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The operator entanglement (OE) is a key quantifier of the complexity of a reduced density matrix. In
out-of-equilibrium situations, e.g., after a quantum quench of a product state, it is expected to exhibit an
entanglement barrier. The OE of a reduced density matrix initially grows linearly as entanglement builds
up between the local degrees of freedom; it then reaches a maximum and ultimately decays to a small finite
value as the reduced density matrix converges to a simple stationary state through standard thermalization
mechanisms. Here, by performing a new data analysis of the published experimental results of Brydges et
al. [Science 364, 260 (2019)], we obtain the first experimental estimation of the OE of a subsystem reduced
density matrix in a quantum many-body system. We employ the randomized-measurements toolbox and
we introduce and develop a new efficient method to postprocess experimental data in order to extract
higher-order density-matrix functionals and access the OE. The OE thus obtained displays the expected
barrier as long as the experimental system is large enough. For smaller systems, we observe a barrier
with a double-peak structure, the origin of which can be interpreted in terms of pairs of quasiparticles
being reflected at the boundary of the qubit chain. As U(1) symmetry plays a key role in our analysis, we
introduce the notion of symmetry-resolved operator entanglement (SROE), in addition to the total OE. To
gain further insights into the SROE, we provide a thorough theoretical analysis of this new quantity in
chains of noninteracting fermions, which, in spite of their simplicity, capture most of the main features
of OE and SROE. In particular, we uncover three main physical effects: the presence of a barrier in any
charge sector, a time delay for the onset of the growth of SROE, and an effective equipartition between
charge sectors.
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I. INTRODUCTION
The investigation of the nonequilibrium dynamics of

isolated many-body quantum systems is a major challenge
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of modern physics. Owing to the highly tunable modern
experimental settings for analog simulations [1–4], it has
become possible to engineer the Hamiltonian dynamics
of isolated quantum systems, ranging from integrable to
chaotic systems, and measure nontrivial physical proper-
ties such as the entanglement growth following a quan-
tum quench [5–9] and out-of-time ordered correlators
[10–14]. Unfortunately, the absence of numerical algo-
rithms to effectively simulate these systems on a classical
computer for large times is the main obstacle toward
the complete understanding of quantum relaxation and
thermalization. In this respect, the most effective and
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versatile algorithms are surely those based on matrix-
product-state (MPS) and tensor-network methods [15–19].
However, the linear growth of the entanglement entropy
[20,21] requires an exponential complexity (in bond
dimension) of the MPS approximating the physical state,
which severely limits the largest simulable times [22].

Typically, these systems relax to statistical ensembles
with little or no entanglement. How is this compatible with
the growth in complexity of the MPS approximation? The
solution of such a conundrum is simple: relaxation hap-
pens locally [23–25]; hence it is enough to focus solely on
the reduced density matrix ρ of a subsystem S, rather than
on the entire pure state containing physically irrelevant
correlations. Indeed, rather than an MPS, the subsystem
density matrix is approximated by a matrix product oper-
ator (MPO) with small bond dimension D [26–32]. What,
then, is the quantity that correctly assesses the validity of
this approximation? It is the operator entanglement (OE)
of the reduced density matrix, which is the main subject of
this paper.

To introduce this quantity, it is useful to note that
every bipartite density matrix ρAB can be decomposed as
follows:

ρAB√
Tr(ρ2

AB)

=
∑

i

λi OA,i ⊗ OB,i, (1)

where all expansion coefficients λi are real and positive
and the associated operators OA,i and OB,i are orthonor-
mal with respect to the Hilbert-Schmidt inner product
(Tr(O†

A,iOA,j ) = Tr(O†
B,iOB,j ) = δi,j , where δi,j is the Kro-

necker delta) (see, e.g., Ref. [33]). Such a decomposition is
called an operator Schmidt decomposition of ρAB and has
the property that the set of Schmidt coefficients λi is unique
(although the whole decomposition is not). The number of
such nonzero coefficients is called the operator Schmidt
rank of ρAB. Our choice of normalization on the left-
hand side of Eq. (1) ensures that the Schmidt coefficients
thus introduced obey

∑
i λ

2
i = 1, i.e., the set

{
λ2

i

}
forms a

probability distribution of (squared) Schmidt values. In a
MPO algorithm, the density matrix ρAB is “compressed”
by truncating the full sum to only the D largest contri-
butions, for some reasonably low value of D. Typically,
the approximation is accurate provided that the distribution{
λ2

i

}
of squared Schmidt values in Eq. (1) has small Shan-

non entropy, i.e., S(ρAB) = S
({
λ2

i

}) = −∑i λ
2
i log

(
λ2

i

)
is

small enough. This quantity is called the operator entan-
glement [26,27,34,35] of the bipartite density matrix ρAB.
In this paper we focus on the OE of a reduced density
matrix. Its main physical feature is the presence of an
entanglement barrier [29,36,37]: after a quantum quench
from a low-entangled state, the OE of a subsystem den-
sity matrix initially grows linearly and then decays at
longer times, thus displaying a barrier-shaped curve. The
initial linear growth is a consequence of the generic linear

growth of the (state) entanglement entropy after a quench
[20,21], while the decay at later times reflects the con-
vergence of the reduced density matrix toward a simple
stationary state [29], through the mechanism of thermal-
ization [23,24,38–43] (or relaxation to a generalized Gibbs
ensemble [44–47]).

The emergence of the entanglement barrier for the OE
of a reduced density matrix in ergodic dynamics can
be linked straightforwardly to the distribution of squared
Schmidt values {λ2

i } from Eq. (1). At early times, the
evolution starts from a pure product state, when only a sin-
gle Schmidt value is different from zero. The building up
of entanglement is reflected in the increasing number of
nonzero Schmidt coefficients λi. For long times, the sys-
tem eventually locally approaches a Gibbs or generalized
Gibbs ensemble, which obeys the operator area law [29],
i.e., it is constant in the subsystem size, and again only few
Schmidt values give a sizable contribution to the OE. For
example, in the infinite-temperature limit, since the density
matrix is proportional to the identity, ρ ∝ I = (IA ⊗ IB),
only a single Schmidt value is different from zero and the
OE vanishes.

Inspired by the relevance of the entanglement barrier,
our goal is to observe it in an experimental quantum many-
body system, using the randomized-measurement data of
the trapped-ion experiment of Ref. [7]. The randomized-
measurement toolbox [48] has enabled state-agnostic mea-
surement of the properties of the underlying quantum state,
such as the purity and the Rényi entanglement entropies
[7,9,48–50], negativities [51–53], and state fidelities
[49,54,55]. In contrast to tomography methods based on
assumptions on the quantum state [45,56–59], random-
ized measurements remain “state agnostic,” while having
a lower measurement cost compared to full quantum state
tomography [56,60–63]. One particularly fruitful develop-
ment is the formalism of classical shadows [49,64], which
provides estimations of additional nonlinear functionals
of the density matrix, such as the OE [65]. However,
measuring OE using the current randomized-measurement
toolbox requires a prohibitively expensive postprocess-
ing method. To overcome this limitation and observe OE
for a reasonable system size, in this work we introduce
the batch-shadows estimator. This new estimator, which
should be of independent interest for the randomized-
measurement toolbox as a whole, provides a fast post-
processing technique for estimating multicopy expectation
values as functions of the density matrix. Importantly, this
method offers, up to factors of order one in the experimen-
tally relevant scenario, the same performance guarantees
as classical shadows in terms of the required number of
measurements to overcome statistical errors. This enables
us to estimate the OE and, in turn, witness the entangle-
ment barrier. Here, we would like to emphasize that we do
not perform a new experiment to achieve this observation
but that we realize, instead, a new postprocessing of the
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data of Ref. [7], in the spirit—measure first, ask questions
later—of the randomized-measurements toolbox [48].

As a second important result, the experimental data of
Ref. [7] provide us with an opportunity to study how the
OE content is structured due to the presence of a sym-
metry which, here, is a U(1) symmetry associated with
the number of spin excitations. In the case of pure-state
entanglement, the fruitful notion of symmetry-resolved
entropies [66–68] has been introduced recently, com-
puted theoretically [69–78], and experimentally observed
[52,53,79]. Here, we generalize this to the case of OE.
Based on suitable supercharge operators (throughout this
paper, we refer to the operators in the space of opera-
tors as superoperators and to the corresponding charges as
supercharges), we introduce a notion of symmetry-resolved
operator entanglement (SROE), for which we also provide
tractable estimation protocols. Using SROE, we can the-
oretically study and observe, from the data of Ref. [7],
a symmetry-resolved entanglement barrier. This is rele-
vant for understanding thermalization in U(1) symmetric
nonequilibrium quantum systems and also for numerical
simulations, because symmetries can be incorporated in
MPO algorithms.

II. SUMMARY OF RESULTS

Here, we provide a bird’s eye view of the results in
this paper. The remainder of the paper is organized as
follows. In Sec. III, we formally introduce the operator
entanglement (OE) and its symmetry resolution (SROE).
In Sec. IV, we demonstrate and describe the details of
the randomized-measurement protocol used to measure
the OE and SROE of the experiment performed in Ref.
[7]. In Sec. V, we study analytically the SROE of the
reduced density matrix of a subsystem of critical free-
fermion chains after a quantum quench. Finally, we draw
our conclusions in Sec. VI. We include five appendixes
with more details about the analytical and numerical com-
putations. In Appendix A, we provide entanglement con-
ditions for mixed states using quantities introduced for
the OE. Appendix B follows up by detailing the proof of
the symmetry resolution of the operator Schmidt decom-
position from Eq. (1). In Appendix C, we develop an
analytical framework for the statistical-error analysis of
general batch-shadows estimators and we then describe
the setup of the experiment that we consider in this
paper in Appendix D. Further details on the treatment of
experimental data using batch shadows are provided in
Appendix E.

Therefore, let us start by providing a short summary
of the results in this paper—the main points are also
illustrated in Fig. 1:

(1) For the first time, we provide a general definition of
the symmetry resolution of the OE in the presence

of a global U(1) symmetry. This is done formally in
Sec. III and Appendix B.

(2) We introduce a new method of analysis method that
allows us to measure the OE and SROE of the den-
sity matrix of a subsystem in a many-body quantum
system from the published experimental data of Bry-
dges et al. [7], presenting a U(1) conserved charge.
Namely, we employ the randomized-measurement
toolbox [48] and propose a new efficient method
to postprocess experimental data in order to extract
arbitrary higher-order density-matrix functionals of
the form Tr

(
O(n)ρ⊗n

)
, expressed in terms of an n-

copy operator O(n). A schematic of this procedure
is shown in Fig. 1(a) and its details are elabo-
rated in Sec. IV, as well as Appendixes C–E. This
tool is employed to extract the experimental results
presented in Figs. 1(b) and 1(c). Here, we show
the measured OE and SROE, as in Eq. (4), which
are supported by tensor-network simulations mod-
eling the full experiment, i.e., the open dynamics
of a long-range XY model starting from the Néel
state, with conserved magnetization along the z axis.
Our main observations of Sec. IV are summarized
here:

(a) We witness experimentally the entanglement
barrier of the OE and the SROE in the charge
sector q = 0 [Fig. 1(b)], for a bipartite subsys-
tem A ∪ B comprised of 4 out of N = 20 ions.
These barriers present bump structures due to
finite-size effects. For a smaller system with
N = 10, we observe a second growth of OE
after the first peak, as shown in Fig. 1(c). This
can be interpreted as an effect of quasiparti-
cles reflected at the boundary of the chain, as
described in Sec. IV D.

(b) We observe a qualitative agreement of the
SROE with the numerical results for charge
sectors q = ±1 at early times. The sizable devi-
ation between theory and experiment for N =
20 [Fig. 1(b)] is caused by the small populations
in the corresponding charge sectors and by the
low measurement statistics available from the
experiment.

(3) To gain insights into SROE and its own entan-
glement barrier, we provide a thorough theoretical
analysis in chains of noninteracting fermions, which
despite their simplicity, capture the main physi-
cal features of the OE and SROE. This is already
visible for small system sizes N , by comparing
Figs. 1(b) and 1(c) with Figs. 1(d) and 1(e), respec-
tively. Moreover, for these free models, we obtain
the general formula in Eq. (46), which governs
the evolution of the SROE. This formula allows
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(a)
(b) (c)

(d) (e) (f)

FIG. 1. An overview of the results. (a) A schematic of the method to postprocess the experimental data. After the quench dynamics,
randomized measurements are performed. The collected bit strings are grouped to construct batch shadows that provide estimates
of OE and SROE. (b),(c) Experimental results for the Rényi 2-OE [Eq. (4)] and its symmetry resolution [Eq. (14)] of a reduced
density matrix formed from a partition of (b) 4 ions out of 20 and (c) 10 ions from the data of Ref. [7] after the global quantum
quench. The points correspond to the experimental data, while the curves are numerical results obtained via tensor-network algorithms
with (solid) or without (dashed) dissipation considered. The entanglement barrier is visible for the total OE and the symmetry sector
q = 0 with N = 20. (d)–(f) Symmetry resolution of the OE of the reduced density matrix after a global quantum quench in a free-
fermion chain under unitary evolution. (d),(e) Symmetry resolution of the OE of the reduced density matrix after a global quantum
quench, for a 4 out of 20 (out of 10) sites chain. Comparing with the experimental results in (b) and (c), respectively, we can spot
several qualitative features of OE even though the model is short ranged and there is no dissipation. (f) Numerical data (circles)
with subsystem length � = 256, �A = �− �B = 120 compared with the quasiparticle prediction of Eq. (46) (continuous lines). This
plot shows the three main features of SROE in the thermodynamic limit, i.e., the barrier in each sector q, the time delay, and the
equipartition for small q. In the free-fermion plots, J is the hopping term and we consider, for the sake of simplicity, � = 1 and lattice
constant a = 1.

us to uncover three main physical effects, which
we expect to appear more generically in chains of
qubits, beyond the simple noninteracting fermion
ones:

(a) The appearance of a barrier for SROE in any
charge sector, which resembles the behavior of
the total OE

(b) A time delay for the onset of the SROE that
grows linearly with the charge sector of the
subsystem

(c) The effective equipartition in the scaling limit of
large time and subsystem size for small charges
[see Eq. (47)], where by equipartition we mean
that the SROE is equally distributed among the
different symmetry sectors

These effects are visible in Fig. 1(f). There, we plot
the OE and SROE of the reduced density matrix,
for a bipartition A ∪ B, where the numerical results
are obtained for a quench in the tight-binding model
from the Néel state, while the solid lines correspond
to Eq. (46).

