparation algorithm is known
[18], can be prepared using the techniques developed here.
We suspect that it is indeed possible to prepare this state
up to local Pauli defects (which have no effect on its utility
as a resource for MBQC) using the symmetries of the local
tensors in its PEPS construction [68], although we leave
the details to future work.

Another interesting question is the extent to which
the methods presented here, which in some sense allow
for a speed-up of the sequential preparation algorithm
in Ref. [15], can be generalized to other tensor-network
states—both of higher spatial and bond dimension—and
what restrictions are imposed by the requirement that any
defect introduced by a fusion measurement is correctable.
While here we focus on an MPS of bond dimension D = 2
(and provide additional D = 2 examples in the cluster and
GHZ states in Appendix D), we suspect that our scheme
is universal for the Haldane phase, as it is always possible
to decompose the virtual subspace into a “protected” sub-
system (with D = 2) and a “junk” subsystem, on which
the projective representation of Z2 × Z2 acts trivially [33].
For more general symmetries, it is likely that determinis-
tic fusion of tensor-network states will necessitate more
general measurement schemes. We leave these directions
for future work.

020315-17



SMITH, CRANE, WIEBE, and GIRVIN PRX QUANTUM 4, 020315 (2023)

The experimental data and code pertaining to this work
are available upon reasonable request.
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Note added.—Recently, several papers have proposed
algorithms to prepare AKLT states using adiabatic [18] and
nondeterministic measurement-based [19,20] approaches,
all of which involve preparation times dependent on sys-
tem size (though with extension to 2D AKLT states in
Refs. [18,19]). Reference [20] additionally involves exper-
iments on IBM Quantum devices. We emphasize that our
scheme stands in contrast to these, as it is constant time
and entirely deterministic. Separately, we note similari-
ties between our work and Ref. [26], which theoretically
proposes adaptive measurement-assisted finite-depth cir-
cuits to prepare tensor-network states. Finally, during the
review of this work, several papers have demonstrated
the experimental preparation of topological states using
measurements and feed-forward [69,70].

APPENDIX A: SWAP-BASED FUSION AND
DETERMINISTIC ENFORCEMENT OF PERIODIC

BOUNDARY CONDITIONS

In this appendix, we describe an alternative measure-
ment scheme for fusing AKLT chains using a SWAP test.
This strategy is more expensive than using Bell mea-
surement, requiring a Fredkin gate (decomposable into a
Toffoli and two CNOTs) and an ancilla. Its advantage is that
it is less destructive, projecting the memory qubits onto
the symmetric or antisymmetric subspace but revealing no

further information. As we will see, this—along with the
Z2 × Z2 symmetry of the AKLT state—can be leveraged
to probabilistically include the memory qubits in the pre-
pared chain as additional spin-1 sites. We can also perform
a SWAP test on the final edge memory qubits after prepara-
tion of the chain to enforce boundary conditions and, there,
this same feature allows for the deterministic preparation
of the AKLT state with periodic boundary conditions.

Before measurement, the joint state of two independent
AKLT chains can be written as

|�〉 =
∑

ijk� �m
〈i|Am1 . . .Amn−1Pmn |j 〉 〈k| Amn+1 . . .

× AmN−1PmN |�〉|ijk�〉| �m〉. (A1)

Measurement via the SWAP test amounts to application of
the symmetric or antisymmetric projection operators: S =
|s〉 〈s| or P = ∑

m |m〉 〈m|, where |s〉 is the singlet state and
m ∈ {+, 0, −} labels the triplet states.

Let us first imagine that we measure the intermediary
memory qubits (indexed j and k) to be in the singlet state.
Applying S to |�〉 and noting that 〈s|jk〉 = Sjk, we find that

S|�〉 =
∑

i� �m
〈i|Am1 . . .PmnSAmn+1 . . .PmN |�〉|i�〉| �m〉 |s〉

=
∑

i� �m
〈i|Am1 . . .AmnAmn+1 . . .PmN |�〉|i�〉| �m〉 |s〉 ,

(A2)

Measurement of the singlet state thus teleports a singlet
bond between the edge spin-1/2s, forming a larger AKLT
state through fusion of two smaller ones. This is, of course,
no different from measuring the Bell state |�−〉.

