
PRX QUANTUM 4, 020303 (2023)

Logical Blocks for Fault-Tolerant Topological Quantum Computation

Héctor Bombín , Chris Dawson, Ryan V. Mishmash,* Naomi Nickerson, Fernando Pastawski , and
Sam Roberts †

PsiQuantum Corp., Palo Alto, California 94304, USA

 (Received 9 March 2022; accepted 17 January 2023; published 7 April 2023)

Logical gates constitute the building blocks of fault-tolerant quantum computation. While quantum
error-corrected memories have been extensively studied in the literature, explicit constructions and
detailed analyses of thresholds and resource overheads of universal logical gate sets have so far been
limited. In this paper, we present a comprehensive framework for universal fault-tolerant logic motivated
by the combined need for (i) platform-independent logical gate definitions, (ii) flexible and scalable tools
for numerical analysis, and (iii) exploration of novel schemes for universal logic that improve resource
overheads. Central to our framework is the description of logical gates holistically in a way that treats
space and time on a similar footing. Focusing on instruments based on surface codes, we introduce
explicit, but platform-independent representations of topological logic gates—called logical blocks—and
generate new, overhead-efficient methods for universal quantum computation. As a specific example, we
propose fault-tolerant schemes based on surface codes concatenated with more general low-density par-
ity check (LDPC) codes, suggesting an alternative path toward LDPC-based quantum computation. The
logical blocks framework enables a convenient software-based mapping from an abstract description of
the logical gate to a precise set of physical instructions for executing both circuit-based and fusion-based
quantum computation (FBQC). Using this, we numerically simulate a surface-code-based universal gate
set implemented with FBQC, and verify that the threshold for fault-tolerant gates is consistent with the
bulk threshold for memory. We find, however, that boundaries, defects, and twists can significantly impact
the logical error rate scaling, with periodic boundary conditions potentially halving resource requirements.
Motivated by the favorable logical error rate suppression for boundaryless computation, we introduce a
novel computational scheme based on the teleportation of twists that may offer further resource reductions.

DOI: 10.1103/PRXQuantum.4.020303

I. INTRODUCTION

Quantum fault tolerance will form the basis of large-
scale universal quantum computation. The surface code
[1–3] and related topological approaches [4–8] are among
the most appealing methods for near term fault-tolerant
quantum computing (FTQC), primarily due to their high
thresholds and amenability to planar architectures with
nearest-neighbor interactions. In recent years there have
been numerous studies exploring the surface code mem-
ory threshold, which is the error rate below which encoded
information can be protected arbitrarily well in the limit

*Corresponding author: ryan.mishmash@gmail.com
†Corresponding author: sroberts@psiquantum.com

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

of large code size [3,9–16]. However, to understand the
thresholds and overhead for universal fault-tolerant quan-
tum computation, it is necessary to study the behavior
of fault-tolerant logical gates. In topological codes these
gates can be implemented using methods that draw inspi-
ration from condensed matter, where encoded operations
are achieved by manipulating topological features such as
boundaries, defects, and twists [4,5,17–40].

To date, there has been no taxonomic analysis that vali-
dates the effect on the error threshold and below-threshold
scaling in the presence of topological features (see Refs.
[39,41] for developments in this direction). It is known
that the introduction of modified boundary conditions can
have a significant impact on the error suppression of the
code [42,43], and therefore, as technology moves closer to
implementing large-scale fault-tolerant quantum computa-
tions [44–47], it is critical to fully understand the behavior
not only of a quantum memory, but of a universal set of
logical gates.

In this paper we comprehensively study univer-
sal logical gates for fault-tolerant schemes based on

2691-3399/23/4(2)/020303(41) 020303-1 Published by the American Physical Society

https://orcid.org/0000-0001-6728-5002
https://orcid.org/0000-0002-3104-7392
https://orcid.org/0000-0002-4652-389X
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.4.020303&domain=pdf&date_stamp=2023-04-07
http://dx.doi.org/10.1103/PRXQuantum.4.020303
https://creativecommons.org/licenses/by/4.0/

HÉCTOR BOMBÍN et al. PRX QUANTUM 4, 020303 (2023)

surface codes. Our approach is centered around a frame-
work for defining and analyzing logical instruments as
three-dimensional (3D) objects called fault-tolerant logical
instruments, allowing for a fully topological interpreta-
tion of logical gates. Focusing on fault-tolerant instruments
directly—rather than starting with an error-correcting code
and considering operations thereon—is beneficial for sev-
eral reasons. Firstly, it provides a holistic approach to log-
ical gate optimization, allowing us to explore options that
are not particularly natural from a code-centric perspec-
tive. Secondly, it provides a way to define explicit logical
instruments from physical instruments in a way that is
applicable across different physical settings and models; in
our case, we provide explicit instructions to compile these
fault-tolerant gates to both circuit-based quantum compu-
tation (CBQC) based on planar arrays of static qubits and
to fusion-based quantum computing (FBQC) [48]. Thirdly,
it enables a unified definition of the fault-distance of a pro-
tocol; while distance of a code is straightforwardly defined,
logical failures in a protocol can occur in ways that cannot
be associated with any single time step of the protocol (for
instance, timelike chains of measurement errors in a topo-
logical code). The fault distance of a protocol provides a
go-to proxy for fault tolerance, which avoids the compu-
tational overhead of full numerical simulations. Using this
framework, we introduce several new approaches to topo-
logical quantum computation with surface codes (includ-
ing both planar and toric), and numerically investigate their
performance. An outline of the paper is displayed in Fig. 1.

A framework to define fault-tolerant instruments.
Our first contribution is to define the framework of fault-
tolerant logical instruments to describe quantum compu-
tation based on stabilizer codes holistically as instruments
in space-time rather than as operations on a specific code.
This framework, defined in Sec. II, builds upon concepts
first introduced in topological measurement-based quan-
tum computation (MBQC) [4,5] and extended in related
approaches [8,28,36,49,50]. Within this framework, intro-
duce a surface-code-specific construction called a logical
block template, which allows one to explicitly specify
(in a platform-independent way) a fault-tolerant surface

Sec. II Secs. III, IV

Secs. VII, VIII Sec. IXSec. VISec. V

FIG. 1. Outline of the paper.

code instrument in terms of (2 + 1)D space-time topo-
logical features. The ingredients of a logical block tem-
plate—the topological features—consist of boundaries (of
which there are two types), corners, symmetry defects, and
twists of the surface code, as defined in Sec. III. In Sec. IV,
we define logical block templates and how to compile them
into physical instructions (for either CBQC or FBQC),
with the resulting instrument being referred to as a logi-
cal block. This framework highlights similarities between
different approaches to fault-tolerant gates, for example
between transversal gates, code deformations, and lattice
surgeries, as well as between different models of quantum
computation.

Logic blocks for universal quantum computation.
Our first application of the fault-tolerant instrument
framework is to define a universal gate set based on pla-
nar codes [51]. Some of these logical blocks offer reduced
overhead compared to previous protocols. For example,
we show how to perform a phase gate on the distance
d rotated planar code [43,52,53], using a space-time vol-
ume of 4d3. This implementation requires no distillation of
Pauli-Y eigenstates, and thus we expect it to perform bet-
ter than conventional techniques. In addition to its reduced
overhead, the phase gate we present can be implemented
in a static 2D planar (square) lattice of qubits using only
the standard four-qubit stabilizer measurements, without
needing higher-weight stabilizer measurements [18,54] or
modified code geometries [8,27] that are typically required
for braiding twists. These logical blocks can be composed
together to produce fault-tolerant circuits, which we illus-
trate by proposing an avenue for fault-tolerant quantum
computation based on concatenating surface codes with
more general quantum low-density parity check (LDPC)
codes [55–62]. Such concatenated code schemes may offer
the advantages of both the high thresholds of surface
codes, with the reduced overheads of constant-rate LDPC
codes—an attractive prospect for future generations of
quantum computers.

Fusion-based quantum computation—physical oper-
ations, decoding, and simulation. Fusion-based quantum
computation is a new paradigm of quantum computation,
where the computation proceeds by preparing many copies
of a constant-sized (i.e., independent of the algorithm size)
entangled resource state, and performing entangling mea-
surements between pairs (or more) resource states. This
model is motivated by photonic architectures, where such
resource states can be created with high fidelity, and then
destructively measured using fusion measurements [48].

In Sec. VII, we review FBQC and show how logi-
cal block templates can be compiled to physical FBQC
instructions. In Sec. VIII, we introduce tools to decode and
simulate such blocks, and numerically investigate the per-
formance of a complete set of logical operations in FBQC
(these operations are complete in that they are universal
when supplemented with noisy magic states).

020303-2

LOGICAL BLOCKS FOR FAULT-TOLERANT... PRX QUANTUM 4, 020303 (2023)

Firstly, we verify that the thresholds for these logi-
cal operations all agree with the bulk memory threshold.
Secondly, we uncover the significant role that boundary
conditions have in the resources required to achieve a tar-
get logical error rate. Namely, we see that qubits encoded
with periodic boundary conditions offer more favorable
logical error rate scaling with code size than for qubits
defined with boundaries (as has been previously observed
in Ref. [42]). For instance, at half threshold, nontrivial
logic gates can require up to 25% larger distance (about 2
times larger volume) than that estimated for a memory with
periodic boundary conditions in all three directions (i.e.,
lattice on a 3-torus). Our results demonstrate that entropic
contributions to the logical error rate can be significant,
and should be contemplated in gate design and in overhead
estimates for fault-tolerant quantum algorithms.

Logical instruments by teleporting twists. Finally,
motivated by the advantages in error suppression offered
by periodic boundary conditions, we introduce a novel
computational scheme in Sec. IX, where fault-tolerant
gates are achieved by teleporting twists in time. In this
scheme, qubits are encoded in twists of the surface code,
and logical operations are performed using space-time
defects known as portals. These portals require nonlocal
operations to implement, and are naturally suited to, for
instance, photonic fusion-based architectures [48,50] for
which we prescribe the physical operations required. To
our knowledge, this is the first surface code scheme that
does not require boundaries to achieve a universal set of
gates and may offer even further resource reductions in the
overhead of logical gates. This logic scheme is an impor-
tant example of the power of the fault-tolerant instrument
framework, as the operations are difficult to understand as
sequences of operations on a 2D quantum code.

II. FAULT-TOLERANT INSTRUMENTS

In this section, we describe the notion of a stabilizer
fault-tolerant logical instrument, suitable for describing a
wide class of logical operations. A fault-tolerant logical
instrument takes some number kin of encoded quantum
states as inputs (encoded in stabilizer codes [63]), per-
forms an encoded operation, and outputs some number of
encoded states kout.

We use the term logical port to refer to a group of phys-
ical qubits that together represent logical input or output
qubits of the instrument. Each port has a quantum error-
correcting code with a fixed number of physical and logical
qubits associated with it. In this way, fault-tolerant instru-
ments can be composed with each other only through a pair
of compatible input and output ports. Alternatively, logical
ports can be seen as a specific collection of cuts that parti-
tion a complex logical quantum circuit into logical blocks,
the elementary quantum instruments that are amenable to

independent study and optimization. In this way, quan-
tum error-correcting codes continue to play a crucial role
in defining modular interface structure through which to
compose fault-tolerant algorithms from elementary logical
blocks.

The main feature of a fault-tolerant instrument is the
classical data they produce (as intermediate measurement
outcomes). These classical data are used both to iden-
tify errors (by relying on measurement outcome redun-
dancy in the form of checks) as well as to determine
the Pauli frame required to interpret the logical mapping
and logical measurement outcomes, as described below.
Examples of fault-tolerant instruments that are included
within this model are transversal gates, code deformations,
gauge fixing, and lattice surgeries [4,5,17,18,20,24,64,65].
Such operations are commonly understood in terms of a
series of gates and measurements on a fixed set of phys-
ical qubits, a perspective originating from matter-based
qubits. Nevertheless, several recent works have introduced
new approaches to fault-tolerant memories beyond the set-
ting of static codes [7,66,67]. Here we want to generalize
and extend these concepts to reach a holistic perspec-
tive on logical operations rather than as operations on an
underlying code.

In this section we describe properties of a fault-tolerant
logical instrument, building upon the formalism introduced
for the one-way measurement-based quantum computer by
Raussendorf et al. [4] and extended in Refs. [8,48]. In sub-
sequent sections we specialize to logical instruments that
are achieved by manipulating topological features of the
surface code in (2 + 1)D space-time.

A. Quantum instrument networks

Here we draw the curtain and present the stage: a general
framework to think about FTQC.

1. Quantum instruments

Quantum instruments describe the most general process
in which the input is a quantum system and the output
is a combination of quantum and classical systems. We
refer to classical outputs as outcomes, the collection of
which is labeled by O. Quantum instruments can model
any of the (idealized) physical devices that take part in
a quantum computation (state preparation, unitaries, and
measurement). A quantum instrument with a single value
classical outcome may be used to represent quantum state
preparations and quantum maps (also called channels).

A quantum instrument is specified as a collection

{Em} (1)

of completely positive and trace nonincreasing linear
maps, such that their sum is trace preserving. The maps
are indexed by the outcome m: for an input state ρ, if the

020303-3

HÉCTOR BOMBÍN et al. PRX QUANTUM 4, 020303 (2023)

instruments outcome is m, the unnormalized final state is
Em(ρ) and the probability for the outcome m to occur is the
trace of this state.

2. Networks

A natural way to describe a fault-tolerant quantum com-
putation is as a network (or circuit) of quantum instru-
ments.

Definition 1: A quantum instrument network (QIN) is a
directed acyclic graph (DAG) in which

(a) edges are interpreted as quantum systems,
(b) vertices are interpreted as quantum instruments:

their quantum input (output) is the tensor product
of incoming (outgoing) edges.

Recall that the vertices of a DAG can always be ordered
so that all edges point towards the “largest” vertex (as per
the ordering). Thus we can interpret a QIN as a process in
which the quantum instruments are applied sequentially,
each mapping a collection of subsystems to a new such
collection. Since the specific ordering is immaterial, the
DAG is enough to specify the process.

In such a process, each vertex of the DAG contributes an
outcome. Classical beings as we are, the ultimate object of
interest is the classical distribution of outcomes. The prob-
ability of an outcome configuration can be computed as
a tensor network contraction: the tensor network has the
same topology as the DAG and, given some choice of basis
for each edge, the tensor at a given vertex is obtained from
the corresponding (outcome-dependent) linear map.

B. Stabilizer fault tolerance

In order to make headway in the analysis of fault-
tolerant logical blocks, we focus on stabilizer quantum
instruments {Em} and stabilizer QINs. In terms of domains,
this restricts the input and output Hilbert spaces of each
instrument to tensor products of qubits and classical out-
comes to bit strings. For each classical outcome m, the
quantum channel Em is in fact required to be a stabilizer
operator stabilized by Sm. We assume that all such oper-
ators share the same stabilizer group up to signs (i.e.,
〈−1,Sm〉 = 〈−1,Sn〉 for outcomes m, n). Moreover, there
is a linear transform (over Z2) that relates outcome bits
with signs of stabilizer generators (see Appendix A 1 for
a full definition of the notion of stabilizer instruments).
Crucially, this property is preserved under composition
(i.e., the quantum instruments resulting from composing
elementary stabilizer quantum instruments in QINs will
themselves be stabilizer quantum instruments).

This set of stabilizer quantum instruments includes full
or partial Pauli product measurements as well as uni-
taries from the Clifford group and encoding isometries for

stabilizer codes. However, it does not include the full flex-
ibility of adaptivity, i.e., conditionally applying distinct
instruments depending on previously obtained outcomes.
While adaptivity is crucial to allow for universal quan-
tum computation at the logical level, it is not required
to achieve a restricted form of fault tolerance limited to
logical stabilizer operations.

1. Pauli frame

The different signs for the resulting stabilizer group can
be interpreted as being an outcome-dependent Pauli frame
correction. Thus, similarly to quantum teleportation, in
the absence of noise, a specific Pauli correction can be
directly (Z2 linearly) inferred from a parity combination
of the classical outcomes associated with the stabilizer
instrument.

2. Check generators

Under a noise-free operation, not all outcome combi-
nations are possible for a fault-tolerant logical block. In
stabilizer fault tolerance, the set of possible outcomes is
characterized by linear constraints (considering outcomes
as a vector space over Z2). The generators for said set of
constraints are called check generators. In the case of topo-
logical fault tolerance, check generators can be chosen to
be geometrically local (i.e., involving only outcomes in a
small neighborhood with respect to the QIN graph).

It is the presence of checks that allows fault-tolerant
protocols to reliably extract logical outcomes from noisy
physical outcomes. The presence of check violations,
together with statistical understanding of the noise model,
allows one to infer the correct way to interpret logical
outcomes with an increasingly high degree of reliability.

C. Properties of fault-tolerant instruments
(aka logical blocks)

A fault-tolerant stabilizer instrument � is a stabilizer
QIN on which the following specific structure has been
identified.

(a) Check generators are the basis of fault tolerance
and jointly define a check group C (a Z2-affine
subspace). The check operators are combinations
of classical outcomes within the QIN that yield
a predefined parity. We choose a minimal set of
low-weight, geometrically local check generators
whenever possible.

(b) External logical ports are a partitioning of the phys-
ical input and output ports of the QIN into logical
input and output ports. Each logical port is thus a
collection of physical ports in the QIN that have not
been attached within it.

(c) The outputs and inputs of any given port are related
by port stabilizers whose signs generally depend on

020303-4

LOGICAL BLOCKS FOR FAULT-TOLERANT... PRX QUANTUM 4, 020303 (2023)

the values of outcomes within the QIN. Port stabi-
lizers jointly give the port the structure of a quantum
error-correcting code (up to an outcome-dependent
Pauli frame). Each port stabilizer is a Pauli stabi-
lizer on the corresponding port qubits together with
a collection of QIN outcomes that jointly determine
its sign.

(d) Logical correlators S in fault-tolerant stabilizer
instruments are encoded through logical stabilizer
operators in one (or more) ports together with an
outcome mask m. Drawing from topological codes,
the outcome masks will be commonly referred to as
logical membranes as this is the shape these have in
the topological protocols we focus on. There is no
mathematical difference between logical correlators
and port stabilizers, but rather in their intent. In fact,
logical correlators are defined up to multiplication
by check generators and/or port stabilizers (a form
of gauge freedom). We denote by S(U) the stabi-
lizer group of the stabilizer channel U. See App. 1
for more details.

An abstract depiction of these properties is shown in Fig. 2.
The concepts will be further clarified in the context of
surface codes in Secs. IV and V.

In CBQC, we can understand logical correlators and
membranes as follows. Logical operators at an input port
are transformed by every constituent instrument of the
QIN. These transformations can be tracked stepwise, fol-
lowing the temporal order of application in the circuit
model. At each intermediate step, the logical operator
admits an instantaneous representation. This instantaneous
representation is supported on intermediate qubits, which
correspond to contracted quantum inputs and outputs of the
constituent quantum instruments. In the case of a noiseless
CBQC fault tolerantly representing unitary instruments,
the logical correlators need not become correlated with any
of the classical outcomes O of the QIN. Elements of S
correspond to combinations of logical operators on input
and output ports. However, this lack of correlation does
not persist in other models of computation such as MBQC
and FBQC; even the logical correlators for CBQC must
be sign corrected in the presence of noise. Noisy operation
requires identifying and tracking the most likely error class
consistent with visible outcomes, with such errors possi-
bly changing the sign of the logical correlator. This sign
correction is referred to as (logical) Pauli frame tracking,
as it amounts to applying a logical Pauli operator to the
quantum ports of the fault-tolerant instrument.

In certain situations, there may be elements of S cor-
responding to state preparation isometries, which are sup-
ported exclusively on output ports. Similarly, for measure-
ments and partial projections, there will be elements of S
supported exclusively on input ports. In this latter case, in
order for the corresponding fault-tolerant instruments to

−1 −1 +1 −1 −1 −1 +1 +1 −1 +1 −1 +1 +1 +1 −1

+1 +1 −1 +1 +1 −1 −1 +1 −1 −1 −1 +1 −1 +1 −1

−1 +1 +1 −1 +1 −1 +1 +1 −1 +1 +1 −1 +1 −1 +1

−1 +1 +1 +1 −1 +1 +1 −1 +1 +1 +1 −1 +1 +1 +1

+1 −1 −1 +1 +1 +1 +1 −1 +1 −1 −1 +1 −1 −1 −1

−1 +1 +1 −1 −1 −1 −1 +1 −1 +1 −1 −1 +1 +1 +1

+1 −1 −1 +1 −1 +1 +1 −1 +1 −1 −1 +1 −1 +1 −1

+1 +1 +1 +1 −1 +1 +1 −1 −1 −1 +1 −1 −1 −1 −1

−1 +1 −1 −1 +1 −1 +1 +1 +1 +1 −1 −1 +1 +1 +1

−1 −1 −1 −1 +1 −1 −1 −1 +1 −1 +1 +1 +1 +1 −1

+1 +1 +1 +1 +1 +1 −1 +1 −1 +1 −1 +1 −1 −1 +1

−1 −1 +1 +1 +1 +1 +1 −1 −1 +1 +1 −1 −1 −1 −1

−1 +1 −1 −1 +1 −1 −1 +1 +1 −1 +1 +1 +1 +1 +1

+1 +1 +1 −1 +1 +1 +1 +1 −1 +1 −1 −1 −1 −1 −1

−1 +1 +1 −1 −1 −1 −1 −1 +1 −1 +1 −1 +1 +1 +1

+1 −1 −1 −1 +1 +1 −1 −1 +1 +1 +1 +1 −1 −1 −1

−1 +1 −1 +1 +1 −1 −1 +1 −1 −1 +1 +1 +1 +1 +1

+1 −1 +1 +1 +1 +1 +1 −1 +1 −1 −1 −1 −1 −1 −1

+1 −1

−1 +

−1+1 +1

−1 +1 +1 −
+1 −1 −1 +1

1 −1 +1 −1 +1 +1 −1 +

+1 +1 +1 +1 +1 −1 −
+1 +1 +1

−1 +1 −
−1 +1

−1 +1 +1

+1 −1 +1 +1 +

+1 −1 −1

+

+1

+1 +1

−
1

+

1

−
1

+1

+1 +1

+

1 +1 +1

−1 −1

+ 1

1

−1 −1

−1 +

+1 −1

+1

1

1

+

1

1

+

1

−1 −1

+1 −1 −1+

1

+1

+1 +1

+ −
1

+

−

−
1

+1 +1

−
1

+

−1

−
1

+1

1 ++++

+1 1 +1

+

+

+1

+

+1

+1 1 +1

+

1

+

1

+

1

1

C

1

MP ,Q

P

Q

Port stabilizer

FIG. 2. Abstract schematic of a fault-tolerant instrument with
one input port (left) and two output ports (right) (all shaded
in pink). In the stabilizer framework, outcomes correspond to
measurement of Pauli product observables and checks take the
form of joint parity constraints. The +1 and −1 represent the
physical measurement outcomes in O. While each measurement
outcome may individually be random, checks identify subsets of
outcomes (depicted here in green) for which the joint parity is
fixed (in the absence of errors). Example of a logical correlator
P ⊗ Q ∈ S(U) represented by a logical membrane M P,Q. A logi-
cal correlator P ⊗ Q ∈ S(U)means that an input logical operator
P is mapped to an output logical operator Q up to a sign depend-
ing on outcomes of measurements supported on a representative
logical membrane M P,Q. Here, S(U) denotes the stabilizer group
of the stabilizer channel U. A concrete choice of such an instru-
ment could be an encoding isometry for a 2-repetition code,
mapping arbitrary states in the input space onto the subspace of
the output space stabilized by Z ⊗ Z. The stabilizer generators
for this instrument are given by S = 〈Zin1 ⊗ Zout1 Iout2 , Xin1 ⊗
Xout1 Xout2 , Iin1 ⊗ Zout1 Zout2〉 (where the tensor product is only
included to denote the input and output subsystems). For this
choice, both P and Q correspond to the logical Z operators
of their corresponding port codes (see Appendix A 1 for more
details).

be trace preserving, the corresponding logical stabilizers
must be correlated with the classical outcome of the cor-
responding QIN. An example of this is given by the X or
Z measurement instruments in Fig. 6 below, wherein the
logical block has no quantum output and is closed off by a
layer of single-qubit measurements revealing the value of
a corresponding logical operator.