III. OPERATOR ENTANGLEMENT AND
SYMMETRY RESOLUTION

In this section, we formally introduce the OE definition,
emphasize its connection to mixed-state entanglement, and
also define symmetry-resolved OE in the presence of an
additive global conserved charge.

A. Definition of operator entanglement

The OE can be defined for arbitrary operators acting on
a bipartite quantum system A ∪ B. However, for the sake of
simplicity and clarity, we present and discuss it here solely
for bipartite density operators ρAB.

Recall from Eq. (1) that every ρAB admits an operator
Schmidt decomposition

ρAB√
Tr(ρ2

AB)

=
R∑

i=1

λi OA,i ⊗ OB,i, (2)

where R = srank(ρAB) is the (operator) Schmidt rank,
λ1, . . . , λR > 0 are the Schmidt coefficients, and OA,i, as
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well as OB,i, denote orthonormal operator families on sub-
systems A and B, respectively. In general, for a Hermitian
density operator ρAB, these operators OA,j and OB,j can be
taken to be Hermitian themselves [33], although this is not
necessarily imposed.

In a similar way to the more widely known pure-state
case [80], the Schmidt values capture some form of entan-
glement that is present in the system. In fact, there is
an intimate connection between the two. The operator
Schmidt decomposition in Eq. (2) arises from first vec-

torizing the renormalized operator �AB = ρAB/

√
Tr(ρ2

AB)

(using the Choi-Jamiołkowski isomorphism [81,82]),

�AB =
∑

ij

(�AB)ij |i〉 〈j | �→ |�AB〉 =
∑

ij

(�AB)ij |i〉 |j 〉 ,

(3)

applying the ordinary Schmidt decomposition to the pure
ket vector |�AB〉, and eventually reverting the vectorization
to get back to the space of operators. This connection jus-
tifies the quantification of OE in terms of the distribution
of squared Schmidt values. More precisely, recalling that
with our choice of normalization in Eq. (2) the squared
Schmidt coefficients {λ2

i } define a normalized probability
distribution, we define the Rényi α-OE,

S(α)(ρAB) := 1
1 − α

log
R∑

i=1

(
λ2

i

)α
for α 	= 1, (4)

which in the limit α → 1 produces the (Shannon) OE,

S(ρAB) :=
R∑

i=1

−λ2
i log λ2

i . (5)

It is clear that a state ρAB has zero OE, S(ρAB) = 0, if and
only if it can be written as a product state of the form
ρAB = ρA ⊗ ρB. When this is not the case, we call the
state “operator entangled.” It is worthwhile emphasizing
that an operator-entangled (i.e., nonproduct) state may still
be nonentangled according to the standard terminology for
mixed-state entanglement [33].

B. Operator entanglement and entanglement criteria

As already pointed out above, there is an intimate con-
nection between OE and the more familiar concept of state
entanglement, where one is interested in showing that ρAB
cannot be written as a convex mixture of product states
ρAB =∑k αkρ

(k)
A ⊗ ρ

(k)
B and αk ≥ 0, and ρ(k)A and ρ(k)B are

subsystem density matrices (i.e., positive semidefinite and
unit trace) [33]. Let λi be the coefficients of the operator
Schmidt decomposition of ρAB, as introduced above. The
realignment or computable cross-norm criterion (CCNR)

[83–85] states that every separable (i.e., nonentangled)
state produces operator Schmidt coefficients λi that obey

∑
i

λi ≤ 1/
√

Tr
[
ρ2

AB

]
. (6)

Conversely, entanglement (across the bipartition A versus
B) must be present if this relation is violated. The con-
nection between the CCNR criterion and OE has been
recently developed in Ref. [65] where optimal experimen-
tally detectable entanglement criteria have been provided.
Here, we introduce a slightly weaker but much more com-
pact entanglement condition. Using the CCNR criterion,
we can prove that separability implies that the Rényi 2-
OE (Eq. (4) for α = 2) and the Rényi 2-entropy R(2) :=
− log Tr(ρ2

AB) must obey

S(2)(ρAB) ≤ − log
(
Tr
[
ρ2

AB

]) = R(2)(ρAB). (7)

Conversely, if S(2)(ρAB) > R(2)(ρAB), i.e., if ρAB is more
“operator mixed” than “state mixed” with respect to Rényi
2-entropies, ρAB is necessarily entangled. For details, see
Appendix A, where we also compare the detection power
of this method with other entanglement conditions and
present experimental results.

C. Symmetry-resolved operator entanglement

In the presence of a global symmetry, the OE of the oper-
ator ρAB can be split into different charge sectors, similarly
to that of the state entanglement [67,68].

This happens in particular for a global U(1) symmetry,
where the U(1) charge operator acting on A ∪ B is a sum
of the two charge operators acting on subsystems A and B,
i.e., QAB = QA + QB. From now on, by QA + QB we mean
QA ⊗ IB + IA ⊗ QB. If the density matrix ρAB commutes
with QAB, that is

[QA + QB, ρAB] = 0, (8)

then it becomes possible to reorganize the terms in the
Schmidt decomposition given in Eq. (2) according to their
“charge” q:

ρAB√
Tr[ρ2

AB]
=
∑

q

∑
j

λ
(q)
j O(q)

A,j ⊗ O(−q)
B,j , (9)

where
[
QA, O(q)

A,j

]
= q O(q)

A,j ,
[
QB, O(−q)

B,j

]
= −q O(−q)

B,j (10)

such that [QA + QB, O(q)
A,j ⊗ O(−q)

B,j ] = 0. Equations (9) and
(10) are proven in Appendix B. In particular, we show that
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the “charge” q that appears in these equations can be intro-
duced, through the vectorization technique introduced in
Eq. (3), based on the notion of a charge “superoperator”:

QAB = QAB ⊗ 1 − 1 ⊗ QT
AB. (11)

Namely, the values q are the eigenvalues of QA = QA ⊗
1 − 1 ⊗ QT

A, i.e., the restriction of QAB to the subsystem
A [67] [or, equivalently, the eigenvalues of the commutator
[QA, ·], as in Eq. (10)]. As we prove in Appendix B 4, using
language analogous to the symmetry resolution for a state
[67], the super-reduced density matrix TrB⊗B(|ρAB〉 〈ρAB|)
admits a block decomposition in the eigenspaces corre-
sponding to these charges q, which then leads to Eqs. (9)
and (10). We also provide an illustrative example of Eq.
(9) in Appendix B 5, starting from a three-qubit system.

Similarly to the non-symmetry-resolved case of Eq.
(2), the newly constructed operator families O(q)

A,j and

O(q)
B,j in Eq. (9) are orthonormal with respect to the

Hilbert-Schmidt inner product, i.e., Tr[(O(q1)
A,j1
)†O(q2)

A,j2
] =

Tr[(O(q1)
B,j1 )

†O(q2)
B,j2 ] = δq1,q2δj1,j2 . In contrast to Eq. (2), how-

ever, in the symmetry-resolved Schmidt decomposition
given in Eq. (9), these operators cannot always be taken
to be Hermitian.

By uniqueness of the Schmidt coefficients, the set of all
(nonzero) values {λ(q)j } altogether must be the same as the
set of values {λi} from Eq. (2). We can now define the total
weight of the terms at fixed q to be

p(q) :=
∑

j

(λ
(q)
j )

2. (12)

These weights satisfy
∑

q p(q) = 1 and give a probability
distribution over the different charge sectors. In terms of
that probability distribution, the (Shannon) OE from Eq.
(5) becomes

S(ρAB) =
∑

q

p(q)Sq(ρAB)+
∑

q

−p(q) log p(q), (13)

where the symmetry-resolved operator entanglement
(SROE) of ρAB in the charge sector q is

Sq(ρAB) := −
∑

j

(
(λ
(q)
j )

2

p(q)

)
log

(
(λ
(q)
j )

2

p(q)

)
. (14)

Similarly, for α 	= 1, we define the Rényi α-SROE to be

S(α)q (ρAB) := 1
1 − α

log

⎛
⎝∑

j

(
(λ
(q)
j )

2

p(q)

)α⎞
⎠ . (15)

Note, however, that a formula analogous to Eq. (13) for a
Rényi index α 	= 1, in terms of p(q), cannot be written.

Here, let us explain the meaning of Eq. (13). In an
extended system in which the number of particles is con-
served, there are two sources of entanglement: number
entanglement (related to the particle-number fluctuations
between the parts of the system) and configurational entan-
glement (correlations due to the different arrangements of
the particles in the system), which in Eq. (13) are the
two terms on the right-hand side. This decomposition of
OE helps us to understand the OE of the density matrix
of one-dimensional many-body models undergoing dis-
sipative evolution [32], in same the way that standard
state-entanglement decomposition is often used to explain
the nonequilibrium dynamics of disordered systems and
localization phenomena [11].

Another important remark is that in this paper, we focus
on a density matrix on a bipartite subsystem A ∪ B that
results from tracing out an additional system C. Let us
observe that ρAB commutes with QAB as soon as the full
system A ∪ B ∪ C is in a pure state, which is also an eigen-
state of the total U(1) charge operator QA + QB + QC.
Then, tracing out the degrees of freedom in C automati-
cally yields a reduced density matrix ρAB, which is block
diagonal in QAB. This, in turn, ensures that the SROE
is well defined. This reasoning also extends to mixed
states that are block diagonal with respect to the charge
operator: if the density matrix of the full system, ρABC,
commutes with QA + QB + QC, then ρAB = TrC(ρABC)

commutes with QAB and the above discussion also
applies. This is because [QAB, ρAB] = TrC([QAB, ρABC]) =
TrC ([QA + QB + QC, ρABC])− TrC ([QC, ρABC]) = −TrC
([QC, ρABC]) and it vanishes due to the cyclicity of the
partial trace over C. In this paper, we always deal with full-
system density matrices ρABC that commute with QA +
QB + QC.

IV. OPERATOR ENTANGLEMENT IN THE
QUENCH DYNAMICS OF TRAPPED IONS

Let us now come to one of the main results of the paper:
the development of tractable methods to extract Rényi α-
OE in an experiment and the corresponding experimental
observations of the entanglement barriers with Rényi 2-OE
and its symmetry resolution.

In Sec. IV A we detail the experimental protocol of
classical shadows and, in Sec. IV B, the associated effi-
cient method for the postprocessing of the measurement
data, dubbed the batch-shadows estimator. We discuss the
experimental results In Secs. IV C and IV D.

A. Rényi OE from randomized measurements

In the previous sections, we have expressed OE as a
function of the Schmidt spectrum {λi}. In order to express
estimators of these quantities based on experimental data,
one needs to rewrite them into a functional of the density
matrix ρAB. In particular, the Rényi 2-OE is a fourth-order
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function of ρAB that is explicitly written as follows [29,65]:

S(2) = − log
Tr
(
S ρ⊗4

AB

)

Tr(ρ2
AB)

2
= S̃(2)(ρAB)− 2R(2)(ρAB),

(16)

where S = S
(A)
1,4 ⊗ S

(A)
2,3 ⊗ S

(B)
1,2 ⊗ S

(B)
3,4 is defined in terms of

the swap operators S
(X )
k,l that swap the kth and lth copies of

system X (see Appendix A). We also define the unnormal-
ized Rényi 2-OE S̃(2)(ρAB) = − log

(
Tr(Sρ⊗4

AB)
)

and we

note that R(2)(ρAB) can also be written in a similar form,
as R(2)(ρAB) = − log

(
Tr(S(AB)

1,2 ρ⊗2
AB)
)

. We present similar
expressions for the SROE in Appendix E.

Such functionals on N -qubit density matrices can be
accessed in qubit experiments via randomized measure-
ments [48,49,65], as shown in Fig. 1(a). We start with
the preparation of our N -qubit state in the experiment.
We apply local random unitaries ui (i = 1, . . . , N ), sam-
pled from the circular unitary ensemble (CUE) or a unitary
2-design, to each qubit separately and subsequently mea-
sure them in the z basis. The measurement outcomes are
recorded as a bit string s = s1, . . . , sN . We repeat this pro-
cedure for a set of Nu distinct unitaries u(r) (of the form
u1 ⊗ · · · ⊗ uN ) and collect, for each thus applied unitary,
NM bit strings s(r,m) = s(r,m)

1 , . . . , s(r,m)
N with r = 1, . . . , Nu

and m = 1, . . . , NM . These recorded data can then be used
to construct operators:

ρ̂(r,m) =
N⊗

i=1

[
3(u(r)i )

†
∣∣∣s(r,m)

i

〉 〈
s(r,m)

i

∣∣∣ (u(r)i )− I2

]
. (17)

These operators are called classical shadows [49] and con-
stitute independent unbiased estimators of the underlying
quantum state, in the sense that E[ρ̂(r,m)] = ρ, where the
expectation value is taken over the applied unitaries and
measurement outcomes (see also Appendix C). One can
also perform appropriate robust estimations in the pres-
ence of an unknown noise channel by constructing robust
versions of these classical shadows [86–88].

In order to measure functions Xn = Tr(O(n)ρ⊗n) that are
expectation values of a n-copy observable O(n) [here, in
particular, we are interested in O(4) = S on four copies;
see Eq. (16)], one can define a U-statistics estimator X̂n,
given by

X̂n = 1
n!

(
Nu

n

)−1 ∑
r1 	=···	=rn

Tr
[
O(n)

n⊗
i=1

ρ̂(ri)
]
, (18)

where we introduce the classical shadow ρ̂(r) = ENM
[ρ̂(r,m)] constructed by averaging over all measured bit
strings for an applied unitary u(r). The estimator X̂n is
unbiased, i.e., E[X̂n] = Xn [49].

This estimator has been used to access experimentally
properties involving observables on up to n = 3 copies
[8,52,53]. However, the underlying procedure quickly
becomes computationally unfeasible and impractical, as it
requires summing over all possible combinations of n dis-
tinct shadows ρ̂(r1), . . . , ρ̂(rn) for ri ∈ [1, . . . , Nu]. Further-
more, its run time scales with the number of terms involved
in the above sum: O(N n

u ), a number that grows expo-
nentially with the polynomial degree n. In practice, this
scaling prevents us from extracting the Rényi 2-OE from
the experimental data of Ref. [7] (as n > 3). Thus we are
in dire need of an alternative method with a substantially
reduced run time.

