
PRX QUANTUM 4, 020304 (2023)

Density-Matrix Renormalization Group Algorithm for Simulating Quantum
Circuits with a Finite Fidelity

Thomas Ayral ,1 Thibaud Louvet,2 Yiqing Zhou ,3 Cyprien Lambert,1 E. Miles Stoudenmire,4 and
Xavier Waintal 2,*

1
Atos Quantum Laboratory, Les Clayes-sous-Bois, France

2
PHELIQS, Université Grenoble Alpes, CEA, Grenoble INP, IRIG, Grenoble 38000, France

3
Department of Physics, Cornell University, Ithaca, New York 14853, USA

4
Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA

 (Received 12 July 2022; revised 15 December 2022; accepted 13 February 2023; published 10 April 2023)

We develop a density-matrix renormalization group (DMRG) algorithm for the simulation of quantum
circuits. This algorithm can be seen as the extension of the time-dependent DMRG from the usual situation
of Hermitian Hamiltonian matrices to quantum circuits defined by unitary matrices. For small circuit
depths, the technique is exact and equivalent to other matrix product state–based techniques. For larger
depths, it becomes approximate in exchange for an exponential speed up in computational time. Like an
actual quantum computer, the quality of the DMRG results is characterized by a finite fidelity. However,
unlike a quantum computer, the fidelity depends strongly on the quantum circuit considered. For the most
difficult possible circuit for this technique, the so-called “quantum supremacy” benchmark of Google LLC
[Arute et al., Nature 574, 505 (2019)], we find that the DMRG algorithm can generate bit strings of the
same quality as the seminal Google experiment on a single computing core. For a more structured circuit
used for combinatorial optimization (quantum approximate optimization algorithm), we find a drastic
improvement of the DMRG results with error rates dropping by a factor of 100 compared with random
quantum circuits. Our results suggest that the current bottleneck of quantum computers is their fidelities
rather than the number of qubits.

DOI: 10.1103/PRXQuantum.4.020304

I. INTRODUCTION

Quantum computers and the quantum many-body prob-
lem are intimately connected. On the one hand, a quantum
computer is essentially an instance of the quantum many-
body problem on which one has a high level of control.
On the other hand, the most promising applications that
are foreseen for quantum computers correspond to solving
other instances of the quantum many-body problem such
as calculating the properties of new materials [1], of new
molecules for medicine, or of new catalysts for important
chemical reactions [2].

A common misconception of the field of quantum com-
puting is that all quantum many-body problems are expo-
nentially difficult to solve by classical computers because
the size of the Hilbert space grows exponentially as 2N

*xavier.waintal@cea.fr

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

when the system size N increases. This supposedly dooms
many-body simulations on classical computers to failure,
and therefore calls for computers with quantum physics
inside. This “large Hilbert space fallacy” is however con-
tradicted by the success of classical many-body methods
for tackling many of these hard problems. At heart, these
methods use the fact that physical problems are struc-
tured. Physicists take advantage of the separation of time,
energy, or length scales of statistical (mean-field) behavior,
or of symmetries, to design methods to solve seemingly
exponentially hard problems. Even for genuine strongly
correlated systems, there exist very powerful many-body
techniques that can solve them in a variety of situations,
taking advantage of an underlying feature. Without these
features—namely, had the physical world been a random
point in the Hilbert space—there would indeed be nothing
to understand and the problem would be exponentially dif-
ficult. However, since the physical world actually makes
sense, one can argue that simulating a many-body physical
problem is not as hopeless as one could naively think.

The subject of this article is to discuss the problem of
simulability in the context of quantum computers that use
quantum circuits, that is, discrete sequences of quantum

2691-3399/23/4(2)/020304(26) 020304-1 Published by the American Physical Society

https://orcid.org/0000-0003-0960-4065
https://orcid.org/0000-0003-3166-3053
https://orcid.org/0000-0003-3816-8290
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.4.020304&domain=pdf&date_stamp=2023-04-10
http://dx.doi.org/10.1103/PRXQuantum.4.020304
https://creativecommons.org/licenses/by/4.0/

THOMAS AYRAL et al. PRX QUANTUM 4, 020304 (2023)

gates. This questioning is at the core of the possibility
for a “quantum advantage,” for if a quantum computer
can be easily simulated, one might as well use the (clas-
sical) simulator instead of developing a genuine quantum
computer. The quantum circuit model of quantum comput-
ing ignores many structures of the underlying many-body
problem. For instance, it does not contain the basic con-
cepts of space, time, or energy. Nor does it contain the
concept of fermionic or bosonic statistics nor the repre-
sentation of symmetries (spin, relativity). As a result, it
might seem that such a quantum computer must be much
harder to simulate than a physics-based many-body prob-
lem. An extreme version of a quantum circuit designed
to be as featureless as possible is the seminal “quantum
supremacy experiment” [3] of Google LLC. Google ini-
tially claimed that simulating their supremacy experiment
would require 10 000 years on the largest existing super-
computer. Subsequent studies (that we review in Sec. II)
[4–6] showed that this initial surmise was exaggerated and
that the task could be executed in a few hundred seconds.
This progress in classical simulations could be obtained
through a precise analysis of the structure of the quan-
tum circuit. Even though the initial claim by Google has
been largely deflated, the Sycamore experiment remains
an important benchmark for classical simulations. Besides,
the computational cost of previous simulations that chal-
lenged Google remains exponential in the number N of
qubits, leaving room for the experimentalists to regain the
upper hand by adding a few qubits or gates.

In this article, we show that the Sycamore experiment
can be simulated with the same level of fidelity as Google,
up to a hundred qubits or more depending on the geome-
try. Our results are based on a different class of algorithm,
borrowed from quantum many-body theory, whose com-
plexity increases only as a power of N . This exponential
gain in computational complexity is obtained in exchange
for a quantum state compression that implies a finite
fidelity of the calculation. In this sense, these algorithms
share some characteristics with actual quantum comput-
ers, which also suffer from a finite fidelity. A first step
in that direction was taken in Ref. [7], where some of us
developed a quantum circuit version of the time-evolving
bond-decimation [8–10] (TEBD) algorithm. It was found
that surprisingly good fidelities could be obtained at a
relatively low computational cost. Here, we develop a
generalization of the density-matrix renormalization group
[11,12] (DMRG) algorithm to quantum circuits. Although
technically more complex, the DMRG algorithm allows
one to improve on the TEBD algorithm in a systematic
way.

We benchmark our quantum circuit DMRG algorithm
on three different quantum circuits: the “quantum
supremacy” sequence of Ref. [3]—optimized to be as
difficult to simulate as possible—another slightly eas-
ier random circuit, and a “useful” circuit used in the

quantum approximate optimization algorithm (QAOA)
[13] for combinatorial optimization. We find that even
with the most difficult “quantum supremacy” sequence,
the DMRG algorithm can produce bitstrings that have the
same quality as that demonstrated in Ref. [3] on a single
computing core. More importantly, we find that, for the
QAOA sequence, we reach a fidelity per gate much higher
than that found in the Sycamore processor. Our numerical
experiments provide important benchmarks of the fidelities
that can be reached on a classical computer, and therefore
of what the quantum hardware must fulfill to claim gen-
uine quantum supremacy or advantage. Since our DMRG
algorithm scales only polynomially with N , it implies that
quantum computers must improve their fidelities to access
regimes that cannot be simulated.

This article is organized as follows. In Sec. II, we review
the current status of quantum supremacy and of quantum
circuit simulation techniques. Section III contains a sum-
mary of the main findings of this article. The DMRG tech-
nique is developed in Sec. IV. Section V showcases how
the DMRG technique works in practice and discusses some
implementation details. Section VI discusses in which
regime the DMRG algorithm provides an optimum solu-
tion. Section VII shows the relation between the fidelity
and the cross-entropy benchmarking obtained in our sim-
ulations. Finally, we conclude in Sec. VIII. This articles
relies heavily on tensor network techniques. Appendix
A contains a short self-contained introduction to tensor
networks for readers unfamiliar with these techniques.

II. A CRITICAL REVIEW OF QUANTUM
SUPREMACY

Almost three years ago, the announcement by Google
of having reached the milestone of “quantum supremacy”
dazzled both the academic community and the general
public [3]. Google managed to control N = 53 transmon
qubits and to perform a circuit comprising 430 two-qubit
gates. They obtained a quantum state that had a small
(approximately 0.002), yet measurable overlap with the
ideal state that they were supposed to get. While this
state did not permit any useful computation, Google sur-
mised that producing something similar using classical
simulations would be prohibitive (10 000 years on the
largest supercomputer) and hence claimed to have reached
quantum supremacy.

Since Ref. [3], another group has produced an almost
identical experiment using a very similar technology [14].
There has also been other claims of quantum supremacy,
most notably using “boson sampling” [15]. Here, we will
not discuss these more recent claims for two reasons. First,
the hardness of these tasks is strongly debated [16–18].
Second, and more importantly, while the Google experi-
ment represents a milestone on the path towards building a

020304-2

DMRG FOR SIMULATING QUANTUM CIRCUITS. . . PRX QUANTUM 4, 020304 (2023)

quantum computer, these most recent claims correspond to
very specific tasks and the devices are not programmable.

Here, we review the status of the classical simulation
challenges to these “quantum supremacy” claims, namely,
we review the various works that have attempted to sim-
ulate the experiments in a reasonable classical computing
time [4–6,19]. In particular, we try to explain in simple
terms why the claim of “10 000 years” was initially chal-
lenged to be only two days and why it has eventually been
shown that a simulation of quantum supremacy could be
performed in a few hundred seconds.

A. An exponentially difficult experiment

A quantum computer with N qubits has an internal state
that can be written as

|�〉 =
∑

i1i2i3...iN

�i1i2i3···iN |i1i2i3 · · · iN 〉, (1)

where i1 ∈ {0, 1}, i2 ∈ {0, 1}, . . . , iN ∈ {0, 1} correspond
to the different qubits. The vector �, whose compo-
nents are the complex numbers �i1i2i3···iN , can be consid-
ered as a large vector of dimension 2N . One initializes
the state in |�(0)〉 (typically all qubits in state 0, i.e.,
�i1i2i3···iN = ∏

p δip ,0) and then applies a sequence of uni-
tary gates. Formally, these gates transform the state of the
quantum computer into

|�(D)〉 = U(D)U(D−1) · · · U(2)U(1)|�(0)〉, (2)

where the U(p) are unitary matrices (two-qubit gates or a
combination thereof). A direct simulation of Eq. (2) by a
series of (sparse) matrix-vector multiplications is referred
to as a “Schrödinger approach.” In an experiment, how-
ever, one does not have access to the many-qubit wave
function. Instead, one measures the different qubits and
obtains a bitstring x = i1i2 · · · iN with probability Q(x).

Arute et al. [3] used N = 53 qubits and a highly unstruc-
tured set of N2g = 430 two-qubit gates spread over D = 20
layers. The experiment was repeated N# ≈ 106 times to
produce a sequence of bitstrings x1, . . . , xN# . Since the
quantum sequence was highly unstructured, the distribu-
tion Q(x) was expected to be fairly chaotic, so that all
bitstrings x would have a probability to be obtained of
the order ∝ 1/2N , i.e., the experiment essentially outputs
random bitstrings. Ref. [3] is primarily a global system val-
idation experiment. The authors performed exact numeri-
cal simulations of Eq. (2) to obtain the exact distribution
P(x) = |〈x|�(D)〉|2 = |�(D)

i1i2i3···iN |2 that should have been
obtained from the experiment. By estimating how the per-
fect distribution P(x) correlates with the distribution Q(x)
obtained experimentally, one is able to assert to which
degree the quantum computer has performed the requested
task. The metric used to analyze this correlation is the

“cross-entropy benchmarking”

FB ≡ 2N
∑

x

P(x)Q(x)− 1, (3)

which can be estimated experimentally as

FB ≈ 2N

N#

N#∑

α=1

P(xα)− 1, (4)

where N# is the total number of repetitions of the exper-
iment and xα the measured bitstring for repetition α. It is
expected theoretically, and observed experimentally, that,
due to decoherence and imprecisions in the gates and
measurements, the cross-entropy benchmarking decays
exponentially:

FB ∝ e−εBND/2 (5)

with an error rate εB. Arute et al. [3] were able to ver-
ify Eq. (5) with an error εB ≈ 1%. For the largest depth
D = 20 where the exact distribution P(x) was too com-
putationally costly to be calculated, they extrapolated that
FB ≈ 0.2%. The “quantum supremacy” claim was that
obtaining a set of N# bitstrings with the same fidelity
FB ≈ 0.2% by simulations would require 10 000 years on
the largest supercomputer. We emphasize that here classi-
cal simulations are used for two very different purposes:
the first is to provide the value P(xα) without which the
cross-entropy benchmarking cannot be evaluated in the
experiment and the second is to provide bitstrings (approx-
imately) generated according to P(x) in order to spoof the
experiment.

It should be noted that this experiment is exponentially
difficult. Indeed, in order for the set of bitstrings to be dis-
tinguishable from just plain random bitstrings distributed
uniformly, one needs the statistical error in the estima-
tion of Eq. (4) to be smaller than what is estimated, i.e.,
FB. Since the statistical error decreases with the number
of repetitions as 1/

√
N#, it implies an exponentially large

number of samples,

N# ∝ eεBND. (6)

Arute et al. [3] pushed the quantum chip to the extreme
limit where there remained just enough fidelity for the sig-
nal to be measured. For instance, going to D = 39 would
have implied an increase of the measurement time by a
factor of 106. The authors also had to give up a little on
the universality or programmability of the chip to main-
tain a low enough error rate εB: they chose, for each pair
of qubit, the two-qubit gate that had the best fidelity by
optimizing the microwave pulses. Subsequent experiments
that used the same chip but focused on “useful” quantum
circuits used only 10–20 qubits to retain accurate enough
results [20].

