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Most experiments with ultracold atoms in optical lattices have contact interactions and therefore operate
at high densities of around one atom per site to observe the effect of strong interactions. Strong ranged
interactions can be generated via Rydberg dressing, which opens up the path to exploring the physics
of few interacting particles. Rather than the unit cells of a crystal, the sites of the optical lattice can
now be interpreted as discretized space. This allows the study of completely new types of problems in a
familiar architecture. We investigate the possibility of realizing problems akin to those found in quantum
chemistry, although with a different scaling law in the interactions. Through numerical simulation, we
show that simple pseudoatoms and pseudomolecules could be prepared with high fidelity in state-of-the-art

experiments.
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I. INTRODUCTION

Analog quantum simulation with ultracold atoms
trapped in optical lattices has proven to be a highly suc-
cessful tool with which to realize and study interacting
many-body systems in the laboratory [1]. In a typical setup,
neutral atoms are loaded with an average density of one
per lattice site and interact via contact interactions (Hub-
bard U), realizing a Fermi- or Bose-Hubbard model [2].
Site-resolved detection in a quantum gas microscope [3,4]
and the ability to apply a site-resolved potential [5] add
to a rich toolbox to study many-body systems [6]. There
are two primary reasons for the focus on densities of
around 1: first, because this is the regime corresponding
to strongly correlated electrons in condensed matter; and,
second and relatedly, because the existing experiments are
usually limited to contact interactions, which means that
high densities are required to obtain strong interaction
effects.

Here, we would like to explore quantum simulation
of few-particle systems, i.e., the regime of low densities,
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which in turn requires ranged interactions. This is moti-
vated by the ubiquity of long-range forces at the nanoscale
[7], which makes it important for fields such as quantum
chemistry [8]. Rydberg states are a powerful way to obtain
strong-ranged interactions between neutral atoms [9,10],
which can also be used for quantum simulation [11,12].
These interactions decay as 7—° or 73 [13]. Since the Ryd-
berg interaction is much stronger than hopping, we require
Rydberg dressing [14—16] to make the interaction tunable
and comparable to hopping rates. This setting, of atoms
hopping in a two-dimensional lattice and repelling each
other via ranged Rydberg interactions, is reminiscent of
electrons in two-dimensional discretized space, albeit with
the repulsive force following a different power law than
in typical Coulomb interactions. We note that there exist
experiments that have successfully explored few-particle
physics but with a different focus and context, notably
experiments with weakly interacting fermions in the con-
tinuum [17—19] or low densities of Rydberg excitations
[16,20,21].

Analog quantum chemistry with ultracold atoms has
been considered before. The possibility of simulating
molecular orbitals has been raised in Ref. [22]. Full ana-
log simulation of quantum chemistry with cold atoms has
been proposed in Refs. [23,24]. Although this shows that
such an approach is feasible in principle, it is difficult
to make it practical with existing technology. Apart from
creating three-dimensional potentials and three-
dimensional site-resolved detection, another key difficulty
in that proposal is the repulsive Coulomb interaction that
decays as 1/r, which requires a cavity and another atomic
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array to implement. This motivates the search for other
platforms (see also Ref. [25]). In the setup proposed
here, with Rydberg dressing and in two dimensions, one
clearly cannot achieve quantitative agreement with quan-
tum chemistry but, as we show, it is nevertheless possible
to simulate what we call “pseudo quantum chemistry,”
which is conceptually and qualitatively much like real
quantum chemistry. More generally, long-range interac-
tions pose considerable challenges to existing numerical
methods, which makes their quantum simulation a partic-
ularly worthwhile target.

As we demonstrate with numerics below, in the pro-
posed setup one can reproduce central phenomena of quan-
tum chemistry qualitatively and thus study the physical
effects that arise in such systems experimentally. More-
over, the setup is simple and the relevant tools have already
been showcased experimentally [26]. Similar to the dense
regime (see, e.g., Ref. [27]), this analog quantum simula-
tor can also be used to benchmark classical methods and
push the state of the art in classical numerical techniques
for interacting few-body problems. Our proposal not only
enables pseudo-quantum-chemistry simulations but it also
opens up new possibilities in ultracold-atom experiments.

