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Silicon spin qubits stand out due to their very long coherence times, compatibility with industrial fab-
rication, and prospect to integrate classical control electronics. To achieve a truly scalable architecture, a
coherent mid-range link that moves the electrons between qubit registers has been suggested to solve the
signal fan-out problem. Here, we present a blueprint of such a link of 10 µm length, called a spin qubit
shuttle, which is based on connecting an array of gates into a small number of sets. To control these sets,
only a few voltage control lines are needed and the number of these sets and thus the number of required
control signals is independent of the length of this link. We discuss two different operation modes for the
spin qubit shuttle: a qubit conveyor, i.e., a potential minimum that smoothly moves laterally, and a bucket
brigade, in which the electron is transported through a series of tunnel-coupled quantum dots by adiabatic
passage. We find the former approach more promising considering a realistic Si/SiGe device, including
potential disorder from the charged defects at the Si/SiO2 layer, as well as typical charge noise. Focusing
on the qubit transfer fidelity in the conveyor shuttling mode, we discuss in detail motional narrowing, the
interplay between orbital and valley excitation and relaxation in the presence of g factors that depend on
orbital and valley state of the electron, and effects from spin hotspots. We find that a transfer fidelity of
99.9% is feasible in Si/SiGe at a speed of approximately 10 m/s, if the average valley splitting and its
inhomogeneity stay within realistic bounds. Operation at low global magnetic field approximately equal
to 20 mT and material engineering towards high valley splitting is favorable for reaching high fidelities of
transfer.
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I. INTRODUCTION

Quantum computing architecture based on gated semi-
conductor quantum dots (QDs) promises the necessary
number of qubits for the use of quantum error correction
due to their very good coherence properties and direct
compatibility with established semiconductor technology
[1,2]. By using nuclear spin-free 28Si [3], the silicon-
based spin qubit dephasing time is significantly increased,
as it is no longer limited by hyperfine interaction with
remaining 29Si, but by charge noise, which couples to the

*lars.schreiber@physik.rwth-aachen.de
†lcyw@ifpan.edu.pl
‡These authors contributed equally.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

spin via local magnetic field gradients [4–7]. The fidelity
of single-qubit [5,8–10] and two-qubit gates [11] already
exceeds the quantum error-correction threshold [12]. Sim-
ple two-qubit gates require an overlap of the electron wave
function [13–15], which would require a very dense two-
dimensional qubit matrix, in which topological quantum
error correction can be realized [16,17]. However, this
dense matrix approach is not easily scalable, if all gates
forming the QDs must be individually controllable. The
size scale for the outgoing signal lines and their control
electronics exceeds that of the dense qubit field by far, and
leads to a signal fan-out problem [18]. One part of the
solution are multilayer crossbar architectures [19–21], in
which individual qubits are addressed by the combination
of signals at the gates’ crossing, or alternatively continu-
ously driven qubits controlled by the global magnetic field
[22,23]. Such dense qubit registers can be connected by
coherent links providing a two-qubit operation at a dis-
tance of approximately 10 µm, in order to make space
for vias or tiling with cryoelectronics [18,24,25]. Coulomb
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interaction alone is too weak for long-range high-fidelity
two-qubit coupling [26]. First successes could be achieved
by an indirect interaction via a mm-long electromagnetic
cavity [11,27–30], but tuning of the qubit-carrying double
quantum dots (DQDs) to the resonance frequency of the
cavity is challenging [30]. Off-resonant driving theoreti-
cally circumvents this, but requires longer operation times
[31]. In addition, the fabrication of the cavities is hardly
compatible with industrial gate fabrication.

Another method for a medium-range coupling distance
of the order of 10 µm is the controlled shuttling of the
electron [32,33], carrying the quantum information in its
spin degree of freedom, using a series of gates [34,35].
Recently, this approach was integrated in the blueprint
of a sparse spin qubit array compatible with industrial
fabrication without providing details on control and spin
coherence of the shuttling process [25]. Alternatively, the
shuttling can be used to distribute entangled pairs of elec-
trons to distant arrays (cores), in order to provide coherent
communication between them [36]. The charge of a single
electron has already been transferred in Si/SiGe over a dis-
tance of nine tunnel-coupled QDs [37] using Landau-Zener
charge transitions [34,38–40]. In GaAs, the spin-coherent
transfer [41–43] that also preserves spin entanglement [44]
has already been shown. Some GaAs electron conveyors
employ surface acoustic waves, replacing the need for a
gate array [44–46], but velocity of shuttling with surface
acoustic waves is fixed, limiting flexibility of operation,
and furthermore GaAs lacks nuclear spin-free isotopes,
making spin qubit decoherence very hard to reduce [47].
The demonstrated Si-based shuttlers require individual
tuning of the gate array to compensate local potential disor-
der. Hence, the number of signal lines is proportional to the
length of the shuttler, and thus it is not solving the fan-out
problem.

We want to realize a mid-range coherent link by shut-
tling the electron, the spin of which constitutes the qubit,
across a distance of approximately Ls = 10 µm and will
refer to it as a spin qubit shuttle (SQS). The SQS has to
fulfil the following criteria: (I) In order to solve the fan-out
problem, the number of input terminals required has to be
independent of the length of the SQS. A scalable quan-
tum computer architecture can be implemented by such
a SQS. (II) The electron transfer has to be spin coherent
with a sufficiently low error of δC � 10−3, in order to pre-
serve the quantum information to the degree necessary for
achieving fault tolerance using quantum error-correction
codes [48,49], or for executing noisy intermediate-scale
quantum (NISQ) algorithms [50]. (III) The transfer pro-
cess has to be at least as fast as the typical timescales of
single qubit and near-range two-qubit gates or qubit read-
out, in order to avoid the situation in which it is the qubit
shuttling that determines the quantum algorithm runtime.
Thus, a transfer velocity v ∼ 10 m/s is sufficient. If shut-
tling is relatively rare compared to qubit manipulation and

qubit readout, an order of magnitude lower v might be fea-
sible as well. The ratio of occurrences of these events will
depend on details of a quantum computer architecture.

We present in this paper a blueprint of such a SQS:
scalability is achieved by electrically connecting control
lines not to individual gates, but to a few so-called “gate
sets,” where all gates within one set are electrically con-
nected and thus on the same potential. We discuss two
distinct transport modes: The first—the “bucket-brigade”
(BB) mode—relies on periodic modulation of voltages
controlling relative detunings between adjacent QDs in a
pre-existing chain of N ≈ 100 tunnel-coupled QDs [37].
The second—the “conveyor belt” (CB) mode—relies on
electrostatic creation of a single deep quantum dot that is
moving along a one-dimensional channel [51]. We argue
that the BB mode is less robust than the CB mode, when
scalability of the quantum computing architecture is seri-
ously taken into account in the presence of realistic elec-
trostatic disorder. We focus thus on the theory of shuttling
in the CB mode: we carry out theoretical optimization
of the design of the Si/SiGe structure with gate sets that
predicts robust dynamics of an electron-containing QD
moving across a disordered channel, and calculate spin
qubit decoherence as a function of shuttling velocity. The
main result of the paper given is that for realistic parame-
ters (T∗

2 times, orbital excitation energies, valley splitting,
density of atomic interface steps) of Si/SiGe structures, we
predict the existence of an optimal electron velocity vopt in
the CB transfer mode. This vopt is between five and a few
tens of m/s, and we predict that the operation of the SQS
with this velocity will lead to qubit coherence error below
the targeted 10−3, showing that using the proposed mid-
range link will allow for a scalable quantum computing
architecture.

In the following, we summarize our considerations on
the spin dephasing mechanism in the SQS starting from the
lowest qubit transfer velocities. When the voltages control-
ling the SQS are varied slowly enough, the qubit transfer
should be adiabatic, i.e., the electron should remain in its
lowest-energy orbital and/or valley state while it is being
pushed along the channel. As for the spin degree of free-
dom, if we assume that the electron does not pass through
spin-relaxation hotspots that occur when the spin splitting
matches the valley splitting in a given QD [52–56], the tar-
geted transfer time, τ ≤ 10 µs, is at least 3 to 4 orders of
magnitude below spin-relaxation times in stationary dots
in the presence of a magnetic field gradient [55,56], and
the latter are not expected to be lowered significantly due
to the quantum dot moving at velocities v ≤ 100 m/s [33].
Note that a relatively spatially uniform valley splitting is
helpful for choosing a global magnetic field B that leads to
such avoidance of the hotspots.

In the absence of the hotspots, spin state can then only
undergo dephasing due to fluctuations of local values of
spin splitting along the channel due to nuclear dynamics
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[57] and charge noise [6,7,58–63] modulating the effects
of spin-orbit interactions on the spin splitting of an elec-
tron (e.g., through fluctuations of g factors) in a QD at a
given location. For a stationary QD, these fluctuations lead
to finite T∗

2 dephasing times [5,6,64–66], and the motion of
the electron through a channel longer than the correlation
length of random contributions to spin splitting enhances
the spin dephasing time due to the motional narrowing
effect [57]. Making the shuttling velocity v higher seems
then to be an obvious way to suppress the phase error: the
qubit spends less time exposed to perturbations, and their
noisy influence is additionally suppressed by fast motion.
However, with increasing v, changes in electrostatic poten-
tials and valley fields experienced by the electron become
faster, and the assumption of adiabatic character of the evo-
lution of its orbital and valley degrees of freedom has to
become untenable.

When the dynamics of the electron becomes nona-
diabatic, motion-induced excitation of the electron into
higher-energy states has to be taken into account. Tran-
sitions to excited orbital states of the electron in a potential
of the moving QD are caused by electrostatic disorder
in the channel: in the frame co-moving with the QD
the quasistatically fluctuating disorder turns into dynamic
noise coupling the orbital levels. Analogously, atomic
scale interface roughness [1,67,68] that affects the valley
splitting [13,28,52,54–56,64,69–76] and determines the
composition of valley states [56,67,68,77–79] in a static
QD, becomes a time-dependent valley-coupling term for
a moving QD, with intervalley excitations appearing as a
result. Once the electron starts to occupy excited states,
it becomes susceptible to processes of energy relaxation
accompanied by emission of phonons. This makes the
evolution of the orbital and valley states stochastic: the
electron will spend random fractions of shuttling time in
various orbital and valley states, thus opening up a new
channel for qubit dephasing. Spin-orbit coupling makes the
g-factor state dependent [64,80,81], with a relative varia-
tion of electron spin g factor between distinct valley states
being approximately 10−3 [64,73]. A similar g-factor dif-
ference is measured between neighoring QDs [82,83],
which we assume to be an upper bound for g-factor differ-
ence between lowest energy and excited orbital in a single
QD. B-field-independent contribution to spin splitting due
to spin-orbit interaction also depends on the valley state
[66,84]. Consequently, any randomness in time spent by
the electron in distinct valley and orbital states will lead to
randomness in the qubit phase (and thus dephasing) for any
finite external magnetic field. With the rms of the phase
given by δφ, and the probability of excitation out of instan-
taneous ground state given by pe, the phase error δC is
given by

δC = pe(1 − e−δφ2/2) ≈ peδφ
2/2 when δφ � 1, (1)

where in the first formula we assume that the distribution
of the random contributions to qubit phase is Gaussian,
while the second one, relevant in the small-error regime of
interest here, does not require this assumption. As δC ≤ pe,
limiting the probability of orbital and valley excitations,
i.e., keeping pe < 10−3, is one route towards reaching
the targeted level of phase error. When this turns out to
be impossible, suppression of δφ, e.g., by making the
orbital and valley relaxation faster (thus making the elec-
tron spend shorter periods of time in excited states), is the
remaining route towards a coherent SQS. Quantitative cal-
culation of both orbital and valley excitations caused by a
QD motion, and orbital and valley relaxation, as functions
of parameters of the SQS, is thus the main topic of the sec-
ond part of the paper, in which we focus on coherence of
the electron transferred in the CB mode.

The key results of our calculations are the following:
already for reliable transfer of the electron, the CB mode
of electron-spin shuttling is superior versus its BB counter-
part in terms of scalability, i.e., robustness against potential
disorder with only a few signal lines independent from
the SQS length available (Sec. II). The propagating QD
potential required for the CB mode can be generated in
a realistic Si/SiGe SQS despite having typical density of
charged defects at the Si/SiO2 interface (Sec. III). Then,
motional narrowing enhances spin coherence of a single
electron confined in the propagating QD compared to a
static QD, setting a comfortable lower velocity limit to the
CB mode (red line in Fig. 1). The state-dependent electron
g factor sets the upper velocity limit in conjunction with
diabatic QD motion (Sec. V): orbital excitations (black line
in Fig. 1) appear rarely and relax quickly in the propagat-
ing QD in our realistic Si/SiGe SQS, so they do not limit

FIG. 1. Sketch of the transfer errors of an electron spin-qubit
after 10-µm shuttling in the CB mode as a function of the shut-
tling velocity for various decoherence mechanisms discussed in
this paper. In Sec. VIII, we discuss the detailed plots of these
dependencies that summarize all the calculations in this paper.
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the spin coherence (Sec. VI). However, valley excitations
last orders of magnitude longer, setting the upper velocity
limit of the CB (green and blue lines in Fig. 1) within the
bounds of our models of the lateral valley-splitting fluctua-
tions (Sec. VII). Spin relaxation hotspots have to be passed
sufficiently fast, setting another lower velocity limit (yel-
low line in Fig. 1) (Sec. VII). Finally, dotted line shows
that motion-induced spin relaxation caused by spin-orbit
interaction analyzed previously in Ref. [33] (see Sec. VI C)
does not pose a threat to the coherence of the shuttled qubit.
Taking all spin-decoherence mechanisms into account in
Sec. VIII, we predict that CB-mode shuttling across a dis-
tance of 10 µm with less than 0.1% infidelity is feasible
under favorable QD velocity (white area underneath gray
line in Fig. 1), magnetic field, and SQS geometry.

II. SQS DEVICE CONCEPT

A sketch of the SQS device is shown in Fig. 2(a). It is
based on multilayer electrostatic gates and thus its fabri-
cation is compatible with common QD devices [37,52],
in which qubit manipulation with necessary fidelities was
demonstrated, and can be readily adapted by industrial fab-
rication lines [85]. The shuttling process is controlled by an
array of metal gates called clavier gates on top of a Si/SiGe
heterostructure. Two parallel gates (called screening gates)
underneath the clavier gate layer, define a one-dimensional
electron channel and screen the electric field of the clavier
gates at the edge of the channel. The dc voltage applied
to these gates is chosen to deplete this channel. Our main
idea is to connect a few control lines to a small number of
gate sets (i.e., clavier gates set to the same potential), the
number of which is independent of the length of the coher-
ent link [51]. The constant number of input terminals of the
coherent link solves the signal fan-out problem and assures
full scalability of our approach. Along the SQS channel
we require no charge detector. For a SQS test device, we
suggest two single-electron transistors (SET) at each end
of the channel, which detects the charge state at the end
of the channel [Fig. 2(a)]. If the SET is tunnel coupled
to the channel, electrons can be loaded into and unloaded
from the channel on demand, controlled by a small num-
ber of dedicated gates at the end of the SQS. For a quantum
computing architecture, other approaches for loading and
detecting electrons may be found.

A. Two modes of qubit transfer

There are two modes of operation for a shuttling, which
we call “bucket brigade” and “conveyor belt” transfer
mode, which differ by the connection scheme of the clavier
gates [Figs. 2(b) for BB and 2(e) for CB, respectively].
Both modes are explained in more detail below.

The BB transfer mode (Fig. 2, left panel column)
requires a linear array of QDs along the SQS, which can
be pairwise described by the Hamiltonian Ĥk = εkσ̂z/2 +
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FIG. 2. SQS concept and operation modes. (a) Sketch of a SQS
device. (b)–(g) Comparison of BB (left panels) and CB (right
panels) transfer modes. (b),(e) Position of the clavier gates and
electric connection scheme for the BB mode (b) and CB mode
(e), respectively. (c),(f) Input voltages during a SQS step cycle
T for the BB mode (c) and CB mode (f), respectively. (d),(g)
Electrical potential (blue) calculated along the center of a SQS
within the Si/SiGe quantum well for four time frames [dashed
lines in (b) and (d) for each mode]. Dashed red line indicates the
calculated electron density.

tc,kσ̂x, where εk and tc,k are the interdot energy detuning
and interdot tunnel coupling of the kth double quantum dot
(DQD) pair of the linear array, respectively, and σx and
σz are Pauli matrices. The electron is transferred by adi-
abatic Landau-Zener transitions (LZT) between adjacent
DQDs: time-dependent voltages applied to adjacent QDs
change εk from negative to positive, and the energies of
states localized in each of the two QDs anticross, with the
minimum gap given by twice the tunnel coupling tc,k [Fig.
3(a)]. Three clavier gate sets (1,2,3) operating as plunger
gates (i.e., controlling mainly the chemical potential of the
QD underneath) in Fig. 2(b) trigger the LZTs at time D/2
by sweeping the gate voltages of the gate sets as plotted
in Fig. 2(c). The potential at four time frames is sketched
in Fig. 2(d). The channel is initially depleted and only one
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(a) (b)

FIG. 3. Schematic picture of the energy spectrum during trans-
fer of spin superposition in the presence of orbital (ground and
first excited only), valley, and spin degrees of freedom, as a
function of (a) DQD detuning ε in a single transition between
the QDs in bucket brigade (BB), (b) position along the SQS
in the conveyor belt (CB). We denote excited valley states |ev〉
using dashed line and the joint ground state of orbital and val-
ley degrees of freedom |go,v〉 by thicker: blue (spin down) and
red (spin up) line. In the insets, we illustrate mechanism of elec-
tron shuttling in each mode, note that in contrast to BB mode
the charge transfer in CB does not require effectively adiabatic
evolution in the lowest energy levels. In the conveyor belt (b),
we plot the energy difference between excited and ground orbital
levels, including expected electrostatic disorder (see Sec. III B).
We also include the modification of energy spectrum due to
atomistic steps (left kink) and a smooth interface gradient (right
kink), that lead to temporal reduction of valley splitting EVS.

QD is filled [red wave function in Fig. 2(d)] by loading a
single electron from one channel end.