020304-3

THOMAS AYRAL et al. PRX QUANTUM 4, 020304 (2023)

B. Exchanging a smaller memory footprint for an
exponential increase in the computational time

Around the time of Google’s supremacy claim, a team
from IBM proposed an algorithm that, according to their
estimation, would require only 2.5 days to complete the
supremacy task instead of 10 000 years [21]. Such a speed
up (a factor of 105) begs for an explanation. A direct
naive “Schrödinger” evaluation of Eq. (2) would require
of the order of N2g2N floating point operations by hold-
ing the vector � in memory and applying the two-qubit
gates one by one. Such an algorithm would require 1018

operations. Hence, since large supercomputers can per-
form more than 1017 floating point operations per second,
the supremacy task could, according to this naive estima-
tion, be performed in at most a few minutes, not thousands
of years. This however requires one to hold a vector of
size 2N in memory, i.e., 105 terabytes of random access
memory (RAM), which is more than what supercomput-
ers have (typically by more than a factor of 10). To get
around this difficulty, one designs algorithms that require
exponentially more operations in exchange for a smaller
memory footprint.

To illustrate how the trade-off between memory foot-
print and computational time can be implemented in prac-
tice, imagine that we group the qubits into two groups of
N1 and N2 qubits (N1 + N2 = N). A first index α labels the
first group i1i2 · · · iN1 and a second index β labels the sec-
ond group iN1+1 · · · iN . An arbitrary gate U(p) has matrix
elements U(p)

αβ;α′β ′ . Such a tensor can be considered as a
matrix where the two indices (α,α′) are considered as a
metaindex that indexes the rows and the two other indices
(β,β ′) index the columns. Using singular value decompo-
sition (SVD), such a matrix can be factorized into a sum of
χp terms of the form

U(p)
αβ;α′β ′ =

χp∑

a=1

V(p)aαα′W
(p)
aββ ′ , (7)

where V(p)a and W(p)
a act separately on the first and second

groups of qubits, respectively (see Appendix A for details
on the SVD operation). Since the wave function initially
factorizes, �(0)

αβ = �
(0)
1α �

(0)
2β , one can rewrite Eq. (2) as

�
(D)
αβ =

∑

a1,...,aD

�
(D)
1α �

(D)
2β (8)

with

�
(D)
1 = V(D)aD

V(D−1)
aD−1

· · · V(1)a1
�
(0)
1 , (9)

�
(D)
2 = W(D)

aD
W(D−1)

aD−1
· · · W(1)

a1
�
(0)
2 . (10)

Now, we only need to perform matrix vector products of
much smaller sizes, 2N1
 2N and 2N2
 2N . In return

for this much smaller memory footprint, �(D)
1 and �(D)

2
depend explicitly on the SVD indices a1, . . . , aD. One has
to repeat the calculation for each a1, . . . , aD to perform
the sum, which has an exponential computational cost
∝ ∏

p χp . Simulations that use Eqs. (8)–(10) are known
as “Schrödinger-Feynman” simulations. In a Schrödinger-
Feynman simulation, the only problematic gates are the
two-qubit gates that couple the two groups. These gates
have χp = 2 (control-NOT or control-Z gates) or at most
χp = 4 (arbitrary two-qubit gates). For all the gates that do
not couple the two groups of qubits, χp = 1 and there is
no increase in the computational time. Another aspect is
that one can calculate the amplitude �α,β for as many con-
figurations α,β as needed with no additional cost except
for that of storing these amplitudes in memory. The initial
statement of Google of 10 000 years was associated with
an estimation of the computational cost of a Schrödinger-
Feynman simulation. We see that this computational esti-
mation is strongly tied to the available memory. More
memory would allow one to perform an optimized splitting
of the qubits into two groups or no splitting at all, resulting
in a much smaller computational cost. The IBM proposal
[21], which was not implemented, was to take advantage
of the hard drives of the supercomputer as temporary stor-
age so that the full N -qubit wave function could be held
in memory, thereby considerably reducing the computa-
tional time. The drawback of this approach, besides the
obvious difficulty of performing an actual implementation,
is the fact that adding just one extra qubit would require
a doubling of the memory footprint, hence making the
simulation out of reach.

C. The hierarchy of “open” versus “closed” versus
“weak” simulations

The final blow on the supremacy claim came from
a combination of works [4–6,19], in which the authors
found a route to perform the simulation of the “quan-
tum supremacy” experiment in a few hundred seconds and
demonstrated that the solution could be implemented in
an actual very large supercomputer. This series of works
essentially closed the gap between the simulations and the
experiments. This corresponds to a drop by a factor of
109 with respect to the initial estimate of 10 000 years.
This new gain comes from the combination of two new
ingredients.

The first important point is that there are several sim-
ulation modes of decreasing power. The Schrödinger
(Schrödinger-Feynman) simulation provides the full N -
qubit wave function (as many amplitudes as one can store).
We refer to this simulation mode as “open” in the sense
that they do not target a specific bitstring x. Open sim-
ulations produce much more information than what the
experiment outputs. Another simulation mode, which we
refer to as a “closed” simulation, targets a single bitstring

020304-4

DMRG FOR SIMULATING QUANTUM CIRCUITS. . . PRX QUANTUM 4, 020304 (2023)

x and computes the amplitude

�(D)
x = 〈x|�(D)〉 = 〈x|U(D) · · · U(2)U(1)|0〉. (11)

Closed simulations are generically much easier than open
ones. A final type of simulation, a “weak” simulation, pro-
duces the same output as an actual quantum computer,
namely, random bitstrings distributed according to the
probability |�(D)

x |2. There exists a clear hierarchy between
these different simulation modes: an open simulation pro-
vides more information than a closed one, which in turn
provides more information than a weak simulation (or an
actual quantum computer). One of the key steps in speed-
ing up our simulations is to go from the open mode to the
closed one.

The fact that closed simulations are superior to weak
ones is not totally obvious. It follows from a simple
algorithm recently proposed in Ref. [22] that allows one to
sample |�(D)

x |2 from the calculation of a polynomial num-
ber of individual amplitudes �(D′)

x at smaller depth D′ ≤
D. The algorithm of Ref. [22] constructs a bitstring xD iter-
atively, starting from the initial bitstring x0 = 00 · · · 0 and
taking into account the two-qubit gates one by one. Here
xD′+1 is identical to xD′

except for the two qubits that are
affected by the two-qubit gate. There are only four such bit-
strings, x1, x2, x3, x4. One computes the four probabilities
pi = |�D′+1

xi
|2/∑

j |�D′+1
xj

|2 and samples from this condi-
tional distribution, i.e., xD+1 = xi with probability pi. It is
straightforward to verify that this scheme indeed provides
a bitstring distributed according to |�(D)

x |2. Note that in the
context of the supremacy experiment where all �(D)

x have
similar orders of magnitude, this algorithm is not necessary
and a simple Metropolis-Hastings sampling could be used
instead (see the discussion in Appendix C).

D. Optimized contraction strategies of tensor networks

In the closed simulation mode, the challenge of the cal-
culation lies in the summation over all the internal indices
of the tensors (like the a1, . . . , aD indices introduced pre-
viously) in Eq. (11). Finding the optimum order for these
summations is a hard (NP complete) problem, but there
exist good heuristic algorithms for finding close to opti-
mum contraction strategies [4]. These optimum orders are
in general very different from a simple summation from
right to left, i.e., from the contraction done in a Schrödinger
or Schrödinger-Feynman simulation. The memory versus
CPU trade-off is implemented using a “slicing” approach:
one carefully selects a few indices that are frozen in order
to lower the cost of contracting the tensor network. The dif-
ferent values taken by these indices (the equivalent of the
a1, . . . , aD in the Schrödinger-Feynman simulations) are
distributed over different computing nodes or GPU cards
as these tasks are completely independent (embarrassingly
parallel). For the reader not familiar with the concept of

tensor contractions and slicing, a small introduction is
given in Appendix A.

Using these techniques (i.e., closed simulations and
good contraction strategies), Gray and Kourtis [4] esti-
mated that the time to compute a single amplitude on
a graphics card (GPU) could be reduced down to 3088
years with perfect fidelity. The same authors estimated that
it would take 197 days to match the supremacy exper-
iment, i.e., produce one million samples with the 0.2%
cross-entropy benchmarking fidelity. To arrive at this esti-
mate, they took advantage of (i) the computing resources
of the large supercomputer “Summit,” (ii) the fact that
the computing time to compute a few amplitudes that dif-
fer only by the value of a few qubits is not significantly
higher than computing a single amplitude, and (iii) the fact
that a fidelity of 0.2% can be obtained by mixing a few
(2000) high-amplitude (large |�x|2) samples with 998 000
bitstrings sampled from a uniform random distribution.

A few months later, the estimated time to sample one
million bitstrings with 0.2% fidelity was further reduced
to 19.3 days [23], based on similar ideas and refinements
by a team at Alibaba. These authors estimated the time to
compute one perfect sample on Summit to 833 seconds.
Like the previously mentioned study [4], they proposed to
sample Sycamore by computing batches of 64 amplitudes
at no significant cost increase in a partly “closed,” partly
“open” mode.

The approach was further optimized by Pan and Zhang
[5] in the so-called “big-batch method” that optimized the
choice of the qubits left in the open mode. They managed
to compute two million bitstrings with a large 73.9% cross-
entropy benchmarking in five days on a small cluster of
60 GPUs [5]. However, these bitstrings had many qubits
in common and hence were strongly correlated. In a sec-
ond study [6], they proposed a new “sparse state method”
that lowers the contraction cost of the supremacy circuit
tensor network by cleverly introducing a few errors at spe-
cific locations. They produced 220 independent batches
of 64 correlated bitstrings in 15 h on a cluster of 512
GPUs, and via importance sampling finally obtained one
million uncorrelated samples with 0.37% fidelity. In the
same work, they estimated that the sampling time for
Sycamore could be reduced to a few dozen seconds on a
large supercomputer.

Liu et al. [19] produced two million correlated bitstrings
from Sycamore with 0.2% cross-entropy benchmarking
fidelity in 304 seconds. This calculation was performed
on the Sunway TaihuLight supercomputer with 42 million
effective cores, with an algorithm inspired by the work of
Pan and Zhang [5], and taking advantage of a new heuristic
for slicing and contraction path optimization. It demon-
strated that the parallelization of these algorithms could
be effectively implemented on a very large supercomputer.
Together, Pan et al. [6] and Liu et al. [19] convincingly
showed that a supercomputer can match the Sycamore

020304-5

THOMAS AYRAL et al. PRX QUANTUM 4, 020304 (2023)

chip, even for a task whose only interest lies in having been
optimized to be difficult to simulate.

Hence, the initial claim of “quantum supremacy” has
been, to a large extent, deflated. However, the classical
simulations reviewed above required colossal resources to
achieve this goal. Since the problem is exponentially hard,
a marginal improvement of the qubit fidelity (which would
allow the experiment to go to larger depth) would have
made the problem inaccessible to simulations. A second
aspect is that problems that are impossible to simulate are
easy to find, and the quantum supremacy experiment is
to a large extent an artificial problem constructed for the
sole purpose of being difficult to simulate. The question
remains of what the quantum supremacy experiment taught
us in terms of where one stands in the route to build-
ing genuine quantum computing capabilities for useful
problems. In this article, we also use tensor network sim-
ulations to benchmark the performance of quantum com-
puters. However, our focus is very different from the above
high-performance computing calculations. While previous
simulations are essentially exact with a small linear speed
up coming from the finite targeted fidelity, we borrow
quantum state compression techniques from many-body
theory that exchange a finite fidelity for an exponential
gain in computing time. As we will see, these complemen-
tary techniques provide strong insights in the influence of a
finite fidelity on computing capabilities and what it would
take for a quantum computer to reach a regime that is both
interesting and out of reach of simulations.

III. SUMMARY OF THE MAIN RESULTS

In this article, we develop an approximate DMRG
algorithm for the simulation of quantum circuits. This
algorithm is based on several controlled compression
steps, where the compressed state is optimized variation-
ally to maximize the fidelity. In exchange for the loss of
information in the compression, the computational cost is
considerably reduced. This technique is very different from
existing tensor network simulation techniques for quan-
tum circuits as they do not use compression. However, in
principle, these other approaches could be combined with
our compression technique. Before going into the mathe-
matical details of how the technique works, we report on
the results of our simulations for a few relevant circuits.
Denoting by |�P〉 the perfect state that one should obtain
and by |�Q〉 the actual approximate state obtained in the
simulation, the main quantity of interest in this article is
the fidelity F of the simulation, defined as

F = |〈�Q|�P〉|2. (12)

Since F decreases exponentially with the number N2g of
two-qubit gates [F ≈ exp(−εN2g)] in these simulations,

FIG. 1. Topology of the “quantum processor” simulated in this
work. The system has nc columns containing alternatively nb
and nb − 1 qubits. Here nc = 12 with nb = 5 corresponds to
a 54-qubit planar processor that has the same topology as the
Sycamore chip. The qubits have nearest-neighbor connectivity.
In the quantum circuits corresponding to sequences I and II (see
the text), the circuit is split into layers. In each layer, one applies a
two-qubit gate between all the pairs of qubits coupled by a green
rectangle (A layers), a light blue rectangle (B layers), a dark blue
rectangle (C layers), or a red rectangle (D layers).

we define the error rate per two-qubit gate ε as

ε = 1 − F1/N2g ≈ − 1
N2g

logF . (13)

This quantity can be directly compared to experiments.
For instance, assuming that FB = F , then the FB = 0.2%
of the quantum supremacy experiment translates into an
error ε = 1.4% per two-qubit gate, for each of the N2g =
430 two-qubit gates. This effective value accounts for the
actual two-qubit gate errors (around 1%), the one-qubit
gate errors (around 0.1%), and the measurement errors
(around 3%).

We perform most of our simulations on a (N = 54)-
qubit system very close to the 53-qubit Sycamore chip of
Ref. [3]; see Fig. 1. All the simulations presented here have
been performed with limited computational resources: one
to few computing processes (fewer than 12) that have
lasted at most a few hours. Simulations ran on desktop PCs
or on clusters with large memory for larger simulations, on
a few computing cores in both cases. We consider three
different quantum circuits.