II. SETUP

Our proposal requires fermionic atoms hopping in an
optical lattice, with two long-time coherent hyperfine lev-
els that can be dressed to the same Rydberg state (see
Fig. 1). We furthermore require a potential with ideally
close to single-site resolution, which can be engineered
using ac Stark shifts. Shaping of the laser to achieve a
tunable potential can be done using, e.g., a digital-mirror
device and the objective of a quantum gas microscope [5]
or through spatial light modulators [28,29]. For prepara-
tion and readout, a quantum gas microscope is essential,
because we consider the initial state of the experiments to
be atoms localized at known lattice sites.

The Hamiltonian of the system is given through

H = Hyi, + Hpot + Hiy. (1)

The noninteracting Hamiltonian, Hy = Hyi, + Hpot, com-
prises the hopping in the lattice and a background potential
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with hopping rate J and where ca creates a fermion

with spin o € {1, |}, encoded by two hyperfine states of
the fermion, on the lattice site i. Note that we allow the
potential to be spin dependent in general.

We propose to use Rydberg dressing [14] to engineer
repulsive interactions. Using a laser of Rabi frequency €2
and detuning A from the transition to a Rydberg state |r),
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FIG. 1. The proposed setup. (a) Fermionic atoms (blue) with
two hyperfine ground states (corresponding to spin-up and spin-
down) are trapped in an optical lattice (black). The strength of
the trapping laser controls the hopping strength J. The atoms,
which play the role of electrons, experience a site-dependent
Stark shift that serves to emulate a nuclear potential (green).
Repulsive interactions between the atoms are induced through
Rydberg dressing (yellow). (b) An example level structure. Ryd-
berg dressing is achieved through a laser of strength 2 that is
detuned by A from the transition from the F = 1/2 hyperfine
ground states to a Rydberg state in the p shell.

the ground state of the atom is dressed to |g)s ~ |g) +
Blr), with 8 = Q/2A, where Q2 < A (see Fig. 1). The spin
degree of freedom can be encoded, for example, in the two
states of the /' = 1/2 hyperfine manifold. In that case, both
states can be dressed with a single laser.

At large interatomic distances, this yields a repul-
sive interaction V(7) &~ B*V,,q4(¥), where F is the distance
between two dressed atoms and V), is the interaction
potential for two Rydberg atoms. At small interatomic dis-
tances (of the order of a lattice distance), the potential
saturates to Q*/(2| A|)? [16]. The presence of this soft-core
potential does not qualitatively change the physics that
we explore here but will lead to quantitative differences.
For simplicity, in the following we consider an interatomic
interaction of the form

1
Hint = Vint Z |~—

Highjp + 2Wim D iy

o i

where ;. = ¢l ¢ is the number operator and « controls
the decay of t‘ﬂe interaction. For concreteness and sim-
plicity, we consider just standard Rydberg dressing, which
results in interactions that decay with « = 6. We note that
in the presence of a strong electric field, Rydberg dressing
can achieve interactions that decay as @ = 3 [9,13], which
is less commonly implemented but could be interesting for
future research, as it is more “long range.”

A. Motivation: Pseudo quantum chemistry

One major motivation to study problems of the type
shown in Eq. (1) with low particle density is its similarity
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to quantum chemistry. One of the most important prob-
lems in quantum chemistry is to find the ground state of
N, electrons in an attractive potential provided by Ny
nuclei, where according to the Born-Oppenheimer approx-
imation, the nuclei are considered immobile [30]. The
quantum chemistry Hamiltonian is then composed of the
kinetic energy term, the nuclear potential, and the repul-
sive particle-particle interactions. With this perspective,
Hyin can be interpreted as the motion of electrons in two-
dimensional discretized space and Hi, as the Coulomb
repulsion (albeit with a different power-law decay), while
the background potential can be chosen as

Hpot = Hpye = — Z Z V;ﬁ)c(;)cjc"{, (4)

1

where V" (7) = VoZ,/ (|7, — F|) is the attractive potential
produced by the n™ nucleus. We assume that there are
Nuue nuclei, placed at positions 7, and with charge Z,.
We parametrize the strength of the nuclear potential as
Vo = J /ay, where aq sets the Bohr radius in units of the
lattice constant and thus the Rydberg constant Ry = J / a%.