B. Fast estimation of high-order functionals using
randomized measurements data via batch shadows

In order to improve the postprocessing run time of
classical shadows, we propose to form b = 1, . . . , n′ ≥ n
“batch shadows,” each of which is an average of Nu/n′
shadows (assuming, for simplicity, that Nu/n′ is an inte-
ger): ρ̃(b) = (n′/Nu)

∑bNu/n′
r=(b−1)Nu/n′+1 ρ̂

(r). This allows us to
define an alternative unbiased estimator

X̃ (n′)
n = 1

n!

(
n′

n

)−1 ∑
b1 	=···	=bn

Tr
[
O(n)

n⊗
i=1

ρ̃(bi)
]
, (19)

which is different from Eq. (18) and easier to compute. The
first step involves the construction of the n′ batch shadows
ρ̃(b), which obey E[ρ̃(b)] = ρ for all batches b = 1, . . . , n′.
This is achieved by summing up all classical shadows that
belong to a respective batch—a subroutine that requires
O(Nu) arithmetic operations (provided that the sample
complexity Nu exceeds the total number of degrees of
freedom in the reduced density matrix). These individ-
ual summation steps can obviously be parallelized on n′
cores. Note also that, in contrast to the bare classical shad-
ows ρ̂(r,m), the batch shadows ρ̃(b) are stored in memory
as dense 2N × 2N matrices. For typical memory available
on current hardware, this limits our fast estimation meth-
ods to system sizes of up to N ≈ 15 qubits. In principle,
for N > 15, such memory requirements can be reduced by,
for instance, compressing the batch shadows with matrix-
product operators [89] (at the cost of approximating the
underlying quantum state with a finite OE entropy).

The second step requires the evaluation of X̃ (n′)
n from the

constructed batch shadows, which scales as O(n′n). Thus
by choosing n′ = n and assuming that Nu � n′n, we obtain
the fastest estimator with an evaluation time O(Nu). This
is a drastic run-time improvement compared to the origi-
nal U-statistics estimator in Eq. (18): O(Nu) steps (new)
versus O(N n

u ) steps (old). As we increase n′, one starts to
incorporate more terms with distinct combinations of n dif-
ferent shadows that were not previously considered. This
progression terminates in an eventual convergence to the
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original U-statistics estimator, i.e., X̃ (Nu)
n = X̂n, as well as

in an increase in the postprocessing run time. In order to
gauge the performance of the estimator X̂ (n′)

n , we study its
statistical-error behavior.

The statistical errors in randomized measurements arise
due to applying a finite number of random unitaries Nu
and performing a finite number of readout measurements
NM . The statistical errors of any estimator X̂ are governed
by its variance Var[X̂ ]. One can provide rigorous perfor-
mance guarantees to estimate Xn with an accuracy ε from
our protocol by bounding this variance and subsequently
applying Chebyshev’s inequality: Pr[|X̂ (n′)

n − Xn| ≥ ε] ≤
Var[X̂ (n′)

n ]/ε2. In Appendix C, we provide a general frame-
work that can be applied to calculate variance bounds on
the batch-shadow estimator for arbitrary multicopy opera-
tors. We can then provide rigorous performance guarantees
for our estimation formulas, which we can also compare
with the results for classical shadows presented in Ref.
[90].

From this study, in the limit of NM = 1, as elaborated in
Appendix C 2, we note that Var[X̂ (n′)

n ] and Var[X̂n] have the
same scaling behavior in the high-accuracy regime of ε →
0: that is, at first order in 1/Nu, they both scale ∝ n2/Nu
with the same proportionality constant. Moreover, for n′ =
n, at second order in 1/Nu, Var[X̃ (n)

n ] exceeds Var[X̂n]
by only a small factor of n/(n − 1). This shows that the
required number of measurements to achieve a given accu-
racy ε is essentially the same for the fast batch-shadow
estimator [Eq. (19)] and the standard shadow estimator
[Eq. (18)].

Of course, we can apply our general variance bound for-
malism to the quantities of interest for this work—O(2) =
S
(AB)
1,2 and O(4) = S—that give access to R(2)(ρAB) and

S̃(2)(ρAB), respectively. In the case of Clifford shadows
(i.e., each random unitary is chosen uniformly from the
single-qubit Clifford group) and n′ = n, we find that in
order to estimate them with a confidence interval of δ, i.e.,
to make sure that Pr[|X̃ (n)

n − Xn| ≥ ε] ≤ δ, we require a
number of measurements that scale as Nu ∝ 3N/ε2 with N
(for further details, see Appendixes C 3 and C 4). Hence,
in the worst-case scenario, our measurement bound of the
batch-shadow estimator of X̃ (n)

n scales as 3N irrespective
of the order n = 2, 4. For evaluating S̃(2)(ρAB), in particu-
lar, this measurement bound is a polynomial improvement
over the best previously obtained bounds, which only
achieve 4N [65]. We conjecture that this desirable scal-
ing persists when we increase α to evaluate higher-order
Rényi α-OE. We also complement these rigorous bounds
with small-scale numerical simulations in Appendix C 5.

C. Experimental results using batch shadows

The batch-shadow formalism allows us to extract
experimentally the Rényi 2-OE along with its symmetry

resolution. We perform our set of observations by repro-
cessing batch shadows from the randomized-measurement
data of two sets of experiments, where a global quench
with a long-range XY model has been realized on a
string of 10 and 20 qubits (ions), respectively [7]. The
initial state was a Néel state, |ψ〉 = |01〉⊗N/2, with van-
ishing operator (and state) entanglement entropy. The
global quench was followed by the implementation of
randomized-measurement protocol involving a total of
Nu = 500 Haar-random unitaries. For each of the applied
unitaries, NM = 150 bit-string measurements were carried
out. Details on the modeling of quench dynamics with
tensor-network algorithms and the protocol are discussed
in Appendix D.

We consider two bipartite reduced density matrices ρAB
defined on the subsystems A = [2, 3] and B = [4, 5] and
A = [8, 9] and B = [10, 11] for a total chain of 10 and 20
ions, respectively, where we label the ions along the chain
from 1 to N . Our observations remain unchanged for other
partitions. Figures 1(b) and 1(c) and Fig. 2 show the exper-
imental results with corresponding numerical simulations
both with and without decoherence of the experiment. Fig-
ures 2(a) and 2(b) highlight the extracted Rényi 2-OE with
the simplest batch-shadow estimator (n′ = 4).

We first observe the entanglement barrier for the consid-
ered partition of the 20-ion system in Figs. 1(b) and 2(a).
We observe a barrier composed of a growth phase from
t = 0 to t ≈ 3 ms and a decay phase from t ≈ 3 ms to the
last data point at t = 10 ms. The peak at t ≈ 3 ms actually
looks more like a double peak with maxima at t ≈ 1.8 ms
and t ≈ 3.8 ms. We interpret this as oscillations on top of
the main barrier caused by the small size of subsystems A
and B. This interpretation is supported by the fact that sim-
ilar finite-size effects are found in our free-fermion model,
as shown in Fig. 2(d) (see also Sec. V). The growth phase
at early times signals the creation of correlations between
the two subsystems A and B, while the decay phase reflects
the fact that ρAB goes toward a thermal-like density matrix
with small OE. Since the system is finite, we also expect
revivals of the OE at longer times; however, such revivals
are not yet visible in the available time window. The bar-
rier can also be understood as a competition between the
terms S̃(2)(ρAB) and R(2)(ρAB) in the respective regimes, as
shown in Fig. 2(c) [36]. In the growth phase, the unnormal-
ized Rényi 2-OE S̃(2)(ρAB) grows at a faster rate compared
to the state entropy 2R(2)(ρAB). In the decay phase, this
behavior is inverted. These general features are consistent
with the theoretical predictions of different models shown
in Refs. [29,36,91].

Comparing Figs. 2(a) and 2(b), we see, however, that in
the smaller system of 10 ions, no similar barrier is found. In
particular, we do not observe the decay phase. We discuss
this case in more detail in Sec. IV D.

Overall, Figs. 2(b) and 2(d) show excellent agreement of
the experimental data with the numerically modeled results
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FIG. 2. Additional experimental observations: (a),(b) the mea-
sured Rényi 2-OE and, correspondingly, (c),(d) the measured
values of S̃(2)(ρAB) and R(2)(ρAB) relating to Rényi 2-OE as in
Eq. (16) for a reduced density matrix of four ions from a total
system consisting of N = 20 (left panels) and N = 10 (right pan-
els). We observe the two phases of the entanglement barrier,
which are separated by a black vertical dashed line for (a) and (c),
given by: (1) the growth phase followed by (2) the decay phase.
(e),(f) The corresponding populations p(q) for symmetry sectors
q = 0, ±1, on a reduced density matrix of four ions taken from
their respective total systems of N = 20 and N = 10. The points
show experimental results with the error bars calculated using
jackknife resampling. The lines correspond to numerical simula-
tions of the unitary dynamics (dashed) and including dissipation
(solid).

for the 10-ion experiment. On the other hand, it is quite sur-
prising to see that even though the individual estimations
of S̃(2)(ρAB) and R(2)(ρAB) from the 20-ion experiment as
shown in Fig. 2(c) have systematic shifts of the experimen-
tally measured values, likely caused due to an imperfect
modeling of decoherence during the experiment and the
measurement protocol, the corresponding measured Réyni
2-OE shows quite good agreement with the theoretical
model, as in Fig. 2(a). This suggests a robustness fea-
ture of the Rényi 2-OE where errors in estimations of the
two terms compensate each other. We also remark that the
measured values of Rényi 2-OE are lower, as shown in
Figs. 2(a) and 2(b) from the numerical simulations of the
experiment.

For the present model, the conserved quantity is the
magnetization, i.e., QAB =∑i∈AB σ

z
i , where σ z

i is the z-
Pauli matrix acting on the ion qubit i (cf. Appendix D).

The corresponding symmetry resolutions for the con-
sidered bipartitions of N = 20 and N = 10 ions are
shown in Figs. 1(b) and 1(c). Their respective popula-
tions in a given symmetry sector q are given by p(q) =
Tr
(
�qTrB(|ρAB〉 〈ρAB|))/Tr(ρ2

AB), where �q is the projec-
tor onto the eigenspace of the charge sector q for system A
(q = 0 being the sector initially populated). This is high-
lighted in Figs. 2(e) and 2(f), respectively. At t = 0, we
see that the q = 0 sector is substantially populated, while
the other sectors with q = ±1 increase in population as a
function of time. In particular, for the 20-ion system, as
shown in Fig. 2(e), we observe very low population for the
section q = ±1, as it decays as a function of time. This and
the finite-measurement statistics available from the experi-
ment prevent us from resolving the experimental points for
the symmetry-resolution sector of q = ±1 for later times.
In general, we also observe, from Figs. 1(b) and 1(c), that
the sector q = 0 follows the features of the Rényi 2-OE.
This translates, as shown in Fig. 1(b), to an entanglement
barrier for the q = 0 sector for the 20-ion system. One can
also note the absence of the barrier for the q = 0 sector
from the symmetry resolution of the 10-ion system.

D. Interpretation in the quasiparticle picture

Interestingly, our experimental results can also be inter-
preted based on free-fermion calculations detailed in Sec.
V, with which we can qualitatively reproduce the behavior
of the OE and the SROE for systems of 10 and 20 qubits.
The analogy between the experimental setup and our free-
fermion model originates in the fact that the breaking of
integrability in the experiment is weak [92,93]. There-
fore, the short-time dynamics are comparable to those of
an integrable system, where entanglement generation can
be qualitatively understood in terms of entangled pairs
of quasiparticles propagating freely through the system
[21]. Deviations from integrable dynamics become rele-
vant only on longer time scales, which are not accessible
with the available data. As pointed out above, comparing
Figs. 1(b) and 1(d) for 20 qubits and 20 fermionic sites,
respectively, we observe the same barrier shape for the OE,
with oscillations due to the small subsystem size. The same
barrier is found for the SROE for q = 0, while for q = ±1,
there is no apparent decay of the OE at long times.

We now come back to the fact that we do not observe
a single-peaked barrier for 10 ions [see Figs. 1(c) and
2(b)]. Importantly, this feature is also noticeable in our
free-fermion simulations with 10 sites [see Fig. 1(e)].
Instead of a single barrier, the free-fermion OE displays
a double-peaked shape. The second peak can be under-
stood from a quasiparticle picture as a consequence of the
subsystem A being particularly close to the boundary, as
we now explain.

Recall that A = [2, 3] and B = [4, 5] for the chain of 10
ions, with ions labeled from 1 to 10. Importantly, part C
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then consists of two asymmetric pieces, C = {1} ∪ [6, 10],
with a very short domain on the left and a longer one
on the right. The first growth phase of the OE is inter-
preted as originating from pairs of quasiparticles, initially
located at the same position, that travel through the sys-
tem in opposite directions and generate entanglement when
one member of the pair is in A and the other is in B. This
interpretation of entanglement growth is usually given for
the standard entanglement entropy [20] but also carries
over to the OE. After the OE reaches its first maximum,
it decreases, because some quasiparticles that formerly
belonged to pairs shared between A and B arrive in C and
therefore stop contributing to the OE of ρAB. If subsystems
A and B were far away from the boundaries, then the OE
would ultimately go to zero, as the number of pairs shared
between A and B would eventually vanish. This does not
happen here, because the particles that escape from A to C
(i.e., go from site 2 to site 1 in the chain) are soon reflected
against the left boundary of the system. Consequently, they
come back and are reinjected into A. As a result, the OE
grows again, which explains the second peak in Fig. 1(e).
The decay of that second peak occurs because, after the
reflection, both members of a pair travel to the right, so
that they ultimately escape to the right half system [6, 10].

The decay of the second peak is not visible in the experi-
ment [see Fig. 1(c)]. Based on our numerical simulations of
the experiment, as shown in Fig. 2(b), we observe a decay
occurring at a later time, which is not accessible within the
time window of the 10-ion experiment.

It should be possible to adapt the quasiparticle picture to
describe both the experimental data and our free-fermion
results more quantitatively, following what is done for the
time evolution of the entanglement entropy in nearly inte-
grable dynamics; see, e.g., Ref. [94], which implements
previous ideas for local observables [95]. This, however,
is far beyond the scope of this paper.

V. SYMMETRY-RESOLVED OPERATOR
ENTANGLEMENT IN FREE-FERMION CHAINS

So far, we have presented results for finite-size sys-
tems, in direct connection with the experimental setup.
We show in Fig. 1 that the qualitative features of the
trapped-ion experimental setup can also be observed in
free-fermion chains under unitary evolution, despite the
fact that these free-fermion models are short ranged and
have no dissipation.

