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Seen from the modern lens of causal inference, Bell’s theorem is nothing other than the proof that a
specific classical causal model cannot explain quantum correlations. It is thus natural to move beyond
Bell’s paradigmatic scenario and consider different causal structures. For the specific case of three observ-
able variables, it is known that there are three nontrivial causal networks. Two of those are known to
give rise to quantum nonclassicality: the instrumental and the triangle scenarios. Here we analyze the
third and remaining one, which we name the Evans scenario, akin to the causal structure underlying
the entanglement-swapping experiment. We prove a number of results about this elusive scenario and
introduce new and efficient computational tools for its analysis that can also be adapted to deal with
more general causal structures. We do not solve its main open problem—whether quantum nonclassical
correlations can arise from it—but give a significant step in this direction by proving that postquantum
correlations, analogous to the paradigmatic Popescu-Rohrlich box, do violate the constraints imposed by
a classical description of the Evans causal structure.
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I. INTRODUCTION

Bell’s theorem [1] is a cornerstone of quantum the-
ory, having far-reaching implications for its foundations as
well as in applications for quantum information processing
[2]. The violation of a Bell inequality provides device-
independent [3] proof of the incompatibility of classical
and quantum predictions, that is, solely based on the causal
assumptions of an experiment and agnostic of any internal
mechanisms of the involved physical apparatuses. More
generally, it evidences the need for a genuine notion of
quantum causal models [4–12] in order to explain the
correlations we observe in nature.

Importantly, the mismatch between classical and quan-
tum causal predictions can be generalized to causal struc-
tures beyond that in the paradigmatic Bell scenario. Moti-
vated by the steady progress on quantum networks [13],
there have been a number of results [13–21] proving
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that correlations across the distant parties of causal net-
works composed of independent sources can also exhibit
nonclassical behavior, as already proven in a number
of experiments [22–28]. In particular, quantum networks
allow for a novel form of nonlocality that, as opposed to
Bell’s theorem, does not require the need for measuring
different observables [15,18,29]. In parallel, temporal sce-
narios based on causal structures involving communication
between the parties [30,31] have also provided a fruitful
path for understanding the role of causality in quantum
theory, for instance, showing that interventions—a central
concept in the field of causal inference—are able to reveal
nonclassicality in situations where Bell-like tests, based on
observations, would simply fail [32,33].

It is thus natural to ask what causal structures can lead to
nonclassical behavior, a question that has remained elusive
for two main reasons. The first is the fact that the number
of possible causal structures increases very rapidly. Even
to prove their equivalence classes—that is, which causal
structures can give rise to the same set of observed cor-
relations—has only been solved up to three observable
variables [34,35]. The other hurdle stems from the noncon-
vex nature of the set of correlations permitted by general
causal models [36,37]. In spite of the number of com-
plementary approaches developed in recent years [38–44],
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FIG. 1. Possible tripartite causal structures with no latent vari-
ables. Of the possible eight classes of causal structures with
three observable nodes, five are represented by structures with
no latent variables.

their practical use is still limited to a few cases of interest,
which furthermore have to be evaluated on a case-to-case
basis.

In the case of three observable nodes, it has been proved
that there are a total of eight inequivalent classes of causal
structures; see Figs. 1 and 2. From those, only three
involve latent variables—that in a quantum description
could be represented by entangled states—and thus lead
to correlations without a classical analog. Of these three,
Fig. 2(a) corresponds to the instrumental scenario [31,45]
and Fig. 2(b) to the triangle scenario [15,18], bounded by
Bell-like inequalities that can be violated with the help
of entanglement, proving their nonclassical nature. For
the third causal structure, depicted in Fig. 2(c) and to
which we refer to as the Evans causal structure [34], it
is not known whether it can lead to nonclassical correla-
tions. We show that nonclassical correlations reminiscent
of Popescu-Rohrlich (PR) boxes [46] can violate the con-
straints implied by a classical description of this causal
structure. The quantum violation of such bounds remains
an open problem; however, as we show, a natural class of
quantum correlations does have a classical explanation in
such a scenario.

The paper is organized as follows. In Sec. II we intro-
duce causal structures, their representation as directed
graphs as well as a brief discussion of their equivalence
classes. In Sec. III we prove some general results for the
quantum and classical compatible distribution in the Evans
scenario, using its similarity with the bilocality scenario.
We further prove that, despite their similarities, a natu-
ral set of correlations in the bilocality scenario, involving
measurements in the maximally entangled basis, does have
a classical explanation in the Evans scenario, pointing out
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FIG. 2. Possible tripartite causal structures with latent vari-
ables. There are a total of eight inequivalent classes of causal
structures that can involve three observable nodes. Of these, only
three of them contain at least one latent variable, a necessary
condition to display a classical-quantum gap, that is, quantum
correlations that cannot be explained by a classical causal model.
Two of them are known to have quantum-classical gap: the
Instrumental (a) and the triangle (b). Quantum violations for
Evans’s scenario (c) remain an open problem.

that the possible existence of genuine quantum distribu-
tions requires a more subtle approach. In Secs. IV and
V we discuss two approaches to the causal compatibility
problem: (i) nonconvex quadratic optimization and (ii) the
inflation technique [47] augmented with e-separation [48],
using both of them to demonstrate the nonclassicality of
a postquantum distribution (similar to a PR box) in the
Evans scenario. Finally, in Sec. VI we discuss methods to
derive conditions valid regardless of the nature of the latent
sources (classical, quantum, or postquantum), which can
effectively test the topology of the Evans causal structure.
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II. DAGS AND THEIR INEQUIVALENCE CLASSES

A causal structure is represented by a directed acyclic
graph (DAG) G that consists of a finite set of nodes NG
and a set of directed edges EG ⊆ NG × NG . These graphs
need some distinction among the vertices to clarify if a
node in the graph represents either an observable or an
unobserved (or latent) variable. Graphically, we use the
circles to represent observable variables and triangles for
latent variables (see, for example, Fig. 2), and we denote
the latter with greek letters. We can define the concept of
causal parents Pa(A) of a given variable A in G as the set of
nodes sharing incoming edges with A, i.e., Pa(A) := {X ∈
NG|X −→ A}. Similarly, the children of a node A are defined
as those nodes at which edges originating at A terminate,
i.e., Ch(A) := {X ∈ NG|A −→ X }.

Every causal structure specifies a causal model for
its nodes via a family of causal parameters. The causal
parameters specify, for each node X ∈ NG , the conditional
probability distribution pX |Pa(X )(x|y) over the values of the
random variable X , given the values of the variables in
y ∈ Pa(X ). If we have exogenous variables, i.e., Pa(X ) =
∅, the conditional distribution becomes an unconditioned
distribution over variable X .

Now, consider a DAG G with LG = {�1, . . . ,�I }, the
set of latent variables, and OG = {A1, . . . , AJ }, all the
observable nodes. A causal model specifies a joint distri-
bution of all variables in the causal structure via

p(λ1, . . . , λI , a1, . . . , aJ ) =
∏

v∈NG

p(v|Pa(v)). (1)

We can partition NG = OG ∪ LG and rewrite Eq. (1) as a
product of latent and observable causal parameters. Giv-
ing an observable joint distribution p(a1, . . . , aJ ) over Ai ∈
OG ⊂ NG satisfying the global Markov condition, that is, it
admits the following decomposition:

p(a1, . . . , aJ ) =
∑

λ1,...,λI

∏

λi∈LG

p(λi|Pa(λi))

×
∏

aj ∈OG

p(aj |Pa(aj )). (2)

Note that we are interested in the case of exogenous latent
variables, i.e., Pa(λi) = ∅.

Another important concept is the d-separation criterion.
The d-separation is a graphical method for deciding, from a
given directed graph G, whether a set A of variables is inde-
pendent of another set B, given a third set C. The idea is
to associate “dependence” with “connectedness,” i.e., the
existence of a connecting path, and “independence” with
“unconnectedness” or “separation.”