We note that a ~' nuclear potential is not strictly
required to see phenomena akin to quantum chemistry
and that qualitatively similar physics can be observed in
a variety of nuclear potential shapes. The two-dimensional
geometry allows essentially arbitrary on-site potential to
be applied from the transverse direction. This leaves con-
siderable freedom in choosing a nuclear potential. Natural
choices are Py, (r) o log(r), which is the electromag-
netic potential in flatland consistent with Gauss’s law, or
Vaue () o ¥~ for integer «.

The flatland potential V() o< log(r) has been inves-
tigated in Ref. [31]. This potential obeys Gauss’s law in
two dimensions, which means that if the “electrons” could
be made to interact according to the same potential, then
at large distances, a two-dimensional atom would appear
to have a charge equal to the coordination number minus
the number of bound electrons. However, since Rydberg
dressing can only produce interactions that scale as > or
#~%, we have to sacrifice Gauss’s law.

It therefore makes sense to go to a more localized
nuclear potential as well, which improves convergence
with system size and makes it easier to have strong
interactions. It is tempting to choose V. (r) o r~¢ with
a =3 or o« =6 to match it to the electronic interac-
tion potential. However, an attractive potential with o >
2 leads to a Hamiltonian that is not lower bounded.
This can easily be seen by inserting a trial wave func-
tion ¥ () = exp(—7?/(20%))/~/ o2 into the Hamiltonian,
which yields

® 2mrdr /o2 o 2 2
(VIHY) = —e R Sl B
0

o o
)

While the kinetic energy is finite, the integral giving the
potential energy only converges for ¢ < 2.

Thus, as a compromise, we propose to use Vpu(r) =
—Vo/r. The system can then be interpreted as a standard
atom but with the electron confined to move in a plane.
In this scenario, we can identify Vy = e*/(4mey). This
potential has the advantage that the single-particle wave
functions can be obtained analytically through standard
procedure [32]. With the present choice, the nuclear poten-
tial can be interpreted as being generated by a Coulomb
force in three dimensions but with the electron confined
to move in a plane. In this scenario, we can identify
Vo = €*/(4mey) and one can find the atomic orbitals ana-
lytically in the continuum [32], with principal energies
E, = —Ry/(n—1/2)?>. A more experimentally friendly
choice could be a Gaussian potential produced by a tightly
focused laser beam.

We note that the Hamiltonian H = H, + H;, does not
include spin-orbit coupling; it does not couple spin-up
to spin-down particles. Nevertheless, spin is explicitly
included and has important consequences, as we explore
below. Furthermore, M, could include a linear gradient,
which would model an electric field (a potential gra-
dient coupling independent of spin) or a gradient with
opposite signs for spin-up and spin-down particles, which
corresponds to an applied magnetic field.

In the following, we focus on the pseudo-quantum-
chemistry regime for concreteness and so we take the
background potential to be the nuclear potential produced
by some distribution of nuclei as specified in Eq. (4). In
general, a large Bohr radius q is preferred to make connec-
tion to the continuum limit (see, e.g., the discussion in Ref.
[24]) but this comes at the cost of more stringent experi-
mental (and numerical) requirements. Specifically, a larger
Bohr radius leads to a smaller Rydberg constant Ry, which
means that preparation takes longer, giving more time for
decoherence to act. Moreover, larger orbits make disor-
der in the nuclear potential more problematic. We make
the choice ¢y = 2 for most of the plots, as this leads to
time scales that are already accessible with current exper-
imental parameters. We fix the strength of the repulsive
potential such that at a distance of one Bohr radius, the
nuclear attraction is equal to the electronic repulsion. This
leads to Viye = Jag_z/a. We also take o = 6.

B. Preparation and measurement

To find the ground-state energy requires preparation of
the ground state with high fidelity and subsequent mea-
surement of its energy. We propose to prepare the ground
state adiabatically. There is substantial freedom in design-
ing adiabatic paths. Here, we propose to take the simplest
choice: first prepare the noninteracting electronic state and
then adiabatically turn on interactions. This has the advan-
tage that for the majority of the time, the interaction (and
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thus Rydberg decay) is turned off. Starting with exactly N,
atoms, localized at known sites in the optical lattice, and no
hopping, first prepare the desired spin state, which can be
done using the single-site access afforded by a quantum gas
microscope [33]. Second, tune the noninteracting Hamil-
tonian H adiabatically to its final form. This requires a
Hamiltonian path that takes the wave function of the N,
electrons on their initial sites (which are eigenstates when
hopping is turned off) to the desired molecular orbitals. In
a final step, turn on interactions adiabatically to reach the
interacting ground state.