Sequence I is essentially the quantum supremacy
sequence of Google. Here D = 20 layers are applied. For
each layer, one applies a random one-qubit gate on each
qubit, followed by the so-called fsim gate on all pairs of
qubits according to the pattern ABCD-CDBA-ABCD-· · ·
(see Fig. 1). Sequence I has been designed to entangle the
qubits as quickly as possible and therefore be as hard to
simulate as possible.

020304-6

DMRG FOR SIMULATING QUANTUM CIRCUITS. . . PRX QUANTUM 4, 020304 (2023)

Sequence II is identical to sequence I but with a pattern
rotated by 90◦, i.e., the sequence is CDBA-BACD-CDBA-
· · · .

Sequence III is, in contrast to sequences I and
II, designed to perform a supposedly useful task. It
implements the QAOA. The QAOA is attracting a lot
of attraction as a candidate algorithm to solve com-
binatorial optimization problems on a (noisy) quan-
tum computer [24]. It can be viewed as a discrete

variational version of the adiabatic quantum computing
paradigm.

Our main findings are summarized in the next three
subsections.

A. Simulating the supremacy sequence

Figure 2(a) shows the error ε obtained in our simulations
for the quantum supremacy sequence I with a system

(a) (b)

(c) (d)

Er
ro

r
pe

r
ga

te
 ε

 (
%

)
Er

ro
r

pe
r

ga
te

 ε
 (

%
)

Er
ro

r
pe

r
ga

te
 ε

 (
%

)
Er

ro
r

pe
r

ga
te

 ε
 (

%
)

Closed D2 =1
Closed D2 =3

Closed sim., D =20

Closed sim., ND =1080

Open simulation

Open simulation
Closed simulation

FIG. 2. Error rates achieved in our simulation. (a) Error rate per gate ε as a function of bond dimension χ for the supremacy
sequence I. In the gray regions the quality of the output is as good or better than that produced in Ref. [3]; see the text. Light
gray denotes ε ≤ 2.8%; the simulation fidelity matches the experiment assuming that FB = √F . Dark gray denotes ε ≤ 1.4%; the
simulation fidelity matches the experiment even assuming that FB = F . We denote by D2 the number of layers treated exactly at the
end of the calculation; see Sec. IV C. The labels D1,D2,V1,V2 indicate the grouping used in the construction of the matrix product
state (MPS); see the discussion around Fig. 7. We denote by ns the number of sweeps used in the DMRG optimization; K is the number
of circuit layers. (b) Same as (a) for sequence II. (c) Error rate per gate ε as a function of the number of qubits N for sequence II.
Here nc is increased at fixed nb = 5 and χ = 64. Blue curve denotes the fixed depth D = 20. Orange curve denotes the fixed number
of two-qubit gates, i.e., ND = 1080. (d) Comparison between the error rates of sequences I and III in open simulations. Each point in
the sequence III curves is averaged over ten graphs, with error bars corresponding to one standard deviation. Orange curve denotes the
QAOA circuit assuming perfect topology. Green curve denotes the QAOA circuit using only the nearest-neighbor connectivity of the
Sycamore chip.

020304-7

THOMAS AYRAL et al. PRX QUANTUM 4, 020304 (2023)

of N = 54 qubits. The x axis is the bond dimension χ
that controls the level of compression of the quantum state
and hence the accuracy. The computational cost of the
simulation scales polynomially as ∝ χ2 with a memory
footprint ∝ χ2. An exact simulation would correspond, at
large depth, to an exponentially large χ = 2N/2, but here
we are very far from this regime.

The red curve shows the results in the “open” mode. We
find that the error rate for the largest χ = 64 studied is
fairly high, around 8%, much higher than in state-of-the-
art experiments. Going to the “closed” mode provides an
important gain in error rate, typically by more than a factor
of 2 with our technique, enabling one to reach ε ≈ 3%.
By optimizing the closed mode (curve D2 = 3; the details
of the closed mode will be explained later), one reaches
ε ≈ 2.5% at a computational cost that is still moderate.

To compare this error rate with the experimental one,
we need to know the error rate associated with the experi-
mentally measured cross-entropy benchmarking, i.e., εB =
1 − FB

1/N2g ≈ −(logFB)/N2g , not ε. Arute et al. [3]
have argued that, for their experiment, FB ≈ F for large
enough depths. While this statement can be proven for
certain classes of noise, it is not universal. For instance,
it cannot hold at small depth since F(D = 0) = 1 while
FB(D = 0) = 2N − 1. Nor does it hold for systems con-
sisting of disjoint pieces, for which fidelity composes
multiplicatively while FB composes additively when small
[25].

For our simulation technique, a very different relation
holds:

FB ≈
√
F . (14)

We provide strong evidence, both numerical and analyt-
ical, to support Eq. (14). It follows that the ε = 2.5%
obtained in our simulations corresponds to εB = ε/2 =
1.25% ≤ 1.4% (light gray zone in Fig. 2). Hence, the
bitstrings provided by these simulations have a higher
cross-entropy benchmarking fidelity than those provided
by Arute et al. [3] and in that sense our technique can
be considered as another breach in the claim of quantum
supremacy. Note that, since the relation between F and
FB is highly nonuniversal, the fact that Eq. (14) holds
in our simulation does not imply a similar relation in the
experiments.

B. Scaling with the number N of qubits

A very important difference between the present work
and previous attempts at bridging the quantum supremacy
gap is the scaling of the simulations with the number of
qubits. Indeed, in our simulations, the exponential dif-
ficulty lies in increasing the fidelity, not the number of
qubits.

In our present implementation, the computational cost of
a simulation scales as eβnbncDχ2, where nb is the number

of qubits in the first column and nc the number of columns
(see Fig. 1). The memory required scales as eβnbncχ

2.
The parameter β ≥ log 2 depends on the precise mode
of calculation. We note that, while the present work uses
one-dimensional tensor networks (MPSs), other networks
such as the projected entangled pair states (PEPSs; two-
dimensional networks) should provide a more favorable
computational cost linear in both nb and nc [26,27].

The scaling with N is illustrated in Fig. 2(c), where
we show a calculation as a function of N (by varying
nc) at fixed χ for sequence II. We perform simulations
with more than 250 qubits, while the error ε shows a lim-
ited increase before saturating (see the discussion in Ref.
[7]). Such simulations would be totally out of the scope
of any other existing simulation approach that does not
use compression, since they all scale exponentially with
N . We emphasize again that the experiment correspond-
ing to the blue curve in Fig. 2(c) would be exponentially
difficult: one cannot increase N at fixed D experimentally
(even assuming that so many qubits would be available)
because the cross-entropy benchmarking would become
too small to be measurable in a reasonable time. Work-
ing at fixed experimental measurement time, i.e., fixed FB
or, equivalently, keeping the product ND constant, cor-
responds to the orange curve in Fig. 2(c). We see here
a first difference in behavior between our compression
algorithms and actual experiments: our error rate ε actu-
ally drastically drops with N in the orange curve, as our
algorithm becomes essentially exact at small depth. This
indicates that in order to beat compression algorithms,
quantum hardware must improve in fidelity and/or con-
nectivity: a mere increase in the number of qubit is not
sufficient.

C. Influence of the quantum circuit on the fidelity

A second important difference between actual experi-
ments and our compression algorithm appears upon con-
sidering different quantum circuits. One of the chief results
of Ref. [3] is that the fidelity of the experiment depends
only on the number and type of gates applied and should
to a large extent be agnostic to the type of circuit ran. In
practice, however, random circuits such as sequence I or
II are experimentally easier than more structured circuits.
This is due to several factors: (i) these random circuits are
optimally parallel without any idle time that could lead to
further decoherence; (ii) there is a compensation of errors
due the random choice of gates; and (iii) in the case of Ref.
[3], a pair-by-pair optimization of the fidelity of the two-
qubit gates that could not have been performed had these
gates corresponded to the prescription of an algorithm.
This increased difficulty—for experimental hardware—of
running structured circuits is well known in the field of
quantum benchmarking; see, e.g., Ref. [28].

020304-8

DMRG FOR SIMULATING QUANTUM CIRCUITS. . . PRX QUANTUM 4, 020304 (2023)

In our compression algorithm, we find, in sharp contrast
with the above observations, that more structured quantum
circuits are much easier to compress than random ones.
While this result is not surprising on a qualitative level,
the magnitude of the improvement in error rate that we
observe is very high, with an error rate for open simulation
dropping by a factor of 100, from 8% for random circuits
down to 0.07% for QAOA circuits with the same N = 54
and N2g = 430.

Figure 2(b) shows a result for sequence II, which is
only a slight modification of sequence I. We observe that
this slight modification of the sequence provides a twofold
gain in ε, bringing the open simulation almost down to
the gray region and the closed simulations deep into the
dark gray region. Figure 2(b) also shows the result of the
TEBD algorithm of Ref. [7] (green curve), showing that
the DMRG algorithm presented in this article is a clear
improvement over the TEBD algorithm.

Figure 2(d) contrasts the results between sequence I
and the QAOA sequence III. The results for the QAOA
sequence correspond to the same number of qubits N = 54
and the same two-qubit gate count N2g = 430, i.e., such
that experimentally one would expect a fidelity lower than
the FB = 0.2% observed for sequence I, for the reasons
mentioned above. In contrast, the results of the compres-
sion algorithm are drastically better for sequence III than
for sequence I. Two plots are presented in Fig. 2(d). The
orange curve shows the simulation results of the QAOA
sequence supposing that the N = 54 chip had perfect con-
nectivity (a two-qubit gate can be applied between any pair
of qubits). We find that the error rate in an open simula-
tion is reduced by a factor of 14 compared to sequence I,
with ε = 0.5% at χ = 64. The green curve corresponds to
a circuit that respects the nearest-neighbor topology of the
Sycamore chip. This topology puts additional constraints
on the graphs that can be optimized with a given “bud-
get” N2g of two-qubit gates. It results in simpler graphs
being simulated, and a further drop in the error rate down
to 0.07% for χ = 64 in the hardest open simulation mode.
We note that two recent works [29,30] considered a related
problem (performance of a TEBD approach similar to Ref.
[7] for a QAOA optimization) and arrived at conclusions
that are, at least qualitatively, consistent with ours. The
simulation of QAOA circuits with up to 54 qubits was
also tackled in a recent work [31] using an alternative
representation of the quantum state based on neural net-
works, the restricted Boltzmann machine [32], with similar
conclusions.

While it is difficult to draw general conclusions from
specific experiments, we conjecture that “useful” quantum
circuits, structured by nature, are generically much easier
to simulate than random ones. It follows that in order for a
quantum computer to show a genuine quantum advantage
(i.e., quantum supremacy but for a useful task), far better
fidelities will need to be demonstrated by the hardware.

IV. A DENSITY-MATRIX RENORMALIZATION
GROUP ALGORITHM FOR SIMULATING

QUANTUM CIRCUITS

We now describe the quantum state compression
algorithm used in this article. This algorithm is inspired
by the DMRG algorithm that has been highly instrumen-
tal for solving one-dimensional (1D) quantum many-body
problems [12,33]. Our algorithm can be considered as
a “unitary” version of the original “Hermitian” DMRG
algorithm.

Our method combines a Schrödinger type of simula-
tion with compression steps where we approximate the
quantum state with a matrix product state ansatz. This
compression is performed every few layers of gates and
requires one to find optimum contraction strategies for
small tensor networks. The main new ingredient of this
algorithm is the compression step. We emphasize that,
although we introduce it in the context of a Schrödinger
type of simulation, this step is in fact very general and
could in principle be combined with other tensor network
simulation approaches.

In a previous study [7] some of us had already consid-
ered compressed MPS states and designed a TEBD-like
algorithm. The TEBD algorithm required the compression
to be performed after each intertensor gate. Also, only
gates that coupled one tensor to its nearest neighbours
could be considered. In the DMRG algorithm presented
here, these two limitations are lifted. We find the opti-
mal compressed state after applying several layers of gates
by iteratively solving a variational problem for the opti-
mization of each tensor composing the MPS. This new
approach allows us to reach much better fidelities. Most
importantly, it is also more systematic: it can be general-
ized to any kind of quantum circuit and combined with any
other tensor network technique.

Since this article relies heavily on the tensor networks
naturally associated with quantum circuits, the reader not
familiar with these concepts may read the short introduc-
tion in Appendix A.

A. The matrix product state ansatz

An arbitrary state |�〉 with N qubits

|�〉 =
∑

i1i2i3···iN
�i1i2i3···iN |i1i2i3 · · · iN 〉 (15)

is described by a very large tensor �i1i2i3···iN . A MPS fac-
torizes and compresses this tensor by writing it as a product
of m tensors contracted in a chainlike geometry:

�i1i2i3···iN =
∑

α1,...,αm−1

M (1)
i1i2···ir1 ,α1

M (2)
α1,ir1+1···ir1+r2 ,α2

× M (m)
αm−1,iN−rm+1···ind−1iN . (16)

020304-9

THOMAS AYRAL et al. PRX QUANTUM 4, 020304 (2023)

i1 i2 i3 i4 i5 i6 i7 i8

Ψ

=
i1 i2 i3 i4 i5 i6 i7 i8

α1 α2

M (1) M (2) M (3)

FIG. 3. Decomposition of an eight-qubit state as a three-tensor
MPS.

See Fig. 3 for a schematic. Each tensor M (τ), τ ∈
{1, 2, . . . , m}, contains information on the rτ qubits, i.e., we
group the qubits into m groups and each group contains rτ
qubits. Entanglement within one group is treated exactly,
while only a limited amount of entanglement is allowed
between different groups.

The “virtual” indices ατ take at most χ values, where
χ is known as the bond dimension. If χ is exponentially
large then a MPS can in fact describe any quantum state.
Here, however, we restrict ourselves to rather small values
of χ , in which case the MPS can only be an approximation
of the entangled state that one aims at describing. There
exists an important literature on many-body problems that
can be successfully addressed by MPS variational ansatz
[12]. The unentangled initial product state is naturally a
MPS with χ = 1.