The more interesting situation is when we project onto
the triplet subspace. Applying P to |�〉, we find that

P|�〉 =
∑

i� �m

∑

m′
〈i|Am1 . . .PmnPm′

Amn+1 . . .

× PmN |�〉|i�〉| �m〉 |m′〉 . (A3)

This not quite the AKLT state—in place of a singlet bond,
we now have a matrix that is dependent on the (symmet-
ric) state of the memory qubits. We now show that this can
be “patched up” by invoking the transformation law corre-
sponding to Z2 × Z2 symmetry in Fig. 4(a). Recalling that
S ∝ Y, it can be shown that

∑

mm′
(UY)mm′Am′ = eiθY SPmS, (A4)

where UY = eiπSY and SY is the spin-1 operator polarized
along the y axis. Applying UY to the spin-1 site indexed by
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m′, ignoring the global phase, and reindexing sites to the
right of the fusion site, we find that

UYP|�〉 =
∑

i� �m

∑

m′
〈i|Am1 . . .PmnSPm′

SAmn+1 . . .

× PmN |�〉|i�〉| �m〉 |m′〉 .

=
∑

i� �m

∑

m′
〈i|Am1 . . .AmN PmN+1 |�〉|i�〉| �m〉, (A5)

yielding the AKLT state with N + 1 sites and bound-
ary conditions still entangled with the unmeasured edge
memory qubits. The SWAP test can therefore be used to
deterministically fuse AKLT chains, where recovery upon
measurement of the symmetric subspace is achieved by
inserting the memory qubits into the chain as an additional
spin-1 site.

As a final note, the above strategy can also be used
to deterministically prepare the AKLT state with periodic
boundary conditions, albeit with one additional site if the
edge memory qubits are measured to be in the symmetric
state. This latter feature is used in Sec. IV A to prepare two-
and three-site chains using a minimal number of qubits.

APPENDIX B: SEQUENTIAL PREPARATION OF
AN MPS USING TWO MEMORY QUDITS IN

PARALLEL

In this appendix, we present a generalization of the
sequential preparation strategy of Sec. III A, which halves
the circuit depth at the expense of doubling the dimen-
sion of the bond-space ancillary system. In particular, we
show that for certain MPSs (the AKLT state included),
it is possible to use two memory qudits of dimension
D to “grow” an MPS at both boundaries, in parallel.
This technique is leveraged for both the sequential and
measurement-assisted preparation experiments on IBM
Quantum processors, as shown in Figs. 2 and 4(b).

For simplicity, we specialize to an MPS with transla-
tional invariance. Similar to Sec. III A, we begin with two
memory qudits, each of dimension D, and N d-dimensional
subsystems. Our goal is to prepare the MPS,

|�〉 =
∑

LR

∑

�m
|L〉 ⊗ |R〉 ⊗ 〈L|Am1Am2 . . .AmN |R〉| �m〉,

(B1)

with boundary conditions entangled with the “left” and
“right” memory qudits, indexed by L and R. In addition,
we assume this MPS to be in left-canonical form. We begin
by initially preparing the two memory qudits in the state

|�〉 =
∑

ij

�ij |i〉 ⊗ |j 〉 (B2)

and all d-dimensional subsystems in the state |ψ0〉.

Let us now define two distinct unitaries that act on a
d-dimensional subsystem and one memory qudit:

UL =
∑

m

Am ⊗ I ⊗ |m〉 〈ψ0| + CL,

UR =
∑

mn

I ⊗ Bm ⊗ |m〉 〈ψ0| + CR,
(B3)

with constraint
∑

m Bm†Bm = I to ensure unitarity (note
that

∑
m Am†Am = I is automatically satisfied in left-

canonical form).
Without loss of generality, we assume N to be even.

