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We present the reaction-coordinate polaron-transform (RCPT) framework for generating effective-
Hamiltonian models to treat nonequilibrium open quantum systems at strong coupling with harmonic
environments. Our approach, which is based on two exact transformations of the Hamiltonian followed by
its controlled truncation, ends with a new Hamiltonian with a weakened coupling to the environment. This
new effective Hamiltonian mirrors the initial one, except that its parameters are dressed by the system-
bath couplings. The power and elegance of the RCPT approach lie in its generality and in its mathematical
simplicity, allowing for analytical work and thus profound understanding of the impact of strong system-
bath coupling effects on open-quantum-system phenomena. Examples interrogated in this work include
canonical models for quantum thermalization, charge and energy transport at the nanoscale, and perfor-
mance bounds of quantum thermodynamical machines such as absorption refrigerators and thermoelectric
generators, as well as the equilibrium and nonequilibrium behavior of many-body dissipative spin chains.
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I. INTRODUCTION

Quantum systems are inevitably coupled to their sur-
rounding environment. At the nanoscale, these interactions
are influential and cannot be neglected, which in turn
leads to theoretical and technical challenges in modeling
open quantum systems. Quantum master-equation (QME)
approaches offer a powerful framework for simulating
open quantum systems. While the Nakajima-Zwanzig for-
malism is exact [1], approximations must be made for
practical computations. Most commonly, QMEs are made
perturbative in the system-bath coupling parameter; the
prominent Redfield equation takes into account only the
lowest (second) nontrivial order in this expansion, referred
to as the Born approximation. Weak-coupling QMEs offer
straightforward computations and analytical results in
some cases and as such they have gained enormous pop-
ularity in diverse fields: e.g., chemical dynamics [1], quan-
tum optics [2], quantum information science [3,4], and
quantum thermodynamics [5,6]. However, these methods
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are strictly limited to the weak-coupling regime, missing
rich physics. This work presents a Hamiltonian reforma-
tion (transformation and truncation) technique that allows
the treatment of strong-coupling regimes while providing
both a detailed understanding of such effects in quantum
systems and a cheap route for computations.

The applications detailed in this work concern quan-
tum transport and quantum thermodynamics problems [5–
12], where a consistent theory of thermodynamics in the
quantum regime relies on the correct treatment of strong-
coupling features. However, our approach can be exercised
on other open problems in a variety of contexts.

Focusing on quantum thermodynamics in the context of
thermal machines, strong-coupling effects can allow non-
classical correlations to build up between the system and
its reservoirs, which could be utilized as a resource to
design novel quantum technologies [13,14]. While it is
debated whether strong-coupling effects are beneficial or
detrimental to their performance [15–18], it is clear that
strong-coupling effects can significantly impact the perfor-
mance and efficiency of thermal devices by, e.g., renormal-
izing parameters and opening up new transport pathways
[19–21]. Additionally, in the context of thermalization,
strong system-bath interactions lead to deviations from the
canonical distribution, which is predicted to hold under
the assumption of vanishingly weak system-reservoir cou-
pling [13,22–35]. Strong coupling is also responsible for
deviations from simple additivity approximations [36–38].
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To capture such nontrivial effects, one must go beyond
second-order perturbative QMEs. One such choice is to
use numerically exact methods, including the multicon-
figuration time-dependent Hartree (MCTDH) approach
[39–41], numerical renormalization-group methods [42–
44], the hierarchical equations of motion [45,46], path-
integral approaches [47–55], quantum Monte Carlo
algorithms [56–58], chain-mapping techniques [59–62],
tensor-network-based methods [63], and more. Strong-
coupling effects have also been investigated by studying
the full density matrix dynamics, an approach that is partic-
ularly useful for driven systems [14–16,64–66]. Although
numerically exact methods provide accurate benchmarks
for describing open quantum systems at strong coupling,
(i) they are often limited to minimal models and (ii) they
fail to provide analytical intuition and, hence, do not allow
us to pursue the objective of this work: to understand the
fundamental essence of strong coupling.

Conversely, there exist other inexact tools that allow the
development of analytical understanding. These include
the noninteracting-blip approximation (NIBA), which is
applicable for Ohmic spectral functions [67–69], the
polaron-transformed Redfield equation, which allows for
more general spectral functions [70–74], and Green’s func-
tion techniques [75–81]. However, typically, these tools
immediately become cumbersome beyond minimal mod-
els and are restricted in their applicability since they are
perturbative in some parameters.

The reaction-coordinate (RC) mapping [13,82–85]
bridges the gap between powerful numerical tools and low-
order perturbative analytical methods. While originally
developed in the context of chemical reactivity [84,85], in
recent years the method has found numerous applications
in the context of quantum thermodynamics as a general
tool to capture the effects of strong system-reservoir cou-
pling. In this technique, a central collective degree of
freedom from the reservoir is extracted and included as
part of the system. The original quantum system is then
extended and termed an “enlarged system.” This enlarged
system now contains the open system and the collective
degree of freedom, the reaction coordinate, extracted from
the bath. The RC mapping can be used in conjunction with
weak-coupling QME tools since, with a proper choice of
parameters, the coupling of the enlarged system to the
residual bath is weak. The RC method treats the system-
reservoir coupling parameter nonperturbatively to obtain
appropriate dynamical and steady-state properties of the
original open system. The combined RC-QME approach
has been utilized for studying the quantum dynamics of
impurity models [13,86], thermal transport in nanojunc-
tions [87–89], the operation of quantum thermal machines
[19,20,90,91], transport in electronic systems [92–94], and
problems of equilibration [13,95], as well as the dynamics
of non-Markovian systems [96]. As useful as this tool has
been in recent years and despite relying on an analytical

mapping, in practice this approach has been only used as
a numerical method due to the large Hilbert space of the
enlarged system.

The polaron or Lang-Firsov transformation is central
to many-body physics, with applications extending far
beyond the original coupled electron-phonon problem. The
concept of a polaron originates from solid-state physics,
whereby lattice vibrations couple to the electron, generat-
ing a heavy electron with an effective mass representing
the electron plus the phonon cloud surrounding it [97].
In the broader context of an impurity immersed in a
harmonic bath, the polaron transformation allows us to
unitarily map the system to the polaron frame where the
system Hamiltonian is dressed by the system-bath cou-
pling, making it amenable to perturbative treatments in
the so-called nonadiabatic parameter (tunneling splitting).
This approach has been used, e.g., to simulate heat trans-
port through quantum nanojunctions [68,69,98,99] and
later further extended using the polaron-transformed QME
[73,74,100,101]. However, despite providing analytical
insight into spin-boson–type models, the polaron mapping
can become cumbersome, with compound (nonadditive)
bath interaction terms. As such, it has mainly been uti-
lized in simplified models with independent baths locally
affecting the system (see, e.g., Refs. [102,103]) or by
restricting the form of the system Hamiltonian to eliminate
the formation of composite interaction terms [104].

In this work, we combine two central transforma-
tions in open-quantum-system methodologies, namely, the
reaction-coordinate mapping and the polaron transforma-
tion, and develop a general and robust tool for under-
standing and feasibly simulating strong-coupling features
in quantum transport and thermodynamics. Both of these
transformations are applied onto harmonic degrees of free-
dom and as such, our focus is on strong coupling with
harmonic baths. The essence of this newly developed
reaction-coordinate polaron-transform (RCPT) approach is
that the succession of these two transformations imprints
strong-coupling effects directly into the system Hamil-
tonian, which after the transformations becomes weakly
coupled to the (residual) surroundings, allowing the use of
weak-coupling techniques. Furthermore, due to the addi-
tional truncation of the RC manifold, the dimensionality
of the Hilbert space is identical to the starting one. Thus,
the RCPT method allows us to observe the role of strong-
coupling effects and perform numerical simulations that
nonperturbatively handle strong-coupling effects at the
cost of a weak-coupling treatment.

After introducing the RCPT method, rather than
focusing on benchmarking it against numerically exact
approaches, we exemplify the physics revealed by the
formalism and predict signatures of strong coupling in
several classes of open quantum systems. We apply the
RCPT approach and tackle five central classes of prob-
lems encountered in quantum transport and quantum
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(d) (e)

FIG. 1. Diagrams of the five problems examined in this work using the RCPT method. (a) Quantum thermalization, studied with a
two-level impurity spin coupled to a bosonic reservoir experiencing both decohering and energy-exchange effects. (b) Quantum heat
transport, examined on a minimal model of a spin system coupled to two bosonic reservoirs with a temperature bias. (c) Quantum
refrigeration, examined on a three-level quantum absorption refrigerator, where each transition couples to a different reservoir, resulting
in the net effect of extracting heat from the cold environment. (d) Thermoelectric performance of nanojunctions, illustrated on a
phonon-assisted double-quantum-dot nanojunction. Here, charge is transported between the two leads with the help of a phonon
environment. (e) Dissipative spin chains, with each spin coupled to an independent heat bath, here illustrated with a two-qubit model.

thermodynamics. Namely, we study strong system-bath
coupling effects in (a) thermalization, (b) thermal energy
transport, (c) refrigeration, (d) phonon-coupled electronic
transport in the context of thermoelectric power genera-
tors, and (e) many-body, dissipative spin-lattice physics.
Figure 1 illustrates these five models.

The paper is organized as follows. We present the RCPT
theoretical framework in Sec. II. We exemplify the method
on five key open-system problems and demonstrate that
their behavior is greatly altered by strong system-bath
coupling effects: quantum thermalization (Sec. III), steady-
state heat transport (Sec. IV), quantum refrigeration (Sec.
V), phonon-assisted charge transport in thermoelectric
engines (Sec. VI), and steady-state dissipative spin-chain
models (Sec. VII). In each section, theoretical predictions
from the RCPT method are illustrated by numerical exam-
ples. We discuss and summarize our findings in Sec. VIII.

II. THE RCPT THEORETICAL FRAMEWORK

In this section, we describe the protocol for transforming
an open-system Hamiltonian using the RCPT, thus arriving
at what we refer to as an effective Hamiltonian, allow-
ing for the interpretation of strong-coupling effects in open
quantum systems at low cost. For simplicity, we present
here the approach assuming a single heat bath; generaliza-
tions are discussed in Sec. II F. We work in units of � ≡ 1,
kB ≡ 1, and e ≡ 1.

We consider a generic open-quantum-system model,
with an impurity system coupled to a bosonic reservoir:

Ĥ = Ĥs +
∑

k

νk

(
ĉ†

k + tk
νk

Ŝ
)(

ĉk + tk
νk

Ŝ
)

. (1)

In this expression, Ĥs is the Hamiltonian of the system. Ŝ
is a system operator and it couples to the displacement of
reservoir modes of frequency νk with coupling strength tk
assumed to be a real number; k is a wave-vector index.
Furthermore, ĉ†

k (ĉk) are the bosonic creation (annihilation)
operators for the bath modes. The interaction between the
system and the reservoir is fully captured by the spectral
density function, J (ω) = ∑

k t2kδ(ω − νk).
The framework consists of three steps, illustrated in Fig.

2.(i) An exact reaction-coordinate mapping is performed
on the bosonic reservoir, identifying a central degree of
freedom to be extracted from the reservoir and incorpo-
rated as part of the system. This creates an extended open
system, which comprises the original system along with its
coupled reaction-coordinate mode. This extended system
is coupled to the residual bath with a modified spectral den-
sity function, typically with a weakened coupling strength
compared to the original model given in Eq. (1). (ii) A
polaron transformation is applied on the reaction coordi-
nate. The transformation “imprints” features of the RC into
the original system and partially decouples the RC from the
system. This step further generates new direct interaction
terms between the original system and the residual bath,
which provides insight into the strong-coupling features of
the model. Transformations (i) and (ii) are exact and uni-
tary. (iii) The Hamiltonian is truncated assuming that only
the ground state of the reaction coordinate is populated.
This approximate step relies on the reaction-coordinate fre-
quency (which derives from the spectral structure of the
original bath) being the largest energy scale in the prob-
lem; notably, exceeding the thermal energy, which is our
working assumption here. More details on the conse-
quences of this approximation are included in Sec. II E.
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FIG. 2. A diagrammatic representation of the RCPT Hamilto-
nian transformations and truncation. (a) The original model: an
open system (Ĥs) coupled to a bosonic bath (B). (b) The system
is extended to include a reaction coordinate, which is extracted
from the reservoir, leaving a residual bath B′ missing one mode.
(c) The model after the application of the polaron transforma-
tion: the rotated system Hamiltonian connects to both the RC
and the residual bath. (d) The model after the truncation of the
RC, resulting in a so-called effective Hamiltonian with the sys-
tem coupled only to the residual bath. This model is reminiscent
of the original system in (a).

We refer to the application of these three steps in suc-
cession as the RCPT method. Once the RCPT procedure is
performed, an effective Hamiltonian emerges, which math-
ematically resembles the original model given in Eq. (1).
However, the parameters in the new effective model con-
tain an explicit dependency on the original system-bath
coupling parameters. This in turn allows for the inter-
pretation of strong-coupling features. In what follows,
we present this protocol to generate effective-Hamiltonian
models as a means of capturing strong-coupling effects in
open quantum systems.

A. Reaction-coordinate mapping

The first step in deriving effective-Hamiltonian models
using the RCPT method is to perform an exact reaction-
coordinate mapping [82] on the Hamiltonian in Eq. (1).
This transformation results in the extraction of a col-
lective reservoir mode of frequency �, which couples
to the system at strength λ and is included as part of
the system. We refer to the resulting Hamiltonian as the
reaction-coordinate Hamiltonian,

ĤRC = Ĥs + �

(
â† + λ

�
Ŝ
)(

â + λ

�
Ŝ
)

+
∑

k

ωk

(
b̂†

k + fk
ωk

(â† + â)

)(
b̂k + fk

ωk
(â† + â)

)
,

(2)

where the reaction coordinate is defined such that

λ(â† + â) =
∑

k

tk(ĉ
†
k + ĉk). (3)

In the above expression, the bosonic creation (annihilation)
operator of the RC is â† (â) and it is coupled with strength
fk to the residual bath, identified by the creation (annihi-
lation) bosonic operators b̂†

k (b̂k) of frequency ωk. In the
RC representation, the coupling parameter λ between the
system and the reaction coordinate and the frequency of
the reaction coordinate � are obtained from the original
spectral density function via the expressions [82]

λ2 = 1
�

∫ ∞

0
ωJ (ω)dω (4)

and

�2 =
∫ ∞

0 ω3J (ω)dω
∫ ∞

0 ωJ (ω)dω
. (5)

Note that λ characterizes the extent of interaction between
the original system and the bath. As such, it is a central
parameter to tune in the exploration of quantum dissipative
behavior at strong coupling.

In the RC picture, a different spectral density
function now characterizes the interaction between
the RC and the residual bosonic environment,
JRC(ω) = ∑

k f 2
k δ(ω − ωk). From Heisenberg’s equation

of motion, it can be shown that this newly defined spectral
density function is related to the original spectral density
function by [82]

JRC(ω) = 2πλ2J (ω)
[
P

∫ J (ω′)
ω′−ω

dω′
]2

+ π2J (ω)2
, (6)

where in this expression, the integration is understood as a
principal-value integral.

In the reaction-coordinate representation, the system-
reservoir boundary is shifted to include an additional mode
from the reservoir, resulting in an extended system, given
by the first two terms of Eq. (2). The last term of Eq. (2)
represents the residual environment and its interaction to
the reaction coordinate.