In general, outcome masks m ⊂ O are required to deter-
mine the Pauli frame correction; the product of their out-
comes determines the sign of the logical correlator, and
hence the Pauli correction operator that is additionally
applied. Check generators in C as well as local port stabi-
lizers can be understood as trivial logical membranes (i.e.,
equivalent to logical identity), and thus logical membranes
form equivalence classes under multiplication by checks.
In this way, fault tolerance can be observed at the level of
the logical membranes: a fault-tolerant instrument should

020303-5

HÉCTOR BOMBÍN et al. PRX QUANTUM 4, 020303 (2023)

have many equivalent logical membranes for a given log-
ical correlator. Whereas in the absence of noise all these
membranes lead to a consistent Pauli frame correction, in
the presence of noise, it is the job of the decoder algorithm
to identify the most likely fault equivalence class and
corresponding correction.

Logical faults. For the instrument to be fault tolerant, it
is essential that a small number of elementary faults retain
the intended noiseless logical interpretation. We define the
fault distance as the minimal number of elementary faults
yielding trivial check outcomes and an incorrect logical
outcome. The choice of what to interpret as elementary
faults is model specific and should be motivated by the
physics of the device(s) being described. It is common
to choose arbitrary single-qubit Pauli error on any of the
underlying physical input or output qubits of the con-
stituent instruments of the QIN. These generally include
outcome or measurement errors that have a purely classical
interpretation as an outcome being flipped. The weight of
a fault combination is defined as the number of elementary
faults that compose it. A fault combination is called unde-
tectable if it leaves all checks invariant. An undetectable
fault combination is a logical fault if it leads to an incorrect
logical Pauli frame (i.e., it flips the sign of a logical corre-
lator with respect to that of a noiseless scenario). The fault
distance of a quantum protocol is defined as the smallest
number of elementary faults that combine to form a logical
fault.

In practice, to make progress, we focus on the fault
distance of individual logical blocks, wherein local port
stabilizers are assumed to be perfectly measured. This
approach is more pragmatic than focusing on quantum cir-
cuits, which are composed of a number of logical blocks
as large as demanded by their intended function rather
than by fault-tolerance considerations. The approach we
use to isolate individual logical blocks can be interpreted as
attaching an idealized decoding partial projection at output
ports and an ideal encoding isometry at input ports and, as
such, is slightly optimistic. Further discussion on the port
boundary conditions and block decoding simulation can be
found in Appendix A 13.

Example 1 (Quantum memory): We consider a simple
circuit-based example of a fault-tolerant instrument per-
forming a logical identity operation (or any single-qubit
Pauli operation for that matter) on a surface-code-encoded
qubit. We follow the usual circuit model assumption
wherein the set of data qubits is fixed throughout the com-
putation. Thus, the only two logical ports P = {in, out} can
be seen as using a common set of labels for the physi-
cal qubits. The quantum instrument network is composed
of elementary circuit elements repeatedly performing
stabilizer measurements. For the circuit model, these mea-
surements are typically described in terms of (i) auxiliary
qubit initialization, (ii) two-qubit entangling gates such

as controlled-NOT (CX) and controlled-phase (CZ) gates
that map stabilizer information onto auxiliary qubits, and
(iii) single-qubit measurement applied to auxiliary qubits.
The auxiliary qubits are recycled between measurement
and initialization, allowing a local realization through geo-
metrically bound quantum information carriers such as
superconducting qubits [13]. Of these, only (iii) yields a
classical outcome, and the circuits are designed such that
they yield the measurement value for a code stabilizer
generator. These measurements are repeatedly performed
throughout the code for a certain number T of code cycles.

We identify a check generator of C for every pair of
consecutive measurements of the same stabilizer. In prac-
tice, the consecutive qualifier is important as it leads to
relatively compact check generators that allow directly
revealing information on low-weight faults; the underlying
assumption is that the outcome of these check generators
can only be affected by a small set of fault generators
between the two consecutive stabilizer measurements. For
each stabilizer generator of the underlying code, the first
(final) measurement round for it leads to a corresponding
localized input (output) port stabilizer with sign corre-
lated to the measurement outcome. Finally, as the logical
operators of the code are preserved by the stabilizer mea-
surements, the logical operators can be seen as propagating
as unperturbed logical membranes M X ,X , M Z,Z through the
(2 + 1)D structure of the QIN from input to output. In
the usual circuit model, the logical Pauli frame—in the
absence of errors—is trivial (i.e., the identity), as logi-
cal operators map deterministically from input to output.
This can change when performing logic gates through code
deformation for example. An additional example is shown
in Fig. 3 for a block implementing a logical Hadamard on
a surface code.

III. ELEMENTS OF TOPOLOGICAL
COMPUTATION

We are mostly interested in constructing topological
fault-tolerant instruments; that is, for instruments whose
inputs and output ports are encoded using topological
codes, a useful subset of logical correlations can be gener-
ated by manipulating topological features such as bound-
aries, domain walls, and twists. These section is devoted to
the detailed description of these features.

We now introduce the ingredients that make up a topo-
logical fault-tolerant instrument network. In topological
quantum computation, fault tolerance is achieved by creat-
ing a fault-tolerant bulk, generally with a periodic repeat-
ing structure that contains parity checks (stabilizers) to
enable error correction. An example of this would be the
repeated measurement of stabilizer operators on a toric
code, or a three-dimensional fusion network in a FBQC
setting. The resulting bulk allows logically encoded quan-
tum information to be stored. However, in order to use

020303-6

LOGICAL BLOCKS FOR FAULT-TOLERANT... PRX QUANTUM 4, 020303 (2023)

Logical correlations for the Hadamard
S(H) = 〈X ⊗ Z, Z ⊗ X〉

Logical correlations under composition

MX,Z

MZ,X

MZ,X MX,Y

MZ,Y

FIG. 3. Schematic representation of ports, logical correlators (membranes) for surface code computations. The internal structure for
the fault-tolerant quantum instrument is omitted, leaving only the ports depicted, with the input (output) being on the left (right) of each
instrument. Left: correlator representation of the logical Hadamard. The first (second) tensor factor corresponds to the input (output)
of the instrument. A fault-tolerant instrument realizing this operation has logical membranes for each stabilizer in S(H), which can be
understood as mapping logical observables between input and output ports. Right: fault-tolerant instruments can be composed along a
pair of input and output ports that share a common code, leading to new composite logical correlators.

this system to perform a nontrivial quantum computa-
tion, the homogeneous nature of the bulk must be broken.
One way of achieving this is to introduce topological fea-
tures that can be manipulated to perform logical gates. The
simplest example of a topological feature is a boundary,
which terminates the bulk in a certain location [4,5,68,69].
In surface codes one can also introduce further topolog-
ical features known as domain walls and twists [17]. By
introducing these features in an appropriate configura-
tion, logical information can not only be stored, but also
manipulated to perform all Clifford operations [18,23,27,
28,70–72].

In this section, we introduce the surface code and its
topological features, beginning with explicit examples in
two dimensions. We then interpret these features and their
relationships in (2 + 1)D space-time. In particular, we
describe the symmetries of the code and how they relate
to the behavior of anyonic excitations of the code—a
tool we use throughout this paper to define and describe
the behavior of topological features. These features form
the anatomy of a general topological fault-tolerant logical
operation, which we explore in the following section.

A. The surface code, anyons, and their symmetries

The simplest example of the surface code [1,73] with
no topological features consists of qubits positioned on the
vertices of a square lattice with periodic boundary condi-
tions. (Note that there are many variations of the surface
code, originally introduced by Kitaev [1]. We utilize the
symmetric, rotated version due to Wen [73], because of

its better encoding rate [53,74,75], and comment on the
relationship between the two in Appendix A 2.)

Stabilizers and logical operators. The surface code
is a stabilizer code, and for each plaquette (face)
of the lattice, there is a stabilizer generator s(i,j) =
Z(i,j)X(i+1,j)Z(i+1,j +1)X(i,j +1), where (i, j) labels the vertices
of the lattice, as described in Fig. 4. We bicolor the faces of
the lattice in a checkerboard pattern, as depicted in Fig. 4,
and call stabilizers on blue (red) plaquettes primal (dual)
stabilizers. This primal and dual coloring is simply a gauge
choice. The logical Pauli operators of the encoded qubits
are associated with noncontractible cycles on the lattice,
and so the number of logical qubits encoded in a surface
code depends on the boundary conditions. For example,
the surface code on a torus encodes two logical qubits.
The surface code can also be defined for many different
lattice geometries by associating qubits with the edges of
an arbitrary 2D cell complex [1], but for simplicity, we
restrict our discussion to the square lattice. The descrip-
tions of topological features that follow apply to arbitrary
lattice geometries, provided one first finds the correspond-
ing symmetry representation, which, for a general surface
code, is given by a constant-depth circuit.

Errors. When low-weight Pauli errors act on the toric
code, they anticommute with some subset of the stabiliz-
ers, such that, if measured, these stabilizers would produce
“−1” outcomes. The measurement outcomes for stabiliz-
ers form the classical syndrome that can then be decoded
to identify a suitable correction. Stabilizers with asso-
ciated −1 outcome are said to be flipped and are also
viewed as “excitations” of the codespace that behave as

020303-7

HÉCTOR BOMBÍN et al. PRX QUANTUM 4, 020303 (2023)

- instrument

instrument

FIG. 4. Left: topological features in two dimensions and their relationship to the Z2 primal-dual symmetry transformation. Primal
(dual) anyonic excitations are created on primal (dual) plaquettes at the end of open dual (primal) string operators. The symmetry
swaps primal and dual stabilizer checks, and anyonic excitations. Primal boundaries absorb dual-type excitations, dual boundaries
absorb primal-type excitations. Primal and dual anyons are swapped upon crossing a domain wall. Corners and transparent corners
appear on the interface between primal and dual boundaries in the absence and presence of domain walls, respectively. Twists appear on
the boundary of domain walls (with the corresponding stabilizer shown). Right: the (2 + 1) depiction of topological features and their
relationships. Twists and corners are two different manifestations of the same object. Their location is physical and has observable
consequences. In contrast, transparent domain walls and corners can be relocated and simply correspond to a book-keeping gauge
choice.

anyonic quasiparticles. The behavior of these anyons has
been widely studied [68,69,72], but for our purposes, they
will be a useful tool for characterizing the behavior of
topological features, and how they affect encoded logical
information. As illustrated in Fig. 4, anyons can be thought
of as residing on any plaquette of the lattice and are cre-
ated at the endpoints of open strings of Pauli operators. We
refer to anyons residing on primal (blue) plaquettes as “pri-
mal” anyons, and those on dual (red) plaquettes as “dual”
anyons [76]. Primal and dual anyons are topologically dis-
tinct, in that (in the absence of topological features) there is
no local operation than can change one into the other. We
refer to the string operators that create primal (dual) anyons
as dual (primal) string operators. We can understand pri-
mal (dual) stabilizers as being given by primal (dual) string
operators supported on closed, topologically trivial loops.
Similarly, Pauli-X and Pauli-Z logical operators consist of
primal and dual string operators (respectively) supported
on nontrivial loops of the lattice.

Symmetries. Before defining features of the surface
code, we first examine its symmetries. The symmetries of
the surface code allow us to explicitly construct topologi-
cal features, as well as to discuss the relationships between
them. We refer to any locality-preserving unitary opera-
tion (a unitary that maps local operators to local operators)
that leaves the bulk codespace invariant as a symmetry

of the code. Transversal logical gates acting between one
or more copies of a code are examples of symmetries.
Symmetry operations can also be understood as an oper-
ation that, when applied to the code(s), generates a per-
mutation on the anyon labels that leaves the behavior of
the anyons (i.e., their braiding and fusion rules) unchanged
(see, e.g., Refs. [29,77]). For a single surface code, there is
only one nontrivial symmetry generator, which, for the sur-
face code in Fig. 4, is realized by shifting the checkerboard
pattern by one unit in either the horizontal or vertical direc-
tion. This symmetry permutes the primal and dual anyons,
as shown in Fig. 4 (bottom left), and we refer to it as the
primal-dual symmetry or Z2 (translation) symmetry.

B. Topological features in the surface code

We now present three types of topological features that
can be introduced in the surface code and how they relate
to the primal-dual symmetry. The features are termed
boundaries, domain walls, and twist defects, and each
breaks the translational invariance of the bulk in a dif-
ferent way. Explicit static examples are provided for the
square lattice surface code in Fig. 4. As the topological
features in a code are dynamically changed over time, they
trace out world lines and world sheets in space-time and
are naturally interpreted as (2 + 1)D topological objects.

020303-8

LOGICAL BLOCKS FOR FAULT-TOLERANT... PRX QUANTUM 4, 020303 (2023)

We provide a schematic representation of these features in
Fig. 4 and give a more precise meaning of such (2 + 1)D
features in Sec. IV. We focus on the codimension of a fea-
ture (as opposed to its dimension), as it applies to both
the 2D code and (2 + 1)D space-time instrument network.
Here a codimension-k feature is a (2 − k)D object in a
2D code, or a (3 − k)D object in a space-time instrument
network.

Primal and dual boundaries. Boundaries of the surface
code are codimension-1 objects that arise when the code is
defined on a lattice with a boundary [51] (i.e., they form 1D
boundaries in a 2D code, or 2D world sheets in a (2 + 1)D
quantum instrument network). Specific anyonic excita-
tions can be locally created or destroyed at a boundary
[22,70,78–80] (a process referred to as anyon condensation
by parts of the physics community). In terms of the code,
one can understand this in terms of error chains that can
terminate on a boundary without flipping any boundary sta-
bilizers, as shown in Fig. 4. There are two boundary types:
primal boundaries condense dual anyons (i.e., they termi-
nate primal error strings), while dual boundaries condense
primal anyons (i.e., they terminate dual error strings). We
can encode logical qubits using configurations of primal
and/or dual boundaries; logical operators can be formed
by string operators spanning between distinct boundaries.
Note that in the 2D surface code these boundaries are
often referred to as “rough” and “smooth” boundaries [51].
Examples of these two boundary types are shown in Fig. 4.

(Transparent) Domain walls. A domain wall is a
codimension-1 feature formed as the boundary between
two bulk regions of the code, where the symmetry trans-
formation has been applied to one of the regions [81], as
shown in Fig. 4. When an anyon crosses a domain wall,
it changes from primal to dual, or vice versa (which fol-
lows from the fact that the symmetry implements the anyon
permutation). Microscopically, this transformation can be
induced by the interpretation of the checks straddling the
domain wall—they are primal on one side and dual on the
other (which we can view as a change of gauge). Thus,
the corresponding string operators must transform from
primal to dual (and vice versa) in order to commute with
the stabilizers in the neighborhood of the domain wall. In
(2 + 1)D space-time, domain walls form world sheets that
can be used to exchange X and Z logical operators, as
well as primal and dual anyons upon crossing. We note
that such domain walls are also referred to as “transparent
boundaries” in the literature [78,80].

Corners. In the absence of any transparent domain
walls, the codimension-2 region where primal and dual
boundaries meet is called a corner [i.e., it is a 0-
dimensional point in the 2D code, or a 1D line in the (2 +
1)D instrument]. Corners can condense arbitrary anyons
as they straddle a primal boundary to one side and a dual
boundary to the other and can be used to encode quan-
tum information. For example, using surface codes with

alternating segments of primal and dual boundaries, one
can encode n logical qubits within 2n + 2 corners [51,82].
In the (2 + 1)D context we also refer to corners as cor-
nerlines, and their manipulation (e.g., braiding) can lead
to encoded gates. They can be understood as twist defects
(defined below) that have been moved into a boundary.

Twists. A twist is a codimension-2 object that arises
when a transparent domain wall terminates in the bulk
[18,23]. Similarly to corners, twist defects are topologi-
cally nontrivial objects and can carry anyonic charge. In
particular, the composite primal-dual anyon can locally
condense on a twist and one can use the charge of a twist
to encode quantum information. Indeed, twists and corners
can be thought of as two variations of the same topological
object; namely, a twist can be thought of as a corner that
has been moved into the bulk, leaving behind a transparent
corner (defined below), as is readily identified in the space-
time picture as per Fig. 4. Like corners, we can use 2n + 2
twists to encode n logical qubits.

Transparent corners. In the presence of domain walls,
primal and dual boundaries may meet in another way. We
call the codimension-2 region at which a primal bound-
ary, a dual boundary, and a domain wall meet a transparent
corner. Unlike the previous corners, transparent corners
carry no topological charge, cannot be used to encode log-
ical information, and should be thought of as the region
at which a primal and dual boundary are locally relabeled
(i.e., a change of gauge).

For the purposes of defining logical block templates
in the following section, we refer to the codimension-1
features (boundaries and domain walls) as fundamental
features, and the codimension-2 features (twists, corner-
lines, and transparent cornerlines) as derived features: the
locations of derived features are uniquely determined by
the locations of fundamental features. We remark that this
terminology is a matter of convention and not a statement
about the importance of a feature—indeed most encodings
and logical gates can be understood from the perspective of
twists and corners alone. This represents all possible fea-
tures of one copy of the surface code. As we consider more
copies of the surface code, the symmetry group becomes
richer, and thereby corresponds to a much larger set of
symmetry defects (domain walls and twists) that can be
created between the codes [83]. Section IX, for example,
introduces a particularly interesting defect known as a por-
tal that arises when we create defects between copies of the
same code.

IV. FAULT-TOLERANT INSTRUMENTS FOR THE
SURFACE CODE IN (2+1)D

Having defined the topological features of the surface
code, we now introduce a framework for fault-tolerant log-
ical instruments that are achieved by manipulating these
topological features in (2 + 1)D space-time. The central

020303-9

HÉCTOR BOMBÍN et al. PRX QUANTUM 4, 020303 (2023)

object we define is called a logical block template, which
is a platform-independent set of instructions for (2 + 1)D
surface code fault-tolerant instruments. The template pro-
vides an explicit description of the space-time location of
topological features (boundaries, domain walls, twists, cor-
nerlines, and transparent cornerlines), allowing for flexibil-
ity in the design of logical operations. Templates provide a
direct way of identifying checks and logical membranes of
the logical instrument, as well as a method of verifying that
it is fault tolerant. They can be directly compiled to physi-
cal instructions of a QIN, prescribing the qubits, ports, and
instruments to implement a fault-tolerant instrument in a
physical architecture for CBQC and FBQC.

A. Logical block templates: diagrammatic abstraction
for (2+1)D topological computation

Each logical block template is given by a 3D cubical
cell complex L and an accompanying set of cell labels.
Here, by cubical cell complex, we mean that L is a cubic
lattice consisting of sets of vertices L0, edges L1, faces L2,
and volumes L3 with appropriate incidence relations [84].
The labels are to determine regions of the cell complex that
support a primal boundary, dual boundary, domain wall, or
a port. We denote the set of features by

F = {PrimalBoundary, DualBoundary, DomainWall,

Porti, ∅}, (2)

where i indexes the distinct ports of the instrument network
(e.g., 1, 2, 3 for the network depicted in Fig. 2). The label
∅ is used as a convenience to denote the absence of any
feature.

We now formally define a logical block template as
follows.
Definition 2: A logical block template is a pair (L, F)
where L is a cubical cell complex and F : L2 → F is a
labeling of the 2-cells L2.

To define a logical block template, we have only
specified the location of the ports and fundamental,
codimension-1 features (the boundaries and domain walls).
The derived, codimension-2 features (twists, cornerlines,
and transparent cornerlines) are all inferrable from them.
Recall that twists reside at the boundary of a domain wall
in the absence of any boundaries, while cornerlines (trans-
parent cornerlines) reside on the interface between primal
and dual boundaries in the absence (presence) of a domain
wall.

In order to simplify the construction of derived features,
it is convenient to decompose the label for topological fea-
tures into two indicator functions B and T on L2. The first
one, B, indicates whether the 2-cell is a boundary or not
(this may simply be derived as ∂L3). The second, T, identi-
fies transparent domain walls as well as distinguishing dual
boundaries (B ∧ T) from primal boundaries (B ∧ ¬T). The

union of twist defects and cornerlines can then be identified
as ∂T, of which only (∂T) ∩ B are identified as corner-
lines. Finally, elements of ∂(T ∩ B) that are not in ∂T are
considered transparent cornerlines. In this way, corner-
lines, transparent cornerlines, and twists can be described
as labels on 1-cells of the template and one can extend the
domain of F to include 1-cells accordingly (see Appendix
A 3 for the explicit definition of the extension).

Remarks. The logical block templates do not make
any explicit reference to a causal or temporal direction.
As such, they provide a natural starting point to describe
pictures of topological fault tolerance that do not explic-
itly present a local temporal ordering such as FBQC and
MBQC. In order to ascribe a circuit model interpretation, it
is necessary to extend the template with a causal (i.e., tem-
poral) order compatible with the input and output status
of logical ports. Contrary to the static 2D case, bound-
aries, domain walls, twists, cornerlines, and transparent
cornerlines may all exist along planes normal to the time
direction. The physical operations generating such features
will be explained in the following sections.

Finally, we remark that the cubical complex is natu-
ral for blocks based on the square lattice surface code (in
CBQC) and the six-ring fusion network (in FBQC). For
other surface code geometries or fusion networks, one can
generalize the logical block template to other cell com-
plexes. This case remains important for the 3-cells in the
bulk to remain 2-colorable as they will continue to repre-
sent primal and dual checks, and locations where these are
not locally two colorable will correspond to twist defects
(and cornerlines if one considers the exterior as a color).
Twist defects in L1 are associated with an odd number of
incident faces from L2.

B. Fault-tolerant instruments from logical block
templates

Logical templates define fault-tolerant logical instru-
ments without reference to the computational model, but
can be directly compiled into physical instructions for dif-
ferent models of computation. We now explain how the
different features of the template correspond to measure-
ment instructions, checks, and logical membranes.

Compiling templates to physical instructions. Logical
block templates can be directly compiled into a network
of quantum instruments realizing surface-code-style fault
tolerance for CBQC and FBQC. We provide an overview
of this mapping here, leaving the explicit mapping from
templates to CBQC instructions in Appendix A 4, and to
FBQC instructions in Sec. VII. One can also obtain MBQC
instructions on cluster states using the framework of Ref.
[8] applied to the CBQC instructions.

To compile a template into physical instructions for
CBQC, we must choose a coordinate direction as the
temporal direction or otherwise equip the template with

020303-10

LOGICAL BLOCKS FOR FAULT-TOLERANT... PRX QUANTUM 4, 020303 (2023)

-

Primal/dual

Primal/dual

FIG. 5. Left: the surface code consists of stabilizer check operators supported on primal (blue) and dual (red) plaquettes. Stabilizers
on the primal (dual) boundary consist of truncated primal (dual) stabilizer operators. Logical Pauli operators for the surface code
consist of operators supported on nontrivial cycles of the underlying surface, or between distinct boundaries. Right: representation of
a topological instrument network; if implemented in CBQC, each slice of the network describes stabilizer measurement instructions
to perform on a plane of qubits. If implemented in FBQC, the network globally describes what fusions and measurements one should
perform between and on resource states.

a causal structure. From this, each time slice defines a
2D subcomplex of the template, each vertex of which
corresponds to a qubit, and each bulk 2-cell of which corre-
sponds to a bulk surface code stabilizer measurement. The
feature labels on the subcomplex result in modifications to
the measurement pattern, as per Fig. 4 and as shown in the
example in Fig. 5.