Beginning with sites indexed N/2 and N/2 + 1, sequen-
tial application of UL and UR to all “left” (j ≤ N/2) and
“right” (j ≥ N/2 + 1) sites yields

|�〉 =
∑

ij

�ij

∑

�m
Am1Am2 . . .AmN/2 |i〉

⊗ BmN BmN−1 . . .BmN/2+1 |j 〉 ⊗ | �m〉 . (B4)

Left-multiplying by the resolution of the identity for both
memory qudits I = ∑

LR |L〉 〈L| ⊗ |R〉 〈R| and noting that
〈i| M |j 〉 = 〈j | M T |i〉 for any matrix M , we can rewrite |�〉
in the form

|�〉 =
∑

LR

∑

�m
|L〉 ⊗ |R〉 ⊗ 〈L| Am1Am2 . . .AmN/2

×�(BmN/2+1)T(BmN/2+2)T . . . (BmN )T |R〉 | �m〉 ,
(B5)

where we define the matrix � = ∑
ij �ij |i〉 〈j |.

In preparing the AKLT state, we take Bm = Am (i.e.,
the same unitary U is applied to both “left” and “right”
sites). We are now in a position to elucidate the reason for
this choice and its relation to the spatial inversion sym-
metry of the AKLT state. Similar to the manifestation of
Z2 × Z2 symmetry at the level of the local tensors Am in
Eq. (13), spatial inversion symmetry of the AKLT state
implies that [32]

(Am)T = −YAmY. (B6)

Noting that the Pauli Y operator is proportional to the sin-
glet matrix S and recalling that Am = PmS and S2 = I , the
final state |�〉 can be rewritten up to a global phase and
normalization factor as

|�〉 =
∑

LR

∑

�m
|L〉 ⊗ |R〉 ⊗ 〈L| Am1Am2 . . .AmN/2

×�SAmN/2+1AmN/2+2 . . .PmN |R〉 | �m〉 , (B7)

yielding the AKLT state for � = S, motivating our choice
of initial state for the memory qubits in the main text.
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More generally, spatial inversion symmetry provides
a sufficient condition to grow an MPS in both left and
right directions in parallel. To prepare the general state in
Eq. (B1), for example, one possible choice is (Bm)T = Am,
which imposes the condition

∑

m

Am∗Am∗† = I , (B8)

equivalent to right-canonical form for real tensors Am. For
an MPS with spatial inversion symmetry, the correspond-
ing transformation law [32] (Am)T = eiθIU†

IAmUI can be
used to readily prove that Eq. (B8) holds for an MPS in
left-canonical form.

APPENDIX C: QUANTUM TELEPORTATION
WITH THE AKLT STATE

In this appendix, we outline the quantum teleportation
protocol carried out at the end of Sec. IV B. For simplic-
ity, we take as a starting point the N -site AKLT state with
boundary conditions entangled with the memory qubits,

|�〉 =
∑

ij

∑

�m
〈i| Am1Am2 . . .AmN−1PmN |j 〉 |ij 〉 | �m〉 ,

(C1)

prepared either through the sequential or the measurement-
assisted approach. We note, however, that any state equiv-
alent to |�〉 up to known Pauli defects is suitable, as it
is possible to instead account for such defects in the tele-
portation byproduct operator. Consequently, Pauli defects
arising in our measurement-assisted preparation scheme
need not be removed prior to the teleportation protocol and
can instead be incorporated into the teleportation byprod-
uct operator. This feature allows us to carry out the tele-
portation protocol on IBM Quantum processors without
feed-forward.

Following Ref. [12], we first define a convenient spin-
1 basis for quantum teleportation (and, more generally,
MBQC):

|x〉 = (|+〉 − |−〉)/
√

2,

|y〉 = (|+〉 + |−〉)/
√

2,

|z〉 = |0̄〉 ,

(C2)

where we rename the m = 0 triplet state for notational pur-
poses. Expressing the tensors Am in this basis, we find that
Ax = √

2/3 X , Ay = i
√

2/3 Y, and Az = −√
2/3 Z.

Our protocol begins with measurement of the right
memory qubit (here indexed by j ), thereby enforcing a
definite right boundary condition or, equivalently, a def-
inite state for the right edge spin-1/2. In particular, we
aim to initialize the edge spin-1/2 to the target state |ψ〉

by measuring the memory qubit in the basis {|ψ〉 , |ψ⊥〉},
postselecting on the desired result.

We note that postselection is not strictly necessary in the
case in which the desired state lies along one of the cardinal
axes, as an unsuccessful measurement can be accounted
for in the final Pauli byproduct operator. For a general
state, however, recovery upon unsuccessful measurement
requires access to non-Clifford operations. We assume this
not to be the case and instead postselect on successful
initialization of the state |ψ〉.

