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With the long-term goal of studying models of quantum gravity in the lab, we propose holographic
teleportation protocols that can be readily executed in table-top experiments. These protocols exhibit
similar behavior to that seen in the recent traversable-wormhole constructions of Gao et al. [J. High
Energy Phys., 2017, 151 (2017)] and Maldacena et al. [Fortschr. Phys., 65, 1700034 (2017)]: informa-
tion that is scrambled into one half of an entangled system will, following a weak coupling between the
two halves, unscramble into the other half. We introduce the concept of teleportation by size to capture
how the physics of operator-size growth naturally leads to information transmission. The transmission of
a signal through a semiclassical holographic wormhole corresponds to a rather special property of the
operator-size distribution that we call size winding. For more general systems (which may not have a
clean emergent geometry), we argue that imperfect size winding is a generalization of the traversable-
wormhole phenomenon. In addition, a form of signaling continues to function at high temperature and
at large times for generic chaotic systems, even though it does not correspond to a signal going through
a geometrical wormhole but, rather, to an interference effect involving macroscopically different emer-
gent geometries. Finally, we outline implementations that are feasible with current technology in two
experimental platforms: Rydberg-atom arrays and trapped ions.
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I. INTRODUCTION

In the quest to understand the quantum nature of space-
time and gravity, a key difficulty is the lack of contact
with experiment. Since gravity is so weak, directly probing
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quantum gravity means going to experimentally infeasible
energy scales. However, a consequence of the holographic
principle [1,2] and its concrete realization in the anti–de
Sitter – conformal field theory (AdS-CFT) correspondence
[3–5] (see also Ref. [6]) is that nongravitational systems
with sufficient entanglement may exhibit phenomena char-
acteristic of quantum gravity. This suggests that we may
be able to use table-top physics experiments to probe theo-
ries of quantum gravity indirectly. Indeed, the technology
for the control of complex quantum many-body systems is
advancing rapidly and we appear to be at the dawn of a
new era in physics—the study of “quantum gravity in the
lab.”
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One of the goals of this paper is to discuss one way in
which quantum gravity can make contact with experiment.
We focus on a surprising communication phenomenon.
We examine a particular entangled state—one that could
actually be made in an atomic physics laboratory—and
consider the fate of a message inserted into the system in
a certain way. Since the system is chaotic, the message is
soon dissolved amongst the constituent parts of the sys-
tem. The surprise is what happens next. After a period
in which the message seems thoroughly scrambled with
the rest of the state, the message then abruptly unscram-
bles and recoheres at a point far away from where it was
originally inserted. The signal has unexpectedly refocused,
without it being at all obvious what it was that acted as the
lens.

One way to describe this phenomenon is just to brute-
force use the Schrödinger equation. But what makes this
phenomenon so intriguing is that it has a much sim-
pler explanation, albeit a simple explanation that arises
from an unexpected direction [7]. In the setting of holo-
graphic quantum gravity, this quantum state represents
two entangled black holes. In that case, there is a nat-
ural explanation for why the message reappears—it has
traveled through a wormhole connecting the two black
holes. This is a phenomenon that one could prospec-
tively realize in the laboratory that has as its most com-
pact explanation a story involving emergent space-time
dimensions.

An analogy may be helpful. Consider two people hav-
ing a conversation or, as a physicist might describe it,
“exchanging information using sound waves.” From the
point of view of molecular dynamics, it is remarkable that
they can communicate at all. The room might contain 1027

or more molecules, with a given molecule experiencing a
collision every 10−10s or so. In such a system, it is effec-
tively impossible to follow the complete dynamics: the
butterfly effect implies that a computer would need roughly
1037 additional bits of precision every time it propagated
the full state of the system for one more second. Commu-
nication is possible despite the chaos because the system
nevertheless possesses emergent collective modes—sound
waves—which behave in an orderly fashion.

Our second goal is to understand the emergence of col-
lective gravitational behavior—in a simple scenario—with
the language of quantum information science. When quan-
tum effects are important, complex patterns of entangle-
ment can give rise to qualitatively new kinds of emergent
collective phenomena. One extreme example of this kind
of emergence is precisely the holographic generation of
space-time and gravity from entanglement, complexity,
and chaos. In such situations, new physical structures
become possible, including wormholes that connect dis-
tant regions of space-time. And like the physics of sound
in the chaotic atmosphere of the room, the physics of these
wormholes points the way to a general class of quantum

communication procedures that would otherwise appear to
be utterly mysterious.

The experimental study of such situations therefore
offers a path toward a deeper understanding of quantum
gravity. For instance, by probing stringy corrections to the
gravitational description, a sophisticated experiment of this
type could even provide an alternative handle on the math-
ematics of string theory. Another motivation for this work
is that many randomized Hamiltonian systems [such as the
Sachdev-Ye-Kitaev (SYK) model or certain random matrix
models] possess gravitational duals. Because these mod-
els are inherently not fine tuned, their quantum simulations
could in principle be easier than many other applications
of quantum computers. Therefore, we believe that quan-
tum experiments simulating such quantum systems have
greater potential to be usefully run on near-term quan-
tum devices than most other applications that require high
accuracy and fine tuning.

Our companion paper [8] provides additional technical
details, examples, and further discussion of the physics of
holographic teleportation.

A. The quantum circuit

In this paper, we consider the quantum circuits shown
in Fig. 1. These circuits, which as we see in Sec. IV
may be readily created in a laboratory, exhibit the strange
recoherence phenomenon that we describe.

The circuits act on a 2n-qubit state. The qubits are
divided into n qubits on the left and n qubits on the right,
subject to Hamiltonians H and H T, respectively, which are
assumed to be scrambling [9,10]. The left and right qubits
are initially entangled in the “thermofield double” (TFD)
state,

| TFD〉 = 1√
Tr e−βH

∑

j ∈energy levels

e−βEj /2|Ej 〉L ⊗ |Ej 〉R,

(1)

where β is the inverse temperature, H |Ej 〉 = Ej |Ej 〉, and
the bar indicates complex conjugation. We then further
partition the systems, labeling m � n of the qubits on each
side the “message” qubits and the remaining n − m qubits
the “carrier” qubits.

Step one is to bury the message in the left system. First,
we evolve all the left qubits “backward in time” by act-
ing with the inverse of the time-evolution operator, eiHtL .
Next, we insert the message into the message subsystem of
the left qubits. Figure 1(a) shows one way to do this—we
just throw the existing m qubits away and replace them
with our m-qubit message �in. Figure 1(b) shows another
way to do this—keep the m qubits around but act on them
with an operator O. Next, we evolve the left system “for-
ward in time” using e−iHtL . This forward evolution rapidly
scrambles the message amongst the n left qubits.
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(a) (b)

FIG. 1. The circuits considered in this paper, with HL = H T
R .

Downward arrows indicate acting with the inverse of the time-
evolution operator. In both protocols, the goal is to transmit
information from the left to the right. (a) The state-transfer proto-
col calls for us to discard the left message qubits (AL) and replace
them with our message �in. The output state on the right then
defines a channel applied to the input state. (b) The operator-
transfer protocol calls for the operator O to be applied to AL.
Based on the choice of operator, the output state on the right is
modified, similar to a perturbation-response experiment.

The next step is to couple the left and right qubits by
acting with

exp (igV), where V = 1
n − m

∑

i∈carrier qubits

ZL
i ZR

i ,

and where Zi := (σz)i. This operation couples each of the
left carrier qubits to its mirror image on the right [11].
Finally, we evolve all n of the right qubits “forward in
time” using e−iHtR .

It is at this stage that a surprising phenomenon occurs
for tR ∼ tL. In the case of state transfer [see Fig. 1(a)], the
message, so carefully buried on the left, may reappear on
the right. In the case of operator transfer [see Fig. 1(b)],
the action of the operator, so carefully hidden on the left,
may become manifest again on the right. The surprise is
not that it is information-theoretically possible to recover
the message on the right—after all, we coupled the left
and right systems with eigV. Instead, the surprise is one of
complexity rather than information theory—with the right
parameters, we do not need to decode anything; the mes-
sage just presents itself refocused on the right. It is not at
all obvious how the message made it, and the most surpris-
ing fact of all is that the simplest explanation lies in the
physics of black holes.

B. Quantum circuits as wormholes

Holography has taught us to think of gravity and space-
time as dual descriptions of nongravitational quantum
systems. In other words, there are chaotic quantum sys-
tems that when looked at differently, can be equivalently
described by some type of quantum space-time with grav-
ity. We tend to call the nongravitational dual the boundary
and the gravitational dual the bulk. In a bulk-boundary
system, there are phenomena that are more natural in the
gravitational bulk side—those are signatures of the exis-
tence of a bulk dual—and phenomena that have natural
explanations on the boundary. In this paper and Ref. [8],
our goal is to propose experiments that can be performed
on a nongravitational (boundary) system, which can detect
phenomena characteristic of a gravitational dual. Such
experiments would enable us to search for signs of the
existence of a bulk-gravitation dual for nongravitational
quantum systems and would pave the way to quantum sim-
ulations that provide a greater understanding of quantum
space-time.

The AdS-CFT duality is a correspondence between
gravitational systems in anti–de Sitter (AdS) space-times
and nongravitational quantum conformal field theories
(CFTs). A CFT in the thermofield double state of Eq. (1)
would be dual to the two-sided eternal black hole shown
in Fig. 2. Such black holes are called “two-sided” because
they feature two asymptotic r = ∞ regions connected by a
wormhole. A pair of observers who jump in from each side
may meet before they hit the singularity but the wormhole
is not “traversable,” since it is not possible to send a sig-
nal from the left asymptotic region all the way to the right
asymptotic region.