In FBQC, the symmetry between space and time is
maintained, and measurements may be performed in any
order. The flavor of FBQC presented in Ref. [48], which
uses six-qubit ring graph states as resource states, is natu-
rally adapted to the logical block template. To each vertex
of the template we place a resource state, while each
edge of the template corresponds to a fusion measurement
(a two-qubit projective measurement) between resource
states as determined by the feature labels.

Checks. There is a close connection between the ele-
ments used to describe topological codes with those
required to characterize fault-tolerant instruments. For
instance, stabilizer operators of the code give rise to check
operators for the QIN as the stabilizers are repeatedly mea-
sured. Similarly, the logical operators of the code give rise
to logical correlators, which track how the corresponding
degree of freedom map between ports. In topological fault
tolerance, going from code to protocol involves increas-
ing the geometric dimension by one, which in the circuit
model is naturally interpreted as the temporal direction. In
particular, checks correspond to parity constraints on the
outcomes of operators supported on closed (i.e., without
boundary), homologically trivial surfaces of codimension
1 (i.e., two dimensional) in the template complex. This
is analogous to how 2D surface code stabilizers consist

of Pauli operators supported on closed, homologically
trivial loops. In particular, the surface of every bulk 3-cell
of the template corresponds to a check, in the follow-
ing way. In CBQC, a surface code stabilizer measurement
repeated between two subsequent timesteps gives rise to
a check, and this check can be identified with the 3-cell
whose two faces the measurements are supported on. In
FBQC, fusion measurements between resource states sup-
ported on the vertices of a 3-cell constitute a resource state
stabilizer, and thus a check (this will be carefully validated
in Sec. VII).

Much like the two-dimensional case, bulk check gener-
ators can be partitioned into two disjoint sets, either primal
or dual, as depicted in Fig. 5. For CBQC, this partition
consists of the 2D checkerboard pattern extended in time,
while for FBQC, the primal and dual checks follow a 3D
checkerboard pattern. Thus, we may label a bulk 3-cell
(and its surface) by either Primal or Dual, depending on
what subset it belongs to. These checks can be viewed in
terms of Gauss’s law—they detect the boundaries of chains
of errors [85]. The presence of features modifies the check
operator group: primal and dual boundaries lead to checks
supported on truncated 3-cells, while defects and twists
lead to checks supported on the surfaces of pairs of 3-cells
sharing a defect 2-cell or twist 1-cell. We discuss the check
operator group and how it is modified by features in much
more detail in Sec. VII for FBQC and Appendix A 4 for
CBQC.

Logical correlators and membranes. Logical mem-
branes determine how logical information is mapped
between input and output ports of the instrument. In the
template, logical membranes—which can be thought of

020303-11

HÉCTOR BOMBÍN et al. PRX QUANTUM 4, 020303 (2023)

as the world sheets of logical operators—are supported
on closed, homologically nontrivial surfaces of codimen-
sion 1. Logical membranes can be obtained by finding
relatively closed surfaces M ⊆ L2, each with their 2-cells
taking labels from FM = {Primal, Dual, PrimalDual} sat-
isfying certain requirements. Here, by relatively closed,
we mean that the surface is allowed to have a boundary
on the boundary of the template cell complex. The labels
must satisfy the following conditions: (i) only faces with
Primal (Dual) labels can terminate on primal (dual) bound-
aries, (ii) upon crossing a domain wall, the Primal and Dual
labels of the membrane are exchanged (and the PrimalDual
label is left invariant).

Any such surface corresponds to a logical membrane
in the following ways. In CBQC, the membrane can be
projected into a given time slice where it corresponds to
a primal, dual, or composite logical string operator. The
components of a membrane in a plane of constant time
correspond to stabilizer measurements that must be mul-
tiplied to give the equivalent representative on that slice
(and thus their outcome is used to determine the Pauli
frame). In FBQC, the membrane corresponds to a stabilizer
of the resource state, whose bulk consists of a set of fusion
and measurement operators used to determine the Pauli
frame. In both cases, when projected onto a port, these
membranes correspond to a primal-type (X -type), dual-
type (Z-type), or a composite primal-dual-type (Y-type)
string logical operator. Checks can be considered “triv-
ial” logical membranes, with logical membranes forming
equivalence classes up to multiplication by them (i.e., by
local deformations of the membrane surfaces).

Logical errors. Errors can be understood at the level
of the template. Elementary errors—Pauli or measurement
errors—are categorized as either primal or dual, according
to whether they flip dual or primal checks, respectively.
Undetectable chains of elementary errors comprise pro-
cesses involving creation of primal or dual excitations,
propagating them through the logical instrument, trans-
forming them through domain walls, and absorbing them
into boundaries or twists. Specifically, primal (dual) excita-
tions can condense on dual (primal) boundaries, composite
primal-dual excitations can condense on twists, and primal
and dual excitations are swapped upon crossing a trans-
parent domain wall. The primal and dual components of
a logical membrane can be thought of as measuring the
flux of primal and dual excitations, respectively. If an
undetectable error results in an odd number of primal or
dual excitations having passed through the primal and dual
components of a logical membrane, then a logical error has
occurred. The fault distance of the logical instrument is the
weight of the smallest weight logical error.

Graphical conventions. Throughout the rest of the
paper, as per Figs. 3–5, we pictorially represent pri-
mal boundaries and logical membranes in blue, while
dual boundaries and dual logical membranes will be

represented in red. Domain walls are represented in
green.

V. UNIVERSAL BLOCK SETS FOR
TOPOLOGICAL QUANTUM COMPUTATION

BASED ON PLANAR CODES

In this section we apply the framework of logic block
templates to construct a universal set of fault-tolerant
instruments based on planar codes [51]. The gates we
design are based on fault-tolerant Clifford operations com-
bined with noisy magic state preparation, which together
are sufficient for universal fault-tolerant logic (via magic
state distillation [54,86,87]). To the best of our knowledge,
some of the Clifford operations we present—in particular,
the phase gate and controlled-NOT (CNOT) gate—are the
most efficient versions in the literature in terms of vol-
ume (defined as the volume of the template cell complex).
These Clifford operations form the backbone of the quan-
tum computer, and set for instance the cost of and rate at
which magic states can be distilled and consumed (the lat-
ter of which can become quite expensive for applications
with large numbers of logical qubits [88,89]). Later, in Sec.
IX, we show another way of performing Clifford oper-
ations—namely, Pauli product measurements—for twist-
encoded qubits, using a space-time feature known as a por-
tal. These portals require long-range operations in general,
and will be discussed in the context of FBQC.

A. Planar code logical block templates for Clifford
operations

We begin by defining logical block templates for a gen-
erating set of the Clifford operations on planar codes [51]:
the Hadamard, the phase gate, the lattice surgery for mea-
suring a Pauli-X string, along with Pauli preparations and
measurements. Recall that a fault-tolerant instrument real-
izes an encoded version of the Clifford operator U ∈ Cl,m
if it has l distinct input ports, m distinct output ports, and
an equivalence class of logical membranes M P,Q for every
logical correlator P ⊗ Q ∈ S(U). Each of the block tem-
plates are depicted in Fig. 6 along with a generating set
of membranes, showing the mapping of logical operators
between the input and output ports. To complete a uni-
versal block set, we present the template for noisy magic
state preparation in Fig. 16 and Appendix A 6. We reem-
phasize that the instruments we discuss are only true up to
a random but known Pauli operator—known as the Pauli
frame. The logical membranes determine the measurement
outcomes that are be used to infer this Pauli frame.

Logical block criteria. The logical blocks we present
are designed for planar code qubits with the following cri-
teria in mind. (i) They each have a fault distance of d for
both CBQC and FBQC under independent and identically
distributed (IID) Pauli and measurement errors, where d
is the (tunable) distance of the planar codes on the ports.

020303-12

LOGICAL BLOCKS FOR FAULT-TOLERANT... PRX QUANTUM 4, 020303 (2023)

Identity

MX,X MZ,ZMX,X MZ,Z

: C
2 → C

2

S() = 〈X ⊗ X, Z ⊗ Z〉
footprint: d2

time: τ

volume: τd2

: C
2 → C

2

S() = 〈X ⊗ X, Z ⊗ Z〉
footprint: d2

time: τ

volume: τd2

X and Z measurements

MX,I MZ,IMX,I MZ,I

MP : C
2 → C

1, P ∈ {X, Z}
S(MP) = 〈P ⊗ 〉
footprint: d2

time: 1
volume: d2

MPM : C
2 → C

1, P ∈ {X, Z}
S(MPM) = 〈P ⊗ 〉
footprint: d2

time: 1
volume: d2

Hadamard

MX,Z MZ,X

H : C
2 → C

2

S(H) = 〈X ⊗ Z, Z ⊗ X〉
footprint: 2d2

time: 3d
volume: 6d3

H : C
2 → C

2

S(H) = 〈X ⊗ Z, Z ⊗ X〉
foff otprint: 2d2

time: 3d
volume: 6d3

Phase gate

MX,Y MZ,Z

S : C
2 → C

2

S(S) = 〈X ⊗ Y, Z ⊗ Z〉
footprint: 2d2

time: 2d
volume: 4d3

S : C
2 → C

2

S(S) = 〈X ⊗ Y,YY Z ⊗ Z〉
foff otprint: 2d2

time: 2d
volume: 4d3

Lattice surgery for X⊗n measurement

MX1X2X3, MX1,X1 MZ1Z2,Z1Z2MX1X2X3, MX1,X1 MZ1Z2,Z1Z2

MX⊗n : (C2)⊗n → (C2)⊗n

S(MX⊗n) = 〈X⊗n ⊗ , ⊗ X
⊗n

,

Z iZi+1 ⊗ Z iZ i+1,

X i ⊗ X i〉
footprint: 2nd2

time: d

volume: 2nd3

MXM ⊗n : (C2)⊗n → (C2)⊗n

S(MXM ⊗n) = 〈X⊗n ⊗ , ⊗ X
⊗n

,

Z iZi+1 ⊗ Z iZ i+1,

X i ⊗ X i〉
footprint: 2nd2

time: d

volume: 2nd3

(a)

(c)

(e)

(b)

(d)

FIG. 6. Logical templates for Clifford operations. Primal and dual boundaries are depicted in blue and red, domain walls in green,
cornerlines and twists in bold black. For each operation U, a membrane M P,Q is shown for each generating logical correlator P ⊗ Q ∈
S(U). Time and footprint overheads are based on traversing the block from left to right in 2D slices; however, we emphasize that
networks of such operations may be traversed in any direction. (a) The identity gate for time τ . (b) Measurements of Pauli X and Z
amount to placing a primal or dual boundary and can be done in constant time; the measurement outcome is inferred from the logical
membrane terminating on the boundary. Preparations are given by the respective time-reversed template. (c) The phase gate can be
realized by the braiding of two cornerlines. One of the cornerlines is propagated as a twist through the bulk, while the other moves
around the exterior of the block. (d) The Hadamard can be realized by a clockwise or counterclockwise rotation of the cornerlines.
Note that the “trench” created by the dual boundary may be as thin as a width-0 plane (meaning that the boundaries on either side
coincide). (e) Lattice surgery to measure X ⊗n can be realized by fusing together cornerlines from different logical qubits. The outcome
of the logical measurement is inferred from the M X ⊗n,1 membrane terminating on the boundary.

(ii) They are composable by transversal concatenation and
that composition preserves distance. This means that, for
a given distance, we can compose two blocks together by

identifying the input port(s) of one with the output(s) of
another. In particular, this requires that inputs and output
ports are a fixed planar code geometry. (iii) They admit

020303-13

HÉCTOR BOMBÍN et al. PRX QUANTUM 4, 020303 (2023)

a simple implementation in 2D hardware: after choosing
any Cartesian direction as the flow of physical time, the
2D time slices can be realized in a 2D rectangular layout.

These criteria allow the logical blocks to be used in a
broad range of contexts; however, it is possible to find
more efficient representations of networks of logical oper-
ations by relaxing them. For instance, we need not require
the input and output codes to be the same, as we can
classically keep track of rotations on the planar code and
compensate accordingly. Secondly, networks of such oper-
ations can be compiled into more efficient versions with the
same distance. In particular, one may also find noncubical
versions of these blocks with reduced volumes.

Hadamard and phase gates. To the best of our knowl-
edge, the phase gate presented in Fig. 6 is the most
volume-efficient representation in the literature for planar
code qubits using the so-called rotated form [43,52,53].
Moreover, the scheme we present can be implemented in
CBQC with a static 2D planar lattice using at most four-
qubit stabilizer measurements on neighboring qubits on a
square lattice. In particular, the physical operations for the
phase gate can be ordered in a way that does not require the
usual five-qubit stabilizer measurements [18,54] or modi-
fied code geometry [8,27] that are typically required for
twists. We explicitly show how to implement this phase
gate in CBQC in Fig. 23 in Appendix A 5. We remark
that, with access to nonlocal gates or geometric operations
called “folds,” one can find an even more efficient phase
gate based on the equivalence of the toric and color codes
[90,91]. The Hadamard gate has the same volume as the
“plane rotation” from Ref. [54].

Lattice surgery and Pauli product measurements. To
complete the Clifford operations, we consider the nonde-
structive measurement of an arbitrary n-qubit Pauli oper-
ator, known as a Pauli product measurement (PPM) [92]
(a general Clifford computation can be performed using
a sequence of PPMs alone [54]). By nondestructive, we
mean that only the specified Pauli is measured, and not,
for example, its constituent tensor factors. A general PPM
MP : (C2)⊗n → (C2)⊗n, P ∈ Pn, has a stabilizer given by

S(MP) = 〈P ⊗ I , I ⊗ P, Q ⊗ Q† | Q ∈ ZPn(P)〉. (3)

These PPMs can be performed using lattice surgery [20,
54]. With access to single-qubit Clifford unitaries, an arbi-
trary PPM can be generated using lattice surgery in a fixed
basis, such as the X basis, as depicted in Fig. 6.

To efficiently perform a general PPM using lattice
surgery [20], one may utilize planar codes with six cor-
ners, as described in Ref. [54]. Each six-corner planar code
encodes two logical qubits and supports representatives of
all logical operators X i, Yi, and Zi of each qubit i ∈ {1, 2}
on a boundary. This enables us to measure arbitrary n-qubit
Pauli operators in a more efficient way as no single-qubit
Clifford unitaries or code rotations are required between

successive lattice surgery operations. The price to pay is
that single-qubit Pauli measurements and preparations can
no longer be done in constant time. As a further improve-
ment, by utilizing periodic boundary conditions, we can
compactly measure any logical Pauli operator on k logical
qubits using a block with at most 2kd3 volume, as shown
in Ref. [50,89].

Qubits in space and time: from lattice surgery to
controlled-Pauli operations. The logical flow (the order
in which the logical block maps inputs to outputs) and
physical flow (the order in which physical operations are
implemented to realize the fault-tolerant instrument) for
a logical block do not need to be aligned. One can take
advantage of this in the design of logic operations. In par-
ticular, each qubit participating in the lattice surgery may
be regarded as undergoing a controlled-X, controlled-Y,
or controlled-Z gate with a spacelike ancilla qubit (i.e.,
a qubit propagating in a spatial direction). For example,
the X -type lattice surgery of Fig. 6 can be understood
as preparing an ancilla in the |+〉 state, performing CX
(controlled-X) gates between the ancilla and target logical
qubits, then measuring the ancilla in the X basis.

One can use this to define a logical block template
for the CX gate, as depicted in Fig. 7. Therein, one can
verify that the block induces the correct action by find-
ing membranes representing stabilizers of CX : (C2)⊗2 →
(C2)⊗2,

S(CX) = 〈X1 ⊗ X1X2, X2 ⊗ X2, Z1 ⊗ Z1, Z2 ⊗ Z1Z2〉.
(4)

One can similarly define CZ and CY gates by appropriately
including domain walls in the template. The stabilizers

cin

cout

tin tout

cin

cout

tin tout

FIG. 7. Left: a CX (controlled-NOT) gate with control qubit c
and target qubit t has two ports that are treated as inputs (cin and
tin) and two ports that are treated as outputs (cout and tout). The
control qubit c is presented as progressing from bottom to top,
whereas the target qubit is presented as progressing from left to
right. Right: the support of one instance of the logical correlator
membrane is presented. In this case, the support of the membrane
at the ports fully determines which stabilizer it represents at the
level of the encoded input and output qubits Xcin ⊗ Xcout Xtout ∈
S(CX). Other correlator membranes and stabilizer generators
may be similarly determined.

020303-14

LOGICAL BLOCKS FOR FAULT-TOLERANT... PRX QUANTUM 4, 020303 (2023)

for the CZ and CY gates can be obtained by applying a
Hadamard or phase to the second qubit after the CX gate.

In the next section, we expand on this concept by design-
ing a logic scheme using “toric code spiders” that can be
considered an alternative approach to lattice surgery.

VI. ASSEMBLING BLOCKS INTO CIRCUITS:
CONCATENATING LDPC CODES WITH

SURFACE CODES

We now introduce a logic scheme that takes advantage
of the space-time flexibility inherent to surface code logi-
cal blocks and show how to generate larger circuits using
these building blocks. An application of this scheme is
the construction of fault-tolerant schemes based on surface
codes concatenated with more general LDPC codes.

While the surface code (and topological codes) are
advantageous due to their very high thresholds, they
are somewhat disadvantaged by their asymptotically zero
encoding rate (i.e., the ratio of encoded logical qubits to
physical qubits vanishes as the code size goes to infin-
ity). Fortunately, there are families of LDPC codes that
have nonzero rates [55–62], meaning that the number of
encoded logical qubits increases with the number of phys-
ical qubits. Such codes may offer ways of greatly reducing
the overhead for fault-tolerant quantum computation [56].

Code concatenation allows us to take advantage of the
high threshold of the surface code and the high rates of
LDPC codes. The space-time language of the previous sec-
tions provides a natural setting for the construction and
analysis of the resulting codes. The building blocks for
these constructions consist of certain topological projec-
tions that we refer to as “toric code spiders”—these corre-
spond to encoded versions of the Z and X spiders of the
ZX calculus [93–95]. Spiders are encoded Greenberger-
Horne-Zeilinger (GHZ) basis projections for surface code
qubits. Our protocol is intended to be illustrative, and we
emphasize that further investigation into the performance
of such concatenated codes is an interesting open problem.

A. Toric code spiders

We now define spiders and toric code spiders, the build-
ing blocks for the concatenated codes we consider. There
are two types of spiders, which we label x̂k and ẑk, where
k ∈ N labels the number of input and output ports. We do
not distinguish between input and output ports here and, as
such, we write the stabilizer groups for k > 1 as

S(x̂k) = 〈Z⊗k, XiXi+1 | i = 1, . . . , k − 1〉, (5)

S(ẑk) = 〈X ⊗k, ZiZi+1 | i = 1, . . . , k − 1〉, (6)

with S(x̂1) = 〈Z〉 and S(ẑ1) = 〈X 〉. If all ports are consid-
ered outputs then spiders can regarded as preparing GHZ

FIG. 8. Logical block templates for toric code spiders. On the
left (right) we have the toric code spider for the x̂4 (ẑ4) operation.
Lengths of the legs are exaggerated for illustration purposes. On
the bottom row we depict two logical membranes; labeling the
ports 1 to 4 clockwise from the left, we have example membranes
X3X4 ∈ S(x̂4) and X1X2X3X4 ∈ S(ẑ4). The lengths of the legs of
the spider are exaggerated for illustration purposes.

states (up to normalization)

|x̂k〉 = |+ · · · +〉 + |− · · · −〉 , (7)

|ẑk〉 = |0 · · · 0〉 + |1 · · · 1〉 . (8)

Similarly, if all ports are considered inputs then the spider
performs a GHZ basis measurement. The flexibility arises
by considering networks of spiders where each spider may
have both input and output ports, i.e., where each type
of spider x̂k and ẑk is a map (C2)⊗k−a → (C2)⊗a for any
choice of a ∈ {0, 1, . . . , k}, and can be obtained by turn-
ing some kets to bras in Eqs. (7) and (8). We note that in
this language, Pauli-X (Pauli-Z) measurements and prepa-
rations may be regarded as 1-port spiders ẑ1 (x̂1), while the
identity gate may be regarded as 2-port spiders of either
type.

Toric code spiders are logical blocks representing
encoded versions of these spiders such that each input and
output is a qubit encoded in a surface code. We depict
example toric code spiders corresponding to x̂4 and ẑ4 in
Fig. 8.

Stabilizer measurements. By composing many toric
code spiders in a network along with single-qubit
Hadamard and phase gates, we can perform any Clifford
circuit. Such circuits can be used to measure the stabiliz-
ers of any stabilizer code, and in the following we show
how networks of spiders alone are sufficient to measure
the stabilizers of any Calderbank-Shor-Steane (CSS) code
[96,97], thus giving us a recipe to measure the stabilizers
of the concatenated codes of interest.

As a simple example, consider the Clifford circuit
depicted in Fig. 9 that uses one ancilla to measure the

020303-15

HÉCTOR BOMBÍN et al. PRX QUANTUM 4, 020303 (2023)

|+〉 MX

ẑ4 x̂3x̂3

x̂3

x̂3

FIG. 9. Arranging toric code spider networks for encoded Clifford circuits. Left: a Clifford circuit for measuring the Pauli operator
X ⊗4 using an extra ancilla. Time moves from left to right. Middle: converting the Clifford circuit into a network of x̂k and ẑk operations.
Time moves from bottom to top. Right: the resulting space-time network. In Appendix A 7 we demonstrate how the spider network is
obtained, along with a larger network measuring encoded surface code stabilizers. Time moves from bottom to top. The lengths of the
legs of the toric code spiders along with their spacing are exaggerated for illustration purposes.

Pauli operator X ⊗4 on four qubits. Such a circuit may be
regarded as the syndrome measurement of a surface code
stabilizer. One can rewrite the circuit as a network of oper-
ations consisting of x̂k and x̂k (also depicted in the figure),
where each spider is represented by a k-legged tensor that
is composed along ports. One can verify this using stan-
dard stabilizer techniques or using the ZX calculus [93,94]
(see also Appendix A 7 for more details). We can arrange
a space-time network as depicted in the figure. To measure
Z⊗4, one simply swaps the roles of x̂k and ẑk.

Concatenation with toric codes. The previous example
of performing stabilizer measurements can be generalized
to the stabilizers of arbitrary concatenated CSS codes.
Namely, denote the concatenation of an inner code Cin and
an outer code Cout by Cout ◦ Cin. It is the result of encod-
ing each logical qubit of Cout into Cin. We consider using
a surface code as the inner code, and a general CSS LDPC
code as the outer code. (The high-threshold surface code is
used to suppress the error rate to below the threshold of the
LDPC outer code.)

We can construct toric code spider networks to mea-
sure the stabilizers of the outer code Cout as follows. For
each round of X -type (Z-type) measurements of Cout, we
place

1. a x̂δ+2 (ẑδ+2) spider for each code qubit, with δ equal
to the number of X (Z) stabilizers the code qubit
is being jointly measured with (the two additional
ports can be considered as an input and an output
port for the code qubit),

2. a ẑk (x̂k) spider for each stabilizer measurement,
connected to the corresponding code qubit spiders.