After initialization of the target state |ψ〉, the state of the
system may be written in the form

|� ′〉 =
∑

i

∑

�m
|i〉 〈i| Am1Am2 . . .PmN−1 |ψ〉 | �m〉 ⊗ |ψ〉 ,

(C3)

where we rearrange the ordering of tensor products. In
addition, we use the tensor product operator ⊗ to make
explicit the portions of the system in a product state.

Next, we measure each spin-1 state in the basis defined
in Eq. (C2). For the encoding used in the main text, {|+〉 =
|10〉, |−〉 = |01〉, |0̄〉 = |00〉, |s〉 = |11〉}, this is achieved
by first transforming the spin-1 sites with the circuit

,

|q0〉

|q1〉 RY (−π/2)
(C4)

which carries out the mapping

|x〉 → |10〉 , |y〉 → |00〉
|z〉 → |01〉 , |s〉 → |11〉 (C5)

for the input state |q1q0〉. All spin-1 composing qubits are
then measured in the computational basis.

Noting that the Pauli group is closed under multiplica-
tion, we can use the fact that Am and Pm are proportional to
Pauli operators for all m ∈ {x, y, z} to write the state of the
system after measurement of all spin-1 sites as

|� ′′〉 ∝
∑

i

|i〉 〈i|� |ψ〉 ⊗ |�〉 , (C6)

where |�〉 denotes the state of all measured qubits and
� ∈ {I , X , Y, Z} is the product of all Pauli matrices corre-
sponding to measurement outcomes up to a global phase.
Noting the resolution of identity to the left of �, the
unmeasured left memory qubit is in the state |L〉 = � |ψ〉.
We have therefore deterministically teleported the state
|ψ〉 from the right memory qubit to the left, up to the
known byproduct operator �, which can be removed with
a single Pauli operation (or, alternatively, accounted for in
postprocessing).
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APPENDIX D: MEASUREMENT-ASSISTED
PREPARATION OF THE GHZ AND CLUSTER

STATES

We demonstrate two further examples of MPSs in this
section—the cluster state and the GHZ state—which can
be prepared using the strategy presented here, i.e., par-
allel preparation and subsequent deterministic fusion of
small resource states through measurement. We empha-
size that the possibility for constant-depth measurement-
assisted preparation of both these resources is known
[23,27,71–73]. Nonetheless, we find that the formalism
presented here—the preparation and subsequent fusion of
small resource states via Bell measurement and the correc-
tion of defects leveraging symmetry—provides a clear and
elucidating preparation protocol. In addition, we find that
our preparation of the GHZ state is especially resource effi-
cient, with every involved qubit ultimately encoding a site,
in contrast to the recently proposed routine that yields the
GHZ state on a subset of the total qubits [23].

While here we focus on the 1D cluster and GHZ states
for clarity, we note that the general procedure readily
extends to higher dimensions.

1. Cluster state

We begin with the 1D cluster state, the prototypical
example of an MPS for MBQC [3,64]. It is important to
note that the cluster state has zero correlation length and
can therefore be prepared by a constant-depth unitary cir-
cuit. However, its measurement-assisted preparation is still
of interest, particularly for linear optical quantum com-
puting architectures, where Bell measurements are used
in lieu of unitary entangling gates [71,72]. In addition,
the measurement-based preparation of cluster states is a
core component to the recently developed framework of
fusion-based quantum computation [27].

The cluster state is most simply prepared by initializ-
ing an array of qubits in the |+〉 state and subsequently
performing a controlled-Z gate between adjacent pairs of
qubits. Because all of the controlled-Z gates commute, the
preparation time is independent of the size of the system.

As described in Ref. [64], the cluster state can be written
as a MPS,

|�〉 =
∑

�m
〈L|Am1Am2 . . .AmN |R〉| �m〉, (D1)

where A0 = |+〉〈0| and A1 = |−〉〈1|. We note that it is
often convenient to alternatively express physical indices
in the X eigenbasis, where A+ ∝ H and A− ∝ HZ, corre-
sponding to the operator basis leveraged for cluster-state-
based MBQC [3,64].