However, in Ref. [7], it has been shown how to render
such wormholes traversable. A suitably chosen direct cou-
pling between the two sides, which ordinarily do not inter-
act, produces a negative-energy shock wave. Negative-
energy shock waves impart a time advance to whatever
they encounter and so can rescue a signal that would
otherwise be lost to the singularity (Fig. 2).

It is this gravitational scattering process that the circuit
in Fig. 1 mimics, although the interpretation of the pro-
cess as traversing a wormhole is not valid in general (see
Sec. III). From the gravity perspective, the thermofield
double state is used because it exhibits strong left-right
correlations (due to the wormhole) that permit negative-
energy injection. The backward-forward time evolution on
the left corresponds to injecting a message in the past
on the left. The left-right coupling is the analog of the
negative-energy shock wave. Finally, the subsequent for-
ward evolution on the right corresponds to allowing the
message to travel out to the right boundary, where it
emerges unscrambled. This process has been called holo-
graphic teleportation [12] through the wormhole, for which
the bulk description is relatively clear. A description of this
process in terms of the boundary dynamics has previously
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FIG. 2. The Penrose diagram of wormholes. Left: without the coupling, a message or particle inserted at early times on the left
passes through the left horizon and hits the singularity (the top line of the diagram). Right: in the presence of the left-right coupling,
the message hits the negative-energy shock wave (the thick blue line) created by the coupling. The effect of the collision is to rescue
the message from behind the right horizon.

been elusive; in this paper, we seek to explain the process
from the boundary perspective.

C. Summary of results

In this paper, we identify two distinct mechanisms by
which the circuit in Fig. 1 can teleport:

(1) High-temperature low-capacity teleportation, which
holds for times larger than the scrambling time. This
mechanism is unexpected from gravity and does not
correspond to signals traversing a geometric worm-
hole. This mechanism only requires that the system
dynamics are scrambling and it is, therefore, appli-
cable to a wide variety of chaotic systems (e.g.,
random Hamiltonian evolutions, chaotic spin sys-
tems, etc.) We also outline experimental proposals
for realizing this form of teleportation.

(2) Low-temperature high-capacity teleportation, which
applies near the scrambling time. This regime corre-
sponds to teleportation through the wormhole and
it applies to Hamiltonians that have a holographic
dual. To understand this mechanism, we introduce
the notion of size winding, which is an ansatz for
the thermal operator near the scrambling time. We
explicitly demonstrate size winding in the SYK
model, one of the few simple models that are known
to have gravitational duals. We thus propose size
winding as a general diagnostic of signals traversing
a wormhole.

D. Organization of the paper

In Sec. II, we study the circuit of Fig. 1 using quan-
tum mechanics, without assuming a holographic dual. We

introduce the notion of teleportation by size, we study
both mechanisms of teleportation, and we provide gen-
eral formulas for the fidelity of teleportation. In Sec. III
we explain how, in the context of a system with a clean
holographic dual, size winding has a direct interpretation
in terms of momentum wave functions of bulk particles in
some appropriate time regime, while in other regimes it
need not have a description in terms of particles travers-
ing semiclassical geometrical wormholes. In Sec. IV, we
discuss concrete experimental realizations of teleportation
by size. The appendixes contain proofs of our technical
results.

E. Related work

Other studies of information transfer through traversable
wormholes and related notions include Refs. [13–17]. In
particular, one small-scale experiment with trapped ions
has already been carried out [18] based on Ref. [19,20].
This experiment has implemented a probabilistic protocol
and a deterministic Grover-like protocol [19]. In the deter-
ministic case, the circuit in Ref. [18] can be related to our
Fig. 1(a) if we specialize to infinite temperature, push the
backward time evolution through the thermofield double,
and replace V by a projector onto a Bell pair.

II. TELEPORTATION BY SIZE

We base most of our analysis in this paper on size dis-
tributions and operator growth, notions heavily studied
in connection with holography [21–23] and many-body
physics [24–26]—hence the term teleportation by size. In
Sec. II A, we discuss the state-transfer protocol. We see
that state transfer can be done for very generic chaotic
quantum systems—even at infinite temperature. This is the
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first mechanism of teleportation. In Sec. II B, we introduce
a property of size distributions called size winding, which
we use to explain the second mechanism of teleportation.
Size winding gives a clean mechanism for operator trans-
fer that abstracts the way in which geometrical wormholes
work at the level of the boundary theory (we discuss the
latter in Sec. III below). In Sec. II C, we present general
bounds on the fidelity of teleportation.

A. Mechanism 1: State transfer by size-dependent
phase

In this section, we focus on the first mechanism men-
tioned above. We study a toy model of state transfer and
we see that the phenomenon is quite generic. Consider the
2m-qubit message system HAL ⊗ HAR (see Fig. 1) and a
unitary operator S = SALAR that satisfies

S|P〉 = eig′|P||P〉, for all m-qubit Paulis P. (2)

Note that |P〉ALAR := PAR |φ+〉ALAR defines a complete basis
for HAL ⊗ HAR , where |φ+〉ALAR denotes m-copies of Bell
pairs between AL and AR. |P| denotes the size of the given
Pauli string. We show in Appendix B that S maps �in ⊗ τ ,
where �in is an m-qubit initial input state and τ = I/2m is
the maximally mixed state, to

�out := TrAL[S(�in ⊗ τ)S†] = Y⊗m�⊗m
λ (�in)Y⊗m, (3)

after tracing out the left subsystem, where Y := (σy), �λ

is the single-qubit depolarizing channel �λ(ρ) := (1 −

λ)τ + λρ, and λ = (1 − cos(g′))/2. In pictures,

For g′ = π , the state transfer is perfect, whereas for g′ = 0,
no signal is sent.

As we show in Fig. 3, it is natural to look at the eigV

coupling between the L and R Hilbert spaces “sandwiched”
with time evolutions:

[
e+iHLt ⊗ e−iHRt] eigV [

e−iHLt ⊗ e+iHRt] . (4)

For many systems of interest, the net effect of the sand-
wiched coupling on the message subsystems HAL ⊗ HAR is
simply to approximately implement the unitary S (defined
in Eq. (2)). In this way, these systems can achieve high-
fidelity state transfer.

The simplest case to analyze is when the time evolution
U = e−iHRt is described by a Haar-random unitary. In this
case, the average of the sandwiched coupling in Eq. (4) is
given by

eigφ+
LR + cos(g/k)k(I − φ+

LR) ≈ eigφ+
LR + (I − φ+

LR) (5)

up to corrections of order O(4−n). By projecting the carrier
qubits onto a maximally entangled state, we thus find that
the average of the operator S̃ = S̃ALAR defined in Fig. 3(c)
over the unitary group is given by eigφ+

ALAR
+ (I − φ+

ALAR
).

When m = 1, this agrees exactly with Eq. (2), up to a

(a) (b) (c) FIG. 3. (a) An Infinite-temperature holo-
graphic teleportation circuit, with U = e−iHt.
(b) An equivalent circuit to (a) after circuit
manipulations. (c) The result of replacing the
trace by projecting the carrier qubits onto
|φ+〉. When the teleportation has high fidelity,
this projection has a negligible effect on the
final state. For many systems of interest, the
operator S̃ enclosed in the dashed rectangle
approximately implements the unitary defined
in Eq. (2) for some appropriate g′.
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global phase. In fact, a random instance of S̃ is close to
its average S with high probability. For Haar-random uni-
taries, we show this in very strong terms—these operators
are exponentially close (in n) to each other in the operator
norm, with a probability that is exponentially close (in n) to
1 (for a proof, see Appendix C 1). In contrast, when m > 1,
then the average of S̃ no longer coincides with Eq. (2).
Rather, the sandwiched coupling of Eq. (5) acts by apply-
ing a constant phase on |φ+〉ALAR and as the identity on all
other states in message Hilbert space. This simple opera-
tion can be employed to send one qubit but changing the
sign of one state is not a powerful enough operation to
send multiple qubits (see Appendix C 2) [27]. In fact, no
matter what the encoder does at time −t to the system AL
(i.e., acting by a generic channel on AL, which includes
the state-transfer, operator-transfer, and many other proto-
cols), the Holevo information of the full quantum channel
from left to right is highly limited. In Appendix C 3, we
show that it is not possible to send more than three clas-
sical bits—and, consequently, three qubits—in this way.
Moreover, we believe that this bound is a conservative one.

The preceding results hold more generally for 2-designs
(which are commonly associated with scrambling and
chaos) and can therefore be thought of as modeling the
late-time behavior of scrambling many-body systems. In
Ref. [8], we study a variety of other systems in detail,
including time evolution with random nonlocal Hamiltoni-
ans [the Gaussian unitary ensemble (GUE) or the Gaussian
orthogonal ensemble (GOE)], 2-local Brownian circuits,
and spin chains. We show that, at very large times, all
models demonstrate the same behavior but at intermediate
times, different systems have different physics.