Whenever an X or Z spider with more than four legs arises,
it can be decomposed into a sequence of connected spiders
with degree at most 4, and thus implementable with toric
code spiders. Such a protocol allows us to measure stabi-
lizers of the outer code. We emphasize that in constructing

the instrument network to realize the stabilizer measure-
ments, only the graph topology matters, and one may order
the instruments in many different ways.

As a simple example, we depict a surface code concate-
nated with itself in Fig. 24 in Appendix A 7. Note that, for
simplicity, the outer surface code is the Kitaev version that
consists of independent X -type and Z-type generators.

In general, the stabilizers of a LDPC code cannot be
made local in a planar layout, and long-range interactions
will be required (necessarily so if the code has an nonzero
rate and nonconstant distance [98]). Such long-range con-
nections can be facilitated by toric code spiders with
long legs (topologically these “long legs” look like long
identity gates), each of which comprises local operations,
thus dispensing with the need for long-range connections.
Alternatively, one may connect distant toric code spiders
using portals (as we describe in Sec. IX).

For example, embedding the qubits of an [N , K , D]
quantum LDPC code in a finite-dimensional Euclidean
space will in general require connections between qubits
of range r = poly(N). If the error rate on qubits is pro-
portional to their separation, one can use the surface code
concatenation scheme to reduce the error rate experienced
by the qubits of the (top-level) LDPC code to a con-
stant rate (independent of range). In particular, this can
be achieved using surface code spiders with a distance
of d = O(log(rmax)) = polylog(N) for each connection
(where rmax is the largest qubit separation). This leads to
a protocol with rate K/Npolylog(N), which, despite being
asymptotically zero, may still be larger than a pure topo-
logical encoding, providing one starts with a LDPC code
with good rate [60–62].

Logical operations. One can perform fault-tolerant log-
ical gates on such codes using networks of toric code
spiders along with magic state injection. In particular, gates
are performed by measuring a target logical Pauli operator
(a PPM) jointly with an ancilla magic state [54]. The log-
ical Pauli operator is measured either directly or through

020303-16

LOGICAL BLOCKS FOR FAULT-TOLERANT... PRX QUANTUM 4, 020303 (2023)

a code deformation approach [56,99,100], using a toric
code spider network as described above. The ancilla magic
states can be obtained by magic state distillation at the
inner (surface) code level. The initial state preparations
in the X and Z bases can be achieved by preparing the
inner code qubits in either the X or Z eigenbasis (through
an appropriate choice of primal or dual boundaries on the
input) followed by a round of measurement of the outer
code stabilizers [101]. This approach may be viewed as a
spider network approach to LDPC lattice surgery.

VII. IMPLEMENTING LOGICAL BLOCKS IN
TOPOLOGICAL FUSION-BASED QUANTUM

COMPUTATION

This section describes the use of logical block tem-
plates to implement fault-tolerant instruments in FBQC
[48]. FBQC is a universal model of quantum computation
in which entangling fusion measurements are performed
on resource states. It is a natural physical model for
many architectures, including photonic architectures where
fusions are native operations [48,102,103]. In FBQC a
topological computation can be expressed as a sequence
of fusions between a number of resource states arranged
in (2 + 1)D space-time. This gives rise to a construction
termed a fusion network. For concreteness, we consider an
example implementation based on the six-ring fusion net-
work introduced in Ref. [48], and with it construct fusion
networks that realize the templates of Sec. IV.

A. Resource state and measurement groups

To begin, we consider the cubical cell complex of a
logical template introduced in Sec. IV A. Recall that this
complex is referred to as the lattice L. In a FBQC imple-
mentation of the template we define a fusion network
from the vertices and edges of L. Each vertex specifies
the location of a resource state, while the edges rep-
resent fusions (multiqubit projective measurements) and
single-qubit measurements on its qubits.

The six-ring resource state is a graph state [104] with
stabilizer generators

R6 = 〈Ki | Ki = Zi−1XiZi+1, i ∈ {0, . . . , 5}〉. (9)

The indexing is not arbitrary and will be described in Sec.
VII B below.

The resource state group R is defined as the tensor
product

R = ⊗v∈L0R6, (10)

where L0 is the set of all vertices in L. Each edge e of
L1 thereby corresponds to a pair of qubits from distinct
resource states. In the featureless bulk of the lattice we

perform fusion measurements on each such pair in the
basis

Me = 〈XX , ZZ〉. (11)

For features and boundaries, the template labels in F
may specify alternative fusion bases or single-qubit mea-
surements. In the latter case we continue to identify the
measurement with an edge e; however, the template will
specify one vertex as vacant so only a single qubit is
involved. The measurement group M is then defined as
the group generated by

M = 〈Me | e ∈ L1〉, (12)

where L1 is the set of all edges in L [105]. Importantly, in
FBQC, the measurements to be performed are all commut-
ing, and thus may be performed in any order (for example,
layer by layer, or sequentially [50]).

Elements in the resource state group that commute with
the measurement group play an important role in FBQC,
as we will see in the next section.

B. Surviving stabilizers: checks and membranes

Both the error-correcting capabilities and logical instru-
ments of FBQC may be understood using the surviving
stabilizers formalism [5,8,48]. The surviving stabilizer
subgroup S is defined as those stabilizers r ∈ R that
commute with all elements of the measurement group

S = ZR(M) = {r ∈ R | rm = mr for all m ∈ M}.
(13)

Elements of S are termed surviving stabilizers. The lattice
structure allows us to determine this centralizer relatively
easily, as will be shown below.

One important subgroup of S is the intersection C =
R ∩ M, whose elements provide the check operators of
the FBQC instrument network. Qubits of each six-ring
resource state are arrayed on the edges in such a way that
each generator of Eq. (9) can be associated with a cor-
ner of a 3-cell; one suitable indexing on Cartesian axes is
{z+, x+, y+, z−, x−, y−}.

Consider now a 3-cell in the bulk of the lattice, as shown
in Fig. 10. For six of its vertices, we may choose a ZXZ
generator of Eq. (9) on a corner of the cell as shown. For
the remaining two corners, we take a product of three six-
ring stabilizer generators to obtain an XXX operator on the
corner. The product of all eight corner stabilizers can be
rewritten as a product of elements XX and ZZ from M,
and is therefore contained in C.

These check stabilizers corresponding to 3-cells of the
lattice are analogous to the plaquette operators of the
surface code. Note that each cell edge shows only one out-
come of the 〈XX , ZZ〉 fusion; the other outcome is included

020303-17

HÉCTOR BOMBÍN et al. PRX QUANTUM 4, 020303 (2023)

Stabilizers in R Whose product is in M

(b)(a)

FIG. 10. A surviving stabilizer in the intersection R ∩ M. On
the left are stabilizers of the six-ring resource states arrayed on
each vertex of a lattice cell. These are of the form ZXZ (green-
purple-green) or XXX (purple-purple-purple). The product can
be rewritten in terms of XX (purple) and ZZ (green) and is
therefore also in the measurement group. This type of surviving
stabilizer is a check operator of the FBQC instrument network.

in a neighboring check operator. This partitions the cells
into a 3D checkerboard of primal and dual check oper-
ators, as shown in Fig. 11. Errors on fusion outcomes
flip the value of checks, which can be viewed as anyonic
excitations as before.

When all qubits are measured or fused, the surviv-
ing stabilizer group is given by the intersection S = R ∩
M. We now turn to the case where some qubits remain
unmeasured, and construct additional elements of S that

will be important in understanding the FBQC implementa-
tions of logical instruments.

Topological boundary states. Consider a boxlike
region R within a bulk fusion network, and suppose that
fusions are performed only inside this box. Qubits involved
in these fusions will be referred to as inner qubits, and the
remaining unmeasured qubits referred to as outer qubits.
As the measurement group has full (stabilizer) rank on
the inner qubits, all surviving stabilizers can be written as
s = souter ⊗ sinner. In the interior of the region we can define
check operators as above where souter = 1. However, in
the presence of unmeasured qubits, we will find surviv-
ing stabilizers that reveal topological boundary states on
the boundary of the measured region ∂R. In particular, if
we consider a planarlike boundary of the bulk fusion net-
work, we find surviving stabilizers, as shown in Fig. 12.
For this boundary geometry, the first type are of the form
XZZX ⊗ sinner, where sinner consists of a product of fusion
measurements. We recognize this first type from Sec.
III A as a surface code check operator acting on qubits
on the region’s boundary. These boundary checks parti-
tion into primal and dual types, as shown in Fig. 12. The
second type of surviving stabilizers are two-dimensional
sheets, some of which, as we will see in the next section,
define membranes of the logical instrument implemented
by the fusion network. Note that membranes may be
deformed by multiplying by the cubic and boundary check
operators.

FIG. 11. The six-ring fusion network. The fusion network can be compactly represented by a fusion graph—a cubic graph whose
vertices represent resource states (six-ring cluster states) and whose edges represent fusions. Logical membranes and check operators
for various features are depicted.

020303-18

LOGICAL BLOCKS FOR FAULT-TOLERANT... PRX QUANTUM 4, 020303 (2023)

R

∂R

FIG. 12. Topological boundary states for the six-ring fusion
network. By fusing resource states in a region R, we are left with
a series of unmeasured, outer qubits on the boundary ∂R (repre-
sented by short lines coming out of the page). These outer qubits
are in a code state of the surface code (up to signs depending on
measurement outcomes), as can be inferred from the surviving
stabilizers XZZX ⊗ sinner depicted. Therein, short purple (green)
lines correspond to Pauli-X (Pauli-Z) operators, while long pur-
ple (green) lines correspond to XX (ZZ) operators. Another type
of surviving stabilizer Z ⊗ sinner is depicted, where Z is a logical
operator for the surface code on ∂R and sinner is supported on a
two-dimensional membrane.

C. Topological instrument networks in FBQC

We now turn to the implementation of the logical instru-
ments described in Sec. V A and the topological features
by which they are implemented. Additionally, using an
example, we describe the second type of surviving sta-
bilizer; the logical membrane. In Sec. III we understood
features in terms of their properties with respect to anyonic
excitations, which in turn were derived from the structure
of the stabilizer check operators of the code. The FBQC
approach is similar in nature. We introduce local modifica-
tions to the fusion and measurement patterns of the basic
six-ring fusion network to create topological features, and
show that this generates a surviving stabilizer group that
includes the appropriate checks and stabilizers.

1. Logical membranes and the identity gate

In this subsection we describe the FBQC implemen-
tation of the identity gate, the simplest logical operation
shown in Fig. 6, and in particular the implementation of
its ports and boundaries. The fusion graph is cubic with
dimensions d × d × d, and fusions on qubits of neigh-
boring resource are performed as before. Qubits on the
primal and dual boundaries are measured to ensure that
only the appropriate boundary checks remain as members
of S (defined in the following). The remaining boundary
checks on each port then exactly define a surface code,
with membrane stabilizers given by

X in ⊗ X out ⊗ mX ,X ,
Zin ⊗ Zout ⊗ mZ,Z .

(14)

Stabilizers in R Whose product is in M

(a) (b)

FIG. 13. The bulk of the logical membranes. Both mX ,X and
mZ,Z from Eq. (14) are elements of the surviving stabilizer
R ∩ M. They can be constructed from stabilizers of the six-ring
resource states in such a way that they also clearly belong to the
measurement group. Purple and green full (half) edges represent
XX (X) and ZZ (Z) operators.

The membranes mX ,X , mZ,Z represent the world sheet of
each logical operator through the fusion network, and
they define the action of the logical instrument. They are
depicted in Figs. 12 and 13. Undetectable errors strings are
those that cross from one primal (dual) boundary to the
other, thereby introducing an error on the membrane.

2. Ports

While not a topological feature, ports are an important
component of the logical block framework that allow us
to define logical blocks. In terms of the fusion network, a
port identifies a set of resource states that have unpaired
(and thus unfused) qubits. These unpaired qubits remain
unmeasured and form the set of outer qubits, each con-
nected component of which forms a surface code state
(postmeasurement) encoding the input or output of a block
(as depicted in Fig. 12).

3. Boundaries

Recall from Sec. III that boundaries come in two types
according to the type of excitation that may condense on
them. The primal boundary absorbs only dual-type exci-
tations, and the dual boundary absorbs only primal-type
excitations. These boundaries can be created using single-
qubit measurements on a two-dimensional sublattice.

To see how they are created, consider a region R with
a boundary ∂R. As we have seen, by fusing the resource
states within R, we are left with a topological surface
code state on ∂R. There are surviving stabilizers r ∈ S
that describe this boundary state. We consider in particu-
lar the surviving stabilizers r ∈ S \ C with support on ∂R.
These surviving stabilizers admit a generating set in terms
of primal and dual stabilizers (recall they can be viewed as
truncated bulk check operators).

To create a primal or dual boundary on ∂R, we perform a
set of single-qubit measurements that commute with either
the primal or dual surviving stabilizers. In other words,
we perform measurements such that only the primal or
dual surviving stabilizers r ∈ S \ C remain (but not both).

020303-19

HÉCTOR BOMBÍN et al. PRX QUANTUM 4, 020303 (2023)

FIG. 14. The measurement pattern and check operator of a
FBQC domain wall defect. Purple and green edges represent
XX and ZZ operators. The extended edges are the measurements
from next-to-nearest-neighbor fusions.

For the planar geometry of Fig. 12, the measurement pat-
terns to create a primal boundary and a dual boundary
differ only by a translation. Namely, they consist of an
alternating pattern of X and Z single-qubit measurements,
as shown in the example of Fig. 16 below. The bound-
ary checks are shown in Fig. 11. Other geometries can be
found similarly by implementing the single-qubit measure-
ment pattern that completes either the primal or dual check
operators (which are obtained by restricting bulk checks
to the region with boundary). We remark that it is often
convenient to describe the fusion graph on the dual of the
template complex, such that resource states belong to 3-
cells, and the measurement basis for each qubit is uniquely
determined by the feature label on the 2-cell on which it
resides.

4. Domain walls

As is the case for the surface code, nontrivial logic oper-
ations can be implemented by introducing defects using
the underlying Z2 symmetry. The domain wall defect was
described in Sec. III B as a codimension-1 feature formed
when the symmetry transformation, i.e., the exchange of
primal and dual checks, is applied to a subregion of the
lattice. In the logical block template this domain wall is
denoted by labeled 2-cells identifying this region. The
fusion pattern is modified such that the next-to-nearest
resource states on opposite sides of the domain wall are
fused together directly. Resource states assigned to vertices
within the domain wall plane do not participate and may be
discarded. The local check operators along the 2D domain
wall plane are supported on the two 3-cells intersecting on
the domain wall, as shown in Fig. 14. This check structure
results in the exchange of primal and dual excitations upon
crossing.

5. Twist defects

Twist defect lines occur along the 1D boundaries of a
domain wall. In the fusion network, the line of resource
states associated with vertices on the twist line each have
one qubit that does not partake in a bulk fusion or domain
wall fusion. These qubits are associated with the edge
directed into the domain wall, and are measured in the Y

FIG. 15. The measurement pattern and check operator of a
FBQC twist defect. Purple and green edges represent XX and ZZ
operators. Yellow full and half edges represent YY and Y opera-
tors. The YY operator is obtained as the product of XX and ZZ
measurements of the given fusion.

basis producing the measurement pattern and check oper-
ators shown in Fig. 15. These operators have overlap with
both primal and dual checks, and it can be verified that
composite primal-dual excitations may condense on twist
lines.

6. Cornerlines and transparent cornerlines

The last feature we consider in the FBQC implementa-
tion of logical templates is that of cornerlines. Cornerlines
and transparent cornerlines naturally arise when the two
distinct boundaries meet, depending on whether a domain
wall is present or not (i.e., no further modifications to the
measurement pattern are required). In particular, one per-
forms the appropriate single-qubit measurements on either
side of the (transparent) cornerline, according to whether
that qubit belongs to the primal or dual boundary type. We
depict an example of the measurement pattern that gives
rise to cornerlines in Fig. 16.

7. Fusion-based magic state preparation

For completeness, we depict in Fig. 16 the fusion net-
work and precise measurement pattern that can be used
to prepare a noisy magic state. This can be viewed as the
fusion-based analogue of the protocol described in Refs.
[8,106].

VIII. SIMULATING LOGICAL BLOCKS

In this section, we introduce tools to simulate the error
rates of logical blocks, and present numerical results for
the thresholds and logical error rates of the logical blocks
depicted in Fig. 6. We begin by describing the syndrome
graph representation of a fault-tolerant instrument, which
will be a convenient data structure to decode and simu-
late logical blocks. Moreover, the logical block templates
that we have defined can be implemented in software as
a tool to automatically generate such syndrome graphs,
thereby allowing for the simulation of complex logical
block arrangements. Using this software framework, we
perform numerical simulations for logical blocks based
on the six-ring fusion network under a phenomenological
noise model [107] known as the hardware-agnostic fusion

020303-20

LOGICAL BLOCKS FOR FAULT-TOLERANT... PRX QUANTUM 4, 020303 (2023)

FIG. 16. Noisy magic state preparation block. Left: noisy
magic state preparation can be regarded as a fault-tolerant instru-
ment taking a distance-1 code state (i.e., an unencoded state) to
a distance-d code state. The block produces (on the rear port) an
encoded version of an arbitrary input qubit (on the front center).
The depth is exaggerated for the purpose of illustration. Right:
the six-ring fusion network measurement pattern for the block
(defined here by considering the fusion graph as the 1-skeleton
of the dual of the block template). Individual qubits belonging
to resource states on the boundary are measured in the X (Z)
basis as accordingly depicted by purple (green) edges. To pre-
pare an encoded |T〉 = (|0〉 ± eiπ/4 |1〉)/√2 on the output, the
qubit belonging to the central resource state is measured in the
1
2 (X + Y) basis; the ± sign is determined by the measurement
outcomes.

error model in Ref. [48]. We demonstrate that all blocks
have a threshold that agrees to within error with the bulk
memory threshold. We also evaluate the logical error rate
scaling of each block in the subthreshold regime and eval-
uate the resources required to achieve a target logical error
rate for practical regions of interest. In doing so, we see the
important role that boundary conditions have on the logical
error rate, and in particular that periodic boundary condi-
tions provide a favorable scaling. Finally, we observe that,
for sufficiently large distances and low error rates, the log-
ical error rates for different logical qubits participating in
lattice surgery behave approximately independently [108].

A. Simulation details

To perform simulations of complex logical block
arrangements, we implement the template in software as
a cubical complex with labeled 2-cells. Each template cor-
responds to a set of physical operations, and can be used
together with a set of rules (building upon the descrip-
tion in Sec. VII) to automatically generate a set of syn-
drome graphs (as defined below), and a set of bit masks
representing the logical membranes thereon. We can sub-
sequently use these syndrome graphs to perform sampling
and decoding of errors.

1. Syndrome graphs

To evaluate the thresholds and below threshold scal-
ing behavior of logical blocks, we rely on the syndrome

FIG. 17. Left: syndrome graph and a syndrome mask (i.e., a
logical membrane projected onto the syndrome graph) for lattice
surgery. The three input ports are displayed at the front along the
bottom of the diagram. Right: syndrome graph for the phase gate.

graph representation of errors and checks. This represen-
tation can be used for flexible error sampling and decoding,
sufficient for many decoders, such as minimum-weight
perfect matching (MWPM) [3,109] and union find (UF)
[110]. The syndrome graph representation can be defined
for any fusion network where each measurement (X ⊗ X ,
Z ⊗ Z, or single-qubit measurement) belongs to precisely
two local check operator generators, such as the six-ring
network. We define the syndrome graph as follows.
Definition 3 (Syndrome graph): Let Clocal be the set of
local check generators for C (depicted in Fig. 11 for the
six-ring network). We define the syndrome graph Gsynd =
(Vsynd, Esynd) by placing a vertex v ∈ Vsynd for every local
check generator c ∈ Clocal, and an edge between two ver-
tices if their corresponding checks share a measurement.

Flipped measurement outcomes are represented by
edges of the syndrome graph, and the syndrome can be
obtained by taking their mod-2 boundary (in other words, a
flipped check operator corresponds to a vertex with an odd
number of flipped edges incident to it). Logical membranes
are represented on the syndrome graph as a collection of
edges corresponding to the fusions and measurements that
it consists of. We refer to this subset of edges as a logical
mask. A logical error corresponds to a set of edges whose
mod-2 boundary is zero, and that has odd intersection with
a logical mask.

For the bulk six-ring fusion network, the syndrome
graph consists of two decoupled 12-valent graphs, which
are referred to as primal and dual syndrome graphs.
Domain walls and twists may prevent the syndrome graph
from decomposing into two disconnected components (as
is the case in the phase gate for example) as, in particu-
lar, the two syndrome graphs are swapped across domain
walls and fused together along twists. Example syndrome
graphs for a lattice surgery block and phase gate block are
depicted in Fig. 17.

2. Noise model and decoder

Resource states are in general noisy, each subject to
Pauli noise and erasures that can arise during prepara-
tion, propagation, and measurement. The net effect of noise

020303-21

HÉCTOR BOMBÍN et al. PRX QUANTUM 4, 020303 (2023)

processes affecting both resource states and operations on
them can be phenomenologically captured by modeling
each measurement outcome (both fusion outcomes and
single-qubit measurement outcomes) as being subject to
an erasure error with probability pE or bit-flip error with
probability pP. This is known as the hardware-agnostic
fusion error model in Ref. [48]. Specifically, we assign
each measurement a probability of pE that the outcome
is erased, a probability of pP(1 − pE) that the outcome is
incorrect (i.e., bit flipped but not erased), and a probability
of (1 − pE)(1 − pP) that the measurement is correct. We
refer to p = (pP, pE) as the physical error rate. (Note that,
up to a reparametrization, the bit-flip errors are equivalent
to an IID Pauli-X and Pauli-Z error channel acting on each
qubit.)

To decode these errors, we utilize the union-find decoder
of Ref. [110] due to its optimal performance against era-
sures, high performance against bit-flip noise, and fast run-
time. We remark that higher tolerance to bit-flip noise can
be achieved with the minimum-weight perfect-matching
decoder [3,109]. More details on the general decoding
problem for (2 + 1)D logical blocks can be found in
Sec. A 9.

3. Simulated logical blocks

We simulate six-ring fusion networks for the identity
gate, the Hadamard, the phase gate, and the Z-type lattice
surgery involving a variable number of logical qubits as
described in Sec. V. We also simulate the bulk fusion net-
work on a cube with periodic boundary directions (i.e., a
3-torus), in order to have a bulk comparison. While this
block contains no ports nor nontrivial logical correlators,
for simulation purposes, we may define logical membranes
on each of the nontrivial 2-cycles of the torus, such that
failure is declared for any error spanning a nontrivial
1-cycle of the torus.

For each of these block families, we generate a family
of syndrome graphs of varying distance to be used for log-
ical error rate Monte Carlo simulations (involving error
sampling and decoding). For the purposes of simulation,
we assume certain fictitious boundary conditions for the
ports where all qubits are perfectly read out (such that
errors terminating on ports always generate syndromes).
This allows logical operators to be noiselessly read out on
each port.

B. Numerical results

1. Logical block thresholds

We provide numerical estimates of the noise threshold
values for each logical block against both IID erasure noise
with rate pE and IID outcome bit-flip noise with rate pP.

To evaluate the threshold value, we sweep along differ-
ent error rates pE and pP and evaluate the logical error rate

TABLE I. Threshold values for various logical blocks. Here LS
stands for lattice surgery.