To understand how the adiabatic preparation time gen-
erally depends on the Bohr radius ay, note that the gaps
between the atomic orbitals are proportional to the Ryd-
berg constant Ry = J /aZ, which intuitively corresponds to
the rate at which an atom can explore an area equal to an
orbital of radius ay. Since adiabatic preparation generally
scales with the inverse of the gap squared [34], we expect
that the adiabatic preparation time scales as Ry o aj.

To measure the preparation fidelity, perhaps the simplest
approach is to reverse the adiabatic preparation and then
to measure the particle distribution. To a good approxima-
tion, the probability for the atoms to return to their initial
positions is the square of the fidelity of the ground-state
preparation.

Rather than measuring the occupancy of the ground
state, it is also possible to measure the energy of the
system directly. This requires measuring the kinetic and
potential energy of the atoms. The potential energy can
be computed straightforwardly from the atomic configu-
ration in real space and thus measuring it requires taking a
snapshot of the system with a quantum gas microscope.
The kinetic energy requires determining the momentum
of each particle, which may be done using time-of-flight
detection, provided that all atoms can be caught. Such
single-atom momentum measurements have already been
realized [18,35,36].

Finally, below we also discuss the potential for doing
spectroscopy directly on the system.

C. Experimental imperfections

Rydberg dressing leads to the main source of decoher-
ence for this protocol, because the admixed Rydberg state
may decay [15]. Given a dressing |g)4 = |g) + B|r), the
interaction at large distances scales with 84, whereas the
probability of a Rydberg decay scales as B2. Since we
require 8 < 1 to make the hopping and Rydberg inter-
action rates comparable, the ratio of interaction strength
to decay rate is multiplied by a small factor B2 relative
to the equivalent ratio of the Rydberg state. If an atom is
excited to the Rydberg state, it is typically lost rapidly, as
is observed in experiment [16,26], which is why in the
experiments one can postselect onto runs in which the
atom number remains unchanged to remove this effect.

However, this still leads to a limitation, as the success
probability of the experiment decays exponentially with
time, which means that Rydberg decay effectively limits
the accessible time scales. Thus, the main focus of our
numerical simulations is to assess whether the adiabatic
preparation can succeed within the time available.

In Ref. [26], Rydberg dressing has resulted in a lifetime
of about 7.y = 1 ms at an interaction strength compara-
ble to the hopping of J = 2w x 1.7 kHz, leading to a
figure of merit of about J 7. & 10. We note that the widely
observed avalanche loss [15,16,37,38] can be neglected in
this experimental setting, for two reasons. First, it has been
experimentally found to be almost negligible at small den-
sities [26]. Second, even if present, avalanche loss does not
alter the probability that all atoms survive, as it only acts
after the first Rydberg excitation has occurred. Below, we
show that even in a time of about 10J~!, the interacting
ground state of simple systems can be prepared with fairly
high fidelity (cf. Fig. 2), placing the experiments proposed
here within experimental reach.

Other experimental imperfections include disorder in
the nuclear potential, which arises because the optical
lattice spacing is comparable to or below the diffraction
limit, which makes it difficult to implement the poten-
tial accurately. Any experiment will also have errors in
the preparation of the initial state as well as measurement
errors. These errors can be accounted for by multiplying
the corresponding fidelities to those we report in Fig. 2.
Finally, as in all ultracold-atom experiments, collisions
with background gas and heating through laser fluctua-
tions must be controlled sufficiently as to not influence the
experiment during the preparation and simulation time.

II1. RESULTS

In this section, we numerically simulate a few potential
near-term experiments using exact diagonalization. Exact
classical simulation of the system is expensive and so we
are limited to small system sizes and few atoms.