B. Mechanism 2: Size winding

Consider an observable O and its transpose (in the com-
putational basis) OT acting at time −t on the left Hilbert
space. Using the definition of the TFD state, this can be
expressed as

1
2n/2 OT

L(−t)| TFD〉LR = (ρ
1/2
β )ROR(t)|φ+〉LR, (6)

where O(t) = eiHtOe−iHt, ρβ = e−βH (tr e−βH )−1 is the
thermal state, and |φ+〉 denotes the maximally entangled
state. The application of OT

L(−t) should be contrasted with
the action of OR(t) directly on the thermofield double state:

1
2n/2 OR(t)| TFD〉LR = OR(t)(ρ

1/2
β )R|φ+〉LR. (7)

Importantly, the only difference between Eqs. (6) and (7)
is the order of insertion of ρ1/2

β and O(t). Now, expand
the operator ρ1/2

β O(t) in the Pauli basis as 2−n/2 ∑
P cPP,

where the sum runs over all n-qubit Paulis [28]. Write |P|

for the size of an n-qubit Pauli operator, i.e., the number
of terms not equal to an identity operator. We define the
winding size distribution:

q(l) :=
∑

|P|=l

c2
P. (8)

The winding size distribution is in contrast to the definition
of the conventional size distribution, for which the sum is
over the square of the absolute value of cP (for a proper
treatment of fermionic systems, see Ref. [23]). The con-
ventional size distribution and the winding size distribution
coincide for β = 0, for which ρ

1/2
β O(t) is a Hermitian

operator and has real expansion coefficients, cP ∈ R.
Size winding, in its perfect form, is the following ansatz

for the operator wave function:

ρ
1/2
β O(t) = 1

2n/2

∑

P is an n-qubit Pauli

eiα|P|/nrPP, rP ∈ R.

The key part of this definition is that the coefficients in the
size basis acquire an imaginary phase that is linear in the
size of the operators. If we define |P〉LR := PR|φ+〉LR and
assume perfect size winding, then we conclude from the
above discussion that

OT
L(−t)| TFD〉 =

∑

P

eiα|P|/nrP|P〉, (9)

OR(t)| TFD〉 =
∑

P

e−iα|P|/nrP|P〉. (10)

Thus, when expressed in the Pauli basis, the difference
between the actions of OT

L(−t) and OR(t) is given by the
“direction” of the winding of the phases of the coefficients.

The role of the coupling eigV on a Pauli-basis state |P〉 is
very simple: it gives a phase of −2g/k times the number
of Pauli X or Y operators acting on the carrier qubits (up
to a constant phase), where k = m − n. For typical Pauli
operators P, the latter is roughly 2/3 times the size; hence
it follows that

eigV|P〉 ≈ e−i(4/3)g|P|/n|P〉 up to a constant phase,

provided that n � m (up to a constant phase). Under the
natural hypothesis that the coefficients rP only depend on
the support of the Pauli operator P, we can similarly show
that

eigVOT
L(−t)| TFD〉 ≈

∑

P

ei(α−(4/3)g)|P|/nrP|P〉

× up to a constant phase. (11)

Equation (11) illustrates how the weak coupling can trans-
fer a signal from left to right: with a careful choice of g, the
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action of the coupling unwinds the distribution in Eq. (9)
and winds it in the opposite direction to obtain Eq. (10).
This shows that the coupling maps a perturbation of the
thermal state of the left system to a perturbation of the right
system (for a precise statement and derivation of this result,
see Appendix D).

In Ref. [8], we show that the large-q SYK model
exhibits near-perfect size winding and that near-perfect
size winding should be present in holographic systems.
Indeed, this is to a large extent simply a translation of exist-
ing results on two-point functions for traversable worm-
holes [23,29] in the language of size, as we discuss in
Sec. III. We also see that more general size winding, i.e.,
a size-dependent phase in q(l) that is not necessarily lin-
ear in the size, exists in systems without geometric duals.
In fact, we study nonlocal random Hamiltonian evolution
analytically and show that they can weakly transmit a small
amount of information in this fashion (for a summary of
size winding in different scenarios, see Fig. 4).

C. General bounds on the fidelity

In this section, we present general bounds on the entan-
glement fidelity of the state-transfer protocol at arbitrary
times and temperatures [Fig. 1(a)]. For a quantum chan-
nel CA→A, the entanglement fidelity [30] is given by
the overlap between the output and input state when
the input is a maximally entangled state between A
and an environment E of the same dimension: F :=√

〈φ+|AECA→A(φ
+
AE)|φ+〉AE . Importantly, F lower bounds

the average fidelity of the channel over random inputs
|�〉A, i.e., F ≤ E|�〉AF(�A, C(�A)). Motivated by Eq. (3),
we take the channel C to be the composition of the state-
transfer protocol with a tensor product of Pauli-Y operators
serving as the decoding channel.

Consider a Pauli operator of initial size l0. We assume
that Pauli operators with the same initial size l0 have
the same generic operator growth and we denote by ql0
the corresponding winding size distribution [defined as in
Eq. (8)]. The central object in our bounds is the Fourier
transform of the size distribution, which, for g2, gm � n,
is equal to the left-right two-point function:

q̃l0(g) :=
n∑

l=0

ql0(l)e
−i(4g/3)l/n

≈ e−ig〈TFD |OR(t)eigVOT
L(−t)| TFD〉. (12)

This is proved in Appendix E. The fidelity is a difficult
quantity to evaluate directly, yet one can still provide
strong bounds on the fidelity in terms of the simpler

(a) (c)

(b) (d)

FIG. 4. A short summary of teleportation by size, discussing
different systems, different patterns of operator growth, and the
consequence of each growth pattern for signal transmission. (a)
Operator growth, late time, most quantum systems: teleports one
qubit through state-transfer mechanism; sgn(g) independent; infi-
nite temperature. (b) Operator growth, intermediate time: chaotic
spin chains, random circuits; teleports many qubits through state-
transfer mechanism; sgn(g) independent; infinite temperature. (c)
Size winding (damped), low temperature: teleports through state-
transfer mechanism; weak sgn(g) dependence; works weakly for
“operator transfer.” (d) Perfect size winding (not damped), low
temperature: could teleport through state-transfer mechanism;
strong sgn(g) dependence but limited fidelity; works perfectly
for “operator transfer” slightly before scrambling time; strong
signature of a geometrical wormhole. Blue, initial operator-size
distribution; red, winding size distribution of the time-evolved
operator.

quantity Fq, defined to be

Fq := |[|]
m∑

l=0

[Nl/4m] (−1)lq̃l(g), where Nl =
(

m
l

)
3l.

(13)

We show the following bounds on the entanglement
fidelity in terms of Fq:

Fq � F � Fq +
m∑

l=0

(Nl/4m)
√

1 − |q̃l(g)|2. (14)

For local Hamiltonian evolutions and in a variety of time
regimes, Fq can be a good estimate of F as the error term
on the right-hand side of Eq. (14) will be small. Under
the assumption that the thermal state has a narrow size
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distribution, we can also show that

F � 1 − 1
4m (1 − Fq) (15)

(for proofs, see Appendix F). These relations allow us
to rigorously bound the entanglement fidelity for vari-
ous random Hamiltonian and spin-chain models in several
parameter regimes.

As an example, we can use Eq. (14) to confirm that
random unitary time evolution at infinite temperature
should teleport a single qubit as shown in Sec. II A.
At β = 0, q0 is peaked at l = 0 for all times. How-
ever, O(t) = U†OU is a completely random combination
of Pauli strings and thus its size distribution is peaked
at l = (3/4)n. Hence, q̃0(g) = 1 and q̃1(g) ≈ e−ig . Thus,
Fq = |3e−ig/4 − 1/4| = √

1/4 + 3/4(1 − cos(g))/2. Fur-
thermore, since |ql| = 1, we have that Fq = F , from
Eq. (14). Therefore, the channel can teleport with perfect
fidelity when g = π .

III. THE HOLOGRAPHIC INTERPRETATION

The analogy between Figs. 1 and 2 is very suggestive
and we now return to the question of whether the geometric
picture is a faithful representation of the physics. In other
words, when can we claim that a message has been sent
through an emergent geometry? The teleportation-by-size
mechanism that we introduce generalizes the traversable
wormhole and persists even in cases where a fully classical
wormhole is not the appropriate description. In fact, we see
that even in the holographic setting, at very large times the
teleportation-by-size paradigm remains valid even when
the description in terms of a single semiclassical geometry
breaks down.

A. Size and momentum

The growth of the size of an operator is a basic mani-
festation of chaos and is related to a particle falling toward
a black-hole horizon [23,31,32]. In the context of SYK,
or nearly AdS2 holography, the bulk interpretation of size
is particularly sharp [22], which we now review. In the
traversable wormhole, the particle crossing the negative-
energy shock wave experiences a (null) translation. The
shock wave can therefore be interpreted as the generator
of this translation, otherwise known as (null) momentum.
The shock wave is a direct consequence of the interaction
between the two sides, which in the SYK model is sim-
ply the “size” operator. Thus, the size operator is simply
related to null momentum [8,22,29].

A more precise argument based on Ref. [22] can also be
given; a detailed version appears in Ref. [8]. Readers unfa-
miliar with nearly AdS2 may jump to Sec. IV. The starting
point is that for states close to the thermofield double, the

operators defined by

B = HR − HL, E = HL + HR + μV − E0 (16)

have a simple geometrical action as a Lorentz boost B and
as global time translation E [33]. Here, V is a sum of oper-
ators on both sides V = ∑k

i=1 OL
i OR

i ; in the SYK model,
the simplest choice would be to take V ∝ i

∑
ψ

j
Lψ

j
R to be

the size operator. The value of μ and E0 should be tuned
so that the TFD is an approximate ground state of E (see
Ref. [33]). It is then natural to consider the combinations

P±=−1
2
(E ± B). (17)

For our purposes, the important point is that eia±P± gen-
erate a null shift [34]. By choosing the right sign of a±,
we can shift the particle backward so that it traverses the
wormhole. Now note that

−P+=HR + μV/2, −P−=HL + μV/2. (18)

The remarkable feature of this formula is that the action
of P± is exceedingly simple on the left-right Hilbert space
(and, equivalently, on one-sided operators), since we can
ignore HL or HR. For operators on the left (right) side, the
amount of P+ (P−) momentum inserted is just given by the
size, up to some normalization.