Block Erasure rate pE (%) Bit-flip rate pP (%)

3-Torus 12.02 ± 0.04 0.948 ± 0.005
Identity 12.04 ± 0.05 0.955 ± 0.006
Phase gate 12.05 ± 0.06 0.951 ± 0.005
Hadamard 12.02 ± 0.06 0.948 ± 0.005
LS Z⊗2 12.06 ± 0.07 0.956 ± 0.006
LS Z⊗3 12.07 ± 0.08 0.957 ± 0.006
LS Z⊗4 12.08 ± 0.09 0.958 ± 0.008

for different block sizes. The logical error rate at each phys-
ical error rate is obtained by performing 107 to 108 decoder
trials for each block distance, up to d = 26. Each decoder
trial consists of sampling an error configuration, running
the decoder, and declaring success if and only if all of the
correlation operators are successfully recovered.

The threshold values for each block are displayed in
Table I and the threshold plots from which these values
are obtained are displayed in Figs. 25 and 26 below. For
each error model, we estimate thresholds for each block
that all agree to within error bars. This verifies the conven-
tional intuition that the threshold should be determined by
the bulk properties alone, and insensitive to the presence
of codimension-1 and codimension-2 features. We remark
that a priori this may not have been true, due to the well-
known error-correction stat-mech correspondence [3] and
the fact that bulk phase properties can be driven by bound-
ary conditions [111]. See Appendix A 10 for more details
on how the thresholds are estimated.

2. Overhead for target error rate and logical
error rate fits

The threshold sets an upper bound on the rate of errors
that are tolerable for the scheme. However, to estimate
the overhead for fault-tolerant quantum computation, it is
important to estimate the block distances required for each
logical operation to achieve a target logical error rate.

For a given physical error rate p and block distance d,
we perform 109 to 1010 trials to obtain estimates of the
logical error rate. Following Ref. [112], we fit the logical
error rate to an exponential decay as a function of distance
according to

Pp(d) = αpe−βp d, (15)

where both αp and βp > 0 depend on the physical error
rate p . We refer to βp as the logical decay and to αp as the
logical prefactor. In Fig. 18, we plot the logical decay βp as
a function of the physical error rate. In Appendix A 11 we
explain the fitting methodology and also plot the logical
prefactor αp as a function of the physical error rate.

One can invert Eq. (15) to obtain the distance required
to achieve a target logical block error rate at a given

020303-22

LOGICAL BLOCKS FOR FAULT-TOLERANT... PRX QUANTUM 4, 020303 (2023)

0.06 0.07 0.08 0.09 0.10 0.11 0.12
Erasure rate pE

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
gi

ca
ld

ec
ay

β
p

3-Torus
Identity
Phase gate
Hadamard
ZZ Lattice surgery
ZZZ Lattice surgery
ZZZZ Lattice surgery

0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009
Bit-flip rate pP

0.0

0.2

0.4

0.6

0.8

1.0

Lo
gi

ca
ld

ec
ay

β
p

3-Torus
Identity
Phase gate
Hadamard
ZZ Lattice surgery
ZZZ Lattice surgery
ZZZZ Lattice surgery

0.06 0.07 0.08 0.09 0.10 0.11
Erasure rate pE

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

β
T

3

p
/

β
p

3-Torus
Identity
Phase gate
Hadamard
ZZ Lattice surgery
ZZZ Lattice surgery
ZZZZ Lattice surgery

0.002 0.003 0.004 0.005 0.006 0.007 0.008
Bit-flip rate pP

1.0

1.2

1.4

1.6

1.8

2.0

β
T

3

p
/

β
p

3-Torus
Identity
Phase gate
Hadamard
ZZ Lattice surgery
ZZZ Lattice surgery
ZZZZ Lattice surgery

0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11
Erasure rate pE

101

102

103

B
lo

ck
di

st
an

ce
re

qu
ire

d
fo

rP
p

=
10

−1
2 3-Torus

Identity
Phase gate
Hadamard
ZZ Lattice surgery
ZZZ Lattice surgery
ZZZZ Lattice surgery

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
Bit-flip rate pP

101

102

103

B
lo

ck
di

st
an

ce
re

qu
ire

d
fo

rP
p

=
10

−1
2 3-Torus

Identity
Phase gate
Hadamard
ZZ Lattice surgery
ZZZ Lattice surgery
ZZZZ Lattice surgery

FIG. 18. Top: fits of βp to the logical block error rate Pp(d) = αp e−βp d under IID erasure and IID bit-flip noise models for the
identity, 3-torus, phase, Hadamard, and multiqubit lattice surgery blocks. Each data point is obtained by performing 109 to 1010

decoder trials for each block distance and physical error rate, with block distances up to 14. Error bars correspond to uncertainty in
the fit, as described in Appendix A 11. The 3-torus has the largest logical decay out of the simulated blocks, including the identity
block—meaning that in the case of memory the toric code has better error suppression than the planar code. Furthermore, the logical
decay βp for lattice surgery is independent of the number of logical qubits involved for sufficiently low physical error rates. Middle:
plots of βT

3
p /βp against the physical error rate for different logical blocks, where βT

3
p is the logical decay for the 3-torus. This ratio

determines how much larger a given block distance must be, compared to the 3-torus, to achieve the same logical error rate scaling.
Bottom: the block distance d required to achieve a target logical error rate of Pp = 10−12 per block as a function of physical error rate
p for both erasure and bit-flip physical errors. The distances required can become very large near threshold, and as such, it is important
to be significantly below threshold to have reasonable fault-tolerance overheads. In all plots, lines are guides for the eye.

physical error rate. In Fig. 18 we display estimates for
the required distance based on numerical fits for αp and
βp . For concreteness, we choose a target logical block
error rate of 10−12. Such error rates are relevant for many

existing algorithms in the fault-tolerant regime, for exam-
ple for quantum chemistry applications [89,113–115]. The
figure shows the importance of having error rates sig-
nificantly below threshold, as otherwise the distance and

020303-23

HÉCTOR BOMBÍN et al. PRX QUANTUM 4, 020303 (2023)

fault-tolerance overheads required can become extremely
large.

3. Periodic versus open boundary conditions

Next, we observe the importance of boundary conditions
for logical error rates. In Fig. 18 we note that the distance
required for a target logical error rate for the 3-torus block
(having periodic boundary directions) is notably smaller
than any of the other blocks and in particular the iden-
tity block. In other words, the logical error rates are more
greatly suppressed with periodic boundary conditions as
opposed to open boundary conditions, as has previously
been observed in Ref. [42]. In particular, we plot αT

3
p /αp

for each block, where αT
3

p is the logical decay for the 3-
torus block and αp is the logical decay for a given block.
This ratio is an approximate measure of the distance sav-
ing offered by periodic boundary conditions—it tells us
the factor that each block distance must be increased by
in order to have the same logical error rate scaling as the
3-torus.

This difference in performance may be explained by
entropy; for a given distance d, the identity block (i.e.,
with open boundary conditions) contains a larger number
of logical errors of weight k ≥ d than the 3-torus block
(i.e., with periodic boundary conditions). In addition to
the favorable error rates, periodic boundary conditions can
be used to encode more qubits, offering potentially fur-
ther advantages at least when used for memory. These
results demonstrate that entropy plays an important role in
the design and performance of logical gates (as has pre-
viously been noted for quantum error-correcting codes in
Ref. [43]). In particular, the scaling advantage motivates us
to study schemes without boundaries, and we present one
such proposal—based on the teleportation of twists—in
Sec. IX.

4. Stability of lattice surgery

Finally, we observe that at low physical error rates, the
logical decay for lattice surgery is insensitive to the num-
ber of logical qubits. This is expected at sufficiently large
distances and low error rates, as each logical error behaves
approximately independently on each qubit participating
in the lattice surgery. More precisely, the logical error
rate for n independent planar codes undergoing memory
is expected to behave like Pn = 1 − (1 − P1)

n = nP1 +
O(P2

1), where P1 is the logical error rate of a single pla-
nar code. Therefore, at sufficiently low error rates and to
first order, we expect the logical decay to be invariant to
the number of qubits undergoing lattice surgery, and the
logical prefactor αp to increase proportionally to the num-
ber of qubits n. This agrees well with the observed data in
Fig. 18 and Fig. 27 below.

IX. TOPOLOGICAL QUANTUM COMPUTATION
WITHOUT BOUNDARIES: PORTALS AND

TELEPORTED TWISTS

In this section, we introduce a new computational
scheme for twist-encoded qubits. In this scheme, logical
information is encoded in twist defects and fault-tolerant
logical operations are achieved by introducing space-time
defects known as portals, which teleport the twists forward
in time. This scheme is motivated by the favorable logical
error rate suppression observed for logical blocks that have
no boundaries. To our knowledge, this is the first universal
surface code scheme that does not require boundaries.

The native gates implementable with twists and portals
are PPMs (i.e., measurement of n-qubit Pauli operators),
which are universal when supplemented with noisy magic
states. In this scheme, a PPM is implemented by intro-
ducing a pair of portals that teleport a subset of twists
to another space-time location. These portals generally
require long-range operations to implement. For concrete-
ness, we focus on portals and twists in a photonic FBQC
architecture, where such long-range operations are con-
ceivable [48,50].

A. Encoding in twists

First consider a standard encoding whereby n logical
qubits can be encoded in 2n + 2 twists on a (topological)
sphere (see, e.g., Refs. [18,23]). This can be understood
using the Majorana fermion mapping [18,23], whereby
each twist defect can be expressed by a Majorana fermion
operator γi, i ∈ {1, . . . , 2n + 2}, satisfying

γj γk + γkγj = 2δjk, (16)

where δjk is the kronecker delta. In terms of these Majorana
fermions, the logical operators may be expressed

X k = i
∏

1≤i≤2k

γi, Zk = iγ2kγ2k+1. (17)

One can verify that these logical operators satisfy the cor-
rect (anti)commutation relations using Eq. (16). An arbi-
trary Pauli operator is thus represented by an even number
of Majorana operators, Pn ∼= 〈i, γj γk | j , k〉. In Fig. 19 we
depict surface code string operator representatives for the
logical operators of Eq. (17), which are realized as loops
enclosing the corresponding twists.

Operator traceability. The enabling property for the
teleported twist scheme is that all logical Pauli operators
Pn in the twist encoding are traceable. Traceability was
introduced in Ref. [116], and for our purposes, we say that
a logical operator is traceable if it can be represented as
a connected, non-self-intersecting string operator that is
piecewise (i.e., locally) primal or dual. (Note that a trace-
able string operator can swap between primal and dual as

020303-24

LOGICAL BLOCKS FOR FAULT-TOLERANT... PRX QUANTUM 4, 020303 (2023)

55555

FIG. 19. Encoding n qubits in 2n + 2 twists. Top: the gener-
ating set of logical operators is traceable. Bottom: example of a
product of Pauli generators that is also traceable. A general Pauli
operator can be associated with the twists it encloses. In Fig. 28
below we show that all Pauli operators are traceable.

it crosses a domain wall [117].) That twist-encoded logical
operators are traceable is shown in Appendix A 12. As a
consequence of traceability, every logical operator P ∈ Pn
can be identified by a subset of twists TP that it encloses.
Furthermore, any logical operator Q ∈ Pn that commutes
with P can be generated by traceable loop operators both
contained within TP or outside of TP. Examples of com-
muting traceable logical operators for the twist encoding
are shown in Fig. 19.

B. Portals

To perform logic on these twist-encoded qubits, we
introduce the concept of a portal. Portals are two-sided,
codimension-1 (i.e., two-dimensional) objects that can be
thought of as a new type of geometric defect for space-time
surface code instruments. They represent geometrically
nonlocal correlations. We are specifically interested in por-
tals that come in pairs, but note that self-portals (i.e., those
defined on a single connected surface) are also possible
and may have other interesting applications. To be con-
crete, let us consider how to create portals in the six-ring
fusion network. These portals are similar to the wormholes
introduced in the 2D case in Ref. [116].

To microscopically define a portal pair, we modify the
bulk fusion pattern of the six-ring fusion network along
two two-dimensional topological disks. Firstly, consider
the dual of the fusion complex L∗. (We obtain L∗ from
L by replacing vertices with volumes, edges by faces,
and so on. In L∗, volumes represent resource states and
faces represent fusions between resource states.) Consider
a topological disk D consisting of a number of faces in L∗.
Let D′ be another topological disk obtained by translating
(and potentially rotating) D. Disks D and D′ specify a set
of fusions. Each disk has two sides, separating qubits from
resource states on either side. In the bulk, qubits on one
side of a given disk are fused with qubits on the other side.
To create a portal pair, we pair sides from D and D′ and

fuse qubits on each side of D with qubits on the matching
side of D′. This is depicted in the fusion graph in Fig. 20.

By changing the fusion group in this way, we obtain
a new check operator group, C, which contains check
operators supported between the two disks, as depicted in
Fig. 20. One can view the check operator entering one
side of the disk as being mapped to the matching side
of the other. Correspondingly, excitations can be mapped
between disks by chains of errors entering one disk and
emerging from the matching side of the other disk. We
therefore refer to these disks as portals and their effect is
to modify the connectivity geometry of the fusion network
(leading to changes in topology and geometry).

C. Logical operations by teleporting twists

We now show how portals enable nondestructive mea-
surements of logical operators for the twist encoding. As
before, for any logical Pauli operator P ∈ Pn, we let TP be
the set of twists enclosed by P. To measure P, construct
a pair of portals to teleport the twists belonging to TP to
a future temporal slice. Namely, define a topological disk
DP that encloses precisely the twists belonging to TP and
another topological disk D′

P
obtained by translating DP by

d timesteps into the future (where d is the fault distance).
By matching the top face of one disk with the bottom face
of the other (and vice versa), disks DP and D′

P
define a

pair of portals. The the fusion pattern is modified such that
twists and defects entering through the side of one portal
are transmitted through the corresponding side of the other
portal (one can verify that the check operator structure is
valid, as we showed for portals in the bulk). We depict this
in Fig. 21.

In general, one needs to resolve the locations of domain
walls to ensure compatibility with the locations of twists
that are traveling through the portals. Fortunately, the
number of twists enclosed by a Pauli operator is always
even, and therefore so is the number of twists entering a
portal implementing its measurement. Therefore we can
always find a compatible domain wall configuration, as
exemplified in Fig. 21.

We claim that this block and fusion pattern implements
measurement of P. In particular, we need to firstly check
that the instrument network contains a logical membrane
M P,1 corresponding to the logical correlation P ⊗ 1 ∈
S(MP). We verify this graphically in Fig. 21, where the
correlation surfaces of the fusion network corresponding
to the input logical operator P is be “capped off” and
thus measured. Secondly, we need to check that any log-
ical operator Q ∈ Pn commuting with P is undisturbed,
meaning that there are logical membranes M Q,Q corre-
sponding to the stabilizer Q ⊗ Q ∈ S(MP). This is verified
by the traceability property—every such commuting Q
is generated by loop operators wholly within DP or its
complement, and the corresponding membranes propagate

020303-25

HÉCTOR BOMBÍN et al. PRX QUANTUM 4, 020303 (2023)

FIG. 20. Portals in the six-ring fusion network. Right: the modified fusion pattern to create a portal pair between two topological
disks. The qubits (belonging to resource states) on either side of each portal are fused with the qubits on the corresponding side of
the other portal (i.e., qubits of like colors are fused; pink is fused with pink and teal is fused with teal). Right: an example of a check
operator spanning the portals.

through the instrument network either through the portals
or bulk, following Fig. 21.

If the twists are separated by distance d then it is suf-
ficient to separate the portals by a distance d to maintain
an overall fault distance of d for the protocol. We remark
that many other portal and twist configurations are pos-
sible, including spacelike separated portals. Surprisingly,
no boundaries need to be utilized in this construction. As
we have seen in Sec. VIII, the lack of boundaries provides
a favorable logical error rate scaling relative to the fault
distance. Therefore, this scheme may provide an efficient

FIG. 21. Teleporting the set of twists TP to measure X 2 ∈ Pn.
The four twists enclosed by the X 2 loop operator are teleported
to a later time slice. Depicted is a logical membrane M X 2,I

whose outcome gives the logical X 2 measurement outcome. As
shown by an example primal membrane on the right twist pair,
Pauli operators that commute with the measured operator are
unaffected.

approach to logical operations, as one can arrange twists in
compact geometries.

Beyond twist-based encodings, portals can also be used
to save overhead for logical blocks based on planar encod-
ings, as observed in Ref. [50]. For instance, portals can be
used to compose the toric code spiders of Sec. VI that may
be spatially separated. This is attractive in the context of
measuring the stabilizer checks of a LDPC code.

X. CONCLUSION

In this paper we have introduced a comprehensive
framework for the analysis and design of universal fault-
tolerant logic. The key components of this are the concept
of fault-tolerant logical instruments, along with their spe-
cific application to surface-code-based fault tolerance with
logical block templates.

Platform-independent logical gate definitions. The
framework of logical templates introduces a platform-
independent method for defining universal logical opera-
tions in topological quantum computation based on surface
codes. We have demonstrated how symmetry defects and
boundaries can be used to encode and manipulate logical
information, and have explicitly shown how these can be
mapped onto fusion-based quantum computation as well
as circuit-based models. As an application of our frame-
work, we have presented volume-efficient logic templates,
which, in addition to fusion-based quantum computation,
can be utilized in any surface-code-based architecture. We
hope that this can provide a valuable basis for a more uni-
fied approach to the study and design of fault-tolerant gates
such that new techniques can map easily between different
hardware platforms and models of computation.

020303-26

LOGICAL BLOCKS FOR FAULT-TOLERANT... PRX QUANTUM 4, 020303 (2023)

Flexible and scalable tools for numerical analysis.
The logical blocks framework enables a software-based
mapping to physical instructions and a powerful tool for
performing numerical analysis on complex logic blocks
and their composition into small circuits. Using these tools,
we have numerically investigated the performance of a set
of Clifford logical operations, which, when supplemented
with noisy magic states (which can be distilled), are uni-
versal for fault-tolerant quantum computation. We have
verified that the gate and memory thresholds are in agree-
ment, and we have observed the important role that geom-
etry and topology play in the fault-tolerance overhead—an
important consideration when estimating resource costs for
useful computations. The numerical results indicated that
boundaryless computation appears to be a promising direc-
tion due to the further suppression of logical error rates
for blocks without boundaries. As quantum technologies
advance closer to implementing large-scale fault-tolerant
computation [44–47], it is essential to have scalable soft-
ware tools that allow analysis of complex logical opera-
tions. Our simulation framework based on logical block
templates enables these advanced simulations by providing
explicit definition, error sampling, and decoding of error
prone logical operations on dozens of logical qubits with
complex sets of topological features.

Exploration of novel logic schemes. We have focused
on designing logical gates directly—as fault-tolerant
instruments—rather than as operations on a code, as this
holistic view enables the construction of schemes that
would be nonobvious from a code-centric view. As a spe-
cific example of this, we introduced a new scheme for
surface code computation based on the teleportation of
twist defects, which was motivated by the improved per-
formance of boundaryless computation. In this scheme,
logical qubits are encoded in twists, and logical operations
are performed by modifying the global space-time topol-
ogy with nonlocal defects called portals. Such portals in
general require the ability to perform long-range opera-
tions, such as those that are available in a photonic FBQC
architecture. This scheme may offer further reductions in
resource overheads.

Future work. We have focused primarily on surface
code fault-tolerant instruments and local operations, but
the concepts we have introduced can be applied much more
broadly. More general topological codes, in higher dimen-
sions, with non-Euclidean geometry, or color codes may
benefit from study in the framework of quantum instru-
ment networks. Further study into the possible operations
and resource reductions that can be offered by such codes
is an important problem, as such codes can support signif-
icantly richer symmetry groups and domain walls. Further
study into the power of nonlocal operations is also a
promising avenue, with the teleported twist logic scheme
we have introduced as one such example. For instance,
transversal gates between multiple copies of the surface

code may offer drastic resource reductions up to O(d) per
logical operation, where d is the block distance [i.e., the
gate volume may reduce from O(d3) to O(d2)]. These
transversal gates can be thought of in terms of symmetry
domain walls between two or more copies of the surface
code. It is advantageous to study the properties of transver-
sal gates in the setting of fault-tolerant instruments, as they
appear as codimension-1 defects on a constant time slice,
where one can more easily reason about fault distances.
Furthermore, one may study nontransparent domain walls
(e.g., to implement Pauli measurements) that, in contrast
to the domain walls we have focused on, allow certain
anyonic excitations to condense on them. In these cases,
special purpose decoders are generally required to decode
the instrument network, and more detailed analysis is
required to fairly assess their performance.

Beyond purely topological codes, there is a lot of
promise for fault tolerance in more general quantum LDPC
codes [55–62]. We have provided a proof-of-principle
approach for fault-tolerant quantum computation based on
concatenating surface codes with a general LDPC code.
Such concatenated schemes may offer the advantages of
the high thresholds of surface codes with the reduced over-
head of constant-rate LDPC codes, but further analysis
is required to determine the regimes in which they may
outperform conventional topological code-based schemes.

With recent advances in quantum hardware technol-
ogy, and increased focus on large-scale, fault-tolerant
computation, it is important that there is a unified lan-
guage for fault tolerance that can span computational
models and hardware platforms. We hope that the meth-
ods presented here provide a valuable step towards that
goal.

ACKNOWLEDGMENTS

We thank Daniel Dries, Terry Farrelly, and Daniel Litin-
ski for detailed feedback and discussions on the draft,
and Sara Bartolucci, Patrick Birchall, Hugo Cable, Axel
Dahlberg, Andrew Doherty, Megan Durney, Mercedes
Gimeno-Segovia, Eric Johnston, Konrad Kieling, Isaac
Kim, Ye-Hua Liu, Sam Morley-Short, Andrea Olivo, Sam
Pallister, Mihir Pant, William Pol, Terry Rudolph, Karthik
Seetharam, Jake Smith, Chris Sparrow, Mark Steudtner,
Jordan Sullivan, David Tuckett, Andrzej Pérez Veitia, and
all our colleagues at PsiQuantum for useful discussions.
R.V.M.’s current affiliation is Microsoft Station Q.

APPENDIX

1. Stabilizer states, operators, maps, and instruments

The stabilizer framework [63,118] has proven to be an
extremely effective tool for describing a constrained form
of fault-tolerant quantum computing. In its most basic
form, states are described by (Pauli) operators for which

020303-27

HÉCTOR BOMBÍN et al. PRX QUANTUM 4, 020303 (2023)

they are +1 eigenstates, rather than by their amplitudes in
some computational reference basis. Because it is possible
to have highly entangled states be eigenstates of a set of
commuting tensor product operators, this greatly enriches
the set of states that can be described efficiently. In general,
in the Pauli stabilizer formalism, n-qubit pure states are
described (up to a global phase) by n commuting and inde-
pendent Pauli product operators on n qubits. The number
of classical bits required to provide such a representation
is O(n2) and allows representing 2O(n2) distinct states.

The set of stabilizer states are preserved under the so-
called Clifford unitaries. Together, stabilizer states and
Clifford unitaries admit a succinct algebraic description as
a symplectic vector space over Z2. Within this constrained
subset, this structure allows for efficient classical simu-
lation as well as exhaustive theoretical analysis [63,118,
119]. In this appendix, we describe extensions of this alge-
braic description and an extension to the set of operators,
maps, and instruments that allow equally efficient simu-
lation thanks to the underlying algebraic structure. These
extensions build on intuition gained from tensor network
descriptions of stabilizer states (see, for example, Refs.
[120–122]). Although, in general, stabilizer operators need
not be tensor product Pauli operators, this article makes
the implicit assumption that they are, so the term stabilizer
should be interpreted as Pauli stabilizer.