We first define the concept for an undirected path in a
DAG and a collider. An undirected path P ⊂ NG is a set
of consecutive nodes of G connected by edges, regardless

of their direction. A collider is a variable that has more
than one causal parent but no children in P; equivalently,
a collider can be thought of as an inverted fork. A fork is
a node that only has outgoing edges in P. When a variable
is neither a fork nor a collider, we have a chain, i.e., the
variable has incoming and outgoing edges in P.
Definition 1: Let G be a given causal structure, and let A,
B, and C be disjoint sets of variables. Consider PAB the path
that connects the variables from A to the variables from B.
We say that A and B are d-separated by C if any of the
following conditions hold:

(a) PAB contains a collider m (−→ m←−) such that m /∈
C, and all y ∈ Ch(m) also satisfy y /∈ C;

(b) PAB contains a fork m (←− m −→) such that m ∈ C;
(c) PAB contains a chain variable m (−→ m −→ or ←−

m←− ) such that m ∈ C.

We denote this by A ⊥d B | C.
Note that the conditions in the definition above are

graphical, i.e., they depend only on the structure of G, and
allow us to derive nontrivial conditions on the correlations.
It is possible to show that d-separation is equivalent to the
nodes satisfying the conditional independence relation A ⊥
⊥ B | C, that is, p(ab|c) = p(a|c)p(b|c) [49]. Importantly,
any probability distribution over OG is compatible with the
global Markov model only if it respects all d-separation
conditions of G.

Crucially, the compatibility definitions described above
are valid only if we assume that the latent variables behave
like classical systems. If we are free to identify the unob-
served nodes as sources of quantum correlations, the set of
quantum compatible distributions is, for certain scenarios,
strictly larger than the classical one. Specifically, we can
define a quantum compatible distribution for a DAG G as
that described by the following strategy.

1. To each latent variable� ∈ LG , we associate a quan-
tum state described by the density operator ρ� ∈
L(H�).

2. To each observed variable A ∈ OG , we associate
a positive operator-valued measure (POVM) mea-
surement described by operators, {Ea

PaO(a)
}a, depen-

dent on the outcome of its observed parents PaO(a),
and acting nontrivially only on the space HPaL(A) of
all the latent parents of A.

3. The distribution is obtained by the Born rule applied
to the state of all latent nodes:

p(OG) = tr
( ⊗

a∈OG

Ea
PaO(a)

⊗

�∈LG

ρ�

)
. (3)

We denote the set of all quantum compatible distribu-
tions for a DAG G as QG . In this paper, we also consider
resources that may not be compatible with a quantum

020311-3



PEDRO LAUAND et al. PRX QUANTUM 4, 020311 (2023)

description and are modeled by generalized probabilis-
tic theories. A strategy similar to that above can be used
to define the set of correlations compatible with a causal
structure G under scrutiny. Where we take |ω�) ∈ ��, a
generalized probabilistic theory (GPT) generalization of
the quantum state ρ�, and (ea

PaO(a)
|, GPT generalizations

of the quantum measurement operator Ea
PaO(a)

and the joint
distribution over the observable variables is given by

p(OG) =
( ∏

a∈OG

(ea
PaO(a) | ◦ |�)

)
, (4)

where |�) lives in some composite state space
∏
�∈LG ��

that contains the tensor product of the state spaces as
a subspace [50]. We denote the set of all distributions
compatible with a GPT as �G .

Being interested in the causal compatibility problem
(CCP), it is convenient to restrict our attention to equiv-
alence classes of DAGs that admit different sets of classi-
cally compatible distributions, that is, we consider G ∼ G ′
belonging to the same class whenever CG = CG′ . Note that,
while DAGs belonging to the same class need to have the
same number of observable nodes, latent nodes are in no
way restricted. It can be shown [51] that in the case of
three observable nodes there are only eight different classes
of DAGs, whose representatives are shown in Figs. 1 and
2. In particular, in Fig. 2 we represent the three classes
of DAGs containing latent variables, which are the only
ones where a strict inclusion CG ⊂ QG is possible. As pre-
viously mentioned, Evans’s scenario, depicted in Fig. 2(c),
is the only one for which this question remains an open
problem.

III. EVANS’S SCENARIO

In this section, we prove a number of results about
the Evans scenario. First, we show a general mapping
between the Evans scenario and the much-studied bilocal-
ity scenario [14]. Second, we prove that a natural class
of correlations obtained with maximally entangled states
and measurements do have a classical explanation. Before
that we better motivate the interest in the causal structure
underlying the Evans scenario.

The Evans scenario is the simplest causal structure com-
bining the two features that have attracted the attention
of the whole community lately: communication between
outcomes (as in the instrumental scenario) and indepen-
dent sources (as in the triangle scenario). Moreover, the
Evans’s scenario is the underlying causal structure of a
paradigmatic protocol in quantum information science: the
entanglement swapping [52], where a central node (B)
makes a joint measurement on his share of entangled states
and by communicating his measurement outcomes is able
to establish entanglement between two distant parties (A
and C) that have never interacted before.

Λ M

A B CX Z

FIG. 3. Causal structure of the bilocality scenario. Two inde-
pendent sources � and M connect nodes A and C, which are
influenced by X and Z, respectively, to B.

It is also worth noting that it is not known whether
the three different equivalent classes that hold classically
(instrumental, triangle, and Evans) remain the same in the
quantum case. As proven in Ref. [11], classically equiv-
alent DAGs might become inequivalent if quantum states
act as the common source. Nonetheless, note that any clas-
sical Bell inequality we derive for the Evans scenario will
also be a valid constraint for any other member of that
equivalence class. That is, even if one of these DAGs is
inequivalent when considering quantum correlations, all
the inequalities and methods we discuss in the rest of the
paper remain valid. This means that one could generate
quantum correlations using other DAGs but still use the
same constraints we have used.

A. The relation between the bilocality and the Evans
scenarios

In the following, we show an interesting relation
between the Evans scenario to the so-called bilocal sce-
nario [53]. This scenario, whose DAG GB is displayed in
Fig. 3, presents two independent sources � and M shared
between a central node B and two peripheral nodes A and
C, and can be described by a conditional probability distri-
bution p(a, b, c|x, z). It is known [53] that, for this scenario,
the classically compatible set of distributions does not
coincide with the quantum set, i.e., CB ⊂ QB.

A distribution compatible with the Evans scenario can
be seen as a projection of a distribution in the bilocal
scenario into the subspace p(a, b, c|x = z = b). More pre-
cisely, for every distribution admitting a classical model
pE(a, b, c) in the Evans scenario, there exists a real-
ization pB(a, b, c|x, z) in the bilocal scenario such that
pE(a, b, c) = pB(a, b, c|x = z = b) and pB(a, b, c|x, z) also
admits a classical model. Conversely, for every bilocal
distribution pB(a, b, c|x, z), its projection, pE(a, b, c) :=
pB(a, b, c|x = z = b), admits a classical model in the
Evans scenario.

This simple fact allows us to derive some nontrivial con-
clusions about the topology of the set of classical correla-
tions in Evans’s scenario, Ce, that follow from the topology
of the bilocal set. We show, in analogy to Ref. [54], that
the set Ce is connected and has weak star convexity for a
certain subspace. A similar relation is respected under the
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same projection for the case where quantum states are dis-
tributed in the network. The combination of these results
shows that quantum nonbilocality is a necessary condition
for a given distribution to display a classical-quantum gap
in the Evans scenario.

To formalize those statements, let us consider the Evans
set Ce and the bilocal set CB of classical correlations. We
know that, for a distribution p(abc|xz) ∈ CB, the global
Markov property implies that

p(abc|xz) =
∑

μ,λ

p(μ)p(λ)p(a|xλ)p(b|μλ)p(c|zμ). (5)

From this, assuming that |X | = |Z| = |B|, we obtain the
following result.

Lemma 1. If pB(abc|xz) ∈ CB then pE(abc) := p(abc|x =
z = b) ∈ Ce. Conversely, if pE(abc) ∈ Ce then there
exists a pB(abc|xz) ∈ CB such that pB(abc|x = z = b) =
pE(abc).