This in turn implies that the size wave function of a one-
sided operator O (e.g., the components of O in a basis of
operators organized by size) is dual to the momentum-
space wave function of the particle created by O. The
Fourier transform of the momentum wave function is then
related to the “position” of the particle in the bulk, where
“position” here means the AdS2 coordinate conjugate to
null momentum. Furthermore, the action of the two-sided
coupling eigV in the traversable-wormhole protocol simply
shifts the position of the particle, allowing the particle to
potentially exit the black hole.

The upshot is that in a holographic setting, we can
clearly see that the winding of the size distribution is
related to the location of the particle, e.g., whether the par-
ticle is inside or outside of the black-hole horizon. The case
of imperfect winding can be seen as a generalization of the
situation where a good geometric dual exists, though the
geometric intuition may still prove useful even in that case.

B. Superpositions of geometries at large times

For times much larger than the scrambling time, the
evolution of any chaotic system becomes random. In this
regime, a few bits of information can still be transmitted by
the coupling. But the interpretation of this signal is not that
the particle goes through a semiclassical wormhole, even if
the quantum system is in a parameter regime (e.g., large N
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and strong coupling) where a clean semiclassical descrip-
tion is possible. The reason is the butterfly effect: at large
times, a small perturbation (putting in the particle) can
destroy any correlations between the two sides that would
have existed without the perturbation. The strength of the
negative-energy shock wave in the bulk is directly propor-
tional to the amount of correlation between the two sides;
at very large times, the correlation is simply too weak to
shift the particle out of the horizon. Nevertheless, there is
another effect [29] involving the interference of two macro-
scopically different states (or bulk geometries) that allows
for information transfer that we now explain.

Consider the insertion of a message at time −t on the left
system using the unitary operator UL = eiεφL ≈ 1 + iεφL
[35]. At time t = 0, we let the left and right systems inter-
act, so that the state is |�〉 = eigVUL(−t)| TFD〉. We know
that the action of eigV depends on the size of the state on
which it acts. The key fact is that the operator φL(−t), for
large t, is a totally random operator. Therefore, its size is
equal to that of a random operator, which is nearly maxi-
mal. So eigV acts simply as a relative phase θ ∼ 1 between
| TFD〉 and φL(−t)| TFD〉. We can think of it as a phase-
shift gate. Then, |�〉 = | TFD〉 + iεeigθφL(−t)| TFD〉. This
state is a superposition of two vastly different geometries:
one is an empty wormhole, given by the state | TFD〉,
while φL(−t)| TFD〉 contains an energetic particle with a
significant back reaction on the geometry.

A simple way to record the receipt of the message is to
compute the change of the expectation value of φR(t):

〈�|φR(t)|�〉 − 〈φR(t)〉therm = 2ε sin(gθ)〈φRφL〉therm (19)

(for similar calculations, see Refs. [29,36]). Clearly, this
scenario does not have the interpretation of a classically
traversable wormhole. In fact, there is not much geome-
try left in the description at all. This scenario is contrasted
with the situation at shorter times, where we have access to
multiple eigenvalues of eigV and the momentum-size cor-
respondence has a clear geometric meaning. In all cases,
the dynamics of the phase in the size distribution gives
the right description of the physics but there is a transition
from a classical to a quantum picture.

C. Wormhole tomography and other future directions

There are a number of interesting future directions for
investigation. Here, we focus on two regimes, one rela-
tively short (slightly before the scrambling time) where the
particle classical traverses and the long-time effect, which
involves interference. This, of course, does not exhaust the
list of nongeometric effects; e.g., stringy effects can play
an important role at finite coupling, when the string scale
is not parametrically suppressed [29]. We start to explore
this in the analytically tractable playground of the large-q
SYK model at finite βJ [8].

One might wonder whether it is really possible to oper-
ationally distinguish whether or not the information has
gone “through” the wormhole. We propose the following
criteria: if the black hole is in a state where there is a diary
behind both horizons, a protocol that involves teleporta-
tion “through” the wormhole should be sensitive to what
is in the diary. In other words, if Bob claims that he went
through a wormhole to get to Alice, we can ask him to
prove it by giving some description of what was inside the
black hole. If we send multiple observers through, they
should each share information about the interior that is
consistent.

In the classically traversable case, one can therefore
imagine engaging in “wormhole tomography,” where the
contents of the wormhole interior (as determined by some
non-TFD initial state) are probed experimentally by state-
transfer experiments; the signal exiting the wormhole will
be modified in some way by the particular geometry of the
wormhole and the presence or absence of any matter.

We analyze size winding in the SYK model in Ref. [8]
but there are still some open questions about the details
of the state-transfer protocol in the case where it corre-
sponds to a through-the-wormhole process. Rather than
simply swapping a physical qubit with the message qubit,
as we advocate here, one wants to swap the message qubit
with a logical qubit that represents, say, the polarization
states of an emergent bulk photon. The key fact about this
distinction is that the logical subspace for the encoding
has fixed bulk energy, so the gravitational back reaction
does not depend on the message. This is one way to avoid
superpositions of macroscopically different geometries. In
principle, there is no obstruction preventing us from carry-
ing out this task and it might be instructive to actually do
it. The problem is one of engineering and a more compli-
cated model such as N = 4 super Yang-Mills theory might
be required in order to have the necessary ingredients.

IV. EXPERIMENTAL REALIZATION

As discussed above, this work concerns a whole family
of protocols, all of which are interesting to study experi-
mentally for the light they would shed on entanglement,
chaos, and holography. For example, if the system under
study has a simple dual holographic description, such as
the SYK model [37–44] or certain supersymmetric gauge
theories, the experiments described here can directly probe
traversable wormholes. More generally, these experiments
probe communication phenomena inspired by and related
to the traversable-wormhole phenomenon in holographic
models. The key ingredients are as follows.

First, one must be able to prepare a thermofield double
state associated with H . This means preparing a special
entangled state of two copies of the physical system, the
left and right systems. At infinite temperature, the ther-
mofield double state is just a collection of Bell pairs
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between left and right (or the appropriate fermionic ver-
sion). For general Hamiltonians and noninfinite temper-
ature, there is no known procedure to prepare the ther-
mofield double state. However, there are recently proposed
approximate methods that are applicable to systems of
interest including the SYK model and various spin chains
[45–47].

Second, one must be able to effectively evolve forward
and backward in time with the system Hamiltonian H .
More precisely, we require the ability to evolve forward
and backward with HL = H on the left system and the
ability to evolve forward with the CPT conjugate of H ,
HR = H T, on the right system. Given a fully controlled
fault-tolerant quantum computer and a Trotterized approx-
imation of e−iHt, it is in principle no more challenging to
implement e+iHt (backward evolution) than it is to imple-
ment e−iHt (forward evolution). However, the implemen-
tation of forward and backward time evolution in a spe-
cialized quantum simulator requires specific capabilities.
In the context of measurements of out-of-time-order corre-
lators, various techniques have been developed to achieve
this level of control, at least approximately [18,20,48–55].

Third, one must be able to apply the weak left-right cou-
pling given by the V operator. More precisely, it must be
possible to generate the unitary eigV. This coupling must
be applied suddenly, in between the other time-evolution
segments of the circuit.

Fourth, one must be able to apply local control opera-
tions, including deleting and inserting qubits, performing
local unitary operations, and making local measurements
in a general basis. This requires some degree of individ-
ual qubit addressability, although in the simplest cases one
only needs to single out a small number of qubits.

Given these capabilities, the general protocols in Fig. 1
can be carried out. For concreteness, the remainder of this
section focuses on the case of the insertion-deletion pro-
tocol [see Fig. 1(a)]. To give an example, consider the
deletion-insertion protocol at infinite temperature when
g = π , all times involved are large, n is very large, and
m = 1. In this case, �out = Y�inY with perfect fidelity.

A. Rydberg-atom arrays

One platform where such phenomena could be studied is
Rydberg-atom arrays. In one implementation [56], infor-
mation is encoded in a pair of levels in 87Rb, a ground
state |g〉 and a Rydberg state |r〉, such that the effective
Hamiltonian can be written in a spin-chain form as

H =
∑

i

�i

2
Xi +

∑

i

�i
I − Zi

2
+ 1

4

∑

i<j

Vij (I −Zi)(I −Zj),

where Zi = |gi〉〈gi| − |ri〉〈ri| and Xi = |gi〉〈ri| + |ri〉〈gi|,
�i and �i are tunable field parameters, and Vij is the van
der Waals interaction between the atoms.

In terms of the capabilities listed above, the preparation
of an infinite-temperature thermofield double state (i.e.,
Bell pairs) has already been achieved using Rydberg atoms
[57]. For finite temperatures, the approximate methods dis-
cussed above could also be applied to this setup. One can
engineer the requisite backward time evolution in various
ways. One possibility is to work in the blockade regime,
in which the effective dynamics takes place in a con-
strained Hilbert space and is governed just by the fields �
and �. These parameters can be reversed with echo pulse
sequences and so forward and backward evolution is pos-
sible. Below, we also discuss a different Floquet scheme.
The left-right coupling V = [1/(n − m)]

∑
i ZL

i ZR
i is also

feasible in a Rydberg system and is already needed to pre-
pare the Bell states. Finally, local addressing is possible
and localized readout has been demonstrated [56].