Notation. Because the Pauli operators

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
,

I =
(

1 0
0 1

)

play such a prominent role, we reserve these symbols for
said operators. Furthermore, we liberally omit the tensor
product operator symbol (“⊗”) when specifying tensor
products of such Pauli operators such that X ⊗ Y ⊗ I ⊗ Z
may be simply denoted by XYIZ (i.e., omission of an
operator symbol among Pauli constants implies the tensor
product rather than the usual matrix product).

a. Stabilizer state

Definition 4: A pure stabilizer state |ψ〉 in an n-qubit
Hilbert space is a state that can be specified (up to a scalar)
as the common +1 eigenstate of a maximal Abelian sub-
group S of n-qubit Pauli product operators (Pn) such that
−1 �∈ S .

A maximal Pauli stabilizer group S on n qubits can
be defined through n independent and commuting Pauli
operators P1, . . . , Pn, and is denoted as S = 〈P1, . . . , Pn〉.
Example 2 (Three-qubit GHZ state): The three-qubit
entangled state |ψ〉 = (|000〉 + |111〉)/√2 is a +1 eigen-
state of the three independent Pauli product operators ZZI ,

IZZ, and XXX . It is thus a stabilizer state stabilized by the
group

S(|ψ〉) ≡ 〈ZZI , IZZ, XXX 〉. (A1)

b. Stabilizer operators

As mentioned earlier, the group of Clifford unitary oper-
ators (sometimes denoted as Cn) is defined in such a way
that it plays well with Pauli stabilizer states. These are the
n-qubit unitary operators that map Pauli product operators
onto Pauli product operators:

Cn = {U ∈ SU(2n) : P ∈ Pn ⇒ UPU†∈Pn}. (A2)

The defining condition for elements of the Clifford group
can be reexpressed as a set of 2n stabilizer conditions of
the form

Q†UP = U with Q := UPU† (A3)

and P ranging over all generators of the Pauli group Pn.
In fact, this is a special case of what we call stabilizer

operators (also called generalized Clifford operators).
Definition 5: An operator O taking kin qubits as input and
kout qubits as output is a stabilizer operator if and only if
the state |ψ(O)〉 := (I⊗kin ⊗ O) |�kin〉 is a stabilizer state.

Here, |�kin〉 = ∑2kin−1
j =0 |jj 〉 is the (unnormalized) 2kin

qubit state used in the operator state correspondence (also
known as the Choi-Jamiołkowski isomorphism). In it, the
first n qubits and the remaining kin qubits are pairwise max-
imally entangled. It is equivalent (up to permutation of
the tensor factors) to the tensor product of kin Bell states
|Bell〉⊗kin .

The stabilizer group S(O) is given by the stabilizer
group of the corresponding state |ψ(O)〉 under the oper-
ator state correspondence. This definition includes, for
instance, stabilizer states, Clifford unitaries, and full and
partial projectors onto stabilizer subspaces. In the follow-
ing examples, we use the tensor product to partition the
input and output spaces.
Example 3 (Identity): For the single-qubit identity I , we
have S(I) = 〈X ⊗ X , Z ⊗ Z〉.
Example 4 (Phase gate): Phase gate

S ≡
(

1 0
0 i

)

has a corresponding state |ψ(S)〉 = |00〉 + i |11〉. Its
corresponding stabilizer group is thus S(S) = 〈X ⊗ Y,
Z ⊗ Z〉.
Example 5 (Lowering operator): The qubit lower-
ing operator σ− := |0〉 〈1| is also a stabilizer operator
under this general definition. Its corresponding state is

020303-28

LOGICAL BLOCKS FOR FAULT-TOLERANT... PRX QUANTUM 4, 020303 (2023)

|ψ(σ−)〉 = |10〉, which is stabilized by S(σ−) = 〈−Z ⊗
I , I ⊗ Z〉.
Example 6 (2-repetition encoding): The encoding isom-
etry E := |00〉 〈0| + |11〉 〈1| that encodes a qubit onto the
two-dimensional subspace stabilized by ZZ of a two-qubit
subspace in a way that the X operator is mapped onto
XX and the Z operator is mapped onto IZ is a stabilizer
operator. Its corresponding state ψ(I) = |000〉 + |111〉 is a
three-qubit GHZ state up to normalization and its stabilizer
group is S(E) = 〈I ⊗ ZZ, X ⊗ XX , Z ⊗ IZ〉.
Example 7 (Partial projection): The partial projection
� onto a subspace stabilized by a Pauli stabilizer sub-
group G� is a stabilizer operator. It is stabilized by S(�) =
〈I ⊗ G, GT ⊗ I , N T ⊗ N 〉, where G is taken over a set of
generators for G� and N is taken over the commutant of
G� (i.e., {N ∈ Pn | NGN † = G for all G ∈ G�}).

c. Stabilizer maps

In principle, a general quantum channel � can be
expressed using the Kraus representation as a combination
of quantum operators Kj as

�(ρ) =
∑

j

Kj ρK†
j . (A4)

The stabilizer formalism only specifies the stabilized oper-
ator up to a global scalar. Requiring a channel to be
trace preserving fixes one such magnitude up to an irrel-
evant global phase. However, the relative magnitude of
operators is important for specifying a channel with mul-
tiple Kraus operators. For this reason, stabilizer channels
are limited to a single Kraus operator. This makes the
trace preservation requirement particularly restrictive as
it excludes all stabilizer operators other than the uni-
taries (corresponding to the Clifford group) and isometries
from being lifted into a trace-preserving quantum channel
interpretation.

In principle, it is possible to construct quantum chan-
nels from multiple stabilizer operators as Kraus operators;
it becomes necessary to introduce scalars that significantly
complicate the picture. We find that, for the idealized
fault-tolerant QIN, significant headway can be made by
restricting the focus to stabilizer maps and instruments.
More general maps will become absolutely necessary
when incorporating noise modeling.

d. Stabilizer instruments

Instruments allow modeling of operations that have both
quantum and classical output. The possibility of extract-
ing classical data is what enables entropy extraction in
fault-tolerant protocols, which is the main tool for noise
mitigation. While stabilizer operators are clearly more gen-
eral than Clifford unitaries, the restriction on having maps

be trace preserving and involve a single stabilizer oper-
ator leads to a very limited selection of valid stabilizer
QINs.

Whereas, for general instruments, the structure of the
classical outcomes is not prescribed, we define stabilizer
instruments to posses a very specific Z2-type linear struc-
ture on the classical outcomes. In particular, a quantum
instrument will be a quantum map for which a subset of the
output qubits can be treated as a classical outcome register.
In a stabilizer quantum instrument, the map associated with
each specific classical outcome will itself be a stabilizer
operator.

Definition 6: A stabilizer quantum instrument from kin
qubit inputs onto kout qubit outputs and b classical outcome
bits is specified by a stabilizer group S ⊆ Pkin+kout+b such
that

(a) outcome bits b carry classical correlations (S|b ⊆
Zb),

(b) S can be completed into a maximal stabilizer group
by including additional generators exclusively from
Zb,

(c) the instrument is trace preserving (S‖in = 〈I〉).
Here, Zb denotes the group generated by Z-type oper-

ators in b together with real phases and S‖b is the subset
of Pauli operators in S with support in subsystem b. We
obtain S|b by restricting each Pauli operator in S to sub-
system b. It is only defined up to phases. Each distinct
completion of S through elements of Zb corresponds to
a distinct stabilizer operator and corresponds to one of the
terms composing the quantum instrument. The generators
of S‖b ≡ Zb ∩ S are predetermined parity combinations
of classical outcomes and correspond to checks in compos-
ite quantum instruments. The number of distinct outcomes
and stabilizer operators in the instrument is 2b/|S‖b|. The
outcome contains b − log |S|b| uniformly random bits of
information that are uncorrelated with the input state or the
transformation performed on it.

The trace-preserving condition is included to guaran-
tee that the instrument does not postselect on a specific
subspace. It may be dropped if postselection is to be
allowed.

Example 8 (Single-qubit destructive MZ measure-
ment): In a single-qubit measurement the Z observable
in a qubit is mapped onto a classical bit. The (incom-
plete) stabilizer group defining the quantum instrument is
S(MZ) = 〈ZZ〉, with the second tensor factor represent-
ing the classical outcome. The stabilizer can be completed
by adding either IZ or −IZ. The corresponding stabilizer
operators are stabilized by 〈ZI , IZ〉 and 〈−ZI , −IZ〉. The
corresponding instrument {E0, E1} has two terms corre-
sponding to the two possible outcomes and computational

020303-29

HÉCTOR BOMBÍN et al. PRX QUANTUM 4, 020303 (2023)

basis projections

E0(ρ) = 〈0|ρ|0〉, E1(ρ) = 〈1|ρ|1〉.

Example 9 (Partial projective measurement): Consider
a projective measurement of XX on two qubits, wherein
the two qubits are retained. The ordering of qubits to
represent the stabilizer will be input, output, classical
outcome bits. The (incomplete) stabilizer group defin-
ing the partial projective measurement is given by S =
〈XIXII , IXIXI , ZZZZI , XXIIZ〉. The last generator is indi-
cating that the XX observable is mapped onto the classical
bit outcome, whereas the first three are indicating that
observables commuting with XX are preserved. The corre-
sponding instrument {E0, E1} has two terms corresponding
to the two possible outcomes and computational basis
projections

E0(ρ) = �+XX ρ�+XX ,

E1(ρ) = �−XX ρ�−XX ,

with �±XX := (II ± XX)/2 respectively being projectors
onto the ±1 eigenspaces of XX .

2. Kitaev to Wen versions of the toric code

The surface code can be defined on a variety of differ-
ent lattice geometries. The original (CSS) toric code due
to Kitaev [1] associates qubits with the edges of an arbi-
trary 2D cell complex, with X -checks Xv associated with
the coboundary of a vertex v, and Z-checks Zp associated
with the boundary of a 2-cell p , for every vertex v and 2-
cell p of the cell complex. These checks are guaranteed to
commute for an arbitrary 2D cell complex due to properties
of the (co)boundary.

If we consider a square lattice then the symmetry for the
code is given by

SKitaev(g) = H⊗nT(û), (A5)

where T(û) is the translation operator, translating a vertex
to a plaquette in the Kitaev lattice, and H is the Hadamard
gate. In particular, this symmetry differs to that of the
surface code due to Wen by a transversal Hadamard. To
map between the Wen and Kitaev formulations of the sur-
face code, we can apply (to the stabilizers) a Hadamard
transversally to half of the qubits in a bipartite way.

The Wen geometry requires half as many qubits
than the Kitaev geometry to achieve the same distance
[53,74,75]. However, the logical blocks may require
different volumes. For instance, for the planar code
with boundaries introduced in Ref [51], one can per-
form a Hadamard using the protocol introduced in
Ref. [3], leading to the template depicted in Fig. 22.
Beverland et al. [43] illustrated that entropic effects can
be significant when comparing the two codes for memory,
as we have also seen in the context of gates. Therefore, one
should carefully consider the noise model, decoder, and set
of logic gates when determining the most efficient surface
code geometry.

3. Extending the feature labels to 1-cells

For a logical block template (L, F), we can extend the
function F : L2 → L to the 1-cells L1. Namely, let the set
of 1-cell labels be given by F1 = {Cornerline, Transparent
Cornerline, Twist}. For convenience, we denote Primal-
Boundary by PB, DualBoundary by DB, DomainWall by
DW, Cornerline by Cl, TransparentCornerline by TCl, and
Twist by T.

Let δc be the coboundary of c, consisting of the (at most
four) faces that contain c. For a 1-cell c ∈ L1 we define
F(c) as

F(c) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Cl if |F−1(PB) ∩ δc| = |F−1(DB) ∩ δc| = 1 ∧ |F−1(DW) ∩ δc| = 0
or {|F−1(PB) ∩ δc|, |F−1(DB) ∩ δc|} = {0, 2} ∧ |F−1(DW) ∩ δc| = 0,

TCl if |F−1(PB) ∩ δc| = |F−1(DB) ∩ δc| = 1 ∧ |F−1(DW) ∩ δc| = 1,
T if |F−1(PB) ∩ δc| = |F−1(DB) ∩ δc| = 0 ∧ |F−1(DW) ∩ δc| = 1.

(A6)

4. Converting a template to circuit-based
measurement instructions

In this section we explain how to convert a template
(L, F) to a system � = (Q,P ,O) of physical instructions
on static qubits for circuit-based quantum computation.
We walk through the phase gate example in the follow-
ing section. Let the coordinates of the complex L be given
by (x, y, z).

The quantum system Q. Logic block templates have
no directional preference; the notions of space and time
are on equal footing. To compile a template into physi-
cal instructions for CBQC, we must break this symmetry
(due to the static nature of qubits assumed in CBQC). In
particular, to map a template to a sequence of stabilizer
measurements on a 2D array of qubits, we first choose a
coordinate direction, say ẑ, and define it as the physical

020303-30

LOGICAL BLOCKS FOR FAULT-TOLERANT... PRX QUANTUM 4, 020303 (2023)

time direction. For each time slice, we have a 2D subcom-
plex of the template, upon each vertex of which we place a
qubit. Vertices with the same x and y coordinate but differ-
ent z coordinates correspond to the same qubit at different
times. This defines the quantum system Q.

The input and output ports P . The ports are simply
given by the set of qubits at the first and final time slices.
In particular, if the template complex L has z coordinates
spanning z ∈ [0, 1, . . . , T] then the set of qubits living on
vertices at z = 0 (z = T) define one or more surface codes
forming the input (output) ports.

The physical instructions O. At a high level, each slice
of the complex for a different z coordinate corresponds to
a different set of stabilizer measurements that are to be
performed at a given timestep. For example, on a given
time slice, each face in the absence of features corresponds
to a bulk surface code stabilizer check measurement, as
depicted in Fig. 4. The features on the template determine
stabilizer measurements to perform, and may have differ-
ent meanings depending on whether they lie in the x-y
plane (a slice of constant time), or if they have a com-
ponent in the time direction, as is due to the asymmetry
between space and time.

Timelike features. First, we consider the operations cor-
responding to features propagating in the time direction.
For a given time slice, the intersection pattern of domain
walls, twists, and boundaries propagating in the time direc-
tion (i.e., a twist supported on a link in the z direction, or
a domain wall or boundary supported on a face normal to
the x or y direction) defines a configuration of pointlike
twists and 1D boundaries and domain walls on a 2D sur-
face code, as depicted in Fig. 4. For such features, one
performs stabilizer measurements according to the cor-
responding 2D surface code features, as depicted by the
examples in Fig. 4.

Spacelike features. Now we interpret twists, domain
walls, and boundaries that are supported in a given time
slice. Twists propagating in a spatial direction (i.e., along
a x or y link) correspond to a sequence of single-qubit
Pauli-Y measurements that need be performed on all qubits
supported on the twist line. Since space-like twists are sup-
ported on the boundary of a timelike domain wall, such
measurements allow one to transition to and from measur-
ing the 2D stabilizer terms along a defect to the 2D bulk
stabilizers (each of which is depicted in Fig. 4) while main-
taining a useful syndrome history. Domain walls in the
spacelike direction (i.e., on faces normal to the z direction)
signal that one needs to apply the Z2 translation sym-
metry transformation—the natural direction to translate is
toward the twist line. Since the purpose of this symmetry
is to swap primal and dual plaquettes, rather than physi-
cally apply the translation symmetry to the qubits, one can
simply keep track of the transformation and update future
stabilizer measurements as appropriate. Finally, primal and
dual measurement patterns correspond to checkerboard

FIG. 22. Logical template for a Hadamard gate based on the
(Kitaev-style) planar code. Note that, while this geometry of pla-
nar code uses twice as many qubits than the Wen-style geometry
to encode a qubit for a given distance, the volume of this gate is
less than the version depicted in Fig. 6 for a fixed fault distance.

patterns of single-qubit measurements in the X and Z
bases. Namely, for a primal (dual) boundary, one needs to
measure qubits in the single-qubit X and Z bases according
to the restriction of primal (dual) checks to each individual
qubit. In other words, the single-qubit measurement pattern
should be such that primal (dual) checks can be recov-
ered from the measurement outcomes—such measurement
patterns can be thought of as transversal logical readouts.

Checks. Instrument checks may be identified at the level
of the template and depend on the locations of features.
Firstly, checks arise from repeated measurements (which
should give the same outcome in the absence of errors).
In the absence of features, we have a check for every
repeated bulk stabilizer measurement and thus we have
a check for every bulk 3-cell. Similarly, on a primal or
dual timelike boundary we have a check for every repeated
boundary stabilizer measurement, and these can be identi-
fied with boundary 2-cells (note that not every boundary
2-cell corresponds to a check). For spacelike primal (dual)
boundaries, we have a check for each primal (dual) 2-cell;
in the absence of errors, the stabilizer measurement must
agree with the product of the four single-qubit measure-
ments that comprise it. Finally, in the presence of domain
walls and checks, we have a check for every pair of 3-
cells sharing a defect or twist line: by design, the product
of all measurement outcomes supported on the pair of 3-
cells—including bulk stabilizers, domain wall stabilizers,
twist stabilizers ,and single-qubit Y measurements—must
deterministically multiply to +1. For example, in Fig. 23,
a pair of primal and dual stabilizers from step 3 (on either
side of the location of the twist line in the following step)
may be multiplied with two Y measurements from step 4
on their common support, and one stabilizer from step 5,
to produce a check.

Logical membranes. Logical membranes correspond
to representative logical operators being tracked through

020303-31

HÉCTOR BOMBÍN et al. PRX QUANTUM 4, 020303 (2023)

Step 1: input state Step 2: prepare data
qubits in local Pauli eigenstates

XXXX

ZZZ

XXXX

ZZZ

XXXX

ZZZ

ZZZ

XXX

ZZZ

XXX

ZZZ

XXX

XXX

ZZZ

XXX

ZZZ

XXX

ZZZ

ZZZ

XXXX

ZZZ

XXX

ZZZ

XXXX

XXXX

ZZZ

XXXX

ZZZ

ZZZ

XXXX

ZZZ

XXXX

Step 3: d rounds
of stabilizer measurements

Step 4: measure data qubits in
Y then swap up data qubits beneath

YYY YYY YYY YYY YYY YYY

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

Step 5: prepare lowest data qubits
then d rounds of stabilizer measurements

ZZZ XXX ZZZ XXX ZZZ XXXX

Step 6: measure out plane of
data qubits in local Pauli basis

XXXX

ZZZ

XXXX

ZZZ

XXX

ZZZ

ZZZ

XXXX

ZZZ

XXXX

ZZZ

XXXX

XXX

ZZZ

XXX

ZZZ

XXX

ZZZ

ZZZ

XXX

ZZZ

XXXX

ZZZ

XXX

XXX

ZZZ

XXXX

ZZZ

XXX

ZZZ

ZZZ

XXXX

ZZZ

XXXX

ZZZ

XXXX

Each stabilizer measurement can
be implemented with this circuit

3

1 2

4

a

3

1 2

4

a

a |+〉 MX

1

2

3

4

Translations can be implemented
with a sequence of SWAP gates

1

2 1

2

1

2
=

1

2

FIG. 23. Circuit-based instructions for the phase gate in Fig. 6, assuming that time slices are taken progressing from left to right.
Data qubits are laid out in a square grid. We also depict the ancilla qubits required, which are placed on each face, and allow for
the stabilizer measurements. Ancilla qubits are connected to neighboring data qubits, between which two qubit gates (such as CNOT
gates) can be performed. At each step, the stabilizer measurements that are to be performed are highlighted—one may first measure
stabilizers on plaquettes of one type before the other. In step 4, a row of data qubits is measured in the Pauli-Y basis, after which all
data qubits below are translated up. This translation can be achieved with a two-step process using SWAP gates as shown. One may
progress through the block in Fig. 6 in other directions, e.g., from front to back or bottom to top, leading to different instruction sets.
For example, if we progress from front to back, then five-qubit twist operators need to be measured.

the surface codes at each timestep. To obtain the logical
operator that the membrane corresponds to at time slice
τ ∈ {0, 1, . . . , T}, we take the restriction of a membrane
to the subcomplex between times 0 ≤ z ≤ τ and take its
boundary—this will give a set of Primal/Dual/PrimalDual
labels on edges that corresponds to the representative logi-
cal Pauli operator at that time interval, as depicted in Fig. 4.
Components of a membrane in a plane of constant time

correspond to stabilizer measurements that must be multi-
plied to give the equivalent representative on that slice (and
thus their outcome is used to determine the Pauli frame).
Recall that the membrane can locally be of primal type,
dual type, or a composite primal-dual type, meaning when
their projection on a single time slice corresponds to a pri-
mal (X -type), dual (Z-type), or composite (Y-type) logical
string operator.

020303-32

LOGICAL BLOCKS FOR FAULT-TOLERANT... PRX QUANTUM 4, 020303 (2023)

|+〉 MX
ẑ1 ẑ3 ẑ3 ẑ3 ẑ3 ẑ1

x̂3

x̂3

x̂3

x̂3

ẑ4

x̂3

x̂3

x̂3

x̂3

ẑ4 x̂3x̂3

x̂3

x̂3

ẑ4 x̂4x̂4

x̂4

x̂4

x̂3

x̂3

ẑ4 x̂4x̂4

x̂4

x̂4

x̂3

ẑ4 x̂4x̂4

x̂4

x̂4

x̂3

x̂3

ẑ4 x̂4x̂4

x̂4

x̂4

x̂3 ẑ4 x̂4x̂4

x̂4

x̂4

ẑ4 x̂4x̂4

x̂4

x̂4

x̂3

ẑ4 x̂4x̂4

x̂4

x̂4

x̂3

x̂3

ẑ4 x̂4x̂4

x̂4

x̂4x̂3

ẑ4 x̂4x̂4

x̂4

x̂4

x̂3

x̂3

FIG. 24. Converting a Clifford circuit to a spider network. Top: the CNOT gates, |+〉 preparation, and MX measurement operations
can be represented by the spiders x̂k and ẑk as shown. One can simplify the spider operations by merging them as shown, giving the
minimal network on the right. For the first three figures, time moves from left to right, whereas for the rightmost figure, time moves
from bottom to top. Bottom: measuring stabilizers of a (Kitaev) surface code concatenated with itself. Time moves from bottom to top.
On the left, we depict a network of x̂4 and ẑk spiders to implement a round of X ⊗4 surface code stabilizers. On the right, we depict the
corresponding network of logical blocks. To obtain the measurement pattern of the Z⊗4 surface code stabilizers, one can swap the role
of the x̂4 and ẑk spiders.

We remark that in FBQC the symmetry between space
and time is restored, as there is no natural direction of
time. This means that the fusions may be performed in any
order; layer by layer (following the surface code analogy)
or in a rastering pattern as in Ref. [50]. This decoupling
of “simulated time,” corresponding to the passage of time
that logical qubits experience, and “physical time,” cor-
responding to the order in which physical operations are
undertaken, presents additional flexibility in FBQC.

5. Converting a phase gate into circuit-based
instructions

We now present a concrete example of converting a
template to circuit-based instructions. We give the phase
gate of Fig. 6 as an example, as it illustrates many of the
possible features in the construction. The instructions are
depicted in Fig. 23. Note that, when we propagate through
the block in this way, no stabilizer measurements of weight
higher than four are required. Importantly, if we progress
through the block in a different way, we may require five-
qubit measurements along the twist, as is the case when
we propagate from front to back and the twist line is
perpendicular to our time slices.