Proof. The first implication of the lemma follows directly
from the definitions. Suppose now that pE ∈ Ce; then there
exists λ and μ such that

p(abc) =
∑

μ,λ

p(μ)p(λ)p(a|bλ)p(b|μλ)p(c|bμ). (6)

Now we can define

p̃(a|λ, x) := p(a|λ, b = x), (7)

and similarly for p̃(c|μ, z). We can also define

p̃(a, b, c|x, z) =
∑

μ,λ

p(μ)p(λ)

p(a|b′ = x, λ)p(b|μλ)p(c|b′ = z,μ), (8)

where p̃ is bilocal by construction and p̃(a, b, c|x = z =
b) = p(abc), which concludes the proof. �

Using this mapping, we can extend some results valid
for the set of bilocal distributions, to the Evans one. In par-
ticular, we can prove that Ce is connected and star convex
for certain subspaces, i.e., there exists a preferential point
p∗ ∈ CpA

e ⊂ Ce such that, for any p ∈ CpA
e , the line from

p∗ to p is contained in CpA
e . Note that star convexity is a

weaker notion of convexity.

Lemma 2. It holds that Ce is connected

Proof. First, it was shown in Ref. [54] that CB is connected.
More precisely, for every bilocal correlation pB, there is

a correlation pξ = ξpB + (1− ξ)p0 that follows a con-
tinuous path connecting pB to p0, where p0(a, b, c|x, z) =
1/|A||B||C| is the uniform distribution. Furthermore, pξ is
bilocal for every ξ as it can be obtained by performing local
operations on the correlation pB.

Now, consider pE ∈ Ce. Then, by Lemma 1, there exists
pB bilocal that recovers pE via projection; we can thus
define

pE
ξ (a, b, c) = pξ (a, b, c|x = z = b)

= ξpE + (1− ξ) 1
|A||B||C| ,

since pξ is bilocal; then pE
ξ ∈ Ce. This shows that every

classical pE is continuously connected to the uniform
distribution, implying that Ce is connected. �

Moreover, star convexity is preserved when we project
on the subspace determined by fixing a specific marginal
distribution for a pA(a).

Lemma 3. It holds that Ce is star convex on the subspace
of fixed pA denoted by CpA

e .

Proof. We need to show that there exists a point p∗ ∈ CpA
e

such that any line segment between p ∈ CpA
e and p∗ is

inside CpA
e .

Consider p ∈ CpA
e , i.e., p(a) =∑

bc p(a, b, c) = pA(a) is
fixed and p has a classical decomposition in terms of λ and
μ. Define p∗(a, b, c) = pA(a)p∗(b)p∗(c) ∈ CpA

e .
By providing an extra random bit � distributed by the

source with probability p(� = 1) = 1− p(� = 0) = ξ ∈
[0, 1] to Bob and Charlie, we can define the correlation
pξ as follows. If � = 1, Bob and Charlie output their
original response functions defined by p . If � = 0, they
respond according to p∗. This yields pξ = ξp + (1− ξ)p∗.
This operation can be done locally from Bob’s and Char-
lie’s labs and thus we can construct a local model for
pξ , and

∑
bc pξ (a, b, c) = pξ (a) = pA(a). This shows that

pξ ∈ CpA
e . �

The proof of Lemma 3 uses the exact same argument
as in Appendix A of Ref. [54]. Lemmas 2 and 3 imply
similarities between sets Ce and CB. Our next result shows
that there is a similar relationship at the quantum level. The
sets of quantum correlations in the Evans scenario, Qe, and
in the bilocal scenario, QB, are respectively given by

pE(a, b, c) = tr((ψAB ⊗ ψB′C)Ea|b ⊗ Eb ⊗ Ec|b) ∈ Qe

and

pB(a, b, c|x, z) = tr((ψAB ⊗ ψB′C)Ea|x ⊗ Eb ⊗ Ec|z) ∈ QB.
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The systems are independently distributed and the {Ei|j }
are general POVMs respecting

∑

i

Ei|j = 1 for all j , Ei|j ≥ 0 for all i, j .

Lemma 4. If pB(abc|xz) ∈ QB then pE(abc) = p(abc|x =
z = b) ∈ Qe. Conversely, if pE(abc) ∈ Qe then there
exists a pB(abc|xz) ∈ QB such that pB(abc|x = z = b) =
pE(abc).

Proof. This is a consequence of making the identification
Ea|x=k ≡ Ea|b=k, and similarly for other effects.

Indeed, if pB(abc|xz) ∈ QB then

pE(abc) = p(abc|x = z = b)

= tr((ψAB ⊗ ψB′C)Ea|b ⊗ Eb ⊗ Ec|b)) ∈ Qe.

Conversely, if pE ∈ Qe, we define Ẽa|x = Ea|b=x, and simi-
larly for other parties, which gives

p̃(a, b, c|x, z) = tr((ψAB ⊗ ψB′C)Ea|b′=x ⊗ Eb ⊗ Ec|b′=z))

∈ QB.

This completes the proof. �
It is important to point out that, from these results, we

can prove quantum nonbilocality to be a necessary condi-
tion for the Evans scenario to display a quantum gap (a
violation of a classically valid inequality).

Indeed, suppose that pE is a quantum nonclassical dis-
tribution in the Evans scenario. By Lemma 4, there exists
pB ∈ QB that recovers pE via projection. The distribution
pB is not unique, i.e., the quantified problem

∃pB ∈ QB such that pB(a, b, c|x = z = b) = pE(a, b, c),
(9)

may have many (infinitely many) solutions. However,
there cannot be any solution pB ∈ CB, because if there
exists pB ∈ CB then pE ∈ Ce by Lemma 1, a contradiction.

These relations hint at the possibility that, by starting
with some nonclassical distribution in the bilocal scenario,
one could possibly derive the incompatibility of the pro-
jected correlation in the Evans case, i.e., it is natural to
ask whether nonbilocality could also become sufficient
under some specific condition or some specific distribu-
tion. Unfortunately, we could not find quantum violations
of bilocality that remained nonclassical after projection.
We believe that this is due to the fact that many examples
of nonbilocality rely on entanglement swapping processes
that are heavily dependent on maximally entangled mea-
surements for Bob, which, as we prove in the next section,
do have a classical explanation in the Evans case.

As shown by these negative results, truly new methods
are required to analyze the emergence of nonclassicality in
the Evans scenario.

B. A classical model for measurements on a maximally
entangled basis

Given the similarities between the bilocal and the Evans
scenarios that we highlighted in the previous section, a nat-
ural quantum strategy to obtain nonclassical correlations
in the Evans scenario would be to start from maximally
entangled bipartite states shared by A, B and B, C and use
node B to perform entanglement swapping [52], so that
A and C would effectively perform measurements on a
shared entangled state. Unfortunately, we show here that
this kind of strategy possesses a classical model in the
Evans scenario.

To make things more precise, let us assume that A, B
and B, C both start with maximally entangled states of the
form |
d〉 = (1/

√
d)

∑d
i |ii〉, where B performs the stan-

dard d-dimensional entangling measurement, in the basis
Bd = {

∣∣
n,m
d

〉}m,n:

∣∣
n,m
d

〉 = 1√
d

d∑

k

ei2πnk/d |k, k + m〉 (10)

with the sum modulo d and n, m ∈ {0, . . . , d − 1}. Then A
and C can perform an arbitrary POVM measurement on
their part, {Aa

b}a and {Cc
b}c, respectively, depending on the

outcome b = (n, m) of B. The distribution is thus given by

p(a, b, c) = tr(Aa
b ⊗ Bb ⊗ Cc

b |
d〉 〈
d| ⊗ |
d〉 〈
d|).
(11)

Result 1. For any d-dimensional POVMs {Aa
b}a and {Cc

b}c
and for any dimension d, the distribution generated by
the quantum strategy in Eq. (11) always has a classical
realization compatible with the Evans causal structure.

Proof. We start by noting that, independently of the value
of the outcome b, we can always describe the effective
state shared between A and C as the maximally entangled
state |
d〉. Indeed, since, depending on b, the effectively
swapped state will be one of the set {∣∣
n,m

d

〉}, we can reduce
it to |
d〉 by applying a local unitary on one part. Specifi-
cally, we can repeatedly apply the operators X , Z, defined
by

X |k〉 = |k + 1〉 , Z |k〉 = ei2πk/d |k〉 . (12)

In this way, redefining

C̃c
(n,m) = Z−nX −mCc

(n,m)X
mZn, (13)
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we obtain, conditioning on the outcome b,

p(a, c|b) = tr(Aa
b ⊗ C̃c

b |
d〉 〈
d|) = tr((Aa
b)

TC̃c
b)/d.