In the CB mode (Fig. 2, right panel column), the exis-
tence of an array of tunnel-coupled QDs is not needed.
Every fourth clavier gate is connected [Fig. 2(e)] and by
applying sine signal with π/2 phase shift to each gate set
as depicted in Fig. 2(f), a propagating sine-wave potential
in the one-dimensional (1D) quantum channel is induced
[Fig. 2(g)] with only one pocket filled by the electron to
be transferred [red wave function in Fig. 2(g)]. We refer to
this pocket as single moving QD. Tunnel coupling between
pockets of the sine function has to be excluded by proper
choice of gate pitch and the signal amplitude. We show
that this requirement can easily be fulfilled by a realistic
device in Sec. III, for which electron shuttling on a short
length scale has been demonstrated already [51]. A mini-
mum of three gate sets is required to define the direction of
the transfer. We choose a four-gate-set scheme here, since
it eases the realization of a connection scheme of the SQS
in the CB mode as elaborated in Sec. III. The input signals
sketched in Figs. 2(c) and 2(f) presume a constant transfer
velocity. Smooth acceleration can be implemented in CB
by sweeping the frequency of the SQS signals applied to

the clavier gates. Adiabatic reversal of the transfer direc-
tion is feasible as well. Such a flexibility is lacking in the
surface acoustic wave approach demonstrated in GaAs as
the speed of sound is intrinsically fixed. Note that mixtures
of the BB and CB modes with more input signals might be
beneficial, but we restrict the considerations to these two
extreme cases of transfer modes.

B. Challenges in the bucket-brigade mode

Within our scalable gate-set approach two significant
limitations arise in BB transfer mode, both originating
from typical potential disorder in Si devices: firstly, fine
tuning of gate voltages for setting the tc,k close to a com-
mon value of tc, and secondly fine tuning of voltage pulses
applied to specific QDs triggering adiabatic LZTs along the
chain, are both impossible to achieve, since gates are elec-
trically connected. As potential disorder is unavoidable,
we have to deal with a range of tc,k, while the sweeping
range for εk at all LZT has to be large enough to compen-
sate offsets in zero-detuning points among adjacent QDs.
The requirement of being able to transfer the qubit with
the use of only a few synchronized time-dependent volt-
age signals [Fig. 2(c)], applied to appropriately designed
gates spanning the whole length of the SQS, leads to
rather stringent requirements on the degree of uniformity
of the channel through which the electron is to be sent. In
the following we quantitatively explicate on this require-
ment. Considering a 10-µm-long SQS, an array of N ∼
100 tunnel-coupled QDs is required to span the distance.
Then the qubit shuttling is effected by consecutive LZT
of the electron between neighboring DQDs, driven by a
sweep of the DQD interdot detuning ε [Fig. 3(a)]. First,
we focus on the probability Q of nonadiabatic LZT evo-
lution given by Qk = exp(−2π t2c,k/�vε), where vε is the
rate of change of detuning [86]. This Qk is the probabil-
ity that the electron will fail to transfer adiabatically from
QD k to QD k + 1 when εk is driven through the anticross-
ing of tunnel-coupled states localized in the two QDs. It
should be stressed that while, in principle, the charge trans-
fer could occur in an inelastic way (via phonon-assisted
tunneling) in subsequent part of the BB driving cycle in
which the energy of electron in kth QD is larger than the
energy in k + 1th QD (between t = D/2 and t = D, see
Fig. 2), this process is inefficient in Si/SiGe QDs [87], and
it can be neglected on timescales relevant here.

To achieve adiabatic (and thus deterministic) evolution
through the whole length of the SQS with an error of
< 10−3, each of the N transfers has to fulfill Q < 10−5.
This condition is rather restrictive as can be understood by
translating it into a lower limit of all tc,k: let us assume that
the transfer time Ls/v through the SQS is at least 10 µs,
to avoid limitation of quantum computer clock speed. For
N ≈ 100 this means that the interdot transfer time has to
be approximately equal to 100 ns. In state-of-art Si/SiGe
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devices, the offsets in zero-detuning points among adja-
cent QDs have a Gaussian distribution with a rms of about
3 meV (cf. simulations in Fig. 9). Thus the potential dis-
order sets rigorous restrictions on εk(t): (I) It has to span
a range of approximately equal to 10 meV in order to
include all N − 1 DQD zero-detuning points [at time D/2
in Fig. 2(d)], since no individual compensation of disor-
der is possible in our gate-set approach. (II) vε has to be
constant, since detuning at which tunneling-induced anti-
crossing of states occurs is unknown due to disorder. (III)
vε > 100 µeV/ns to pass the SQS in less than 10 µs. This
conditions translate into tc,k > 10 µeV for all N − 1 DQD
pairs, in order to achieve adiabatic charge transfer across
the whole SQS. Accordingly, passing the SQS in less than
1 µs, requires tc,k > 35 µeV. We believe that such a high
tc,k is hard to achieve for all k with state-of-art disorder in
Si/SiGe devices, if only a common voltage can be applied
to all the barrier gates. In particular, for an ensemble of
N ∼ 100 QDs with expected value of tc = 35 µeV, a 35%
variation of tunnel coupling would on average result in two
weakly coupled QD pairs (with tc < 10 µeV) for which
adiabatic transfer would fail with high probability.

How does imperfectly adiabatic LZT degrade qubit
coherence? Naively, one might think the qubit will arrive
just a few BB signal cycles delayed. Besides losing track of
the exact qubit position this will lead to qubit dephasing, if
the Zeeman energies of all QDs are not exactly equal due
to small variations of electron g factor and/or local mag-
netic field. In fact, it can become much worse, since only
one diabatic LZT might lead to a reversal of the shuttling
direction as illustrated in Fig. 4. If the adiabatic transfer is
unsuccessful within the time range 0 to D1 (electron posi-
tion marked red), then the electron will move backward, if
the following LZT within time D1 to T1 is adiabatic. While
this following LZT can be to some extent enforced to be
diabatic by a fast detuning ramp, this is not possible for the
LZT transition at C3. The effect is that the electron starts to
shuttle in the opposite direction as can be seen by compar-
ing the electron position marked blue (intended) and red
(unintended) in Fig. 4. As noted before, electron-phonon
coupling in Si is too weak to allow for efficient enough
inelastic phonon-assisted tunneling between detuned QDs
[87] and thus this back transfer can be persistent for sev-
eral BB signal cycles. Such an unintentional reversal of
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FIG. 4. Illustration of the propagation of an electron in BB mode for which the QD transfer fails once (red) and comparison with
an electron, which follows the intended path (blue). (a) Three-input signal as a function of time applied to the gate sets labeled 1, 2,
and 3 in (b). (b) Labeling of the clavier gates and electrical connection. Fixed voltages are applied to all barrier gates, labeled 0. (c)
Sketch of the potential in the QW along the SQS channel aligned with the clavier gates in (b). The potential plotted in each subpanel
corresponds to a different time t labeled in (a). Blue circles show the intended position of the shuttled electron and red circles mark the
expected electron position in the case of a failed LZR transition marked by the circle in (a).
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shuttling direction is catastrophic to a quantum comput-
ing architecture and can be triggered by only one diabatic
LZT of two adjacent QDs. This rules out the BB trans-
fer mode, unless ways to mitigate this reversal are found.
Certainly, lowering the potential disorder will lead to sig-
nificant improvements of stability of operation, as it will
allow for smaller sweep range (and thus lower vε while
keeping the same total shuttling time). There are even more
challenges of the BB transfer mode: if the LZT evolu-
tion is made very slow to ensure low Q, not only transfer
velocity v and thus clock speed sets a limit, but processes
of electron excitation due to charge noise become signif-
icant, and in fact at lower v their presence limits Q from
below, as it has been shown in recent work considering
coupling of the transferred electron to phonons and sources
of both 1/f and Johnson-Nyquist charge noise [40,87].
Additionally, transition between neighboring sites sepa-
rated by 50 − 100 nm might lead to valley excitations,
caused by spatial variation of valley splitting EVS in typi-
cal Si/SiGe heterostructures [Fig. 3(a)] [88]. The temporal
occupation of higher valley and presence of valley-orbit
mixing can lead to spin decoherence as discussed in detail
in this paper in the context of the CB mode.

We conclude that coherence error below 10−3 will be
difficult to achieve in scalable BB mode without a sig-
nificant improvement of the uniformity of state-of-the-art
devices. The tension between conflicting requirements of
small interdot barriers resulting in large tunnel couplings
(necessary for deterministic, and consequently coherent
spin shuttling) and homogeneity of parameters of 100 QDs
in a realistically disordered heterostructure (necessary for
scalability) is absent in the CB mode of operation. In the
remaining part of the paper, we thus focus on analysis of
that mode of the SQS.

C. Larger robustness of the conveyor-belt mode

In order to start thinking about qubit transfer in CB
mode, we only have to require that the depth of the single
moving QD is much larger than than a typical variation of
electrostatic disorder potential on length scale of QD size.
Compared to the BB mode, we do not have to worry about
tension between the requirement for existence of separate
(albeit well-coupled with finite tc) quantum dots, and the
need for charge-transfer control with global pulses, both in
the presence of disorder. We only need to create a moving
QD of a stable shape [Fig. 3(b)].

Due to this, we expect the CB mode to be more robust
to disorder in the channel as further discussed in Sec.
III. Considering signal generation and bandwidth of sig-
nal lines, a maximal input signal frequency of 100 MHz
is convenient, and it results in a sufficiently high transfer
velocity of 20 m/s at a typical gate pitch of 50 nm. As a
disadvantage compared to BB mode, the CB mode requires
a higher dynamic range of the input signals, which might

cause Ohmic heating, if the clavier gates are not supercon-
ducting. It also sets limits on the distance between clavier
gates and the moving QD, and thus the depth of the QW
and the clavier gate pitch must be well balanced (Sec. III).
Transfer velocity, signal amplitude, and other issues such
as spatial fluctuations of EVS [shown in Fig. 3(b)] affecting
the coherent spin transfer in the CB mode are discussed in
the following sections.

III. OPTIMIZATION OF GATE DESIGN FOR
CONVEYOR-BELT MODE SHUTTLING

In this section we elaborate further on the blueprint of a
SQS operating in CB mode and optimize the gate design
of a realistic undoped Si/SiGe SQS for CB mode, as the
upper SiGe spacer layer keeps charged defects, typical for
the semiconductor-oxide interface, at a larger distance and
thus reduce its impact on potential disorder [89]. In order
maximize the robustness of the adiabatic charge shuttling
against the potential disorder, we check whether its magni-
tude in the SQS channel is sufficiently low compared to the
confinement of the propagating QD and whether the asso-
ciated correlation length of disorder is sufficiently large not
to break the QD apart. As the dominant source for poten-
tial fluctuations, we simulate the impact of charged defects
at the interface between a thin Si cap layer (on top of the
Si/SiGe heterostructure) and the planar SiO2 layer. The
model employed for finite-element calculations is based on
a realistic Si/SiGe device with three metallic gate layers
[Fig. 5(a)]. By alignment of two clavier gate layers fab-
ricated by electron-beam lithography, we can achieve an
effective minimal gate pitch of lg + lox = 35 nm, where
lg and lox are the width of a single clavier gate and the
oxide thickness, respectively. The connection scheme of
the clavier gates required for CB mode (cf. Fig. 2) can
be realized within each of the two clavier gate layers by
connections on both sides of the SQS [Fig. 5(a)]. We
discuss whether this minimal gate pitch is sufficient for
the SQS or whether even larger gate pitches are optimal
and thus fabrication constraints can be relaxed. For finite-
element simulations of the SQS electrostatics, we use a
COMSOL model of the realistic SQS device, a part of which
is shown in Fig. 5(b). In this model having a total size
of 2600 nm by 400 nm, we randomly distribute spatially
uncorrelated singly charged defects at the planar Si/SiO2
interface having a density of 5 × 1010 cm−2. This is a
typical defect density for Si/SiO2 interface extracted from
room-temperature C-V measurements [90–92].

A. Analytical optimization of the device design without
defects

The geometry of the SQS is not only given by the width
of the clavier gates lg and their spacing lox, but also by
the thicknesses hox, hSiGe and hSi ≈ 10 nm of the oxide
layer, the Si0.7Ge0.3 layer and the thickness of the strained
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screening gates

connection of claviature gates

Al2O3 (10 nm)

gate pitch lg + lox
spacing between
between screening
gates wsp

clavier gates
conformal oxide
layers (hox = lox)
screening gates (10 nm)
charged defects plane
Si0.7Ge0.3 (hSiGe)
strained Si (hSi = 10 nm)
Si0.7Ge0.3 (100 nm) 

xy

z
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(a)

(b)

FIG. 5. Realistic Si/SiGe SQS device. (a) Scanning electron
micrograph of 10-µm-long SQS showing three gate layers: on
top of a screening gate layer (colored in green), two clavier gate
layers connected to four gate sets for CB mode. Gates at the ends
of the SQS are for the formation of single-electron transistors.
(b) COMSOL model of the SQS device from (a) showing two SQS
unit cells and thus eight clavier gates. The typical thickness of
layers is given in brackets.

Si quantum well (QW) layer, respectively, as well as the
spacing between the screening gates wsp [Fig. 5(b)]. As the
parameter space for the SQS geometry is large, we start
our discussion by neglecting the charged defects and inves-
tigate the harmonicity of the propagating potential in the
center of the quantum well layer as a function of the inter-
play between the depth of the quantum well and the gate
pitch. We aim at maximizing the orbital energy along the
SQS transfer direction Ex

orb(x) at a given sine-wave voltage
amplitude Va applied to the clavier gate sets at all positions
of the propagating QD. For further simplicity, we assume
that all four clavier gate sets are at the same height [other
than plotted in Fig. 5(b)], thus the thickness of the SiO2
layer hox underneath each layer is the same. This approxi-
mation allows us to argue with the Fourier analysis of the
potential formed by the array of clavier gates, in order to
find an analytical expression for the relation of the gate
pitch to the depth of the QW given by the thickness of the
oxide and the thickness hSiGe of the SiGe top layer (a 1-nm
thin Si cap layer is neglected). We assume wsp to be large
enough that we can reduce the problem to the x-z plane.
As the SQS potential exhibits a periodicity of four gate
pitches due to the use of four gate sets, we introduce the
unit-cell length of the SQS Lx = 4(lg + lox). For a homo-
geneous dielectric, we then find an optimal unit-cell length
of Lx = Lopt ≡ π(hSiGe + hox), with which the orbital con-
finement energy along the x direction scales as Eorb ∝
1/Lopt, inversely proportional to the depth of the quantum

(b)(a)

h

inh

FIG. 6. Orbital splitting as a function of the geometric param-
eters of the SQS without disorder. (a) Using hox = 10 nm and
Va = 100 mV, the minimum orbital splitting Ex

orb is computed
by solving the Schrödinger equation on the full-mode periodic
potential. The red dashed line indicates Lopt and the red solid
line the optimal unit-cell length for the case of inhomogeneous
dielectics Linh

opt (discussed in Appendix A). (b) Orbital splitting
Ex

orb (filled symbols) and Ey
orb (open symbols) as a function of the

gap between the screening gates wsp for an oxide thickness hox =
5 nm (blue symbols) and hox = 10 nm (orange symbols) and the
voltage VS applied to the screening gates [see the model in Fig.
5(b)]. A fixed sin-signal amplitude Va = 100 mV is applied to
the clavier gates and hSiGe = 45 nm.

well. Figure 6(a) compares the estimated optimum Lopt to
a numerically exact solution of the one-dimensional poten-
tial. Details on the calculations and additional information
are given in Appendix A.

Next, we analyze the effect of wsp on the curvature of
the QD potential by harmonic fits in x and y direction and
express the result as an effective Ex

orb and Ey
orb, respec-

tively. We plot the minimum of all Ex
orb(x) and Ey

orb(x)
of all x positions along the SQS unit cell for two oxide
thicknesses [Fig. 6(b)]. As wsp is increased, the capaci-
tive coupling of the clavier gates to the QD increase and
therefore Ex

orb increases with wsp. For larger wsp, the gain
in Ex

orb(x) decreases. On the other hand, Ey
orb(x) decreases

with increasing wsp, since with widening of the SQS chan-
nel the QD becomes more elliptical towards the y direc-
tion. The QD confinement is maximized, if the QD remains
approximately circular during the shuttling, which is ful-
filled at wsp ≈ 200 nm here. A negative voltage applied to
the screening gates VS can be used as an additional degree
of freedom to enhance Ey

orb independent from Ex
orb [Fig.

6(b)].

B. Numerical simulation of the QD shuttling in the
presence of interface defects

We analyze now the impact of charged defects at the
Si/SiO2 interface on the SQS in CB mode. We numerically
calculate the potential within the center of the 10-nm-
thick QW plane applying the model shown in Fig. 5(b).
The orbital energy of the first excited state of this QD
is obtained using a Poisson-Schrödinger solver. Since the
SQS is periodic in x direction, we focus on a unit cell of the
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SQS consisting of four clavier gates and having a length
of Lx = 4(lg + lox). We calculate the potential in each unit
cell 800 times with 800 different ensembles of randomly
distributed singly charged defects all having on average
constant defect density of 5 × 1010 cm−2. We focus a QW
depth of hSiGe = 45 nm here and will optimize the gate
pitch lg + lox and the screening gate spacing wsp accord-
ing to Fig. 6. We assume the oxide to be conformally
deposited and thus hox ≈ lox. We start close to our minimal
clavier gate pitch of 40 nm and an oxide thickness hox of
10 nm, hence lg = 30 nm. The spacing between the screen-
ing gates wsp is fixed to 200 nm and VS ≈ −100 mV to
obtain an approximately circular propagating QD. For cal-
culation of the electron ground state and the first excited
orbital state, we solve the time-independent Schrödinger
equation for the two-dimensional (2D) x,y potential in the
center of the QW at various positions xn along the cen-
ter of the QuBus. We solve numerically within boundaries
of ±0.5Lx around xn, in order to exclude the neighbouring
minima of the periodic potential.