This raises the question as to whether one can under-
stand more about the OE and the SROE of the reduced
density matrix by studying free-fermion chains in the
thermodynamic limit. In this section, we show that the
thermodynamic limit can be tackled analytically, unveil-
ing some interesting properties of the SROE, such as the
time delay of the charge sectors or the equipartition.

A direct analytical calculation of the SROE from the
definition given in Eq. (14) is difficult but we can apply
a trick similar to what has been done for the standard
entanglement resolution [67,68,76,96], consisting in com-
puting instead the charged moments of the reduced density
matrix. Using the vectorization of the operator ρAB, |ρAB〉,
the object that we want to compute is

Zα(q) =
∑

j

(λ
(q)
j )

2α = Tr[�q (TrB⊗B(|ρAB〉 〈ρAB|))α]
(Tr[ρ2

AB])α
,

(20)

where q labels the (integer) eigenvalues of QA and �q is
the projector on the corresponding eigenspace of QA, as
already mentioned above. To do so, we use the Fourier
representation of �q,

�q =
∫ π

−π

dθ
2π

e−iqθeiθQA . (21)

Plugging Eq. (21) into Eq. (20), we obtain

Zα(q) =
∫ π

−π

dθ
2π

e−iqθZα(θ), (22)

where the charged moment Zα(θ) is defined as

Zα(θ) = 1
(Tr[ρ2

AB])α
Tr[(TrB⊗B(|ρAB〉 〈ρAB|))α eiθQA].

(23)

The charged moment is the main object that we need to
evaluate; we explain how to do so in Sec. V A. In terms of
Eq. (20), the SROE reads

S(α)q (ρAB) = 1
1 − α

log
Zα(q)

[Z1(q)]α
, (24)

while in terms of Eq. (23) the total OE is

S(α)(ρAB) = 1
1 − α

log Zα(0). (25)

A. Free-fermion techniques for the OE

For the eigenstates of quadratic lattice Hamiltonians,
it is possible to compute the entanglement entropies in
terms of the eigenvalues of the correlation matrix of the
subsystem [97,98]. This trick can also be applied for the
computation of the OE and, more generally, of the charged
moments in Eq. (23).
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Let us take a free-fermion chain of length N with U(1)
symmetry, described by the Hamiltonian

H = −J
2

N∑
i=1

(c†
i+1ci + h.c.), (26)

where c†
i (ci) is the creation (annihilation) operator such

that the anticommutator obeys {ci, c†
j } = δij and also

cN+1 = c1, c†
N+1 = c†

1, i.e., we impose periodic boundary
conditions. For the sake of simplicity, we set J = 1 from
now on and remind the reader that we do the same for the
reduced Planck constant (� = 1) and the lattice constant
a = 1. The reduced density matrix ρAB for a subsystem
A ∪ B, where A ∪ B = [1, �A] ∪ [�A + 1, �A + �B], consist-
ing of two adjacent intervals, can be put in a diagonal form
as

ρAB =
�A+�B⊗

k=1

e−λkd†
k dk

1 + e−λk
, (27)

where e−λk = nk/(1 − nk), with nk being the occupation
number at a given wave vector k and the dk defined as
fermionic operators satisfying {dk, d†

k′ } = δkk′ . It is more
convenient to write Eq. (27) as

ρAB =
�A+�B⊗

k=1

|0〉k 〈0|k + e−λk |1〉k 〈1|k
1 + e−λk

=
�A+�B⊗

k=1

[(1 − nk) |0〉k 〈0|k + nk |1〉k 〈1|k], (28)

so that by applying the vectorization trick in Eq. (3) for
ρAB, we obtain

|ρAB〉√
Tr[ρ2

AB]
=

�A+�B⊗
k=1

[(1 − nk) |0〉k |0〉k̃ + nk |1〉k |1〉k̃]√
n2

k + (1 − nk)2

=
�A+�B⊗

k=1

[1 − nk + nkd†
k d̃†

k ] |0〉√
n2

k + (1 − nk)2
, (29)

where the d̃k operators are copies of the dk operators intro-
duced in the vectorization process and |0〉 is the state
annihilated by all the dk and d̃k operators. This is the
starting pure-ket vector from which we can build the
(super-)reduced density matrix TrB⊗B(|ρAB〉 〈ρAB|). The

correlation matrix of the state |ρAB〉 reads

Ckk′ = 〈ρAB|
(

d†
k

d̃k

)(
dk′ d̃†

k′
)

|ρAB〉

= δkk′

n2
k + (1 − nk)2

(
n2

k nk(1 − nk)

nk(1 − nk) (1 − nk)
2

)
.

(30)

In the basis of dk and d̃k operators, the supercharge opera-
tor takes the form

Q = (
∑

k

d†
k dk)⊗ 1 − 1 ⊗ (

∑
k

d̃†
k d̃k)

T. (31)

We can collect the operators into the vector f =
(d1, . . . d�A+�B , d̃†

1 . . . d̃
†
�A+�B

)T (making the identity opera-
tors in Eq. (31) implicit, for simplicity, and noting we can
ignore the transpose) such that Q reads Q = f†f − (�A +
�B), where �A + �B just acts as an additive constant here.

At this point, we can compute the 2(�A + �B)× 2(�A +
�B) correlation matrix as

CAB =
�A+�B⊕

k=1

Ckk, (32)

and by doing a Fourier transform, we can write CAB in the
spatial basis. To evaluate the charged moments in Eq. (23),
we just have to focus on subsystem A, i.e., we can restrict
the supercharge operator to QA and the Fourier transform
of the correlation matrix in Eq. (32) to the subspace corre-
sponding to subsystem A. Diagonalizing the latter matrix,
we obtain 2�A real eigenvalues ξi between 0 and 1.

Therefore, one can compute the charged moments of the
reduced density matrix built from |ρAB〉 in terms of the
eigenvalues ξi as

Zα(θ) = e−iθ(�A+�B)
2�A∏
a=1

(ξαa eiθ + (1 − ξa)
α). (33)

Using Eqs. (22) and (24), we can compute exactly the
SROE for the reduced density matrix of a free-fermion
chain. The same trick also allows the computation of the
total Rényi α-OE, as

S(α)(ρAB) = 1
1 − α

2�A∑
a=1

log[ξαa + (1 − ξa)
α]. (34)

B. Charged moments: A quasiparticle picture

Let us now consider a global quantum quench from an
initial conformal invariant state with an evolution Hamil-
tonian given by the continuum limit of Eq. (26) [99]. The
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emerging quasiparticles move with a single velocity and, in
the space-time scaling limit t, �A, �B � τ0 (with τ0 an ultra-
violet cutoff), we can introduce the function (assuming,
without loss of generality, �A ≤ �B)

f�A,�B(t) =

⎧
⎪⎨
⎪⎩

t, for 0 ≤ 2t ≤ �A,
�A/2, for �A ≤ 2t ≤ �B,
(�A + �B)/2 − t, for �B ≤ 2t ≤ (�A + �B),
0, for (�A + �B) ≤ 2t,

(35)

so that the charged moments read

log Zα(θ) = π�θ
α

τ0
f�A,�B(t), (36)

where [67]

�θ
α = 1

12

(
α − 1

α

)
+ 1
α

(
θ

2π

)2

. (37)

From this result, which is valid for a conformal field the-
ory (CFT), one can formulate a quasiparticle picture for
the charged moments of free-fermion models with global
conserved U(1) charge, the quench dynamics of which
start from initial states that are also invariant under U(1)
symmetry. This is obtained from the CFT result in Eq.
(36) by first replacing t → |v(k)|t, with |v(k)| being the
velocity of quasiparticles, which for conformal invariant
systems is fixed to be v(k) = 1. Then, we should inte-
grate over the quasiparticles with quasimomentum k but
properly accounting for the density (in momentum space)
of the thermodynamic charged moments zα(k, θ) in the
stationary state [21,100,101]. The latter can be inferred
from the results for charged moments of state entanglement
[69,70] and the final result is the replacement π�θ

α/τ0 →
2zα(k, θ):

log Zα(θ) =
∫ π

−π

dk
2π

2zα(k, θ)f�A,�B(|v(k)|t). (38)

In order to have a predictive formula, one has to fix the
function zα(k, θ) in Eq. (38). Here, we focus on out-of-
equilibrium protocols for free-fermion models, the time
evolution of which is given by the Hamiltonian in Eq.
(26). In this case, zα(k, θ) is determined from the popu-
lation of the modes nk of the postquench Hamiltonian in
the stationary state [101,102] and it reads

zα(k, θ) = log[eiθnαk + (1 − nk)
α] − iθ/2. (39)

For concreteness, from now on we restrict to a quench from
the Néel state, for which nk = 1/2 for all k [70], so that the

charged moment [in Eq. (38)] becomes

log Zα(θ) = [2(1 − α) log 2 + 2 log(cos(θ/2))
]J (t)

(40)

where J (t) is defined as

J (t) =
∫ π

−π

dk
2π

f�A,�B(|v(k)|t) (41)

and |v(k)| = | sin(k)|. The function J (t) displays the same
qualitative features of Eq. (36), where |v(k)| = 1: J (t)
grows until t < �A/2, then presents a plateau barrier in
the range �A/2 < t < �B/2, then decays again for �B/2 <
t < (�A + �B)/2, and, eventually, saturates to 0 for t >
(�A + �B)/2. In other words, J (t) behaves as a barrier, a
characteristic that we also find for the SROE. For the sake
of completeness, we report explicitly the result for the total
OE using Eq. (25), which reads

Sα(ρAB) = 2 log 2 J (t). (42)

We observe that the result does not depend on α, which
suggests that, in the scaling limit in which we are inter-
ested, the spectrum of the super-reduced density matrix
becomes flat. We plot this result against the exact lattice
calculations in Fig. 1(f).

C. Time delay, barrier, and equipartition

From the computation of the charged moments done
above, the symmetry-resolved moments read

Zα(q) = 22(1−α)J (t)
∫ π

−π

dθ
2π

e−iθq
(

cos
θ

2

)2J (t)
. (43)

As already pointed out for the usual symmetry-resolved
entropies in Ref. [69,70], this expression formally assumes
negative values for J (t) < |q|, so it means that we have
to replace it with Zα(q) = 0. This allows us to identify a
delay time tD such that the SROE in a given charge sec-
tor starts only after tD. The equation J (tD) = |q| reads [as
long as vM tD < 1

2 Min(�A, �B) self-consistently and vM ≡
max(v(k)) = 1]

∫ π

−π

dk
2π

| sin(k)|tD = |q| (44)

and we can conclude that tD = π |q|/2 for |q| <
Min(�A, �B)/π . Therefore, and after simplification, we find
that the SROE is given by

S(α)q (ρAB) =
{

0, (t ≤ tD),
2J (t) log 2 + logZ1(q), (t > tD).

(45)

We remark that this expression does not depend on the
Rényi index α, such as the total OE in Eq. (25). This
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implies that the spectrum of the super-reduced density
matrix is flat in each charge sector, similarly to what hap-
pens for standard symmetry-resolved entropies (see Ref.
[70]). Note that for large J (t), i.e., in the scaling limit
J (t) > |q| � 1, the integral in Eq. (43) can be com-
puted by saddle-point approximation, obtaining (for more
details, see Ref. [70], where the same integral appears)

S(α)q (ρAB) = 2J (t)h
(

1 + q/J (t)
2

)
, (46)

where h(x) = −x log x − (1 − x) log(1 − x) is the well-
known binary entropy function. The comparison between
this formula and the numerical results in the tight-binding
model chain is displayed in the top-right panel of Fig. 1(f).
The solid lines correspond to Eq. (46) for t > tD, obtained
from the saddle-point approximation of Eq. (43). The
agreement is good and we can also observe that there are
some charge sectors with zero entanglement for t < tD.
However, for t > (�A + �B)/2, the discrepancy between
the numerics and the analytical prediction in Eq. (46) is
larger. One explanation could be that at finite �A and t,
the data exhibit some small corrections and our prediction
is recovered only in the scaling limit t, �A, �B → ∞, with
their ratio fixed.

For |q| � J (t), we find from Eq. (46) that

S(α)q (ρAB) = J (t)
(

2 log 2 − q2

J (t)2
)

. (47)

This result states that for small |q|, there is an effective
equipartition of the OE with violations of order q2/J (t).
This is also visible from Fig. 1(f), where we observe that,
for small q, the total OE and the SROE are almost indis-
tinguishable. We compare the exact result for the SROE
in the scaling limit reported in Eq. (45) (solid lines),
with its asymptotic expansions in Fig. 3. We note that
as � = �A + �B increases (here, �A = �B), the approxima-
tion in Eq. (46) (long-dashed lines) improves, since J (t)
also increases. The short-dashed lines represent the further
approximation in Eq. (47), which also improves as J (t)
increases for the small charge value (q = 4) that we plot.
We observe that the SROE is small both at short and at
large times and that it blows up linearly in the transient
regime t ≤ (�A + �B)/2, as for the total OE [29].

We conclude by commenting on Figs. 1(d) and 1(e),
obtained through the free-fermion techniques described in
Sec. V A. We show that the dynamics of the SROE in
the different charge sectors are affected by the finite size
of the system. In particular, for N = 20, one can observe
the entanglement barrier only in the sector q = 0, while
for q = 1, the absence of the decay is consistent with the
experimental results of Fig. 1(b). Moreover, for this system
size, the total OE presents a single peak, while for N = 10,
we note the presence of two peaks in the total OE, which

FIG. 3. The SROE in the scaling limit: a comparison between
the analytical expression in Eq. (45) (solid line) and its asymp-
totic approximation in Eqs. (46) (long-dashed line) and (47)
(short-dashed line). Here, q = 4 and � = �A + �B with �A = �B;
the blue line corresponds to � = 256, while the red ones to
� = 128.

can be justified by the quasiparticle picture explained at the
end of Sec. IV C.

VI. CONCLUSIONS

This paper is devoted to a thorough analysis regarding
the OE of a reduced density matrix after a global quan-
tum quench, as well as its symmetry resolution. These
quantities first grow linearly in time, before they decrease
again and eventually saturate to a finite value. The pres-
ence of such an entanglement barrier is strongly affected
by the finite size of the system, as we demonstrate here,
based on experimental data. This feature is also visible for
free-fermion systems evolving under a unitary evolution.

The experimental results, also supported by tensor-
network simulations, are obtained by a novel postprocess-
ing method of randomized-measurement data, dubbed the
batch-shadow estimator, that has practical applications to
the probing of the nonlinear properties of quantum many-
body systems. This method provides a faster and more effi-
cient data-treatment technique with respect to the already
known ones [48] and enables us to actually estimate the
OE from existing experimental data [7].