(14)

The distribution p(a, c|b), as written above, is also compat-
ible with a structure where variables A and C share a single
latent variable N , and are both influenced by the same set-
ting B (independent of N ). In such a structure the quantum
and classical distribution sets coincide, so we know that, in
particular for Eq. (14), we can have a classical realization
of the form p(a, c|b) =∑

ν p(a|b, ν)p(c|b, ν)p(ν), where
ν ∈ {0, . . . , d − 1}2. Without loss of generality, we can
limit ourselves to combinations of deterministic strategies:

p(a, c|b) =
∑

ν

δa,f (b,ν)δc,g(b,ν)p(ν). (15)

We now show that these can be converted into classical
realizations compatible with the Evans scenario. Indeed,
for a classical distribution in the Evans case, we would
have

p(a, c|b) =
∑

λ,μ

δa,f ′(b,λ)δc,g′(b,μ)p(λ,μ|b), (16)

where the term p(λ,μ|b) needs to satisfy
∑

b p(λ,μ|b)
p(b) = p(λ)p(μ). We note that in our case p(b) is a uni-
form distribution, and if we also choose p(λ) and p(μ)
to be uniform, we have p(λ,μ|b) = p(b|λ,μ), so that
the above condition simply becomes the normalization of
p(b|λ,μ). Now, if p(ν) is the distribution for the shared
latent variable N that describes Eq. (15), we define

p(b|λ,μ) = p(ν = (λ+ b1,μ+ b2)), (17)

where b = (b1, b2) and the addition is modulo d. We can
easily see that, thanks to this definition, both p(b|λ,μ)
and p(λ,μ|b) satisfy the normalization condition. Now,
to make Eq. (16) coincide with Eq. (15), it only remains
to define the local deterministic strategy of the former as
f ′(λ, b) = f (λ− b1, b) and g′(μ, b) = g(μ− b2, b).

Finally, we remark that if the POVMs {Aa
b}a and {Cc

b}c
are of cardinality dA > d or dC > d, the mutual informa-
tion I(A : C) is still bounded by I(A : C) ≤ log2(d). Then
any such distribution can still be reproduced by strategy
(16), adding local noise in A and C. �

It is important to note that our result is valid regardless
of the cardinality of the variables A and C. It was shown
in Ref. [55] that, in the instrumental scenario, when the
central node (in our case B) has a high cardinality, the
scenario becomes less restrictive such that in the asymp-
totic limit of continuous B the model imposes no restriction
for p(a, b, c). Since the Evans model contains the instru-
mental model as a particular case (as will be discussed

in Sec. IV B), we can conclude that this will also be the
case for the Evans model. This means that, whenever
|B| ≥ |A|, |C|, the model will be quite permissive and we
can, for example, simulate perfect correlation between the
variables trivially.

IV. NONCONVEX QUADRATIC PROBLEMS AND
CAUSAL COMPATIBILITY

In our framework, nonconvex optimization problems
arise in a very natural way: to solve the problem of decid-
ing whether some correlation p lies inside or outside the
nonconvex set of classical correlations. It has been proven
in Ref. [56] that the classical set of correlations for any
network structure is a semialgebraic set, i.e., it can be
described by finitely many polynomial equalities and/or
inequalities on the joint distribution of all observable nodes
of the network. Thus, in principle, we could solve the CCP
by globally solving a polynomial optimization problem
(POP). Of course, in general, this is no easy task and there
are approaches to try to solve such problems asymptoti-
cally as a hierarchy of simpler outer approximations like,
for example, semidefinite programming relaxations [57] or
linear programming [58].

Reformulating the Evans compatibility problem as a
nonconvex maximization problem, p(a, b, c) is compatible
with Fig. 2(c) if and only if

∃q(a0, . . . , a|B|, b, c0, . . . , c|B|) ≥ 0 (18a)

subject to
∑

ai �=b,cj �=b

q(a0, . . . , a|B|, b, c0, . . . , c|B|)

= p(a, b, c), (18b)

q(a0, . . . , a|B|, c0, . . . , c|B|) = q(a0, . . . , a|B|)

q(c0, . . . , c|B|), (18c)
∑

a0,...,a|B|,b,c0,...,c|B|

q(a0, . . . , a|B|, b, c0, . . . , c|B|) = 1, (18d)

where

q(a0, . . . , a|B|, b, c0, . . . , c|B|)

:=
∑

λ,μ

p(λ)p(μ)p(b|λ,μ)p(a0|λ, b = 0) · · ·

× p(a|B||λ, b = |B|)p(c0|μ, b = 0) · · ·
× p(c|B||μ, b = |B|). (19)

This problem is nonconvex, with all the conditions being
at most quadratic. We can also see in Eq. (18) analogous
conditions to Fine’s theorem [59] for this network, i.e.,
necessary and sufficient conditions on the joint probability
distribution of all the possible outcomes for causal compat-
ibility. This clearly constitutes a nonconvex, quadratically
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constrained feasibility test that can be globally solved with
presently available solvers. Note that feasibility tests are a
particular case of a constrained optimization problem, that
is, when the objective function is constant. For our work,
we have used the Gurobi optimizer [60], which allows us
to tackle nonconvex, quadratically constrained quadratic
problems (QCQPs). Contrary to many nonlinear optimiza-
tion solvers, which search for locally optimal solutions,
here we solve this problem by looking for global optimality
[61].

Furthermore, we can rewrite this as a minimization
problem introducing white noise to p(a, b, c):

minimizev,q 1− v (20a)

subject to
∑

ai �=b,cj �=b

q(a0, . . . , a|B|, b, c0, . . . , c|B|)

= vp(a, b, c)+ 1− v
|A||B||C| , (20b)

q(a0, . . . , a|B|, c0, . . . , c|B|)

= q(a0, . . . , a|B|)q(c0, . . . , c|B|), (20c)
∑

a0,...,a|B|,b,c0,...,c|B|

q(a0, . . . , a|B|, b, c0, . . . , c|B|) = 1, (20d)

q ≥ 0. (20e)

Note that this choice of noise is validated by Lemma 2,
where it is shown that all Evans-compatible behaviors are
continuously connected to the white noise distribution and,
thus, the problem must yield a solution with v < 1 if p
lies outside the classical set of correlations. Although the
derivation of Eq. (18) does not work in general for net-
works with a more complex latent structure, e.g., triangle
network, our tools may still tackle the CCP for these more
general causal structures. Truly, Rosset et al. [56] showed
that one may always take the cardinality of the latent vari-
ables to be finite and, by consequence, we can use the
d-separation criterion to formulate a POP. This shows that
we can use global nonconvex optimization as a neces-
sary and sufficient test, up to computational tolerance, for
causal compatibility.

A. Extracting infeasibility certificates from quadratic
problems

If a given probability distribution p∗(a, b, c) fails the
CCP test, i.e., is incompatible with the classical causal
model under test, we would also like to extract a witness
for such nonclassical behavior, that is, a real function F
such that

F(p(a, b, c)) ≥ B∗ (21)

and F(p∗) < B∗, where p(a, b, c) are all distributions com-
patible with the causal structure under scrutiny.

In the Evans scenario, for example, the compatibility
conditions are stated in Eq. (18). Since any compatible
p(a, b, c) can be expressed as a marginalization of the joint
distribution q, we can write F = F(q), where the terms that
will appear are the respective marginals of q optimized
over the factorizing conditions, normalization and non-
negativity. Given an incompatible distribution p∗, we may
simply choose F(p) = ||p − p∗||2, since all terms of F are
quadratic on q and this can be efficiently optimized. Note
that the value F(p) = 0 is never possible, as this would
imply that p = p∗, and p∗ is assumed to be a nonfeasible
point. Therefore, the program will return a bound B∗ that is
tight up to computational precision. Our witness will then
be written as

||p − p∗||2 ≥ B∗,

and can be violated by p∗.