Applying sine-wave signals with an amplitude of Va,1 =
45 mV to clavier gates on the lower and Va,2 = 100 mV
to the upper gate layer, the first orbital splitting energy
Eorb fluctuates considerably along the SQS unit cell and
among the defect ensembles [Fig. 7(a)]. For some defect
ensembles, the orbital splitting approaches zero. If we
double the signal-voltage amplitude (Va,1 = 90 mV and
Va,2 = 200 mV) applied to the clavier gates [Fig. 7(b)], the
orbital splitting Eorb of the propagating QD is enlarged and
the variance is reduced. Further investigations of the wave
function [inset of Fig. 7(b)] reveal that the propagating QD
breaks into a tunnel-coupled double quantum dot (DQD) at
the locations [red lines in insert of Fig. 7(b)]. The second
QD appears either because the propagating QD splits into a
DQD at a large potential ripple or it approaches a disorder-
induced deep QD. The unintentional formation of a second
QDs, which is strongly tunnel coupled to the propagating
QD might lead to orbital excitation and therefore must be
avoided. The low Eorb values in close proximity belong
to the same defect ensemble and appear in our simula-
tion when the randomly distributed defects form a charged
cluster. Since we have not taken correlation effects for the
distribution of charged defects into account, such clusters
are expected to be suppressed in realistic devices due their
Coulomb repulsion, but cannot be fully excluded here.

Note a large signal amplitude Va,2 might lead to other
problems such as sample heating. Hence, just increasing
the voltage amplitudes is insufficient and geometrical opti-
mization of the SQS is desirable as well. Therefore, we
reduce the maximum amplitude back to Va,2 = 100 mV
and Va,1 = 60 mV similar to Fig. 7(a) and reduce the
SiO2 thickness to lox = 5 nm. The resulting variance of the
orbital splitting energies is reduced [Fig. 7(c)] compared
to Fig. 7(a) mainly due to an enhanced screening of the
defects by the metal gates. The metal gates are also closer
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FIG. 7. Simulation based on Poisson-Schrödinger solutions of
propagating potential in CB mode for 800 ensembles of ran-
domly distributed charged defects at the Si/SiO2 interface for
hSiGe = 45 nm and wsp = 200 nm. (a) Orbital energy Eorb of
the first excited state of the propagating QD assuming an oxide
thickness hox = 10 nm, gate width lg = 30 nm and signal ampli-
tude of Va,1 = 45 mV and Va,2 = 100 mV applied to the first
and second claviature gate layer, respectively. (b) Same as in (a)
with parameters (hox = 10 nm, Va,1 = 90 mV, Va,2 = 200 mV,
lg = 30 nm). Inset: the probability density

∫ |ψ(x, y)|2dy of the
ground electron wave function is plotted for all expected QD
positions xdot and all charge defect ensembles. Wave functions
deviating from a single QD are marked in red together with their
corresponding Eorb data point. (c) Same as in (b) with param-
eters (hox = 5 nm,Va,1 = 60 mV, Va,2 = 100 mV, lg = 30 nm)
and the probability density in the inset. (d) Same as in (b) and
(c) with parameters (hox = 5 nm, Va,1 = 65 mV, Va,2 = 100 mV,
lg = 60 nm) and the probability density in the inset. In addition
to the first excited orbital energy (blue dots), the second excited
orbital energy is plotted (bright blue dots). (e),(f) The numeri-
cally calculated velocity for each ensemble for the ground (black)
and first excited state (orange) along the SQS direction is plotted
corresponding to the parameters from (a) and (d), respectively.

to the QW, which increase the confinement of the inten-
tional QD slightly. Still we observe the propagating QD
breaking into a DQD [red lines in insert of Fig. 7(c)] for
some defect ensembles.
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TABLE I. Relevant parameters and their ranges of values,
which are used for calculation of spin dephasing during CB-
mode-type shuttling in the following sections.

Parameter Low Usual High

Orbital energy Eorb [meV] 1 3
QD size L [nm] 12 20
Transfer velocity v [m/s] 1..2 10..20 100..200
Homog. B field B [mT] 20 100 1000
Valley splitting EVS,0 [µeV] 100 200 500
Valley δgv/g Refs. [64,73] < 10−3

Orbital δgo/g Refs. [82,83] < 10−3

Static QD dephasing T∗
2 [µs] 10 20 50

Next, we enlarge the width of the finger gate to lg =
60 nm keeping the oxide thickness at lox = 5 nm. Such
a SQS is not only easier to fabricate, but also exhibits
a larger orbital splitting staying above 0.93 meV for all
800 defect ensembles [Fig. 7(d)], since the capacitive cou-
pling of the gates is enhanced. The difference of the orbital
energies of the first and second exited orbital reveals only
a small ellipticity of the propagating QD. Most notably,
the electron wave function [insert of Fig. 7(d)] shows no
trace of breaking into a DQD. Thus, the QD can propa-
gate sufficiently smoothly across the disordered potential
(cf. the results on disorder autocorrelation function in Sec.
VI). The increased gate pitch also enhances anharmonic-
ity of the propagating potential as expected from Fig. 6(a).
It results in wobbling and breathing of the QD visible by
the deterministic increasing and lowering of the orbital
splitting with a wavelength given by the gate pitch, the
magnitude of which however does not exceed the effect
of Eorb fluctuations due to the potential disorder.

We also consider the expectation value of the x posi-
tion of the propagating QD as a function time for the
ground and first excited orbital. In order to follow correla-
tions in the variation of the QD location within one defect
ensemble, we calculate the corresponding finite velocity
of the QD orbitals [Figs. 7(e) and 7(f)]. The velocity cor-
responding to the parameters used for Fig. 7(a) reveal
large variations in the positions of the QD [Fig. 7(e)]. The
optimized SQS geometry discussed in Fig. 7(d), reveals
smaller variations in velocity [Fig. 7(f)]. The deterministic
variation of the QD velocity following the gate period-
icity, is of the same order of magnitude as variations of
the QD orbital splitting and velocity variations due to
potential disorder. These simulations show that QD prop-
agation is feasible despite realistic charge disorder at the
Si/SiO2 interface, but the shuttling velocity v will not be
strictly constant. We always have to consider a variance
of shuttling velocities when we calculate the coherent spin
transport conditions, see Table I.

C. Conclusion of device design optimization

We arrive at a realistic SQS design for the CB mode. The
numerical simulations indicate that state-of-the-art defect
densities at the Si/SiO2 are sufficient to realize a QD trans-
fer. Obviously, disorder can be counteracted by increasing
the dynamic voltage Va on the clavier gates, but this
approach is limited by Ohmic heating, which is expected
due to dielectric loss in the oxides and Ohmic dissipation if
normal-conductive metallic gates are used. The latter will
appear not directly at the SQS as clavier gates constitutes
an open terminal. Decisive is the optimization of the SQS
geometry: using thin oxides with low defect density, the
charged defects can be screened and the metal coverage
increased. For each hSiGe, a clavier gate pitch can be chosen
to maximize Eorb. Increasing the gate pitch further leads,
on the one hand, to breathing of the QD potential and thus
to deterministic oscillations of the orbital splitting and to
deterministic variations of the transfer velocity v. On the
other hand, it increases the mean orbital splitting due to an
enhanced capacitive coupling. The deterministic breathing
effect can be balanced with the stochastic Eorb variations
due to disorder. The QD should be approximately circu-
lar, which can be achieved by a proper gap between the
screening gates wsp, and the applied voltage VS. If the QD
is elliptical in y direction, Eorb is limited by a weak confine-
ment in this direction. If the QD is elliptical in x direction,
an increase of wsp can increase the capacitive coupling
of the clavier gates and thus deepen QD potential, hence
increasing Eorb.

The detailed simulation of our blueprint SQS device
results in ranges of orbital energy Eorb, QD size L, and
transfer velocity v given in Table I. Let us briefly dis-
cuss the other parameters from this table. We consider
three different magnetic fields (Table I), the highest of
which allows spin readout by Zeeman-energy-dependent
tunneling to a reservoir, while the others suggest Pauli-spin
blockade schemes for spin-to-charge conversion. Finally,
we use typical variations of effective electron g factors, δgo
and δgv, for orbital and valley state variations, respectively.
The typical T∗

2 time of a quasistatic quantum dot, depends
on the degree of 29Si isotopical purification and might be
limited by the presence of gradient fields as pointed out in
Refs. [5,55,56] (see discussion in the next section). These
parameters are used to calculate the transfer infidelity in
the remainder of our paper. We conclude by pointing out
the significance of the above-described modeling of realis-
tic electrostatic disorder in an optimized device geometry,
and its influence on the properties of the moving QD, on
the calculations in the subsequent sections. The result that
the moving QD does not break apart into an unintentional
DQD motivates the perturbative treatment of orbital and
spin excitations due to dot motion through a disordered
channel in Sec. VI B. Autocorrelation function of electro-
static disorder is calculated in Sec. VI A for the optimized
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structure design [Figs. 7(d) and 7(f)], and using the model
of disorder discussed above. This function provides the
key input into the calculation of the orbital excitation rate
in Sec. VI B and the motion-induced spin-relaxation rate
in Sec. VI C. Furthermore, the correlation length obtained
from that function determines also the motional narrowing
during spin transfer calculated in Sec. IV. The upper bound
for the orbital relaxation rate in Sec. VI D is calculated with
respect to the range of Eorb from Fig. 7(d). All these rates
are then used to estimate the coherent transfer error due
to motion through electrostatically disordered channel in
Sec. VI E. Finally, the variations of the transfer velocity v
[Fig. 7(f)] enter the discussion of the optimal mean transfer
velocity in Sec. VIII.

IV. COHERENT ELECTRON-SPIN TRANSFER IN
CONVEYOR BELT WITHOUT NONADIABATIC

EFFECTS

In this section we discuss issues affecting slow operation
of the SQS in the CB mode, for which the adiabatic char-
acter of the charge transfer can be taken for granted—but
spin-dephasing mechanisms, leading to finite T∗

2 time for a
stationary electron in a QD, have to be considered.

If all the voltages controlling the SQS are varied slowly
enough, the qubit transfer is adiabatic, and the electron
should remains in the lowest-energy orbital and valley
state while it is being pushed along the channel. We assume
that an external magnetic field is establishing a quantiza-
tion axis for the spin, and the only effect of Overhauser
field due to nuclear spins of the host material, spin-orbit
interactions, or magnetic field gradients, is to make the spin
splitting of an electron a position-dependent quantity ω(x),
where x denotes the position of the QD, understood as the
position of the minimum of the confining potential along
the the propagation direction.

A local spin splitting, �ω(x), has a frozen-in random
component, e.g., due to g-factor dependence on the QD
position. The influence of such static disorder in ω(x) can
be calibrated away: it amounts to a fixed shift of the phase
of the transferred spin superposition. However, the fluctu-
ations �δω(x) of �ω(x), which occur on timescales shorter
than that of accurate measurement of the transferred spin’s
phase, but longer than the timescale of a single-qubit trans-
fer, amount to dephasing of the qubit. This means that the
measured coherence of transferred electron corresponds to
a value averaged over a quasistatic distribution of real-
izations of �δω(x). These fluctuations can be caused by
slow nuclear dynamics due to dipolar interaction (for con-
tributions from Overhauser fields), or low-frequency 1/f
charge noise leading to slow changes of electric fields that
lead to fluctuations of spin-orbit interactions affecting the
g factor of an electron at given x.

If the dot-confined electron is shuttled with veloc-
ity v, the shuttling takes τ = Ls/v and the overall spin

phase acquired during a single transfer will be φ(τ) =∫ τ
0 dt δω(vdt). We assume δω(x) to be translationally

invariant, and that is has a finite correlation length lδωc , such
that the phase variance at the end of the shuttling process
becomes

δφ2 =
∫ τ

0
dt

∫ τ

0
dt′〈δω(0)δω(v(t − t′))〉,

= δω2
0

∫ τ

0
dt

∫ τ

0
dt′ exp

(

−v|t − t′|
lδωc

)

, (2)

where 〈. . .〉 denotes the averaging over realizations of
δω(x), δω2

0 is the variance in Larmor frequency of a sta-
tionary QD, and we assume an exponential decay of the
autocorrelation function of δω. In the expected case of
shuttling distance being larger than the correlation length,
Ls � lδωc , we obtain

δφ2
∣
∣
Ls�lδωc

≈ τ
2lδωc
v
δω2

0 = 2
(
τ

T∗
2

)2 2lδωc
Ls

. (3)

In the above we identify
√

2/δω0 with spin-dephasing time
T∗

2 observed for stationary spin affected by relevant sources
of quasistatic noise in its splitting. The phase variation in
the moving dot is suppressed in comparison to the case of
stationary QD for which δφ2

v=0 = 2(τ/T∗
2)

2, and scales lin-
early with τ when Ls = vτ . This is the well-known effect
of motional narrowing of inhomogeneous broadening. If
Ls � lδωc and v is large enough for δφ2 � 1, the loss of
spin coherence introduced in Eq. (1) reads

δC ≈ δφ2

2
= 2

lδωc Ls

(vT∗
2)

2 . (4)

Making v larger suppresses dephasing—but this depen-
dence will cease to hold once v becomes too large for the
assumption of adiabaticity of electron transfer to hold.

Let us now use the above formulas to calculate the
expected spin dephasing during an adiabatic evolution
using parameters from ranges given in Table I. We are
focusing on transfer across Ls = 10 µm with velocities
v ∈ [1, 200] m/s. These lead to passage times of τ ∈
[0.05, 10] µs.

For Si/SiGe quantum QDs the observed values of spin
coherence times are T∗

2 ≤ 20 µs for isotopically purified
silicon. In the presence of magnetic field gradients this
dephasing is caused by charge noise leading to slow vari-
ations in the electron’s position along the gradient [5,6].
For quasistatic charge noise its correlation length should be
limited by correlation length of static disorder. We use the
numerically calculated static potential disorder from Sec.
III B to fit the correlation length (see Fig. 9 in Sec. VI A)
to be lgg

c ≈ 100 nm. In the worst-case scenario of magnetic
field gradient being constant and equal to the value used
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FIG. 8. Improvement of spin coherence of an electron trans-
ferred adiabatically along a 10 µm long channel with its velocity.
We plot the coherence error due to quasistatic noise as a func-
tion of velocity for dephasing times of static spin T∗

2 = 5, 20,
100 µs, and two values of spatial autocorrelation length of qua-
sistatic disorder in spin splitting: lδωc = 20 nm (corresponding
to typical QD size) and lδωc = 100 nm ≈ lδVc (corresponding to
typical electrostatic disorder autocorrelation length, see Fig. 9).
Lines correspond to Eq. (4) that holds when δφ � 1, while cir-
cles correspond to the formula, δC = 1 − e−δφ2/2, which holds
for Gaussian statistics of random phase fluctuations.

in single-dot spin-coherence experiments [5,6], we should
thus use T∗

2 ≈ 20 µs and lδωc ≈ 100 nm. As shown in Fig.
8 this leads to δC < 10−3 for v � 5 m/s. With a more real-
istic assumption that the gradient is sizable only near the
ends of the channel (close to the registers of stationary
qubits that need to be manipulated), taking only 1 µm as
the length of the region in which charge noise and gradient
dominate T∗

2, we get contributions to phase error that are
10 times smaller, and lead to tolerable phase error in the
whole range of velocities that we consider.

With Si containing 60 ppm of spinful 29Si isotope, the T∗
2

resulting from interaction with very slowly evolving Over-
hauser field of the nuclei in the quantum well is expected
to be approximately equal to 10 µs [6,93], and in fact the
nuclear-induced dephasing could be dominated by inter-
action with a few 29Si and 73Ge nuclei in the barrier for
which the predicted T∗

2 could be as low as 1 µs, if the wave
function overlaps with a few 73Ge atoms [6]. It is however
unclear to what extent these spins are frozen out, i.e., if
the dynamics of Overhauser field generated by them can
be considered ergodic on timescales relevant for quantum
computation [6,94]. Note that T∗

2 ≈ 20 µs was observed in
Si/SiGe with about 800 ppm of 29Si [95], consistent with
nonergodic nuclear dynamics. We are, however, consider-
ing the worst-case scenario of nuclei-induced T∗

2 ≈ 5 µs,
while making a natural assumption of the lack of spa-
tial correlations between the polarization of nuclei, leading
to correlation length given by typical size of the QD,

lδωc ≈ 20 nm. This gives us the phase errors δC ≤ 10−3 for
v ≥ 1 m/s.

Finally, in the absence of a gradient, and with even more
strongly isotopically purified samples (or with nuclear
dynamics too slow to be relevant on a timescale on which
we want to operate our quantum registers), we are left with
a mechanism in which charge noise leads to fluctuations
of electron g factors. We use the parameters for quasistatic
g-factor noise from T∗

2 measurements carried out in MOS
devices [60] without magnetic field gradients. Assuming
a Gaussian distribution of quasistatic fluctuations g factors
with rms σg , one obtains T∗

2 = √
2�/μBBσg . The measured

values of T∗
2 = 30 µs at applied magnetic field B = 1.4 T

implies T∗
2 > 100 µs in at most a few hundred of mT range

that we consider here. The correlation length is again the
QD size, lδωc ≈ 20 nm, as the effect of electric fields on g
factor relies to a large degree on the presence of atomic
length-scale interface roughness. The phase errors are con-
sequently 3 orders of magnitude smaller than the ones
given above for the case of Overhauser field noise, see
Fig. 8.

Summarizing, the phase error δC due to spatial depen-
dence of the spin splitting of an electron that is transferred
adiabatically is smaller than the targeted benchmark of
10−3 for all of the above-discussed values of T∗

2 and lc
when v > 20 m/s, and for most of them it is enough for v
to be larger than a few m/s, i.e., all the values of v from the
range considered in Table I are admissible then. The error
is the largest in the case of T∗

2 = 5 µs and lδωc ≈ 20 nm,
relevant for dephasing due to natural concentration of 29Si,
or due to coupling to 73Ge nuclei that are dynamic on the
timescale of experiment. In Fig. 8, we also show the case of
even larger error for T∗

2 = 5 µs and lδωc ≈ 100 nm, relevant
for dephasing due to charge noise in a very large gradient
of magnetic field (about 4 times larger than the ones used
in Refs. [5,6]). These cases can be avoided by isotopic
purification and proper design of the gradient magnetic
fields.

V. SPIN DEPHASING DUE TO
NONADIABATICITY OF ELECTRON DYNAMICS

AT LARGER VELOCITIES

We now move to the regime of larger v, in which the
nonadiabatic character of the charge transfer has to be seri-
ously considered. We discuss how the presence of orbital-
and valley-level-dependent spin precession together with
the not-fully adiabatic character of charge transfer, open
up a highly relevant channel of spin dephasing.