A. Adiabatic preparation of pseudoatoms and
pseudomolecules

We explore adiabatic preparation through the examples
of two fermions in one or two potential sites, analogous to
helium and molecular hydrogen. The most stringent exper-
imental limitation may be Rydberg decay, which limits the
total achievable interaction time. Running adiabatic prepa-
ration in finite time leads to errors and this is why in the
following we assess how well adiabatic preparation can
succeed using only ten (or in one case 20) hopping times.
We study both the case in which the two particles are in a
spin singlet (corresponding to the actual ground state), in
which case they behave like bosons, and the case in which
they are in a spin triplet (e.g., both in the same hyperfine
ground state), where they behave like fermions.
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FIG. 2. The adiabatic preparation of pseudo-He and H,. We
illustrate the adiabatic preparation by the example of He and
H,. At t = 0, we start with two fermions in (a),(c) a spin singlet
|—) or (b),(d) a triplet [$1). The adiabatic preparation proceeds
by preparing the noninteracting ground state up to ¢ = 200J !
(vertical gray line) and subsequently turning on the interaction
adiabatically (yellow-shaded area). For details on the prepara-
tion, we refer to the main text. The system parameters used to
simulate the preparation of He are ay =4 and central charge
Z =2, with the nucleus placed in the center of a 21 x 21 lat-
tice. For H,, we separate two nuclei with Z = 1, ay = 2 by three
lattice sites and center them in a 24 x 21 lattice. As interactions,
we always take o = 6 and Vi = Jaf)"2 /a. Note that in (a), for
bosons in He, the interaction time is twice as long as in the other
panels. The shown errors for the wave function lead to relative
errors in the ground-state energy prediction of about (a) 47%,
(b) 2.4%, (c) 3.7%, and (d) 0.1%. Note that in all panels, the
interacting region J¢ > 200 is stretched for presentation reasons.

The conceptually simplest case is bosonic helium [Fig.
2(a)], because both particles occupy the same orbital. In
our simulations, we assume that there is a single nucleus
with Z = 2 in the middle of a 2p + 1) x (2p + 1) lattice
and place both particles on the same site. In all sim-
ulations here, the padding p = 10. This initial state is
the unique ground state of the Hamiltonian given in Eq.
(1) with both hopping and interactions turned off. With
the nuclear potential fixed, we smoothly turn on hop-
ping J (¢) = Jsinz(nt/(2T)) fromt=0tot=TwithT =
200J !, which prepares both particles in the s orbital.
Subsequently, we similarly turn on interactions Viy(¢) =
Vinesin®((t — T) /(T + Tiw))), from t=T to t=T+
Tint, With Ty = 10, while keeping Hj fixed. Out of the four
systems that we explore in Fig. 2, the preparation fidelity in
Fig. 2(a) is by far the worst. The reason is that in the non-
interacting state, the two particles are in the same orbital,
closely bound to the nucleus. The repulsive interaction thus
causes a large change in the wave function. The chosen
interaction time of 20! is too short for the ground state
to adiabatically follow the change. Numerically, we find
that the interaction time required to get an error well below
10% is around 100J !,

Helium with electrons in the triplet state [Fig. 2(b)] is
somewhat more complicated, as the noninteracting part
requires us to simultaneously prepare one particle in the
s orbitals and one in an excited orbital. To prepare this
state, we place one particle on the nucleus site and a second
particle three sites away and add another auxiliary nuclear
potential on that site, at 90% of the strength of the original
one, such that this site has the second-lowest potential. In
a two-step process, we first turn on hopping while keep-
ing this potential configuration fixed (same J(f) as above
but with 7 = 140/ ") and then adiabatically turn off the
auxiliary nuclear potential. Note that in the absence of the
auxiliary nuclear potential, the first excited state of the sys-
tem is degenerate, corresponding to two 2p orbitals. Note
that while this would usually lead to a breakdown of adia-
baticity, it does not do so here, because the matrix element
between the two states is zero due to symmetry. In the last
step, we turn on interactions adiabatically while turning
off Vzp .

The preparation of molecular hydrogen [Figs. 2(c) and
2(d)] is conceptually more straightforward. We always
start with one particle on each of the two nuclei sites, turn
on hopping adiabatically, and then turn on interactions.