B. Finding inequalities for the Evans scenario starting
from the instrumental scenario

The instrumental scenario, whose DAG is shown in
Fig. 2(a), implies the following decomposition for any
compatible distribution:

p(a, b, c) =
∑

μ

p(a)p(b|a,μ)p(c|b,μ)p(μ). (22)

We note that this can be regarded as a particular case of
factorization (5) given by the Evans scenario.

The correspondence emerges when we drop the arrow
from B to A and choose A to be a deterministic function
of λ, that is, p(a|b, λ) = δa,λ. More generally, the arrow
B→ A can be seen as a kind of measurement dependence
in the instrumental scenario [62], since via this arrow the
hidden variable μ can influence variable A. Because of
that, it seems reasonable that inequalities valid for the
instrumental scenario can be recycled for the Evans sce-
nario if we consider the relaxation arising from the arrow
B→ A. In the following, we show how the bounds of the
instrumental inequalities change if applied to the Evans
scenario.

Indeed, using the Gurobi optimizer, we can evaluate
how the bound of known Bell-like inequalities changes
when applied to the Evans scenario. Specifically, we con-
sider Pearl’s inequality [45]

P = pABC(1, 0, 0)pA(1)+ pABC(1, 1, 1)pA(0)− pA(0)pA(1)

≤ 0 (23)
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and Bonet’s inequality [31,55]

B = pABC(0, 1, 0)pA(1)pA(2)− pABC(1, 1, 0)pA(0)pA(2)

− pABC(1, 1, 1)pA(0)pA(2)− pABC(2, 0, 1)pA(0)pA(1)

− pABC(2, 1, 0)pA(0)pA(1)

≤ 0. (24)

Employing the Gurobi optimizer, one can see that the
inequalities are changed as

P ≤ 1
16 , B ≤ 1

27 . (25)

Unfortunately, however, we were unable to find any quan-
tum or postquantum correlations able to violate these
inequalities.

Nonetheless, this relation between the Evans and instru-
mental scenarios also hints at the possibility that correla-
tions violating instrumental inequalities might also lead to
nonclassical behavior in the Evans scenario. As will be
detailed in the following, this is precisely the case for the
PR box in the instrumental scenario with |A| = 3, appropri-
ately choosing the marginal distribution of p(a). We also
show in Appendix A how this choice cannot be arbitrary
since there are choices for p(a) such that the distribution
still admits a local model.

Now we show that the Bonet PR box given by

pPR(bc|a) =
{

1
2 if c = b+ f (a, b) mod 2,
0 otherwise,

(26)

where f (0, b) = 0, f (1, b) = b, and f (2, b) = b+ 1
mod 2, can violate causal compatibility inequalities in the
corresponding Evans scenario.

C. Violations of the Evans scenario

Solving the QCQP, we have a necessary and sufficient
(up to computational precision) oracle to detect nonclassi-
cally in the Evans scenario. By discretizing our domain of
parameters pA, and employing this oracle for each choice
of pA, the lowest visibility overall choice to certify the
nonclassicality of the distribution in Eq. (26) is given
by v = 0.84. With pA(0) = pA(2) = 10/21 and pA(1) =
1/21, where the distribution under test is the convex sum,
p(a, b, c) = vpPR(a, b, c)+ (1− v)1/12, that is, a mixture
of white noise with the PR box wired by asymmetrically
distributed inputs.

Using the construction in Sec. IV A, we can find a wit-
ness that is generally valid for the scenario and is violated
by our candidate distribution. Even though we can find
incompatibility for visibilities as low as v = 0.84, the best
choice of candidate distribution to derive the inequality is
for v = 1. This fact becomes more intuitive when we look
at this approach in a geometrical manner, since we are

looking at the largest Euclidean ball centered at the non-
classical correlation p that remains completely outside of
the nonconvex (classical) set of correlations. Clearly, this
is a nonconvex optimization problem and, furthermore, if
we get arbitrarily close to the border of the set from out-
side, the radius of this ball becomes arbitrarily small, and
if this radius is smaller than our computational precision,
we have a problem. The best we can do is to choose the
region with the largest volume, aiming to detect the largest
amount of nonclassical distributions, which would corre-
spond to the largest radius of this Euclidean ball. We find
the largest radius for v = 1, which yields the witness

GW = ||p − pPR||22 ≥ 0.000 61. (27)

To obtain this witness, we optimized the objective function
GW(p) = ||p − pPR||22, where pPR is the PR-box distribu-
tion mentioned before with the appropriate choice of pA;
the optimal violation is the case where p = pPR for which
we get GW(pPR) = 0, which means a violation of β =
−0.000 61. We can also always show with our approach
that this inequality is tight, i.e., the Gurobi program can
always return a classical point that achieves the optimal
objective function. More generally, this can be seen as a
consequence of the Weierstrass extreme value theorem that
guarantees that the continuous function F(p) : Ce → R

can take its extreme values with points inside the compact
set of classical correlations Ce.

V. DERIVING A WITNESS FROM THE
INFLATION TECHNIQUE AUGMENTED WITH

E-SEPARATION

The inflation technique [42] is an important tool that
allows us to set constraints on the correlations that can arise
in any network (up to computational complexity issues).
Intuitively, we are concerned with the hypothetical situa-
tion where one has access to multiple copies of the sources
and measurement devices that compose the network and
can rearrange them in different configurations. Its core
idea is to explore simple (linear) conditions of this inflated
network that ultimately translate to polynomial inequali-
ties on the observable probabilities. Navascués and Wolfe
[58] proved the existence of a hierarchy of inflations that
asymptotically converges to the classical set of correla-
tions of any network, and a test of compatibility of a given
level of this hierarchy can be done via linear programming
[63]. However, for each level n of this hierarchy, the mem-
ory resources required are superexponential in n. Here we
show how we can use e-separation to drastically decrease
the number of variables for each compatibility test and
prove the Bonet PR-box incompatibility.

In parallel to the concept of inflation, the concept of
e-separation, short for extended d-separation, was intro-
duced in Ref. [48]. The e-separation criterion is a graphical
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method that allows us to derive, instead of equality con-
straints like in d-separation, inequality constraints on the
probabilities. This criterion is related to the idea of splitting
nodes in a graph that allows considering another equivalent
situation where we can proceed to use the inflation tech-
nique. We can define the e-separation criterion in terms of
the d-separation criterion as follows.
Definition 2: Let A, B, C, and D be disjoint sets of vari-
ables in DAG G. We say that the variables A and B are
e-separated given C after deletion of D only if A and B are
d-separated by C in DAG G∗, which is the resulting DAG
after removal of all the vertices in D from G.

If D = ∅, e-separation recovers the notion of d-
separation.

In practice, we can see e-separation in terms of a node-
splitting operation and independence as follows. Given a
graph G and a vertex D in the graph, the node-splitting
operation returns a new graph G# in which D is split into
two vertices. One of the vertices, denoted D, maintains
all its causal parents in the original graph G, thus having
the same distribution as D in G, but none of its outgoing
edges. The other one, labeled D#, will instead inherit all
of the outgoing edges of D in the original graph, but none
of its incoming ones. In Ref. [48] it was proved that A
and B are e-separated given C after deletion of D if and
only if A and B are d-separated by C and D# in G#, i.e.,
q(a, b|c, d#) = q(a|c, d#)q(b|c, d#). Therefore, we can say
that e-separation is equivalent to the set of conditions

∃q(a, b, d|c, d#) conditional probability distribution
(28a)

such that q(a, b, d|c, d# = d) = p(a, b, d|c), (28b)

q(a, b|c, d#) = q(a|c, d#)q(b|c, d#). (28c)

Since the conditions are only bound on the existence of
the variables q(a, b, d|c, d#), one could perform variable

elimination to consider only the conditions imposed to the
p(a, b, d|c) variables.

In the Evans scenario, this would be the case if we
identify the nodes A = A, B = C, C = ∅, and D = B (see
Fig. 4). We can see that e-separation allows us to derive
constraints on our distribution p over the original variables
by exploring the independence relations of distribution q
over the variables of the DAG after performing a node-
splitting operation. We can use a similar idea for the
inflation technique. Instead of the observable d-separation
relations of q, we could go a step further and explore any
condition imposed by the DAG. In particular, the nontrivial
conditions imposed on q by inflation will yield nontrivial
inflation-type conditions on p .