The power of the RC transformation stems from the
fact that when increasing the coupling strength, J (ω) →
αJ (ω) with α > 0, only the system reaction-coordinate
coupling strength gets modified to λ → √

αλ, while
JRC(ω) does not change with α. This allows one to per-
form perturbative quantum master-equation calculations
on the enlarged system, providing a valid strong-coupling
treatment relying on weak-coupling tools.

B. Polaron transformation

In the second step of the RCPT method, we perform a
polaron transformation on the reaction-coordinate Hamil-
tonian in Eq. (2). This unitary transformation is given by
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the shift operator

ÛP = e(λ/�)(â†−â)Ŝ, (7)

which partially decouples the system from the RC, as we
explain below. As a consequence of this transformation,
we generate new direct coupling terms between the resid-
ual bath and the system as well as the RC and the system.
We note that our polaron operator lives in the Hilbert space
of the system and the RC.

To perform the transformation, we rely on the fact
that ÛPâÛ†

P = â − (λ/�)Ŝ and we use the shorthand
notation for the polaron-transformed reaction-coordinate
system Hamiltonian ˆ̃Hs ≡ ÛPĤsÛ

†
P. The total polaron-

transformed reaction-coordinate Hamiltonian is ĤRC−P ≡
ÛPĤRCÛ†

P, given by

ĤRC−P = ˆ̃Hs + �â†â

+
∑

k

ωk

{[
b̂†

k + fk
ωk

(
â† + â − 2λ

�
Ŝ
)]

×
[

b̂k + fk
ωk

(
â† + â − 2λ

�
Ŝ
)]}

. (8)

Since the system Hamiltonian is dressed by the polaron-
transformation operator, it is now a function of the system-
bath coupling parameter λ. Another way to think about this
is that the transformation “imprints” the RC into the system
Hamiltonian. Furthermore, new interaction terms emerge
in the polaron frame. Namely, the system now couples
directly to both the RC (â operators) and to the residual
bath (b̂k operators). However, the functional form of the
spectral density function of the residual bath is unaltered
by this transformation and it is still captured by Eq. (6),
albeit with an additional prefactor (2λ/�)2.

At first glance, applying the polaron operator after the
RC transformation seems unconducive for performing cal-
culations, as there are now terms coupling the system to
both the RC and the residual environment. In fact, we
appear to have made the Hamiltonian more complex to
solve due to the appearance of new interaction terms. As
we show next, the Hamiltonian in Eq. (8) is actually an
intermediate step in deriving effective-Hamiltonian mod-
els and after an additional simplifying approximation, it
becomes tractable.

C. Reaction-coordinate truncation

The RC and the polaron transformations are exact. As
such, no approximations are made up to this point. To sim-
plify the Hamiltonian in Eq. (8), we now invoke an approx-
imation, generating an effective Hamiltonian Ĥ eff(λ). This
effective Hamiltonian is transparent for analytical work

and it also serves as a good starting point for numerical
implementations.

Assuming �, the frequency of the RC, to be the largest
energy scale in the problem (see a discussion in Sec.
II E)—higher, in particular, than the temperature of the
attached bath(s), � � T—one can safely truncate the har-
monic manifold of the RC and consider only its ground
level. The truncation does not eliminate strong-coupling
effects in a regime where � is the largest energy scale.

We thus define the effective Hamiltonian as the subspace
of Eq. (8) in which the RC is fixed to its ground state |0〉:

Ĥ eff(λ) = 〈0|ĤRC−P|0〉. (9)

Explicitly,

Ĥ eff(λ) = 〈0| ˆ̃Hs|0〉 +
∑

k

ωk

(
b̂†

k − 2λfk
�ωk

Ŝ
)(

b̂k − 2λfk
�ωk

Ŝ
)

.

(10)

We highlight here the dependency of the effective sys-
tem Hamiltonian on the coupling parameter λ; however,
the effective model also depends on additional system
parameters, such as the RC frequency, �.

Crucially, the effective Hamiltonian in Eq. (10) has a
mathematical structure similar to the original Hamilto-
nian in Eq. (1). Two important distinctions are, however,
apparent. (i) The system Hamiltonian is dressed by the
polaron-transformation operator,

Ĥ eff
s (λ) = 〈0| ˆ̃Hs|0〉. (11)

(ii) The reservoir considered here is the residual bath that
is obtained in the RC mapping [see Eq. (2)]. The spectral
density function of the bath is further dressed by the RC
parameters:

J eff(ω) = 4λ2

�2 JRC(ω). (12)

This completes the introduction of the RCPT method. Con-
sidering a general Hamiltonian strongly coupled to a bath
[see Eq. (1)], we map the model into Eq. (10), with a
λ-dressed system Hamiltonian and a weak system-bath
coupling. This is because JRC(ω) describes the coupling
of the extended system to a residual bath, which is by con-
struction weakened relative to the original case. Also, we
further assume that λ/� 
 1 for � to retain its status as
the largest energy scale in the problem.

The RCPT method allows nonpertubative studies of
strong-coupling models. The elegant and powerful aspects
of the RCPT method stem from the effective Hamiltonian
in Eq. (10) seemingly having the same complexity as the
original model. This in turn allows the effective Hamilto-
nian to be treated with weak-coupling methods, since the
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original system-bath coupling energy λ is quenched and
absorbed into redefining the system itself. The main nov-
elty of the method lies in it allowing analytical studies of
the strong-coupling regime. Since at weak coupling one
can often approach the problem analytically and acquire
closed-form expressions for, e.g., nonequilibrium steady-
state properties, one can now build on these solutions—but
with renormalized parameters and a dressed system Hamil-
tonian. Moreover, even without performing a detailed anal-
ysis, the form of the Hamiltonian in Eq. (10), compared to
Eq. (1), immediately exposes contributions of strong cou-
pling to the open quantum system, e.g., in opening new
transport pathways and shifting parameters.

We now go one step further and manipulate the effective
system Hamiltonian to cast it in a more transparent form,
which will be useful in applications:

Ĥ eff
s (λ) = 〈0|e(λ/�)(â†−â)ŜĤse−(λ/�)(â†−â)Ŝ|0〉. (13)

The polaron operators are mathematically analogous to
displacement operators encountered in quantum optics.
They have the useful property of generating coherent states
when acting on the vacuum D(α)|0〉 = |α〉. Furthermore,
coherent states may be written as a superposition of har-
monic oscillator eigenstates. We employ these two proper-
ties defining α ≡ (λ/�)Ŝ as an operator. This results in a
useful form for the effective system Hamiltonian:

Ĥ eff
s (λ) = e−(λ2/2�2)Ŝ2

( ∞∑

n=0

λ2n

�2nn!
ŜnĤsŜn

)
e−(λ2/2�2)Ŝ2

.

(14)

This expression allows for the computation of the effec-
tive system Hamiltonian, which is now coupling-strength
dependent. Further details are given in Appendix A.

The effective Hamiltonian in Eq. (10) concludes the the-
oretical account of the RCPT framework. In Sec. II D, we
summarize the evolution of the spectral density function
during the RCPT steps. We discuss the assumptions of
the RCPT method and thus its regime of validity in Sec.
II E. Theoretical extensions to the basic framework are pre-
sented in Sec. II F. The numerical QME implementation of
the method to study transport behavior is described in Sec.
II G.

D. Evolution of the spectral density function in the
RCPT method

The RCPT method is not limited to a specific type
of spectral density function and the procedure outlined
above is general. However, to make the method useful,
one should work in a parameter range such that, although
the original model may carry strong couplings to the bath,
JRC(ω) corresponds to a weak-coupling situation. In this

work, we exemplify the RCPT method using the Brownian
spectral density function,

J (ω) = 4γ�2λ2ω

(ω2 − �2)2 + (2πγ�ω)2 . (15)

In this model, the coupling of the system to the bath is
peaked at � with a width parameter γ . λ tunes the system-
reservoir coupling strength. It can be shown [13,86,87]
that performing a reaction-coordinate mapping, via Eq. (6),
translates this spectral density function to an Ohmic form,

JRC(ω) = γωe−|ω|/
. (16)

This expression becomes exact when 
, the cutoff energy,
tends to infinity. In the RC representation, the dimen-
sionless width parameter γ controls the coupling strength
between the RC and the residual environment. Further-
more, in this model the location of the central peak, �,
maps to the frequency of the reaction coordinate. Thus, a
narrow Brownian function translates to an extended system
weakly coupled to the residual bath.

After the polaron transformation, we build the effective
model and the spectral density function is further dressed
according to Eq. (12), ending with

J eff(ω) = 4λ2

�2 × γωe−|ω|/
. (17)

This spectral density function increases with λ, unlike
JRC(ω), which does not vary with the coupling strength,
as discussed below Eq. (6). However, the coupling to the
bath is ensured to be weak based on the dimensionless
width parameter γ , which should be made small. Further-
more, the RCPT method relies on λ < �; thus the coupling
strength of the effective model to the heat bath remains
weak, supporting the perturbative system-bath treatment.
Nevertheless, in simulations performed below, we explore
the behavior pushing parameters from weak coupling to
the regime of λ/� ∼ 1, yet we achieve reasonable results
with the RCPT method, compared to other techniques.
This pleasing success arises for two reasons. (i) We employ
γ that is small enough, justifying a weak-coupling treat-
ment irrespective of the ratio λ/�. (ii) In the models
studied here, we find that λ-renormalized level splittings
are still significantly smaller than the RC frequency �,
such that the RCPT truncation remains credible even in the
ultrastrong-coupling regime.

In what follows, we describe bosonic baths using the
Brownian spectral density function. In contrast, we treat
fermionic reservoirs under the weak system-reservoir cou-
pling assumption and take them in the wide-band limit.

E. Regimes of applicability of the RCPT formalism

In this section, we discuss the only approximation of
the RCPT mapping: representing the manifold of the RC
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solely by its ground state. We first identify the parameter
regime where this approximation holds. We then dis-
cuss the types of problems that would benefit from being
addressed by the RCPT technique. We emphasize that once
the RCPT mapping is complete and we reach the effective
Hamiltonian in Eq. (10), different analytical and numeri-
cal tools can be implemented on the effective Hamiltonian.
These tools may come with their own independent sets
of approximations; in this section, however, we focus
exclusively on the approximation of the RCPT mapping.

Considering an open-quantum-system model, we list the
relevant energy scales in the problem: � would serve as a
characteristic energy scale for the system, e.g., spin split-
ting in a spin-bath model; � is a characteristic frequency
for the bath; λ characterizes the system-bath coupling; and
T is the thermal energy.

Let us now discuss the energy spectrum of the RC
Hamiltonian. For a large value of � relative to the eigen-
spectrum of the bare system and the coupling energy,
� � �, λ, the energy spectrum of Eq. (2) shows mani-
folds of levels separated by gaps of O(�). In each mani-
fold, the levels roughly correspond to the original system
thus they are spaced by O(�). For example, for a two-level
system with splitting � 
 � and coupling strength to the
bath λ 
 �, the eigenspectrum of the system plus RC [see
Eq. (2)] includes manifolds roughly separated by �, each
with a pair of states; the lowest manifold corresponds to
the RC in its ground state while the spin of the system
occupies either its ground or excited states. Higher mani-
folds correspond to excited RCs, again with the spin of the
system residing in two possible states (see also Ref. [87]).
It is important to note that there is no restriction on the
relative magnitude of λ and �. Furthermore, in the exam-
ples studied in this paper, we find that even at very strong
λ (of the order of �), the picture of manifolds described
here remains largely valid, making the truncation of the
RC physical even in the ultrastrong-coupling regime. In
general, one should examine (numerically or analytically)
the λ dependence of the eigenvalues of the extended sys-
tem [Eq. (2)]. This would allow identification of the range
of λ over which the truncation of the RC (or, similarly,
the RC − P) Hamiltonian can be physically motivated. The
truncation of the RC performed in Sec. II C is justified as
long as � � T. In this regime, the thermal energy from the
bath is insufficient to significantly populate higher excited
states of the reaction coordinate.

Altogether, on a rigorous ground, the RCPT formal-
ism presented in this work is expected to be valid when
� � �, λ and � � T. In practice, however, for a broad
range of models, the requirement � � λ can be relaxed,
since λ only mildly shifts the bare levels relative to �,
even in the ultrastrong regime. Note that there is no
limitation on whether the thermal energy is higher or
lower than the characteristic energies in the system, �. In
impurity models, the temperature is defined low or high

relative to the eigenvalues of the system Hamiltonian.
Therefore, the RCPT procedure is valid for both high and
low temperatures.

What types of problems would benefit from being rep-
resented with the effective Hamiltonian? The truncation of
the RC to its ground state accurately captures the impact
of strong coupling in transport phenomena, as we show
in the following sections. However, the truncation dras-
tically curtails the ability to follow dynamical effects, as
we now explain. The reaction-coordinate method captures
non-Markovian dynamics (see, e.g., Refs. [13,96]). This
is possible because of the build-up of correlations during
time evolution between the system and the RC (which, in
truth, is part of the bath). An undesired consequence of the
RC truncation is losing this ability to exchange informa-
tion between the RC and the system and, hence, missing
dynamical features that emerge due to non-Markovianity.
In other words, in the RCPT formalism, the RC does not
evolve in time; it is maintained in its ground state. As a
result, transient features in the dynamics, e.g., some oscil-
lations, would be missed. However, the RCPT method
recovers the correct decay constants at strong couplings;
thus the steady-state limit is well described.

The RCPT method can be systematically made more
accurate by keeping higher excited states of the RC. This
approach, described in Appendix B, would recover missing
dynamical features. However, this is achieved at the cost of
exponentially increasing the dimensionality of the Hilbert
space of the system, thus losing insights gained from the
elegant effective-Hamiltonian picture.

F. Extensions

1. Iterative mapping

In implementing the RCPT method on Eq. (1), we arrive
at a form that closely resembles the initial Hamiltonian,
except with a λ-dressed effective system Hamiltonian and
a different spectral density function. In principle, it should
be possible to iterate this process: repeatedly extract an RC
mode from the bath, perform a polaron transformation on
this mode, and truncate the RC to only occupy its ground
state. This process would lead to an effective description
including strong-coupling effects even with highly struc-
tured spectral density functions, e.g., a bimodal function.
The effective Hamiltonian after n such rounds (where n is
still significantly smaller than the number of modes in the
bath) would have the following structure:

Ĥ eff
n = 〈0n| ˆ̃H (n)

s |0n〉

+
∑

k

ωk

{[
b̂†

k +
n∏

i=1

(
(−1)i 2λi

�i

)
fk
ωk

Ŝ

]

×
[

b̂k +
n∏

i=1

(
(−1)i 2λi

�i

)
fk
ωk

Ŝ

]}
. (18)
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In this expression, we use a shorthand notation to express the effective system Hamiltonian,

〈0n| ˆ̃H (n)
s |0n〉 ≡ 〈01, . . . , 0n|

n∏

i=1

(ÛP,i)Ĥs

n∏

i=1

(Û†
P,i)|01, . . . , 0n〉, (19)

where |0n〉 denotes the ground state of the nth RC. The
evaluation of this term is in fact simple, since the sequence
of polaron transformations commutes. Additionally, the
spectral density functions can be iteratively computed
using Eq. (6) with wk as the frequency of the bath modes
after the last iteration, and fk the coupling energies of those
modes to the system. It is therefore straightforward to iter-
ate this process as desired. We emphasize that even without
iterating, that is, following the procedure given in Secs.
II A–II C, the Hamiltonian includes strong-coupling effects
in a nonperturbative manner.