Note that, in contrast to the approach of Ref. [7], group-
ing the qubits is not, in principle, necessary: one could use
instead the conventional ∀ τ , rτ = 1 grouping and larger
values of χ to obtain a variational ansatz as expressive
as that used with our nontrivial grouping rτ ≥ 1. We find
however that, in practice, some groupings can be advanta-
geous for some circuits. For example, if a subset of qubits
is highly entangled by the circuit, it should be assigned
to the same group. Since the first and last tensors only
have one virtual index instead of two, it is computationally
advantageous to have more qubits in the corresponding
groups.

B. The main building block of the algorithm: the
compression step

The central part of the algorithm performs the following
task: one starts from a MPS |�Q(D)〉 at depth D, sup-
posedly a good approximation of the exact state |�P(D)〉,
i.e., with a high fidelity F(D). The problem is to find
the best MPS |�Q(D + K)〉 that approximates the state
U(D+K) · · · U(D+1)|�Q(D)〉 after one has applied K layers
of gates of the circuit, as illustrated on Fig. 4(a). Namely,
we want to determine

|�Q(D + K)〉
≡ argmax

|�〉, 〈�|�〉=1
|〈�|U(D+K) · · · U(D+1)|�Q(D)〉|2. (17)

To perform this optimization, we optimize one given ten-
sor M (τ) of |�〉 at a time, while the remaining m − 1

tensors are kept fixed. This optimization can be performed
exactly using the simple formula (20) derived below. It
amounts to the contraction of a small tensor network. To
obtain the global optimum, we sweep over the choice of the
tensor τ as in the single-site DMRG algorithm. Typically,
a small number ns of sweeps is needed to obtain conver-
gence towards |�Q(D + K)〉. Note that we have also tried
variants of this algorithm analogous to the original two-
site DMRG algorithm (where two consecutive tensors are
optimized simultaneously), but did not observe any signif-
icant improvement with respect to the simpler single-site
version.

1. Optimization of a single tensor

Once we fix all tensors M (τ ′) of MPS |�〉 except for
tensor M (τ), the scalar product to be optimized takes the
form

〈�|U(D+K) · · · U(D+1)|�Q(D)〉 = Tr F (τ)M (τ)∗, (18)

where the trace means summation over all indices. Very
importantly, this scalar product is a linear function of M (τ).
The tensor network for the left-hand side of Eq. (18) is
shown in Fig. 4(b). It follows that F (τ) is defined by the
contraction of the tensor network shown in Fig. 4(c). In
other words, F (τ) simply corresponds to the tensor network
for the full scalar product from which the M (τ) tensor has
been removed. Note that in Fig. 4(c) the two tensors on the
right (corresponding to 〈�|) are complex conjugated.

Before doing the optimization, we need to enforce the
fact that MPS |�〉 is a normalized state, i.e., 〈�|�〉 = 1.
This is best done by performing a series of QR factoriza-
tions on tensors M (τ ′) for τ ′ �= τ to bring the MPS in the
so-called “orthogonal form”; see Ref. [12]. In this form,
the norm of the MPS is simply given by

〈�|�〉 = Tr M (τ)M (τ)∗. (19)

Introducing the Lagrange multiplier λ, the optimization
over M (τ) with the constraint 〈�|�〉 = 1 boils down to
maximizing the function

|TrF (τ)M (τ)∗ − λ(1 − TrM (τ)M (τ)∗)|2.

That is, we are maximizing a simple quadratic form. The
optimum tensor M (τ)

max is easily found, and is related to the
“fitting” approach used in the MPS literature [34,35]. It
reads

M (τ)
max = 1√

fτ
F (τ) (20)

with fτ = Tr F (τ)F (τ)∗. Equation (20) is the central
equation, around which all this article is constructed. In

020304-10

DMRG FOR SIMULATING QUANTUM CIRCUITS. . . PRX QUANTUM 4, 020304 (2023)

(a) (c)

*

*

(b)

*

*

*

FIG. 4. Compression step in the DMRG algorithm. (a) General schematic of the compression step: one adds K layers of the quantum
circuit, then approximates the resulting state with a MPS. (b) Tensor network representation of the scalar product to be optimized
[Eq. (18)]. The asterisk indicates the use of the complex conjugate of the tensor. (c) The central part of the calculation is the computation
of the F (τ) tensor.

addition, using Eqs. (18) and (20), one finds that the scalar
quantity fτ is also the partial fidelity of the calculation

fτ = |〈�|U(D+K) · · · U(D+1)|�Q(D)〉|2, (21)

which allows one to keep track of the progress of the opti-
mization inside a sweep over τ or over different sweeps.

For each calculation of F (τ), one obtains the local max-
imum of the partial fidelity with respect to M (τ); hence, fτ
can only increase as we sweep over the different tensors
τ = 1 . . .m. We can then repeat the sweep over all tensors
several times, yielding monotonically increasing fidelities
f (1)1 , . . . , f (1)m , f (2)1 , . . . , f (2)m , . . . , f (ns)

1 , . . . , f (ns)
m . The final

value f (ns)
m that we obtain after several sweeps over the

different tensors is the partial fidelity fδ that will enter our
estimate of the fidelity F̃ [see Eq. (27)], where δ indexes
the number of compression steps.

2. Contraction strategy for the tensor networks

To complete the single tensor optimization, we need to
perform the actual computation of tensor F (τ), i.e., we need
a strategy for contracting the tensor network of Fig. 4(c).
This calculation is performed exactly.

The order in which the contractions are performed has a
large impact on the final computation cost. In the case of
a deep circuit with few qubits, a “horizontal” contraction
order (e.g., from left to right) will save computation cost.
The horizontal contraction order corresponds to what is
done in Schrödinger-like simulations. Its cost is prohibitive
for a large number of qubits due to its exponential memory
footprint 2N . Here, however, we consider a shallow circuit
of only a few K layers at a time, so it is advantageous to
perform the contraction in “vertical” order (e.g., from top
to bottom) since the exponential cost is with respect to K

instead of N . This contraction algorithm is a direct adapta-
tion of the well-known algorithm for calculating the scalar
product between two MPSs [12].

An example of a contraction path for K = 4 is shown
in Fig. 5. We first perform trivial contractions such as
contracting one-qubit gates with nearby two-qubit gates.
Then, we contract the first top line of tensors and move
down until we have reached the (missing) tensor τ that
is being optimized. We repeat the same procedure from
the bottom of the network upwards up to the missing τ .
Last, we merge the bottom part with the top part. Through-
out the tensor network contraction, the largest tensors
have K physical indices (corresponding to the horizontal
edges) and two virtual indices (corresponding to the ver-
tical edges). Each physical index represents nb qubits, and
thus has dimension 2nb ; each virtual index has dimension
χ . The typical maximum memory footprint for large χ
thus scales as χ22nbK . This is much smaller than the 2N

scaling that one would be facing with a naive horizontal
contraction path.

Note that all the tensor network techniques discussed in
Sec. II (heuristics for contraction paths, slicing, etc.) could
be used here to optimize and/or parallelize the calculation
of F (τ).

C. Open versus closed simulation mode

The algorithm can be used in two modes, open or closed,
as discussed in Sec. II. The open, “Schrödinger-like” mode
provides the full quantum state after the D layers of the
circuit. One simply adds K layers at a time using the
compression step until one has added all the D layers.

In the closed simulation mode, we seek to calculate an
amplitude

�x = 〈x|UDUD−1 · · · U3U2U1|0〉 (22)

020304-11

THOMAS AYRAL et al. PRX QUANTUM 4, 020304 (2023)

*

*

FIG. 5. Contraction path to compute the F (τ) tensor.

for a fixed output bitstring x. A closed simulation calcu-
lation corresponds to the overlap of two MPSs, namely,
UD/2+1 · · · UD−1UD|x〉 and UD/2 · · · U1|0〉, which can be
calculated with two separate open calculations whose cir-
cuit depths are halved compared to the open simulation
mode. Since calculations at small depths give much bet-
ter fidelities with our technique (there is less entanglement
at small depth), the overall error rate ε is much lower.

In practice, we first partition the circuit into three sub-
circuits with respectively D1, D2, and D3 layers,

D = D1 + D2 + D3. (23)

Then, we perform an open simulation with the first D1
layers of the circuit (the forward part),

|�Q(D1)〉 ≈
D1∏

d=1

Ud|0〉. (24)

Then, we perform a second open simulation starting from
the |x〉 product state with the last D3 layers of the circuit
(the backward part):

|� ′
Q(D3)〉 ≈

D−D3+1∏

d=D

U†
d|x〉. (25)

Last, we add the remaining D2 layers and compute the
remaining scalar product without approximation, using a
contraction strategy analogous to that used for the calcula-
tion of the F (τ):

�x ≈ 〈� ′
Q(D3)|

D1+D2∏

d=D1+1

Ud|�Q(D1)〉. (26)

The last calculation is performed exactly at the same cost
as a compression step for D2 = K . It may be advantageous

to use D1 > D3 and/or the corresponding bond dimensions
χ1 > χ3 if one wishes to calculate many different ampli-
tudes �x. Indeed, the forward calculation needs to be done
only once, while the backward and final calculations must
be repeated for each bitstring x. On the other hand, if one
seeks the best possible fidelity, one should increase D2
as much as possible in order to reduce the depth of the
approximate parts of the calculation.

V. DETAILS ON THE NUMERICAL
EXPERIMENTS

A. Three quantum circuits

In this article, we performed numerical experiments
with three different quantum circuits, labeled sequences I,
II, and III, as discussed in Sec. III. A schematic of the three
sequences is shown in Figs. 6(a)–6(c), respectively.

Sequence I corresponds to the circuit of the quantum
supremacy experiment, as shown in Fig. 6(a). It is designed
to create a state as entangled as possible in as few steps
as possible given the available nearest-neighbor connec-
tivity. Each of the D layers (where D denotes the depth of
the circuit; D = 20 in the experiment) alternates between a
one-qubit gate applied on all qubits (orange squares, drawn
randomly from the

√
X ,

√
Y, and

√
W gates) and a two-

qubit gate applied on a set of pairs of qubits, with four
possible sets denoted by the letters A, B, C, and D, as
shown in Fig. 1 (A is denoted with green, B with light
blue, C with dark blue and D with red rectangles). The
two-qubit gate is the fsim(θ ,φ) gate defined in Ref. [3].
In the actual experiment, the values of θ and φ have been
optimized for each pair of qubits to reach the best fidelity.
Here we choose the constant values θ = 1, φ = π/2 that
are close to the average experimental values, and deep in
the difficult regime where the fsim gate has four differ-
ent singular values. Our numerical results do not depend
on this special choice. We also use the same sequence
ABCD-CDAB-ABCD-· · · as Ref. [3] in the supremacy
regime.

The alternative sequence II is a variation on the quan-
tum supremacy sequence where we have changed the order
of the gates applied. Sequence II is rotated by 90◦ com-
pared to sequence I and reads CDBA-BACD-CDBA-· · · .
This alternative sequence is just as useless but slightly
“less random” than the supremacy sequence, since we have
not designed it to be optimally random. This slight modi-
fication of the ordering has a strong impact of the fidelity
found in the simulations.

Finally, we benchmarked our DMRG algorithm on a
useful task, sequence III. Sequence III is actually not a
specific sequence of gates but a protocol for generating
circuits implementing the QAOA [13] for solving Max-
Cut problems of combinatorial optimization. We generated
many such problems for the N = 54 “Sycamore” chip and
selected instances where the associated QAOA circuit had

020304-12

DMRG FOR SIMULATING QUANTUM CIRCUITS. . . PRX QUANTUM 4, 020304 (2023)

1

2

3

4

5

6

7

8

9

10

11

12

A C

A C

A C

A C

A C

A C

B D

B D

B D

B D

B Dco
lu

m
ns

D
1 2 3 4

(a)

1

2

3

4

5

6

7

8

9

10

11

12

AC

AC

AC

AC

AC

AC

BD

BD

BD

BD

BDco
lu

m
ns

D
431 2

(b)

qubits

|0〉 H

|0〉 H

|0〉 H

|0〉 H

|0〉 H

|0〉 H

|0〉 H

|0〉 H

|0〉 H

|0〉 H

X P X

X P X

X P X

X P X

X P X

(c)

FIG. 6. The three sequences. Random quantum circuits defined by (a) sequence I and (b) sequence II. The circles represent columns
of alternatively five and four qubits from the Sycamore chip, indexed from left to right. Orange squares correspond to applying a
random one-qubit gate on each qubit (hence each column). Green, light blue, dark blue, and red rectangles correspond to applying
two-qubit gates between all qubits coupled by the associated coupler, respectively A, B, C, and D. (c) Beginning of a ten-qubit circuit
implementing the QAOA for a MaxCut problem (where P gates are parametrized phase shift gates).

a two-qubit gate count N2g ≈ 430 similar to the gate count
of sequences I and II. Figure 6(c) shows an example of
such a circuit for a small number of qubits (N = 10).

More specifically, we solve the MaxCut problem on
Erdös-Rényi graphs G(N ,P), a particular class of random
graphs with N vertices and a probability P for creating
an edge between two vertices. The QAOA ansatz cir-
cuit [13] is of the form U = ∏p

k=1 UBUC, where UB =∏
m=1,...,N e−iβXm and UC = ∏

m,n∈E e−iγZmZn with E the set
of edges of the graph. Here, we are not interested in the
result of the optimization itself. Hence, we set the varia-
tional parameters β and γ to random values. For the same
reason, we set the number of QAOA layers p to 1. The
edge density P in the Erdös-Rényi graphs is adjusted so
that the final two-qubit gate count is close to 430. We con-
sider two different cases: without and with compilation. In
the absence of compilation, the QAOA circuits do not nec-
essarily comply with the grid connectivity of Sycamore
(Fig. 1). To get about 430 gates, we pick P = 32%. In
the second case, we compile the QAOA circuit to com-
ply with the connectivity of Sycamore. The compilation
uses SWAP insertion methods [36] to create a circuit that
uses only the nearest-neighbor two-qubit gates available in
Sycamore. As this procedure increases the depth of the cir-
cuit, we lower the edge probability P down to 5% to keep
the final two-qubit gate count to 430.