After performing the node-splitting operation, we use
the inflation technique in the resulting DAG. For simplic-
ity, let us show an example with second-order inflation.

Considering two independent copies of each exogenous
variable λi, μi, B#

i for i = 1, 2 and Ai = A(λi, B#
i ), Cj =

C(μj , B#
j ), and Bij = B(λi,μj ), give us a joint distribution

on all observed variables, since the B# variables are observ-
able, we can interpret them as inputs. Suppose that q is
compatible with the DAG on the right of Fig. 4, i.e.,

q(a, b, c|b#) =
∑

λ,μ

q(λ)q(μ)q(a|λ, b#)q(b|λ,μ)q(c|μ, b#);

(29)

then there exists a joint distribution on the inflated DAG
respecting

q′(a1, a2, b11, b12, b21, b22, c1, c2|b#
1, b#

2)

=
∑

λ1,μ1,λ2,μ2

q(μ1)q(λ1)q(μ2)q(λ2)q(a1|λ1b#
1)q

× (a2|λ2b#
2)

∏

i,j=1,2

q(bij |λiμj )q(c1|m1b#)q(c2|μ2b#
2).

(30)

Although we cannot test Eq. (30) directly, the equation
imposes linear constraints on distribution q. Switching

A C

Λ M

B

A C

Λ M

B

B

FIG. 4. Node-splitting operation. In the node-splitting operation, DAG G on the left, in this case representing the Evans scenario, is
associated with DAG G# on the right, where one of the nodes, node B, has been split into two nodes B and B#, respectively retaining
the incoming and outgoing edges of the original node. DAG G# is useful to visualize the e-separation condition between nodes A and
C deleting B, which here corresponds to the d-separation condition A ⊥d C | B#.
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the labels (μ1 ↔ μ2, λ1 ↔ λ2, a1 ↔ a2, c1 ↔ c2, b11 ↔
b22, b12 ↔ b21, b#

1 ↔ b#
2) leaves Eq. (30) unchanged. This

implies that

q′(a1, a2, b11, b12, b21, b22, c1, c2|b#
1b#

2)

= q′(a2, a1, b22, b21, b12, b11, c2, c1|b#
2b#

1). (31)

We may also consider the same expression when b#
1 =

b#
2 = b#; switching the labels (λ1 ↔ λ2, a1 ↔ a2, b11 ↔

b21, b12 ↔ b22) or (μ1 ↔ μ2, c1 ↔ c2, b11 ↔ b12, b21 ↔
b22) yields

q′(a1, a2, b11, b12, b21, b22, c1, c2|b#
1 = b#

2 = b#)

= q′(a2, a1, b21, b22, b11, b12, c1, c2|b#
1 = b#

2 = b#)

= q′(a1, a2, b12, b11, b22, b21, c2, c1|b#
1 = b#

2 = b#),
(32)

and it has to satisfy some trivial conditions such as nor-
malization, non-negativity, and the fact that outputs ai, ci
are independent of inputs b#

j �=i. Finally, condition (30) tells
us that q′ recovers q via marginalization, but only some
entries of q are available since we, initially, only have p .
This yields a set of linear conditions

q′({ai, bii, ci|b#
i = bii}) =

∏

i

q(ai, bii, ci|b#
i = bii)

=
∏

i

p(ai, bii, ci). (33)

An analogous procedure also follows for the general case
where, in the nth order, we would consider n indepen-
dent copies of �, M , and B# and n2 copies of A(λ, B#),
B(λ,μ), and C(μ, B#). We need to consider all the relabel-
ings that leave the Markov model of the resulting network
invariant and recover n-degree polynomials over the diago-
nal distribution q′n({Ai, Bii, Ci|B#

i = Bii}). For the Bonet PR
box (26), we are able to find incompatibility for n = 3.
It is also important to note that e-separation + second-
order inflation yields, for our case where |B| = |C| = 2
and |A| = 3, a linear program (LP) with 2 304 variables,
and for third level, yields 884 736 variables, while the
hierarchy detailed in Ref. [58] yields 20 736 variables for
second-order inflation and 23 887 872 variables for third-
order inflation, which would be quite challenging even for
a LP.

We can translate the unfeasible status of our certifica-
tion in terms of a witness via Farkas’ lemma [63], which
states that either the linear system Ax = b, x ≥ 0, has a
solution or ATy ≤ 0 has a solution with bTy < 0. Thus, if
our linear programming certification has no solution for a
given p , there exists a solution yop such that the symbolic

expression

bTyop ≥ 0 (34)

can be understood as a causal inequality, where b = b(p) is
a vector that has entries of all monomials of degree at most
n due to Eq. (33). Applying this procedure directly on our
Bonet PR box with pA(0) = pA(2) = 10/21 and pA(1) =
1/21 we are able to retrieve such a witness in terms of
cubic monomials of p(a, b, c). For simplicity, we could
make the mild assumption that p(c = f (a, b)+ b) = 1,
which can be guaranteed under classical models and is
true for our candidate distribution (26), to write down the
inequality as

W(p) ≤ 1/3, (35)

where W(p) is a cubic polynomial that we explicitly
show in Appendix B. Our candidate distribution reaches
a violation of βPR := W(pPR)− 1/3 ≈ 3.2× 10−3 and the
inequality gives us a white noise visibility of v = 0.9984.
We were not able to find any quantum violations of this
witness.

VI. DERIVING THEORY-INDEPENDENT
CONSTRAINTS

So far, we have focused on the derivation of constraints
valid for a classical description of Evans causal structure.
In some cases, however, it might be interesting to have
constraints valid for generalized probabilistic theories, that
is, constraints reflecting the topology of the causal net-
work rather than the nature (classical, quantum, or even
postquantum) of the sources. These theory-independent
constraints can be seen as genuine witnesses of the topol-
ogy of the network and have already been derived for
certain classes of causal networks [10,40,64], most promi-
nently the triangle network [65,66]. In the following,
we propose a general route for deriving such theory-
independent constraints for the Evans causal structure and
derive one specific inequality to demonstrate the method.

A crucial difference between a classical and a general
probabilistic description of a causal network stems from
the fact that the local changes performed by any part in
the network cannot be arbitrary as, for instance, they may
possess resources that cannot be perfectly cloned. That is,
differently from the classical case, we can only consider
non-fan-out inflations, as we cannot broadcast information
that comes from nonclassical latent variables. An inflation-
ary fan-out is a latent node that has two or more children
that are copies of each other. Graphically, this would be the
creation of another outgoing arrow from a latent node; see
Fig. 6. Thus, in non-fan-out inflations, we cannot change
the numbers of outgoing edges of the latent variables. It
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has been noted in Ref. [42] that inflations that do not pos-
sess inflationary fan-outs will only yield conditions that are
GPT valid.

Recently, Gisin et al. [65] showed a relationship
between non-fan-out inflations and the assumptions of no
signaling and independence of the sources in networks.
Namely, one part may potentially signal to the others by
locally modifying the structure of the network by adding
sources and measurement devices. Therefore, conditions
implied by non-fan-out inflations can be interpreted as
restrictions that will arise for no-signaling theories in
networks.

Looking from this perspective, we can see that in the
node-splitting operation, discussed in the last section, the
inward arrows to A and C do not change. Therefore, we can
view this operation as a local modification in the network
topology performed by B. Thus, e-separation should also
follow for all no-signaling behaviors. In fact, it was shown
in Refs. [48,67] that e-separation alone can impose con-
straints on the GPT behaviors of the network. However,
we can recursively employ these local operations in our
network. Namely, after some part performs a local oper-
ation, we can end up with a new network in which the
new parts are independent and are also allowed to locally
change the network structure. Note that in the last section
we used e-separation to derive constraints on the classical
set of correlations; these constraints are violated by the PR
box due to the explicit use of inflationary fan-outs that only
follow for classical latent variables.