6. Magic state preparation

To complete a universal gate set, we need a non-
Clifford operation. A common approach is to prepare noisy

encoded magic states and then distill them [86]. A stan-
dard magic state to prepare is the T state |T〉 = (|0〉 +
eiπ/4 |1〉)/√2. We show how to prepare the noisy encoded
|T〉 states in Fig. 16, which is based on the preparation
scheme in Ref. [106]. We refer to the qubit in Fig. 16 where
the non-Clifford operation is performed as the injection
site.

The scheme is inherently noisy due to the existence
of weight-1 and other low-weight logical errors on and
around the injection site. Excluding errors on the injection
site, all weight-1 Pauli errors are detectable. Therefore one
can perform postselection (which depends on the erasure
and syndrome pattern) to filter out noisy preparations. For
example, with a simple error model of flipped measure-
ment outcomes with rate p , the postselected logical error
rate can be made to be of order p + O(p2). If the error rate
p is sufficiently small then the overhead for postselection
can also be small [123,124].

7. Toric code spider networks

In this section we present in more detail the concate-
nation schemes discussed in Sec. VI. In particular, in the
top panels of Fig. 24 we demonstrate how to convert the
Clifford circuit in Fig. 9 to a network of toric code spi-
ders. In the bottom panels of Fig. 24 we present the logical
block for the spider network that measures stabilizers of
the surface code concatenated with itself.

020303-33

HÉCTOR BOMBÍN et al. PRX QUANTUM 4, 020303 (2023)

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Erasure rate pE

0.0

0.2

0.4

0.6

0.8

1.0

Lo
gi

ca
le

rr
or

ra
te

P
p

3-Torus

Length = 8
Length = 14
Length = 20
Length = 26

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Erasure rate pE

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
gi

ca
le

rr
or

ra
te

P
p

Identity

Length = 8
Length = 14
Length = 20
Length = 26

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Erasure rate pE

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
gi

ca
le

rr
or

ra
te

P
p

Phase gate

Length = 8
Length = 14
Length = 20
Length = 26

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Erasure rate pE

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
gi

ca
le

rr
or

ra
te

P
p

Hadamard

Length = 8
Length = 14
Length = 20
Length = 26

0.110 0.115 0.120 0.125 0.130 0.110 0.115 0.120 0.125 0.130

0.110 0.115 0.120 0.125 0.130 0.110 0.115 0.120 0.125 0.130

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Erasure rate pE

0.0

0.2

0.4

0.6

0.8

Lo
gi

ca
le

rr
or

ra
te

P
p

ZZ Lattice surgery

Length = 8
Length = 14
Length = 20
Length = 26

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Erasure rate pE

0.0

0.2

0.4

0.6

0.8

1.0

Lo
gi

ca
le

rr
or

ra
te

P
p

ZZZ Lattice surgery

Length = 8
Length = 14
Length = 20
Length = 26

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Erasure rate pE

0.0

0.2

0.4

0.6

0.8

1.0

Lo
gi

ca
le

rr
or

ra
te

P
p

ZZZZ Lattice surgery

length = 8
length = 14
length = 20
length = 26

0.110 0.115 0.120 0.125 0.130 0.110 0.115 0.120 0.125 0.130 0.110 0.115 0.120 0.125 0.130

FIG. 25. Threshold crossing plots for the different logical blocks against IID erasure noise. The logical error rate is defined with
respect to any logical error (which is block dependent). In other words, a logical error occurs whenever any of the logical membranes
is incorrectly recovered. Each data point is the estimated logical error rate from 107 to 108 trials. The estimated thresholds are displayed
with dashed lines.

8. FBQC instrument networks as gauge fixing on a
subsystem code

We remark that fusion-based quantum computation in
this setting can be understood as gauge fixing on a subsys-
tem code. This observation has previously been identified
in the setting of MBQC [8], and we extend the discussion
to include FBQC in this section.

Subsystem (stabilizer) codes are a generalization of sta-
bilizer codes, where some code degrees of freedom are not
used to encode information, and are referred to as gauge
qubits. A subsystem code [125,126] is defined by a sub-
group of the Pauli group G ⊆ Pn, which is not necessarily
Abelian, known as the gauge group. For a given gauge
group, stabilizers of the subsystem code are given by ele-
ments ZG(G), logical degrees of freedom are described
by the group ZPn(G), while G describes operations on
the gauge qubits. In particular, we refer to an element of
ZPn(G) as a bare logical operator—such operators act

nontrivially only on logical degrees of freedom. One may
multiply any bare logical operator by elements of G to
obtain an operator known as a dressed logical operator,
which has equivalent action on logical degrees of freedom.

We now express a FBQC instrument network in terms
of a subsystem code. Namely, in FBQC, we may construct
a gauge group G = R ∪ M. We can understand a fault-
tolerant instrument in terms of gauge fixing [65], whereby
we start in one particular gauge of the subsystem code
(i.e., in a joint eigenstate of some subset of G) and project
into a different gauge. In particular, the computation begins
by starting in the gauge defined by R, and performing
measurements to fix onto the gauge defined by M. The
computation can be understood as proceeding by examin-
ing how bare logical operators are transformed. In terms of
the subsystem code, the bare logical operators are precisely
the logical membrane operators that we have previously
studied.

020303-34

LOGICAL BLOCKS FOR FAULT-TOLERANT... PRX QUANTUM 4, 020303 (2023)

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Bit-flip rate pP

0.0

0.2

0.4

0.6

0.8

1.0

Lo
gi

ca
le

rr
or

ra
te

P
p

3-Torus

Length = 8
Length = 14
Length = 20
Length = 26

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Bit-flip rate pP

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
gi

ca
le

rr
or

ra
te

P
p

Identity

Length = 8
Length = 14
Length = 20
Length = 26

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Bit-flip rate pP

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
gi

ca
le

rr
or

ra
te

P
p

Phase gate
Length = 8
Length = 14
Length = 20
Length = 26

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Bit-flip rate pP

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
gi

ca
le

rr
or

ra
te

P
p

Hadamard
Length = 8
Length = 14
Length = 20
Length = 26

0.0080 0.0085 0.0090 0.0095 0.0100 0.0105 0.0110 0.0080 0.0085 0.0090 0.0095 0.0100 0.0105 0.0110

0.0080 0.0085 0.0090 0.0095 0.0100 0.0105 0.0110 0.0080 0.0085 0.0090 0.0095 0.0100 0.0105 0.0110

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Bit-flip rate pP

0.0

0.2

0.4

0.6

0.8

Lo
gi

ca
le

rr
or

ra
te

P
p

ZZ Lattice surgery
Length = 8
Length = 14
Length = 20
Length = 26

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Bit-flip rate pP

0.0

0.2

0.4

0.6

0.8

1.0

Lo
gi

ca
le

rr
or

ra
te

P
p

ZZZ Lattice surgery
Length = 8
Length = 14
Length = 20
Length = 26

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Bit-flip rate pP

0.0

0.2

0.4

0.6

0.8

1.0

Lo
gi

ca
le

rr
or

ra
te

P
p

ZZZZ Lattice surgery
Length = 8
Length = 14
Length = 20
Length = 26

0.0080 0.0085 0.0090 0.0095 0.0100 0.0105 0.0110 0.0080 0.0085 0.0090 0.0095 0.0100 0.0105 0.0110 0.0080 0.0085 0.0090 0.0095 0.0100 0.0105 0.0110

FIG. 26. Threshold crossing plots as per Fig. 25, but under IID bit-flip noise.

9. Decoding

In this section we briefly describe how to decode in the
FBQC setting.

In order to extract useful logical data from the observed
measurement data, we must use a decoder. The decoder’s

job is to take as input the (potentially incomplete) mea-
surement outcomes, and produce a recovery operation that
is consistent with the observed syndrome. In particular, let
T be the set of trivial undetectable errors (i.e., errors that
commute with all check operators and membranes). For

0.06 0.07 0.08 0.09 0.10 0.11 0.12
Erasure rate pE

0

1

2

3

4

5

6

7

Lo
gi

ca
lp

re
fa

ct
or

α
p

3-Torus
Identity
Phase gate
Hadamard
ZZ Lattice surgery
ZZZ Lattice surgery
ZZZZ Lattice surgery

0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009
Bit-flip rate pP

0.0

0.2

0.4

0.6

0.8

Lo
gi

ca
lp

re
fa

ct
or

α
p

3-Torus
Identity
Phase gate
Hadamard
ZZ Lattice surgery
ZZZ Lattice surgery
ZZZZ Lattice surgery

FIG. 27. Estimated fits of the logical prefactor αp to the logical block error rate Pp(d) = αp e−βp d under IID erasure and IID bit-flip
noise models for the identity, 3-torus, phase, Hadamard, and multiqubit lattice surgery blocks.

020303-35

HÉCTOR BOMBÍN et al. PRX QUANTUM 4, 020303 (2023)

(a) (b) (c) (d)

FIG. 28. All Pauli logical operators for twist-encoded qubits are traceable. (a) An arbitrary Pauli operator can be expressed as a
product of composite primal-dual (Pauli-Y) strings connecting pairs of twists, as represented by the purple strings. (b) Multiply this
logical by a trivial primal or dual loop (i.e., a stabilizer). (c) The results in a new string net configuration, involving primal, dual, and
composite primal-dual strings in general. (d) This string net can be further resolved to a new traceable string net consisting of only
primal and dual strings enclosing some number of twists.

a Pauli error E ∈ P , let σ(E) be the syndrome (the out-
comes of a generating set of checks). The decoder takes the
syndrome and produces a recovery operator R ∈ P with
the same syndrome. The decoding is successful whenever
ER ∈ T. In this case we necessarily have [ER, Mα,β] = 0
for all logical membranes Mα,β , implying that the logical
Pauli frame observed is identical to the case without errors.

The decoding problem is naturally expressed on the
syndrome graph; we can immediately make use of many
standard decoders. In particular, on the syndrome graph,
the syndrome takes the form σ(E) = ∂(Supp(E)), where
Supp(E) is the set of edges on the syndrome graph that
correspond to flipped (fusion) measurement outcomes and
∂ is the usual mod-2 boundary operator on the graph. The
decoder must return a recovery operator R ∈ P such that
σ(E) = σ(R). MWPM [3,109] and UF [110] are two pop-
ular decoding methods that produce a low-weight descrip-
tion of the observed syndrome. Such algorithms can be
applied to the primal and dual syndrome graphs sepa-
rately, where they match pairs of primal-type excitations
and separately the dual-type excitations.

10. Threshold analysis

We simulate two types of IID noise models: an erasure
and a bit-flip model. In the context of FBQC, such errors
arise from (i) photon loss and fusion failure, and (ii) Pauli

errors on the qubits on resource states. To estimate the log-
ical error rate on each 3D block at physical error rate p ,
we fix a block distance and perform many Monte Carlo tri-
als. Each trial consists of generating a random sample of
erasures or bit-flip errors on each edge of the correspond-
ing 3D syndrome graph with some rate p , determining the
syndrome, decoding based on the syndrome, and finally,
checking if the decoding is successful. In particular, decod-
ing is successful whenever the combined effect of error
and recovery leads to the correct measurement outcome
of the logical membrane. Note that different blocks have
different numbers (and shapes) of logical membranes, and
we declare success if and only if no logical errors occur
(i.e., all membranes are correct). On the syndrome graph,
an error sample results in a chain of flipped edges E. The
recovery consists of a chain of flipped edges R with the
same boundary as E. The logical membrane is represented
as a subset (a mask) of syndrome graph edges M , and
to determine correct decoding, we only need to check if
|E ⊕ R ∩ M | ∼= 0 mod 2. In other words, verify that the
error and recovery intersects the membrane an even num-
ber of times. An example of a syndrome graph and logical
mask is given in Fig. 17.

To estimate the threshold, we find estimates of the
logical error rate for different block distances L ∈
{8, 14, 20, 26} and for a range of physical error rates. For
each block, we fit the logical error rate for each distance
to the cumulative distribution function of the (rescaled and

(a) (b) (c)

FIG. 29. Commuting traceable operators can be resolved to only have intersections on strings of the same type. For simplicity,
we consider a setting absent of domain walls—the general case holds using the same argument up to local string relabelings. Label
the two traceable operators P and Q. (a) In a region, P is depicted on the left by a single primal (blue) string, while Q is a pair of
dual (red) strings. For P and Q to commute, the primal strings of P must overlap an even number of times with the dual strings of Q.
(b) Consider pairing up the primal and dual intersections between P and Q. For each intersection, we can multiply by a trivial dual loop
(i.e., a stabilizer) in the neighborhood of the intersection. (c) This loop resolves the crossings, and so we are left only with intersections
of the same type.

020303-36

LOGICAL BLOCKS FOR FAULT-TOLERANT... PRX QUANTUM 4, 020303 (2023)

FIG. 30. Since a general Pauli measurement involves an even
number of twists, we can always find a valid configuration
of domain walls. As shown, we can pair twists and configure
domain walls such that their boundary is the desired twists. This
portal configuration is to measure the traceable operator depicted
at the bottom.

shifted) beta distribution. The threshold is estimated as the
p value for which the logical error rate curves of different
distances intersect such that it is invariant under increasing
distances. Figures 25 and 26 show the logical error rate fits
for each logical block, and the crossing point at which the
threshold is identified. Error bars for each data point are
given by the standard error of the mean for the binomial
distribution, from which we can identify error bars for the
threshold crossing.

11. Logical decay fits

Here we outline how we obtain fitting parameters αp and
βp for the logical error rate Pp(d) as a function of the block
distance d, according to

Pp(d) = αpe−βp d. (A7)

For a given physical error rate p , we estimate the logical
error rate Pp(d) for a variety of block distances, by run-
ning no less than 109 decoder trials. Each estimate carries
an error bar given by the standard error of the mean for the
binomial distribution. We then perform an ordinary least-
squares regression to the logarithm of the estimated logical
error rate to directly infer αp and βp . The error bars for the
estimates for αp and βp are given by the heteroskedasticity
robust standard errors. Figure 18 contains numerical esti-
mates of the logical decay βp , while Fig. 27 contains the
numerical estimates of the logical prefactor αp .

12. Twist encoding traceability

In this section we show that all Pauli logical operators
in the twist encoding are traceable. The argument is pre-
sented in Fig. 28, where we demonstrate how to start with a
general Pauli logical operator and transform it using stabi-
lizer equivalences into traceable form. In Fig. 29 we show

Nontrivial port stabilizer syndrome.
Information available to decoder through
idealized port boundary conditions.

Actual error chain (invisible to decoder)

Logical membrane representative. Mea-
surement outcomes along the membrane
determine Pauli frame for logical correlator.

FIG. 31. Without port stabilizers, it would not be possible
to associate a sensible fault distance with independent logical
blocks. For any choice of the logical correlator, there would be
low-weight fault configurations that result in undetectable errors
on the logical correlator. Incorporating stabilizer outcomes local
to the ports is an idealization that allows us to evaluate sensi-
ble fault distance and fault-tolerance properties for the proposed
logical blocks.

that commuting traceable operators can be made to have
intersection only on strings of the same type. Finally, we
remark that a general portal configuration to measure a
Pauli operator always admits a compatible domain wall
configuration. This is because the measurement of a Pauli
logical operator always results in the measurement of an
even number of twists. We present an illustrative example
in Fig. 30 of how such a domain wall can be found with
the correct boundary conditions.

13. Port boundary conditions and block decoding
simulations

In order to simulate and calculate fault distance of a
modular component within a larger logical network, a
pragmatic boundary condition must be set, which allows
evaluating the fault-tolerant performance of different logi-
cal blocks in isolation. This choice is documented here as it

FIG. 32. The figure shows how a fault configuration that is
undetectable in the context of a composite protocol (right) can
become detectable in the context of the idealized boundary con-
dition described by stabilizer measurements when the complete
protocol is partitioned into logical blocks (left).

020303-37

HÉCTOR BOMBÍN et al. PRX QUANTUM 4, 020303 (2023)

plays a crucial role in specifying the numerical simulations
that are being performed.

For the purpose of evaluating the fault-tolerant perfor-
mance of a block and evaluating its fault distance, each
port is treated as though ideal stabilizer measurements had
been performed on the stabilizer subgroup local to said
port. There is no additional noise attributed to the mea-
surement outcomes, other than the noise already present
in the qubits themselves. The ideal nature of such sta-
bilizer measurements makes it impractical in the context
of a real-world quantum computer, since such operations
would generally be noisy in practice. However, the qubits
on which the stabilizer measurements are applied are
themselves still subject to the underlying noise model.

In the setting of topological fault tolerance, the stabilizer
outcomes being extracted correspond to the geometrically
local stabilizer generators of the surface code. The situa-
tion studied corresponds to a well-defined quantum instru-
ment inserted at said ports. In terms of the blocks already
considered, the chosen boundary condition corresponds
to attaching a noiseless injection block (from Fig. 16) at
every surface code port, with the noise rate being artifi-
cially set to zero for such blocks and the injection qubit
left unmeasured (in other words, a noiseless encoding
and unencoding isometry). These boundary conditions and
their impact are displayed in Figs. 31 and 32.

The blocks we use in this article are chosen such
that they individually have fault-tolerance properties with
respect to the idealized port boundary condition, but also
such that fault tolerance is preserved under arbitrary com-
binations of such blocks. Whereas this statement is made
as a claim in this article, a set of sufficient conditions sat-
isfied by this set of blocks is presented in Ref. [127] in the
context of modular decoding.

[1] A. Y. Kitaev, Fault-tolerant quantum computation by
anyons, Ann. Phys. (N. Y) 303, 2 (2003).

[2] A. Y. Kitaev, in Quantum Communication, Computing,
and Measurement (Springer, 1997), p. 181.

[3] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, Topo-
logical quantum memory, J. Math. Phys. 43, 4452 (2002).

[4] R. Raussendorf and J. Harrington, Fault-Tolerant Quan-
tum Computation with High Threshold in Two Dimen-
sions, Phys. Rev. Lett. 98, 190504 (2007).

[5] R. Raussendorf, J. Harrington, and K. Goyal, Topologi-
cal fault-tolerance in cluster state quantum computation,
New J. Phys. 9, 199 (2007).

[6] A. Bolt, G. Duclos-Cianci, D. Poulin, and T. Stace, Foli-
ated Quantum Error-Correcting Codes, Phys. Rev. Lett.
117, 070501 (2016).

[7] N. Nickerson and H. Bombín, (2018), arXiv preprint
ArXiv:1810.09621.

[8] B. J. Brown and S. Roberts, Universal fault-tolerant
measurement-based quantum computation, Phys. Rev.
Res. 2, 033305 (2020).

[9] C. Wang, J. Harrington, and J. Preskill, Confinement-
Higgs transition in a disordered gauge theory and the
accuracy threshold for quantum memory, Ann. Phys. (N.
Y) 303, 31 (2003).

[10] T. M. Stace, S. D. Barrett, and A. C. Doherty, Thresholds
for Topological Codes in the Presence of Loss, Phys. Rev.
Lett. 102, 200501 (2009).

[11] G. Duclos-Cianci and D. Poulin, Fast Decoders for Topo-
logical Quantum Codes, Phys. Rev. Lett. 104, 050504
(2010).

[12] H. Bombin, R. S. Andrist, M. Ohzeki, H. G. Katzgraber,
and M. A. Martín-Delgado, Strong Resilience of Topo-
logical Codes to Depolarization, Phys. Rev. X 2, 021004
(2012).

[13] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A.
N. Cleland, Surface codes: Towards practical large-
scale quantum computation, Phys. Rev. A 86, 032324
(2012).

[14] F. H. Watson and S. D. Barrett, Logical error rate
scaling of the toric code, New J. Phys. 16, 093045
(2014).

[15] S. Bravyi, M. Suchara, and A. Vargo, Efficient algorithms
for maximum likelihood decoding in the surface code,
Phys. Rev. A 90, 032326 (2014).

[16] A. S. Darmawan and D. Poulin, Tensor-Network Simu-
lations of the Surface Code under Realistic Noise, Phys.
Rev. Lett. 119, 040502 (2017).

[17] H. Bombín and M. A. Martin-Delgado, Quantum mea-
surements and gates by code deformation, J. Phys. A:
Math. Theor. 42, 095302 (2009).

[18] H. Bombín, Topological Order with a Twist: Ising Anyons
from an Abelian Model, Phys. Rev. Lett. 105, 030403
(2010).

[19] A. J. Landahl, J. T. Anderson, and P. R. Rice, (2011),
arXiv preprint ArXiv:1108.5738.

[20] C. Horsman, A. G. Fowler, S. Devitt, and R. Van Meter,
Surface code quantum computing by lattice surgery, New
J. Phys. 14, 123011 (2012).

[21] A. G. Fowler, (2012), arXiv preprint ArXiv:1210.4626.
[22] M. Barkeshli, C.-M. Jian, and X.-L. Qi, Classification of

topological defects in Abelian topological states, Phys.
Rev. B 88, 241103 (2013).

[23] M. Barkeshli, C.-M. Jian, and X.-L. Qi, Twist defects and
projective non-Abelian braiding statistics, Phys. Rev. B
87, 045130 (2013).

[24] M. B. Hastings and A. Geller, (2014), arXiv preprint
ArXiv:1408.3379.

[25] B. Yoshida, Topological color code and symmetry-
protected topological phases, Phys. Rev. B 91, 245131
(2015).

[26] B. M. Terhal, Quantum error correction for quantum
memories, Rev. Mod. Phys. 87, 307 (2015).

[27] T. J. Yoder and I. H. Kim, The surface code with a twist,
Quantum 1, 2 (2017).

[28] B. J. Brown, K. Laubscher, M. S. Kesselring, and J. R.
Wootton, Poking Holes and Cutting Corners to Achieve
Clifford Gates with the Surface Code, Phys. Rev. X 7,
021029 (2017).

[29] B. Yoshida, Gapped boundaries, group cohomology and
fault-tolerant logical gates, Ann. Phys. (N. Y) 377, 387
(2017).

020303-38

https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1063/1.1499754
https://doi.org/10.1103/PhysRevLett.98.190504
https://doi.org/10.1088/1367-2630/9/6/199
https://doi.org/10.1103/PhysRevLett.117.070501
https://arxiv.org/abs/1810.09621
https://doi.org/10.1103/PhysRevResearch.2.033305
https://doi.org/10.1016/S0003-4916(02)00019-2
https://doi.org/10.1103/PhysRevLett.102.200501
https://doi.org/10.1103/PhysRevLett.104.050504
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1088/1367-2630/16/9/093045
https://doi.org/10.1103/PhysRevA.90.032326
https://doi.org/10.1103/PhysRevLett.119.040502
https://doi.org/10.1088/1751-8113/42/9/095302
https://doi.org/10.1103/PhysRevLett.105.030403
https://arxiv.org/abs/1108.5738
https://doi.org/10.1088/1367-2630/14/12/123011
https://arxiv.org/abs/1210.4626
https://doi.org/10.1103/PhysRevB.88.241103
https://doi.org/10.1103/PhysRevB.87.045130
https://arxiv.org/abs/1408.3379
https://doi.org/10.1103/PhysRevB.91.245131
https://doi.org/10.1103/RevModPhys.87.307
https://doi.org/10.22331/q-2017-04-25-2
https://doi.org/10.1016/j.aop.2016.12.014

LOGICAL BLOCKS FOR FAULT-TOLERANT... PRX QUANTUM 4, 020303 (2023)

[30] S. Roberts, B. Yoshida, A. Kubica, and S. D. Bartlett,
Symmetry-protected topological order at nonzero temper-
ature, Phys. Rev. A 96, 022306 (2017).

[31] H. Bombin, (2018), arXiv preprint ArXiv:1810.09575.
[32] H. Bombin, (2018), arXiv preprint ArXiv:1810.09571.
[33] A. Lavasani and M. Barkeshli, Low overhead Clifford

gates from joint measurements in surface, color, and
hyperbolic codes, Phys. Rev. A 98, 052319 (2018).