2. Multibath problems

Another extension of interest concerns the application of
this tool to study open quantum systems coupled to mul-
tiple environments. It is straightforward to extract simul-
taneously more than one RC, e.g., one from each bath.
However, the polaron transform can become quite com-
plicated when the extended model includes more than
one RC. Namely, it is not guaranteed that the individ-
ual polaron transformations on each RC will commute
with one another and this aspect depends on the details
of the model. As such, we are left with the arbitrary free-
dom of deciding which polaron transform to apply first,
potentially changing the outcome of the calculation (a fact
that is not surprising, as this is not an exact tool). Given
this nonuniqueness of the procedure, one would need to
test different sequences of the polaron transformation and
select the most feasible and tractable approach.

In summary, the RCPT approach is straightforward to
apply in situations in which the system operators that
couple to the different baths commute or if one applies
only a single polaron transformation before truncating the
reaction coordinate.

G. Numerical implementation: Redfield QME

Before tackling examples of impurity models with the
RCPT method, we briefly review the numerical approach
used in this work to simulate the steady-state limit of
the reduced system dynamics, as well as different cur-
rents. We first emphasize that one should decouple the
challenge of deriving an effective Hamiltonian, which by
structure already reveals important physics, to the adopted
simulation method. The simulation approach could be
rather primitive, such as the Redfield QME (since strong-
coupling effects are already embedded in the model Hamil-
tonian), or sophisticated, such as path-integral numerically

exact tools, in which case the effective model likely offers
an advantageous starting point to convergence.

Here, for simplicity, we implement the Redfield quan-
tum master equation (QME), which relies on weak-
coupling and Markov approximations, and simulate the
nonequilibrium behavior of three Hamiltonians:

(i) the original model, given in Eq. (1)
(ii) the reaction-coordinate Hamiltonian in Eq. (2)

(iii) the effective Hamiltonian in Eq. (10), which consti-
tutes the last step of the RCPT method

We emphasize that in all cases, we use the Born-Markov-
Redfield (BMR) quantum master equation, which in case
(ii) is performed on the extended system and in case (iii)
on the effective model. In both of these cases, this second-
order method is able to capture strong-coupling effects.
In contrast, in case (i), the BMR-QME approach provides
meaningful results only if the coupling strength in the orig-
inal picture is weak. We first discuss the general Redfield
equation and then comment on the modifications required
to study each variation, cases (i), (ii), and (iii). Working
in the Schrödinger representation and in the energy basis
of the system Hamiltonian, the Redfield equation for the
reduced density matrix ρ(t) of the system is given by

ρ̇mn(t) = −iωmnρmn(t)

−
∑

j ,p

[Rmj ,jp(ωpj )ρpn(t) + R∗
np ,pj (ωjp)ρmj (t)

− Rpn,mj (ωjm)ρjp(t) − R∗
jm,np(ωpn)ρjp(t)]. (20)

The indices m (as well as n, j , and p) denote eigenstates
of the system with eigenvalues Em and Bohr frequencies
ωmn ≡ Em − En. The elements of the R superoperator are
given by a half Fourier transform of the bath autocorrela-
tion functions,

Rmn,jp(ω) = (SD)mn(SD)jp

∫ ∞

0
dτeiωτ 〈B̂(τ )B̂(0)〉

= (SD)mn(SD)jp [�(ω) + i�(ω)], (21)

where ŜD denotes the system operator that is coupled to the
bath, written in the energy basis of the system Hamiltonian.
Furthermore, �(ω) and �(ω) are the real and imaginary
parts of the bath autocorrelation function, respectively.
These correlation functions are evaluated with respect to
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the thermal state of the bath. In this work, we neglect
the imaginary part of the autocorrelation function, as it
contributes only a small shift to the spectrum.

For harmonic environments and a bilinear system-bath
coupling, the real part of the R tensor evaluates to

�(ω) =

⎧
⎪⎨

⎪⎩

πJ (|ω|)n(|ω|), ω < 0,
πJ (ω)[n(ω) + 1], ω > 0,
π limω→0 J (ω)n(ω), ω = 0.

(22)

Here, n(ω) is the Bose-Einstein distribution function of the
bath, characterized by an inverse temperature β = 1/T. In
a compact form, the evolution of the system density matrix
is given by

ρ̇(t) = −i[Ĥs, ρ(t)] +
∑

α

Dα(ρ(t)), (23)

where we already generalize the equation to include mul-
tiple thermal reservoirs with the dissipators Dα(ρ(t)),
organized based on Eq. (20).

We solve the equation of motion in the steady state and
obtain the density matrix of the system, ρSS. This can
be achieved in different ways; here, we write down the
equation of motion in a compact form as ρ̇(t) = Lρ(t) and
we further construct a modified Liouvillian L′ by replacing
the last row with a population- (probability-) conserva-
tion condition. We also define the column vector v with
all its elements set to zero besides the last one, which
corresponds to the population conservation condition with
the diagonal elements of the density matrix of the system
summing up to unity. The steady-state limit of the den-
sity matrix of the system is then obtained by algebraic
operations,

L′ρSS = v. (24)

This formalism allows the calculation of currents; e.g., the
heat current at the αth contact is calculated from the heat
exchanged between the system and the αth reservoir,

j α
q (t) = Trs

[
Dα(ρ(t))Ĥs

]
, (25)

where steady-state currents are obtained once the state of
the system in the long-time limit, ρSS, is obtained. The heat
current is defined to be positive when flowing from the αth
bath toward the system. Similarly, the charge current at the
αth contact is

j α
e (t) = Trs

[
Dα(ρ(t))N̂s

]
, (26)

where N̂s is the number operator for the system.
We now elaborate on the three implementations of the

Redfield QME that we use in this work:

(i) BMR-QME simulations refer to using the Born-
Markov-Redfield quantum master equation directly
on the original Hamiltonian in Eq. (1), with the asso-
ciated spectral density function of the heat bath,
given here in Eq. (15). The BMR QME provides
inaccurate results in the strong system-bath coupling
regime, as the method is stretched beyond its regime
of validity. In this sense, we regard the BMR QME
as an asymptotic solution of the weak-coupling
limit.

(ii) RC-QME simulations refer to using the Redfield
QME to study the extended system after adding the
RC [see Eq. (2)] with the relevant spectral den-
sity function, here Eq. (16) [or, more generally,
Eq. (6)]. In practice, we truncate the RC harmonic
oscillator manifold, reducing it to its first M levels.
The coefficients (SD)mn in the dissipator [see Eq.
(21)] are dictated by the form of the RC coupling
to the bath [see the third term in Eq. (2)]. While
the original system may be strongly coupled to the
bath, in the RC representation the assumption of a
weak coupling between the residual reservoir and
the extended system can be justified as explained in
Sec. II D.

(iii) EFF-QME simulations correspond to using the Red-
field QME, except that we now apply it on the
effective Hamiltonian in Eq. (10) with the spectral
density function Eq. (12) [see also Eq. (17)]. Recall
that the effective Hamiltonian is constructed with the
RCPT framework. This approach allows for strong-
coupling effects to be captured through renormal-
ized parameters, while still retaining a simple and
tractable quantum master-equation framework; the
dimension of the Hilbert space of the effective sys-
tem is equal to that of the original model. This
approach is, in principle, less accurate than the RC
QME since the RC manifold is truncated. However,
the EFF-QME method should reliably capture pre-
dictions of the RC QME in the limit where � is the
largest energy scale (for a discussion on this point,
see Sec. II E).

The hierarchy of methods goes as follows. The RC QME
provides the most accurate results at strong coupling,
maintaining dynamical effects in the RC. However, it is
a numerical method and it does not offer deep insights
into the physical mechanisms of strong coupling. The EFF-
QME method preserves dominant strong-coupling effects
but is less accurate. On the other hand, it can provide a
profound understanding of the underlying strong-coupling
effects. The BMR QME is valid only at weak system-bath
coupling.

In what follows, we study and simulate several promi-
nent impurity models with the BMR-QME, RC-QME,
and EFF-QME methods to illustrate the predictive power
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of the RCPT approach. Our main argument, however, is
that the effective Hamiltonian itself—namely Eq. (10), the
outcome of the RCPT approach—already allows assess-
ment of contributions of strong coupling to transport
characteristics, even without performing simulations.

III. THERMALIZATION: WEAK-,
INTERMEDIATE-, AND

ULTRASTRONG-COUPLING LIMIT

What is the equilibrium state of a system that is cou-
pled to a heat bath at temperature T? For macroscopic
objects, statistical physics asserts that in the long-time
(steady-state) limit, the system should reach the conven-
tional Gibbs state, ρSS = (1/Z)e−βĤs , where Ĥs is the
Hamiltonian of the system, β is the inverse temperature
of the bath, and Z = Trs

[
e−βĤs

]
is the relevant partition

function, with the trace performed over the degrees of free-
dom of the system. However, the Gibbs-state assumption is
valid only if the interaction of the system with the heat bath
is vanishingly weak; it breaks down, e.g., for nanoscale
systems once the interaction energy becomes comparable
to the energy parameters of the system. The derivation of
the equilibrium state as a function of the system-bath inter-
action energy has been a topic of recent focus, particularly
when steady-state coherences are generated [22–27,30].
Note that in this section, the system is coupled to a single
heat bath and we thus refer to the equilibrium state as the
steady state. In the following sections, when dealing with
multiple heat baths, the steady state is a nonequilibrium
state.

What, then, is the long-time state of a quantum system
coupled to a heat bath? The general statement is that the
system should reach the mean-force Gibbs state (MFGS),
defined as

ρSS
MFGS = 1

ZMFGS
TrB

[
e−βĤ

]
, (27)

which is the state obtained once taking a partial trace over
the degrees of freedom of the bath. Here, Ĥ is the total
Hamiltonian and the partition function is defined with the
full trace, ZMFGS = Tr[e−βĤ ]. Generally, this MFGS differs

from the conventional Gibbs state. An analytical expres-
sion for the MFGS has been obtained for the Caldeira-
Leggett model in the ultrastrong-coupling limit [26,30]. It
has been shown that in this case, the equilibrium state of
the system is diagonal—albeit in the basis of the system
operator that couples to the bath.

Here, we show that the effective model, the outcome
of the RCPT process, provides an excellent analytical
approximation for the MFGS from weak coupling, through
the intermediate regime, to the ultrastrong-coupling limit.
In fact, in Appendix C, we show that in the ultrastrong
limit, the RCPT method builds the exact MFGS as derived
in Ref. [26]. Here, we perform this analysis on the gener-
alized spin-boson model with a spin coupled to a harmonic
reservoir,

Ĥ = �σ̂z +
∑

k

νk

(
ĉ†

k + tk
νk

σ̂θ

)(
ĉk + tk

νk
σ̂θ

)
, (28)

where � is the spin splitting. The spin is coupled to a
bosonic bath with parameters as defined in Eq. (1). The
system interaction operator to the bath is σ̂θ = cos(θ)σ̂z +
sin(θ)σ̂x, where 0 ≤ θ ≤ π/2 is the angle of a vector point-
ing in the x-z plane of the Bloch sphere, determining the
nature of the system-bath interaction. With this definition,
θ = π/2 corresponds to the standard spin-boson model,
while θ = 0 is the pure dephasing model, where only deco-
herence dynamics are observed. In the language of Eq. (1),
the generalized spin-boson model Eq. (28) corresponds to
the choice Ĥs = �σ̂z and Ŝ = σ̂θ .

On the basis of Eqs. (10)–(14), we write down directly
the effective Hamiltonian obtained from Eq. (28) through
the RCPT procedure. Making use of the properties of the
Pauli operators we get Ŝ2 = 1 and Ŝ3 = Ŝ, we break down
the sum in Eq. (14) into even and odd contributions:

Ĥ eff
s (λ) = e−(λ2/�2)

⎛

⎝
∑

n;even

λ2n

�2nn!
Ĥs +

∑

n;odd

λ2n

�2nn!
ŜĤsŜ

⎞

⎠ .

(29)

We sum the series noting that ŜĤsŜ = � sin(2θ)σ̂x +
� cos(2θ)σ̂z. The effective system Hamiltonian thus
becomes

Ĥ eff
s (λ) = e−(λ2/�2) cosh

(
λ2

�2

)
�σ̂z + e−(λ2/�2)

[
sinh

(
λ2

�2

)
(� sin(2θ)σ̂x + � cos(2θ)σ̂z)

]
. (30)

Next, we rearrange this expression into the form

Ĥ eff
s (λ) = �

2

[
(1 + e−(2λ2/�2)) + (1 − e−(2λ2/�2)) cos(2θ)

]
σ̂z + �

2

(
1 − e−(2λ2/�2)

)
sin(2θ)σ̂x. (31)
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This is the effective Hamiltonian for the system and
it uncovers two important aspects of strong cou-
pling. (i) Parameter renormalization: as can be seen
from the first row in Eq. (31), the qubit split-
ting is suppressed when θ �= 0 once λ > 0, since
1
2

[
(1 + e−(2λ2/�2)) + (1 − e−(2λ2/�2)) cos(2θ)

]
≤ 1. (ii)

Generation of new processes: the second row in Eq. (31)
reveals that a new system-tunneling term appears for 0 <

θ < π/2, compared to the original Hamiltonian in Eq.
(28). This term is being induced by the system-bath cou-
pling, λ �= 0. To gain insight into the strong-coupling
features of this model, we consider three angles as special
cases:

(1) The pure-dephasing model is realized when θ = 0.
This reduces Eq. (31) to

Ĥ eff
s (λ, θ = 0) = �σ̂z. (32)

In this case, [Ĥs, Ŝ] = 0,and therefore the polaron
shift operator commutes with the system Hamil-
tonian. As a result, the system Hamiltonian is
unchanged by the RCPT procedure.

(2) The standard spin-boson model is obtained when
θ = π/2:

Ĥ eff
s (λ, θ = π/2) = �e−(2λ2/�2)σ̂z. (33)

Here, the spin-splitting is exponentially suppressed
due to the coupling to the environment but no
new terms (processes) are generated in the system
Hamiltonian. This observation clearly points to the
nonperturbative nature of the RCPT scheme.

(3) The intermediate angle θ = π/4 leads to

Ĥ eff
s (λ, θ = π/4) = �

2
(1 + e−(2λ2/�2))σ̂z

+ �

2
(1 − e−(2λ2/�2))σ̂x. (34)

This intermediate case reveals the general features
of strong coupling as predicted by this technique:
the qubit frequency is renormalized, similar to the
standard spin-boson model, and a new tunneling
term is generated.

A. Spectrum of the spin-boson model

To showcase the predictive power of the RCPT method,
we next compare the eigenenergy spectrum of the extended
RC system, which is formally exact and is obtained from
simulations, with the eigenenergies of the effective system
Hamiltonian, which are inexact but are given by analytical
expressions. Our results are displayed in Figures 3(a)–3(c)
for the three different angles θ = π/2, θ = 0, and θ =
π/4, respectively.