At this stage, the particle statistics already play a very
important role. If we initialize the system in a spin sin-
glet, the spatial wave function is symmetric (bosonic) and
both particles occupy the same orbital. The particles spend
a lot of time near each other and, consequently, turning
on repulsive interactions has a large effect on the wave
functions. Clearly, this affects helium more than H,, as
the lowest orbital in He is more confined than in H,. If
we instead initialize the system in a symmetric spin-triplet
state, the particles behave like fermions and are already
well separated on average and thus additional repulsive
interactions hardly change the state.

B. Example two-dimensional chemistry experiment:
Molecular hydrogen

With the ability to prepare the ground state of molecu-
lar hydrogen, we now explore how well bond length and
ground-state energy can be found with limited interaction
time. To this end, we simulate the adiabatic preparation for
a range of nucleus separations and interaction times Tiy.
The results are shown in Fig. 3.

Our results indicate that even in a modest interaction
time such as T, = 10J~!, one can already clearly see
the molecular bound state and obtain an accurate result
for the bond length. Again, we also observe a clearly
observable difference between fermionic and bosonic par-
ticles. The bosonic case is qualitatively much as one would
expect, with a clearly defined molecular potential, even for
short interaction times. At short to intermediate distances,
quantitative agreement with the true value is reached at
still modest times between 20/ ~! and 40 ~!. Interestingly,
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FIG. 3. The simulated experimental determination of the bind-

ing energy and bond length of pseudo-H,. We simulate the adi-
abatic preparation of the ground states of pseudo-H, for a range
of nucleus separations and for either bosonic (blue) or fermionic
particles (red). We plot the predicted ground-state energy minus
twice the energy of H (corresponding to free hydrogen atoms).
In a symmetric spin-triplet state (red), the atoms have an anti-
symmetric spatial wave function, such that they occupy different
orbitals, and thus the interaction hardly has any effect (the curves
all lie on top of each other). The molecule is very weakly bound
in this case (hardly visible). In the actual ground state of H,
the electrons are in a spin singlet and the optimal bond length is
clearly visible, even at very short preparation times. At large sep-
arations, the adiabatic preparation increasingly fails to produce
the correct energy, as overlap of the single-particle wave func-
tions decays exponentially with distance. Parameters: ay = 2,
padding p = 10, and Viy = a2 2 /a.

there is evidently also a limitation of our chosen adiabatic
path, in that it fails to give the right ground state at large
separations. The reason is that in the initial noninteract-
ing ground state, both particles occupy a symmetric orbital
across both nuclei, which yields a 50% chance of finding
both particles on the same nucleus. Clearly, the true ground
state at large separations should be two isolated hydrogen
atoms, with zero probability of finding both particles at
the same nucleus. However, at large distances there is a
potential barrier for particles to move between the nuclei,
leading to exponentially small matrix elements between
the states, which makes the adiabatic preparation fail.

In contrast, the molecular potential for fermionic parti-
cles hardly exists, to the extent that it is not properly visible
in the plot. In this case, there is no issue with also obtaining
the ground state adiabatically at large separations, because
the noninteracting ground state is already correct in that
case.

C. Spectroscopy

In real atoms, coupling to the electromagnetic field
allows excited electrons to relax to the ground state and
coherent driving yields Rabi oscillations. In the dipole

approximation, the atom is taken to be small as com-
pared to the wavelength of the emitted light. In the present
context, we can model coherent driving by applying a
oscillating linear background potential, which allows us
to observe dipole transitions. In this section, we focus
on the noninteracting problem for simplicity. Experi-
mentally, the interacting case works just as well as
the noninteracting case but the times required to per-
form spectroscopy demand about one-order-of-magnitude
improvements on the previously reported figure of merit
of the Rydberg-dressing time over the Rydberg-decay
time. Spectroscopy through modulation of the optical lat-
tice has been employed several times in the many-body
regime, where instead of Rabi oscillations, one can mea-
sure frequency-dependent heating rates [39,40].