B. Estimating the fidelity of a DMRG simulation

A very interesting feature of the DMRG algorithm is
that the fidelity F = |〈�P|�Q〉|2 of the calculation can be
easily estimated, even though we do not necessarily have
access to the actual perfect state |�P〉. Inside a simulation,

we estimate the fidelity with

F̃ =
∏

δ

fδ , (27)

where the partial fidelities fδ are the final fidelities of
compression step δ,

fδ = |〈�Q(δK + K)|U(D+K) · · · U(D+1)|�Q(D = δK)〉|2,
(28)

at the end of the different optimization sweeps. The partial
fidelity fδ is simply given by the norm of the last F (τ) tensor
calculated during the compression step. It follows that our
estimate of the error rate reads

ε̃ = 1 − F̃1/N2g . (29)

It was shown in Ref. [7] through a combination of analyti-
cal and numerical arguments that to very good approxima-
tion one has

F̃ ≈ F , (30)

and the arguments and numerics given there remain valid
for this article. However, since we have used a differ-
ent compression algorithm here, we have performed an
additional extensive numerical study of the validity of the
multiplicative law [Eq. (30)] for up to a maximum of 36
qubits for which we can obtain the exact state |�P〉, and
hence the exact fidelity F . The multiplicative law (27) has
a very important role, as it allows us to perform estima-
tions of the fidelities in regimes where the exact calculation

020304-13

THOMAS AYRAL et al. PRX QUANTUM 4, 020304 (2023)

FIG. 7. Different qubit groupings used in our simulation. All qubits shaded with the same color (yellow, blue, green, or red) belong
to the same tensor M (τ).

is out of reach and only F̃ can be obtained. We find that
Eq. (30) indeed holds in all regimes of interest for random
circuits. In QAOA circuits, F̃ becomes a lower bound of
F (see Fig. 11 below), which means that the error rates we
give are pessimistic estimates for the actual error rates we
achieve.

Figure 10 below shows the comparison between the
exact fidelity F(D) (blue line) and our estimate F̃(D)
(dashed blue line) for a large choice of values of nb and nc
up to N = 36 qubits (beyond that, we do not have access to
the exact state |�P〉). We find a perfect match between the
two curves in the relevant 1 ≥ F ≥ 1/2N regime. For very
large depth, F saturates at an exponentially small value
1/2N while F̃ continues to decrease exponentially. The
exponentially small asymptotic value 1/2N corresponds
to the overlap between two independent Porter-Thomas
chaotic vectors; see the derivation around Eq. (38). It is
essentially the lowest fidelity that can be reached in a
random circuit.

Interestingly, Eq. (27) provides an estimate of the error
εx even in the closed mode where we calculate a single
amplitude �x. To check this assertion, we have computed
the histogram of the error rates per gate in the closed mode
for small systems where we could calculate all the ampli-
tudes �x exactly. Typical results are shown in Fig. 8(b)
below for three different configurations. We find that our
estimated fidelity closely matches the actual value with a
precision of a few percent (typically less than 5%) for all
the points in the histogram. Note that in all regimes we
have F̃ ≤ F , so that F̃ underestimates the actual fidelity.

C. Different groupings of the qubits

Our DMRG algorithm gives us the freedom to define
how we group the different qubits that correspond to each

tensor M (τ), 1 ≤ τ ≤ m. The different groupings that we
have used are shown in Fig. 7, where each color cor-
responds to one tensor M (τ). Note that using groupings
is equivalent to using a maximum bond dimension that
varies from tensor to tensor. The optimum choice depends
strongly on the particular problem considered.

Different groupings may have some advantage depend-
ing on the actual circuit ran. The vertical groupings V1 and
V2 group the qubits by columns. For instance, V1 contains
three tensors with respectively 5 (23), 2 (9), and 5 (22)
columns (qubits). Layers B and D are “trivial” for group-
ing V1, i.e., they are internal to one tensor and hence have a
perfect fidelity fδ = 1 for any value of the bond dimension
χ . Likewise, layers A and C are trivial for grouping V2. For
the larger systems of Fig. 2(c) with more than 54 qubits, we
have used an extension of V1 and V2 by adding additional
tensors of two columns to obtain N = 23 + 9(m − 2)+ 22
qubits with m tensors having respectively 23, 9, 9, . . . , 9
and 22 qubits. We find that the vertical groupings are
optimum for sequence II.

Another possibility is to group the qubits horizontally in
rows as in H1 (for which A and D are trivial), or H2 (for
which B and C are trivial). Last, we may group the qubits
diagonally as in D1 and D2. In some calculations, we may
try and alternate between two groupings, e.g., D1 and D2
to optimize the number of trivial gates.

D. Benchmark of the algorithm

Let us now see how the algorithm performs in prac-
tice. All the simulations are carried out on a Sycamore-like
architecture with nc columns where each column has nb
(for odd columns) or nb − 1 (for even columns) qubits, as
shown in Fig. 1. The real Sycamore chip corresponds to 53
qubits arranged in nc = 12 columns with nb = 5 qubits in

020304-14

DMRG FOR SIMULATING QUANTUM CIRCUITS. . . PRX QUANTUM 4, 020304 (2023)

(a) (b)

(c) (d)

(e) (f)

ε
(%

)

ε
(%

)

ε
(%

)

ε
(%

)

ε
(%

)

C
ou

nt
 (

ar
b.

 u
ni

ts
)

Error rate per gate (%) Error rate per gate (%) Error rate per gate (%)

28 qubits, sequence I

28 qubits, sequence I 28 qubits, sequence I

28 qubits, sequence II

54 qubits, sequence II

Vertical
Diagonal
Horizontal

Vertical
Diagonal
Horizontal

FIG. 8. Convergence of the DMRG algorithm. (a) Evolution of the error per gate versus the total number of local optimizations.
Three steps correspond to a full sweep. Different colors correspond to different compression steps for a random (squares and dashed
lines) and a TEBD (disks and solid lines) initialization. The different curves correspond to different compression steps in an open
simulation [respectively the 4th (blue), 10th (cyan), and 12th (magenta) steps, with corresponding depths being D = 5, 13, and 16].
(b) Histogram of the error rates per gate εx of the amplitudes of individual bitstrings x computed using closed simulation for various
nb, nc, and χ . Blue squares denote the geometric mean (

∏
x εx)

1/2N
. Red stars denote the exact error per gate 1 − F2/(ND). (c),(d) Role

of K and the number of sweeps ns. Evolution of the error rate per gate ε versus depth D for various numbers of layers K and numbers
of sweeps. Parameters are χ = 64, nb = 4, and nc = 8. (c) Vertical ordering: groupings V1, V2. (d) Diagonal ordering: groupings D1,
D2. (e),(f) Role of the choice of qubit groupings and of the sequence of gates applied. Evolution of the error rate per gate as a function
of current depth. (e) Sequence I, used in the Google supremacy experiment. (f) Sequence II, a variation on the supremacy sequence.

020304-15

THOMAS AYRAL et al. PRX QUANTUM 4, 020304 (2023)

the first column. We also performed simulations on smaller
systems where we could obtain the exact state (up to
N = 35 qubits) using Atos Quantum Learning Machine’s
Schrödinger-style “qat-linalg” simulator.

1. Convergence of the DMRG compression step

Figure 8(a) shows the convergence of the optimized
MPS during the DMRG sweeps. Each tensor is optimized
separately one after the other. When all tensors have been
optimized (one sweep), one repeats the procedure until
convergence. Figure 8(a) shows how the error decreases
as a function of the total number of tensors that have been
optimized. More precisely, we plot the error per gate ε =
1 − (f (k)τ)

1/N (K)2g as a function of the number of optimiza-
tion steps, i.e., the number of evaluations of Eq. (20). Here
N (K)

2g is the number of two-qubit gates in the K newly added
layers and f (k)τ is the fidelity obtained upon optimizing ten-
sor τ in sweep k. Since the corresponding MPS contains
m = 3 tensors, three optimization steps correspond to one
full sweep. Since each step provides a full optimization
over one tensor, the error rates decrease monotonically, as
expected.

Figure 8(a) shows two types of initialization of MPS |�〉
that is being optimized: either an arbitrary random MPS
(squares and dashed lines) or an already partially opti-
mized MPS obtained from the TEBD algorithm of Ref. [7]
(disks and solid lines). By construction, the DMRG error
can only be lower than the TEBD error. Unsurprisingly,
we find that the convergence is much faster when starting
from the TEBD initialization (typically 1–3 sweeps) than
when starting from a random guess (typically 4–6 sweeps).
However, the final error found shows weak dependence on
the initial starting point [in Fig. 8(a) we show one case
(pink curves) where there is a visible difference between
the TEBD initialization and the random ones, but it is
seldom observed]. We have also repeated the simulation
with different random initializations and the error always
converges to the same value. Since we optimize only one
tensor at a time, we cannot dismiss the possibility of being
trapped in a local minimum, but these observations indi-
cate that the DMRG algorithm gets at least very close to the
global optimum MPS. Note that this is the global optimum
MPS for a given compression step. In Sec. VI, we discuss
how the algorithm manages to track the global optimum
for the full circuit after several compression steps.

2. Role of the number of layers per step K and number
of sweeps ns

In most of the numerical experiments shown in this arti-
cle, we have used the vertical ordering with K = 2, ns = 1
or the diagonal ordering with K = 1, ns = 4. In the V1
grouping, “even” layers of types B and D (see Fig. 7) can
be absorbed trivially into the MPS without increasing the

bond dimension. It follows that the fidelity for K = 1 and
K = 2 is actually the same. We have performed a few sim-
ulations in the V1 grouping with K = 4. They present a
small, typically 0.5% gain with respect to K = 2 in return
for a 16-fold increase in computing time. Note that this
gain reflects our ability to find the MPS closest to |�P〉, not
the ability of the MPS to capture the exact state. Indeed,
the K = 2 and K = 4 calculations share the same bond
dimension, and hence the same maximum level of possible
entanglement.

Figure 8(c) shows the error rate ε as a function of the
depth D for different values of the number of layers K
added inside the compression step, for the vertical group-
ing V1. The error rate for depth D ≤ 2 is zero as our MPS
has a bond dimension large enough to accommodate the
corresponding entanglement exactly. As one increases D
further, one starts to see that the approximation and the
error rate increase. As mentioned above, the error rates
for K = 1 and K = 2 are identical with additional oscil-
lations for the intermediate points for K = 1. This increase
in the error rate for intermediate points for K = 1 corre-
sponds to the fact that these depths do not benefit from
an upcoming trivial layer; hence, the average error rate is
higher. For K = 4, we observe a small gain at large depths,
but since the corresponding computational time increases
significantly, we have not used K = 4 in practice. Simi-
lar calculations for the diagonal grouping D1 are shown in
Fig. 8(d). The error rate shows oscillations due to the fact
that, in this configuration, the D gate is very costly. Over-
all, we find that, for a large enough number of sweeps ns,
the K dependence of the error rate is small. This is already
a strong indication that the algorithm provides a MPS not
far from optimum, even though we are carrying out multi-
ple compression steps. Increasing the number K of layers
provides a small gain of < 1% in the error rate at D = 20.
However, the computational cost increases exponentially
with K . Calculations with 54 qubits and K = 2 are beyond
the scope of the present article for the diagonal grouping.

3. Role of the qubit grouping

Figures 8(e) and 8(f) show the error rate versus depth for
three different groupings: vertical, diagonal, and horizon-
tal. We observe important variations of the error rate with
the grouping as well as with the circuit (sequence I versus
sequence II). Note that, for this small system of 28 qubits
(nb = 4, nc = 8), sequence II is only marginally easier
than sequence I because the system is almost like a square
(as opposed to a rectangle for the Sycamore case nb = 5,
nc = 12). This difference between different groupings is
in itself not surprising: different circuits tend to entangle
some qubits more than others. Since the choice of the
grouping amounts to choosing the position of the “entan-
glement bottleneck,” there must be an optimum grouping
for each circuit.

020304-16

DMRG FOR SIMULATING QUANTUM CIRCUITS. . . PRX QUANTUM 4, 020304 (2023)

VI. DOES THE DMRG ALGORITHM PROVIDE
THE OPTIMAL MPS?

In this section, we discuss whether the MPS obtained
by the DMRG algorithm corresponds to the best possible
MPS. Indeed, two possible causes may prevent the final
MPS obtained from being optimal: the fact that the opti-
mization is broken into different compression steps, and
the fact that within a compression step the optimization is
performed tensor by tensor, not globally. We analyze this
problem in the context of the random circuit of sequence
II.

To assess this point, Fig. 9 shows three different errors ε
versus depth D curves.

(a) The blue squares (continuous line) show the error ε̃
obtained within the DMRG algorithm.

(b) The blue stars (dashed line) show the error εSVD
corresponding to best possible approximation of the
exact state with a MPS, as explained below. This
reference curve can only be obtained for a small
number of qubits and is not available in general.

(c) The black dash-dot line shows the error εopt, the
best possible approximation of a purely chaotic state
with a MPS, as given by

εopt = 1
D

(
log 2 − log 4χ

2N

)
(31)

(see the analytical derivation in Appendix B). We
refer to Eq. (31) as the “chaotic optimum error.” The
fact that the chaotic optimum error decreases with D
stems from the simple fact that the best fidelity that
one may obtain when approximating a chaotic state
with a MPS is a finite number Fopt = 4χ/2N/2, so
that the error per gate must decrease.

A. Best possible MPS calculation

To obtain the blue star (dashed line) “best possible
MPS” curve of Fig. 9, we perform an exact “Schrödinger-
like” simulation of the small 28-qubit system and obtain
the exact state |�P(D)〉.