We diagonalize Eq. (31) and find the effective spin
splitting for the three angles:

�eff(λ, θ = 0) = �, (35)

�eff(λ, θ = π/2) = �e−(2λ2/�2), (36)

�eff(λ, θ = π/4) = �√
2

√
1 + e−(4λ2/�2). (37)

In parallel, using the RC Hamiltonian, we study the energy
spectrum of the extended system Hamiltonian, the first line
of Eq. (2). We focus on the gap between the first excited
state and the ground state. In Fig. 3, we show that this gap
is perfectly reproduced by the energy differences of the
effective Hamiltonian, as written in Eqs. (35)–(37). This
agreement holds, surprisingly, even at very strong coupling
with λ > �. We conclude that the RCPT technique pro-
vides an excellent approximation for the lowest energy lev-
els of the system Hamiltonian, with strong-coupling effects
absorbed in their definitions. More broadly, as we show
next, the method brings an intuition on the expected impact
of strong-coupling effects in open-system phenomena.

0 20 40
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–3

–2

–1

0

0 20 40
–0.5

0.0

0.5

0 20 40

–0.15

–0.10

–0.05

0.00(a) (b) (c)

FIG. 3. The spectrum of the generalized spin boson model. We display �eff(λ), the energy gap between the first-excited-state and
ground-state eigenenergies of the spin system as a function of the system-bath coupling for three different angles: (a) θ = π/2, (b)
θ = 0, and (c) θ = π/4. Analytical expressions obtained from the effective spin splittings [see Eqs. (35)–(37)] (dashed lines) agree
perfectly with results from the numerical diagonalization of Eq. (2), applied to the generalized spin-boson model (solid lines). The
parameters used here are � = 1 and � = 20.

020307-11



ANTO-SZTRIKACS, NAZIR, and SEGAL PRX QUANTUM 4, 020307 (2023)

B. Thermalization in the spin-boson model

We now examine the long-time steady-state value of the
density matrix of the system as a function of the system-
reservoir coupling parameter, λ. Our main achievement
here is the derivation of a closed-form analytical expres-
sion for the steady state of the system, [Eq. (40) and Eq.
(C9) in Appendix C], which is exact in both the weak
and ultrastrong-coupling limits. Moreover, it provides an
excellent qualitative approximation to the steady state in
the intermediate-coupling regime.

In Figs. 4(a) and 4(b), we present the population of the
excited state and the magnitude of the coherences of the
spin, respectively, in the eigenbasis of the system Hamilto-
nian for θ = π/4 using � = 20. We present the elements
of the density matrix using different methods:

(i) The ultraweak steady state (UW) corresponds to the
conventional Gibbs state,

ρSS
UW = 1

ZUW
e−βĤs , (38)

where ZUW is the partition function and Ĥs is the
original system Hamiltonian in Eq. (28). It can be
also shown that the Gibbs state is the long-time
limit of the weak-coupling BMR-QME simulation
[23,24]. In this limit, λ dictates the rate to approach
the steady state but not its value, as we clearly see
in Fig. 4 (magenta dashed-dotted line).

(ii) The RC steady state is defined as

ρSS
RC = 1

ZRC
TrRC

[
e−β(Ĥs+�â†â+λŜ(â†+â))

]
(39)

and it clearly has a nontrivial λ dependence: While
the extended system, which encompasses the RC,
thermalizes to a conventional Gibbs state, the state
of the spin itself, obtained after the RC is traced
out, depends on λ. The RC steady state, [Eq. (39)]
is achieved numerically as the long-time solution
of RC-QME simulations [13] and in Fig. 4 we
present both calculations (cyan). We clarify that
the RC-QME value (cyan solid line) is obtained by
constructing the Redfield tensor and inverting it as
in Eq. (24). In contrast, the RC steady-state result
(cyan circles) is reached according to Eq. (39) by
constructing the extended system Hamiltonian (and
yet truncating the RC to include 11 levels, which is
a sufficiently high number to represent the harmonic
manifold of the RC), exponentiating the result, and
tracing out the RC. These two approaches provide
identical values.

(iii) The EFF steady state is

ρSS
EFF = 1

ZEFF
e−βĤeff

s (λ), (40)

with the effective system Hamiltonian Ĥ eff
s (λ) given

by Eq. (31). This state is tractable analytically and
it can be evaluated to give a closed-form expres-
sion (see Appendix C), culminating in Eq. (C9).

10–2 10–1 100 101
0.1

0.2

0.3

10–2 10–1 100 101

10–6

10–3

100

(a)
(b)

FIG. 4. The thermalization in the generalized spin-boson model. We present (a) the population and (b) the coherence in the eigen-
basis of the Hamiltonian of the spin using two limiting cases of the steady state: the ultraweak-coupling limit [Eq. (38)] (UW, magenta
dashed-dotted line) and the ultrastrong limit of Ref. [26] (US, light-gray dashed-dotted line). We further show the numerical RC QME,
where the Redfield equation is solved after performing a reaction-coordinate mapping (solid line), as well as its steady-state approx-
imation [Eq. (39)] (cyan circles). We also display the EFF-QME results, where the Redfield QME is once again implemented after
the RCPT method (dashed line) as well as its steady-state approximation [Eq. (40)] (maroon squares). The parameters are � = 1,
θ = π/4 γ = 0.0071, � = 20, 
 = 1000, and T = �/2.
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In Fig. 4, we present both the EFF steady state of
Eq. (40) (maroon square) and steady-state simula-
tions based on the EFF-QME method while using
the effective Hamiltonian in Eq. (31) (maroon, solid
lines). These two calculations agree and we find
that the steady-state density matrix depends on
λ in a nontrivial manner. Interestingly, the EFF
steady state provides excellent qualitative results
for all coupling regimes: it is exact in the asymp-
totically weak-coupling regime. It is also exact in
the ultrastrong-coupling limit (see Sec. III C). In
between, it correctly reproduces the RC steady-state
trends, albeit with some deviations in the posi-
tion of the weak-to-strong crossover. Concretely, the
steady state of the conventional spin-boson model
(θ = π/2) is diagonal, with

ρSS
EFF(θ = π/2) ∝ e−β�eff(λ)σz , (41)

where �eff(λ) is given in Eq. (36). The steady state
of the intermediate case (θ = π/4), presented in Fig.
4, is nondiagonal and thus maintains steady-state
coherences:

ρSS
EFF(θ = π/4) ∝

e−(1/2)β�[(1+e−(2λ2/�2))σ̂z+(1−e−(2λ2/�2))σ̂x]. (42)

The proportionality constants in the above expres-
sions are the reciprocals of the partition functions of
the respective states, which can be computed by a
trace over the system.

(iv) The ultrastrong-limit steady state (US) of Ref. [26]
is also plotted in Fig. 4 (light-gray dashed-dotted
line). It is given below in Eq. (45). Remarkably, the
EFF steady state approaches this limit as λ → ∞.
We discuss this limit in more detail in Sec. III C.

C. Ultrastrong-coupling limit of the generalized
spin-boson model

Focusing now on the ultrastrong-coupling limit with
λ → ∞, we obtain from the effective-Hamiltonian—RCPT
treatment [Eq. (40)] the following steady state:

lim
λ→∞

ρSS
EFF(θ) ∝ e−(β�/2)[(1+cos(2θ))σ̂z+sin(2θ)σ̂x]. (43)

Thus, at very strong coupling, the conventional model
(θ = π/2) corresponds to the two levels being equally
populated, with zero coherences. In contrast, when the cou-
pling involves noncommuting operators using θ = π/4,

the RCPT method provides the steady state

lim
λ→∞

ρSS
EFF(θ = π/4) ∝ e−(β�/2)[σ̂z+σ̂x]. (44)

Here, the equilibrium state possesses different populations
from the standard spin-boson model, as well as nonzero
steady-state coherences.

We now recall the ultrastrong steady state derived in
Ref. [26] for the same model:

lim
λ→∞

ρSS
US = 1

2
[
1 − (σ̂x sin(θ)

+ σ̂z cos(θ)) tanh(β� cos(θ))
]

. (45)

In Appendix C, we prove that the EFF steady state reduces
to this expression in the limit as λ → ∞.

We further expand on the exact agreement between our
RCPT approach and the ultrastrong limit of Ref. [26] by
showing, in Fig. 5, the steady-state excited-state popula-
tions and the magnitude of the coherences in the limit as
λ → ∞ as a function of the angle θ . We briefly comment
on this agreement, between the EFF steady state and the
US steady state [see Eq. (45)]. In Ref. [26], the authors’
result was derived by representing the Hamiltonian in the
“pointer basis,” that is, the eigenbasis of the system oper-
ator that is coupled to the bath. Projecting the effective
system Hamiltonian in Eq. (14) to the pointer basis, we
find that it is exactly equal to the pointer-basis represen-
tation of the original system Hamiltonian. Therefore, due
to their pointer-basis representations coinciding, we expect
the same results for the two methods in the ultrastrong-
coupling limit. We derive this fact and provide additional
insights in Appendix C.

Figure 5(a) shows an increase in the excited-state pop-
ulation in the ultrastrong-coupling limit with increasing θ .
As θ grows, the suppression of the spin splitting becomes
more substantial; in the limiting case of θ = π/2, the
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FIG. 5. The ultrastrong-coupling limit of the generalized spin-
boson model in the steady state, presenting the (a) population
and (b) coherence of the spin as a function of the angle θ , which
controls the noncommutativity of operators. We note the exact
agreement between the ultrastrong steady state [Eq. (45)] (US,
light-gray dashed-dotted line) and our analytical results (maroon
squares), calculated using Eq. (43). The parameters are the same
as in Fig. 4, with λ → ∞.
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ground and excited states are equally populated, since they
become degenerate in the ultrastrong limit. For lower val-
ues of θ , spin-splitting suppression is only one aspect of
strong coupling, which explains why we stray from equally
populated levels. Furthermore, in Fig. 5(b), we observe
that coherences are controlled by the angle θ , with a max-
imum showing at θ = π/4. This can be traced back to the
effective system Hamiltonian in Eq. (31), where a new con-
tribution, a coupling-induced tunneling term, is maximized
at this angle.

D. Discussion and extensions

The principal far-reaching result of this section is the
effective steady state, given in Eq. (40) with its explicit
form, given in Eq. (C9). This is a closed-form approxi-
mate analytical solution for the steady-state density matrix
that captures all coupling regimes, from the asymptotically
weak to the ultrastrong limit. The spin-boson example
demonstrates that the effective model Hamiltonian, the out-
come of the RCPT, provides an accurate description of the
equilibrium state of a system coupled to a heat bath, cover-
ing the full range of coupling parameters: weak, interme-
diate, and ultrastrong. The main advantage of the RCPT
method is that the equilibrium state is readily obtained by
performing the RCPT mapping and there is no need to
perform actual open-system dynamics. Another significant
result of this section, detailed in Appendix C, is the proof
that the MFGS generated by the RCPT approach is exact
in the ultrastrong-coupling limit and, for general systems,
beyond the spin model analyzed here in detail.

The EFF steady state can be calculated efficiently for
other nontrivial models with steady-state coherences and
interactions. The EFF steady state and the resulting par-
tition function allow us to obtain analytical expressions
for thermodynamical observables (energy, heat capac-
ity, entropy) in the strong-coupling limit. For example,
one could consider a fermionic analog of this study, a
quantum dot model with an on-site Coulomb repulsion
and strong coupling to the metals. Using the reaction-
coordinate method and developing a fermionic analog of
the EFF steady state, one may be able to evaluate electrical
effects in the highly correlated regime. However, we point
out that the development of such a fermionic analog for the
EFF steady state is a nontrivial task, due to there not being
an equivalent of the polaron transformation for fermions.

IV. HEAT TRANSPORT IN THE
NONEQUILIBRIUM SPIN-BOSON MODEL

In this section, we investigate the problem of quantum
heat transport in the nonequilibrium spin-boson model.
It provides a minimal setting in which to study heat
transport at the nanoscale. Such models of thermal trans-
port have recently been experimentally implemented using
superconducting quantum circuits [105,106]. The effective

model provides an excellent analytical approximation to
the quantum heat current, from weak to strong coupling,
as has been shown in Ref. [87].

The nonequilibrium spin-boson model is identical to the
generalized spin-boson model with θ = π/2, except that
now the spin couples to two thermal reservoirs (α = L, R)
held at different temperatures; for a diagramatic representa-
tion, see Fig. 1(b). In this model, the two system operators
that couple the spin to the different baths commute with
each other, allowing for successive polaron transforma-
tions to be applied on the two RCs (extracted from each
bath), with no conceptual complications.

The Hamiltonian is given by

Ĥ = �σ̂z +
∑

α={L,R},k
να,k

(
ĉ†
α,k + tα,k

να,k
σ̂x

)(
ĉα,k + tα,k

να,k
σ̂x

)
.

(46)

The terms here are analogous to those in Eq. (28), except
that now there are two bosonic reservoirs, which are inde-
pendent and maintained at different thermal states. We
follow an identical procedure to Sec. II but now we
extract two RCs, one from each bath, and thus we perform
two polaron transformations, one for each RC. Since the
two baths are coupled via the same system operator, we
represent this transformation as a single polaron operator,

ÛP = ÛP,LÛP,R = e[(λL/�L)(â†
L−âL)+(λR/�R)(â†

R−âR)]σ̂x . (47)

As a consequence of including an additional reservoir, the
effective system Hamiltonian is modified from Eq. (33).
Namely,

Ĥ eff
s = �e−∑

α=L,R(2λ2
α/�2

α)σ̂z. (48)

The total effective Hamiltonian of the model, Eq. (10) with
Eq. (48), is given by

Ĥ eff(λ) = �e−∑
α=L,R(2λ2

α/�2
α)σ̂z

+
∑

α,k

ωα,k

(
b̂†

α,k − 2λαfα,k

�αωα,k
σ̂x

)(
b̂α,k − 2λαfα,k

�αωα,k
σ̂x

)
.

(49)

Since in the effective model the spin weakly couples to the
heat bath, analytical expressions from the weak-coupling
limit can be adopted to provide a closed-form expression
for the heat current, capturing weak- to strong-coupling
behavior [87]. We do not repeat these expressions here
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FIG. 6. Quantum heat transport in the nonequilibrium spin-
boson model. We present the steady-state heat current computed
with the RC-QME method (cyan) and the EFF-QME technique
(maroon) at two different RC frequencies, � = 10 and � = 20.
The parameters are � = 1, Th = �, Tc = �/2, γ = 0.0071, and

 = 1000.

but in Fig. 6 we present calculations of the heat current
obtained from the RC-QME method and the EFF-QME
technique. Importantly, the two approaches are in excellent
agreement. This demonstrates that the effective treatment
is appropriate for describing steady-state properties, even
in the very-strong-coupling regime. The main nontrivial
observation from Fig. 6 is the turnover behavior of the
heat current with coupling strength. This phenomenon has
been analyzed and demonstrated with powerful numer-
ically exact methods such as in Refs. [54,107–109], as
well as with quantum master-equation tools in the polaron
frame in, e.g., Refs. [68,69,73,74,98–101,110]. The RCPT
method reproduces this nontrival behavior with minimal
effort. Fundamentally, we know that transport at weak cou-
pling is sequential and resonant [68,98,99]. Inspecting Eq.
(49), we conclude that for large �, transport is still sequen-
tial and resonant—yet with a spin frequency that is mono-
tonically quenched, revealing the origin of heat-current
suppression at strong coupling: When we increase λ, the
current first increases due to the enhancement in excita-
tion and relaxation processes transferring energy through
the system. However, increasing λ also suppresses the spin
splitting and thus the quanta of energy transferred are being
quenched. More details on heat transport in this model are
given in Ref. [87].