The adiabaticity of the SQS operation in CB mode,
i.e., lack of excitation of the electron out of its instanta-
neous lowest energy state |go,v〉, is not necessary for the
charge transfer to occur: the electron will traverse the chan-
nel unless the excitations cause the electron to become
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“lost” by being excited from the moving QD into the con-
tinuum of high-energy states, or by being trapped in an
unintentional deep potential well. Device optimization pre-
sented in Sec. III makes the probability of such events low.
However, even without them, the nonadiabaticity leads to
randomness in state trajectory. Transitions between ground
and excited orbital states of the moving QD happen due to
electrostatic disorder (Fig. 3) that acts as a time-dependent
perturbation of the confinement potential in the frame of
reference moving with the electron-confining QD. Further-
more, when the wave function of the electron confined in
the moving QD overlaps with defects in the interface such
as atomistic steps or interface gradients, orbit-valley cou-
pling is activated [1,68,96,97], and its time dependence
excites the electron into the higher-energy valley state.

These processes lead to finite probability of excitation
into a higher-energy orbital and/or valley state. After such
an excitation, relaxation back to the ground state will occur
on a timescale of τr. When this τr is smaller than the total
shuttling time τ , or when the excitation occurs at a random
place along the channel, the electron will spend a ran-
domly distributed time in an excited state. Spin-precession
frequency ω is expected to depend on the orbital and val-
ley state. Random time spent in a state characterized by
random ω results in random contribution to spin phase
characterized by rms δφ. For a probability of excitation
given by pe, the phase error is then given by Eq. (1). A
more detailed formal derivation of that formula is given in
Appendix B.

Let us discuss the physical mechanisms leading to state-
dependent precession rates. The first mechanism is the
state dependence of the effective g factor of the electron:
while g ≈ 2 in silicon, its value is exhibiting relative varia-
tion of δgo/g � 10−3 when we compare electrons in states
localized in two distinct QDs, or ground and excited states
of a single QD, and similarly δgv/g � 10−3 in each of the
two valley states [64,73]. This g-factor variation is caused
by finite spin-orbit coupling and electrostatic and inter-
face disorder [66,81]. If the electron spends the time τe in
an excited state, the additional spin phase acquired by it
compared to the case of adiabatic evolution is

δφg ≈ 2
δg
g
μBBτe

�
≈ 350

δg
g

B[T]τe[ns]. (5)

For the typical value of δg/g ≈ 10−3, this yields δφg ≈
0.35B[T]τe[ns]. Note that τe is given by the relaxation time
τr if τr � τ , and it is τe � τ when relaxation is too slow,
and an electron excited at some position along the chan-
nel will stay in the higher-energy state for the rest of the
shuttling time.

The second mechanism is the state dependence of spin-
orbit coupling for the two different valley states. An anal-
ogous mechanism for orbital excitation is neglected here,

because orbital excitations relax quickly via phonon emis-
sion, τe = τr < 1 ns for the Eorb range found in Fig. 7(d),
as discussed in Sec. VI. After a Galilean boost of the spin-
orbit interaction Hamiltonian into the frame co-moving
with the QD, we obtain

HSO,iv = α+,ivm
∗v[110]σ[110] + α−,ivm

∗v[110]σ[110], (6)

where iv ∈ {v+, v−} labels the lowest-energy valley states,
α±,iv = (αiv ± βiv ) is the valley-dependent spin-orbit
strength due to Rashba and (effective) Dresselhaus 2D
effects in the Si/SiGe system, and v[110] and v[110] are the
instantaneous QD velocities along the [110] and [110]
crystal axes. The first-order correction to the valley-
dependent spin-precession frequency is then

δωSO,iv = m∗

�

(
α+,iv v[110] sin(φB)+ α−,iv v[110] cos(φB)

)
,

(7)

with φB being the angle between the [110] crystal axis and
the external magnetic field B. A suitable choice of elec-
tron velocity v and magnetic field direction parameterized
by φB may reduce the impact of this effect. In particular,
choosing v ‖ B (i.e., φB = 0) being oriented along either
[110] or [110] eliminates the above first-order contribu-
tion. However, to realize a two-dimensional spin qubit
architecture, binding the shuttling direction to the external
magnetic field orientation is undesirable.

Assuming that the spin-orbit coefficients are simply
opposite in sign in different valleys [84], and using an
estimate from SiMOS device |α| ≈ 50 nm/ns [66], we find

δφSO ≈ 1.6 × 10−4v
[nm

ns

]
τe[ns]. (8)

Here, |α| is introduced as the general strength of spin-
orbit coupling. As the spin-orbit interaction is expected to
be weaker in Si/SiGe nanostructure [56], the above gives
an upper bound on the spin-orbit-induced phase rotation
in the considered SQS. The second-order contributions
to precession frequency due to transverse fields will give
corrections of the order of |α|m∗v/EZ � 1 to this formula.

We single out the secular spin-valley interaction term
(of type σ̂z τ̂z), since both spin and valley precession fre-
quencies—as well as their difference—are large compared
to the strength of the interaction (EZ/h > 0.1 GHz and
EVS � EZ , while |α|m∗v/h ≤ 1 MHz), justifying a secular
approximation. An estimate for the error due to the trans-
verse components is the misalignment of the spin quanti-
zation axes in the two valley subspaces. Again assuming
spin-orbit coefficients of opposite signs, this amounts to
(|α|m∗v/EZ)

2 < 10−4 for magnetic fields larger than 5 mT
and shuttling speeds (v < 100 m/s). There is the remaining
effect that spatial variations in spin-orbit strengths are ren-
dered dynamical due to the motion of the QD. As shown
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in Ref. [33], spin relaxation time due to such effectively
dynamical transverse spin-orbit fields is T1 > 1 ms for
v ≤ 100 m/s. This corresponds to bit flip error < 10−4 for
a qubit moved by 10 µm. (see also Sec. VI C)

Before moving to calculations of pe and τr in the subse-
quent sections, let us check in which parameter ranges we
expect the phase error δC to be below our targeted thresh-
old of 10−3. Since δC ≤ pe according to Eq. (1), when
pe < 10−3, the phase error is guaranteed to be below the
targeted threshold no matter what τe, and thus δφ, is. Only
for pe > 10−3 we have to rely on δφ � 1 to find ourselves
in the regime in which δC ≈ peδφ

2/2 < 10−3. The spin-
orbit phase contributions from Eq. (8) are δφSO < 1 when
v[m/s]τe[ns] < 104, so even for v ≈ 100 m/s, relaxation
times below 100 ns make δC � pe. On the other hand, hav-
ing no relaxation during shuttling time τ makes δC ≈ pe,
as in that case τe ≈ τ and δφSO ≈ 1.6. For phase variations
due to randomness in g factors, from Eq. (5) with δg/g =
10−3, we have δφg < 1, if τe < 140 ns at B = 20 mT (τe <

14 ns at B = 200 mT). Note that when τe ≈ τ , we have
δφg ≈ 3.5 × (101 − 103)B[T] for v ∈ [1, 100] m/s range.
In this case, δφg < 1 only for lowest magnetic fields of
about 20 mT compatible with ESR control of spin qubits,
and for the highest considered v ≈ 100 m/s (correspond-
ing to τ ≈ 100 ns). Note that in this case the electron will
finally have to undergo relaxation to its ground valley state
at its final destination, and the stochastic nature of this
relaxation will lead to additional dephasing.

Clearly, working at the lowest B fields compatible with
qubit control is beneficial if we cannot suppress orbital
and valley excitations so that pe is below the error thresh-
old: having B ≈ 20 mT strengthens the phase-error sup-
pression when τr � 100 ns, and it is necessary for any
such suppression when τr > τ ≈ 100 ns at the highest
considered v.

VI. COHERENT ELECTRON TRANSFER IN
CONVEYOR BELT IN THE PRESENCE OF

ORBITAL NONADIABATICITY AND
MOTION-INDUCED SPIN RELAXATION

Movement of the quantum dot turns the spatial electro-
static disorder into dynamical charge noise in the frame
co-moving with the dot. This noise can then cause transi-
tions between orbital states, and it can also couple to the
spin degree of freedom by spin-orbit interaction. The latter
mechanism was first considered in Ref. [33]. Here we use
numerical simulations of electrostatic disorder from Sec.
III to estimate the orbital excitation rate. Then we calcu-
late the orbital relaxation rate due to phonon emission, and
combine both orbital transition rates to estimate the spin
dephasing caused by mechanism discussed in the previous
section. Furthermore, using the autocorrelation function of
disorder calculated here as an input into the theory from
Ref. [33], we prove that spin relaxation along the channel

is not an obstacle for reaching the targeted qubit transfer
fidelities.

A. Autocorrelation function of electrostatic disorder

We start by determining the correlation length lc, and
variance δV2, of the potential disorder along the channel
for the optimized geometry [Figs. 7(d) and 7(f)]. We cal-
culate the autocorrelation function of the matrix element
Mgg(x0) = 〈go| δV(x) |go〉, which quantifies the effects of
the electrostatic disorder on the electron occupying the
ground state of the QD localized at x0. We compute this
function, defined as

Kgg(x0, x0 + x) = 〈Mgg(x0)Mgg(x0 + x)〉
− 〈Mgg(x0)〉〈Mgg(x0 + x)〉 (9)

by fixing x0 in a simulated device having length of
ten SQS unit cells, and averaging over 80 realizations
of disorder. To create an effectively 1D potential we
additionally integrate over the y axis, i.e., Mgg(x0) =∫ |ψg(x′ − x0, y ′)|2V(x′, y ′)dy ′dx′. At each position of the
QD, x0, and for each disorder realization, we solve the
Schrödinger equation and fit ground-state wave func-
tions (Gaussian shapes with variable width) to the ansatz
ψg(x′, y ′) = ψ(x)

g (x′)× ψ
(y)
g (y ′) in both directions x and y.

We perform this calculation for 250 values of x0, and as
shown in Fig. 9, Kgg(x, x0) is only slightly dependent on the
choice of x0, which confirms its approximate stationarity,
i.e., Kgg(x0, x0 + x) ≈ Kgg(x), and justifies further averag-
ing of the results over x0 (solid green line). For small x, the
correlation function flattens due to finite size of electron
wave function ψg(x), which effectively filters out the dis-
order fluctuations on lengthscales below the QD size, Ldot.
An exponential fit of x > Ldot of the Kgg(Ldot)e−|x−Ldot|/lgg

c

form, gives an estimate of the correlation length
lgg
c = 90 nm while the standard deviation of the disorder-

induced energy shift of the QD ground state is√
δV2 ≈ √

Kgg(0) = 2.8 meV. Note that lgg
c > Ldot con-

firms that the disorder in the optimized design does not
vary fast enough to break the QD apart, in agreement with
other calculations from Sec. III. The good fit at x > Ldot
means that the correlation length of the matrix element
Mgg is a good indicator of the correlation length of the
1D potential, i.e., we can approximate the autocorrelation
of δV(x) itself, KδV(x), by an exponential with correlation
length lδVc ≈ lgg

c � Ldot.

B. Orbital excitations due to electrostatic disorder

Motion of the QD converts the electrostatic disorder into
a time-dependent electric field in the frame of the QD. Due
to the 1/f character of charge noise, electrostatic disorder
can be treated as static during a single realization of elec-
tron transfer, but it varies between consecutive realizations
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FIG. 9. Autocorrelation function K(x0, x0 + x) of the matrix
element δMgg(x0) = 〈go| δV(x) |go〉, defined in Eq. (9), calcu-
lated for device geometry and voltages used in Figs. 7(d) and
7(f), and averaged over 80 disorder realizations. Blue lines
correspond to 250 distinct values of x0. We plot averaged auto-
correlation (solid green line) and an exponential fit (dashed red
line) for x > Ldot of the Kgg(Ldot)e−|x−Ldot|/lgg

c form. The fitted
values

√
Kgg(0) = 2.8 meV and lgg

c = 90 nm indicate typical
amplitude and correlation length of effective 1D disorder δV(x).
The long correlation length lδVc � Ldot is an indicator of stability
of the moving QD against potential disorder.

of the shuttling protocol. Thus in order to calculate the
probability of orbital excitation of the electron, one should
average over realizations of electrostatic disorder, i.e. aver-
age over realizations of electric noise experienced by the
electron confined in the moving QD. This electric noise
will cause transitions from ground to excited orbital states,
if it has appreciable spectral power at the frequency close
to the Eorb/�. Such transitions are not captured by solv-
ing the time-independent Poisson-Schrödinger equation in
Sec. III. There, only the Eorb and velocity variations of the
moving QD have been calculated [Figs. 7(d) and 7(f)].

In a single realization, the electron, treated here as a two-
level system, with Hilbert space spanned by ground and
excited orbital states, effectively feels a transverse time-
dependent field, which in the frame of reference of the
moving QD is defined as

δMeg(x0) = 〈eo| δV(x + x0) |go〉 , (10)

where x0 = vt, δV(x) is a random contribution to the effec-
tive 1D potential and |go〉 , |eo〉 are the ground and first
excited orbital state of the moving harmonic potential,
respectively. We calculate the excitation probability in the
first order of perturbation theory by averaging over the
realizations of quasistatic noise in δV(x), which trans-
lates into averaging over realizations of δMeg(x0). We
follow Refs. [98,99] and relate the excitation rate with the
spectral density of the dynamical noise at the frequency

corresponding to the gap, i.e.,

�+,o = 1
�2

∫
d(t)〈δMeg(vt)δMeg(0)〉e−iEorbt/�, (11)

where 〈. . .〉 denotes averaging over realizations of electro-
static disorder δV(x). Using the autocorrelation of δV(x)
of the form KδV = δV2e−|x|/lδVc , one obtains (see Appendix
C for details) a result that holds in the regime of v �
EorblδVc /� ∼ 105 m/s:

�+,o = δV2

�2v

L2
dot

lδVc
exp

(

−1
2

[EorbLdot

�v

]2
)

. (12)

We can see that for v/Ldot � Eorb/� (v � 104 m/s) the rate
is suppressed by a Gaussian factor.

C. Spin relaxation

An analogous calculation can be (and in fact was, Ref.
[33]) performed for transitions between two spin states of
the electron due to spin-orbit coupling being time depen-
dent in the frame co-moving with the QD across an elec-
trostatic disorder, with the latter modulating the local value
of spin-orbit coupling term. As calculated in Ref. [33],
using the model of the electrostatic disorder with expo-
nentially decaying correlations that we employ above, the
spin-relaxation rate is given by

�−,spin =
(

2�δV
lδVc E2

orb

)2 (
v ω2lδVc

v2 + (ωlδVc )
2

)

α2, (13)

where α is the spin-orbit coupling and �ω is the Zeeman
splitting. Using the above, the estimated probability of spin
flip after the transfer follows from δp↑ = �−,spinLs/v, and
it is largest in the limit of small velocities, v � ωlδVc /�. We
obtain then

δp↑ � 4�
2 δV2Ls

(lδVc )
3E4

orb
α2 ≈ 4 × 10−4

(Eorb[meV])4
, (14)

for parameters obtained from the numerical simulations
of electrostatic disorder, i.e. for δV = 3 meV and lδVc =
100 nm, and using α = 50 m/s. Since the latter is almost
certainly a generous overestimate for Si/SiGe, as discussed
previously in Sec. V, and we are targeting the orbital exci-
tation gaps Eorb ≥ 1 meV, this result shows that effects of
spin relaxation due to electrostatic disorder and spin-orbit
coupling in CB are not endangering the goal of keeping
the error rate below 10−3 threshold. In Fig. 1 we show the
result from this equation for α = 5 m/s taken from Ref.
[33] and Eorb = 1 meV as a dashed line.
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D. Orbital relaxation due to electron-phonon coupling

As the relevant relaxation mechanism, we only consider
phonon-mediated relaxation. Other relaxation mechanisms
may dominate at low orbital energies in stationary QDs,
located close to charge fluctuators such as electron reser-
voirs [56], but we neglect these effects when considering
a shuttled QD far away from such regions, and assume
that high-frequency noise on the gates may be sufficiently
suppressed in the experiment.

To compute the orbital relaxation due to phonons, we
employ Fermi’s golden rule in the zero-temperature limit
[97,100], as kBT � Eorb for T ≈ 20 mK, so that tempera-
ture enters only as slight modification factor in the relax-
ation rate. The relevant orbital-phonon coupling will only
be due to deformation potential, in contrast to GaAs het-
erostructures where also piezoelectric coupling is present
[87,101]. Employing the Herring-Vogt deformation poten-
tial Hamiltonian to model this interaction [100], and taking
into account that only the [001] valleys are occupied due
to the strain in the QW, we arrive at a relaxation rate of

1
τr,o

= E3
orb

8π2�4ρ

(
�2

dI0 + 2�d�uI2 +�2
uI4

v5
l

+ �2
uJ
v5

t

)

(15)

written in terms of dilatation and shear deformation poten-
tials �d, �u, transverse and longitudinal speeds of sound
vt and vl, and the mass density of silicon ρ, respectively
[97]. The relevant integrals are given by

In =
∫ 2π

0
dφk

∫ 2π

0
dθk sin(θk) cosn(θk)|〈go|eikt·r̂|eo〉|2,

(16)

J =
∫ 2π

0
dφk

∫ 2π

0
dθk sin3(θk) cos2(θk)|〈go|eikl·r̂|eo〉|2,

(17)

with k being the angular wave vector of the phonons
matched to the orbital energy splitting k = [Eorb/(�vλ)]ek
≡ k0ek with ek the unit vector along the direction of k.
|go〉 and |eo〉 are the ground and first excited orbital state,
respectively. Making a harmonic confinement ansatz for
the three spatial directions with length scales Lx, Ly , and
Lz allows us to perform the φk integration analytically:

∫ 2π

0
dφk|〈go|eikλ·r̂|eo〉|2 = 2π(k0Ldot)

2 sin2(θk)

× exp
(

−k2
0

2
[
L2

z cos2(θk)+ L2
dot sin2(θk)

]
)

. (18)

In the above, we assume that the in-plane confinement
is roughly isotropic (Lx ≈ Ly = Ldot), which is a sensible
approximation for the considered QD shapes, cf. Figs. 6(b)

FIG. 10. Orbital relaxation time in a circular QD (Lx = Ly ),
with Lz as the remaining parameter. Lz → 0 illustrates the fic-
titious case of a completely 2D electron (where phonon bottle-
necking along the z direction is absent), while Lz = 4 nm is a
reasonable upper bound for the localization of the electron wave
function in z direction.

and 7(d). The θk integration is then carried out numerically
and the results are plotted in Fig. 10. Most importantly,
the orbital relaxation time τr,o is shorter than 100 ps for
the considered orbital energies from 1 to 3 meV (Table I).
Such a confinement can be achieved for the moving QD
across the SQS according to Fig. 7(d). Thus, orbital relax-
ation is sufficiently fast to relax back to the orbital ground
state before a significant difference in spin phase can be
accumulated in the moving QD.