In a second step, we split the qubits into two groups A
and B of equal size, so that |�P(D)〉 reads

|�P(D)〉 =
∑

αβ

�αβ(D)|α〉A|β〉B, (32)

where state |α〉A (|β〉B) forms an orthonormal basis of
A (B). We perform a singular value decomposition � =
USV† of the 2N/2 × 2N/2 matrix, �ab, from which we get

Er
ro

r
ε

pe
r

ga
te

 (
%

)

Chaotic optimum

FIG. 9. Comparison of the error per gate to the SVD error as
a function of depth D. Vertical qubit grouping V2. The chaotic
optimum is Eq. (31).

the Schmidt decomposition of |�〉:

|�〉 =
∑

μ

Sμ|μ〉A|μ〉B (33)

with |μ〉A = ∑
α Uαμ|α〉A (and a similar expression for

|μ〉B). Sorting the singular values Sμ in decreasing order,
we can obtain the best approximate MPS by truncating
the above expression and keeping the χ largest singular
values.

B. Analytical calculation of the chaotic optimum (31)

The computation of the chaotic optimum (31) follows
the same procedure as for the “best possible MPS” dis-
cussed above with a small modification: instead of starting
with the exact state |�P(D)〉, we start with a fully chaotic
state |�〉 distributed according to the Porter-Thomas dis-
tribution, i.e.,

|�〉 =
N−1∑

x=0

�x|x〉, (34)

where N = 2N and the Porter-Thomas vector �x cor-
responds to one column of a unitary matrix distributed
according to the Haar (uniform) measure of U(N).

The derivation of the “chaotic optimum” error for-
mula follows from the properties of the singular values of
random Gaussian matrices. It is performed in Appendix B.

C. Numerical results

We find in Fig. 9 that the best possible error εSVD first
increases as the system gets more and more entangled,

020304-17

THOMAS AYRAL et al. PRX QUANTUM 4, 020304 (2023)

10 10

10 8

10 6

10 4

10 2

100

To
ta

l f
id

el
ity

nb= 3 nc= 6 15 qubits nb= 3 nc= 8 20 qubits nb= 3 nc= 10 25 qubits

nc= 10

nb= 3 nc= 12 30 qubits

10 10

10 8

10 6

10 4

10 2

100

To
ta

l f
id

el
ity

nb= 4 nc= 6 21 qubits nb= 4 nc= 8 28 qubits nb= 4 nc= 10 35 qubits

10 10

10 8

10 6

10 4

10 2

100

To
ta

l f
id

el
ity

nb= 5 nc= 6 27 qubits nb= 5 nc= 8 36 qubits Google Sycamore
nb= 5, nc= 12

(54 qubits)

4 20 40 60
Depth D

10 10

10 8

10 6

10 4

10 2

100

To
ta

l f
id

el
ity

nb= 6 nc= 6 33 qubits 4 20 40 60
Depth D

4 20 40 60
Depth D

4 20 40 60
Depth D

4 20 40 60
Depth D

nc= 8nc= 6 nc=12

nb= 3

nb= 4

nb= 5

nb= 6

V1vertical
Sequence II

K = 2, ns=1, = 64

FIG. 10. Comparison of various fidelities. Fidelities as a function of total circuit depth D, at fixed bond dimension χ = 64. Exact
fidelity F [Eq. (12)], cross-entropy benchmarking fidelity FB [Eq. (3)], product fidelity F̃ [Eq. (27)]. Open simulation mode and
K = 2 layers.

reaches a maximum at D ≈ 12, and then starts to decrease
following closely the chaotic optimum. The maximum
error at D = 12 hence corresponds to the depth beyond
which the state of the system is chaotic.

In contrast, in our DMRG simulations the error ε̃ can,
by construction, only increase. It eventually saturates to a
finite value when the MPS tensors become random (see an
in-depth discussion of this last point in Ref. [7]). Hence,
it must deviate from the best possible approximation εSVD

at some point. Figure 9 shows that this deviation appears
around D = 12 when the system becomes chaotic. At small
depths, the DMRG results are indeed very close to the best
possible approximation. From the Fig. 9 data, we conjec-
ture that the intersection between the DMRG error and
the chaotic optimum can be used to estimate when the
quantum state becomes chaotic. Before one reaches the
chaotic regime, the DMRG algorithm is close to optimum.
Conversely, Fig. 9 can be seen as a strong indication that

020304-18

DMRG FOR SIMULATING QUANTUM CIRCUITS. . . PRX QUANTUM 4, 020304 (2023)

FIG. 11. Comparison of various fidelities for the QAOA circuit. Fidelities as a function of bond dimension χ , at fixed circuit depth
[p = 1 (left) and p = 2 (right)]. Exact fidelity F [Eq. (12)] and product fidelity F̃ [Eq. (27)]. Open simulation mode.

the DMRG algorithm will perform significantly better for
nonchaotic states than for chaotic ones.

VII. RELATION BETWEEN FIDELITY AND
CROSS-ENTROPY BENCHMARKING

The relation between the actual fidelity F and the cross-
entropy benchmarking FB is far from trivial. Arute et al.
[3] have argued that in their experiment and in the large-
depth chaotic regime both quantities are equivalent, FB ≈
F ; see also Ref. [7] for a discussion.

Here we show that in our numerics we have a very
different relation

FB ≈
√
F , (35)

which implies that FB � F (since F
 1). We give two
bodies of evidence for Eq. (35).

(a) A large body of numerical calculations for systems
up to N = 36 qubits where we can simulate the
exact state |�P〉, and hence calculate both the left-
and right-hand sides of Eq. (35)

(b) An analytical calculation in the very large D limit.
In this limit, |�P〉 and |�Q〉 converge to two inde-
pendent random chaotic states and one can calculate
the two fidelities exactly and show that Eq. (35)
holds. It follows that the type of errors present in
an experiment plays an important role in knowing
which relation holds: assuming that one only makes
precision errors experimentally (such as over rota-
tions during a gate), one would retain a pure state at
large depth and Eq. (35) would hold.

These two bodies of evidence are presented in the rest of
this section.

A. Numerical evidence for FB ≈ √F
Figure 10 shows F (blue) and FB (green) for several

values of nb and nc for which N ≤ 36, so that the exact

state could be obtained using the large RAM of the Atos
Quantum Learning Machine. Also shown is

√F (red),
which is close to the green curve as well as the two exact
asymptotic values 1/2N for F and 1/2N/2 for FB. As one
gets closer to the Sycamore chip regime (nb = 5, nc = 12),
for which no exact statement can be made, we find that the
relation FB ≈ √F becomes increasingly valid.

In addition to these checks for random circuits, we also
check, in Fig. 11, that the use of F̃ as a proxy for F is jus-
tified. In random circuits, some of us proved that F ≈ F̃
[7] (this can be checked in Fig. 10). In QAOA circuits,
we observe that F̃ is a lower bound for F: F ≥ F̃ . Thus,
the error rates we obtain (which are based on F̃) are pes-
simistic estimates for the actual error rates we achieve
(which would correspond to F , which however cannot be
estimated efficiently).

B. Fidelity and cross-entropy benchmarking in the
chaotic limit

In this subsection, we calculate F and FB analytically
in the D → ∞ limit. In this limit, the two states |�P〉
and |�Q〉 become essentially independent and distributed
according to a Porter-Thomas distribution. Let us define
N = 2N and denote by U and V two N × N matrices
distributed according to the Haar (uniform) measure of
the U(N) group. With this notation, the two states are,
for very large depths, the first column of matrices U and
V: 〈x|�P〉 ≡ Ux1 and 〈x|�Q〉 ≡ Vx1. We further denote by
〈X 〉 = ∫

XdUdV the average over these ensembles. We
make use of two integrals that can be found in Ref. [37]:
for any matrices A, B, C, and D, one has

∫
dUTrAUBU† = 1

N TrA TrB (36)

020304-19

THOMAS AYRAL et al. PRX QUANTUM 4, 020304 (2023)

and
∫

dUTrAUBUCU†DU†

= 1
N 2 − 1

[
TrA TrBDTrC + TrADCB

− 1
N TrA TrBDC − 1

N TrADBTrC
]

. (37)

Using the first of these two integrals, we obtain

〈F〉 =
∫

dUdV
∑

x,x′
Ux1U†

1x′Vx1V†
1x′= 1

N (38)

and

〈FB〉 = N
∫

dUdV
∑

x

Ux1U†
1xVx1V†

1x−1 = 0. (39)

Since 〈FB〉 = 0 vanishes in average, we need to calculate
its variance to estimate its typical value. We get

〈(FB)2〉 = N 2
∫

dUdV
∑

xx′

Ux1Ux′1U†
1xU†

1x′Vx1Vx′1V†
1xV†

1x′−1. (40)

After some straightforward algebra, we get

〈(FB)2〉 = N − 1
(N + 1)2

. (41)

It follows that at very large depths, FB ≈ 1/
√N ≈ √F .

Figure 12 shows numerical calculations of F and FB for
two independent Porter-Thomas vectors together with the
analytical expressions derived above.

VIII. CONCLUSIONS

We have presented an algorithm to efficiently simu-
late quantum circuits with finite fidelity. This algorithm
extends Ref. [7], where some of us adapted the TEBD tech-
nique from many-body physics to the context of quantum
circuits. Here we have introduced a generalization of the
DMRG algorithm to quantum circuits. This new algorithm
also has a simulation cost that scales polynomially with the
number of qubits N and the depth of the circuit D. In addi-
tion, it is more general and more efficient than the previous
TEBD-like algorithm. From the simulation point of view,
we emphasize that the main building block of our DMRG
algorithm, the “compression step,” is completely general
and could be used in other contexts. In particular, it may
be combined with other tensor network techniques such as
slicing or contraction heuristics as in Refs. [4,5]. Another

FIG. 12. Various fidelities of random states. Fidelity
F = |〈�P|�Q〉|2 and cross-entropy benchmarking
FB = N ∑

x |〈x|�P〉|2|〈x|�Q〉|2 − 1 for two independent
random vectors |�P〉 and |�Q〉 distributed according to the
Porter-Thomas distribution.

direction would be to implement the DMRG algorithm for
tensor networks different from a simple MPS such as a tree
network or a two-dimensional lattice of tensors (PEPSs).
These generalizations have not been attempted yet.

We have benchmarked our algorithm on the supremacy
sequence designed by Google and found that we can pro-
duce amplitudes (hence bitstrings) of quality as good as in
the quantum supremacy experiment [3]. More importantly,
for QAOA sequences, representative of useful applica-
tions of quantum computers, we obtain much better fideli-
ties than the supremacy threshold set by Google. Our
results provide strong evidence that quantum advantage
(the ability for a quantum computer to perform a use-
ful task better than a classical computer) might be much
harder than reaching quantum supremacy (the ability for a
quantum computer to perform a given, not necessarily use-
ful, task that no classical computer can perform), despite
what the words seem to indicate. In particular, since our
algorithm scales polynomially with the number of qubits,
an improvement in the experimental fidelity is needed in
order for the experiments to reach better results than the
DMRG algorithm for useful tasks.

Our work emphasizes the need for benchmarks of quan-
tum computers that test the actual usefulness of quantum
processors, rather than their ability to perform a rela-
tively contrived task, in order to incentivize hardware
and software efforts towards concrete applications. Such
benchmarks should strive to be application centric, hard-
ware agnostic, and scalable. Some of us recently proposed
a protocol fulfilling these criteria [38].

ACKNOWLEDGMENTS

We thank Giuseppe Carleo, Lei Wang, and Pan Zhang
for helpful feedback about prior work in simulating quan-
tum circuits and for pointing out several errors in the

020304-20

DMRG FOR SIMULATING QUANTUM CIRCUITS. . . PRX QUANTUM 4, 020304 (2023)

literature discussion. X.W. acknowledges funding from the
French ANR QCONTROL as well as the Plan France
2030 ANR-22-PETQ-0007. T.L., X.W., and T.A. acknowl-
edge funding from ANR QPEG. X.W. acknowledges fund-
ing from the European Union’s Horizon 2020 research
and innovation programme under Grant Agreement No.
862683 (UltraFastNano). E.M.S. acknowledges helpful
discussions with Soonwon Choi on the topic of cross-
entropy benchmarking and fidelity. The Flatiron Institute
is a division of the Simons Foundation. The computations
were performed on the Atos Quantum Learning Machine.

APPENDIX A: A SHORT INTRODUCTION TO
TENSOR NETWORKS FOR SIMULATING

QUANTUM CIRCUITS

In this appendix, we briefly review the main aspects of
tensor networks in the context of quantum circuit simula-
tion.

1. Basic definitions and actions: contracting and
splitting

A tensor is simply an array of complex numbers that
generalizes the concepts of vectors (1D array) and matri-
ces (2D arrays) to an arbitrary number of indices. A tensor
Vi with one index i (that takes a finite number of values) is
simply a vector; a tensor with two indices Aij is a matrix;
a tensor Mijk (Pijkl) is a 3D (4D) array of numbers. A ten-
sor is represented graphically by a box (here a rectangle
or a circle) with as many legs (outgoing lines) as there are
indices; see the examples in Fig. 13.

There are two basic operations that one can do with ten-
sors: contracting and splitting. Contractions of two tensors
is the generalization of matrix-matrix multiplication. An
example is shown in Fig. 13(a) for the contraction of Mabj
with Gij . The resulting tensor M ′

abi is simply given by

M ′
abi =

∑

j

Gij Mabj . (A1)

In other words, one performs a summation over the index
j that links the two tensors.

The second operation, splitting of, e.g., a tensor Uαβα′β ′ ,
is illustrated in Fig. 13(b). It consists of three steps. First,
one constructs two metaindices i and j that group sev-
eral indices together. For instance, one may choose i =
α + Nαα′ and j = β + Nββ ′, where Nα and Nβ are the
numbers of different values that the indices α and β take,
respectively. This allows us to define a one-to-one mapping
between the tensor Uαβα′β ′ and a matrix Û defined as

Ûij ≡ Uα(i)β(j)α′(i)β ′(j). (A2)

Second, we may use any result known from linear alge-
bra on matrix Û, for instance, a QR decomposition, a SVD

decomposition, or any other decomposition. Let us sup-
pose that we use a QR decomposition and write Û = Q̂R̂.
Third, we use mapping (A2) backward to go back to the
original indices and obtain

Uαβα′β ′ =
∑

a

Qαα′aRaββ ′ , (A3)

i.e., we have split the tensor Uαβα′β ′ into terms of the
contraction of two tensors Qαα′a and Raββ ′ .