One particularly interesting system to consider is a Flo-
quet version of the Rydberg Hamiltonian known as the
kicked quantum Ising model. Although experiments here
are naturally restricted to infinite temperature because of
heating, the driving is interesting because it can enhance
chaos and aid in the problem of backward and forward
time evolution. Consider, for example, the kicked quan-
tum Ising model of Prosen et al. [58], in which the time
evolution for one time step is given by

U = UK UI ,

where

UK = exp

(
ib

∑

i

Xi

)

and

UI = exp

(
iJ

∑

i

ZiZi+1 + i
∑

i

hiZi

)
.

The parameters of the model are J , b, and the set of local
fields hi. Remarkably, if J = b = π/4 and hi are drawn
uniformly at random from a Gaussian distribution with
variance σ , then the model is in a sense maximally chaotic
(albeit not in the out-of-time-order correlator sense). For
example, the entanglement entropy of subsystems grows
as rapidly as possible when starting from a product state
[58]. We note that a hyperfine encoding for qubits (instead
of directly using the Rydberg level) might be useful for this
kind of gatelike time dynamics [57].

This kicked model is particularly appealing because the
infinite-temperature thermofield double state is easier to
prepare and because it allows easier control over the evolu-
tion. This relative ease is due to the fact that the spectra of∑

i Xi and
∑

i ZiZi+1 are integer, so that one has, for exam-
ple, UK(b + 2π) = UK(b). Thus, backward evolution cor-
responds to UK(b)−1 = UK(−b) = UK(2π − b), so one
can achieve backward time evolution by over-evolving in
the forward direction. This covers the transverse field and
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FIG. 5. The expectation value of Z1R after injection of a Z1L = 1 state on the left system. The black dots are direct numerical
simulation of the protocol in the quantum kicked Ising model with n = 7 spins on the left and right and with J = b = π/4 and hi
drawn from a box distribution of width 0.5. Left: the signal at fixed large time as a function of g. The black circles are the exact
numerical simulation. The red curve is the theory prediction in Eq. (20). Right: the signal at fixed g as a function of the time step. The
black circles are the exact numerical simulation. The red curve is a crude approximation where we assume that Eq. (20) holds at all
times, with the effective system size replaced as n → min(t + 1, n).

interaction terms; the longitudinal field terms can be dealt
with using a standard echo sequence. One important point
is that if the left evolution for one time step is U, then
the right evolution for one time step must be UT = UI UK
(note the reverse ordering of the pulsed terms, which are
individually symmetric).

In Fig. 5, we show an exact numerical simulation of the
experimental protocol for n = 7 atoms on the left and right.
We inject a pure state with eigenvalue Z1L = 1 into the first
qubit on the left. Then, as a more experimentally acces-
sible stand-in for the full fidelity, we show the result of
measuring the expectation value of Z1R on the right. The
black dots are the exact simulation and the red curves are
obtained from our theory calculations. In particular, for a
system with n atoms and left-right coupling g at large time,
the prediction for the expectation value is

〈Z1R〉g =
(

cos
g

n − 1

)n−1 −{cos[g/(n − 1)]}n−1 + cos g
2

.

(20)

As can be seen from the left panel of Fig. 5, the theoreti-
cal prediction perfectly fits the exact simulation data in the
kicked quantum Ising model.

B. Trapped ions

While the Rydberg-atom arrays just discussed have a
natural spatial structure to their interactions, it is also quite
interesting to consider systems that can support few-body
but geometrically nonlocal interactions. One such system
is an ion-trap quantum processor (see, e.g., Ref. [59]),
a version of which has already been used to study a
wormhole-inspired protocol [18]. By driving vibrational

modes of an ionic crystal, one can engineer a rich pattern
of all-to-all interactions [60]. Such systems are interest-
ing because they mimic the structure of the SYK model
and other matrix models that exhibit low-energy dynamics
governed by a simple gravitational effective theory. One
can again consider analog or digital versions of the plat-
form and in the digital case all the needed capabilities
are present. Particularly interesting is a recent small-scale
preparation of approximate thermofield double states on
such a digital trapped-ion quantum processor [61].

V. CLOSING REMARKS

We discuss two candidate systems but many other plat-
forms should be able to realize the physics discussed here.
In our companion paper [8], we study a wide variety of
models, including spin chains, random circuits, random
Hamiltonians, and the SYK model, and some of these
would be more naturally suited to other platforms; e.g.,
proposals to realize SYK in simulators [62,63] or on digital
devices [64,65].

In closing, let us highlight some of the conceptual and
practical issues that will be faced in any experimental effort
along the lines that we discuss here. On the practical side,
one key question is the impact of noise and experimental
imperfections on our protocols, especially imperfect time
reversal due to over- or under-evolution and effects of envi-
ronmental decoherence. Preliminary simulations indicate
that the basic physics can still be seen when imperfections
are below the 5% level for modest system size and time
but much more study is needed in the context of particular
platforms. This general class of observables does exhibit
some forms of resilience [66]. Another crucial question is
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how well the thermofield double state must be prepared to
see the physics that we discuss.

On the conceptual side, we must ask what we ulti-
mately hope to learn about nature from such experiments.
We emphasize above that the infinite-temperature large-
time example does not correspond to geometrical motion
through a semiclassical wormhole. For one thing, only a
single qubit can be teleported with high fidelity in the
high-temperature limit, but with the right encoding of
information many qubits can be sent at low temperature
and intermediate time in a holographic system hosting
a traversable wormhole. Instead, the infinite-temperature
example probes a physical effect common to all chaotic
quantum systems with many degrees of freedom, including
quantum gravitational systems.

From these considerations, it should be clear that mea-
suring a successful teleportation signal for a single qubit is
not enough to guarantee a semiclassical traversable worm-
hole in the bulk. One needs additional conditions that can
be tested within the framework discussed here by vary-
ing the time t, the coupling g, and the way in which input
information is encoded. Hence, while one long-term goal
of such experiments is to detect and study wormholes aris-
ing holographically in highly entangled systems, there are
other goals. More generally, the purpose is to shed light on
deep and theoretically challenging questions about nature,
including the necessary conditions to have a semiclassi-
cal bulk and the effects of quantum and stringy corrections
to the semiclassical gravity picture. Thus, we believe that
the experiments described here are worth the effort to real-
ize the long-term potential for experimental insight into
quantum gravity.
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APPENDIX A: PRELIMINARIES ON PAULI
OPERATORS

In this appendix, we review the algebra of n-qubit Pauli
operators and recall some useful identities. Consider the
Hilbert space (C2)⊗n of an n-qubit system. For any inte-
ger vector v = (p, q) ∈ Z

2n, we can define a corresponding
Pauli operator (also known as a Weyl operator) by

Pv = i−p·qZp1X q1 ⊗ · · · ⊗ ZpnX qn . (A1)

The Pauli operators Pv for v ∈ {0, 1}2n form a basis of the
space of n-qubit operators. However, we caution that Pv
depends on v modulo 4 and is well defined modulo 2 only
up to a sign. Namely,

Pv+2w = (−1)[v,w]Pv, (A2)

where [·, ·] is the “symplectic form,” defined by
[(p, q), (p′, q′)] = p · q′ − q · p′. Using this form, the com-
mutation relation of the Pauli operators can be succinctly
written as

PvPw = (−1)[v,w]PwPv

and multiplication is given by

PvPw = i[v,w]Pv+w, (A3)

where the addition v + w in Pv+w must be carried out
modulo 4 and can only be reduced to the range {0, 1}
by carefully applying Eq. (A2). Finally, we note that the
transpose of a Pauli operator is given by

PT
v = (−1)p·qPv, (A4)

since transposing only impacts the Y operators.
With these facts in mind, let us discuss the size of Pauli

operators. The size (or weight) of a Pauli operator P = Pv,
which we denote by |P| = |v|, is defined as the number of
single-qubit Paulis in Eq. (A1) that are not proportional to
an identity operator. The locations of those Pauli operators
are called the support of P, which is a subset of {1, . . . , n}.
If v ∈ {0, 1}2n, then the size of Pv can be calculated as
p · p + q · q − p · q, where the last term ensures that we do
not double count the Y operators. Using the above proper-
ties, we arrive at an identity that holds for all v ∈ Z

2n and
is frequently used:

Y⊗nPT
v Y⊗n = (−1)p·p+q·qPT

v = (−1)|Pv|Pv. (A5)
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APPENDIX B: PROOF OF EQ. (3)

In this appendix, we derive the formula for the
teleportation-by-size channel. Clearly, it suffices to prove
Eq. (3) for m = 1, since both the left-hand and the right-
hand side are tensor power channels. Thus we need to show
that if S = SALAR is the two-qubit unitary that acts as

S|P〉 = eig|P||P〉
for all single-qubit Paulis P, then we have that

TrAL[S(ρ ⊗ τ)S†] = Y�λ(ρ)Y (B1)

for any single-qubit state ρ, where τ = I/2 is the
maximally mixed state, �λ is the single-qubit depo-
larizing channel �λ(ρ) = (1 − λ)τ + λρ, and λ = (1 −
cos(g))/2.

To verify Eq. (B1), note that we can write

S = φ++eig (
I − φ+) = eig (

I + (e−ig − 1)φ+)
,

where φ+ = |φ+〉〈φ+| denotes the projector onto the max-
imally entangled state |φ+〉 = |I〉 = (|00〉 + |11〉)/√2.
Thus,

S(ρ ⊗ τ)S† = ρ ⊗ τ + (e−ig − 1)φ+(ρ ⊗ τ)

+ (eig − 1)(ρ ⊗ τ)φ+

+ (e−ig − 1)(eig − 1)
4

φ+

= ρ ⊗ τ + e−ig − 1
2

φ+(I ⊗ ρT)

+ eig − 1
2

(I ⊗ ρT)φ+

+ (e−ig − 1)(eig − 1)
4

φ+

using the transpose trick and hence

TrAL[S(ρ ⊗ τ)S†] = τ + e−ig − 1
4

ρT + eig − 1
4

ρT

+ (e−ig − 1)(eig − 1)
4

τ

= (1 + λ)τ − λρT = (1 − λ)τ + λYρY

= Y�λ(ρ)Y,

since, for qubits, ρT = I − YρY. This proves Eq. (B1) and,
hence, Eq. (3).