A single QD exhibits strong orbital relaxation, attributed
to the large orbital splitting approximately 1 meV, match-
ing a large phonon density of states at these frequen-
cies, and the strong orbital-phonon coupling, which allows
phonons to siphon excess orbital energy on below 100 ps
timescales. As phonons in Si are relatively slow, and there-
fore have short wavelengths approaching the characteristic
QD dimension at the relevant frequencies, bottlenecking
effects where orbital-phonon coupling becomes inefficient
due to matching and exceeding of phonon wavelengths
to the QD size (suppression of the coupling elements
〈go|eik·r̂|eo〉) become relevant. However, as the character-
istic QD size scales with 1/

√
Eorb, the relevant parameter

is k0Ldot ∝ √
Eorb. This is sufficient to soften the effect of

bottlenecking in the relevant energy regime 1 − 3 meV.
While the effect of phonon bottlenecking is of signif-

icance at characteristic orbital energy scales, its effects
are reduced in two ways. Firstly, the small parameter
for bottlenecking for the in-plane components x and y is

k0Lx =
√

Eorb/(m∗v2
λ) and takes only on moderate values

(approximately equal to 5 at Eorb = 1 meV) for the rel-
evant energies, as discussed above. Secondly, the much
stronger confinement along the growth direction (z direc-
tion) leads to an additional suppression of these effects
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(k0Lz = Eorb/�vλLz), which is approximately equal to 1 for
Lz ≈ 4 nm and Eorb = 1 meV.

E. Transfer infidelity due to orbital nonadiabaticity

Let us first estimate the final occupation of the excited
orbital state pe,o for the typical case, in which the shut-
tling time is much longer that the relaxation time τ � τr.
We can then estimate pe,o ≈ �+,oτr,o from the steady-state
value. For typical τr,o ∼ 10 ps, the final occupation of
the excited state is always below pe,o � 10−3 as long as
�+ ≤ 0.1 ns−1. In our design, the excitation rate due to
static disorder computed in Eq. (12) gives non-negligible
�+ ∼ 10−4 ns−1 only at v ∼ 4000 m/s (Eorb = 1 meV,√

〈δV2〉 = 3 meV and lδVc = 100 nm), and it is suppressed
by a Gaussian factor at lower v.

Now, let us estimate the spin dephasing caused by
repeated processes of orbital excitation followed by relax-
ation that occurs during the shuttling. According to the
model used in Eq. (5), for time spent in the excited state
given by typical orbital relaxation time, τe,o ≈ 10 ps, the
variance of random phase acquired after each relaxation
event is given by

δφ2
g ≈ (

δω τe,o
)2 ≈ 10−4(

�δω[µeV]
)2, (19)

where δω = δgoμb B/� is the difference of Larmor fre-
quencies between ground and excited orbital state and δ�ω
is the difference in respective Zeeman splittings. As the
relaxation is expected to be orders of magnitude faster than
the excitation, we estimate total coherence error as the
phase error per relaxation event δφ2

g /2 times the number
of transitions from ground to excited state, which depends
on the excitation rate and the shuttling time Ne ≈ �+,oτ .
In this way we estimate total phase error due to temporal
occupation of excited orbital state during the shuttling as

δC ≈ �+,o τ δφ
2
g/2 = (�δω[µeV])2�+[ns−1]

2v[m/s]
, (20)

which can be used to define a tolerable level of excitation
rate. Using parameters from Table I, in the nonoptimal (for
spin coherence) regime of large magnetic field B = 1 T, g-
factor difference δgo/g = 10−3 and velocity of v = 10 m/s
(transfer time τ ∼ 1 µs), the phase error below the thresh-
old δC = 10−3 requires the excitation rate �+,o < 1 [ns−1].
This value is orders of magnitude larger than the above-
estimated transition rate due to electrostatic disorder. Even
if sources of orbital excitations other than charge disorder
simulated in Sec. III, e.g., charged defects in the chan-
nel or threading dislocations, are relevant, the excitation
rate associated with them would have to be � 1 ns−1 for
dephasing to become dangerous due to orbtial excitation.

We hence come to the important conclusion that spin
dephasing due to orbital nonadiabatic effects (and also

qubit state error due to motion-induced spin relaxtion),
should not pose a limitation for coherent electron trans-
fer in the CB mode. See Figs. 1 and 15 for the comparison
to other, more relevant mechanisms considered throughout
the paper.

VII. COHERENT ELECTRON TRANSFER IN
CONVEYOR BELT IN THE PRESENCE OF

VALLEY DEGREE OF FREEDOM

After analyzing dephasing due to quasistatic noise in
Sec. IV and due to temporal occupation of higher orbital
state in Sec. VI, we finally analyze the phase error result-
ing from nonadiabatic evolution of the valley degree of
freedom.

A. Model of instantaneous valley states

The relevant degree of freedom with low-energy split-
ting in the Si/SiGe quantum wells discussed in this paper
are the conduction-band minima (valleys) along the growth
direction in k space (labeled as |k[001]〉 and |k[001]〉), with the
in-plane valleys (|k[100]〉, |k[100]〉, |k[010]〉, and |k[010]〉) being
much higher in energy due to strain [1]. In gate-defined
Si/SiGe QDs, reported values of the splitting between the
valleys |k[001]〉 and |k[001]〉 vary between 10 and approxi-
mately equal to 200 µeV [13,28,55,56,64,69–74]. It can
exceed 500 µeV in MOS structures [52,54,75,76]. Cru-
cially, the valley splitting EVS in Si/SiGe is a local property
of the heterostructure depending on atomic steps and Ge
segregation at the Si/SiGe interface [78,102]. Variations
of electric field and crystal compositions that are spatially
smooth on the scale of the lattice constant affect the local
value of EVS, but they do not lead to valley-orbit mixing
that would couple the valley degree of freedom with the
electron motion. Perturbations on a length scale of the Si
lattice spacing, e.g., atomic steps at the interface of the
quantum well [103], Ge segregation, and SiGe alloy dis-
order [102] [see Fig. 11 (a)], however, severely affect not
only EVS, but also the composition of valley eigenstates
[56,67,68,77–79]. We parameterize the inhomogeneous
valley splitting EVS using an effective valley parameter
termed bare valley splitting EVS,0, which is assumed to
be approximately homogeneous on a length scale of the
SQS device. This EVS,0 is the expected valley splitting
in the absence of the models of interface perturbations
discussed below (interface step and smooth interface gra-
dient) and therefore the theoretical maximum value of EVS
observed in a QD located somewhere along the channel. It
includes the influence of alloy disorder, the dependence on
the electric field along the QW confinement direction, the
Ge content of the barrier, the thickness of the QW layer and
the mean lengthscale of Ge segregation at the interface.

While a complete description of atomistic interface
disorder would require three-dimensional modeling, we
restrict ourselves to a 2D model as specified below [77,
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FIG. 11. Modeling of the local valley splitting across the SQS
channel. (a) A 2D cross section through a Si/SiGe interface
region with a gate-defined quantum dot containing the elec-
tron. A single atomistic step is indicated at the center, with
Ge-alloy disorder smearing out the location of the interface. Gray
dots represent Si atoms in the strained Si layer and QW barrier
region, respectively. Dark green dots represent Ge atoms. The
angle ϑ indicates the average effective miscut. (b) A 1D line-
cut along the growth direction, which is the model containing
all short-range disorder discussed in the main text. The models
describing long-range disorder in the 2D plane perpendicular to
the growth direction are sketched in (c) (step model) and (d) (gra-
dient model), with the color coding indicating the continuous
and discrete spatial variation in valley phase, respectively. The
angle θ in (c) is the angle between the step normal and shuttling
direction.

96,97,104]. As the orbital and valley degrees of free-
dom are only weakly coupled, we may, to a good
approximation, find an effective valley Hamiltonian by
averaging over the two-dimensional spatial probability
density ρ(x, y). Introducing the valley operators τ̂x =
|k[001]〉〈k[001]| + h.c., τ̂y = −i|k[001]〉〈k[001]| + h.c., we can
write the averaged Hamiltonian as

Ĥv(x0) = EVS,0

2

∫∫
ρ(x − x0, y)

[
cos (ϕVS(x, y)) τ̂x

+ sin (ϕVS(x, y)) τ̂y
]

dx dy, (21)

where ρ(x − x0, y) is the electron probability density cen-
tered around (x0, y0), y0 represents a constant position in
the direction perpendicular to shuttling, and ϕVS(x, y) is
the spatially dependent valley field. We consider two mod-
els of ϕVS(x, y), describing the extreme cases of its gradual
and instantaneous change. Both models can be expressed
in terms of an effective Hamiltonian,

Ĥv(x0) = EVS(x0)

2

[
cos(ϕ̃VS(x0))τ̂x + sin(ϕ̃VS(x0))τ̂y

]
,

(22)

written in terms of local valley splitting EVS(x0) and the
local valley phase ϕ̃VS(x0).

The first is a linear gradient model (or smoothly tilted
interface from Ref. [67]) depicted in Fig. 11(d), in which
the valley phase is given by ϕVS(x, y) = axx + ayy, where
ax and ay denote gradients along and perpendicular to
the SQS, respectively. When substituted to Eq. (21), the
parameters of effective gradient Hamiltonian Ĥv,g(x0) are
given by

EVS(x0) = EVS,0 exp

[

−
(

axLx

2

)2
]

, ϕ̃VS(x0) = axx0,

(23)

where Lx ≈ Ldot is the size of the QD in the x direction. The
gradient in y direction can be incorporated into definition
of bare valley splitting EVS,0 ≡ E′

VS,0e−a2
y L2

y/4, where Ly ≈
Ldot is the size of the QD in the y direction.

In the second model we consider the modification of val-
ley field ϕVS(x, y) caused by an atomistic step at the inter-
face. We consider regions An having piecewise constant
ϕVS,n, see Fig. 11(c). The Hamiltonian reads then

Ĥv,s(x0) = EVS,0

2

∑

n

pn(x0)
[

cos(ϕVS,n)τ̂x + sin(ϕVS,n)τ̂y

]
,

(24)

with the pn(x0) = ∫
An

dA ρ(x − x0, y) being the probability
of the electron occupying region An. As a result, the valley
dynamics can be expressed in terms of the effective Hamil-
tonian (22), where the EVS(x0) and ϕ̃VS(x0) are indirectly
defined via the equation:

EVS(x0)eiϕ̃VS(x0) ≡ EVS,0

∑

n

pn(x0)eiϕVS,n , (25)

which mathematically represents the sum of the complex
numbers, each corresponding to the An region with respec-
tive modulus pn(x0) and argument ϕVS,n. We refer to this
model as the step model. When the electron travels over a
single atomistic step the phase rotates by ϕ1 ≡ ϕVS,n+1 −
ϕVS,n ≈ 0.85π , and hence in the limit of separated steps,
traveling electron will experience local dips of valley split-
ting [67,77,104]. If the regions are all separated by parallel
steps, the y confinement direction may be integrated out
and the model becomes effectively one dimensional with
the misalignment of the steps with regards to the shut-
tling direction x entering as an effective reduction of the
shuttling velocity ṽ = v/ cos(θ) with θ being the angle
between the shuttling direction and the step normal, see
Fig. 11(c).

In order to parameterize the density of atomistic steps,
the average tilt of the Si/SiGe interface can serve as a
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reference parameter [105,106], originating from the mis-
cut of the silicon wafer on which the heterostructure is
grown. A typical miscut angle of ϑ < 1◦ translates to an
average gradient of ax ≈ 0.85πϑ/h or an average step
separation d ≈ h/ϑ with single atomic layer height h =
aSi/4 ∼ 0.136 nm. We note that the local gradients and
step densities may differ significantly from the global aver-
age (e.g., due to step bunching or outliers in alloy disorder
profile), and hence the miscut is only taken as an indicator
of the order of magnitude of these effects.

B. Excitation in the linear gradient model

To compute the effects of nonzero gradient [Fig. 11(d)]
from the model Hamiltonian given in Eq. (22), we
move to an adiabatic frame using a time-dependent
operator R̂(t) that diagonalizes the valley Hamiltonian
R̂(t)Ĥv,g(t)R̂†(t) = 1

2 EVS(t)τ̂x at every instant of time [40].
When substituted into the Schrödinger equation, it pro-
duces an effective Hamiltonian in the adiabatic basis
|ev〉 , |gv〉, which we assume to be the eigenstates of τ̂x
Pauli operator. Due to time dependence of R̂(t) the total
effective Hamiltonian includes also the coupling between
instantaneous levels, which together reads

Ĥv,g(t) = R̂Ĥv,g(t)R̂†−i�R̂ ˙̂R†=1
2

EVS τ̂x + 1
2
� ˙̃ϕVS τ̂z,

(26)

where for each region of constant gradient, EVS =
EVS,0 exp(−[axLdot]2/4) and ˙̃ϕVS = axv. As a result, the
occupation of the excited valley state is

pe,v(t) = | 〈ev| e−iĤv,g t/� |gv〉 |2

= (�axv)
2

E2
VS + (�axv)2

sin2
(√

E2
VS + �2a2

xv
2 t

2�

)

,

(27)

which is the well-known result of Rabi oscillations in the
rotating frame. In reality, instead of coherent oscillation,
one should expect some time averaging due to inevitable
fluctuation of electron velocity (see Fig. 7), or valley-orbit
coupling that allows for relaxation via phonon emission.
Thus, for every region of constant gradient we estimate
typical occupation of excited state as

pe,v ≈ 1
2

(�axv)
2

E2
VS + (�axv)2

≈ 1
2
(�axv)

2

E2
VS,0

exp
(
(axLdot)

2

2

)

,

(28)

where the last approximation is valid if �axv � EVS,
which is fulfilled for typical gradients ax and parameters
from Table I.

C. Excitation caused by sharp atomistic steps

Now, let us investigate the excitations caused by abrupt
changes of ϕ̃VS(x0) due to parallel atomistic steps at the
interface [Fig. 11(c)]. For concreteness, we assume that the
orientation of the steps is perpendicular to the SQS direc-
tion. The value of local valley splitting reads EVS(x0) =
EVS,0|

∑
n pn(x0)einϕ1 |, where pn is the probability of elec-

tron to be found in the nth interstep region.
We start by computing the probability of the val-

ley excitation on a single atomistic step located at x =
0. Assuming ground-state electron density of the form
ρ(x − vt) ∝ e−(x−vt)2/L2

dot , we can write the probability
of occupying regions on two sides of the step as
pL(R)(t) = 1

2 (1 − (+)erf[vt/L]), where erf(x) is the error
function, using which, we obtain

EVS(vt) = EVS,0

√
erf2(vt/L) sin2 ϕ1

2 + cos2 ϕ1
2 . (29)

In order to estimate the excitation probability on an iso-
lated step, we use a Landau-Zener model of nonadiabatic
transition Q = exp(−π2/2�ε̇) [86], in which we identify
time-independent valley coupling as = EVS,0 cos ϕ1

2 , and
linearize time-dependent part ε(t) ≡ EVS,0erf( vt

L ) sin ϕ1
2 ≈

2 vtEVS,0 sin φ1
2 /L

√
π . The probability of occupying a

higher valley state after single-step passage can then be
written as

Q1 = exp

(

−π3/2 EVS,0 Ldot

4�v

cos2 ϕ1
2

sin ϕ1
2

)

= 10−0.03/η. (30)

In the last approximate expression, we substitute the phase
shift corresponding to a single step, ϕ1 = 0.85π , and com-
bined the remaining quantities into the shuttling parameter
η = �v/EVS,0Ldot. For a typical range of parameters v =
10 (50) m/s, EVS,0 = 200 µeV, Ldot = 20 nm, the value of
shuttling parameter η ∼ 0.002(0.01) corresponds to exci-
tation probabilities of the order of Q1 ≤ 10−17 (10−4). In
Appendix D we prove validity of LZ approximation by a
direct comparison against numerical simulation.

In the case of two parallel steps, located at x =
±d/2, the EVS can identically vanish if the lat-
eral distance between two steps fulfills EVS(d)/EVS,0 =
erf(d/2Ldot)(1 − cosϕ1)+ cosϕ1 = 0, which is numeri-
cally solved by d ≈ 0.891Ldot. Using a numerical simula-
tion of evolution in Fig. 12, we show that the probability
of occupying the higher valley state after the two-step pas-
sage, Q2, for the step separation d = 0.891Ldot is close
to unity even at small v. This is caused by the above-
mentioned decrease of the energy gap due to the com-
petition between three regions of different valley phase.
In contrast, this is no longer true for slightly larger step
separation d = Ldot (black line), where the Q2 starts to
show signatures of interference (note, e.g., the dip around
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FIG. 12. Probability of occupying excited valley state, after
two-step passage Q2 for four different step separations d cor-
responding to double height step d = 0 (green), valley collapse
d ≈ 0.891Ldot (red), and interference d � Ldot (blue) as a func-
tion of shuttling parameter η (lower scale) and electron velocity
v (upper scale) for fixed EVS,0 = 200 µeV and Ldot = 20 nm
(Eorb = 1 meV). We add the intermediate case of d = Ldot (black)
to show that d � Ldot distances between the steps should be suf-
ficient to avoid the valley collapse. In the interference regime
(blue), we compare analytical formulas for constructive inter-
ference Qmax

2 = 4Q1 (solid line) and the average 〈Q2〉 = 2Q1
(dashed line) against the results of numerical simulation (dots).