V. AUTONOMOUS QUANTUM ABSORPTION
REFRIGERATOR

An autonomous quantum absorption refrigerator (QAR)
extracts heat from a cold bath (c) and deposits it in
a hot bath (h), assisted by heat input from a so-called

work (w) reservoir, obeying Tc < Th < Tw. A canonical
model for this machine is made of a quantum “work-
ing fluid” with three energy states [111–113], |n〉, n =
1, 2, 3. For a schematic representation, see Fig. 1(c). Tran-
sitions between the levels are achieved by absorbing heat
or releasing heat to the different thermal reservoirs, with
the following system operators: Ŝc = |1〉〈2| + h.c., Ŝw =
|2〉〈3| + h.c., and Ŝh = |1〉〈3| + h.c.. The total Hamilto-
nian of this model is

Ĥ = Ĥs +
∑

α={c,w,h},k
να,k

(
ĉ†
α,k + tα,k

να,k
Ŝα

)(
ĉα,k + tα,k

να,k
Ŝα

)
.

(50)

Here, ĉ†
α,k (ĉα,k) are the bosonic creation (annihilation)

operators to generate a quantum of frequency να,k in the
αth thermal bath; tα,k are the system-bath coupling ener-
gies. The system Hamiltonian is written in the energy
basis as

Ĥs =
∑

n=1,2,3

εn|n〉〈n|. (51)

For the system to act as a refrigerator, that is, extract
heat from the cold bath and release it into the hot bath,
one needs to tune the energy levels ε1,2,3. Without loss
of generality, below we use ε1 = 0, ε2 = � and ε3 = 1
and we adjust � to achieve cooling. While the cooling
condition and the associated cooling current can be read-
ily obtained assuming weak system-bath coupling [9,10],
these calculations become nontrivial once we deviate from
this assumption: In Ref. [19], we have used the RC QME,
a numerical tool, to locate the cooling window at strong
coupling, revealing rich trends.

In what follows, we show that the RCPT approach can
be used to provide an analytical expression for the cool-
ing window—assuming for simplicity that only the cold
bath is strongly coupled to the three-level quantum system,
while the other baths are weakly coupled to it. We thus
extract a single reaction coordinate from the cold reservoir
and apply the corresponding polaron transformation to the
cold RC. This enables analytical expressions for the cool-
ing condition to be obtained from the RCPT method, while
not posing new challenges arising from the noncommuting
polaron operators.

We comment that we choose to extract the RC from
the cold reservoir since it is at a lower temperature than
the other baths, hence stronger correlations are expected
to survive in this reservoir. The other two contacts are
treated in the standard (BMR-QME) weak-coupling fash-
ion. The resulting Hamiltonian upon extracting a reaction
coordinate from the cold reservoir is
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ĤRC = Ĥs +
∑

α={w,h},k
να,k

(
ĉ†
α,k + tα,k

να,k
Ŝα

)(
ĉα,k + tα,k

να,k
Ŝα

)

+ �c

(
â†

c + λc

�c
Ŝc

)(
âc + λc

�c
Ŝc

)

+
∑

k

ωc,k

(
b̂†

c,k + fc,k

ωc,k
(â†

c + âc)

)(
b̂c,k + fc,k

ωc,k
(â†

c + âc)

)
. (52)

In this expression, the hot and work reservoirs are unchanged, compared to the initial model given in Eq. (50). The
RC transformation acts exclusively on the cold reservoir. It extracts a collective coordinate from that bath of frequency
�c, which couples to the system via λc. Next, we apply the polaron transformation, ÛP = e(λc/�c)Ŝc(â

†
c−âc), to (partially)

decouple the cold RC from the three-level system. The resulting Hamiltonian is

ĤRC−P = ÛPĤsÛ
†
P +

∑

α={w,h},k
να,k

(
ĉ†
α,k + tα,k

να,k
ÛPŜαÛ†

P

)(
ĉα,k + tα,k

να,k
ÛPŜαÛ†

P

)

+ �câ†
c âc +

∑

k

ωc,k

(
b̂†

c,k + fc,k

ωc,k

(
â†

c + âc − 2λc

�c
Ŝc

))(
b̂c,k + fc,k

ωc,k

(
â†

c + âc − 2λc

�c
Ŝc

))
. (53)

Focusing on the subspace with zero excitations in the RC, we arrive at our effective description of the three-level QAR
Hamiltonian (ignoring constant shift terms),

Ĥ eff(λ) = Ĥs + �

2

(
e−(2λ2

c/�2
c ) − 1

)
Q̂ +

∑

α={w,h},k
να,k

(
ĉ†
α,k + tα,k

να,k
e−(λ2

c/2�2
c )Ŝα

)(
ĉα,k + tα,k

να,k
e−(λ2

c/2�2
c )Ŝα

)

+
∑

k

ωc,k

(
b̂†

c,k − 2λcfc,k

�cωc,k
Ŝc

)(
b̂c,k − 2λcfc,k

�cωc,k
Ŝc

)
. (54)

In this expression, the operator Q̂ = −|1〉〈1| + |2〉〈2|
arises from the action of the polaron transformation on the
system Hamiltonian and it represents a shift of the first two
energy levels of the QAR.

Inspecting Eq. (54), the overall effect of strong system-
bath coupling at the cold contact as observed from the
RCPT treatment is nontrivial. (i) The energy difference
between the lowest two energy levels (those coupled to the
cold bath) is suppressed, � → �e−(2λ2

c/�2
c ). This effect is

similar to the suppression of the spin spacing in the spin-
boson model [see Eq. (36)]. (ii) Transitions in the system
that are induced by the hot and work baths are suppressed
by the cold bath. This effect is highly nontrivial.

The cooling condition specifies regimes in which the
system can act as a refrigerator and extract heat from the
cold environment. In the weak-coupling limit and using
the Born-Markov-Redfield quantum master equation, the
cooling condition is [9,10]

ε2 − ε1

ε3 − ε1
≤ βh − βw

βc − βw
. (55)

The effect of strong coupling is to dress the QAR
parameters. In particular, the energy levels of the QAR, εn,
gain a dependence on λc. The renormalized energy levels
are [see Eq. (54)],

ε1(λc) = �

2

(
1 − e−(2λ2

c/�2
c )
)

, (56)

ε2(λc) = �

2

(
1 + e−(2λ2

c/�2
c )
)

, (57)

ε3(λc) = 1. (58)

The cooling condition in Eq. (55) is derived for the original
Hamiltonian in Eq. (50) under the weak-coupling condi-
tion. It thus holds for the effective Hamiltonian in Eq.
(54) since it has the same form but with renormalized
parameters and with weak coupling restored between the
effective system and the bath. We thus write down the
cooling condition in the strong-coupling regime using the
renormalized levels:

ε2(λ) − ε1(λ)

ε3(λ) − ε1(λ)
= �e−(2λ2

c/�2
c )

1 − (�/2)
(

1 − e−(2λ2
c/�2

c )

) ≤ βh − βw

βc − βw
.

(59)
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FIG. 7. The cooling window of the three-level autonomous quantum absorption refrigerator. (a),(b) The cooling window calculated
analytically from the RCPT method using Eq. (59) for (a) � = 20 and (b) � = 10. (c),(d) The cooling window calculated from the
numerical RC-QME method for (c) � = 20 and (d) � = 10. The dashed line marks the boundary of the cooling window in the weak-
coupling limit, where cooling takes place for 0 < � < 0.4. We use reservoir temperatures Tc = 0.25, Th = 0.5, and Tw = 1.5. (e),(f)
A comparison of the eigenvalues calculated from the RCPT method and exact diagonalization of the RC Hamiltonian for (e) � = 20
and (f) � = 10. Here, � = 0.5.

The gap between the lowest two energy levels is sup-
pressed faster with λc than the total gap. As a result, at
large �, where cooling is impossible at weak coupling, we
observe cooling once we reach the strong system-reservoir
coupling regime. This effect is seen in Fig. 7: The cool-
ing window calculated using Eq. (59) is displayed in Figs.
7(a) and 7(b). It is compared with the cooling window pre-
dicted by the weak-coupling limit (to the left of the dashed
line at � = 0.4). This analytical result is also compared
with numerical simulations with the RC-QME method [see
Figs. 7(c) and 7(d)].

In these figures, the blue region corresponds to areas
where cooling is allowed (jc > 0), whereas the red regions
identify the no-cooling regime (jc ≤ 0). We find that the

effective treatment agrees well with complete simulations
for large RC frequency, �c = 20, while for smaller �c =
10, the agreement is not as good, particularly at large λc
values. This is to be expected, since the RCPT analytical
approach relies on �c being the largest energy scale in the
problem and deviations are expected once λc ≈ �c.

We comment that deviations between the two
approaches are not attributed to problems in capturing the
eigenspectrum of the QAR at strong coupling. Figures 7(e)
and 7(f) show the left-hand side of the cooling inequality
and we compare the analytical expression in Eq. (59) with
the effective energies to the numerical value computed by
taking the three lowest eigenvalues of the Hamiltonian in
Eq. (52). We observe perfect agreement even at large λc.
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This correspondence reveals that the RCPT method fails to
capture the cooling window at small � due to transitions
missing in the method, the result of the energy truncation
involved. For example, leakage effects, with heat flowing
directly from the work to the cold bath, are missing in the
effective Hamiltonian [19].

Equation (59) demonstrates the remarkable predictive
power of the RCPT method. Since strong-coupling effects
are now embedded in the energy levels of the system,
a wealth of results describing performance bounds on
weakly coupled systems can be effortlessly extended to the
strong-coupling regime.

VI. PHONON-ASSISTED THERMOELECTRIC
ENGINES

In this section, we explore another nontrivial applica-
tion of the RCPT technique to obtain a deeper under-
standing of phonon-assisted electron transport and thermo-
electric generation in quantum dot setups. In this model,
the RC and the subsequent polaron transformation are
applied to a bosonic (phonon) reservoir that is strongly
coupled to the electronic degrees of freedom (quantum
dots) of the system. These quantum dots are assumed to
weakly hybridize with voltage-biased and temperature-
biased fermionic environments (metals) responsible for
both charge and energy currents flowing in the junc-
tion. A schematic representation of the model is given in
Fig. 1(d).

As we show in this section, using the RCPT method
on the phonon-assisted charge transport model, we gain
three outcomes. (i) We bypass expensive simulations while
treating strong-coupling effects nonperturbatively. (ii) We
analytically distill impacts of strong couplings from the
renormalization of parameters in the effective Hamiltonian.

(iii) We achieve closed-form expressions for transport
characteristics, here focusing on the efficiency of a ther-
moelectric power generator. As for physical observables,
the RCPT method provides excellent predictions not only
for the averaged charge current but also for its fluctuations,
as well as for the energy current.

A. Model and the derivation of the effective
Hamiltonian

The literature includes many theoretical proposals for
phonon-assisted quantum-dot-based thermoelectric gen-
erators (see, e.g., Refs. [91,114–118]). In Refs. [119–
121], for instance, phonon-assisted conduction and ther-
moelectric generation have been analyzed in double-
quantum-dot devices. In those studies, however, the
hybridization of the dots to the metal electrodes has
been assumed to be strong but the electronic states
of the quantum dots only perturbatively couple to
phonons; computationally extensive simulations in Ref.
[53] explore nonperturbative electron-phonon coupling
effects.

In the present study and following Ref. [91], we assume
that the coupling of the quantum dots to the metal elec-
trodes is weak and can be handled in a perturbative manner
by a second-order BMR QME. The coupling of the quan-
tum dot to a phonon bath is, however, strong and this
interaction, which is treated with the RCPT method, is
essential for facilitating charge transport.

The Hamiltonian of the double quantum dot is writ-
ten in the |G〉, |L〉, |R〉, |D〉 basis, which corresponds to the
states with neither dots being occupied, the left dot only
occupied, the right dot only occupied, and both dots occu-
pied, respectively. In this basis, the total Hamiltonian is
represented as

Ĥ = εL|L〉〈L| + εR|R〉〈R| + (εL + εR + U)|D〉〈D| +
∑

k

εk,Lĉ†
k,Lĉk,L +

∑

k

εk,Rĉ†
k,Rĉk,R

+
∑

k

[
(|R〉〈D| − |G〉〈L|)hk,Lĉ†

k,L + h.c.
]

+
∑

k

[
(|L〉〈D| + |G〉〈R|)hk,Rĉ†

k,R + h.c.
]

+
∑

q

νq

(
d̂†

q + tq
νq

(|L〉〈R| + h.c.)
)(

d̂q + tq
νq

(|L〉〈R| + h.c.)
)

. (60)

For more details on this model, see Ref. [91]. In
the above expression, εL,R are the energies of the left
and right quantum dots and U is the Coulomb interac-
tion energy when both quantum dots are occupied. The
fermionic reservoirs are coupled to the dots with a coupling
strength hk,L/R; here, the creation (annihilation) operators

ĉ†
k,α (ĉk,α) create (annihilate) an electron in the fermionic

lead α = L, R with energy εk,α . We assume a linear dis-
persion relation for the electronic energy with a wide
band of a constant density of states. The last line in
Eq. (60) describes electron tunneling between the two
dots—assisted by a phonon bath. The phononic degrees of
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freedom are described by creation (annihilation) operators
d̂†

q (d̂q). Here, q identifies a normal mode with frequency
νq coupled to electronic transitions between the dots with
the coupling energy tq.

Following Ref. [91], we introduce a compact nota-
tion for the system operators on the double-quantum-dot
Hilbert space, Â1 = −|G〉〈L| + |R〉〈D|, Â2 = −|L〉〈G| +
|D〉〈R|, Â3 = |G〉〈R| + |L〉〈D|, Â4 = |R〉〈G| + |D〉〈L|, Ŝ =
|L〉〈R| + |R〉|L〉, L̂ = |L〉〈L|, R̂ = |R〉〈R|, and D̂ = |D〉〈D|.
We allow phonons to strongly couple to electron. We per-
form a reaction-coordinate transformation on the phononic

degrees of freedom to extract a collective phonon coordi-
nate and add it to the system Hamiltonian. The dot-metal
hybridization is assumed to be weak (although in principle,
one can also perform the RC mapping on the electronic
energies).

After the polaron transform and the truncation of the
RC mode, we arrive at our effective Hamiltonian, exhibit-
ing strong electron-phonon coupling through renormal-
ized parameters and new coupling terms. After neglecting
constant terms, we obtain

Ĥ eff(λ) =
[
εL cosh

(
λ2

�2

)
+ εR sinh

(
λ2

�2

)]
e−(λ2/�2)L̂ +

[
εR cosh

(
λ2

�2

)
+ εL sinh

(
λ2

�2

)]
e−(λ2/�2)R̂

+ (εL + εR + U)D̂ +
∑

q

ωq

(
b̂†

q − 2λfq
�ωq

Ŝ
)(

b̂q − 2λfq
�ωq

Ŝ
)

+
∑

k

[
Â1hk,Le−(λ2/2�2)ĉ†

k,L + Â2h∗
k,Le−(λ2/2�2)ĉk,L

]

+
∑

k

[
Â3hk,Re−(λ2/2�2)ĉ†

k,R + Â4h∗
k,Re−(λ2/2�2)ĉk,R

]
+

∑

k

εk,Lĉ†
k,Lĉk,L +

∑

k

εk,Rĉ†
k,Rĉk,R. (61)

Here, � and λ are parameters of the spectral density
function of the phonon bath, describing the central fre-
quency of the bath and its coupling energy to the electronic
system [see Eq. (15)]. However, after the RCPT proce-
dure, these bath parameters are imprinted into the model
Hamiltonian itself. Furthermore, since we assume that the
spectral density function is narrow and that λ < �, the
residual phonon bath only weakly couples to the system,
as in Eq. (12). Intermediate steps in the calculation are
presented in Appendix D.