We observe the presence of the entanglement barrier of
the reduced density matrix of a partition of four ions out of
N = 20, both for the total OE and its symmetry-resolved
counterpart (SROE) in the charge sector q = 0. However,
finite-size effects prevent the experimental observation of
such a barrier in the charge sectors q = ±1 and for q = 0
in the case of N = 10. For N = 20, in the charge sectors
q = ±1, the available measurement statistics only allow us
to explore the early-time behavior of the SROE.

For small system sizes N , the phenomenology discussed
in the previous paragraph can be also observed in
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free-fermion systems without dissipation. Therefore,
guided by conformal field theory and free-fermion tech-
niques, we show that the semiclassical picture of mov-
ing quasiparticles [20,21] can be adapted to this context.
This leads to a general conjecture for the charged OEs,
the Fourier transform of which gives the desired SROE.
Beyond the barrier, we observe a time delay proportional
to the charge sector and an effective equipartition for
small q.

Because of this phenomenology, we expect our main
physical findings to show up for rather generic quench pro-
tocols. However, it would be very interesting to engineer
situations in which some of them are absent, e.g., with
the entanglement barrier appearing only in certain charge
sectors, breaking equipartition.

It is worthwhile pointing out that the time evolution of
the total OE is closely related to other entanglement mea-
sures such as the reflected entropy [103,104] (which is the
OE of

√
ρAB), negativity [105–108], and temporal entan-

glement [109–111]: in these latter cases, the connection is
merely technical but the fact that they can be computed in
a similar way leads to analogous results, such as the entan-
glement barrier of the logarithmic negativity after a quench
[112]. Our work naturally paves the way for their symme-
try resolution and for an understanding of whether their
connection can be understood sector by sector.

To conclude, we remark that the OEs of operators differ-
ent from the reduced density matrix are known to capture
important universal properties of the dynamics [26–29,
32,36,91,113–115]. For instance, the OE of the evolution
operator U(t) = e−iHt grows linearly in ergodic phases [29,
113] but only logarithmically in localized phases [28,29].
Another example is the OE of a local operator O evolving

in the Heisenberg picture, i.e., O(t) = eiHtOe−iHt. There,
the OE grows linearly in systems with chaotic dynam-
ics [113] but only logarithmically for integrable dynamics
[91,114,115]. It is then natural to wonder what happens
to their symmetry-resolved (SR) version, which certainly
deserves future investigation.
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APPENDIX A: ENTANGLEMENT CONDITIONS

In this appendix, we derive our rigorous conditions to detect OE in bipartite mixed states ρAB. The starting point is
the operator Schmidt decomposition

ρAB√
Tr
[
ρ2

AB

] =
R∑

i=1

λiOA,i ⊗ OB,i (A1)

[see also Eq. (1)]. Here, R ≥ 1 denotes the operator Schmidt rank and the Schmidt values λ1, . . . , λR are non-negative
(λi ≥ 0) and obey

∑R
i=1 λ

2
i = 1. A seminal result in entanglement theory states that the Schmidt values of any

separable state ρAB must obey

R∑
i=1

λi ≤ 1/
√

Tr
(
ρ2

AB

)
(A2)
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[see, e.g., Ref. [33, Theorem 6] and also Eq. (6)]. Conversely, if Eq. (A2) is violated, then ρAB must be entangled (across
the bipartition into subsystems A and B). This entanglement criterion is called the computable cross-norm or realignment
(CCNR) condition and applies to any type of bipartite state. Also, other conditions based on realignment moments have
been introduced in Ref. [117]. The main drawback of the CCNR criterion is that it seems to rely on the explicit availability
of an operator Schmidt decomposition in Eq. (A1). Obtaining such a decomposition requires full state tomography of the
density matrix ρAB. This apparent drawback has recently been overcome in Ref. [65]. There, the authors point out that
sums of higher powers of Schmidt values can be reformulated in terms of linear observables in tensor products of the
original density matrix ρAB. This can be achieved by concatenating subsystem swap operators. Let S

(X )
k,l be the operator that

swaps the kth and lth copies of system X (X = A, B, or AB below). Namely, it acts as S
(X )
k,l (|i〉Xk ⊗ |j 〉Xl) = |j 〉Xk ⊗ |i〉Xl

on any pair of basis states for systems Xk and Xl (as indicated by the superscripts) and as the identity on all other systems.
Then, the following relation holds:

R∑
i=1

λ4
i = Tr

(Sρ⊗4
AB

)

Tr
(
ρ2

AB

)2 where S = S
(A)
1,4 ⊗ S

(A)
2,3 ⊗ S

(B)
1,2 ⊗ S

(B)
3,4 . (A3)

The denominator Tr
(
ρ2

AB

)2 is a consequence of the normalization in the left-hand side of Eq. (A1) and validity of the
overall expression readily follows from inserting the operator Schmidt decomposition into the right-hand side of Eq. (A3)
and from using the fact that the operators OA,i and OB,i are all orthonormal, i.e., Tr

(
OA,iOA,j

) = Tr
(
OB,iOB,j

) = δi,j . It is
also worth pointing out that the purity can also be reformulated as a linear observable on tensor products:

Tr
(
ρ2

AB

) = Tr
(
S
(AB)
1,2 ρ⊗2

AB

)
. (A4)

This is relevant because trace polynomials of the form Tr
(
O(n)ρ⊗n

AB

)
can be measured directly in actual experiments by

employing techniques from the randomized-measurement toolbox [48]. This is the content of Appendix B. For now, it is
enough to recall that we know how to directly estimate the left-hand side of Eq. (A3), while we are not aware of a direct
estimation protocol for the left-hand side of Eq. (A2).

So, how do we overcome this discrepancy between what can be measured [Eq. (A3)] and what is required to
detect entanglement [violation of Eq. (A2)]? We collect the positive Schmidt values into an R-dimensional vector
l = (λ1, . . . , λR) and use fundamental �p -norm relations to obtain a relation between ‖v‖�1 =∑R

i=1 |λi| =∑R
i=1 λi (the

last equation uses the fact that all Schmidt values are non-negative) and ‖v‖4
�4

=∑R
i=1 λ

4
i . To achieve such a conversion,

we can also use the fact that Schmidt values are normalized, i.e., ‖v‖2
�2

=∑R
i=1 λ

2
i = 1. We can use the Berger inequality

[118], which relates the �1, �2, and �4 norms of any vector. This inequality then ensures that

R∑
i=1

λi = ‖v‖�1 ≥ ‖v‖3
�2

‖v‖2
�4

= 1(∑R
i=1 λ

4
i

)1/2 . (A5)

This relation is a simple consequence of Hölder’s inequality and we refer to Ref. [119, Proof of Lemma 12] for a quick
derivation.

We now have all the ingredients in place to derive our experimentally accessible entanglement condition. A combination
of Eqs. (A2), (A5), and (A3) implies that every separable state ρAB must obey

1
Tr(ρ2

AB)
≥
(

R∑
i=1

λi

)2

≥ 1∑R
i=1 λ

4
i

= Tr
(
ρ2

AB

)2
Tr
(Sρ⊗4

AB

) (A6)

or, equivalently,

Tr
(
S
(A)
1,4 ⊗ S

(A)
2,3 ⊗ S

(B)
1,2 ⊗ S

(B)
3,4ρ

⊗4
AB

)
= Tr

(Sρ⊗4
AB

) ≥ Tr
(
ρ2

AB

)3 = Tr
(
S
(AB)
1,2 ρ⊗2

AB

)3
. (A7)

If this relation is violated, then we can be sure that the state ρAB must be entangled. From Eq. (A6), we can also take
logarithms and negate the sign to obtain an equivalent statement in terms of Rényi entropies. We now formally propose our
entanglement condition, which—in stark contrast to the original CCNR condition—is directly accessible in an experiment.
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Proposition 1 (Entanglement condition): Let ρAB be a bipartite quantum state with Rényi 2-OE S(2)(ρAB) =
− log

(∑
i λ

4
i

)
and Rényi 2-entropy R(2)(ρAB) = − log

(
Tr(ρ2

AB)
)
. Then, the relation

S(2)(ρAB) > R(2)(ρAB) (A8)

implies that ρAB must be entangled (across the bipartition A vs B).

As our criterion here is derived from the CCNR criterion of Eq. (6), we note that if Eq. (7) is violated, then Eq. (6)
is also necessarily violated (and both violations then certify entanglement in the state ρAB). Conversely, Eq. (7) can be
satisfied while the CCNR criterion in Eq. (6) is violated (so that only the latter can certify entanglement). In this case,
detection of such entangled states is missed by our derived criterion.

Finally, we point out that a centering operation on the level of density matrices can substantially enhance the ability to
detect entanglement. The key idea is to shift the original density matrix by

ρAB �→ ρAB − ρA ⊗ ρB = XAB, (A9)

where ρA = TrB(ρAB) and ρB = TrA(ρAB) are the reduced density matrices of ρAB. Note that this centered density matrix
XAB is not physical, because it has negative eigenvalues and a vanishing trace. The Schmidt coefficients (χ1, . . . ,χR′) of
this shifted density matrix are known to obey the enhanced realignment and computable cross-norm condition [120,121]:

R′∑
i=1

χi ≤
√

1 − Tr(ρ2
A)

√
1 − Tr(ρ2

B)√
Tr([XAB]2)

(A10)

(see, e.g., Ref. [65]). We can now adjust the arguments from before to obtain the following relation, which must hold for
every shifted version XAB of a separable state ρAB:

Tr
(SX ⊗4

AB

) ≥ Tr
(
X 2

AB

)3
(
1 − Tr(ρ2

A)
) (

1 − Tr(ρ2
B)
) . (A11)

If this condition is violated, the underlying state must be entangled. Although it requires some additional work, the
expressions on both sides of this equation can be reexpressed in terms of linear observables in tensor products of ρAB,
which makes them experimentally accessible.

Moreover, entanglement conditions based on realignment moments have been introduced in Ref. [117]. Finally, let
us point out that the idea of using linear observables in tensor products—which are also known as index permutation
matrices in this context—to detect entanglement is not new. Specifically connected to this work, optimal entanglement
detection criteria have already been found in this framework [65]. Here, we provide additional criteria that are perhaps
less powerful but simpler to state, simpler to estimate, and that follow from a simpler proof argument. In Fig. 4, with
the batch-shadow estimators, we illustrate an example of mixed-state-entanglement detection from the experimental data
of Ref. [7] using Proposition 1 and the optimal condition in Eq. (7) of Ref. [65], where we clearly observe an enhanced
detection capability of the optimal condition. We additionally note that with the finite-measurement statistics available
from the experiment of Ref. [7], we are unable to extract experimentally the enhanced condition derived in Eq. (A11) and
its corresponding optimal condition [65, Eq. (8)], due to large error bars on the experimental data arising from the finite
available measurement statistics.

APPENDIX B: SYMMETRY RESOLUTION OF OPERATOR SCHMIDT DECOMPOSITION

In this appendix, we provide a proof of Eqs. (9)–(10). We start by showing the symmetry resolution of the Schmidt
decomposition for a pure state |ψ〉 ∈ H = HA ⊗ HB, which is an eigenstate of an additive charge Q = QA + QB in
Appendix B 1. This is equivalent to showing that the reduced density matrix ρA = TrB|ψ〉〈ψ | admits a block-diagonal
structure with respect to the eigensubspaces of QA [67], which we prove in Appendix B 2. In Appendixes B 3 and B 4, we
repeat the same arguments for a generic operator O, showing that the decomposition in Eq. (9) is possible. In Appendix
B 5, we give a simple example of symmetry resolution of an operator for the density matrix of a three-qubit system.
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FIG. 4. Entanglement detection. We consider a reduced density matrix ρAB defined on the subsystem A = [1, 2] and B = [3, 4] for
the 10-ion experiment of Ref. [7]. In (a), we plot as detection on the vertical axis, the condition given in Proposition 1, (S(2)(ρAB)−
R(2)(ρAB)) and, similarly, in (b) we use the optimal condition in Eq. (7) of Ref. [65] (Eπ2n(ρAB)− 1). We detect entanglement between
the partitions A and B for various times t during the quench dynamics when we observe values greater than 0. The points show
experimental results with the error bars calculated using jackknife resampling. The solid lines correspond to numerical simulations of
the unitary dynamics, including dissipation.

1. Symmetry-resolved Schmidt decomposition of a pure state

Let |ψ〉 ∈ H = HA ⊗ HB be a state that satisfies

(QA + QB) |ψ〉 =0, (B1)

for Hermitian operators QA and QB acting on HA, HB.

Proposition 2: There exists a symmetry-resolved Schmidt decomposition

|ψ〉 =
∑

q

∑
j

λ
(q)
j |ψ(q)

A,j 〉|ψ(−q)
B,j 〉, (B2)

with 〈ψ(q)
A,j |ψ(q′)

A,j ′ 〉 = δq,q′δj ,j ′ , 〈ψ(q)
B,j |ψ(q′)

B,j ′ 〉 = δq,q′δj ,j ′ , and

QA|ψ(q)
A,j 〉 = q|ψ(q)

A,j 〉, QB|ψ(q)
B,j 〉 = q|ψ(q)

B,j 〉. (B3)

Proof. HA can be decomposed into eigenspaces of QA: HA =⊕q H(q)
A , where the q values are the eigenvalues of QA. We

pick an orthonormal basis for each H(q)
A : {|e(q)A,1〉, |e(q)A,2〉, . . . , }. Note that if q 	= q′, then 〈e(q)A,i |e(q

′)
A,j 〉 = 0. This is because QA

is Hermitian, so q〈e(q)A,i |e(q
′)

A,j 〉 = 〈e(q)A,i |Q|e(q′)
A,j 〉 = q′〈e(q)A,i |e(q

′)
A,j 〉. Thus, the basis vectors of different eigenspaces are orthogonal

and we can use all of them together as an orthonormal basis that spans the total space HA. Similarly, one can pick a basis
for HB such that every basis vector is an eigenstate of QB.