η = 10−2). The presence of interference is even more vis-
ible at larger step separation, i.e., d > Ldot, for which the
example result with d = 4Ldot is shown in Fig. 12 (blue
line). In this regime, the electron is expected to undergo
consecutive transitions through isolated atomistic steps,
which coherently mix the two valley states. Thus the
whole process resembles Landau-Zener-Stückelberg inter-
ferometry [86]. In the case of two distant enough steps,
the value of Q2 ∼ |a1 + a2|2 results from the coherent
sum of probability amplitudes, which correspond to exci-
tation on the first a1 = √

Q1
√

1 − Q1, and second step
a2 = √

1 − Q1
√

Q1ei�12 , where phase difference between
the two paths �12 gives

Q2 = 4(1 − Q1)Q1 cos2(�12/2) ≈ 4Q1 cos2(�12/2).
(31)

The last approximation works in the typical limit of
Q1 � 1, see Eq. (30). For estimation purposes one can
consider the worst-case scenario of constructive inter-
ference [cos2(�12/2) → 1], where Qmax

2 ≈ 4Q1. How-
ever, the typical occupation of the excited valley state
is expected to be closer to an average 〈Q2〉 ≈ 2Q1, due
to inevitable fluctuations of parameters that randomize
the phase �12 between the realizations [〈cos2(�12/2)〉
→ 1/2]. In Fig. 12, we show an agreement between analyt-
ical predictions (solid and dashed lines, respectively) and
numerical results (dots). The interference pattern is highly
sensitive to small variations of the electron velocity, and

as such prone to averaging in the presence of expected
velocity fluctuations (see Fig. 7).

Finally, let us generalize these results to the case of
multiple interface steps. Following Refs. [105,106], the
variation of the interstep distance is expected to be pro-
portional to the average distance between them, σd ∼ d.
Higher density of steps (d � Ldot) is expected to give more
regular alignment, which in the presence of Ge interdif-
fusion at the interface [102] should resemble the linear
gradient model with relatively large ax = 0.85π/d (see the
previous section). In the opposite limit of one or two atom-
istic steps per QD size (d � Ldot), their random alignment
can lead to both unfavorable valley-splitting collapse or
favorable bunching of two atomistic steps into one double-
layer step. For the two-step case the bunching can be
modeled by Eq. (30) with ϕ1 = 1.7π , and as shown using
green line in Fig. 12 it allows for adiabatic transfer even at
relatively high electron velocities.

We assume that the distance between all the steps is
larger then the QD size, d > Ldot, which corresponds to
the previously defined interference regime. In analogy to
the double-step case, the probability of occupying higher
valley state after N -step passage, where N = Ls/d can be
written as

pe,v ≈ Q1

∣
∣
∣
∣
∣

N∑

n=1

ei�n

∣
∣
∣
∣
∣

2

≈ Ls

d
Q1, (32)

where the approximation is valid for NQ1 ≤ 1, and in the
presence of parameter fluctuations, which result in uncor-
related sum of phases

∑
n ei�n = √

N . The obtained result
for multistep passage is tested against numerical solution
in Appendix D.

D. Valley relaxation due to electron-phonon coupling

The relaxation of the valley state in a gate-defined
QD may be treated analogously to the spin relax-
ation in gate-confined quantum dot systems [53,56,
107], in that hybridization of valley and orbital leads
to the dominant relaxation mechanism [108,109]. How-
ever, compared to the spin-orbit mediated spin relax-
ation, the valley relaxation rate is higher due to both the
stronger valley-orbit coupling and the lack of Van-Vleck
cancellation [110–113].

As orbit-valley hybridization yields the dominant relax-
ation channel for valleys, we may obtain the valley relax-
ation rates directly by substituting a perturbative ansatz for
the hybridized ground and excited valley states |̃gv〉 and
|̃ev〉, replacing |go〉 and |eo〉 in Eqs. (16) and (17). This
results in the coupling matrix element |〈̃gv|eikλ·r̂ |̃ev〉|2 ≈
|〈eogv|Hv|goev〉/Eorb|2 |〈go|eikλ·r̂|eo〉|2 [go and eo and gv
and ev labeling the ground and (first) excited orbital and
ground and excited valley states of the effective valley

020305-20



BLUEPRINT OF A SCALABLE SPIN QUBIT SHUTTLE. . . PRX QUANTUM 4, 020305 (2023)

Hamiltonian Hv from Eq. (22)]. Neglecting some correc-
tion factor at maximum of the order of unity and assuming
EVS � Eorb, we obtain

1
τr,v

=
∣
∣
∣
∣
∣
〈eogv|Ĥv|goev〉

Eorb

∣
∣
∣
∣
∣

2

F2 1
τr,o

∣
∣
∣
∣
Eorb→EVS

, (33)

with F = 1 + E2
VS/E

2
orb + O (

E4
VS/E

4
orb

) ≈ 1, and with τr,o
being the orbital relaxation time calculated in Sec. VII.
Neglecting correction factors, the coupling matrix element
is proportional to EVS, so that the relaxation rate scales
as (EVS/Eorb)

2. The orbital relaxation rate evaluated at
the valley splitting scales as 1/τr,o

∣
∣
Eorb→EVS

∝ (EVS)
5/Eorb

when neglecting bottlenecking effects, which is approx-
imately justified at the low-valley-splitting energies of
order 100 µeV, for which in-plane bottlenecking will just
start to become relevant and out-of-plane bottlenecking
is sufficiently well suppressed (k0Lz = EVS/�vλLz < 1).
With Eorb roughly one order of magnitude higher than the
valley splitting, we would expect a (EVS/Eorb)

7 ≈ 10−7

ratio of valley-to-orbital relaxation rates, if bottlenecking
of the orbital relaxation rates were negligible. However,
as discussed in Sec. VI D, phonon bottlenecking has a sig-
nificant effect on the orbital relaxation rates, so that the
ratio of valley-to-orbital relaxation rates is of the order
10−5 − 10−3 for relevant values. We note that the overall
valley relaxation rate scales as E−3

orb, so in principle sacri-
ficing QD confinement, while still ensuring QD stability
could lead to an order of magnitude increase in valley
relaxation rate for realistic QD confinement energies.

In order to estimate the orbit-valley hybridization we
again employ the step and gradient models. The gradient
model (22) yields a matrix coupling element of

〈gv|Ĥv,g|ev〉 = axLdot

4
√
π

EVS,0e−(axLdot)
2/4

while the step model (24) yields

〈gv|Ĥv,s|ev〉 = EVS,0
sin(ϕ1

2 )e
−x2/L2

√
1 + (pR − pL)2 tan2

(
ϕ1
2

) ,

where x is the displacement from the QD center to the
step position, and pL (pR) are the probabilities of the elec-
tron being to the left- (right-)hand side of the step defined
in Eq. (24).

We use these two models to estimate τr,v, the results
for which are plotted in Fig. 13. For the step model, see
Fig. 13(a), the relaxation rate is the largest when the QD
center is between half to one QD length scale (Ldot/2 to
Ldot) away from the position of the step. While valley-orbit
coupling is maximized if the QD is centered around the
step, the collapse in valley splitting significantly reduces

the available phonon modes at this frequency. The opti-
mum for phonon-assisted valley relaxation is therefore
slightly displaced. By moving further away from the atom-
istic step, the overlap with the step exponentially decreases
for a Gaussian wavepacket, and gives rise to decrease in
valley-orbit coupling, and an effective suppression of this
relaxation mechanism. A similar trade-off is observed in
the linear gradient model, see Fig. 13(b): strong inter-
face disorder suppresses the valley splitting, while a lack
of interface disorder prevents valley-orbit hybridization,
and therefore diminishes the relaxation. The maximum
relaxation rate occurs for gradients, which change the val-
ley phase by (0.1 − 0.2)π over one QD lengthscale Ldot.
In terms of the valley splitting, the maximum relaxation
rate is achieved for valley splittings close to the bare one
(EVS,0), see Fig. 13(c).

Overall, the achievable valley relaxation rate is highly
dependent on the bare valley splitting EVS,0. For our cho-
sen ranges of parameters, averaged valley relaxation times
generally lie above 100 ns, which, as we discuss in Sec. V,
leads to randomization of the phase of the spin qubit after
an excitation event if the difference in spin-precession fre-
quencies between the different valley states leads to a
significant buildup of phase difference on this timescale.
In conclusion, in order to avoid detrimental effects due to
the valley excitation, an increase in valley splitting both
suppresses nonadiabatic excitation as well as it increases
the valley relaxation rate due to phonons.

E. Spin-valley hotspots

While shuttling the QD across a wide range of interface
regions, the Zeeman splitting may temporarily match the
valley splitting EZ ≈ EVS. In such cases, spin relaxation is
dominated by the spin-valley hybridization, referred to as
a spin-relaxation hotspot in the literature [52,56,75]. Such
a relaxation channel leads to both spin-up decay (δp↑ ≡
p↑(0)− Tr{|↑〉〈↑|�̂(τ )}) as well as dephasing (δC ∼ δp↑),
but we are simply interested in the overall order of mag-
nitude of the error δp↑ in the following. Fortunately, this
detrimental effect of spin-valley hotspot can be completely
avoided, if the Zeeman splitting is kept below the global
minimum or above the global maximum of the local valley
splitting. In particular, at B = 20 mT, the Zeeman split-
ting of Ez ≈ 2 µeV is well below the smallest value of
local valley splitting reported in the Si/SiGe quantum well,
EVS ≈ 10 µeV [64]. Thus, the use of small global mag-
netic fields is not only advantageous for suppressing spin
dephasing (Sec. IV), but also avoids spin relaxation at the
spin-valley hotspot.

However, if the presence of the hotspot cannot be
prevented (e.g., due to local collapse of valley splitting
caused by unfavorable step separation or relatively steep
gradient), it will add to δp↑ and consequently to δC. The
hotspot is related to the avoided crossing between the
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(a)

(b)

(c)

FIG. 13. Valley lifetimes for the step model (a) and linear val-
ley phase model (b),(c). The dashed lines in (a) are the inverses
of the relaxation rate averaged over the displayed region. A QD
confinement energy of Eorb = 1 meV is assumed for all cases.

states |ev, ↓〉 and |gv , ↑〉, where gv and ev label the ground
and excited valley states, respectively. Their energies are
sketched in Fig. 14 together with the ground state |gv , ↓〉.
There are two mechanisms contributing to δp↑: (1) relax-
ation of the temporarily hybridized |gv , ↑〉 and |ev , ↓〉 states
to the ground state |gv, ↓〉, which has the character of

FIG. 14. Sketch of energy difference between the following
states: ground valley spin-up state |gv , ↑〉, excited valley spin-
down state |ev , ↓〉, and the lowest-lying level |gv , ↓〉 with energy
Eg at the spin-valley hotspot caused by the atomistic step. Inset:
enlargement of the avoided crossing between |ev , ↓〉 and |gv , ↑〉
states, where we identify two mechanisms responsible for the
spin-flip error δp↑: (1) the relaxation in vicinity of avoided cross-
ing, due to hybridization between spin and valley states (yellow
arrow) and (2) adiabatic transition that converts spin up to spin
down, followed by subsequent relaxation, dephasing, and possi-
bly more nonadiabatic transitions at the subsequent level crossing
(blue arrow). For illustration purposes we use arbitrary units.

valley relaxation at the hotspot, while effectively result-
ing in spin relaxation, (2) transfer of the occupation from
|gv , ↑〉 to |ev, ↓〉 state. The latter process converts the spin
qubit into a valley qubit, as it converts superposition of
spin states into that of valley states, provided that the pas-
sage through the avoided crossing occurs via an adiabatic
path. When this happens, the quantum information carried
by the qubit can be destroyed by processes of relaxation
to the valley ground state, and uncontrolled (due to fluc-
tuations of velocity and electric field noise) interference
effects that arise after the passing through the second anti-
crossing (see Fig. 14). For a conservative estimate of the
error we assume that taking an adiabatic path at the first
anticrossing results in complete decoherence of qubit state.

For this conservative estimate, we concentrate on the
adiabatic conversion labeled as mechanism (2), since the
contribution from (1) is about an order of magnitude
weaker, see Appendix E for details. We use the Landau-
Zener model in the limit of fast passage, where the proba-
bility of going adiabatically through the avoided crossing,
that corresponds to |gv, ↑〉 → |ev, ↓〉 transition, reads

δp (2,art)
↑ � 1 − QLZ,SV ≈ π

2
2

SV

�a
→ 10−4

v[m/s]
, (34)

where we use a typical value of spin-valley mix-
ing due to artificial SOC as art

SV ∼ 20 neV, that
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have been estimated for the gradient of (B/x) =
0.1mT/nm (see Appendix E), and a = d(EVS(t)− EZ)/dt.
Larger gradients can significantly increase the error
since art

SV ∝ (B/x), while for smaller ones the
spin-flip probability becomes dominated by intrinsic-
SOC mechanism of the similar order of magnitude
δp (2,int)

↑ � 10−4/v[m/s]. Naturally the gradient-dominated
hotspots are most likely to occur in vicinity of SQS termi-
nals, close to stationary qubits or in possible manipulation
regions, where most coherent control would take place.
This shows that avoiding strong gradients of magnetic
field or reducing the value of constant magnetic field to
relatively hotspot-free B = 20 mT is sufficient to avoid
shuttling error due to spin-valley hotspot.

F. Transfer infidelity due to valley nonadiabatic effects

We conclude this section by combining the above cal-
culation of valley excitation and relaxation rates into an
estimate for spin dephasing. We initially consider rela-
tively small bare valley splitting EVS,0 ≤ 200 µeV, which
gives τe,v > τ according to values from Fig. 13 and con-
sequently falls into regime of no relaxation, in which
δC ≈ pe,v , see the discussion in Sec. V. In the smooth gra-
dient model the final occupation pe,v can be estimated by
considering the largest gradient along the SQS. Assuming
that �axv � EVS,0, we have

pgrad
e,v ∼ 10

(
ax[ 1

nm ]v[ m
s ]

EVS,0[µeV]

)2

exp
(

1
2
(ax

[ 1
nm

]
Ldot[nm])2

)

.

(35)

As the upper bound of the linear gradient, we take
ax = 0.05π/nm ≈ π/Ldot, which would correspond to a
miscut angle of ϑ = 0.5◦ and measurable local valley
splitting EVS = 0.1EVS,0 ∈ [10, 20] µeV. The most pes-
simistic EVS,0 = 100 µeV gives pgrad

e,v ∼ 10−4 (10−2) for
v = 10 (100) m/s, respectively, which shows that the
probability of valley excitations for the gradient values
ax ≈ π/Ldot is below the threshold at v ∼ 10 m/s. Note that
in presence of disordered interface, the considered value of
ax = π/Ldot can also emulate atomistic steps with average
separation d ≈ 0.85Ldot (two–three steps per QD size).

In contrast, the step model describes the valley dynam-
ics for lower densities of steps, d > Ldot (less then a step
per QD size). The local valley splitting EVS is then affected
by a single step at a time, and its value is not smaller
than EVS � cos(0.85π)EVS,0 ∼ 0.2EVS,0 ∈ [20, 40] µeV,
which is in the lower range of commonly measured
local valley splittings. In this interference regime, we use
Eq. (32) to estimate

psteps
e,v ≈ 104

d[nm]
exp

(

−EVS,0[µeV]Ldot[nm]
10 v[m/s]

)

. (36)

For illustration, we take d = 30 nm (miscut angle
ϑ ≈ 0.25◦), EVS,0 = 100 µeV and Ldot = 20 nm, which
result in psteps

e,v ∼ 10−7 (10−2) for v = 10 (20) m/s, respec-
tively. The estimate reveals exponential sensitivity of the
excitation probability on a single step Q1 to the shuttling
parameter �v/LdotEVS,0, and in particular to the electron
velocity v.

Next, we consider the case of large bare valley split-
ting EVS, illustrated by the value of EVS,0 = 500 µeV, at
which the phonon relaxation becomes non-negligible. For
the constant gradient model, phonon relaxation is much
slower than the rotation of the valley field and the cor-
responding coherent oscillation. Hence, it mostly assists
in reaching average occupation of Eq. (27). However, we
highlight that larger values of EVS,0 reduce the amplitude
of oscillation and in this way limit the phase error, i.e.
δCgrad � pgrad

e,v ≈ E−2
VS,0. For the isolated step model, Fig. 13

shows an estimate of the shortest valley relaxation time
τe,v ≈ 100 ns, which is only on the verge of reducing the
phase error δC (see Sec. V). Indeed, for considered differ-
ence in valley-dependent Larmor frequencies δωv/2π �
0.5 MHz, where the equality holds for B = 20 mT and
δgv = 10−3, one can estimate the possible improvement in
δC, i.e., the lower bound of the error, as

δC ≈ pe,v
φ2
v

2
= (

δωvτe,v
)2 pe,v � 0.01pe,v . (37)

This means that the presence of valley relaxation can
realistically reduce phase error by at most 2 orders of
magnitude. Further improvement requires shorter relax-
ation times (larger EVS,0 or stronger valley orbit coupling),
weaker magnetic fields, or smaller difference in valley-
dependent g factors. We stress that in the step model, for
v ≤ 40 m/s and EVS,0 = 500 µeV, the valley relaxation is
not really needed for coherent operation of the SQS, since
the corresponding probability of excitation on a single
step is negligibly small, Q1 ∼ 10−8, even for the smallest
considered QD size of Ldot ∼ 12 nm (Eorb = 3 meV).

VIII. DISCUSSION AND CONCLUSION

In summary, we have provided a blueprint of a scalable
spin qubit shuttle (SQS) for quantum computers based on
Si/SiGe quantum dots. The SQS allows for coherent com-
munication over approximately 10 µm distance. We have
argued that this task can be achieved by moving a single-
electron spin qubit, using one of two methods: consecutive
charge transfers between predefined tunnel-coupled QDs
forming a chain—the bucket brigade (BB) mode—or keep-
ing the electron trapped in a moving quantum dot—the
conveyor belt (CB) mode. The scalability of both modes
is provided by clavier gates with four-point electric con-
nection as proposed here, which avoid the signal fan-out
problems, see Sec. II for details. In the same section, we
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have argued that the BB mode requires a higher level of
fine tuning and device uniformity, and for this reason, in
our modeling we have focused on the CB mode, for which
these limitations are less severe. We have predicted a rela-
tively wide range of parameters needed for stable operation
of the CB SQS, and proved its robustness against simulated
electrostatic disorder of realistic amplitude, see Table I and
Sec. III for discussion.

We have discussed two mechanisms of spin dephasing
of the spin qubit shuttled in the CB mode: one due to
position-dependent spin precession frequency during adi-
abatic shuttling, and another due to level-dependent spin
precession frequency. The latter mechanism is activated
by nonadiabatic transitions (see Sec. V for general discus-
sion) between the orbital and valley degrees of freedom,
analyzed in detail in Sec. VI and Sec. VII, respectively.
The dephasing due to the first mechanism is suppressed by
increasing shuttling velocity v, which decreases the time
the electron spends in the SQS, and activates the motional
narrowing effect. The second mechanism becomes more
dangerous with increasing v due to larger probability of the
electron straying away from adiabatic evolution trajectory.