Inspired by the hexagon inflation in Ref. [65], Bob can
set up this new experiment such that the laboratory of Bob#

is very far away and Bob# may adopt a similar strategy,

again changing the network topology, and this should be
oblivious to Alice, Bob, and Charlie (see Fig. 5). Note
that if we were to consider two independent copies of
node B#, which we could, we would retrieve the hexagon
by interpreting the B# nodes as observable shared ran-
domness between the parts. In our case, the d-separation
and marginal independence imply nonlinear constraints
involving nonobservable terms, posing a more challenging
nonlinear quantifier elimination procedure. Fortunately, we
do not need to consider independent copies of the B# vari-
able, since it is an observable variable and therefore we
can assume it to be classical regardless of the resources
the parts share. This means that the information sent to
A and C can be perfectly cloned; thus, we may broad-
cast it throughout the network. With these remarks, the
conditions implied are

q(a, a′, b = b′, c, c′|b# = b) = p(a, b, c)p(a′, b′ = b, c′),
(36)

as well as

q(b, b′|b#) = q(b, b′) for all b#,

and normalization conditions. These equality constraints
together with the non-negativity conditions will form a
set of linear inequalities on the variables q. Since the
quadratic terms of p may be treated like symbolic con-
stants, we may perform Fourier-Motzkin elimination to
arrive at quadratic inequalities that should follow for all
no-signaling behaviors.

A C

Λ M

B

B

A

C A

C

Λ

M Λ

M

B

B

B

FIG. 5. Inflation of the Evans scenario. In order to derive the topological constraints of the scenario on the left, we consider the
non-fan-out inflation on the right. Importantly, the operations needed to bring the original Evans scenario to the node splitted DAG
and then to the inflated causal structure follow for all generalized probabilistic theories and can be performed locally by the parts that
comprise the network.
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B11

B12

B13

B21

B22

B23

B31

B32

B33

A1

Λ1

A2

Λ2

A3

Λ3

C1

M1

C2

M2

C3

M3

B1

B2

B3

FIG. 6. Inflated Evans scenario where �i and Mi are copies of
the original sources � and M , and Ai, Bi,j , Ci, and B#

i are copies
of the original observable variables A, B, C, and B#. The indices
of A, B, and C indicate the latent dependency of each observable
copy variable.

The procedure outlined above is quite general and could
be used to derive all constraints following a given infla-
tion. However, it can be very costly and out of compu-
tational reach even for seemingly simple scenarios such
as the Evans scenario. To circumvent that, similarly to
the approach discussed in the last section, given a behav-
ior from the Evans scenario, we may employ a LP to
detect incompatibility between the distribution and the set
of inequalities. That is, given a distribution p(a, b, c), we
solve

maxq 1 (37a)

such that q(a, a′, b = b′, c, c′|b# = b) = p

(a, b, c)p(a′, b′ = b, c′), (37b)

q(b, b′|b#) = q(b, b′) for all b#, (37c)

∑
q(a, a′, b, b′, c, c′|b#) = 1 for all b#, (37d)

q(a, a′, b, b′, c, c′|b#) ≥ 0 for all a, a′, b, b′, c, c′, b#.
(37e)

If this LP is feasible, behavior p(a, b, c) is compatible
with the constraints. Otherwise, it is not. If we have a
nonfeasible distribution, we can then rely on the dual of LP
(37) to easily find the corresponding witness (a nonlinear
inequality) detecting it.

Using this idea, we can show that distribution
punfeasible(a, b, c) given by p(0, 0, 0) = p(1, 0, 1) = 1/2 is
incompatible with the Evans topology, as it returns an
unfeasible LP. From the dual problem, we can obtain a
witness for the incompatibility, which reads

p(0, 0, 0)2 + p(0, 0, 1)p(0, 0, 0)+ p(0, 0, 1)2

+ 4p(1, 0, 1)p(0, 0, 0)+ p(1, 0, 0)2

+ p(1, 0, 1)p(1, 0, 0)+ p(1, 0, 1)2 ≤ 1. (38)

This theory-independent polynomial inequality is vio-
lated by the distribution p(0, 0, 0) = p(1, 0, 1) = 1/2 as
the right-hand side of it reaches the value 3/2. Further-
more, this constraint turns out to be quite resistant to
noise, as can be seen by considering the mixed distri-
bution vpunfeasible + (1− v)pW (pW being the white noise
distribution where all binary outcomes have the same 1/8
probability). The threshold visibility for the inequality
violation is vcrit ≈ 0.7398.

VII. DISCUSSION

Bell’s theorem is the most stringent notion of nonclas-
sicality since it only relies on causal assumptions about
the experimental apparatus, but remains agnostic of any
internal mechanisms or physical details of the measure-
ment and state preparation devices. Given its foundational
as well as applied consequences, generalizing such results
to causal structures of increasing complexity and with
different topologies is a timely and promising research
direction.

Within this context, the contribution of this paper is to
analyze a simple yet elusive causal structure. It is known
that there are three different classes of causal structures
with three observable variables that can potentially give
rise to a mismatch between classical and quantum predic-
tions. Two of those are indeed known to support quantum
nonclassicality and have been the focus of much of the lit-
erature on the topic recently. On the one hand, we have
the instrumental causal structure [31,45], a scenario of cru-
cial relevance for estimating causal influences [68] and
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that, in particular, brings to light the relevance of consid-
ering interventions, rather than pure passive observations,
in order to reveal the nonclassicality of a given quantum
process [32,33]. On the other hand, we have the triangle
scenario [15,18] that, differently from Bell’s theorem, has
the central feature of not requiring locally incompatible
measurement observables and solely resorting to the inde-
pendence of sources for leading to nonclassical behaviors
[29]. Here we focus on the third of these causal structures,
the Evans scenario [34], a sort of blend between the instru-
mental and triangle structures since it involves independent
sources and no external inputs but does presume direct
causal influences between the measurement outcomes.

Being akin to the entanglement swapping experiment
[52], it is natural to expect that the correlations obtained by
considering a Bell state measurement performed on shared
Bell states should lead to nonclassical correlations. Quite
the opposite, we proved that such an experiment does have
a classical causal model for any dimension. So, in order to
prove nonclassicality, we explored different venues, estab-
lishing the connections between the Evans scenario and
the instrumental and bilocality scenarios. In particular, we
proved that nonclassicality in the bilocality structure is a
necessary but not sufficient condition for nonclassicality in
the Evans case. Unfortunately, however, this bridge with
well-known scenarios proved insufficient to find nonclas-
sicality in the Evans structure, motivating us to search for
alternative methods to study the set of correlations entailed
by it.

With that in mind, we discussed the features of the
Gurobi optimizer [69], capable of handling nonconvex
quadratic optimization problems and being perfectly fit-
ted to analyze the Evans causal structure. With the Gurobi
optimizer, we could not only numerically prove that the
analogous of a PR box in the instrumental scenario does
lead to nonclassical correlations in the Evans scenario, but
also recover the numerical witness for it. Going beyond
this numerical study, we combined the inflation [42] and e-
separation [48] techniques to derive polynomial Bell-like
inequalities that can be violated, an unambiguous proof
that the Evans causal structure can also support nonclas-
sical correlations, even though they are of a postquan-
tum nature. Finally, we showed how to derive theory-
independent constraints for the Evans scenario, that is,
inequalities that reflect the topology of the network, similar
to what has been done in the triangle scenario [65].

The natural next step is to resolve whether quantum
nonclassical behavior is or is not possible in the Evans
scenario. In particular, if one could prove that all quan-
tum correlations do have a classical explanation, this could
lead to a novel situation. Note that all principles for quan-
tum correlations focus not on a given causal structure
but rather on particular Bell inequalities entailed by it.
If one could prove that a particular causal structure does
not have any quantum advantage (but has a postquantum

one, as we prove here), this would open a totally new
venue to understand quantum correlations and their under-
lying principles. Finally, it is worth remarking that here we
focused only on the observed distribution p(a, b, c). How-
ever, as shown recently for the instrumental scenario [32],
interventions could be a possible way to unveil the non-
classicality, that is, resorting to interventional data of the
form p(a, c|do(b)), where do(b) refers to interventions in
the central node of the network. Either way, the resolu-
tion of this problem will certainly be of relevance to the
larger question of understanding what are the crucial ingre-
dients of the emergence of nonclassical behavior in causal
structures of growing size and complexity.
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APPENDIX A: CLASSICAL SIMULATION OF THE
PR BOX WITH SYMMETRIC INSTRUMENT

We show how the correlations of PR box (26) between
Bob and Charlie with uniform distribution of Alice can be
simulated classically. The distribution under scrutiny is

p(a, b, c) = p(a)p(bc|a) =
{

1
6 if c = f (a, b)+ b,
0 otherwise.