Similar to the AKLT state, the measurement-assisted
preparation of the cluster state is enabled by Bell measure-
ments that fuse together smaller cluster states prepared in

FIG. 9. The symmetries of the 1D cluster and GHZ states. By
leveraging these symmetries, Pauli defects appearing on virtual
legs, e.g., arising from the fusion of two states via Bell mea-
surement, can be “pushed” to the edge of the prepared state by
applying appropriate unitaries to the physical legs.

parallel via the unitary preparation scheme outlined above.
As with the AKLT state, the possibility to make such a
scheme deterministic relies on the Z2 × Z2 symmetry of
the state, which we leverage to “push” any Pauli defect
B to the edge of the chain and remove it. In analogy to
Fig. 4(a), we summarize the symmetries of the local tensor
A for the cluster state in the left-hand panel of Fig. 9.

As a side note, the Z2 × Z2 symmetry of the cluster state
is made apparent upon grouping of pairs of tensors: defin-
ing Ãni = AmiAmi+1 , where ni is a composite index for mi
and mi+1, it can be shown that

∑

nn′
(UB)nn′ Ãn′ = BÃnB, (D2)

for any Pauli B ∈ {I , X , Y, Z}, where UB is some unitary
acting on the physical legs, e.g., UX = I ⊗ X and UZ =
X ⊗ I . This relation is in direct analogy to the symmetry
of the tensors composing the AKLT state in Eq. (13).

2. GHZ state

The GHZ state

|�〉 = 1√
2
(|000 . . . 0〉 + |111 . . . 1〉) (D3)

provides another example of a resource state for which
our measurement-assisted strategy enables a preparation
speed-up. Employing only local unitary operations, prepa-
ration of the GHZ state necessitates a linear-depth circuit:
first prepare a single qubit in the |+〉 state and all others
in the |0〉 state and sequentially apply N CNOT gates, in
each case using the target qubit of the previous CNOT as
the control of the next. The augmentation of unitary gates
with measurements and feed-forward, however, enables a
constant-time preparation protocol for the GHZ state.

Similar to the preparation of the AKLT and cluster
states, our procedure begins with the preparation of small

020315-21



SMITH, CRANE, WIEBE, and GIRVIN PRX QUANTUM 4, 020315 (2023)

GHZ states in parallel using the sequential approach out-
lined above. Again taking advantage of its MPS represen-
tation, we define the local tensors

A0 =
[

1 0
0 0

]
A1 =

[
0 0
0 1

]
, (D4)

such that the GHZ state may be expressed as an MPS
in the form of Eq. (5). We note that the GHZ state has
the property that the tensor A is nonzero only when the
physical index and both virtual indices are the same, i.e.,
〈i| Am |j 〉 = δimδjm. Consequently, there is no need for inde-
pendent “site” and “memory” qubits as in the case of the
AKLT state; the edge sites of the GHZ state may be used
as the “memory” to prepare subsequent sites.

As with the AKLT and cluster states, the fusion of inde-
pendently prepared GHZ states with Bell measurements
yields a larger GHZ state with an intermediary Pauli defect
B. Given knowledge of the measurement outcome, the
defect B can be removed using a single layer of Pauli gates
by leveraging the symmetries of the local tensor A outlined
in Fig. 9.

To clarify our earlier remark about including the mea-
sured qubits in the final GHZ state, we note that the
removal of the defect B = {I , X , Y, Z} is equivalent to
carrying out the mapping

Bij |ij 〉 → Iij |ij 〉 (D5)

on the measured Bell pair. Noting the fact that

I =
∑

mi,mi+1

AmiAmi+1 , (D6)

this in effect allows us to reincorporate the measured mem-
ory qubits (without additional swapping) as an additional
pair of GHZ sites, at the expense of two CNOT gates (per
fusion measurement) to reentangle the measured qubits.
This can alternatively be viewed (perhaps more simply) as
the ability to reinitialize the measured qubits to the ground
state |00〉 (given the measurement outcome), after which a
single layer of the sequential GHZ preparation protocol is
carried out, using the recycled qubits to form additional
sites without additional swapping. For an example cir-
cuit diagram of the measurement-assisted GHZ protocol
described here, see the Supplemental Material [49].
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