Inspecting the Hamiltonian in Eq. (61) and comparing
it to the original expression in Eq. (60), the effects of the
RCPT mapping can be summarized as follows. (i) The
energy levels of the electronic dots are renormalized by
the coupling to phonons such that they approach equal val-
ues at strong coupling. (ii) The coupling of the phonon
bath to the dots is dressed (weakened) by the factor λ/�.
(iii) Electron tunneling from the metals to the dots is
exponentially suppressed.

To expound on the impact of strong system-bath cou-
plings, we define the renormalized energy parameters,

εL(λ) =
[
εL cosh

(
λ2

�2

)
+ εR sinh

(
λ2

�2

)]
e−(λ2/�2),

(62)

εR(λ) =
[
εR cosh

(
λ2

�2

)
+ εL sinh

(
λ2

�2

)]
e−(λ2/�2),

(63)

hk,L(λ) = hk,Le−(λ2/2�2); hk,R(λ) = hk,Re−(λ2/2�2), (64)

corresponding to the phonon-dressed quantum dot ener-
gies, εL,R(λ) and the phonon-dressed metal-dot hybridiza-
tions, hk,L(λ) and hk,R(λ).

In Fig. 8, we show these renormalized parameters,
which are strongly affected by the electron-phonon cou-
pling when λ approaches �. For a system configured with
εR = 2 and εL = 0, we again observe level renormaliza-
tion as a staple of strong coupling in this model. Here,
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FIG. 8. The effective coupling-dressed parameters in the
phonon-assisted quantum dot thermoelectric generator. We dis-
play the energy of the left dot (triangle) and the right dot
(diamond) and the magnitude squared of the coupling energy
between the dots and the fermionic baths (star), as calculated
from Eqs. (62)–(64). The parameters (without dressing) are εR =
2, εL = 0, |h|2 = 1, and � = 100.
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the quantum dot energies approach their average values
at strong coupling. Furthermore, we also observe a sup-
pression of the dot-metal hybridization as the coupling of
electrons to the phonon bath is increased, which is notable,
since the RC mapping does not involve the fermionic reser-
voirs. This is indeed a polaronic effect, with the electrons
being slowed down due to polaron formation on the dots.
As we show below with benchmarking, the RCPT method
performs extremely well in this model. It quantitatively
captures the significant features of the model even as λ

becomes comparable to �, a regime that is not guaranteed
to be properly described by the RCPT.

B. Charge current and its noise

We now turn to study charge transport in the model. The
quantum dot system is coupled to two metal electrodes and
a phonon bath and one could use this setup to investigate
numerous aspects of quantum transport, such as the behav-
ior of the charge current and its fluctuations as a function
of voltage and electron-phonon couplings, with all baths
maintained at the same temperature. The system can be
also tuned to act as a thermoelectric power generator when
applying a temperature difference counteracting the volt-
age bias. To study this function, we follow Ref. [91] and
investigate the same setup. The left metal is set hot and the
right side is cold, TL > TR. However, the chemical poten-
tials of the electrodes are tuned with the opposite polarity,
μL < μR. As for the temperature of the phonon bath Tph,
we set it here to be equal to TR but one could imagine other
situations as described in Ref. [91]. The metal-molecule
hybridization is defined as

�L(ε) = 2π
∑

k

|hk,L|2δ(ε − εk,L) (65)

and a similar expression is used to define �R(ε). We
assume that these parameters are energy independent and
we work in the weak metal-dot coupling limit such that
�L,R 
 TL,R. As for the phonon bath, it is described by
a Brownian spectral function with the peak frequency at
�, Eq. (15). After the mapping, the residual bath cou-
ples weakly to the quantum dots, with an Ohmic spectral
function.

In Fig. 9, we display the mean charge current and its
fluctuations as a function of the electron-phonon coupling
strength, λ. We calculate the charge current using Eq. (26),
presenting it here with the brackets, 〈je〉, to emphasize that
this is the mean current; using a full-counting statistics
approach, we also calculate the current noise, denoted here
by 〈〈j 2

e 〉〉 = 〈j 2
e 〉 − 〈je〉2. Technical details on how to calcu-

late currents and noise in the model are given in Ref. [91]
and we do not repeat them here.

We present results using three methods: BMR QME,
which is valid at weak electron-phonon coupling only; RC
QME, a numerical tool simulating transport [based on Eq.
(D1)], which is expected to hold even for large λ; and the
EFF-QME method using the effective Hamiltonian in Eq.
(61), then simulating current with the BMR-QME method.
Focusing in Fig. 9 on trends as a function of the electron-
phonon coupling strength, we note the excellent agreement
between the latter two techniques, showcasing the excel-
lent performance of the RCPT method compared to full
simulations.

The RCPT method is not only remarkably computa-
tionally efficient (as we do not need to pay any com-
putational cost for working in the strong-coupling limit)
but, furthermore, it clarifies the origins of (i) the signifi-
cant enhancement of the current at intermediate electron-
phonon coupling compared to the weak-coupling limit
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FIG. 9. A phonon-assisted quantum dot thermoelectric power generator. (a) The mean steady-state charge current flowing left to
right (positive) and (b) the current fluctuations. The parameters are εR = 2, εL = 0, TL = 10, TR = 1, � = 100, μL = −0.3 μR =
−0.2, V = μR − μL = 0.1, Tph = 1, and 2πγ� = 100 and the metal-dot hybridization energies are �L = �R = 0.1, all in units
of TR.
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and (ii) the complete suppression of charge current at the
ultrastrong-coupling limit, as we discuss next.

At weak electron-phonon coupling, the current grows
trivially with λ due to the increasing coupling between
the dots and the phonon bath (as in the weak-coupling
scheme) assisting transport. In the intermediate regime
(here, around λ = 50), the current shoots up, contrasting
with the behavior at weak coupling. The reason for this
strong enhancement of the current is made clear when
looking at the effective Hamiltonian in Eq. (61). As we
increase the electron-phonon coupling, the energy levels
of the quantum dots approach degeneracy, reaching their
mean value (εL + εR)/2 in the ultrastrong-coupling limit.
Evening up the energy levels—closing their gap—is bene-
ficial for charge transport. However, at the same time, the
metal-quantum dot tunneling elements |h(λ)|2 are expo-
nentially suppressed with λ. In the polaron picture, this
effect is well known: Unlike the bare electron, an elec-
tron dressed by lattice vibrations stabilizes and it requires
the “reorganization energy” to hop. The combination of
these effects leads to the turnover behavior of the cur-
rent and its eventual exponential suppression with λ. It
is significant to note that besides the mean current, its
fluctuations are also excellently captured by the RCPT
method, similarly showing a corresponding turnover
behavior.

C. Thermoelectric efficiency at strong coupling:
Simulations and analytical results

Using the RCPT formalism, we next simulate the charge
〈je〉 and energy currents 〈ju〉 arriving from the hot metal,
as well as the associated heat current 〈jq〉 = 〈ju〉 − μL〈je〉.
Combining these currents, we assess the efficiency of the
thermoelectric generator, defined as

η ≡ P
〈jq〉 , (66)

with the power extracted P ≡ 〈je〉(μR − μL). The effi-
ciency is bounded by the Carnot limit, ηC = 1 − (Tc/Th),
where Tc,h are the temperatures of the cold and hot
baths. Nontrivial questions concern how the thermoelectric
efficiency depends on voltage and how it is modified by the
electron-phonon coupling energy.

In Fig. 10, we look at the dependence of the mean charge
current, the mean heat current, and the power output on the
applied voltage bias between the right and left leads (V =
μR − μL). Here, μR is varied while μL is kept constant.
We immediately note the excellent agreement between the
RC-QME and EFF-QME methods in Figs. 10(a)–10(c).
Using the data for currents, in Fig. 10(d) we plot the
thermoelectric efficiency based on Eq. (66). We observe
the following: the BMR-QME method predicts that the
efficiency will grow linearly with the voltage, reaching
the Carnot bound. Indeed, according to a weak-coupling

master-equation theory, the efficiency of a thermoelec-
tric generator is given by η = (μR − μL)/(εL − μL). This
reflects the tight-coupling limit between the charge and
the heat currents, resulting in their cancellation from the
expression for efficiency. Obviously, since the electron-
phonon coupling strength is large, the BMR-QME predic-
tion is provided here as a reference point only. Contrast-
ing the characteristic linear trend of weak coupling, the
RC-QME simulations show that at finite electron-phonon
coupling, the system cannot reach the Carnot efficiency
and the efficiency drops drastically to zero as we reach
the stopping voltage. Interestingly, the RCPT method with
EFF-QME simulations provides accurate results for small-
to-intermediate voltage biases but it fails to capture the
suppression of efficiency at higher voltage when approach-
ing the stopping voltage. In other words, the EFF-QME
method predicts that the efficiency can still reach the
Carnot bound but with a different slope—due to the renor-
malization of parameters. This observation is consistent
with the nature of the EFF-QME method. It deploys a
weak-coupling theory on an effective Hamiltonian, thus
allowing the Carnot bound to be reached. In the
ultrastrong-coupling limit and based on Eq. (64) the effi-
ciency is given by ηUS = (μR − μL)/[(εL + εR)/2 − μL],
distinct from the weak-coupling prediction by the value in
the denominator.

It is intriguing to note that while both charge and heat
currents are seemingly excellently reproduced by the EFF-
QME method compared to simulations with the RC QME
[see Figs. 10(a)–10(c)], the corresponding thermoelectric
efficiencies display marked differences. These deviations
can be understood from the inset plots in Figs. 10(b) and
10(c), where we note small deviations in both the heat
current and power. According to the inset in Fig. 10(b),
the heat current of the RC QME approaches zero at a
slightly higher voltage than the EFF QME. Conversely,
in the inset in Fig. 10(c), we find that the power output
predicted by the RC QME tends toward zero at a slightly
lower voltage as compared with the EFF QME. This effect
can also be understood as a difference in stopping voltages.
The weak-coupling BMR QME predicts a stopping volt-
age of Vs = (εL − μL)(βR − βL)/βR with βL,R = 1/TL,R
[91]. However, at strong coupling, the stopping volt-
age increases (in the ultrastrong limit, εL → (εL + εR)/2).
This is because the energy level of the left quantum dot
increases with λ due to strong-coupling renormalization
(see Fig. 8).

D. Discussion

The RCPT method shows excellent predictive power
when describing the charge and heat currents and
their fluctuations, even at very strong electron-phonon
couplings and beyond its rigorous regime of applicability,
extending to λ ≈ �. The measure of thermoelectric effi-
ciency, in contrast, is sensitive to small deviations.
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FIG. 10. A phonon-assisted double-quantum-dot thermoelectric power generator. (a) The mean charge current from the left lead
(positive) toward the system. (b) The mean heat current from the left reservoir. (c) The power output of the generator, which is given
by the charge current times voltage. (d) The thermoelectric efficiency, compared to the Carnot bound ηC. The insets in (b) and (c)
present the ratio of currents (RC-QME result over EFF-QME) in the vicinity of the stopping voltage. The parameters are the same as
in Fig. 9, with λ = 17.3 and μL = −0.3, while μR is varied.

Since the RCPT method still captures only the tight
coupling (proportionality) of the currents, its predic-
tions for the efficiency miss the turnover behavior near
the stopping voltage. There are many model variants
of phonon-assisted charge transport, including the cele-
brated Anderson-Holstein model. Employing the RCPT
framework on canonical models, further including strong
hybridization of the dots to the leads, could expose the rich
physics of dissipative correlated nonequilibrium fermionic
systems.

VII. DISSIPATIVE SPIN CHAINS

Quantum spin models serve a central role in our under-
standing of quantum many-body systems; specifically,
universal aspects of quantum phase transitions in

magnetic systems. More recently, dissipative spin chains
have been studied in, e.g., Refs. [122–128], motivated by
applications in quantum information processing and spin-
tronics, as well as real-world experiments simulating spin
lattices with cold atoms [129].

We show here that the RCPT method can be readily
used to study the properties of dissipative spin chains,
namely, their spin polarization and heat transport behav-
ior. We present the theory on a one-dimensional N -site
Heisenberg model under a magnetic field. In simulations,
we exemplify the theory on a two-qubit system coupled
via a general XYZ Ising interaction. Our main result is
that due to the impact of strong dissipation, the XX model
approaches the Ising model Hamiltonian at strong bath
coupling. Thus, dissipation can mask distinct features of
spin-chain models.
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The Hamiltonian of a dissipative Heisenberg chain with
N sites is written as

Ĥ =
N∑

α=1

�ασ̂ α
z +

∑

i∈{x,y,z}

N−1∑

α=1

Jiσ̂
α
i σ̂ α+1

i

+
N∑

α=1

∑

k

να,k

(
ĉ†
α,k + tα,k

να,k
σ̂ α

x

)(
ĉα,k + tα,k

να,k
σ̂ α

x

)
.

(67)

In this expression, �α represents the spin splitting of
the αth qubit. The qubits are coupled to each other with
strength Jx,y,z along the different directions. The qubits are
also each coupled to a local bosonic reservoir with modes
of frequency να,k at strength tα,k. We assume as before that
the spectral density functions of these baths are of Brown-
ian form [see Eq. (15)], with �α and λα the center of the
Brownian functions and the respective qubit-bath coupling
strength. Proceeding via the RCPT protocol as outlined in
Sec. II, we arrive at the effective Hamiltonian,

Ĥ eff(λ1, λ2, . . . , λN ) =
N∑

α=1

�αe−(2λ2
α/�2

α)σ̂ α
z

+
N−1∑

α=1

[
Jxσ̂

α
x σ̂ α+1

x + Jye−(2λ2
α/�2

α)e−(2λ2
α+1/�2

α+1)σ̂ α
y σ̂ α+1

y + Jze−(2λ2
α/�2

α)e−(2λ2
α+1/�2

α+1)σ̂ α
z σ̂ α+1

z

]

+
N∑

α=1

∑

k

ωα,k

(
b̂†

α,k − 2λαfα,k

�αωα,k
σ̂ α

x

)(
b̂α,k − 2λαfα,k

�αωα,k
σ̂ α

x

)
. (68)

The effective Hamiltonian depends on all λα and �α ,
although we highlight the dependence on the former. For
details on the intermediate steps in the RCPT method, see
Appendix E. The residual coupling of the qubits to their
baths is now weak, as explained in Sec. II.

Inspecting the Hamiltonian in Eq. (68), we note that
the suppression of the spin splitting and the interaction
parameters Jy and Jz due to the coupling to the baths
results in the dissipative XX model approaching the Ising
model in the strong-coupling regime. Hence, we discover
that models that behave distinctively when isolated from
their surroundings become more and more similar as the
system-bath interaction is increased.

In what follows, we study the equilibrium and trans-
port properties of the Hamiltonian in Eq. (68) considering
only two spins, denoted by L and R, and for two special
cases: (i) a transverse-field Ising-type interaction, where
Jz = Jy = 0 and Jx = J , and (ii) an XX -type interac-
tion with Jz = 0 and Jy = Jx = J . In particular, two-qubit
models can be used as components for thermal energy
transport, with each qubit coupled to a heat bath at a differ-
ent temperature [130,131]. For a schematic representation,
see Fig. 1(e).