The summary of the results of the last four sections is
given in Fig. 15, where we focus on spin coherence of the
qubit transferred using the CB mode. In this figure, the
phase error, δC, is plotted against the electron velocity v
for the relevant ranges of the remaining parameters: typi-
cal coherence times T∗

2 in stationary QD, ranges of orbital
splitting Eorb, and the bare valley splitting EVS,0. The last
parameter corresponds to the typical value of valley split-
ting averaged over alloy disorder, in the absence of an
additional source of interface inhomogeneity (either atom-
istic steps or a smooth gradient of interface position that we
have considered here). It means that the EVS,0 is an upper
bound for EVS that could be measured in a QD localized at
some position.

The most important qualitative result shown in Fig. 15,
is the prediction of a relatively wide velocity range for
the operation of the SQS with coherence error δC below
the targeted threshold of 10−3. The presence of optimal
v, which leads to the smallest δC, results from existence
of the two above-mentioned dephasing mechanisms with
opposite dependence of resulting error on v. This range
extends over at least one order of magnitude of velocities,
and it includes the v = 10 m/s value, for almost all combi-
nations of parameters. Let us recall that simulations of the
QD velocity from Fig. 7(f) have shown that for a nominal v
of 10 m/s the velocity might randomly increase up to about
20 m/s. Such a range of v does not endanger the targeted
δC < 10−3, if the valley splitting is sufficiently large, i.e.,
EVS,0 > 200 µeV.

The velocity of 10 m/s lies close to the boundary below
which the shuttling time becomes larger than typical qubit
manipulation time (let us recall that for shuttling distance
of Ls = 10 µs, shuttling time of τ ≈ 1 µs requires v ≈

(a)

(b)

FIG. 15. Expected loss of spin coherence δC experienced by
an electron shuttled through 10-µm-long SQS as a function of
electron velocity v (lower axes) and shuttling time τ (upper
axes). We compare various contribution to such an error:
spatial variation of precession frequency (red lines, Sec. IV),
single spin-valley hotspot due to intrinsic spin-orbit coupling
(yellow, Sec. VII E) and nonadiabatic effects in valley degrees
of freedom caused by smooth gradient (green, Sec. VII B) and
sharp atomistic steps (blue, Sec. VII C). We distinguish between
the magnetic noise due to nuclear spins (darker red line) and
the charge noise (lighter red line). We highlight that hotspot
contribution is the only one caused by spin-relaxation process,
for which δp↑ ∼ δC. The corresponding error should be multi-
plied by the number of hotspots in the SQS (i.e., no hotspots for
EZ � EVS). (a) δC for relevant values of effective valley splitting
EVS,0 = 100, 200, 500 µeV (dashed, dashed-dotted, and solid
lines, respectively) for fixed Eorb = 2 meV and T∗

2 = 20 µs. (b)
δC, but for different values of orbital energy Eorb = 1, 2, 3 meV
(dashed, dashed-dotted and solid lines, respectively) for fixed
values of EVS,0 = 500 µeV and T∗

2 = 20 µs. The results are
drawn for the gradient of ax ≈ 0.05π/nm (corresponding to
intentional miscut angle ϑ ≈ 0.5◦), average step separation
d = 30 nm (ϑ ≈ 0.25◦) and magnetic field of B = 100 mT. The
effect of decreasing magnetic field to B = 20 mT is illustrated by
a shaded regions. For plotted range of velocities v � LdotEorb/�,
δC due to orbital nonadiabaticity is exponentially small. For
comparison in (a) we use a black, dotted line to plot probability
of spin relaxation during the transfer from Ref. [33] and Eq. (14).
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10 m/s). If slower shuttling could be accepted, larger val-
ues T∗

2 would allow for δC < 10−3 for lower v: in Fig. 15,
we see that for the T∗

2 = 20 µs the phase error due to qua-
sistatic spin-splitting noise grows above the 10−3 threshold
only for velocities below 1 m/s. Another lower bound
on the SQS electron velocity is the spin relaxation at the
spin-valley hotspots. A single hotspot leads to phase error
indicated by the yellow line in Fig. 15 in the absence of a
strong magnetic field gradient. This error is the only one
considered here that is resulting from the spin-relaxation
process, as the spin-orbit-induced relaxation caused by
electron motion has a much weaker effect [33].

On the other hand, the upper bound on v is given by
the dephasing caused by intervalley excitations. Accord-
ing to Fig. 15, it is given by vmax ≈ 10 m/s, in the most
pessimistic scenario of EVS,0 = 100 µeV, and can be as
large as vmax ≈ 50 m/s for EVS,0 = 500 µeV. In order
to distinguish between the cases relevant for gradient or
step models, we have considered various average tilts of
the quantum well interface, which result in the gradient of
amax

x = π/L (corresponding to miscut angle ϑ = 0.5◦) and
the step separation d = 30 nm (ϑ = 0.25◦). With those val-
ues, both models reproduce reported values of local valley
splittings EVS ≈ (0.1 − 0.2)EVS,0 ∈ (10 − 100) µeV. The
upper bound on the electron velocity vmax will significantly
increase for smaller gradients and lower density of steps.
In contrast, lateral distance d among the atomic steps being
smaller than the QD size d < L may result in unfavorable
collapse of the valley splitting and strongly nonadiabatic
evolution, see Sec. VII for details.

We have considered charged defects at the oxide inter-
face as the dominant source of potential disorder in
Si/SiGe. The impact of other crystalline imperfections of
the Si/SiGe heterostructure, e.g., charged defects close to
the QW and the SQS channel, or threading dislocations,
may be relevant and need to be investigated in the future.
The more localized imperfections might more easily lead
to the orbital excitation of the shuttled electron. However,
we have shown that even extremely large orbital excita-
tion rates, as high as 100 MHz, are unproblematic due to
the fast orbital relaxation rate.

From our analysis it is clear that operating at small mag-
netic field is beneficial for coherent transfer. It minimizes
both the phase error during nonadiabatic transitions, and
the probability of the occurrence of a spin-valley hotspot
at which EZ = EVS. In Sec. VII E, we have shown that
the presence of the hotspot can be avoided with mag-
netic field below B � 100 mT (Ez � 12 µeV), provided
the valley splitting along the SQS is relatively stable, i.e.,
EVS > 20 µeV. Otherwise, the presence of the hotspots
along the SQS introduces shuttling error due to spin
relaxation. We have shown that for the error thresh-
old of 10−3, a typical error at the hotspot due
to intrinsic spin-orbit mechanism allows for cross-
ing a few of them. In contrast, strong magnetic

field gradients (artificial and synthetic SOI) used
for fast EDSR qubit manipulation, may introduce
spin-flip error above the threshold even at a single hotspot.
Such large gradients are not required in a shuttling-based
architecture, since qubits can be transported to dedicated
manipulation zones, in which the displacement amplitude
of the electron is larger during EDSR. Hence, orders of
magnitude smaller gradients may be sufficient to reach
the same EDSR Rabi frequency. Notably, in the absence
of hotspot occurrences, the remaining discussed relevant
error processes discussed at length in the paper, are of
pure dephasing character. This may be utilized in tailoring
quantum error-correction schemes for architectures using
SQS devices as coherent links.

We have found that for multiple reasons, increasing the
effective valley splitting EVS,0 strongly improves operation
of the SQS. Firstly, the number of spin-valley hotspots
discussed above can be reduced, if the valley splitting is
sufficiently large and uniform along the SQS, i.e., EVS �
Ez. Secondly, large EVS,0 significantly limits dephasing
caused by valley nonadiabaticity: on one hand, it limits
excitation probability in both considered interface mod-
els (Fig. 15), and, on the other hand, it enhances valley
relaxation via phonon emission (Fig 13). Recently, a few
methods of increasing valley splitting EVS,0 in station-
ary QDs have been investigated. One of them suggests
back gates for controlling the electric field across the QD
independent from the QD filling [114]. Another approach
uses engineering of the Ge profile across the Si/SiGe het-
erostructure [79,115]. A third method relies on increasing
random fluctuations of alloy composition (Ge concen-
tration in Si QW), which statistically increases average
EVS,0 [78], but at the cost of larger variance. Thus, from
the perspective of the SQS, it might increase the proba-
bility of unfavorable regions with small valley splitting,
and also increase spatial variation of valley field, which
could be translated to larger gradients and less regular
steps.

The results presented here show that even for the small-
est considered EVS,0 = 100 µeV it should be possible to
transfer the electron spin qubit over 10 µm in about 1 µs
with phase error of 10−3. However, having a wide range of
parameters allowing for such coherent transfer is clearly
desirable. Let us now discuss a few methods to make the
operation of the SQS become more robust and faster.

The effects of the electric noise can be diminished to
some extent by populating the SQS with multiple elec-
trons, creating an effective screening effect [116,117]. For
example, filling the shuttled QD with three electrons, the
ground valley states are fully occupied by a spin singlet
state. In the opposite regime of low velocities, the noise
might be dominated by the magnetic noise either from
nuclear spins, or spatial variation of g factor. In such a
case, a similar effect can be achieved by shuttling the spin
qubit in the singlet and unpolarized triplet basis, which
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in principle should be less sensitive to correlated noise,
and requires filling the moving quantum QD with two
electrons.

Naturally, there are numbers of applicable methods if the
SQS is relatively short, and thus a certain level of active
tuning is feasible: the limitation of compensating potential
disorder imposed by our gate-set approach can be circum-
vented by tuning the voltages of a SQS in the time domain.
This strategy assumes that only one qubit is shuttled in the
SQS at a time. Since its position is deterministic, disorder-
induced potential offsets can be compensated by tuning the
voltage signals applied to the SQS in real time. Also, the
electron velocity can be adapted to disorder and noise in
certain regions of the SQS. In particular, the possibility
of individual tuning of the gates could make the cou-
pling between the predefined QDs more uniform, which,
in principle, could enhance the feasibility of the bucket-
brigade mode shuttling. Besides the larger effort of tuning,
this approach requires much higher complexity of the con-
trol signals, the generation of which is more involved and
particularly limited by the space for memory of on-chip
control electronics.

Let us finish with stressing that the presented analysis of
sources of errors caused by shuttling of electron in Si/SiGe
structures highlights two areas for future research. As the
main decoherence mechanism at higher shuttling velocities
is due to valley excitations caused by atomic disorder at the
Si/SiGe interface in the presence of valley dependence of
electron spin g factors, further research into interface dis-
order and g-factor physics in Si/SiGe structures is needed.
With new insights on the influence of material growth and
nanostructuring on atomic disorder at the interface, strate-
gies to decrease both the probability of valley excitations,
and the valley dependence of g factors, may emerge.

Finally, we note that a similar architecture can be used
in other semiconductor-based quantum devices, with the
relevant example of GaAs-based nanostructures, in which
the absence of the valley degree of freedom may allow for
faster operation of the SQS that reduces the detrimental
influence of the nuclear spins. Other systems, such as hole
spins in Ge/SiGe [118] avoid challenges of both coupling
to nuclear spins and relevance of the valley degeneracy,
but the stronger spin-orbit interaction of hole qubits need
to be considered.
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APPENDIX A: DETAILS ON GEOMETRY
ESTIMATES FOR THE QUBUS GATE DESIGN

Here, we provide a Fourier-mode analysis to arrive at
the scaling relations presented in Sec. III A. Choosing the
lowest nontrivial mode of the confinement potential along
the x direction (a sine wave with angular wave number
Kx,1 = 2π/Lx) as the relevant one, the curvature of the QD
potential cconf will simply be proportional to K2

x,1. How-
ever, the overall amplitude of the mode is given by the
mode decay when propagating the mode from the clavier
gate region down into the quantum well. We solve a 2D
Laplace equation to account for the propagation of the
amplitude of the Fourier modes:

(
∂2

∂z2 − K2
x,n

)

cn(z) = 0. (A1)

For a homogeneous medium, the mode amplitude then
straightforwardly obeys an exponential decay with the
corresponding angular wave number Kx,n ≡ 2πn/Lx:

cn(−h) = cn(0)e−Kx,nh, (A2)

where h = hSiGe + hox is the distance of the considered
QW plane to the lower face of the clavier gates and cn are
the Fourier coefficients. We may then introduce a confine-
ment coefficient by performing a harmonic approximation
at the minimum of the first harmonic n = 1, which then
scales as

cconf ∝ 1
L2

x
c1(z = −hSiGe).

Assuming the depth of the QW to be fixed and varying only
the conveyor unit-cell length Lx, the maximum of this con-
finement coefficient then occurs at Lx = Lopt ≡ π(hSiGe +
hox) in the case of homogeneous dielectrics. Note that the
possible depth of the QW is constrained by the electrostatic
requirements for qubit manipulation, thus the distance to
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the charged defect is limited. Choosing this optimal SQS
cell length, the confinement coefficient scales as

cconf ∝ 1
L2

opt
c1(z = −hSiGe)

∣
∣
Lx=Lopt

.

With c1(z = −hSiGe)
∣
∣
Lx=Lopt

= cn(0)e−2 = const, only the

inverse quadratic scaling cconf ∝ 1/L2
opt remains, and with

Eorb ∝ √
cconf in a harmonic potential approximation,

Eorb ∝ 1/Lopt will be approximately inversely proportional
to the depth of the quantum well.

To be more precise, one may take the different dielectric
constants in the oxide (3.9 for SiO2) and semiconduc-
tor regions (13.2 averaged over alloy composition for
Si0.7Ge0.3) into account. For that, we need to choose a
slightly more involved exponential ansatz and work the
dielectric constants into the constraint of continuity of
electric flux density at the boundary between the two
media. For convenience, we choose z = 0 as the position
of the semiconductor-oxide interface. This yields

cn(z = −hSiGe) = cn(hox)
e−Kx,nhSiGe(1 + r)

e+Kx,nhox + re−Kx,nhox
, (A3)

with r ≡ (εr,ox − εr,SiGe)/(εr,ox + εr,SiGe). Now we discuss
the maximization of the confinement coefficient

cconf ∝ 1
L2

x
c1(z = −hSiGe).

We first assume the depth of the QW to be fixed and
vary only the conveyor unit-cell length Lx. The maximum
then occurs at Lopt,0 = π(hSiGe + hox) for the homogeneous
case. Taking the different dielectric constants of the oxide
and semiconductor into account, we have to solve the
nonlinear equation

Linh
opt = π(hSiGe + hoxf (2π/Linh

opt)), (A4)

with

f (Kx) = e+Kxhox − re−Kxhox

e+Kxhox + re−Kxhox
.

Using the homogeneous solution as the argument for the
right-hand side of Eq. (A4), already gives a very good
approximation of the optimal period length

Linh
opt ≈ π(hSiGe + hoxf (2π/Lopt)) (A5)

for our discussion.
The behavior of the orbital confinement is plotted in Fig.

16, illustrating the degree of deviation of Lopt from the
inhomogeneous estimate Linh

opt and the appropriateness of
the first harmonic approximation, Fig. 16(a), when com-
pared to the exact solution in Fig. 16(b). We note that
Linh

opt scales approximately linearly with the QW depth
parametrized by hSiGe, mostly shifting the solution for the
homogeneous case [cf. Figs. 6(a) and 6(b)].

(b)(a)

h h

inh inh

FIG. 16. Orbital splitting as a function of the geometric param-
eters of the SQS without disorder. (a) Minimum orbital splitting
Ex

orb extracted from the first mode of the Fourier analysis as a
function of the SQS unit-cell length Lx and the thickness of
the SiGe layer (hSiGe). (b) Calculation of the minimum orbital
splitting Ex

orb from solving the Schrödinger equation on the full-
mode periodic potential. In both (a) and (b), hox = 10 nm and
Va = 100 mV is fixed and the red line indicates Linh

opt and the red
dashed line Lopt.

APPENDIX B: FORMAL TREATMENT OF SPIN
DEPHASING DUE TO ORBITAL AND VALLEY

TRANSITIONS

Here we extend the analysis of electron dephasing due to
relaxation from the excited to the ground orbital and val-
ley state, which has been qualitatively discussed in Sec.
V. For simplicity, we assume that we are dealing with two
adiabatic orbital and valley states, |g〉 and |e〉, each with
a constant g factor. We assume that at an initial time te
an event leading to finite population of |e〉 state happens.
Such an event is associated with a momentary decrease of
the energy gap between these two states, and/or increase
of motion-induced coupling between them. We look at
the subsequent evolution of the qubit, while taking the
temperature of the environment as much smaller than the
postexcitation energy difference between |e〉 and |g〉 states,
so that the environment can only cause transitions from |e〉
to |g〉 state.

We describe the electron spin dynamics in a reference
frame rotating with Larmor precession of spin of elec-
tron in |g〉 state, so that there is no spin dynamics in this
state, and the spin of electron in |e〉 is rotating about z axis
according to the Zeeman Hamiltonian given by

ĤZ = |e〉 〈e| ⊗ δ�ωσ̂z/2, (B1)

where δ�ω = 2(δg/g)μBB. We assume that the electron
had been prepared in the past in |g〉 state, with its spin
in a superposition state |�s〉 = a↑ |↑〉 + a↓ |↓〉, so that the
initial coherence is C(−∞) = a↑a∗

↓. The process of excita-
tion at time te is treated for simplicity as pointlike in time.
It can be coherent, due to Landau-Zener transition that is
not fully adiabatic, leading to a creation of superposition of
electron being in ground |g〉 and excited |e〉 states. It can
also be incoherent, due to charge disorder acting as noise
in reference frame co-moving with the QD, leading only
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to creation of occupation of higher-energy state |e〉. In the
first case, the electron at time te is in a pure state,

|�(te)〉 = (ag |g〉 + ae |e〉)⊗ (a↑ |↑〉 + a↓ |↓〉),
and the corresponding density operator |�(te)〉 〈�(te)| has
all its matrix elements finite (assuming none of ai ampli-
tudes is zero). In the second case the density operator
corresponding to the created partially excited state is

ρ̂(te) = [
(1 − pe) |g〉 〈g| + pe |e〉 〈e| ] ⊗ |�s(te)〉 〈�s(te)| ,

(B2)

which has zero e-g coherences, i.e., 〈e| ρ̂(te) |g〉 = 0. In
both cases the spin coherence in |g〉 state is diminished
compared to pre-excitation value, as it is multiplied by
|ag|2 or 1 − pe factors, respectively. The “missing” part
of spin coherence is in the |e〉 state, and we want to see
if subsequent evolution, involving energy relaxation into
the environment, can bring back this missing part while
returning the electron into the adiabatic ground state |g〉.