APPENDIX C: RANDOM UNITARY TIME
EVOLUTION

In this appendix, we establish our technical results for
a random unitary time evolution, which are discussed in
Sec. II A.

1. Proof of Eq. (5) and concentration

We first compute the average “sandwiched” coupling in
Eq. (4) in case the time evolution is given by a random
unitary, i.e.,

MLR = EUM̃ LR, where M̃ LR = (UL ⊗ UR)eigV(UT
L ⊗ U†

R).

Consider the partial transpose M TR
LR of MLR on the right sub-

system. Using the invariance property of the Haar measure,
one can see that for every unitary V,

(VL ⊗ VR)M
TR
LR = M TR

LR (VL ⊗ VR).

By Schur-Weyl duality, any operator that commutes with
all matrices of the form V⊗r is in the span of the permuta-
tions of r replicas of the system. Here, we have r = 2 and
there exist only two permutations: the identity and the flip
operator. Hence, we have

(MLR)
TR = α′ILR + β ′FLR, for some α′ and β ′.

Now, note that (ILR)
TR = ILR and (FLR)

TR ∝ φ+
LR. By taking

another partial transpose of the above equation, we obtain

MLR = αILR + βφ+
LR.

To determine the coefficients α and β, we compute the
following traces:

4nα + β = Tr(MLR) = Tr(eigV) = 4n cos(g/k)k,

α + β = Tr(MLRφ
+
LR) = Tr(eigVφ+

LR) = eig .

Therefore,

α = cos(g/k)k − 4−neig

1 − 4−n = cos(g/k)k + O(4−n)

β = eig − cos(g/k)k

1 − 4−n = eig − cos(g/k)k + O(4−n)

Therefore, we obtain

MLR = cos(g/k)k(ILR − φ+
LR)+ eigφ+

LR + O(4−n) (C1)

up to corrections of order O(4−n). This establishes Eq. (5).
We now consider the projection of the “sandwiched”

coupling onto a maximally entangled state on the carrier
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qubits, i.e.,

S̃ALAR = 〈φ+|BLBR(UL ⊗ UR)eigV(UT
L ⊗ U†

R)|φ+〉BLBR .
(C2)

Clearly,

E(S̃ALAR) = 〈φ+|BLBRMLR|φ+〉BLBR

= cos(g/k)k(IALAR − φ+
ALAR

)

+ eigφ+
ALAR

+ O(4−n). (C3)

We now prove that S̃ALAR concentrates around its aver-
age. There are many different ways to prove this, such as
by computing the variance directly or using the fact that
if the average of a number of unitaries is close to a uni-
tary, then the distribution must be peaked near its average.
Here, we choose to use a slightly more technical approach
employing Levy’s lemma. This has the benefit of giv-
ing a generalizable proof technique with stronger bounds.

Levy’s lemma for the unitary group [67, Corollary 4.4.28]
states that if a function f : U(2n) → R is λ-Lipschitz,
meaning that

|f (U)− f (V)| ≤ λ‖U − V‖F for all U, V ∈ U(2n),

then

Pr
(
|f (U)− Ef (U)| ≥ ε

)
≤ 2 exp

(
−2n ε

2

4λ2

)
. (C4)

We first bound the matrix elements of M̃ LR. For this,
consider the function

f� : U(2n) → R,

f�(U) = 〈�|M̃ LR|�〉 = 〈�|(UL ⊗ UR)eigV(UT
L ⊗ U†

R)|�〉

for any fixed pure state |�〉. We have

|f�(U)− f�(V)| ≤ ‖(UL ⊗ UR)eigV(UT
L ⊗ U†

R)− (VL ⊗ VR)eigV(VT
L ⊗ V†

R)‖op

≤ ‖(UL ⊗ UR)eigV(UT
L ⊗ U†

R)− (UL ⊗ UR)eigV(UT
L ⊗ V†

R)‖op + ‖(UL ⊗ UR)eigV(UT
L ⊗ V†

R)

− (UL ⊗ UR)eigV(VT
L ⊗ V†

R)‖op + ‖(UL ⊗ UR)eigV(VT
L ⊗ V†

R)− (UL ⊗ VR)eigV(VT
L ⊗ V†

R)‖op

+ ‖(UL ⊗ VR)eigV(VT
L ⊗ V†

R)− (VL ⊗ VR)eigV(VT
L ⊗ V†

R)‖op

= ‖eigV(U†
R−V†

R)‖op + ‖eigV(UT
L − VT

L)‖op + ‖(UR − VR)eigV‖op + ‖(UL − VL)eigV‖op

≤ 4‖U − V‖op ≤ 4‖U − V‖F .

Thus, f� is 4-Lipschitz and Eq. (C4) shows that

Pr
(
|f�(U)− Ef�(U)| ≥ ε

)
≤ 2 exp

(
−2n ε

2

64

)
. (C5)

This result implies very strong concentration of all the
individual matrix elements of M but we would like to
prove concentration of the whole matrix S̃ALAR in the oper-
ator norm. For this, we use the existence of small ε nets.
Namely, it is known that there exists a set N of at most
(5/ε)2×4m

pure states in the 4m-dimensional space AL ⊗ AR
satisfying the following property [68]:

For every pure state �ALAR , there exists �̃ALAR ∈ N such
that ‖�ALAR − �̃ALAR‖tr ≤ ε.

Now,

‖S̃ALAR − E(S̃ALAR)‖op

= max
�ALAR pure

Tr�ALAR(S̃ALAR − E(S̃ALAR)).

If �̃ALAR is the element of the net N closest to some �ALAR
in trace norm, then

Tr�ALAR(S̃ALAR − E(S̃ALAR))

≤ Tr �̃ALAR(S̃ALAR − E(S̃ALAR))

+ ‖�ALAR − �̃ALAR‖tr‖S̃ALAR − E(S̃ALAR)‖op

≤ Tr �̃ALAR(S̃ALAR − E(S̃ALAR))+ 2ε

= f�̃ALAR⊗φ+
BLBR

(U)− Ef�̃ALAR⊗φ+
BLBR

(U)+ 2ε.
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Therefore,

‖S̃ALAR − E(S̃ALAR)‖op

≤ max
�̃ALAR∈N

f�̃ALAR⊗φ+
BLBR

(U)− Ef�̃ALAR⊗φ+
BLBR

(U)+ 2ε.

Therefore,

Pr
(
‖S̃ALAR − E(S̃ALAR)‖op ≥ 3ε

)

≤ Pr
(
∃�̃ALAR ∈ N : |f�̃ALAR⊗φ+

BLBR
(U)

− Ef�̃ALAR⊗φ+
BLBR

(U)| ≥ ε)

≤ 2
(

5
ε

)2×4m

exp
(
−2n ε

2

64

)

= 2 exp
(

22m+1 log
5
ε

− 2n ε
2

64

)
,

where the second inequality follows from Eq. (C5) and
the union bound. This shows that for n � m, the oper-
ator S̃ALAR is with very high probability very close to its
mean.

2. Sending many qubits: The transpose depolarizing
channel

In Sec. C 1, we compute the effective coupling between
the left- and right-hand side message subsystems. Using
Eq. (C3), one can see that for n � m, the net effect of the
teleportation protocol is with high probability given by the
following formula, up to O(4−m) corrections:

ρ �→ τ + 4
d2 sin(g/2)2

(
τ − ρT

)
, (C6)

where d = 2m and τ = I/d denotes the maximally mixed
state. We can interpret τ as noise, (τ − ρT) as the signal,

and the factor (4/d2) sin(g/2)2 as the strength of the sig-
nal. The latter attains its maximum 4/d2 only for g = π

(mod 2π).
For a single qubit, and only in this case, high-fidelity

teleportation is possible. Indeed, for d = 2, the channel

ρ �→ τ + (τ − ρT) = I − ρT = YρY

is unitary [cf. Eq. (3)], while for d > 2 the signal is
suppressed by 4/d2 ≤ 4/9.

There is another reason why reliably transmitting more
than one qubit by the single use of a channel of the above
form is impossible. The mapping ρ �→ τ + (τ − ρT) is not
a valid quantum channel for d > 2. In fact, the mapping

ρ �→ τ + α(τ − ρT)

is completely positive (and hence a valid quantum channel)
if and only if −1/(d + 1) ≤ α ≤ 1/(d − 1). The channel
in Eq. (C6) is an example of the class of transpose depo-
larizing channels [69], which have originally been studied
as examples of channels where the minimal output entropy
is additive [69,70].

3. General teleportation channel at infinite
temperature

So far, we have considered teleportation protocols where
the m message qubits AL are replaced by the state that is to
be teleported. Here, we show that even when using a very
general communication protocol, there are fundamental
limitations, and even when we only wish to communicate
classical bits. Specifically, we consider a protocol where
one applies one out of several arbitrary quantum channels
to AL (one for each possible message).

Let us first study the effect of applying a single quan-
tum channel N on the message system AL. In this case, the
output state on system AR is given by the following circuit
diagram:

It is known that one can always write a quantum channel as the following process: (1) add an environment sys-
tem in a fixed quantum state, (2) evolve the environment and the system by some unitary, and (3) trace out the
environment. This is known as the Stinespring representation. If we represent our quantum channel in this form,
N (ρAL) = TrE

(
GALE (ρAL ⊗ |0〉〈0|)G†

ALE

)
, we can write
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Finally, after using the transpose trick, we obtain the following equivalent diagram:

It is possible to compute the average output state exactly by
using the above diagram using a Haar integration similar
to the above. The final result is that for any channel N ,
the average output state on AR is given by the following
formula up to O(4−n) corrections:

ρAR = τ −
[(

1 − eig)(Q − Tr[Q]τ
) + h.c.