Considering the first line of the Hamiltonian in Eq. (68)
in the strong-coupling limit, all but the term proportional to
Jx will be exponentially suppressed. Therefore, we observe
the following: (i) In the strong-coupling limit, the eigen-
states of the effective system Hamiltonian coincide with

the eigenstates of σ̂ L
x and σ̂ R

x . This implies that the XX -
type model at strong coupling reduces to a description
of the Ising model, with zero qubit splitting. (ii) When
the qubits are coupled to heat baths at different temper-
atures, heat current can flow between the baths through
the qubits. However, the heat current will be suppressed
at strong system-bath coupling since (in the ultrastrong
limit) the effective system Hamiltonian commutes with
the total Hamiltonian, implying that energy cannot flow
in the system. These predictions are arrived at by simply
inspecting terms in the effective Hamiltonian in Eq. (68).
In Figures 11 and 12, we test these predictions using the
numerical RC-QME method. Focusing first on an equilib-
rium setting with the two baths set at the same temperature,
in Fig. 11 we present the spin magnetization as a func-
tion of the spin-spin interaction J and the system-bath
coupling strength λ. We find that while at weak cou-
pling the XX and the Ising models behave differently as
a function of the exchange interaction J , both models fol-
low similar trends as one increases the couplings to the
heat baths. Specifically, at weak coupling, the XX model
shows a transition from a polarized state to an unpolar-
ized state at J ≈ 1.5; the Ising model, in contrast, slowly
looses polarization with increasing J . At strong dissipa-
tion, in contrast, the two models similarly preserve small
polarization irrespective of the coupling strength, which
is expected given the bath-induced quenching of the spin
splitting.
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FIG. 11. (a),(b) The equilibrium magnetization in a two-qubit
model, plotted as a function of the interaction strength J and the
coupling parameter λ using the RC-QME method for both (a)
the XX -type and (b) the Ising-type interactions. (c),(d) Cuts of
the contour at weak and strong λ, respectively: (c) λ = 1.5; (d)
λ = 17. The parameters are �L = �R = 1, TL = TR = 0.5, and
� = 10.

In Fig. 12, we turn to a nonequilibrium steady-state sit-
uation with TL �= TR and present the current of the XX
model [Fig. 12(a)] and the Ising model [Fig. 12(b)]. The
important quadrant is in the strong-λ weak-J limit, where
the currents predicted by the XX and Ising models coin-
cide. In this regime, since J is weak relative to �, our
RCPT effective treatment is relevant and our prediction of

1

2

3

4

5 10 15 5 10 15

10–8

10–7

10–6

10–5

10–4

10–3

0

1

2

3
10–4

0 1 2 3 4 5 0 1 2 3 4 5
0

1

2

3
10–5

(a) (b)

(c) (d)

FIG. 12. (a),(b) The steady-state heat current through a two-
qubit system, plotted as a function of the interaction strength
J and the coupling parameter λ using the RC-QME method for
both (a) the XX -type and (b) the Ising-type interactions. (c),(d)
Cuts of the contour at weak and strong λ, respectively: (c) λ =
1.5; (d) λ = 17. The parameters are �L = �R = 1, TL = 0.5,
TR = 1, and � = 10.

the two models coinciding in their behavior and leading to
suppressed currents is verified in simulations. Deviations
in the currents supported by the two models are apparent in
the upper right quadrant, which corresponds to the large-J
large-λ limit. Here, since J becomes comparable to �, the
RCPT framework starts to break down and our predictions
of the XX model mapping into the Ising model are not as
accurate.

Altogether, the effective-Hamiltonian treatment is a
powerful new tool toward studying dissipative spin chains.
Besides allowing feasible numerical simulations, the
strength of the method lies in it directly building effec-
tive Hamiltonians that expose the impact of dissipation on
the model parameters and thus on the expected equilib-
rium phases and transport properties of these paradigmatic
systems.

VIII. CONCLUSIONS

We introduce the reaction-coordinate polaron-
transformation framework, an analytical-numerical tool
for tackling open-quantum-system problems at strong
system-bath coupling with harmonic baths. This approach
is applicable to a broad range of open quantum sys-
tems. While computationally expensive techniques have
been developed in recent years to handle strong-coupling
effects, including the hierarchical equations of motion
(HEOM) formalism, chain-mapping, tensor-network, and
path-integral approaches, the RCPT method stands out,
with it offering fundamental understanding as to the dif-
ferent impacts of strong couplings, as well as a route
for highly economic and reasonably accurate numerical
simulations. While the method is introduced and exer-
cised here for systems linearly coupled to the displace-
ments of bosonic-harmonic environments, we are currently
devoting efforts toward extending the approach to treat
strong-coupling effects between a quantum system and
fermionic or spin degrees of freedom. This requires the
generalization of the RC transformation and a polaron-
like rotation, as well as the introduction of a physi-
cally motivated truncation scheme to treat other types of
baths.

The essence of our RCPT procedure is that strong
system-bath interactions are absorbed and embedded into
a (modified) system Hamiltonian, which itself becomes
weakly coupled to its surroundings, thus allowing eco-
nomical simulations and analytical derivations. The pro-
cedure involves performing a reaction-coordinate mapping
to extract the prominent degrees of freedom from the bath,
applying next a polaron transformation to partially decou-
ple the RC from the system, and finally truncating the
reaction coordinate. These three steps result in an effective
model Hamiltonian with strong system-bath coupling built
into the system Hamiltonian.
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We employ the RCPT method and study central ques-
tions in quantum thermalization, quantum transport, and
quantum thermodynamics. Focusing on the steady-state
regime, the RCPT method allows us to predict and rational-
ize trends, derive closed-form expressions quantifying the
performance of many-body quantum thermal machines,
and perform economic simulations. We exemplify the
capacity of the RCPT method with five paradigmatic
problems:

(i) We investigate the topic of quantum thermaliza-
tion using the generalized spin-boson model in
Sec. III. Our main result via the RCPT proce-
dure is the derivation of a closed-form expression
for the thermal equilibrium state of the system.
This expression is exact in both the weak and
the ultrastrong-coupling limits and it further pro-
vides qualitatively correct results in the intermediate
regime.

(ii) Quantum heat transport is investigated using the
spin-boson model in Sec. IV. The RCPT approach
provides the characteristic turnover of the heat cur-
rent with the system-bath coupling energy.

(iii) The impact of strong coupling on the cooling per-
formance of continuous quantum absorption refrig-
erators is analyzed in Sec. V. Here, the RCPT
method allows us to derive analytical expressions
for the cooling window, exposing the role of strong
coupling.

(iv) The problem of phonon-assisted electron transport
is studied in Sec. VI, with a focus on the per-
formance of thermoelectric power generators. The
RCPT method provides accurate predictions not
only of the charge current but also its fluctuations,
revealing a turnover behavior when increasing the
coupling to phonons. The method further allows us
to write a closed-form expression for the efficiency
of the phonon-assisted power generator, valid from
linear response to the far-from-equilibrium region
(yet, as expected, missing the correct behavior near
the stopping voltage).

(v) Dissipative quantum chains are analyzed in Sec.
VII. The RCPT method reveals the confluence
of different spin-chain models once dissipation is
enhanced.

These five canonical models embody many-body inter-
actions, include strong system-bath coupling effects, and
encompass rich physics from linear response to the far-
from-equilibrium regime. The powerful RCPT method
elegantly captures their equilibrium physics and transport
characteristics with little effort. While we employ the Red-
field QME here to simulate the steady-state behavior of
the effective Hamiltonian, other methods can be used in
this regard, including numerically exact techniques. In

such cases, the effective Hamiltonian offers accelerated
convergence due to weakened system-bath coupling, com-
pared to the bare model.

We focus in this study on the steady-state behavior
of quantum thermal machines. In future work, we plan
to look at how effective models deal with transient and
driven dynamics. In this context, complications arise, as
the RCPT method may neglect non-Markovian effects due
to the truncation of the reaction coordinate. As such, in
order to accurately study quantum dynamics, a method that
can capture such features is required. Another potential
avenue for the RCPT method is the application of iter-
ative mappings, making use of, e.g., numerical spectral
density functions for the RC transformation. This would
allow studies with spectral density functions that are richer,
beyond the Brownian form. More broadly, we envision the
development and application of RCPT-inspired mapping
methods to understand and simulate light-matter systems,
time-dependent driven materials, and interacting fermionic
models.
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APPENDIX A: CALCULATION OF THE
EFFECTIVE SYSTEM HAMILTONIAN

In this appendix, we simplify the expression obtained
in Sec. II for the system portion within the total effec-
tive Hamiltonian. Our starting point is the subspace of the
polaron-dressed system Hamiltonian [see Eq. (13)]:

Ĥ eff
s (λ) = 〈0|e(λ/�)(â†−â)ŜĤse−(λ/�)(â†−â)Ŝ|0〉. (A1)

The polaron-transformation operator has a similar mathe-
matical structure to the displacement operator,
D(α) = eαâ†−αâ, where in our situation, the parameter α

is in fact an operator living in the Hilbert space of the sys-
tem, α ≡ (λ/�)Ŝ. We note, that here, α is Hermitian. We
use the following properties of the displacement operator:
D(−α) = D†(α) and D(α)|0〉 = |α〉, which implies that
D†(α)|0〉 = | − α〉 to write the effective system Hamilto-
nian as

Ĥ eff
s (λ) = 〈−α|Ĥs| − α〉. (A2)

Next, we comment that coherent states can be repre-
sented by the eigenstates of the harmonic oscillator |n〉
as |α〉 = e−(|α|2/2)

∑∞
n=0(α

n/
√

n!)|n〉. In the models exam-
ined here, all the elements in α are real and thus we
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ignore the absolute-value symbol. Combining these facts,
we compute the effective system Hamiltonian,

Ĥ eff
s (λ) = e−(α2/2)

∑

n,m

(−1)n

√
n!

〈n|αnĤsα
m|m〉 (−1)m

√
m!

e−(α2/2)

= e−(α2/2)
∑

n

(−1)2n

n!
αnĤsα

ne−(α2/2),

= e−(λ2/2�2)Ŝ2

(
∑

n

λ2n

�2nn!
ŜnĤsŜn

)
e−(λ2/2�2)Ŝ2

.

(A3)

This is our final expression: in the second line, we make
use of the fact that Ĥs and Ŝ are operators that act on the
system Hilbert space only. Therefore, the partial matrix
element resolves simply to a Kronecker product in the m
and n states.

APPENDIX B: EFFECTIVE-HAMILTONIAN
HIGHER-ORDER CONTRIBUTIONS

In this appendix, we explain how to systematically
extend the RCPT method and build higher-order contribu-
tions to the effective Hamiltonian of the system, given in
Eq. (9). This is done by including higher-order excitations
to the RC manifold. For example, if we include two levels
in the RC, |0〉 and |1〉, the effective Hamiltonian becomes
a 2 × 2 matrix,

Ĥ eff,[2]
s = 〈0|e(λ/�)(â†−â)ŜĤse−(λ/�)(â†−â)Ŝ|0〉|0〉〈0|

+ 〈1|e(λ/�)(â†−â)ŜĤse−(λ/�)(â†−â)Ŝ|1〉|1〉〈1|
+ 〈0|e(λ/�)(â†−â)ŜĤse−(λ/�)(â†−â)Ŝ|1〉|0〉〈1|
+ 〈1|e(λ/�)(â†−â)ŜĤse−(λ/�)(â†−â)Ŝ|0〉|1〉〈0|.

(B1)

In the main text, we limit the occupation number of the
RC to zero, assuming that � � T. Here, we compute
as an example the matrix element between the kth and

pth levels. Such extensions to higher occupations of the
RC should allow for a more complete description of the
RCPT technique and provide corrections for better numer-
ical accuracy. Therefore, as an extension of Eq. (9), we
consider terms of the form

〈k|Ĥ eff
s |p〉 = 〈k|e(λ/�)(â†−â)ŜĤse−(λ/�)(â†−â)Ŝ|p〉. (B2)

Note that |p〉 = (1/
√

p!)(â†)p |0〉. We can again reexpress
the effective system Hamiltonian in terms of a ground-state
expectation value,

〈k|Ĥ eff
s |p〉 = 1√

k!p!
〈0|âkD(α)ĤsD†(α)(â†)p |0〉. (B3)

Next, we make use of the property of displacement oper-
ators, |0〉 = D(α)| − α〉. As such, we rewrite our matrix
element in terms of coherent state expectation values,

〈k|Ĥ eff
s |p〉

= 1√
k!p!

〈−α|D†(α)âkD(α)ĤsD†(α)(â†)pD(α)| − α〉.
(B4)

Furthermore, the use of yet another property of displace-
ment operators, D†(α)âkD(α) = (â + α)k, allows us to
displace the RC operators,

〈k|Ĥ eff
s |p〉 = 1√

k!p!
〈−α|(â + α)kĤs(â† + α†)p | − α〉.

(B5)

We note that the parameter α in our expressions is Her-
mitian. Furthermore, we can express the coherent state
in the basis of the harmonic-oscillator-number eigenstates
| − α〉 = ∑∞

m=0((−1)m/
√

m!)αme−(|α|2/2). Next, we use

the binomial theorem to write (â + α)k = ∑k
l=0

(
k
l

)
âlαk−l.

Combining these two manipulations, we write down the
matrix element as

〈k|Ĥ eff
s |p〉 = 1√

k!p!

p∑

j =0

k∑

l=0

∞∑

n,m=0

(−1)n+m

√
n!m!

(
k
l

)(
k
j

)
e−(|α|2/2)〈n|âlαk−l+nĤsα

p−j +m(â†)j |m〉e−(|α|2/2). (B6)

Note the action of the creation operator (â†)j |m〉 = √
(m + j )!/m!|m + j 〉. Therefore,

〈k|Ĥ eff
s |p〉 = 1√

k!p!

p∑

j =0

k∑

l=0

∞∑

n,m=0

(−1)n+m
√

(m + j )!(n + l)!
n!m!

(
k
l

)(
p
j

)
e−(|α|2/2)〈n + l|αk−l+nĤsα

p−j +m|m + j 〉e−(|α|2/2)

(B7)
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= 1√
k!p!

p∑

j =0

k∑

l=0

∞∑

n,m=0

(−1)n+m
√

(m + j )!(n + l)!
n!m!

(
k
l

)(
p
j

)
e−(|α|2/2)αk−l+nĤsα

p−j +me−(|α|2/2)δn+l,m+j . (B8)

The Kronecker-delta function implies that m = n + l − j . Reindexing the sum over m, we arrive at our final expression:

〈k|Ĥ eff
s |p〉 = 1√

k!p!

p∑

j =0

k∑

l=0

∞∑

n=j −l

(−1)2n+l−j (n + l)!
n!(n + l − j )!

(
k
l

)(
p
j

)
e−(|α|2/2)αk−l+nĤsα

p−2j +l+ne−(|α|2/2) (B9)

= 1√
k!p!

p∑

j =0

k∑

l=0

∞∑

n=j −l

(−1)l−j (n + l)!
n!(n + l − j )!

(
k
l

)(
p
j

)(
λ

�

)k+p−2j +2n

e−(λ2/2�2)Ŝ2
Ŝk−l+nĤsŜp−2j +l+ne−(λ2/2�2)Ŝ2

.