Any state |ψ〉 ∈ H = HA ⊗ HB can be written in the form

|ψ〉 =
∑

q

∑
j

∑
q′

∑
j ′

M (q,q′)
j ,j ′ |e(q)A,j 〉 ⊗ |e(q′)

B,j ′ 〉, (B4)

with some components M (q,q′)
j ,j ′ . If |ψ〉 satisfies Eq. (B1), then

0 = (QA + QB)|ψ〉 =
∑

q

∑
j

∑
q′

∑
j ′
(q + q′)M (q,q′)

j ,j ′ |e(q)A,j 〉 ⊗ |e(q′)
B,j ′ 〉 (B5)

and linear independence of the basis vectors implies

M (q,q′)
j ,j ′ = 0 if q + q′ 	= 0. (B6)
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Thus, for a state |ψ〉 that satisfies Eq. (B1),

|ψ〉 =
∑

q

∑
j

∑
j ′

M (q,−q)
j ,j ′ |e(q)A,j 〉 ⊗ |e(−q)

B,j ′ 〉. (B7)

Then, we can treat the different q blocks separately. For every q, we take a Schmidt decomposition of the state

∑
j

∑
j ′

M (q,−q)
j ,j ′ |e(q)A,j 〉 ⊗ |e(−q)

B,j ′ 〉 =
∑

j

λ
(q)
j |ψ(q)

A,j 〉 ⊗ |ψ(−q)
B,j 〉 (B8)

and putting all these together, we obtain the symmetry-resolved Schmidt decomposition in Eq. (B2). �

2. Block-diagonal form of the reduced density matrix

We now prove the block-diagonal structure of the reduced density matrix, which is equivalent to the symmetry-resolved
Schmidt decomposition for the evaluation of the entanglement in the charge sectors [67]. As before, let |ψ〉 ∈ H =
HA ⊗ HB be a state that satisfies

(QA + QB) |ψ〉=0, (B9)

for Hermitian operators QA and QB acting on HA, HB.

Proposition 3: The reduced density matrix ρA = TrB|ψ〉〈ψ | commutes with QA.

Proof. We note that

[QA, TrB|ψ〉〈ψ |] = TrB([QA, |ψ〉〈ψ |])
= TrB([QA + QB, |ψ〉〈ψ |] − [QB, |ψ〉〈ψ |])
= −TrB(QB|ψ〉〈ψ |)+ TrB(|ψ〉〈ψ |QB) (B10)

and this vanishes because of the cyclicity of the trace. �
We can thus write an eigenvalue decomposition for the reduced density matrix with blocks labeled by the charges q of

QA. This leads to the same Schmidt decomposition as in Eq. (B2).

3. Symmetry-resolved operator Schmidt decomposition

What has been done so far for the state |ψ〉 can be generalized to operators. In particular, let O ∈ End(H) = End(HA)⊗
End(HB) be an operator that satisfies

[QA + QB, O] = 0, (B11)

for Hermitian operators QA and QB.

Proposition 4: There exists a symmetry-resolved operator Schmidt decomposition

O√
Tr(O†O)

=
∑

q

∑
j

λ
(q)
j O(q)

A,j ⊗ O(−q)
B,j , (B12)

with Tr(O(q)
A,j )

†O(q′)
A,j ′ = δq,q′δj ,j ′ , Tr(O(q)

B,j )
†O(q′)

B,j ′ = δq,q′δj ,j ′ , and

[QA, O(q)
A,j ] = qO(q)

A,j , [QB, O(q)
B,j ] = qO(q)

B,j . (B13)
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Proof. This is exactly the same statement as above, with HA replaced by End(HA) equipped with the Hilbert-
Schmidt inner product. To be more explicit, End(HA) can be decomposed into eigenspaces of the commutator [QA, .]:
End(HA) =⊕q End(H(q)

A ), where the q values are the eigenvalues of [QA, .]. We pick an orthonormal basis of End(H(q)
A ):

{E(q)A,1, E(q)A,2, . . . , }. As above, we can combine all these basis vectors with different q values into a basis for the total Hilbert
space End(HA). We do the same for part B.

The operator O ∈ End(H) can then be written in that basis, with some components M (q,q′)
j ,j ′ ,

O√
Tr(O†O)

=
∑

q

∑
j

∑
q′

∑
j ′

M (q,q′)
j ,j ′ E(q)A,j ⊗ E(q

′)
B,j ′ , (B14)

where, by definition,

[QA, E(q)A,j ] = qE(q)A,j , [QB, E(q)B,j ] = qE(q)B,j . (B15)

If O satisfies Eq. (B11), then

M (q,q′)
j ,j ′ = 0 if q + q′ 	= 0, (B16)

for the same reason as above. Again, the q blocks can be separately Schmidt decomposed and this leads to Eq. (B12). �

4. Block-diagonal form of the super-reduced density matrix

Let O ∈ End(H) = End(HA)⊗ End(HB) be an operator that satisfies

[QA + QB, O] = 0, (B17)

for Hermitian operators QA and QB.

Proposition 5: The super-reduced density matrix TrB⊗B(|O〉〈O|) commutes with the supercharge QA = QA ⊗ 1 − 1 ⊗
QT

A.

Proof. We note that

[QA, TrB⊗B |O〉 〈O|] = TrB⊗B([QA, |O〉 〈O|])
= TrB⊗B([QA + QB, |O〉 〈O|] − [QB, |O〉 〈O|])
= −TrB⊗B(QB |O〉 〈O|)+ TrB⊗B(|O〉 〈O|QB) (B18)

and this vanishes because of the cyclicity of the trace. �
We can thus write an eigenvalue decomposition for the super-reduced density matrix with blocks labeled by the charges

q of QA. This leads to the same Schmidt decomposition as in Eq. (B12).

5. Three-qubit example

To get familiar with the symmetry resolution of an operator, let us look at a minimal illustrative example: a three-qubit
system, the qubits of which are labeled A, B, and C, in a state of the form (|α|2 + |β|2 + |γ |2 = 1)

|ψ〉ABC = α |100〉 + β |010〉 + γ |001〉 . (B19)

This is an eigenstate of the total charge operator QABC =∑j =A,B,C Qj with Qj = |1〉 〈1|. The reduced density matrix of
the subsystem AB is

ρAB = (α |10〉 + β |01〉) (α∗ 〈10| + β∗ 〈01|)+ |γ |2 |00〉 〈00| , (B20)

which commutes with QA + QB. Therefore the definitions introduced in the main text can be used and it makes sense to
study the SROE of the reduced density matrix ρAB in this minimal example.
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Let us proceed by vectorizing the reduced density matrix ρAB:

|ρAB〉 = |γ |2 |00〉A |00〉B + |β|2 |00〉A |11〉B + |α|2 |11〉A |00〉B + α∗β |01〉A |10〉B + αβ∗ |10〉A |01〉B . (B21)

From this, we can build the object |ρAB〉 〈ρAB| and take the trace over the subsystem B. This gives

TrB |ρAB〉 〈ρAB| = |β|4 |00〉 〈00| + |α|2|β|2(|01〉 〈01| + |10〉 〈10|)
+ (|γ |2 |00〉 + |α|2 |11〉)(|γ |2 〈00| + |α|2 〈11|). (B22)

By reshuffling the elements of the basis, we find that the matrix has a block-diagonal decomposition as

TrB |ρAB〉 〈ρAB| = (|α|2|β|2)q=1 ⊕ (|α|2|β|2)q=−1 ⊕
(|β|4 + |γ |4 |α|2|γ |2

|α|2|γ |2 |α|4
)

q=0
, (B23)

where each block lives in the eigensubspace of the supercharge operator QA = QA ⊗ 1 − 1 ⊗ QT
A (with the corresponding

eigenvalues indicated as subscripts).
From this, we can treat each block separately, as in the proofs of Propositions 2 or 4 above. We thus obtain the following

“symmetry-resolved operator Schmidt decomposition”:

ρAB√
Tr[ρ2

AB]
= λ(1) O(1)

A ⊗ O(−1)
B + λ(−1) O(−1)

A ⊗ O(1)
B +

∑
j =1,2

λ
(0)
j O(0)

A,j ⊗ O(0)
B,j , (B24)

where the Schmidt coefficients λ(q)j are given by

λ(1) = λ(−1) = 1
2
√
χ , λ

(0)
j = 1

2
(1 ±

√
1 − χ) (B25)

with χ = (4|α|2|β|2)/(Tr[ρ2
AB]), Tr[ρ2

AB] = (|α|2 + |β|2)2 + |γ |4, and the operators O(q)
A,j and O(q)

B,j , which form orthonor-
mal sets, read

O(1)
A = |1〉 〈0|A , O(−1)

B = |0〉 〈1|B ,

O(−1)
A = |0〉 〈1|A , O(1)

B = |1〉 〈0|B ,

O(0)
A,1 = a+ |0〉 〈0|A + a− |1〉 〈1|A , O(0)

B,1 = b+ |0〉 〈0|B + b− |1〉 〈1|B ,

O(0)
A,2 = a− |0〉 〈0|A − a+ |1〉 〈1|A , O(0)

B,2 = −b− |0〉 〈0|B + b+ |1〉 〈1|B ,

(B26)

for some real parameters a± and b± that are functions of |α|, |β|, and |γ | (which can be obtained explicitly but are rather
tedious to write).

As a more specific example, if we fix the parameters in Eq. (B19) as, for instance, α = √
5/12, β = 1/2, γ = 1/

√
3,

then the coefficients λ(q)j , a±, and b± introduced above are found to be

λ(1) = λ(−1) =
√

3
4

, λ
(0)
1 = 3

4
, λ

(0)
2 = 1

4
,

a+=a−= 1√
2

, b+ = 3√
10

, b− = 1√
10

.
(B27)

From Eq. (B27), we then obtain the following expressions for the OE,

S(ρAB) = 4 log 2 − 3
2

log 3, (B28)

and the SROE,

S±1(ρAB) = 0, S0(ρAB) = log 10 − 9
5

log 3, (B29)

and we can check that Eq. (13) is indeed satisfied.
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To finish with this example, let us comment on the non-Hermiticity of the operators O(±1)
A/B introduced in Eq. (B26).

As mentioned in the main text, in general it is always possible to impose that the operators OA/B,i that enter the standard
Schmidt decomposition, given in Eqs. (1) or (2), of a Hermitian operator must be Hermitian themselves. However, this
can no longer be ensured when imposing the symmetry-resolved form of the Schmidt decomposition, as in Eqs. (9)–(10).

To see this, recall that while the Schmidt coefficients are unique, the operators that are used in the standard (non-
symmetry-resolved) decomposition are not: they are only unique—up to some complementary phases (or up to a sign
if one wants them to be Hermitian)—when the corresponding Schmidt coefficient has multiplicity one. For instance, in
our above example, the operators O(0)

A/B,j , corresponding to the different Schmidt coefficients λ(0)j , are unique (up to a
phase or a sign) but there remains some freedom, in a standard Schmidt decomposition, for the choice of operators O(±1)

A/B

corresponding to the multiplicity-2 Schmidt coefficients λ(1) = λ(−1).
In fact, one finds that the most general form of the non-symmetry-resolved Schmidt decomposition of ρAB above would

be as in Eq. (B24) but with O(±1)
A/B from Eq. (B26) replaced by

O(1)
A = μ |1〉 〈0|A + ν |0〉 〈1|A , O(−1)

B = ν∗ |1〉 〈0|B + μ∗ |0〉 〈1|B ,

O(−1)
A = eiϕ(− ν∗ |1〉 〈0|A + μ∗ |0〉 〈1|A

)
, O(1)

B = e−iϕ(μ |1〉 〈0|B − ν |0〉 〈1|B
)
,

(B30)

for some complex coefficients μ and ν such that |μ|2 + |ν|2 = 1 and some phase ϕ (and, for full generality, replacing O(0)
A,j

and O(0)
B,j by eiϕj O(0)

A,j and e−iϕj O(0)
B,j , respectively, for some phases ϕj ). It is easily seen that these operators can indeed be

chosen to be Hermitian, by taking, e.g., μ = ν = 1/
√

2 and ϕ = π/2. However, imposing the condition that the Schmidt
decomposition is symmetry resolving, i.e., that the above operators satisfy Eq. (10), turns out to be incompatible with
these being Hermitian: e.g., [QA, O(1)

A ] = O(1)
A requires |μ| = 1, ν = 0 [as in Eq. (B26)].

One may note, for completeness, that Eq. (10) can actually be satisfied by Hermitian operators O(q)
A,j , O(q)

A,j only in

the case where q = 0: indeed, assuming that O(q)
A,j = (O(q)

A,j )
†, Eq. (10) then implies (using the cyclicity of the trace)

Tr
(
[QA, O(q)

A,j ]O(q)
A,j

) = 0 = q Tr
(
(O(q)

A,j )
†O(q)

A,j

) = q.

APPENDIX C: THE BATCH-SHADOW RANDOMIZED-MEASUREMENT TOOLBOX

1. Classical shadows with local CUE and Pauli measurements

Given an N -qubit state prepared on a quantum device, we can construct a Haar classical shadow ρ̂(r) (equivalently
called a Haar shadow) of the state defined in Eq. (17) (with NM = 1) [49]:

ρ̂(r) =
N⊗

i=1

(
3(u(r)i )

†
∣∣∣s(r)i

〉 〈
s(r)i

∣∣∣ u(r)i − I2

)
, (C1)

where the applied local random unitary is sampled from the CUE or, equivalently, from the Haar measure (local CUE
measurements). Alternatively, we could consider random single-qubit operations that, equivalently, lead to measuring
each qubit in one of the random Pauli bases of X , Y or Z (local Pauli measurements). These lead to six possible states
that can be succinctly summarized as follows:

|B, s〉 with B ∈ {X ,Y ,Z}, s ∈ {±}. (C2)

More precisely, these states correspond to the following six possibilities:

|0〉 = |Z , +〉 , |1〉 = |Z , −〉 , |+〉 = |X , +〉 , |−〉 = |X , −〉 , |i+〉 = |Y , +〉 , |i−〉 = |Y , −〉 . (C3)

To construct a Pauli shadow ρ̂, we choose randomly and uniformly, for each single qubit i, a basis Bi in X , Y or Z that
is subsequently followed by the resulting basis measurement that provides a string of signs s = (s1, . . . , sN ) ∈ {±}. With
this information and defining N chosen bases B = (B1, . . . ,BN ), we can provide an unbiased estimator of the density
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matrix ρ as [122]:

ρ̂(B, s) =
N⊗

i=1

(
3 |Bi, si〉 〈Bi, si| − I2

)
such that E[ρ̂(B, s)] = ρ. (C4)

Here, E denotes the expectation value over the uniformly sampled random bases, as well as the resulting measurement
outcomes. Note that the single-qubit Pauli shadows have some interesting properties due to the fact that their chosen
measurement bases are mutually unbiased.