]

where Q = TrAL

[
N (φ+

ALAR
)φ+

ALAR

]
.

(C7)

Moreover, the output state is self-averaging, i.e., close to
its average with high probability. One can see that when N
is the channel that replaces a qubit by a new one in a fixed
state, then the output signal depends on g through cos(g),
while when N (ρAL) = e−iεOρALe−iεO for some Hermitian
operator O, then the signal depends on sin(g).

Next, we show that the output state in Eq. (C7) is highly
mixed. For this, it is useful to consider the Kraus represen-
tation of the channel, i.e., N (ρAL) = ∑

i EiρALE†
i . Then,

one can check that

Q =
∑

i

ET
i

Tr E†
i

d2 .

Consider the following matrix inequality, which holds for
arbitrary x ∈ C:

1
d

∑

i

(Ei + x̄ Tr[Ei]τ)†(Ei + x̄ Tr[Ei]τ) ≥ 0.

Since N is trace preserving,
∑

i E†
i Ei = I and now a short

calculation shows that the preceding matrix inequality is
equivalent to τ + |x|2 Tr[Q]τ ≥ −xQ − x̄Q† and hence

τ
(
1 + (|x|2 + x + x̄)Tr[Q]

)

≥ −x(Q − Tr[Q]τ)− x̄(Q − Tr[Q]τ)†.

Setting x = (1 − eig)/2 and using Eq. (C7), we obtain

ρAR ≤ 3
(

1 + (1 − cos(g))〈φ+|N (φ+)|φ+〉
)
τ ≤ 9τ .

(C8)

This is a strong constraint, since it implies that all the
eigenvalues of ρAR are smaller than 9/d. This in turn means
that at least d/9 eigenvalues are nonzero. Therefore, one
can send at most nine perfectly distinguishable states in
this way.

One can also compute the Holevo information of an
ensemble {pi, ρi}, where each state ρi is the output state
for a different choice of channel Ni. Recall that the Holevo
information is defined as

χ({ρi, pi}) = S(
∑

i

piρi)−
∑

i

piS(ρi).

But S(
∑

i piρi) ≤ log d and if ρi ≤ cτ , then S(ρi) ≥
log d − log c. Accordingly, for any ensemble of states sat-
isfying Eq. (C8), we can bound the Holevo information
as

χ({ρi, pi}) ≤ log 9 ≈ 3.17,

where we use the logarithm to base 2.
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APPENDIX D: PROOF OF EQ. (11)

In this appendix, we show that the action of the weak
coupling unitary eigV on the state OR|φ+〉LR amounts to
approximately a size-dependent phase under a natural
assumption on the operator O.

Recall the setup in the main text: L and R are each split
into an m-qubit “message” subsystem A and a k-qubit “car-
rier” subsystem B, where m + k = n. The two sides are
coupled by the Hamiltonian V = (1/k)

∑
i∈B ZL

i ZR
i . It is

straightforward to see that

eigV|P〉LR = eig
[

1−2(|P|BX /k)
]
|P〉LR,

where |P|BX denotes the number of single-qubit Pauli X or
Y operators in P that act on the B subsystem. Therefore, we
have, for any operator O = 2−n/2 ∑

P cPP expanded in the
Pauli basis, that

eigVOR|φ+〉LR = O
(g)BX
R |φ+〉LR, (D1)

where we define

O(g)BX := 2−n/2
∑

P

eig
[

1−2(|P|BX /k)
]
cPP. (D2)

For typical Pauli operators P and n � m, it holds that
2(|P|BX /k) ≈ 4

3 (|P|/n), suggesting that one might be able
to replace Eq. (D2) by the following operator:

O(g) := 2−n/2
∑

P

eig
[

1−(4/3)(|P|/n)
)
cPP. (D3)

The following lemma shows that this is indeed valid under
the natural assumption that the coefficients |cP|2 only
depend on the support of P.

Lemma 1. Let O = 2−n ∑
P cPP be an operator such that

|cP|2 = |cP′ |2 for any two Pauli operators P, P′ with equal
support. Then,

‖[‖]O(g)BX − O(g)2
F ≤ 4

3
g

√
1
2k

+
(m

n

)2
‖O‖F .

The right-hand side is negligible if ‖O‖F = O(1), g2 �
k, gm � n. In this case, Eq. (D1) also implies that

eigVOR|φ+〉LR ≈ O(g)
R |φ+〉LR,

since the Frobenius norm dominates the operator norm.
This establishes Eq. (11).

Proof. We start by expanding

‖[‖]O(g)BX − O(g)2
F

= 2−n‖[‖]
∑

P

cPeig
[

1−2(|P|BX /k)
]
P

−
∑

P

cPeig
[

1−(4/3)(|P|/n)
]
P2

F

=
∑

P

|cP|2|[|]eig
[

1−2(|P|BX /k)
]
− eig

[
1−(4/3)(|P|/n)

]2

≤
∑

P

|cP|2|[|]eig
[

1−2(|P|BX /k)
]
− eig

[
1−(4/3)(|P|B/k)

]2

+
∑

P

|cP|2|[|]eig
[

1−(4/3)(|P|B/k)
]
− eig

[
1−(4/3)(|P|/n)

]2
.

The first term can be bounded using our assumption, as
follows. Let EP′∼P denote the uniform average over all
Pauli operators P′ that have the same support as some
given Pauli operator P (i.e., P′

i = I if Pi = I ; otherwise,
P′

i is chosen independently and uniformly from {X , Y, Z}).
Then,

∑

P

|cP|2|[|]eig
[

1−2(|P|BX /k)
]
− eig

[
1−(4/3)(|P|B/k)

]2

=
∑

P

|cP|2|[|]ei(2g/k)
[
(2/3)|P|B−|P|BX

]
− 1

2

≤
(

2g
k

)2 ∑

P

|cP|2|∗|2
3
|P|B − |P|BX

2

=
(

2g
k

)2 ∑

P

|cP|2EP′∼P|∗|2
3
|P|B − |P′|BX

2

=
(

2g
k

)2 ∑

P

|cP|2 VarP′∼P(|P′|BX )

=
(

2g
k

)2 ∑

P

|cP|2 2
9
|P|B ≤ 8g2

9k

∑

P

|cP|2,

where we first use |eit − 1|2 ≤ t2 and then the assumption.
The second term can be bounded as follows without using

010320-17



ADAM R. BROWN et al. PRX QUANTUM 4, 010320 (2023)

the assumption:

∑

P

|cP|2|[|]eig
[

1−(4/3)(|P|B/k)
]
− eig

[
1−(4/3)(|P|/n)

]2

=
∑

P

|cP|2|[|]eig(4/3)
[
(|P|/n)−(|P|B/k)

]
− 1

2

≤
(

g
4
3

)2 ∑

P

|cP|2
( |P|

n
− |P|B

k

)2

=
(

g
4
3

)2 ∑

P

|cP|2
( |P|A

n
− m

n
|P|B

k

)2

≤
(

g
4
3

m
n

)2 ∑

P

|cP|2.

Since ‖O‖2
F = ∑

P|cP|2, we obtain the desired result. �

APPENDIX E: PROOF OF EQ. (12)

For an arbitrary operator O, consider

q̃O(g) = e−ig Tr
[
ρ

1/2
β O(t)

(
ρ

1/2
β O(t)

)(g)]
, (E1)

using the notation defined in Eq. (D3) and O(t) = U†OU.
This quantity can be interpreted as the Fourier transform

of the winding size distribution of ρ1/2
β O(t). Recall that the

latter is defined as qO(l) = ∑
|P|=l c2

P, where ρ1/2
β O(t) =

2−n/2 ∑
P cPP. Therefore,

q̃O(g) = e−ig Tr
[
ρ

1/2
β O(t)

(
ρ

1/2
β O(t)

)(g)]

=
∑

P

c2
Pe−ig(4/3)(|P|/n)

=
n∑

l=0

qO(l)e−ig(43/)(l/n).

We wish to compare Eq. (E1) with the following two-point
function:

〈TFD |OR(t)eigVOT
L(−t)| TFD〉

= Tr
[
ρ

1/2
β O(t)

(
ρ

1/2
β O(t)

)(g)BX
]

, (E2)

where the equality follows using | TFD〉 := 2n/2(ρ
1/2
β )R

|φ+〉, the transpose trick, and Eq. (D1). Assuming that
the thermal operator ρ1/2

β O(t) satisfies the hypotheses of
Lemma 1, we can compare the two-point function to
Eq. (E1):

|∗|Tr
[
ρ

1/2
β O(t)

(
ρ

1/2
β O(t)

)(g)BX
]

− Tr
[
ρ

1/2
β O(t)

(
ρ

1/2
β O(t)

)(g)]

≤ ‖∗‖ρ1/2
β O(t)

F
‖∗‖

(
ρ

1/2
β O(t)

)(g)BX −
(
ρ

1/2
β O(t)

)(g)
F

≤ 4
3

g

√
1
2k

+
(m

n

)2
‖∗‖ρ1/2

β O(t)
2

F

≤ 4
3

g

√
1
2k

+
(m

n

)2
‖∗‖O2

op,

where we use Lemma 1 and ‖ρ1/2
β O(t)‖F ≤ ‖O(t)‖op =

‖O‖op. If O is a Pauli operator, then ‖O‖op = 1; hence,
provided that g2 � k and gm � n, we obtain

q̃l0(g) ≈ e−ig〈TFD |OR(t)eigVOT
L(−t)| TFD〉. (E3)

This establishes Eq. (12).