(A1)

It is enough to take λ = λ0λ1, λi ∈ {0, 1, 2}, and μ =
μ0μ1, μi ∈ {0, 1}, with distributions

p(γ ) = ([01]+ [11]+ [20]+ [22])/4

and p(α) = [10]/3+ 2[01]/3, (A2)

where [a0a1] = δλ0,a0δλ1,a1 and [c0c1] = δμ0,c0δμ1,c1 .
Define deterministic response functions for Alice and
Charlie as

p(a|λ, b) = δa,λb , p(c|μ, b) = δc,μb . (A3)

Bob also has a deterministic local response function

p(b|λμ) =
{

1 if μb = f (λb, b)+ b,
0 otherwise.

(A4)

Because of our choice of strategies, this response func-
tion is well defined, i.e., the expression μb = f (λb, b)+ b
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has a unique solution b for every strategy λμ given to
Bob. In our case, since b and μi are bits, we can write
b = μb + f (λb, b), by summing b+ μb on both sides. The
deterministic response can be rewritten as

p(b|λμ) = δb,μb+f (λb,b). (A5)

Summing up, this implies that

p(a, b, c) =
∑

λ,μ

p(λ)p(μ)δa,λbδb,μb+f (λb,b)δc,μb

= δb,c+f (a,b)

( ∑

λ,μ

p(λb = a)p(μb = c)
)

, (A6)

and we can check that, for each case where b = c+
f (a, b), the sum above is 1/6, and thus this classical model
recovers the distribution p(a, b, c).

APPENDIX B: INEQUALITY DERIVED FROM
INFLATION WITH E-SEPARATION

Here we explicitly show the inequality derived using
third-order inflation after the node-splitting operation in

the Evans scenario. The inequality is obtained via the dual
solution of the linear program detailed in Sec. V. We con-
sider the inflation shown in Fig. 6, where the compatibility
test can be cast as a linear program on the joint probability
distribution

q(a1, a2, a3, b11, b12, b13, b21, b22, b23, b31,

b32, b33, c1, c2, c3|b#
1, b#

2, b#
3) (B1)

that must respect non-negativity and normalization. Defin-
ing

q3(a1, a2, a3, b11, b22, b33, c1, c2, c3|b#
1, b#

2, b#
3)

=
∑

bi �=j

q(a1, . . . , b11, . . . c3|b#
1, b#

2, b#
3), (B2)

the factorization constraints becomes

q3(a1, a2, a3, b11, b22, b33, c1, c2, c3|(b#
1, b#

2, b#
3)

= (b11, b22, b33)) =
∏

i=1,2,3

p(ai, bii, ci), (B3)

where p(a, b, c) is the probability distribution under scrutiny. Ultimately, we need to impose symmetry constraints
implied by the global Markov model of the inflated network; these conditions will be simply equality constraints on the
entries of q. This can be done in analogy to Eqs. (31) and (32) for when (b#

1, b#
2 = b#

3), (b
#
1 = b#

2, b#
3), and (b#

1 = b#
2 = b#

3).
Because of the factorization conditions imposed in the diagonal distribution q3, the obtained inequality contains the
corresponding cubic elements and is given by

pABC(0, 0, 0)3/3+ pABC(0, 0, 0)2pABC(0, 1, 1)+ pABC(0, 0, 0)2pABC(1, 0, 0)

+ pABC(0, 0, 0)2pABC(1, 1, 0)+ pABC(0, 0, 0)2pABC(2, 0, 1)+ pABC(0, 0, 0)2pABC(2, 1, 1)

+ pABC(0, 0, 0)pABC(0, 1, 1)2 + pABC(0, 0, 0)pABC(2, 1, 1)2

+ 2pABC(0, 0, 0)pABC(0, 1, 1)pABC(1, 0, 0)+ pABC(0, 1, 1)3/3

+ pABC(0, 1, 1)2pABC(1, 0, 0)+ pABC(0, 1, 1)2pABC(1, 1, 0)

+ 2pABC(0, 0, 0)pABC(0, 1, 1)pABC(2, 0, 1)+ 2pABC(0, 0, 0)pABC(0, 1, 1)pABC(1, 1, 0)

+ pABC(2, 0, 1)2pABC(2, 1, 1)+ 2pABC(0, 0, 0)pABC(1, 0, 0)pABC(1, 1, 0)

+ 2pABC(0, 0, 0)pABC(1, 0, 0)pABC(2, 0, 1)+ pABC(2, 0, 1)pABC(2, 1, 1)2

+ 2pABC(0, 0, 0)pABC(1, 0, 0)pABC(2, 1, 1)+ pABC(0, 0, 0)pABC(1, 1, 0)2

+ pABC(0, 0, 0)pABC(1, 0, 0)2 + 2pABC(0, 0, 0)pABC(1, 1, 0)pABC(2, 0, 1)

+ 2pABC(0, 0, 0)pABC(1, 1, 0)pABC(2, 1, 1)− 5pABC(0, 0, 0)pABC(2, 0, 1)2/3

+ pABC(0, 1, 1)2pABC(2, 0, 1)+ pABC(0, 1, 1)2pABC(2, 1, 1)

+ 2pABC(0, 0, 0)pABC(2, 0, 1)pABC(2, 1, 1)+ pABC(0, 1, 1)pABC(1, 0, 0)2

+ 2pABC(0, 1, 1)pABC(1, 0, 0)pABC(1, 1, 0)+ pABC(1, 1, 0)pABC(2, 1, 1)2
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+ 2pABC(0, 1, 1)pABC(1, 0, 0)pABC(2, 0, 1)+ 2pABC(0, 1, 1)pABC(1, 0, 0)pABC(2, 1, 1)

− pABC(2, 0, 1)3 + pABC(0, 1, 1)pABC(1, 1, 0)2 + 14pABC(0, 1, 1)pABC(1, 1, 0)pABC(2, 0, 1)/3

+ 2pABC(0, 0, 0)pABC(0, 1, 1)pABC(2, 1, 1)+ 2pABC(0, 1, 1)pABC(1, 1, 0)pABC(2, 1, 1)

+ pABC(0, 1, 1)pABC(2, 0, 1)2 + 2pABC(0, 1, 1)pABC(2, 0, 1)pABC(2, 1, 1)

+ pABC(0, 1, 1)pABC(2, 1, 1)2 + pABC(1, 0, 0)3/3+ pABC(1, 0, 0)pABC(2, 1, 1)2

+ pABC(1, 1, 0)3/3+ pABC(1, 0, 0)2pABC(1, 1, 0)+ pABC(1, 0, 0)2pABC(2, 0, 1)

+ pABC(1, 0, 0)2pABC(2, 1, 1)+ pABC(2, 1, 1)3/3+ pABC(1, 0, 0)pABC(1, 1, 0)2

+ 2pABC(1, 0, 0)pABC(1, 1, 0)p(2, 0, 1)+ 14pABC(1, 1, 0)pABC(2, 0, 1)pABC(2, 1, 1)/3

+ 2pABC(1, 0, 0)pABC(1, 1, 0)pABC(2, 1, 1)− 5pABC(1, 0, 0)pABC(2, 0, 1)2/3

+ 2pABC(1, 0, 0)pABC(2, 0, 1)pABC(2, 1, 1)+ pABC(1, 1, 0)2pABC(2, 0, 1)

+ pABC(1, 1, 0)2pABC(2, 1, 1)+ pABC(1, 1, 0)pABC(2, 0, 1)2 ≤ 1/3. (B4)

For simplicity, we have assumed that p(c = f (a, b)+
b) = 1 to keep only the nonzero terms of the inequal-
ity for our candidate distribution. This condition is also
not too restrictive as it can be guaranteed under classi-
cal models, for example, p(0, 0, 0) = 1 trivially satisfies
this constraint. If we choose pA(0) = pA(2) = 10/21 and
pA(2) = 1/21, the distribution violates inequality (B4) by
βPR ≈ 3.2× 10−3 and has a very low resistance when
combined with the uniform distribution with visibility v ≈
0.9984.
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