For B 	= B′, we have

Tr
[(

3 |B, s〉 〈B, s| − I2
)(

3
∣∣B′, s′〉 〈B′, s′∣∣− I2

)] = 1
2

∀s, s′ ∈ {±} (C5)

and for B = B′ we have

Tr
[(

3 |B, s〉 〈B, s| − I2
)(

3
∣∣B′, s′〉 〈B′, s′∣∣− I2

)] =
{

−4, if s 	= s′,
5, if s = s′.

(C6)

This rich geometric structure allows us to deduce streamlined upper bounds on the trace overlap between different Pauli
shadows.

Lemma 1: Given two N-qubit basis strings B, B′ ∈ {X , Y , Z}×N , for any sign of the outcome strings s, s′ ∈ {±}×N , the
following two statements hold:

Tr
(
ρ̂
(B, s

)
ρ̂ ′(B′, s′))2

≤
N∏

i=1

(
521{Bi = B′

i} +
(1

2

)2
1{Bi 	= B′

i}
)

(C7)

and

E

[ N∏
i=1

(
521{Bi = B′

i} +
(1

2

)2
1{Bi 	= B′

i}
)]

= 8.5N , (C8)

where 1{Bi = B′
i} and 1{Bi 	= B′

i} denote the indicator functions of the advertised events.

The proof strategy for this auxiliary statement is inspired by a recent analysis of classical shadows for single-qubit
symmetric informationally complete (SIC) positive operator-valued measures (POVMs) (see Ref. [123, Appendix IX.B]).

Proof. The proof of the first inequality follows from the observation that the single-qubit states |Bi, si〉 and
∣∣B′

i, s′
i

〉
are

mutually unbiased whenever Bi 	= B′
i. If two bases coincide (Bi = Bi), the squared overlap either contributes (−4)2 (s′ 	=

s) or 52 (s = s′) and can be bounded by choosing the larger term from amongst them. Equation (C7) now follows from
applying this single-qubit argument to each contribution in the N -fold tensor product that makes up the two shadows, as
the trace inner product of two shadows factorizes into N single-qubit contributions from Eq. (C4).

Second, noting that all random basis choices are independent, we can develop Eq. (C8) as

E

[ N∏
i=1

(
521{Bi = B′

i} +
(1

2

)2
1{Bi 	= B′

i}
)]

=
[
E

(
521{Bi = B′

i} +
(1

2

)2
1{Bi 	= B′

i}
)]N

(C9)

=
[

52
E[1{Bi = B′

i}] +
(1

2

)2
E[1{Bi 	= B′

i}]
]N

=
[

52 × 1
3

+
(1

2

)2
× 2

3

]N

= 8.5N , (C10)

where we use the fact that the expectation of an indicator function is the probability of the associated event. More precisely,
E[1

{Bi = B′
i

} = Pr
[Bi = B′

i

] = 1/3, because there is a total of three basis choices from which to choose. The same
argument also ensures that E[1

{Bi 	= B′
i

}
] = Pr

[Bi 	= B′
i

] = 1 − Pr
[Bi = B′

i

] = 1 − 1/3 = 2/3. �
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We now collect a number of helpful auxiliary statements that enable us to deduce tight bounds on the estimation protocol
for OE further down the road. Some statements follow directly from the properties of classical shadows and are therefore
valid for both Pauli and CUE shadows. Other results, however, do explicitly use the structure of Pauli-basis measurements
and are therefore only valid for Pauli shadows.

Lemma 2: Given a Pauli or Haar shadow ρ̂ that acts on N qubits, let O be an observable on the same dimension. We
have

Var
[
Tr(Oρ̂)

]
≤ E

[
Tr(Oρ̂)2

]
≤ Tr(O2)2N . (C11)

Proof. The above statement follows from the proof of the original bound on the shadow norm of linear observables in
Ref. [49] (proof of Proposition 3). �

Lemma 3: Let ρ̂ and ρ̂ ′ be two independent Pauli shadows on N qubits. Then, we have

Var
[
Tr(ρ̂ρ̂ ′)

]
≤ E

[
Tr(ρ̂ρ̂ ′)2

]
≤ 8.5N . (C12)

Proof. The proofs follow directly from Lemma 1 by taking the expectation value of Eq. (C7). �

Lemma 4: Let ρAB be a bipartite density matrix acting on N = NA + NB qubits. Let ρ̂ = ρ̂A ⊗ ρ̂B and ρ̂ ′ = ρ̂ ′
A ⊗ ρ̂ ′

B be
two Pauli or Haar shadows defined on the same space that are sampled independently. Given two observables OAB and
O′

A′B′ with compatible dimension, we have

Var
[
Tr(OABρ̂A ⊗ ρ̂ ′

B)Tr(O′
A′B′ ρ̂ ′

A ⊗ ρ̂B)
]

≤ E

[
Tr(OABρ̂A ⊗ ρ̂ ′

B)Tr(O′
A′B′ ρ̂ ′

A ⊗ ρ̂B)
2
]

≤ Tr(O2
AB)Tr((O′

A′B′)2) 22N .

(C13)

Proof. We can easily rewrite the product of traces as a larger trace over a tensor product:

Tr
[
(OAB ⊗ O′

A′B′)(ρ̂A ⊗ ρ̂ ′
B ⊗ ρ̂ ′

A′ ⊗ ρ̂B′)
]

= Tr
[
SBB′(OAB ⊗ O′

A′B′)SBB′(ρ̂A ⊗ ρ̂B ⊗ ρ̂ ′
A′ ⊗ ρ̂ ′

B′)
]

(C14)

where SBB′ ≡ IAA′ ⊗ SBB′ , which implicitly includes the identity operator on the unmarked subsystems A and A′. Writing
the shadow ρ̂ ⊗ ρ̂ ′ = ρ̂A ⊗ ρ̂B ⊗ ρ̂ ′

A′ ⊗ ρ̂ ′
B′ in a 22N -dimensional Hilbert space and recalling Lemma 2, we obtain

Var
[
Tr(OABρ̂A ⊗ ρ̂ ′

B)Tr(O′
A′B′ ρ̂ ′

A ⊗ ρ̂B)
]

≤ Tr
[
(SBB′(OAB ⊗ O′

A′B′)SBB′)2
]
22N ≤ Tr(O2

AB)Tr((O′
A′B′)2) 22N . (C15)

�

2. General treatment for batch-shadow estimators

In this section, we introduce the batch-shadow estimator—one of the main technical contributions of this work. We
also provide general statements that allow us to bound its variance when estimating trace polynomials Tr

(
O(n)ρ⊗n

)
of

arbitrary order n.
For all the subsequent sections, we start by performing randomized measurements to construct classical or Pauli shad-

ows of an N -qubit state ρ. As mentioned in the main text, on each run of the protocol, we sample N single-qubit random
unitaries from the CUE or a 2-design and apply them locally on each qubit. This is followed by a single computational-
basis measurement on each qubit (NM = 1). This procedure is repeated M times (on fresh copies of the state ρ) and allows
us to construct M classical shadows ρ̂(r) of ρ, for r = 1, . . . , M [49] (here, M ≡ Nu as written in the main text). We know
that the expectation value of the classical shadows is E[ρ̂] = ρ [49]. We would like to estimate an nth-order functional
Xn = Tr(O(n)ρ⊗n), defined as a function of an n-copy operator O(n) using classical shadows.
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From the classical shadows, we can define Xn U-statistics estimator X̂n as

X̂n = (M − n)!
M !

∑
r1 	=···	=rn

Tr
[
O(n)

n⊗
i=1

ρ̂(ri)
]
, (C16)

where the sum ranges over all possible disjoint shadow indices (r1, . . . , rn) ∈ {0, . . . , M }×n with r1 	= · · · 	= rn. The U-
statistics estimator is an unbiased estimator, i.e., E[X̂n] = Xn [90,124,125], but evaluating it requires a summation over
all possible disjoint sets of n indices. While this is doable for n = 1, 2, this summation quickly becomes unfeasible
as n increases. For the sake of illustration, in order to estimate the U-statistics estimator of the purity (Tr(ρ2)) with
classical shadows, the postprocessing run time scales quadratically, O(M 2), with the number of measurements M scaling
exponentially with respect to the system size N (M ∝ 2N ) [8,90,125]. On the other hand, a function involving n = 4
copies of ρ immediately exposes the bottleneck of the U-statistics estimator. The number of summands to be calculated
in Eq. (C16) quickly becomes overburdening even for moderate system sizes, as the run time scales as O(M 4), with an
overhead exponential scaling of the number of measurements M , and requires other alternatives.

To solve this real scaling problem, we propose another unbiased estimator of the same functional Xn by distributing our
M shadows into n′ ≥ n subsets and first averaging the shadows in each subset. Each such defined subset is independent
with respect to any other and can independently approximate ρ. More specifically, let us define the bth batch shadow
(denoted by a tilde rather than a hat) as

ρ̃(b) = n′

M

∑
tb∈Tb

ρ̂(tb) ∈ C
2N ×2N

, where Tb = {1 + (b − 1)M/n′, . . . , bM/n′} (C17)

for batches ranging from b = 1 to b = n′ (for simplicity, we assume that n′ divides M such that each subset contains
M/n′ original classical shadows). We note, as claimed above, that E[ρ̃(b)] = ρ for every b. We then define the alternative
unbiased estimator X̃ (n′)

n of Xn in a similar fashion to Eq. (C16). However, we now symmetrize over n′ batch shadows:

X̃ (n′)
n = (n′ − n)!

n′!

∑
b1 	=···	=bn

Tr
[
O(n)

n⊗
i=1

ρ̃(bi)
]

= (n′ − n)!
n′!

n′n

M n

∑
b1 	=···	=bn

∑
tb1∈Tb1 ,...,tbn∈Tbn

Tr
[
O(n)

n⊗
i=1

ρ̂(tbi )
]
. (C18)

Again, by construction, E[X̃ (n′)
n ] = Xn, i.e., the batch-shadow estimator, is unbiased. The principal advantage of introduc-

ing this data-splitting estimator lies in the fact that, in the limit of n′ � M , one can more efficiently postprocess arbitrary
nth-order functionals X̃ (n′)

n compared to the basic U-statistics estimators X̂n. This is because all the batch shadows ρ̃(b) are
independent and can be computed in parallel.

By increasing n′, the performance of X̃ (n′)
n is improved in terms of convergence, as more distinct ordered pairings of n

different shadows ρ̂(r1), . . . , ρ̂(rn) are incorporated in the batch estimator that were not considered before. In the final limit
of n′ = M , we actually recover the full U-statistics estimator X̃ (M )

n = X̂n, which has already been studied in detail [90].
However, the larger the n′, the more resource intensive is the classical postprocessing. Hence, we analyze the performance
of this estimator in regimes where the batch size n′ is as small as possible, i.e., n′ = n (this is the smallest batch size that
still produces an unbiased estimator for Tr(O(n)ρ⊗n)). In this case, the sum over b1 	= · · · 	= bn simply boils down to
computing all possible position shuffles in the tensor product of the n independent batch shadows. This can be more
formally written as a sum over all the permutation operator π that acts on n copies of the shadows and leads to

X̃ (n)
n = 1

n!
nn

M n

∑
π

∑
t1∈T1,...,tn∈Tn

Tr
[
O(n)π

n⊗
i=1

ρ̂(ti)π†
]
, (C19)

where π denotes the operator that permutes the n shadows correspondingly: π =∑j1,...,jn

∣∣jπ(1)
〉〈j1| ⊗ · · · ⊗ ∣∣jπ(n)

〉〈jn|
(where the |ji〉 are orthonormal basis states). We can gauge its performance by calculating the required number of
measurements M to estimate Xn with an error |X̃ (n)

n − Xn| ≤ ε and a certain confidence level. Chebyshev’s inequality
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yields

Pr[|X̃ (n)
n − Xn| ≥ ε] ≤ Var[X̃ (n)

n ]
ε2 (C20)

and isolates the variance Var[X̃ (n)
n ] of the batch-shadow estimator as the central object to study convergence. Using the

decomposition of Eq. (C19), this variance can be rewritten as

Var[X̃ (n)
n ] =

( 1
n!

nn

M n

)2∑
π ,π ′

∑

t1,t′1∈T1,...,tn,t′n∈Tn

Cov
[

Tr
[
O(n)π

n⊗
i=1

ρ̂(ti)π†
]
, Tr
[
O(n)π ′

n⊗
i=1

ρ̂(t
′
i)π ′†

]]
. (C21)

Note that all shadows that appear only once in the covariances above (i.e., those with indices ti 	= t′i) simply average to
ρ. The shadows that appear twice (those with indices ti = t′i), on the other hand, contribute less trivially. Furthermore,
because of the averaging over all permutations π ,π ′, the positions of the shadows appearing twice (i.e., the indices i such
that ti = t′i) do not matter. Hence, we can first sum over the number k of shadows appearing twice: the

(n
k

)
corresponding

terms then contribute with the same values of the covariances. We thus obtain

Var[X̃ (n)
n ] =

( 1
n!

nn

M n

)2∑
π ,π ′

n∑
k=0

(
n
k

) ∑
t1∈T1
...

tk∈Tk

∑

τk+1 	=τ ′
k+1∈Tk+1
...

τn 	=τ ′
n∈Tn

Cov
[

Tr
[
π†O(n)π [⊗k

i=1ρ̂
(ti) ⊗n

j =k+1 ρ̂
(τj )]
]
,

Tr
[
π ′†O(n)π ′[⊗k

i=1ρ̂
(ti) ⊗n

j =k+1 ρ̂
(τ ′

j )]
]]

=
( 1

n!
nn

M n

)2∑
π ,π ′

n∑
k=0

(
n
k

)(M
n

)k(M
n
(M

n
− 1
))n−k

Cov
[

Tr
[
π†O(n)π [⊗k

r=1ρ̂
(r) ⊗ ρ⊗(n−k)]

]
,

Tr
[
π ′†O(n)π ′[⊗k

r=1ρ̂
(r) ⊗ ρ⊗(n−k)]

]]

=
n∑

k=0

(
n
k

)( n
M

)k(
1 − n

M

)n−k
Var
[

1
n!