Specifically, we simulate the Hamiltonian H = Hy +
g sin(wt) Hiy (t) with

1
Hin(®) = - Y = N/2)el c,. (6)

In order to see clean Rabi oscillations, we should set w
close to the frequency of a dipole-allowed transition—say,
@y = wy, — wiy—and drive weakly enough that transi-
tions to other states are suppressed by the detuning to them.
To understand these conditions, note that the principal
energy levels have approximately the energy [32]

Ry J

b= e T T da - @

where Ry = V3/J = J/a} is the Rydberg constant, aq is
the Bohr radius in units of the lattice constant, and J is
the hopping strength. These energies are exact in the con-
tinuum a¢y — oo but the quality of approximation in finite
systems and with finite ay depends on the chosen orbital.
Nevertheless, they provide a good guide. To get clean
Rabi oscillations, the coupling must be weak. For exam-
ple, if we drive the transition from ls to 2p, the detuning
to the 1s-3p transition is J(1/9 — 1/25)/aj ~ 0.07J /a?.
The matrix elements (2p|Hiiq|1s) and (3p|Hj|ls) depend
somewhat on a but are roughly of order 1. Thus, we need
g < 0.1J/a} to see Rabi oscillations. Higher transitions
are increasingly difficult to observe, because they require
weaker coupling. For this reason, we choose ag = 1 (small
electron orbits), as this leads to shorter experiments.

We model spectroscopy numerically in the following
way. We initialize the system in the ground state of hydro-
gen (one electron in the 1s orbital) and apply the oscillating
Hamiltonian Hy + g sin(w?)Hyin (¢) [see Eq. (6)] for a time
t. We then detect the probability that the system will remain
in the electronic ground state by first applying the inverse
of the adiabatic preparation and then checking whether the
atom returns to the initial lattice site. This reduces the prob-
lem of detecting the ground-state probability to measuring
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FIG. 4. The spectroscopy of hydrogen. Starting from a particle in the Ls orbital, an oscillating linear field is applied, corresponding
to coherent driving in the dipole approximation. The resulting dynamics are monitored by measuring the ground-state probability as a
function of time. We simulate this process on a 40 x 38 lattice (to break symmetry for convenience) for a range of drive frequencies
from w = 0 to @ = J once for a driving strength g = 0.05 and a total time of 7 = 100/J (blue) and once for a driving strength g = 0.01
and a total time 7'= 1000/J (orange). We choose a small Bohr radius ¢y = 1 such that we can use a larger g and shorter times. At each
frequency, we fit 1 — A sin?(§2/) to the numerically calculated ground-state probability |co(#)|?. (a) The time trace of the first resonance,
which corresponds to the 1s-2p transition. We plot the numerically calculated ground-state probability (dashed colored line) and the
fit (solid black line). Note that the x axis is scaled to the total time, which is 100/J (blue) and 1000/J (orange). (b) The same plot for
the 1s-3p transition. The blue curve deviates markedly from a pure sine function, as the effective coupling is fairly strong compared
to the detuning to other states. (c) Orbital wave functions of the excited states corresponding to the spectroscopy peaks. (d) A plot of
the fitted Rabi amplitude 4 as a function of the drive frequency. Weaker coupling requires longer times but leads to a better resolution
of the peaks. Note that the 1s-4f transition is forbidden but since the system does not obey rotation symmetry exactly, there exists a
small nonzero matrix element. The gray-shaded area corresponds to transitions to states with an energy greater than —4.J (which in
the infinite system would correspond to an unbound electron). The energy of these states is dominated by the confinement to a finite

lattice rather than the bound-state component.

the probability that the atom is localized at a specific site.
We repeat this process for different times from 0 to a total
time 7. Given sufficiently weak driving, the system will
undergo oscillations if the drive frequency is tuned to an
electronic transition and otherwise will remain mostly in
the ground state. We then sweep the drive frequency and
record the amplitudes of the observed Rabi amplitudes to
detect the resonances of the system. The result is shown in
Fig. 4.

IV. EXPERIMENTAL IMPLEMENTATION

Our proposal requires fermionic atoms that can be
trapped in an optical lattice, imaged with single-site resolu-
tion, Rydberg dressed, and that have at least two long-time
coherent hyperfine levels (see Fig. 1). These are all state-
of-the-art capabilities and several atomic species could
serve this purpose. Standard choices are the alkali atoms

YK or °Li. Alkaline-earth(-like) atoms have a number
of favorable optical properties, such as ultranarrow-line-
width transitions, that have enabled their use as clocks [41]
and for quantum simulation [42],and make them promising
candidates for quantum computing [43]. Among the most
common fermionic species are 3’Sr, '"'Yb, and !73Yb.
Recently, coherent gates for individual (pairs of) '"'Yb
atoms have been achieved with high fidelity, exploiting
the high coherence time of the nuclear spin [44]. Other
common species such as ®’Sr [43,45] may be equally
suitable. Proof-of-principle experiments of up to two
electrons could also be done with bosons such
as 8’Rb.