The evolution for t > te is then due to ĤZ from Eq. (B1)
and to transitions from |e〉 to |g〉 state caused by interaction
with the environment. The first process is unitary, and for
δω �= 0 it correlates the spin degrees of freedom with e/g
orbital or valley degrees of freedom. The second process
in nonunitary, and we describe it using the Born-Markov
approximation (which is definitely appropriate for treating
phonon-induced orbital and valley relaxation in quantum
dots), which leads to the Lindblad equation for evolution
of density matrix:

dρ̂(t)
dt

= −i[ĤZ , ρ̂(t)]

+
n∑

k=1

[

L̂kρ̂(t)L̂
†
k − 1

2
L̂†

kL̂kρ̂(t)− 1
2
ρ̂(t)L̂†

kL̂k

]

,

(B3)

where n is the number of jump operators Lk.
We neglect spin-orbit coupling in the treatment of

electron-phonon interaction, so that we disregard phonon-
induced spin relaxation (its significance has been discussed
in Sec. VII E). The L̂k operators must then be spin diagonal.
Their dependence on spin degree of freedom is not how-
ever obvious: for δω �= 0 the transitions for the two spin
directions correspond to transfer of unequal energy quanta
into the environment.

If time-energy uncertainty allows for resolving of the
δω energy difference, which is the case when δω � γ ,
where γ is the e-g transition rate, we should use a sepa-
rate jump operator L̂k for each spin. For phonon emission,
the physical picture is the following: in this situation the
phonon wave packets emitted for transitions involving
each spin are not overlapping in frequency, so in prin-
ciple the information on which spin-diagonal transition

occurred is imprinted on the environment [119], and the act
of phonon emission amounts to measurement of the spin
projection. It is straightforward to check that if we use L̂s =√
γ s |g〉 〈e| ⊗ |s〉 〈s| with s =↑, ↓, there is no pumping of

coherence from ρe↑,e↓ to ρg↑,g↓, and while the relaxation
leads to repopulation of |g〉 state, i.e., ρgs,gs occupation
returns to its pre-excitation value, spin coherence remains
suppressed by 1 − pe factor. Note that using the terminol-
ogy of Sec. V, δω � γ is equivalent to δφ ≈ δω/γ � 1,
so that we recover the result of δC ≈ pe.

On the other hand, when δω � γ , the traces left in
the environment by transitions involving each of the spin
states are indistinguishable, and we should use a single
jump operator that is blind to the spin degree of free-
dom, L̂0 = √

γ |g〉 〈e| ⊗ 1s where 1s is an unit operator
in spin space. With such a jump operator, Eq. (B3) leads
to the following time evolution of the ground-state spin
coherence:

ρg↑,g↓(t) = ρg↑,g↓(te)+ ρe↑,e↓(te)
γ

(
1 − e−iδωte−γt

)

γ + iδω
,

(B4)

in which t = t − te. For γt � 1 we obtain the asymp-
totic value of coherence after relaxation:

|ρg↑,g↓(t � 1/γ )| ≈ |C(−∞)|
∣
∣
∣
∣1 − pe + pe

γ

γ + iδω

∣
∣
∣
∣ ,

(B5)

in which we have used ρg↑,g↓(te) = (1 − pe)C(−∞) and
ρe↑,e↓(te) = peC(−∞). Expanding this result to the low-
est order in pe and δω/γ � 1 we obtain δC ≈ peδω

2/γ 2,
which is in agreement with the previous qualitative esti-
mate δC ≈ peδφ

2/2 valid for δφ � 1 once we identify
δω/γ [equal to 2(δg/g)μBBτe using the quantities used in
Sec. V] with δφ/

√
2.

APPENDIX C: EFFECTS OF THE
ELECTROSTATIC DISORDER ON THE

ELECTRON IN THE MOVING DOT

Let us first reconstruct the correlation function of elec-
trostatic disorder felt by the electron in the ground state of
a moving dot. Following definition from Eq. (9) we write
such a correlation function as

Kgg(x) =
∫

dx1dx2|ψg(x1)|2|ψg(x2)|2

KδV(x1 − x2 +x). (C1)

In the above, the bare correlation function of electrostatic
disorder is assumed to be translationally invariant, and
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FIG. 17. Correlation function of the matrix element for the
electron occupying ground orbital state Kgg(|x|). With dashed
lines we plot numerically integrated formulas Eq. (C3) assum-
ing exponential form of the correlation function of effective 1D
potential 〈δV(x)δV(0)〉 = δV2e−|x|/lδVc , with lδVc = 90 nm and two
values of noise amplitude δV = 2.8 meV (blue) and δV = 3 meV
(red). For comparison using the green solid line we plot Kgg(|x|),
obtained from the numerical averaging of different realizations
of electrostatic disorder (see Fig. 9).

have an exponential form:

KδV(x) = 〈δV(x)δV(0)〉 = δV2e−|x|/lδVc , (C2)

which is parameterized by the amplitude δV and correla-
tion length lδVc . Using Fourier transform, the Kgg(x) can
be written as

Kgg(x) =
∫

dk
2π

2δVlc
1 + (klc)2

eikx|Fgg(k)|2, (C3)

in which we introduce the Fourier transform of electron
probability density:

Fgg(k) =
∫

dx|ψg(x)|2e−ikx = e− 1
2 kL2

dot . (C4)

In Fig. 17 we plot the numerically integrated Eq. (C3),
and compare against the result of Fig. 9 in which Kgg(x)
is obtained by averaging over realizations of the electro-
static disorder. In this way prove that the exponential form
of KδV(x) allows for reconstruction of the numerical result.

We now use the exponential correlation function KδV(x)
to compute the transition rate from ground to excited
orbital state. Following Eq. (11), such a rate is related to
the temporal Fourier transform of the correlation func-
tion of the matrix element between ground and excited
orbital states [see Eq. (10)]. In analogy to Eq. (C3) such

correlation function can be written as

Keg(x) =
∫

dk
2π

2δVlc
1 + (klc)2

eikx|Feg(k)|2, (C5)

in which the filtering of spatial disorder depends on the
shape of the wave functions of ground and excited orbital
states. For harmonic potential, we have

Feg(k) =
∫

dx ψg(x)ψe(x)eikx = ikLdote− 1
2 k2L2

dot . (C6)

For the moving dot the argument of Keg(x) becomes
time dependent x = vt, which allows computation of the
transition rate as

�+,o =
∫

dtKeg(vt)e−iEorbt

= δV2lδVc

v

E2
orbL2

dot

v2 + (EorblδVc )
2 exp

(

−E2
orbL2

dot

2v2

)

, (C7)

Finally, in the experimentally relevant limit of v �
Eorb lδVc , we arrive at Eq. (12) from the main text.

APPENDIX D: LANDAU-ZENER
APPROXIMATION OF MULTIPLE STEP

PASSAGE

We provide here a more detailed description of the elec-
tron moving over multiple atomistic steps, the model of
which has been used in Sec. VII C. We derive here the
probability of coherent transition to excited valley state
on a single atomistic step, and then verify the result of
multiple step passage against numerical simulations.

1. Single-step passage

First we consider passage over single step localized
at x = 0. In the harmonic approximation the probability
of occupying left (x < 0) and right regions (x > 0) are
given by pL/R(t) = 1

2 (1 ∓ erf[vt/L]). For a step of sin-
gle atomistic height, the relative valley phase between
those regions is shifted by ϕ = 0.85π . For the symme-
try reasons we thus assume the valley phases are given
by ϕVS,L = −ϕ/2 in the left and ϕVS,R = ϕ/2 in the
right region. This allows us to write Hamiltonian (21) in
the form

Ĥv,s(t) = EVS,0

2

(

cos
(
ϕ

2

)

σ̂x + erf(vt/L) sin
(
ϕ

2

)

σ̂y

)

.

(D1)

Next, we apply a simple basis transformation (rotation
around x axis), that allows us to cast the above Hamiltonian
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into Landau-Zener form ĤLZ = 1
2 (ε(t)σ̂z +σ̂x), i.e.,

Ĥv,s(t) = EVS,0

2

(

cos
(
ϕ

2

)

σ̂x

+ erf(vt/Ldot) sin
(
ϕ

2

)

σ̂z

)

, (D2)

where the erf(x) = (2/
√
π)

∫ x
0 e−y2

dy is the Gaussian
error function. We can identify time-independent part as

ζ = EVS,0 cos
(
ϕ

2

)

, (D3)

while the time-dependent term reads

ε(t) = EVS,0erf(vt/Ldot) sin
(
ϕ

2

)

. (D4)

Since the LZ formula of nonadiabatic excitation QLZ =
exp(−πζ 2/2�a) is applicable for linear sweep, ε(t) =
at, we linearize the error function around t = 0, which
produces an effective sweep rate:

a ≈ 2EVS,0v√
πLdot

sin
(
ϕ

2

)

. (D5)

This finally allows us to estimate the probability of nona-
diabatic excitation on a single step as

Q1 = exp

(

− π

2�

√
πLdot

2EVS,0 sin(ϕ2 )
E2

VS,0 cos2
(
ϕ

2

))

,

= exp

(

−π3/2 EVS,0 Ldot

4�v

cos2 ϕ

2

sin ϕ

2

)

. (D6)

In Fig. 18 we plot occupation of excited valley state
after single-step passage Q1 as a function of η =
�v/EVS,0Ldot. In the inset we compare numerical solu-
tion (dots) against Landau-Zener approximation (lines) for
ϕ/π = 0.3, 0.7, 0.85, 0.95, which shows that the Q1 for-
mula is applicable in the relevant range of ϕ ∼ 0.85π ,
i.e., for wide enough sweep of effective adiabatic parame-
ter ε(t). Otherwise, for small anglesϕ the initial and final
adiabatic ground states would be not “orthogonal enough”
since for small angles ε(∞)/tc = tan(ϕ/2) ≈ ϕ/2.

2. Numerical test of multiple step passage

In Sec. VII C we compute occupation of excited val-
ley state by concatenating a number of isolated single-step
passages. We argued that for small enough probability of
nonadiabatic excitation on a single step Q1 � 1, the proba-
bility of coherent return to the ground state scales as Q2

1 �
Q1 and hence can be neglected. As a result the probability

FIG. 18. Occupation of higher valley state after single-step
passage Q1 as a function of shuttling parameter η (lower scale)
and valley field angle differenceϕ. Inset: numerical solution to
Eq. (22) is compared against effective LZ approximation (30) for
selection of angles ϕ/π = 0.3, 0.7, 0.85, 0.95 (dashed lines in
larger figure). The upper x axis translates η into electron velocity
v = LdotEVS,0η/� assuming typical values of Ldot = 20 nm and
EVS,0 = 200 µeV.

of occupying higher valley state is the effect of quantum
interference between transitions on single atomistic steps,
i.e.,

pe,v ≈ Q1

∣
∣
∣
∣
∣

N∑

n=1

ei�n

∣
∣
∣
∣
∣

2

, (D7)

which is bounded from above by pe,v ≤ N 2Q1. Addition-
ally we argued that due to intrinsic random fluctuations
of electron velocity the possibility of coherent addition of
probability amplitudes is negligibly small, and in particu-
lar in the limit of a large number of uncorrelated phases
gives

∣
∣ ∑N

n=1 ei�n
∣
∣2 ∼ N .

Here we use Fig. 19 to test this hypothesis using numer-
ical simulation of multistep passage, with quasistatic fluc-
tuations in electron velocity. For concreteness we take
v = 30 m/s and assume its uncertainty (rms) to bev/v =
10%. For each value of velocity we numerically solve the
evolution generated by the time-dependent Hamiltonian:

Ĥv,s(x0) = EVS,0

2

N∑

n=0

pn(x0)
[

cos(nϕ)τ̂x + sin(nϕ)τ̂y

]
,

(D8)

where pn(x0) = ∫ xn+1
xn

ρ(x − x0)dx, in which ρ(x − x0) is
the ground-state probability density function of the travel-
ing electron centered at x0 = vt and xn is the location of
nth step. By averaging over many realizations of electron
velocity we obtain the average occupation of excited valley
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state:

QN = 〈Tr{|ev〉〈ev|�(τ)}〉v . (D9)

To reflect realistic conditions for fixed N we use the same
arrangement of steps for all realization of electron velocity.
However, we change the arrangement for each N such that
multiple arrangements are investigated. We follow Refs.
[105,106] and draw the length of consecutive terraces dn ≡
xn+1 − xn from independent Gaussian distributions:

P(dn) ∼ N (d, (d/5)2), (D10)

where d is the average distance between the steps, which
can be related to an average interface miscut θrad = h/d.
In Fig. 19 we plot the results of single realizations (small
dots) their average (large hollow dots) and compare them
against the coherent limit Qmax

N = N 2Q1 (red solid line)
and average limit QN ≈ NQ1 (green solid line) as a func-
tion of the number of steps, proportional to shuttling
distance Ls = Nd.

As can be observed, the average occupation of excited
valley state after traveling over N steps agrees with lin-
ear prediction, even for the parameters which exaggerate
typical valley excitation, i.e., Q1 ≈ 10−2. What is more,
single realizations of the shuttling are generally contained
below the N 2Q1 red line, with an exception of few points
for which a single realization of v allowed for more than a
single transition between adiabatic levels. Notably, most
results lie also below the average, the value of which
is, however, increased by the outliers close to the N 2Q1
line. We stress that the predictions are valid for NQ1 � 1,

FIG. 19. Probability of occupying higher valley state after N -
step passage QN . We use a simple model of disorder in which
electron velocity v fluctuates between the realizations (filled
dots) with rms δv = 0.1v, and for remaining parameters we take
L = 15 nm, EVS,0 = 100 µeV, v = 30 m/s, ϑ = 0.25◦, which
corresponds to d ∼ 30 nm. To show statistical behavior, for each
number of steps N we draw a new arrangement of steps with
terrace lengths given by the distribution Eq. (D10) and for that
arrangement simulate 200 realizations of velocity.

since otherwise one has to take into account more than
a single transition between the levels and more complex
interference pattern.

APPENDIX E: SPIN-VALLEY HOTSPOT

1. Estimation of spin-valley coupling

We start the analysis by characterizing the spin-valley
avoided crossing visible in Fig. 14. To do so we estimate
typical values of the spin-valley coupling SV (the gap)
and the effective sweep rate a ≡ d(EVS(t)− Ez)/dt, which
together give an estimate of time spent around the avoided
crossing τSV ≈ SV/a. The spin-valley coupling can be
computed in second-order perturbation theory as a result
of spin-orbit and valley-orbit couplings:

SVart ≈ 2
|〈go ↓ |ĤSO|eo ↑〉〈eoev|ĤVO|g0gv〉|

Eorb
. (E1)

We start with the artificial spin-orbit coupling (also termed
synthetic in the literature [2]), that is caused by the pres-
ence of transverse magnetic field gradients. For the gra-
dients of the order of (B/x) = 0.1 mT/nm, we have
| 〈go ↓| Ĥ art

SO |eo ↑〉 | ∼ 0.2 µeV. Note that we can afford to
reduce the gradient magnetic field by one order of magni-
tude compared to, e.g., Ref. [5], since in a quantum com-
puting architecture based on shuttling the QD displacement
for electric dipole spin resonance can be increased to
approximately 10 nm, such that no compromise in the Rabi
frequency is expected. The valley-orbit coupling element
can be computed as in Sec. VII D, and its order of magni-
tude can be conservatively estimated to be comparable to
the valley splitting 〈eoev|ĤVO|gogv〉 ≈ 100 µeV. Together,
the gradient dominated SOC produces the spin-valley cou-
pling art

SV ≤ 20 neV. In the absence of a strong enough
magnetic gradient, the intrinsic spin-orbit interaction gives
the same order of magnitudeint

SV ≤ 20 neV, since for typ-
ical couplings (α,β ≈ 50 m/s [66]), despite larger matrix
element |〈go ↓ |Ĥ int

SO|eo ↑〉| ∼ 2 µeV, the additional reduc-
tion of art

SV by a factor of EZ/Eorb is caused by the Van
Vleck cancellation [110–113]. Next, we estimate the effec-
tive sweep rate from the expression a ≈ EVSv/Ldot, which
conservatively assumes that the valley splitting EVS may
change by values comparable to its own magnitude over
the range of a QD lengthscale. Taking EVS ≈ 100 µeV,
we can estimate a ≈ 50 µeV/ns for a shuttling velocity of
v = 10 m/s.

2. Estimation of the spin-flip probability due to valley
relaxation around the hotspot (mechanism 1)

We compute now δp↑ due to the mechanism of temporal
spin-valley mixing. It can be done by multiplying the spin-
relaxation rate and the time spent around avoided crossing
SV/a. For a conservative estimate, we assume that the
spin-relaxation rate is upper bounded by the inverse of the
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valley lifetime evaluated at the Zeeman splitting τr,v(EZ),
and thus reads

δp (1)↑ ∼ �s(t)
SV

a
� 1
τr,v(EZ)

SV

a
→ 0.1

τr,v(Ez)[ns]v[ m
s ]

,

(E2)

where we use the values computed above art
SV ∼ 200 neV

and EVS ∼ 100 µeV. From Fig. 13, we conclude that
phonon-dominated relaxation yields τr,v(Ez) ≥ 104 ns for
Ez ≤ 100 µeV. Thus, δp (1)↑ ≤ 10−5/v[m/s], which is at
least order of magnitude smaller then a spin flip caused
by an adiabatic transition [see Eq. (34)]. We point out
that other mechanisms of relaxation can dominate over
phonon emission at smaller EZ . However, those smaller
values of EZ ∼ 10 µeV would most likely eliminate the
occurrence of hotspots in the first place. Finally, let us
note that the above value most probably overestimates the
relaxation experienced by an electron going through the
hotspot anticrossing in mostly diabatic way. We have taken
the maximum relaxation rate from a spin-valley hybridized
lower-energy state at the anticrossing, and while the elec-
tron spends the timeSV/a in state of this character during
the mostly adiabatic evolution, its time-averaged state is
probably closer to being non-hybridized for the mostly for
the mostly diabatic evolution.
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