APPENDIX F: PROOF OF EQS. (14) and (15)

In this appendix, we prove our fidelity formulas for the
state-transfer protocol. Formally, the state-transfer proto-
col amounts to the channel

�in �→ �out = TrAinLBR

[
UReigVUT

LFAinALUL(�in ⊗ | TFD〉
× 〈TFD |LR)UT

LFAinALULe−igVU†
R

]
.

Here, the time evolution is given by U = e−iHRt =(
e−iHLt

)T and we initially place the m-qubit input state into
an auxiliary Hilbert space Ain, which is then inserted into
the left message subsystem AL at time −t by using the swap
operator FAinAL (cf. Fig. 1, left).

In view of Eq. (3), we expect the Pauli operator YAR :=
Y⊗m to be a good decoding of the message. The fol-
lowing lemma bounds the entanglement fidelity of the
corresponding channel.

Lemma 2. The entanglement fidelity of the channel
C(�in) = YAR�outYAR is given by

F = ‖∗‖EPA(−1)|PA|PA(t)
(
ρ

1/2
β PA(t)

)(g)BX
F

,

where the average is over random Pauli operators PA on
A, we denote PA(t) = U†PAU, and the notation O(g)BX is
defined in Eq. (D2).
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Proof. By definition of the entanglement fidelity,

F2 = 〈φ+
ARE|YAR TrAinLBR

[
UReigVUT

LFAinALUL(φ
+
AinE ⊗ | TFD〉〈TFD |LR)UT

LFAinALULe−igVU†
R

]
YAR |φ+

ARE〉.

Rewriting the swap operator as FAinAL = 2−m ∑
v Pv

Ain
Pv

AL
, we obtain

F2 =
∑

v

〈φ+|AREYAR TrAinLBR

[
UReigVUT

LFAinALUL(φ
+
AinE ⊗ | TFD〉〈TFD |LR)UT

LFAinALULe−igVU†
R

]
YAR |φ+〉ARE

= 4−m
∑

v,w

〈φ+|AREYAR TrAinLBR

[
UReigVUT

LPv
Ain

Pv
AL

UL(φ
+
AinE ⊗ | TFD〉〈TFD |LR)UT

LPv
Ain

Pv
AL

ULe−igVU†
R

]
YAR |φ+〉ARE

= 4−m
∑

v,w

〈φ+|AREPv
AR

YAR TrAinLBR

[
UReigVUT

LPv
AL

UL(φ
+
AinE ⊗ | TFD〉〈TFD |LR)UT

LPw
AL

ULe−igVU†
R

]
YARPw

AR
|φ+〉ARE

= 16−m
∑

v,w

Tr
[
Pv

AR
YARUReigVUT

LPv
AL

UL| TFD〉〈TFD |LRUT
LPw

AL
ULe−igVU†

RYARPw
AR

]
.

We continue using the definition of | TFD〉 := 2n/2(ρ
1/2
β )R|φ+〉LR, then the transpose trick, and finally Eq. (D1), which

shows that

Pv
AR

YARUReigVUT
LPv

AL
UL| TFD〉LR = 2n/2Pv

AR
YARUReigV

(
ρ

1/2
β

)

R
UT

LPv
AL

UL|φ+〉LR

= 2n/2
(

Pv
AR

YARUR

(
ρ

1/2
β U†

R(P
v
AR
)TUR

)(g)BX
)

|φ+〉LR.

Thus we obtain

F2 = 16−m
∑

v,w

Tr
[(

Pv
AR

YARUR

(
ρ

1/2
β U†

R(P
v
AR
)TUR

)(g)BX
) (

Pw
AR

YARUR

(
ρ

1/2
β U†

R(P
w
AR
)TUR

)(g)BX
)†]

= 16−m
∑

v,w

Tr
[(

U†
RYARPv

AR
YARUR

(
ρ

1/2
β U†

R(P
v
AR
)TUR

)(g)BX
) (

U†
RYARPw

AR
YARUR

(
ρ

1/2
β U†

R(P
w
AR
)TUR

)(g)BX
)†]

= 16−m Tr
[(

∑

v

(−1)|v|U†
RPv

AR
UR

(
ρ

1/2
β U†

RPv
AR

UR

)(g)BX
) (

∑

w

(−1)|w|U†
RPw

AR
UR

(
ρ

1/2
β U†

RPw
AR

UR

)(g)BX
)†]

= Tr
[(

EPA(−1)|PA|PA(t)
(
ρ

1/2
β PA(t)

)(g)BX
) (

EP′
A
(−1)|P

′
A|P′

A(t)
(
ρ

1/2
β P′

A(t)
)(g)BX

)†]

= ‖∗‖EPA(−1)|PA|PA(t)
(
ρ

1/2
β PA(t)

)(g)BX 2

F

after inserting Y2
AR

= IAR , URU†
R = I , and using Eqs. (A4) and (A5). �

We now use Lemma 2 to derive bounds on the entanglement fidelity. By the Cauchy-Schwarz inequality, using that
‖ρ1/2

β ‖2
F = ‖ρβ‖tr = 1, we obtain the following lower bound:

|∗|EPA(−1)|PA| Tr
[
ρ

1/2
β PA(t)

(
ρ

1/2
β PA(t)

)(g)BX
]

≤ F . (F1)

Next, we give two useful upper bounds. The first one follows by a simple triangle inequality:

F = ‖∗‖EPA(−1)|PA|QF ≤ ‖∗‖EPA(−1)|PA|(Q − Tr[ρ1/2
β Q]ρ1/2

β )
F

+ ‖∗‖EPA(−1)|PA| Tr[ρ1/2
β Q]ρ1/2

β F
,
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where we denote Q = QPA = PA(t)
(
ρ

1/2
β PA(t)

)(g)BX
. Using

‖Q‖F = 1, the first term can be bounded as

‖∗‖EPA(−1)|PA|(Q − Tr[ρ1/2
β Q]ρ1/2

β )
F

≤ EPA‖∗‖Q − Tr[ρ1/2
β Q]ρ1/2

β F

= EPA

√
1 − |Tr[ρ1/2

β Q]|2,

while the second term equals

‖∗‖EPA(−1)|PA|Tr[ρ1/2
β Q]ρ1/2

β F

= |∗|EPA(−1)|PA| Tr[ρ1/2
β Q]‖∗‖ρ1/2

β F

= |∗|EPA(−1)|PA| Tr[ρ1/2
β Q].

Accordingly, we obtain the upper bound

F ≤ |∗|EPA(−1)|PA| Tr
[
ρ

1/2
β PA(t)

(
ρ

1/2
β PA(t)

)(g)BX
]

+ EPA

√

1 − |∗|Tr
[
ρ

1/2
β PA(t)

(
ρ

1/2
β PA(t)

)(g)BX
]2

,

(F2)

which complements Eq. (F1). A second simple upper
bound on the entanglement fidelity can be obtained as
follows:

F2 = EPA,P′
A
(−1)|PA|(−1)|P

′
A| Tr[QPAQ†

P′
A
]

≤
(

1 − 2
4m

)
+ 2

4m |∗|EPA(−1)|PA| Tr[QPAQ†
IA

]

= 1 − 2
4m

(
1 − |∗|EPA(−1)|PA| Tr[QPAQ†

IA
]
)

,

where the first inequality follows by upper bounding all
terms by 1 except for those where PA or P′

A is the identity
operator. Thus we obtain the following upper bound, which
is most useful for m = 1:

F ≤ 1 − 1
4m

(
1 − |∗|EPA(−1)|PA| Tr[QPAQ†

IA
]
)

. (F3)

We finally evaluate these bounds in terms of the Fourier
transform of the winding size distribution. As in the main
text, we assume that the winding size distribution of a ther-
mal Pauli operator ρ1/2

β PA(t) only depends on the initial
size |PA| = l; accordingly, we denote the Fourier transform
by q̃l(g). Assuming that the thermal operators satisfy the

hypotheses of Lemma 1 and g2 � k, gm � n, we have

q̃l(g) ≈ e−ig Tr
[
ρ

1/2
β PA(t)

(
ρ

1/2
β PA(t)

)(g)BX
]

(see Eqs. (E1)–(E3)). Thus, the quantity Fq defined in
Eq. (13) can be computed as

Fq = |∗|EPA(−1)|PA|q̃|PA|(g)

≈ |∗|EPA(−1)|PA| Tr
[
ρ

1/2
β PA(t)

(
ρ

1/2
β PA(t)

)(g)BX
]

.

Thus the lower bound in Eq. (F1) and the upper bound in
Eq. (F2) become

Fq � F � Fq +
m∑

l=0

(Nl/4m)
√

1 − |q̃l(g)|2.

This proves Eq. (14). At last, we evaluate Eq. (F3) under
the assumption that the width of the size distribution of
the thermal state is small and of order

√
n [this is a com-

mon feature, with the important exception of completely
nonlocal random Hamiltonian evolutions (the GUE and the
GOE)]. In this case, QI = (ρ

1/2
β )(g) is close to ρ1/2

β , up to
a global phase; hence Tr[QPQ†

I ] ∝ q̃|P|(g), again up to a
global phase, and we obtain the following bound:

F � 1 − 1
4m

(
1 − |∗|EPA(−1)|PA|q̃|PA|(g)

)

= 1 − 1
4m

(
1 − Fq

)
.

This establishes Eq. (15).
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