2. Tensor networks for quantum circuits

There is a natural correspondence between the usual rep-
resentation for quantum circuits and tensor networks. The
left-hand side of Fig. 13(c) shows a small quantum circuit
for four qubits that uses the standard Hadamard gate H , the
controlled-NOT gate CX , and the controlled-Z gate CZ . The
system wave function �i1i2i3i4 is a tensor whose explicit
form is given by

�i1i2i3i4 =
∑

i′1i′2i′3i′4i′′2 i′′3

CX
i1i2i′1i′′2

CX
i3i4i′′3 i′4

CZ
i′′2 i′′3 i′2i′3

Hi′10Hi′20Hi′30Hi′40,

(A4)

i.e., it corresponds to the contraction of the tensor network
shown on the right-hand side of Fig. 13(c). The problem
of computing the wave function is reduced to the problem
of performing the summation over the internal indices, i.e.,
the contraction of the tensor network [39]. Finding the best
order to perform the contraction is in general a difficult
(NP hard) problem for which there nevertheless exist good
heuristics.

In order to perform the contraction of such a tensor
network on a large computer that contains many cores,
a common strategy is known as “slicing.” One selects a
few indices and “freezes” them. In the above example, one
could, for instance, decide to slice on indexes i′′2 and i′3. In
practice, this means that each computing core is given a
different value of (i′′2, i′3) and we compute the sum over all
the other (nonfrozen) indices. At the end, the results from
the different computing cores are simply added together.
The advantage of the slicing approach is that it is embar-
rassingly parallel (the tasks given to the different cores are
independent; they do not need to communicate); hence,
one obtains an optimum speed up. The second advantage is
that it lowers the memory footprint per core exponentially
if the frozen indices are chosen correctly.

3. Schrödinger versus Schrödinger-Feynman-like
simulations

There are several possible different strategies to con-
tract the tensor network associated with a quantum circuit.
Figure 14 shows two examples for the Schrödinger and the
Schrödinger-Feynman approaches discussed in Sec. II. In

020304-21

THOMAS AYRAL et al. PRX QUANTUM 4, 020304 (2023)

a

b

M
j

G

i
=

a

b

M′ i

α

β

α′

β′
=

U

α

β

α′

β′
R

a

Q

|0〉 i4H

|0〉 i3H

|0〉 i2H

|0〉 i1H

Z

X

X

→
|0〉 i4

i′
4

|0〉 i3
i′
3

|0〉 i2
i′
2

|0〉 i1
i′
1

i′′
2

i′′
3

(a)

(b)

(c)

FIG. 13. Tensor networks and quantum circuits. (a) Contraction of a three-index tensor M with a one-qubit gate G. (b) QR
decomposition of a two-qubit gate U. (c) From a quantum circuit to its tensor network representation.

the Schrödinger approach, the contraction of the network is
performed from left to right, as shown in Fig. 14(b). In the
Schrödinger-Feynman approach, shown in Fig. 14(c), one
divides the qubits into two groups and splits the two-qubit
gates that connect the two groups. For given values α,β, γ
of the indices cut by the dotted line, one may propagate the
two substates �(α,β,γ)

1 and �(α,β,γ)
2 independently; see Eqs.

(9) and (10) in the main text. Thus, instead of one com-
plex simulation of the whole circuit, we perform χp easier
simulations, where χp is the number of values taken by the
extra bond indices.

4. Pointers to the literature

The introduction above barely scratches the surface of
the vast literature devoted to tensor networks and quantum
state compression. Readers interested in the topic may find
the following references useful. Eisert et al. [40] explained
why, in many situations of physical interest, the entangle-
ment is expected to be small; hence, the corresponding
state is amenable to compression. Ref. [12] contains a
pedagogical discussion of Matrix Product States (MPS)
and their operator equivalent matrix product operators.
Another classical introduction is Ref. [41]. A review of
MPS-based time evolution methods can be found in Ref.
[42]. The present work can be considered as an extension
of these time-dependent techniques to discrete quantum
circuits.

APPENDIX B: DERIVATION OF THE CHAOTIC
OPTIMUM ERROR [EQ. (31)]

In this appendix, we prove that, for a chaotic state
|�〉 distributed according to the Porter-Thomas distribu-
tion, the best possible fidelity that one may obtain by
approximating it with a m = 2 MPS is

Fopt = 4χ
2N/2 . (B1)

To establish this result, the wave function�x is considered
as a matrix �αβ , where index α labels half of the qubits
and β labels the other half. Performing a singular value
decomposition of the 2N/2 × 2N/2 matrix �αβ to obtain its

singular values Sμ, the fidelity for a bond dimension χ is
given by the largest χ singular values

Fopt =
χ∑

μ=1

S2
μ. (B2)

The proof consists of two parts:

(a) establish that the matrix �αβ is, in the large-(N =
2N) limit, a complex Gaussian random matrix;

(b) use known results from random matrix theory to
obtain the distribution of singular values from which
one can obtain Eq. (B1) after a little algebra.

We perform these tasks below.

1. Construction of a Porter-Thomas state from
random Gaussian variables

We want to establish that a Porter-Thomas state can be
constructed from random Gaussian variables. We recall
that the sum S of the squares of k random normal variables
Xi ∼ N (0, σ 2) follows a (generalized) χ2 distribution with
mean and variance

E(S) = k/σ 2, (B3)

Var(S) = 2k
σ 4 . (B4)

Its probability density function is

P(s) = 1
2k/2�(k/2)σ 2

(
s
σ 2

)k/2−1

e−s/(2σ 2). (B5)

Let us construct a wave function � with 2N complex
amplitudes

�x = ψ ′
x + iψ ′′

x , (B6)

and choose the real and imaginary components to be
normally distributed:

ψ ′
x ∼ N (0, 1/(2 · 2N)), (B7)

020304-22

DMRG FOR SIMULATING QUANTUM CIRCUITS. . . PRX QUANTUM 4, 020304 (2023)

N

D

i1|0〉

i2|0〉

i3|0〉

i4|0〉

i5|0〉

i6|0〉

i7|0〉

i8|0〉

i9|0〉

(a)

N

D

i1

i2

i3

i4

i5

i6

i7

i8

i9

Ψ(D)

(b)

N

D

i1

i2

i3

i4

i5

i6

i7

i8

i9

Ψ(D)
1

Ψ(D)
2

α γβ

(c)

FIG. 14. Schematic of two contraction strategies for simu-
lating a quantum circuit. (a) Quantum circuit to contract. (b)
Schrödinger-like simulation. (c) Schrödinger-Feynman-like sim-
ulation.

ψ ′′
x ∼ N (0, 1/(2 · 2N)). (B8)

Let us first consider the probability

px = |�x|2 = (ψ ′
x)

2 + (ψ ′′
x)

2. (B9)

This random variable is a sum of normal variables. Apply-
ing Eq. (B5) with k = 2 and σ 2 = 1/(2 · 2N), we find

that

P(px) = 2N e−2N px , (B10)

i.e., the Porter-Thomas distribution, as expected.
Let us now check that � is normalized in the large-N

limit. Let us consider its norm

‖�‖2 =
∑

x

|�x|2 =
∑

x

(ψ ′
x)

2 + (ψ ′′
x)

2. (B11)

This random variable is also a sum of normal variables.
We can apply Eqs. (B3) and (B4) with k = 2 · 2N and σ 2 =
1/(2 · 2N). We find that

E(‖�‖2) = 1, (B12)

Var(‖�‖2) = 1
2N . (B13)

We have constructed a wave function whose norm is 1
on average, with a deviation to the average that vanishes
exponentially fast as the number of qubits n increases.

As a result, matrix �αβ is a random complex Gaus-
sian matrix, up to exponentially small corrections. Let us
note that the Gaussian probability distribution that we have
used,

P(�) ∝ exp
(

−2N
∑

x

|�x|2
)

, (B14)

obviously respects the Haar invariance

P(�)
∏

x

d� ′
x�

′′
x = P(�̄)

∏

x

d�̄ ′
x�̄

′′
x (B15)

for any unitary rotation �̄ = U� with UU† = 1 and for all
N . It is only the constraint ‖�‖ = 1 that is enforced only
in average with an exponentially small variance.

2. Scaling law for the singular values of a
Porter-Thomas state

In this subsection, our goal is to understand how the
Schmidt coefficients Sμ of the Porter-Thomas state con-
structed in the previous subsection decrease as a function
of the index μ: a fast decrease will be synonymous of a
high MPS quality.

For this purpose, we make use of known results from
random matrix theory. More specifically, we use the fact
that, in the large-N limit, the average density ρ(S) ≡
1/2N/2 ∑2N/2

μ=1 δ(S − Sμ) of the singular values Sμ of a ran-
dom complex 2N/2 × 2N/2 Gaussian matrix [with matrix
elements �α,β ∼ N (0, σ 2)+ jN (0, σ 2), σ 2 = 1/(2 · 2N),

020304-23

THOMAS AYRAL et al. PRX QUANTUM 4, 020304 (2023)

as discussed in the previous subsection] follows a quadrant
law (see, e.g., Ref. [43]):

lim
N→∞

1/2N/2ρ(s/2N/2) = 1
π

√
4 − s2, s ∈ [0, 2].

(B16)

In the large-N limit, the number μ of singular values above
a given threshold S0 is given by

μ(S0) = 2N/2
∫ 2×2−N/4

S0

ρ(S)dS. (B17)

Inverting the above function μ(S0) provides the sought-
after scaling of the singular values, Sμ. Introducing the
rescaled singular value s = 2N/4S, we get

μ(s0) = 2N/2C(s0) (B18)

with

C(s0) = 1
π

∫ 2

s0

ds
√

4 − s2. (B19)

It follows that Sμ follows a scaling law

Sμ = 2−N/4g(μ/2N/2), (B20)

where the function g(x) = C−1(x) is the inverse of C(s0),
as illustrated in the lower panel of Fig. 15. The function
C(s0) corresponds to the area of a portion of a (distorted)
circle and can be computed using a simple geometrical
argument. Introducing the angle θ (see the inset of Fig. 15),
one obtains

C(s0) = 1
π
A

(
2arccos

(
s0

2

))
(B21)

with A(θ) = θ − sin(θ). We therefore obtain

g(x) = 2 cos
(

1
2
A−1(πx)

)
. (B22)

In particular, one has g(0) = 2 and g(1) = 0.
This scaling law can be used to derive the behavior

of the error rate in the chaotic limit, Eq. (31). Truncat-
ing the original wave vector |�〉 [Eq. (33)] to its first χ
eigenvalues (|�̃〉) yields the fidelity F(χ) = |〈�̃|�〉|2 =

FIG. 15. Quadrant law (upper panel) and dispersion of the
singular values (lower panel).

∑χ−1
μ=0 S2

μ. Thus, using Eq. (B20),

F(χ) =
∫ χ/2N/2

0
g2(x)dx, (B23)

and in the χ
 2N/2 limit we obtain the advertised chaotic
limit

F(χ) = 4χ
2N/2 + O

(
χ

2N/2

)2

(B24)

and the associated value for the error rate ε = 1 − f = 1 −
F2/(ND). Interestingly, ε plateaus at log(2)/D for large N .

We note that if all the singular values were equal (Sμ =
1/2N/4) then we would have g(x) = 1 and hence F =
χ/2N/2 [following Eq. (B23)], namely, one fourth of the
leading term of Eq. (B24). In other terms, the fidelity in
the chaotic limit is only 4 times larger than in the worst
possible situation where all the singular values are of equal
importance.

We check in Fig. 16 that this scaling law of the sin-
gular values can indeed be observed. We perform a SVD
decomposition of the random vector obtained by the pro-
cedure described in the previous subsection, and plot the
corresponding function Sμ properly rescaled. The result is
almost indistinguishable from the analytical function g(x)
calculated above.

020304-24

DMRG FOR SIMULATING QUANTUM CIRCUITS. . . PRX QUANTUM 4, 020304 (2023)

FIG. 16. Scaling behavior of the Schmidt coefficients (singular
values) Sμ of a Porter-Thomas wave vector for various numbers
of qubits N . Black dashed line denotes the scaling function g(x).
Black dash-dot line denotes the constant singular values case
(Sμ = 1/2N/4).

APPENDIX C: METROPOLIS SAMPLING FOR
CLOSED SIMULATIONS

To produce the same output as a quantum computer
within the framework of closed simulations, one must be
able to sample from the distribution Q(x) = |�x|2. This
means not only computing amplitudes for a given bit-
string but producing bitstrings distributed following Q(x).
A simple general algorithm for this task has been pro-
posed in Ref. [22] (see also the discussion in Sec. II).
The algorithm of Ref. [22] requires the calculations of
∝ N2g amplitudes per bitstring. In the case of random cir-
cuits such as sequences I and II, this is far from optimum.
A possible strategy is to use the Metropolis algorithm
to construct a Markov chain of bitstrings xt: one picks
xt+1 at random and accepts the proposed value with prob-
ability pacc = min(|�xt+1/�xt |2, 1) (acceptance ratio). If
the proposed move is refused then xt+1 ≡ xt. In the ran-
dom circuit of quantum supremacy, one quickly reaches
a Porter-Thomas distribution, i.e., the amplitudes �x are
themselves distributed according to an exponential law
P(|�x|2 = p) = 2N exp(−2N p). It follows that the average
acceptance ratio is fairly large:

〈pacc〉 =
∫ ∞

0
dx

∫ ∞

0
dy min(x/y, 1)e−xe−y ≈ 70%.

(C1)

That is, on average, 1/0.7 ≈ 1.5 bitstrings must be calcu-
lated in order to get a new accepted bitstring.