[34] A. Lavasani, G. Zhu, and M. Barkeshli, (2019), arXiv
preprint ArXiv:1901.11029.

[35] P. Webster and S. D. Bartlett, Fault-tolerant quantum gates
with defects in topological stabilizer codes, Phys. Rev. A
102, 022403 (2020).

[36] M. Hanks, M. P. Estarellas, W. J. Munro, and K.
Nemoto, Effective Compression of Quantum Braided Cir-
cuits Aided by ZX-Calculus, Phys. Rev. X 10, 041030
(2020).

[37] S. Roberts and D. J. Williamson, (2020), arXiv preprint
ArXiv:2011.04693.

[38] G. Zhu, T. Jochym-O’Connor, and A. Dua, (2021), arXiv
preprint ArXiv:2108.00018.

[39] C. Chamberland and E. T. Campbell, (2021), arXiv
preprint ArXiv:2109.02746.

[40] A. J. Landahl and B. C. Morrison, (2021), arXiv preprint
ArXiv:2110.10280.

[41] M. E. Beverland, A. Kubica, and K. M. Svore, Cost of
Universality: A Comparative Study of the Overhead of
State Distillation and Code Switching with Color Codes,
PRX Quantum 2, 020341 (2021).

[42] A. G. Fowler, Accurate simulations of planar topologi-
cal codes cannot use cyclic boundaries, Phys. Rev. A 87,
062320 (2013).

[43] M. E. Beverland, B. J. Brown, M. J. Kastoryano, and
Q. Marolleau, The role of entropy in topological quantum
error correction, J. Stat. Mech.: Theory Exp. 2019, 073404
(2019).

[44] K. J. Satzinger, et al., Realizing topologically ordered
states on a quantum processor, Science 374, 1237 (2021).

[45] L. Egan, D. M. Debroy, C. Noel, A. Risinger, D. Zhu,
D. Biswas, M. Newman, M. Li, K. R. Brown, and M.
Cetina, et al., Fault-tolerant control of an error-corrected
qubit, Nature 598, 281 (2021).

[46] C. Ryan-Anderson, J. Bohnet, K. Lee, D. Gresh, A.
Hankin, J. Gaebler, D. Francois, A. Chernoguzov, D.
Lucchetti, N. Brown, et al. (2021), arXiv preprint
ArXiv:2107.07505.

[47] L. Postler, S. Heußen, I. Pogorelov, M. Rispler, T. Feldker,
M. Meth, C. D. Marciniak, R. Stricker, M. Ringbauer, and
R. Blatt, et al., (2021), arXiv preprint ArXiv:2111.12654.

[48] S. Bartolucci, P. Birchall, H. Bombin, H. Cable, C.
Dawson, M. Gimeno-Segovia, E. Johnston, K. Kieling,
N. Nickerson, M. Pant, et al. (2021), arXiv preprint
ArXiv:2101.09310.

[49] K. Fujii, Quantum Computation with Topological Codes:
from Qubit to Topological Fault-Tolerance, Vol. 8
(Springer, Singapore, 2015).

[50] H. Bombin, I. H. Kim, D. Litinski, N. Nickerson, M. Pant,
F. Pastawski, S. Roberts, and T. Rudolph, (2021), arXiv
preprint ArXiv:2103.08612.

[51] S. B. Bravyi and A. Y. Kitaev, (1998), arXiv preprint
ArXiv:quant-ph/9811052.

[52] Z. Nussinov and G. Ortiz, A symmetry principle for
topological quantum order, Ann. Phys. (N. Y) 324, 977
(2009).

[53] H. Bombín and M. A. Martin-Delgado, Optimal resources
for topological two-dimensional stabilizer codes: Compar-
ative study, Phys. Rev. A 76, 012305 (2007).

[54] D. Litinski, A game of surface codes: Large-scale quan-
tum computing with lattice surgery, Quantum 3, 128
(2019).

[55] J.-P. Tillich and G. Zémor, Quantum LDPC codes with
positive rate and minimum distance proportional to the
square root of the blocklength, IEEE Trans. Inf. Theory
60, 1193 (2014).

[56] D. Gottesman, (2013), arXiv preprint ArXiv:1310.2984.
[57] O. Fawzi, A. Grospellier, and A. Leverrier, in 2018 IEEE

59th Annual Symposium on Foundations of Computer
Science (FOCS) (IEEE, 2018), p. 743.

[58] O. Fawzi, A. Grospellier, and A. Leverrier, in Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory
of Computing (2018), p. 521.

[59] N. P. Breuckmann and J. N. Eberhardt, Quantum Low-
Density Parity-Check Codes, PRX Quantum 2, 040101
(2021).

[60] M. B. Hastings, J. Haah, and R. O’Donnell, in Proceed-
ings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing (2021), p. 1276.

[61] N. P. Breuckmann and J. N. Eberhardt, Balanced prod-
uct quantum codes, IEEE Trans. Inf. Theory 67, 6653
(2021).

[62] P. Panteleev and G. Kalachev, (2021), arXiv preprint
ArXiv:2111.03654.

[63] D. Gottesman, PhD thesis, Institute of Technology in
Pasadena, Pasadena, California.

[64] H. Bombin and M. A. Martin-Delgado, Topological
Quantum Distillation, Phys. Rev. Lett. 97, 180501
(2006).

[65] A. Paetznick and B. W. Reichardt, Universal Fault-
Tolerant Quantum Computation with Only Transversal
Gates and Error Correction, Phys. Rev. Lett. 111, 090505
(2013).

[66] M. Newman, L. A. de Castro, and K. R. Brown, Gener-
ating fault-tolerant cluster states from crystal structures,
Quantum 4, 295 (2020).

[67] M. B. Hastings and J. Haah, Dynamically generated logi-
cal qubits, Quantum 5, 564 (2021).

[68] A. Kitaev, Anyons in an exactly solved model and beyond,
Ann. Phys. (N. Y) 321, 2 (2006).

[69] J. Preskill, Caltech Lecture Notes (1999).
[70] M. Levin, Protected Edge Modes without Symmetry,

Phys. Rev. X 3, 021009 (2013).
[71] Z. Liu, A. Wozniakowski, and A. M. Jaffe, Quon 3D lan-

guage for quantum information, Proc. Nat. Acad. Sci. 114,
2497 (2017).

[72] M. Barkeshli, P. Bonderson, M. Cheng, and Z. Wang,
Symmetry fractionalization, defects, and gauging of topo-
logical phases, Phys. Rev. B 100, 115147 (2019).

[73] X.-G. Wen, Quantum Orders in an Exact Soluble Model,
Phys. Rev. Lett. 90, 016803 (2003).

[74] H. Bombin and M. Martin-Delgado, Topological quantum
error correction with optimal encoding rate, Phys. Rev. A
73, 062303 (2006).

020303-39

https://doi.org/10.1103/PhysRevA.96.022306
https://arxiv.org/abs/1810.09575
https://arxiv.org/abs/1810.09571
https://doi.org/10.1103/PhysRevA.98.052319
https://arxiv.org/abs/1901.11029
https://doi.org/10.1103/PhysRevA.102.022403
https://arxiv.org/abs/2011.04693
https://arxiv.org/abs/2108.00018
https://arxiv.org/abs/2109.02746
https://arxiv.org/abs/2110.10280
https://doi.org/10.1103/PRXQuantum.2.020341
https://doi.org/10.1103/PhysRevA.87.062320
https://doi.org/10.1088/1742-5468/ab25de
https://doi.org/10.1126/science.abi8378
https://doi.org/10.1038/s41586-021-03928-y
https://arxiv.org/abs/2107.07505
https://arxiv.org/abs/2111.12654
https://arxiv.org/abs/2101.09310
https://doi.org/10.1007/978-981-287-996-7
https://arxiv.org/abs/2103.08612
https://arxiv.org/abs/quant-ph/9811052
https://doi.org/10.1016/j.aop.2008.11.002
https://doi.org/10.1103/PhysRevA.76.012305
https://doi.org/10.22331/q-2019-03-05-128
https://doi.org/10.1109/TIT.2013.2292061
https://arxiv.org/abs/1310.2984
https://doi.org/10.1103/PRXQuantum.2.040101
https://doi.org/10.1109/TIT.2021.3097347
https://arxiv.org/abs/2111.03654
https://doi.org/10.1103/PhysRevLett.97.180501
https://doi.org/10.1103/PhysRevLett.111.090505
https://doi.org/10.22331/q-2020-07-13-295
https://doi.org/10.22331/q-2021-10-19-564
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1073/pnas.1621345114
https://doi.org/10.1103/PhysRevB.100.115147
https://doi.org/10.1103/PhysRevLett.90.016803
https://doi.org/10.1103/PhysRevA.73.062303

HÉCTOR BOMBÍN et al. PRX QUANTUM 4, 020303 (2023)

[75] Y. Tomita and K. M. Svore, Low-distance surface codes
under realistic quantum noise, Phys. Rev. A 90, 062320
(2014).

[76] The two types of anyons of the surface code are also often
referred to as e type and m type, or alternatively X type
and Z type.

[77] M. E. Beverland, O. Buerschaper, R. Koenig, F.
Pastawski, J. Preskill, and S. Sijher, Protected gates for
topological quantum field theories, J. Math. Phys. 57,
022201 (2016).

[78] A. Kitaev and L. Kong, Models for gapped bound-
aries and domain walls, Commun. Math. Phys. 313, 351
(2012).

[79] M. Levin and Z.-C. Gu, Braiding statistics approach to
symmetry-protected topological phases, Phys. Rev. B 86,
115109 (2012).

[80] T. Lan, J. C. Wang, and X.-G. Wen, Gapped Domain
Walls, Gapped Boundaries, and Topological Degeneracy,
Phys. Rev. Lett. 114, 076402 (2015).

[81] Note that, generally, the term “domain wall” refers to
any boundary between two topological phases. Here, we
specifically use it to refer to the primal-dual swapping
boundary.

[82] M. H. Freedman and D. A. Meyer, Projective plane and
planar quantum codes, Found. Comput. Math. 1, 325
(2001).

[83] For example, the 2D color code (which is locally equiv-
alent to two copies of the surface code [128]) has a sym-
metry group containing 72 elements [25,129], compared
to the Z2 symmetry of a single surface code.

[84] This cell complex is distinct from the cell complex com-
monly used in the context of fault-tolerant topological
MBQC [4,5,7] in which the checks correspond to 3-cells
and 0-cells of the complex.

[85] In condensed matter language, this check operator group
can be understood as a Z2 × Z2 1-form symmetry [130–
132].

[86] S. Bravyi and A. Kitaev, Universal quantum computation
with ideal Clifford gates and noisy ancillas, Phys. Rev. A
71, 022316 (2005).

[87] S. Bravyi and J. Haah, Magic-state distillation with low
overhead, Phys. Rev. A 86, 052329 (2012).

[88] D. Litinski, Magic state distillation: Not as costly as you
think, Quantum 3, 205 (2019).

[89] I. H. Kim, E. Lee, Y.-H. Liu, S. Pallister, W. Pol, and
S. Roberts, (2021), ArXiv:2104.10653.

[90] A. Kubica, B. Yoshida, and F. Pastawski, Unfolding the
color code, New J. Phys. 17, 083026 (2015).

[91] J. E. Moussa, Transversal Clifford gates on folded surface
codes, Phys. Rev. A 94, 042316 (2016).

[92] M. B. Elliott, B. Eastin, and C. M. Caves, Graphical
description of Pauli measurements on stabilizer states,
J. Phys. A: Math. Theor. 43, 025301 (2009).

[93] B. Coecke and R. Duncan, in International Colloquium
on Automata, Languages, and Programming (Springer,
2008), p. 298.

[94] J. van de Wetering, (2020), arXiv preprint ArXiv:2012.
13966.

[95] N. de Beaudrap and D. Horsman, The ZX calculus is a
language for surface code lattice surgery, Quantum 4, 218
(2020).

[96] A. R. Calderbank and P. W. Shor, Good quantum
error-correcting codes exist, Phys. Rev. A 54, 1098
(1996).

[97] A. Steane, Multiple-particle interference and quantum
error correction, Proc. R. Soc. London Ser. A: Math.,
Phys. Eng. Sci. 452, 2551 (1996).

[98] S. Bravyi, D. Poulin, and B. Terhal, Tradeoffs for Reliable
Quantum Information Storage in 2D Systems, Phys. Rev.
Lett. 104, 050503 (2010).

[99] A. Krishna and D. Poulin, Fault-Tolerant Gates on
Hypergraph Product Codes, Phys. Rev. X 11, 011023
(2021).

[100] L. Z. Cohen, I. H. Kim, S. D. Bartlett, and B. J. Brown,
(2021), arXiv preprint ArXiv:2110.10794.

[101] More generally, the outer code encoding circuit for an
arbitrary state is Clifford for a general CSS code, but it
may not be constant depth.

[102] D. E. Browne and T. Rudolph, Resource-Efficient Lin-
ear Optical Quantum Computation, Phys. Rev. Lett. 95,
010501 (2005).

[103] M. Gimeno-Segovia, P. Shadbolt, D. E. Browne, and
T. Rudolph, From Three-Photon Greenberger-Horne-
Zeilinger States to Ballistic Universal Quantum Compu-
tation, Phys. Rev. Lett. 115, 020502 (2015).

[104] M. Hein, J. Eisert, and H. Briegel, Multiparty entan-
glement in graph states, Phys. Rev. A 69, 062311
(2004).

[105] In Ref. [48] this group is termed the fusion group and
denoted F . It is renamed the measurement group M here
to note the inclusion of single-qubit measurements when
required.

[106] J. Łodyga, P. Mazurek, A. Grudka, and M. Horodecki,
Simple scheme for encoding and decoding a qubit in
unknown state for various topological codes, Sci. Rep. 5,
8975 (2015).

[107] Note that this is distinct from the phenomenological noise
model that is commonly used to model measurement and
Pauli errors in a code-based fault-tolerance scheme. Our
model is closer to a gate error model in that it accounts
for large-scale entanglement generation from finite-sized
resources.

[108] A potentially related observation is found in Ref. [133]
for a different family of codes, whereby different logi-
cal qubits can be decoded independently while remaining
nearly globally optimal.

[109] V. Kolmogorov, Blossom V: A new implementation of
a minimum cost perfect matching algorithm, Math. Pro-
gram. Comput. 1, 43 (2009).

[110] N. Delfosse and N. H. Nickerson, (2017), arXiv preprint
ArXiv:1709.06218.

[111] M. Henkel and G. Schütz, Boundary-induced phase tran-
sitions in equilibrium and non-equilibrium systems, Phys.
A: Stat. Mech. Appl. 206, 187 (1994).

[112] S. Bravyi and A. Vargo, Simulation of rare events in
quantum error correction, Phys. Rev. A 88, 062308
(2013).

[113] I. D. Kivlichan, C. Gidney, D. W. Berry, N. Wiebe,
J. McClean, W. Sun, Z. Jiang, N. Rubin, A. Fowler, and
A. Aspuru-Guzik, et al., Improved fault-tolerant quan-
tum simulation of condensed-phase correlated electrons
via trotterization, Quantum 4, 296 (2020).

020303-40

https://doi.org/10.1103/PhysRevA.90.062320
https://doi.org/10.1063/1.4939783
https://doi.org/10.1007/s00220-012-1500-5
https://doi.org/10.1103/PhysRevB.86.115109
https://doi.org/10.1103/PhysRevLett.114.076402
https://doi.org/10.1007/s102080010013
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.86.052329
https://doi.org/10.22331/q-2019-12-02-205
https://arxiv.org/abs/2104.10653
https://doi.org/10.1088/1367-2630/17/8/083026
https://doi.org/10.1103/PhysRevA.94.042316
https://doi.org/10.1088/1751-8113/43/2/025301
https://arxiv.org/abs/2012.13966
https://doi.org/10.22331/q-2020-01-09-218
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1098/rspa.1996.0136
https://doi.org/10.1103/PhysRevLett.104.050503
https://arxiv.org/abs/2110.10794
https://doi.org/10.1103/PhysRevLett.95.010501
https://doi.org/10.1103/PhysRevLett.115.020502
https://doi.org/10.1103/PhysRevA.69.062311
https://doi.org/10.1038/srep08975
https://doi.org/10.1007/s12532-009-0002-8
https://arxiv.org/abs/1709.06218
https://doi.org/10.1016/0378-4371(94)90124-4
https://doi.org/10.1103/PhysRevA.88.062308
https://doi.org/10.22331/q-2020-07-16-296

LOGICAL BLOCKS FOR FAULT-TOLERANT... PRX QUANTUM 4, 020303 (2023)

[114] V. von Burg, G. H. Low, T. Häner, D. S. Steiger, M. Rei-
her, M. Roetteler, and M. Troyer, (2020), arXiv preprint
ArXiv:2007.14460.

[115] Y. Su, D. W. Berry, N. Wiebe, N. Rubin, and R. Babbush,
(2021), ArXiv:2105.12767.

[116] A. Krishna and D. Poulin, Topological wormholes: Non-
local defects on the toric code, Phys. Rev. Res. 2, 023116
(2020).

[117] For instance, logical X and Z operators of a toric code or
planar code are traceable, but the logical Y is not, due to
the unavoidable self-intersection of string operators (see,
for example, Fig. 3).

[118] D. Gottesman, in Quantum information science and its
contributions to mathematics, Proceedings of Symposia in
Applied Mathematics, Vol. 68 (2010), p. 13.

[119] S. Aaronson and D. Gottesman, Improved simulation of
stabilizer circuits, Phys. Rev. A 70, 052328 (2004).

[120] F. Pastawski, B. Yoshida, D. Harlow, and J. Preskill, Holo-
graphic quantum error-correcting codes: Toy models for
the bulk/boundary correspondence, J. High Energy Phys.
2015, 1 (2015).

[121] C. Cao and B. Lackey, (2021), arXiv preprint ArXiv:2109.
08158.

[122] T. Farrelly, D. K. Tuckett, and T. M. Stace, (2021), arXiv
preprint ArXiv:2109.11996.

[123] Y. Li, A magic state’s fidelity can be superior to the
operations that created it, New J. Phys. 17, 023037 (2015).

[124] H. Bombin, M. Pant, S. Roberts, and K. Seetharam,
(2022), ArXiv:2212.00813.

[125] D. Poulin, Stabilizer Formalism for Operator Quantum
Error Correction, Phys. Rev. Lett. 95, 230504 (2005).

[126] D. Bacon, Operator quantum error-correcting subsystems
for self-correcting quantum memories, Phys. Rev. A 73,
012340 (2006).

[127] H. Bombin, C. Dawson, Y. Liu, N. Nickerson, F.
Pastawski, and S. Roberts, (2023), arXiv preprint
ArXiv:2303.04846.

[128] H. Bombin, G. Duclos-Cianci, and D. Poulin, Univer-
sal topological phase of two-dimensional stabilizer codes,
New J. Phys. 14, 073048 (2012).

[129] T. Scruby and D. Browne, A hierarchy of anyon models
realised by twists in stacked surface codes, Quantum 4,
251 (2020).

[130] D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett, Gen-
eralized global symmetries, J. High Energy Phys. 2015,
172 (2015).

[131] A. Kapustin and R. Thorngren, in Algebra, Geome-
try, and Physics in the 21st Century (Springer, 2017),
p. 177.

[132] S. Roberts and S. D. Bartlett, Symmetry-Protected Self-
Correcting Quantum Memories, Phys. Rev. X 10, 031041
(2020).

[133] T. Farrelly, R. J. Harris, N. A. McMahon, and T. M. Stace,
(2020), arXiv preprint ArXiv:2012.07317.

020303-41

https://arxiv.org/abs/2007.14460
https://arxiv.org/abs/2105.12767
https://doi.org/10.1103/PhysRevResearch.2.023116
https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.1007/JHEP06(2015)149
https://arxiv.org/abs/2109.08158
https://arxiv.org/abs/2109.11996
https://doi.org/10.1088/1367-2630/17/2/023037
https://arxiv.org/abs/2212.00813
https://doi.org/10.1103/PhysRevLett.95.230504
https://doi.org/10.1103/PhysRevA.73.012340
https://arxiv.org/abs/2303.04846
https://doi.org/10.1088/1367-2630/14/7/073048
https://doi.org/10.22331/q-2020-04-06-251
https://doi.org/10.1007/JHEP02(2015)172
https://arxiv.org/abs/2012.07317

	I.. INTRODUCTION
	II.. FAULT-TOLERANT INSTRUMENTS
	A.. Quantum instrument networks
	1.. Quantum instruments
	2.. Networks

	B.. Stabilizer fault tolerance
	1.. Pauli frame
	2.. Check generators

	C.. Properties of fault-tolerant instruments(aka logical blocks)

	III.. ELEMENTS OF TOPOLOGICAL COMPUTATION
	A.. The surface code, anyons, and their symmetries
	B.. Topological features in the surface code

	IV.. FAULT-TOLERANT INSTRUMENTS FOR THE SURFACE CODE IN (2+1)D
	A.. Logical block templates: diagrammatic abstraction for (2+1)D topological computation
	B.. Fault-tolerant instruments from logical block templates

	V.. UNIVERSAL BLOCK SETS FOR TOPOLOGICAL QUANTUM COMPUTATION BASED ON PLANAR CODES
	A.. Planar code logical block templates for Clifford operations

	VI.. ASSEMBLING BLOCKS INTO CIRCUITS: CONCATENATING LDPC CODES WITH SURFACE CODES
	A.. Toric code spiders

	VII.. IMPLEMENTING LOGICAL BLOCKS IN TOPOLOGICAL FUSION-BASED QUANTUM COMPUTATION
	A.. Resource state and measurement groups
	B.. Surviving stabilizers: checks and membranes
	C.. Topological instrument networks in FBQC
	1.. Logical membranes and the identity gate
	2.. Ports
	3.. Boundaries
	4.. Domain walls
	5.. Twist defects
	6.. Cornerlines and transparent cornerlines
	7.. Fusion-based magic state preparation

	VIII.. SIMULATING LOGICAL BLOCKS
	A.. Simulation details
	1.. Syndrome graphs
	2.. Noise model and decoder
	3.. Simulated logical blocks

	B.. Numerical results
	1.. Logical block thresholds
	2.. Overhead for target error rate and logicalerror rate fits
	3.. Periodic versus open boundary conditions
	4.. Stability of lattice surgery

	IX.. TOPOLOGICAL QUANTUM COMPUTATION WITHOUT BOUNDARIES: PORTALS AND TELEPORTED TWISTS
	A.. Encoding in twists
	B.. Portals
	C.. Logical operations by teleporting twists

	X.. CONCLUSION
	. ACKNOWLEDGMENTS
	. APPENDIX
	1.. Stabilizer states, operators, maps, and instruments
	a.. Stabilizer state
	b.. Stabilizer operators
	c.. Stabilizer maps
	d.. Stabilizer instruments

	2.. Kitaev to Wen versions of the toric code
	3.. Extending the feature labels to 1-cells
	4.. Converting a template to circuit-based measurement instructions
	5.. Converting a phase gate into circuit-based instructions
	6.. Magic state preparation
	7.. Toric code spider networks
	8.. FBQC instrument networks as gauge fixing on a subsystem code
	9.. Decoding
	10.. Threshold analysis
	11.. Logical decay fits
	12.. Twist encoding traceability
	13.. Port boundary conditions and block decoding simulations

	. REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 33.84000
 33.84000
 33.84000
 33.84000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 9.00000
 9.00000
 9.00000
 9.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