(B10)

This expression can be readily computed to provide the
higher-order corrections to the effective system Hamilto-
nian.

APPENDIX C: THE RCPT METHOD IN THE
ULTRASTRONG-COUPLING LIMIT

1. Pointer basis equivalence

In Ref. [26], it has been proved that for any system
(Hamiltonian Ĥs) coupled to a bosonic reservoir in an
ultrastrong manner, the mean-force Gibbs state, defined in
Eq. (27), is given by

lim
λ→∞

ρSS
MFGS = e−β

∑
m P̂mĤsP̂m

Tr
[
e−β

∑
m P̂mĤsP̂m

] , (C1)

where the P̂m = |m〉〈m| are projection operators on the
nondegenerate eigenstates |m〉 of Ŝ. These eigenstates are
also referred to as the pointer basis of the ultrastrong-
coupling limit. Recall that Ŝ is an operator of the system,
which couples it to the bath. The eigenenergies of Ŝ are
identified as P̂mŜ = εmP̂m. Equation (C1) is obtained from
a pertubative technique in λ−1.

Considering now our RCPT method, we next com-
pute the effective system Hamiltonian in Eq. (14) for an
arbitrary system, projected onto the eigenbasis of Ŝ,

∑

m

P̂mĤ eff
s (λ)P̂m

=
∑

m

P̂me−(λ2/2�2)Ŝ2

( ∞∑

n=0

λ2n

�2nn!
ŜnĤsŜn

)
e−(λ2/2�2)Ŝ2

P̂m

=
∑

m

e−(λ2/�2)ε2
m

( ∞∑

n=0

λ2n

�2nn!
P̂mŜnĤsŜnPm

)

=
∑

m

e−(λ2/�2)ε2
m

( ∞∑

n=0

λ2n

�2nn!
ε2n

m P̂mĤsP̂m

)

=
∑

m

P̂mĤsP̂m. (C2)

Importantly, the final expression is independent of the cou-
pling parameter λ. The above derivation shows that the
pointer-basis representation of the effective system Hamil-
tonian is identical to the pointer-basis representation of the
original system Hamiltonian.

Building on Ref. [26], we know that for any model
Hamiltonian—including, in particular, the effective Hamil-
tonian—the ultrastrong MFGS should be given in the form
of Eq. (C1) with the corresponding Hamiltonian. Given the
equality in Eq. (C2), we thus conclude that the RCPT trans-
formation should produce the correct-exact MFGS in the
ultrastrong-coupling limit.

Altogether, while the RCPT method apparently devi-
ates from the correct MFGS in the intermediate-coupling
regime, given the underlying approximations, it builds the
correct state in the ultrastrong-coupling limit, matching
Ref. [26]. A partial understanding of this remarkable result
is that in the ultrastrong-coupling limit, the energies of the
system renormalize—and yet saturate to values of the order
of �, the eigenenergies of the original system. This sug-
gests that the effective-Hamiltonian approach should hold
even in the ultrastrong-coupling limit. However, a deep
intuitive explanation pertaining to the success of the RCPT
method in the ultrastrong regime is still missing, as well as
an estimate as to the accuracy of the effective-Hamiltonian
MFGS in the intermediate regime.
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2. Equilibrium state of the generalized spin-boson: From asymptotically weak to ultrastrong

We provide here further mathematical details on the effective mean-force Gibbs state of the generalized spin-boson
model discussed in Sec. III. In the main text, we express this state in the form of Eq. (40), where Ĥ eff

s (λ) is given in
terms of a closed-form expression [see Eq. (31)]. Using this Hamiltonian, we may then write the equilibrium state in a
convenient form,

e−βĤeff
s (λ) = e−(1/2)β�(�v·�σ), (C3)

where here �σ = (σ̂x, σ̂y , σ̂z) and

�v = [(1 − e(−2λ2/�2)) sin(2θ), 0, (1 + e(−2λ2/�2)) + (1 − e(−2λ2/�2)) cos(2θ)]. (C4)

Using properties of the Pauli operators, we may reexpress the effective Gibbs state as

e−βĤeff
s (λ) = cosh

(
β�

2
|�v|

)
Î − (v̂ · �σ) sinh

(
β�

2
|�v|

)
, (C5)

where v̂ is the unit vector associated with �v and its magnitude is given by

|�v| =
√

2(1 + e−(4λ2/�2)) + 2(1 − e−(4λ2/�2)) cos(2θ). (C6)

Therefore, the partition function of the effective mean-force Gibbs state is

Zeff = Tre−βĤeff
s (λ) = 2 cosh

(
β�

2
|�v|

)
. (C7)

As a result, we may write the equilibrium state of the system in a compact form as

ρSS
eff = 1

2

[
Î − (�v · �σ)

|�v| tanh
(

β�

2
|�v|

)]
. (C8)

Writing explicitly the full λ and θ dependence of this model, we obtain our final solution for the effective mean-force
Gibbs state of the generalized spin-boson model, which is valid for any coupling strength λ from asymptotically weak to
ultrastrong:

ρSS
eff = 1

2

[
1 − (1 − e(−2λ2/�2)) sin(2θ)σ̂x + ((1 + e(−2λ2/�2)) + (1 − e(−2λ2/�2)) cos(2θ))σ̂z√

2(1 + e−(4λ2/�2)) + 2(1 − e−(4λ2/�2)) cos(2θ)

× tanh
(

β�

2

√
2(1 + e−(4λ2/�2)) + 2(1 − e−(4λ2/�2)) cos(2θ)

)]
. (C9)

We highlight two limiting cases of Eq. (C9) where our results in Figs. 4 and 5 are validated; namely, (i) the asymp-
totically weak-coupling limit (λ → 0), where we expect our solution to converge to a standard Gibbs state, and (ii) the
ultrastrong-coupling limit (λ → ∞), where we expect our solution to agree with Eq. (45). In these cases, we obtain

lim
λ→0

ρSS
eff = 1

2
(1 − σ̂z tanh(β�)) ∝ e−β�σ̂z (C10)

and

lim
λ→∞

ρSS
eff = 1

2
{
1 − [

σ̂x sin(θ) + σ̂z cos(θ)
]

tanh(β� cos(θ))
}

. (C11)

Our asymptotically weak-coupling limit agrees exactly with the standard Gibbs state. Moreover, our ultrastrong result
matches the ultrastrong limit of Ref. [26]. Therefore, we prove analytically that the RCPT method generates effective-
Hamiltonian models that are exact in both the asymptotically weak and ultrastrong-coupling regimes for the generalized
spin-boson model.
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APPENDIX D: INTERMEDIATE STEPS IN THE RCPT MAPPING OF PHONON-ASSISTED ELECTRON
TRANSPORT

We start with the Hamiltonian in Eq. (60) and describe its mapping to Eq. (61). First, we build from Eq. (60) the total
RC Hamiltonian,

ĤRC = εLL̂ + εRR̂ + (εL + εR + U)D̂ + �

(
â† + λ

�
Ŝ
)(

â + λ

�
Ŝ
)

+
∑

q

ωq

(
b̂†

q + fq
ωq

(â† + â)

)(
b̂q + fq

ωq
(â† + â)

)

+
∑

k

[
Â1hk,Lĉ†

k,L + Â2h∗
k,Lĉk,L

]
+

∑

k

[
Â3hk,Rĉ†

k,R + Â4h∗
k,Rĉk,R

]
+

∑

k

εk,Lĉ†
k,Lĉk,L +

∑

k

εk,Rĉ†
k,Rĉk,R. (D1)

In this expression, λ is the coupling strength between the dots and the RC and � is the frequency of the RC. â† (â) is the
creation (annihilation) operator of the RC. The coupling energies between the RC and residual phononic bath modes of
frequency ωq are captured by fq, while the creation (annihilation) operators of the residual phonon bath are given by b̂†

q

(b̂q).
Continuing with the RCPT procedure, we now apply a polaron transformation to partially decouple the phononic RC

and the electronic dots, ÛP = e(λ/�)Ŝ(â†−â). This rotation results in the transformed Hamiltonian ĤRC−P = ÛPĤRCÛ†
P,

given by

ĤRC−P = εLÛPL̂Û†
P + εRÛPR̂Û†

P + (εL + εR + U)ÛPD̂Û†
P + �â†â

+
∑

q

ωq

(
b̂†

q + fq
ωq

(â† + â − 2λ

�
Ŝ)

)(
b̂q + fq

ωq
(â† + â − 2λ

�
Ŝ)

)

+
∑

k

[
ÛPÂ1Û†

Phk,Lĉ†
k,L + ÛPÂ2Û†

Ph∗
k,Lĉk,L

]

+
∑

k

[
ÛPÂ3Û†

Phk,Rĉ†
k,R + ÛPÂ4Û†

Ph∗
k,Rĉk,R

]
+

∑

k

εk,Lĉ†
k,Lĉk,L +

∑

k

εk,Rĉ†
k,Rĉk,R. (D2)

Since the polaron transformation affects both the dots (through Ŝ) and the RC (through â), terms affected by the polaron
transformation involve both the RC Hilbert space and the double dot. With regard to the RC, we make use of the fact that
ÛPâÛ†

P = â − (λ/�)Ŝ. To compute terms that involve the quantum dots, we note that Eq. (14) can be readily applied to
any operator on the double-dot Hilbert space. We give an example of the transformation to L̂, noting that all other terms
are computed in an analogous manner. Once the reaction coordinate is truncated to zero occupation, we obtain

〈0|ÛPL̂Û†
P|0〉 = e−(λ2/2�2)Ŝ2

( ∞∑

n=0

λ2n

�2nn!
ŜnL̂Ŝn

)
e−(λ2/2�2)Ŝ2

. (D3)

In this case, ŜnL̂Ŝn is equal to L̂ for n even and to R̂ for n odd. Furthermore, Ŝ2 is diagonal in this case. An intermediate
step in this derivation gives

〈0|ÛPL̂Û†
P|0〉 = cosh

(
λ2

�2

)
e−(λ2/2�2)Ŝ2

L̂e−(λ2/2�2)Ŝ2 + sinh
(

λ2

�2

)
e−(λ2/2�2)Ŝ2

R̂e−(λ2/2�2)Ŝ2
. (D4)
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Since e−(λ2/2�2)Ŝ2 = |G〉〈G| + e−(λ2/2�2)|L〉〈L| + e−(λ2/2�2)|R〉〈R| + |D〉〈D|, the left dot gets altered with energy renor-
malization. Furthermore, we obtain a new coupling between the left and right dots,

〈0|Ûp L̂Û†
p |0〉 = cosh

(
λ2

�2

)
e−(λ2/�2)L̂ + sinh

(
λ2

�2

)
e−(λ2/�2)R̂. (D5)

For completeness, we also show the transformation of Â1, since it is distinct from the last computation:

〈0|ÛPÂ1ÛP|0〉 = e−(λ2/2�2)Ŝ2

( ∞∑

n=0

λ2n

�2nn!
ŜnÂ1Ŝn

)
e−(λ2/2�2)Ŝ2

. (D6)

Here, ŜnÂ1Ŝn is equal to zero unless n = 0. Therefore,

〈0|ÛPÂ1ÛP|0〉 = e−(λ2/2�2)Â1. (D7)

The effective model is defined as

Ĥ eff(λ) = 〈0|ĤRC−P|0〉 (D8)

and we arrive at Eq. (61).

APPENDIX E: INTERMEDIATE STEPS IN THE RCPT MAPPING OF DISSIPATIVE SPIN CHAINS

In this appendix, we begin from the model Hamiltonian in Eq. (67) and include the intermediate steps in deriving the
effective model Hamiltonian in Eq. (68).

Starting with Eq. (67), we apply the RCPT method and extract a reaction coordinate from each reservoir:

ĤRC =
N∑

α=1

�ασ̂ α
z +

∑

i∈{x,y,z}

N−1∑

α=1

Jiσ̂
α
i σ̂ α+1

i +
N∑

α=1

�α

(
â†

α + λα

�α

σ̂ α
x

)(
â†

α + λα

�α

σ̂ α
x

)

+
N∑

α=1

∑

k

ωα,k

(
b̂†

α,k + fα,k

ωα,k
(â†

α + âα)

)(
b̂α,k + fα,k

ωα,k
(â†

α + âα)

)
, (E1)

where λα and �α denote the coupling strength and frequency of the αth reaction coordinate. Next, we perform a polaron
transformation on each RC, since the unitary operators commute. Explicitly, it is given as

ÛP = �N
α=1ÛP,α = �N

α=1e(λα/�α)(â†
α−âα)σ̂ α

x . (E2)

We pause here to note that the study of multiqubit systems is natural for the RCPT because the qubits operate on different
Hilbert spaces and Ŝ2 = 1. As a result, performing multiple polaron transformations and generating the effective model is
relatively simple compared to the other models studied in this work. We apply the polaron transformation and arrive at
the following Hamiltonian:

ĤRC−P =
N∑

α=1

�αÛPσ̂ α
z Û†

P +
∑

i∈{x,y,z}

N−1∑

α=1

JiÛPσ̂ α
i σ̂ α+1

i Û†
P +

N∑

α=1

�α â†
α âα

+
N∑

α=1

∑

k

ωα,k

(
b̂†

α,k + fα,k

ωα,k

(
â†

α + âα − 2λα

�α

σ̂ α
x

))(
b̂α,k + fα,k

ωα,k

(
â†

α + âα − 2λα

�α

σ̂ α
x

))
. (E3)
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Next, we introduce a shorthand notation where the ket vector |0〉 = |01, 02, . . . , 0N 〉 denotes a zero-excitation state of
each RC. Since the polaron transformations act on different Hilbert spaces, we can simply apply each truncation separately.
Therefore, we should only evaluate the action of the polaron transformation on each Pauli operator σ̂x,y,z, which is done
by employing Eq. (14). First, we note that [ÛP, σ̂ α

x ] = 0, so the action of the polaron transformation is trivial on σ̂x. The
transformations of σ̂z and σ̂y are very similar and produce the same outcome. We demonstrate the action on σ̂y , noting that
we compute analogous expressions for σ̂z in Sec. III:

〈0|ÛP,ασ̂ α
y Û†

P,α|0〉 = e−(λ2
α/�2

α)
∑

n

λ2n
α

�2n
α n!

(σ̂ α
x )nσ̂ α

y (σ̂ α
x )n

= e−(λ2
α/�2

α)
∑

n,even

λ2n
α

�2n
α n!

σ̂ α
y +

∑

n,odd

λ2n
α

�2n
α n!

σ̂ α
x σ̂ α

y σ̂ α
x

= e−(λ2
α/�2

α)

[
cosh

(
λ2

α

�2
L

)
− sinh

(
λ2

α

�2
α

)]
σ̂ α

y

= e−(2λ2
α/�2

α)σ̂ α
y . (E4)

The effect of strong system-bath coupling as seen from the RCPT method in this model is again parame-
ter renormalization in both the spin splittings as well as the internal interactions: �α −→ �αe−(2λ2

α/�2
α), Jx −→ Jx,

Jy −→ Jye−(2λ2
α/�2

α)e−(2λ2
α+1/�2

α+1), Jz −→ Jze−(2λ2
α/�2

α)e−(2λ2
α+1/�2

α+1). The effective model is defined as

Ĥ eff(λ1, λ2, . . . .λN ) = 〈01, 02, . . . 0N |ĤRC−P|01, 02, . . . , 0N 〉 (E5)

and we arrive at Eq. (68).
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