If one wanted to pretend that the bitstrings came from
an actual quantum computer, one would want to be almost
certain that a given bitstring could not appear twice con-
secutively. In that case, one would want to keep only one
bitstring every L Metropolis updates, hence lowering the

probability of repetition to about (1 − 0.7)L = (0.3)L. For
L = 10, this would give a very low repetition probability
of 6 × 10−4%. However, this precaution can probably be
skipped as the cross-entropy benchmarking fidelity can be
easily spoofed: simply ignoring the repeated values would
create a bias in the distribution that would probably be
very hard if not impossible to detect. Hence, one or two
amplitudes per bitstring should be enough in practice.

[1] Bela Bauer, Sergey Bravyi, Mario Motta, and Garnet Kin-
Lic Chan, Quantum algorithms for quantum chemistry and
quantum materials science, Chem. Rev. 120, 12685 (2020).

[2] Markus Reiher, Nathan Wiebe, Krysta M Svore, Dave
Wecker, and Matthias Troyer, Elucidating reaction mech-
anisms on quantum computers, Proc. Nat. Acad. Sci. 114,
7555 (2017).

[3] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon,
Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio
Boixo, Fernando G. S. L. Brandao, and David A. Buell, et
al., Quantum supremacy using a programmable supercon-
ducting processor, Nature 574, 505 (2019).

[4] Johnnie Gray and Stefanos Kourtis, Hyper-optimized ten-
sor network contraction, Quantum 5, 410 (2021).

[5] Feng Pan and Pan Zhang, Simulating the Sycamore quan-
tum supremacy circuits, (2021), ArXiv:2103.03074.

[6] Feng Pan, Keyang Chen, and Pan Zhang, Solving the Sam-
pling Problem of the Sycamore Quantum Circuits, Phys.
Rev. Lett. 129, 090502 (2022).

[7] Yiqing Zhou, E. Miles Stoudenmire, and Xavier Waintal,
What Limits the Simulation of Quantum Computers?, Phys.
Rev. X 10, 041038 (2020).

[8] A. J. Daley, C. Kollath, U. Schollwöck, and G. Vidal, Time-
dependent density-matrix renormalization-group using
adaptive effective Hilbert spaces, J. Stat. Mech.: Theory
Exp. 2004, P04005 (2004).

[9] Guifré Vidal, Efficient Simulation of One-Dimensional
Quantum Many-Body Systems, Phys. Rev. Lett. 93, 040502
(2004).

[10] Steven R. White and Adrian E. Feiguin, Real-Time Evo-
lution Using the Density Matrix Renormalization Group,
Phys. Rev. Lett. 93, 076401 (2004).

[11] Steven R. White, Density-matrix algorithms for quantum
renormalization groups, Phys. Rev. B 48, 10345 (1993).

[12] U. Schollwöck, The density-matrix renormalization group
in the age of matrix product states, Ann. Phys. (N. Y) 326,
96 (2011).

[13] Farhi Edward, Goldstone Jeffrey, and Gutmann Sam,
A quantum approximate optimization algorithm, (2014),
ArXiv:1411.4028.

[14] Yulin Wu, et al., Strong Quantum Computational Advan-
tage Using a Superconducting Quantum Processor, Phys.
Rev. Lett. 127, 180501 (2021).

[15] Han-Sen Zhong, et al., Quantum computational advantage
using photons, Science 370, 1460 (2020).

[16] A. S. Popova and A. N. Rubtsov, Cracking the quantum
advantage threshold for Gaussian boson sampling, (2021),
ArXiv:2106.01445.

020304-25

https://doi.org/10.1021/acs.chemrev.9b00829
https://doi.org/10.1073/pnas.1619152114
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.22331/q-2021-03-15-410
https://arxiv.org/abs/2103.03074
https://doi.org/10.1103/PhysRevLett.129.090502
https://doi.org/10.1103/PhysRevX.10.041038
https://doi.org/10.1088/1742-5468/2004/04/p04005
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1103/PhysRevLett.93.076401
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1016/j.aop.2010.09.012
https://arxiv.org/abs/1411.4028
https://doi.org/10.1103/PhysRevLett.127.180501
https://doi.org/10.1126/science.abe8770
https://arxiv.org/abs/2106.01445

THOMAS AYRAL et al. PRX QUANTUM 4, 020304 (2023)

[17] Benjamin Villalonga, Murphy Yuezhen Niu, Li Li, Hartmut
Neven, John C. Platt, Vadim N. Smelyanskiy, and Sergio
Boixo, Efficient approximation of experimental Gaussian
boson sampling, (2021), Arxiv:2109.11525.

[18] Changhun Oh, Youngrong Lim, Bill Fefferman, and Liang
Jiang, Classical Simulation of Boson Sampling Based on
Graph Structure, Phys. Rev. Lett. 128, 190501 (2022).

[19] Yong Liu, Xin Liu, Fang Li, Haohuan Fu, Yuling
Yang, Jiawei Song, Pengpeng Zhao, Zhen Wang, Dajia
Peng, Huarong Chen, Chu Guo, Heliang Huang, Wen-
zhao Wu, and Dexun Chen, Closing the “quantum
supremacy” gap: Achieving real-time simulation of a ran-
dom quantum circuit using a new sunway supercomputer,
ArXiv:2110.14502v2.

[20] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon,
Joseph C. Bardin, Rami Barends, Sergio Boixo, Michael
Broughton, Bob B. Buckley, David A. Buell et al., Hartree-
Fock on a superconducting qubit quantum computer,
Science 369, 1084 (2020).

[21] Edwin Pednault, John A. Gunnels, Giacomo Nannicini,
Lior Horesh, and Robert Wisnieff, Leveraging secondary
storage to simulate deep 54-qubit Sycamore circuits,
(2019), ArXiv:1910.09534.

[22] Sergey Bravyi, David Gosset, and Yinchen Liu, How
to Simulate Quantum Measurement without Computing
Marginals, Phys. Rev. Lett. 128, 220503 (2022).

[23] Cupjin Huang, Fang Zhang, Michael Newman, Junjie Cai,
Xun Gao, Zhengxiong Tian, Junyin Wu, Haihong Xu,
Huanjun Yu, Bo Yuan, Mario Szegedy, Yaoyun Shi, and
Jianxin Chen, Classical simulation of quantum supremacy
circuits, (2020), ArXiv:2005.06787v1.

[24] Matthew P. Harrigan, et al., Quantum approximate opti-
mization of non-planar graph problems on a planar super-
conducting processor, Nat. Phys. 17, 332 (2021).

[25] Xun Gao, Marcin Kalinowski, Chi-Ning Chou, Mikhail
D. Lukin, Boaz Barak, and Soonwon Choi, Limitations of
linear cross-entropy as a measure for quantum advantage,
(2021), Arxiv:2112.01657.

[26] Yuchen Pang, Tianyi Hao, Annika Dugad, Yiqing Zhou,
and Edgar Solomonik, in SC20: International Conference
for High Performance Computing, Networking, Storage
and Analysis (2020), p. 1.

[27] Sheng-Hsuan Lin, Michael P. Zaletel, and Frank Pollmann,
Efficient simulation of dynamics in two-dimensional quan-
tum spin systems with isometric tensor networks, Phys.
Rev. B 106, 245102 (2022).

[28] Timothy Proctor, Kenneth Rudinger, Kevin Young, Erik
Nielsen, and Robin Blume-Kohout, Measuring the capa-
bilities of quantum computers, Nat. Phys. 18, 75
(2022).

[29] Maxime Dupont, Nicolas Didier, Mark J. Hodson, Joel
E. Moore, and Matthew J. Reagor, Calibrating the

Classical Hardness of the Quantum Approximate Optimiza-
tion Algorithm, PRX Quantum 3, 040339 (2022).

[30] Rishi Sreedhar, Pontus Vikstål, Marika Svensson, Andreas
Ask, Göran Johansson, and Laura García-Álvarez, The
quantum approximate optimization algorithm performance
with low entanglement and high circuit depth, (2022),
ArXiv:2207.0340.

[31] Matija Medvidović and Giuseppe Carleo, Classical varia-
tional simulation of the quantum approximate optimization
algorithm, npj Quantum Inf. 7, 101 (2021).

[32] Bjarni Jónsson, Bela Bauer, and Giuseppe Carleo, Neural-
network states for the classical simulation of quantum
computing, (2018), ArXiv:1808.05232.

[33] Steven R. White, Density Matrix Formulation for Quan-
tum Renormalization Groups, Phys. Rev. Lett. 69, 2863
(1992).

[34] Hamed Saberi, Andreas Weichselbaum, Lucas Lamata,
David Pérez-García, Jan von Delft, and Enrique Solano,
Constrained optimization of sequentially generated entan-
gled multiqubit states, Phys. Rev. A 80, 022334
(2009).

[35] E. M. Stoudenmire and Steven R. White, Minimally entan-
gled typical thermal state algorithms, New J. Phys. 12,
055026 (2010).

[36] Yuichi Hirata, Masaki Nakanishi, Shigeru Yamashita, and
Yasuhiko Nakashima, in 2009 Third International Confer-
ence on Quantum, Nano and Micro Technologies (IEEE,
2009), p. 26.

[37] P. W. Brouwer and C. W. J. Beenakker, Diagrammatic
method of integration over the unitary group, with applica-
tions to quantum transport in mesoscopic systems, J. Math.
Phys. 37, 4904 (1996).

[38] S. Martiel, T. Ayral, and C. Allouche, Benchmarking
quantum coprocessors in an application-centric, hardware-
agnostic and scalable way, IEEE Trans. Quantum Eng. 2,
(2021).

[39] Igor L. Markov and Yaoyun Shi, Simulating quantum com-
putation by contracting tensor networks, SIAM J. Comput.
38, 963 (2008).

[40] J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area
laws for the entanglement entropy, Rev. Mod. Phys. 82, 277
(2010).

[41] F. Verstraete, V. Murg, and J. I. Cirac, Matrix product states,
projected entangled pair states, and variational renormaliza-
tion group methods for quantum spin systems, Adv. Phys.
57, 143 (2008).

[42] Sebastian Paeckel, Thomas Köhler, Andreas Swoboda, Sal-
vatore R. Manmana, Ulrich Schollwöck, and Claudius
Hubig, Time-evolution methods for matrix-product states,
Ann. Phys. (N. Y) 411, 167998 (2019).

[43] Jianhong Shen, On the singular values of Gaussian random
matrices, Linear Algebra Appl. 326, 1 (2001).

020304-26

https://arxiv.org/abs/2109.11525
https://doi.org/10.1103/PhysRevLett.128.190501
https://arxiv.org/abs/2110.14502v2
https://doi.org/10.1126/science.abb9811
https://arxiv.org/abs/1910.09534
https://doi.org/10.1103/PhysRevLett.128.220503
https://arxiv.org/abs/2005.06787v1
https://doi.org/10.1038/s41567-020-01105-y
https://arxiv.org/abs/2112.01657
https://doi.org/10.1103/PhysRevB.106.245102
https://doi.org/10.1038/s41567-021-01409-7
https://doi.org/10.1103/PRXQuantum.3.040339
https://arxiv.org/abs/2207.0340
https://doi.org/10.1038/s41534-021-00440-z
https://arxiv.org/abs/1808.05232
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevA.80.022334
https://doi.org/10.1088/1367-2630/12/5/055026
https://doi.org/10.1063/1.531667
https://doi.org/10.1109/TQE.2021.3090207
https://doi.org/10.1137/050644756
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1016/j.aop.2019.167998
https://doi.org/10.1016/S0024-3795(00)00322-0

	I.. INTRODUCTION
	II.. A CRITICAL REVIEW OF QUANTUM SUPREMACY
	A.. An exponentially difficult experiment
	B.. Exchanging a smaller memory footprint for an exponential increase in the computational time
	C.. The hierarchy of “open” versus “closed” versus “weak” simulations
	D.. Optimized contraction strategies of tensor networks

	III.. SUMMARY OF THE MAIN RESULTS
	A.. Simulating the supremacy sequence
	B.. Scaling with the number N of qubits
	C.. Influence of the quantum circuit on the fidelity

	IV.. A DENSITY-MATRIX RENORMALIZATION GROUP ALGORITHM FOR SIMULATING QUANTUM CIRCUITS
	A.. The matrix product state ansatz
	B.. The main building block of the algorithm: the compression step
	1.. Optimization of a single tensor
	2.. Contraction strategy for the tensor networks

	C.. Open versus closed simulation mode

	V.. DETAILS ON THE NUMERICAL EXPERIMENTS
	A.. Three quantum circuits
	B.. Estimating the fidelity of a DMRG simulation
	C.. Different groupings of the qubits
	D.. Benchmark of the algorithm
	1.. Convergence of the DMRG compression step
	2.. Role of the number of layers per step K and number of sweeps ns
	3.. Role of the qubit grouping

	VI.. DOES THE DMRG ALGORITHM PROVIDE THE OPTIMAL MPS?
	A.. Best possible MPS calculation
	B.. Analytical calculation of the chaotic optimum [d31](31)
	C.. Numerical results

	VII.. RELATION BETWEEN FIDELITY AND CROSS-ENTROPY BENCHMARKING
	A.. Numerical evidence for FBF
	B.. Fidelity and cross-entropy benchmarking in the chaotic limit

	VIII.. CONCLUSIONS
	. ACKNOWLEDGMENTS
	. APPENDIX A: A SHORT INTRODUCTION TO TENSOR NETWORKS FOR SIMULATING QUANTUM CIRCUITS
	1.. Basic definitions and actions: contracting and splitting
	2.. Tensor networks for quantum circuits
	3.. Schrödinger versus Schrödinger-Feynman-like simulations
	4.. Pointers to the literature

	. APPENDIX B: DERIVATION OF THE CHAOTIC OPTIMUM ERROR [EQ. [d31](31)]
	1.. Construction of a Porter-Thomas state from random Gaussian variables
	2.. Scaling law for the singular values of a Porter-Thomas state

	. APPENDIX C: METROPOLIS SAMPLING FOR CLOSED SIMULATIONS
	. REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 33.84000
 33.84000
 33.84000
 33.84000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 9.00000
 9.00000
 9.00000
 9.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