The key figure of merit for experiments is the ratio of
the hopping rate divided by the effective Rydberg-decay
rate, M =J/T. It can be interpreted as the number of
sites that an atom can explore before decaying. We note
that to measure the energy of the state or the overlap
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with the ground state, all atoms have to be detected at
the end of the experiment, which naturally leads to post-
selection onto runs in which no atoms have decayed. Note
that avalanche loss [15,16,37,38], whether present or not,
does not affect the probability of all atoms remaining, as
it only acts after the first atom has decayed. Preparation
of the ground states of larger molecules requires longer
times or approaching the continuum limit by increasing
ap requires longer simulation times, which will trans-
late to low success probabilities unless M is sufficiently
large.

To maximize M, the hopping J must be large and Ryd-
berg decay I' must be slow. Thus, it is favorable to use
a light atomic species with fast hopping, such as °Li, as
has been done in Ref. [26]. Rydberg decay can be sup-
pressed by dressing with Rydberg states of higher principal
quantum number zn. Generally, the lifetime of low-angular-
momentum Rydberg states including black-body radiation
scales as n°. In contrast, the strength of the interactions
scales as n*. Thus, since we use Rydberg dressing to obtain
an interaction strength comparable to hopping, we scale
B o n~!, such that Vi o n*B~* = const. As a result, the
Rydberg-decay rate relative to the hopping strength scales
as I' o« n3B2% o n=>. Using this scaling, we obtain that
dressing to n = 70 instead of n = 28 as in Ref. [26] would
lead to a 100-fold improvement in M.

Another potential approach to reduce the Rydberg-
decay rate while maintaining the same effective interaction
strength is stroboscopic dressing [46]. If the dressing is
turned on and off at a rate much larger than other relevant
time scales, it is well approximated by continuous dressing
but with the values for 82 and B* replaced by their time-
averaged values. If we assume for simplicity that dressing
is on for a fraction n of the time and otherwise off, we
find that to keep the same effective interaction strength, we
need to increase 8 — B, = Bn~'/*. However, the induced
Rydberg decay will then be reduced I' — I, = I'n!/2,
such that M o n'/2.

Finally, it would be worth exploring how weak the opti-
cal lattice can be before problematic effects appear. For
example, the standard condition is that next-to-nearest-
neighbor hopping must be negligible but this is perhaps
not strictly necessary here, especially since in real atoms
and molecules there is a relativistic correction to the
kinetic energy of approximately p*#, which would be gener-
ated through next-to-nearest interactions. In principle, the
scheme presented here could in principle even work in the
continuum, although it is not clear how exactly one would
control the kinetic energy term and implement the nuclear
potential.

V. CONCLUSIONS

We show that Rydberg dressing in standard ultracold-
lattice-atom experiments allows for the simulation of

pseudo quantum chemistry, which differs from real quan-
tum chemistry by being two-dimensional and having a dif-
ferent scaling law for the Coulomb interaction. Neverthe-
less, pseudo quantum chemistry inherits key phenomenol-
ogy from quantum chemistry, including (anti)bonding
orbitals and the potential for spectroscopy. The key exper-
imental figure of merit that determines how well such
simulations can be done is the ratio of the Rydberg-decay
rate to the hopping strength. We show, using parameters
from existing experiments, that current experiments can
already prepare the ground state of small molecules. Since
it is realistic for the figure of merit to increase substan-
tially in the future, this motivates the use of this platform
to explore quantum chemistry physics experimentally, to
gain insights into complex electronic processes, and to
benchmark classical codes.

Future work should explore how spin-orbit interactions
or other important corrections (e.g., relativistic correc-
tions) could be added to the simulator. Moreover, the adia-
batic paths used in our numerical simulation can likely be
improved, especially when tailored to given specific exper-
imental capabilities. Also, we have hardly explored o = 3,
which may feasibly be obtained through Rydberg dressing
and c