∑
π

Tr
[
π†O(n)π [⊗k

r=1ρ̂
(r) ⊗ ρ⊗(n−k)]

]]
, (C22)

where from the first to the second lines (in addition to averaging the shadows ρ̂(τj ), ρ̂(τ
′
j ) to ρ; see above), we note that

all different shadows ρ̂(ti) give the same statistics (and hence the same covariances), so that we could, without loss of
generality, replace the k shadows ρ̂(ti) by any other k shadows ρ̂(r), e.g., those for r = 1, . . . , k. All M/n terms from each
of the k sums over ti ∈ Ti, and all M/n

(
M/n − 1

)
terms from each of the n − k sums over τj 	= τ ′

j ∈ Tj , then give the
same values. For the last line, we just rearrange all prefactors and include the sums over π ,π ′ inside the covariances,
noting that the two arguments of the covariances are then the same.

Let us note already that the variance term inside the sum of Eq. (C22) cancels for k = 0: the sum can therefore be taken
to start from k = 1. Defining, for convenience,

Vk = Var
[

1
n!

∑
π

Tr
[
π†O(n)π [⊗k

r=1ρ̂
(r) ⊗ ρ⊗(n−k)]

]]
, (C23)

we obtain

Var[X̃ (n)
n ] =

n∑
k=1

(
n
k

)( n
M

)k(
1 − n

M

)n−k
Vk (C24)

=
n∑
�=1

(
n
�

)( n
M

)�[ �∑
k=1

(
�

k

)
(−1)�−kVk

]
= n2

M
V1 + n3(n − 1)

2M 2 (V2 − 2V1)+ O
( 1

M 2

)
. (C25)
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This analysis of the special case n′ = n (the number of batches equals the order of the trace functional) readily extends to
general batch sizes n′. Similar calculations produce the following generalization of Eq. (C25):

Var[X̃ (n′)
n ] =

n∑
j =1

(
n
j

)(n′−n
n−j

)
(n′

n

)
j∑

k=1

(
j
k

)( n′

M
)k(1 − n′

M
)j −kVk =

n∑
�=1

(n
�

)2
(n′
�

) ( n′

M
)�[ �∑

k=1

(
�

k

)
(−1)�−kVk

]
(C26)

= n2

M
V1 + n2(n − 1)2 n′

n′−1

2M 2 (V2 − 2V1)+ O
( 1

M 2

)
. (C27)

We can provide bounds to all the above variance expressions by using the fact that the variance of an average of random
variables is upper bounded by the average of the variances. This can be seen as follows. For K random variables Xi, the
Cauchy-Schwarz inequality yields

( 1
K

K∑
i=1

Xi − E[
1
K

K∑
i=1

Xi]
)2

= 〈�1/K , ( �X − E[ �X ])〉)2 ≤ ‖�1/K‖2 ‖ �X − E[ �X ]‖2 = 1
K

K∑
i=1

(Xi − E[Xi])2 (C28)

where �X = (X1, . . . , XK) and �1 = (1, . . . , 1). Taking the expectation values on both sides gives Var[1/K
∑K

i=1 Xi] ≤
1/K

∑K
i=1 Var[Xi]. This provides us with the bound

Vk = Var
[

1
n!

∑
π

Tr
[
π†O(n)π [⊗k

r=1ρ̂
(r) ⊗ ρ⊗(n−k)]

]]
≤ Vk = 1

n!

∑
π

Var
[

Tr
[
O(n)π [⊗k

r=1ρ̂
(r) ⊗ ρ⊗(n−k)]π†

]]
(C29)

and helps us to formalize the variance bound for an arbitrary batch-shadow estimator.

Proposition 6: Let Tr(O(n)ρ⊗n) be an nth-order trace function and let X̃ n′
n with n′ ≥ n be the associated batch-shadow

estimator as defined in Eq. (C18). Then, the associated variance obeys

Var[X̃ (n′)
n ] ≤

n∑
j =1

(
n
j

)(n′−n
n−j

)
(n′

n

)
j∑

k=1

( n′

M
)k(1 − n′

M
)j −k Vk. (C30)

For n′ = n, this bound further simplifies to

Var[X̃ (n)
n ] ≤

n∑
k=1

(
n
k

)( n
M

)k(
1 − n

M

)n−k
Vk. (C31)

One can further bound Vk using the formalism introduced in Ref. [90]. Then, using the Chebyshev bound, one can
obtain concrete sample-complexity bounds to evaluate arbitrary functions X̃ n′

n using batch shadows. More concretely, for
comparison with the U-statistics estimator, Eq. (D7) of Ref. [90], we can rewrite the U-statistics estimator as

Var[X̂n] =
n∑

k=1

(
n
k

)(M−n
n−k

)
(M

n

) Vk =
n∑
�=1

(n
�

)2
(M
�

)
[ �∑

k=1

(
�

k

)
(−1)�−kVk

]
. (C32)

To first and second order in 1/M , by taking M � 1, we now obtain

Var[X̂n] � n2

M
V1 + n2(n − 1)2

2M 2 (V2 − 2V1)+ O
( 1

M 2

)
. (C33)

We note that the behavior for large M depends on how n′ relates to M : whether n′ is taken to be independent of M (as in
the case n′ = n) or whether it is taken to just be proportional to M (as in the other extreme case, n′ = M , which reproduces
standard U-statistics). One finds that Var[X̃ (n′)

n ] and Var[X̂n] have the same behavior as n2

M V1 at first order in 1/M for any
value of n′. At second order, Var[X̃ (n′)

n ] is only slightly (by a factor n′/(n′ − 1)) larger than Var[X̂n]. Hence, we really do
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not lose much in the precision when we use our new batch-shadow technique instead of the standard U-statistics estimator
of the classical shadows, while we evidently achieve great improvements in run times of the classical treatment of the
measurement data.

With these general statements at hand, we are now in a position to employ them in order to deduce concrete and
simple variance bounds for the simplest (and most relevant) batch-shadow estimator (n′ = n) for the functions of interest
in this paper as introduced in the main text: for the purity X2 = Tr(ρ2

AB) = Tr(S(AB)
1,2 ρAB ⊗ ρAB) and for the functional

where O(4) = S: X4 = Tr(Sρ⊗4
AB) = Tr

(
S
(A)
14, ⊗ S

(A)
2,3 ⊗ S

(B)
1,2 ⊗ S

(B)
3,4ρ

⊗4
AB

)
. We then provide the sample-complexity bounds

to evaluate our quantities using properties given in Appendix C 1.

3. Sample complexity to evaluate the purity

This section aims at providing sample-complexity bounds to evaluate the purity using the batch-shadow estimator
formed using two batches of Pauli shadows. The purity of a N -qubit quantum state ρAB can be expressed as

X2 = Tr(S(AB)
1,2 ρAB ⊗ ρAB) = Tr(ρ2

AB), (C34)

where S
(AB)
1,2 is the swap operator. Given M Pauli shadows, the corresponding batch-shadow estimator X̃ (2)

2 (with n′ = 2)
of the purity can be written as

X̃ (2)
2 = 1

2!

∑
b1 	=b2

Tr
[
S
(AB)
1,2

2⊗
i=1

ρ̃(bi)
]
, (C35)

where each batch shadow ρ̃(b), for b = 1, 2, is written as

ρ̃(b) = 2
M

bM/2∑
r=(b−1)M/2+1

ρ̂(r). (C36)

Our goal is to bound Var[X̃ (2)
2 ] for Pauli shadows (this restriction is important, because we need all auxiliary the statements

from Appendix C 1). Using Proposition 6, this variance explicitly can be bounded as

Var[X̃ (2)
2 ] ≤ 4

M
V1 + 4

M 2 (V2 − 2V1) ≤ 4
M

V1 + 4
M 2 V2. (C37)

The next step consists of obtaining the bounds on the terms Vk. From the expression of Eq. (C29), we note that for n = 2,
only two permutations need to be considered: π = I and π = S. In each case, π†O(2)π = π†

Sπ = S. Now recalling
Lemmas 2 and 3, we can compute the bounds on V1 and V2, respectively:

V1 = Var
[
Tr
[
S
(AB)
1,2 (ρ̂ ⊗ ρAB)

]] = Var
[
Tr
[
ρ̂ρAB

]] ≤ Tr[ρ2
AB]2N ≤ 2N , (C38)

V2 = Var
[
Tr
[
S
(AB)
1,2 (ρ̂(1) ⊗ ρ̂(2))

]] = Var
[
Tr
[
ρ̂(1)ρ̂(2)

]] ≤ 8.5N ≤ 32N . (C39)

Then, from Eq. (C37), we obtain the following bound on Var[X̃ (2)
2 ]:

Var[X̂ (2)
2 ] ≤ 4

M
V1 + 4

M 2 V2 ≤ 4
M

2N + 4
M 2 32N . (C40)

Recalling Chebyshev’s inequality mentioned in Eq. (C20), we conclude that

Pr[|X̃ (2)
2 − X2| ≥ ε] ≤ Var[X̃ (2)

2 ]
ε2 ≤ 4

ε2

[
2N

M
+ 32N

M 2

]
. (C41)

This allows us to formulate a concise sample-complexity bound.
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Proposition 7: Suppose that we wish to estimate the purity X2 = Tr(ρ2
AB) = Tr(S(AB)

1,2 ρ⊗2
B ) of an N-qubit state ρ using

the batch-shadow estimator X̃ (2)
2 constructed from Pauli shadows. Then, for ε, δ ∈ (0, 1), a total of

M ≥ 2
3N

ε
√
δ

(√
1 + a2

N + aN

)
with aN =

(
2
3

)N

/ε
√
δ (C42)

measurements suffices to ensure Pr[|X̃ (2)
2 − X2| ≥ ε] ≤ δ.

The scaling in terms of system size N is dominated by 3N , which is a strict improvement over general quantum state
tomography (which would require at least 4N/ε2 measurements). This kind of scaling for the purity is also observed
for SIC-POVM measurements on independent copies, where the sample-complexity bound scales as M ∝ 3N/ε2δ [123].
However, when M becomes sufficiently large, the scaling in Eq. (C40) is dominated by the first term (k = 1), which is
∝ 2N/M . This then produces a measurement complexity that scales as M ∝ 2N/ε2δ. Similar scaling behavior in this limit
M → ∞ has also been observed in Refs. [8,90] and reproduces an error decay rate proportional to 1/

√
M—the ultimate

limit for any Monte Carlo averaging procedure.

4. Sample complexity of X4

In this section, we derive analytical expressions to compute the sample-complexity bound on the X4 functional. We use
tensor-network graphical language to facilitate the understanding of the subsequent calculations for the reader. Tensor-
network diagrams are popular in rendering heavy expressions of calculations in terms of simple graphical representations.
For interested readers, we refer to Refs. [126–128] for a thorough introduction. Figure 5 summarizes all the essential
graphical tools that are required for our arguments.

The function X4 defined in terms of the four-copy operator O(4) = S (as introduced in the main text in Eq. (16) and also
in Ref. [65]) for a bipartite (N = NA + NB)-qubit state can be rewritten as

X4 = Tr(S ρ⊗4
AB) = Tr

(
S
(A)
1,4 ⊗ S

(A)
2,3 ⊗ S

(B)
1,2 ⊗ S

(B)
3,4ρ

⊗4
AB

)
(C43)

= TrA′ABB′
[(
ρAB SAA′ ρAB SBB′

)(
ρAB SAA′ ρAB SBB′

)]
, (C44)

where S
(�)

c,d , with c, d ∈ [1, . . . , 4] and � ∈ {A, B}, is the swap operator acting on system � on the copies c and d of the
density matrices ρAB. In the above expression, we also assume an implicit reordering of the tensor products and identity
operators on the unmarked subsystems ρAB ≡ ρAB ⊗ IA′B′ , SAA′ ≡ SAA′ ⊗ IBB′ and SBB′ ≡ IAA′ ⊗ SBB′ . Figure 6 shows an
equivalent expression of X4 as a tensor-network diagram. We consider here the simplest batch-shadow estimator X̃ (4)

4 of
this function that can be evaluated from M Pauli shadows, as

X̃ (4)
4 = 1

4!

∑
b1 	=···	=b4

Tr
[
S

4⊗
i=1

ρ̃(bi)
]
, (C45)

where each batch shadow ρ̃(b), for b = 1, . . . , 4 is an average over M/4 Pauli shadows, given as

(a) (b) (c) (d) (e) (f)

=

FIG. 5. Important tensor-network diagrams. (a) A bipartite quantum state ρAB, with the green (or red) legs defining the indices of
subsystem A (or B), respectively. (b) By index contraction, we have multiplication of two matrices, giving ρ2. (c) ρA ⊗ ρB. (d) Tr(ρ2),
where we replace the standard trace loop by circles at the end points that virtually connect to each other only horizontally at the same
level. (e) The identity function of each subsystem, IA ⊗ IB = IAB. (f) The swap operator: Sk,l(|ik〉 ⊗ |il〉) = |il〉 ⊗ |ik〉.
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= ( ) ( ) ( ) ( )

( )

( )

( )

( )

FIG. 6. The graphical expression of X4. The expression of X4 = Tr
(
(S
(A)
1,4 ⊗ S

(A)
2,3 ⊗ S

(B)
1,2 ⊗ S

(B)
3,4 )(ρ

(1) ⊗ ρ(2) ⊗ ρ(3) ⊗ ρ(4)
)

=
Tr
[
SBB′ρ(4)SAA′ρ(3)SBB′ρ(2)SAA′ρ(1)

]
in terms of the diagrammatic notation introduced earlier.

ρ̃(b) = 4
M

bM/4∑
r=(b−1)M/4+1

ρ̂(r). (C46)

Our task is to bound the variance Var[X̃ (4)
4 ]. With the help of Proposition 6, we can simply bound the corresponding

variance as

Var[X̃ (4)
4 ] ≤

4∑
k=1

(
4
k

)( 4
M

)k(
1 − 4

M

)4−k
Vk ≤

4∑
k=1

(
4
k

)( 4
M

)k
Vk, (C47)

where each of the Vk can expressed from Eq. (C29) as

Vk = 1
4!

∑
π

Var
[

Tr
[
Sπ [⊗k

r=1ρ̂
(r) ⊗ ρ

⊗(4−k)
AB ]π†

]]
. (C48)

Our goal now is to calculate explicitly the bounds on the term Vk for each value of k = 1, . . . , 4:

(a) For k = 1, the trace terms in V1 contain a single Pauli shadow ρ̂(1) and three density matrices ρAB. Regardless of
π , we always obtain the same expression for the traces in Eq. (C29), which explicitly read as

Tr
[
S [ρ̂(1) ⊗ ρ⊗3

AB]
]

= Tr
[S̃(1)ρ̂(1)], with S̃(1) = TrA′B′[SBB′ ρAB SAA′ ρAB SBB′ ρAB SAA′]; (C49)

see also the diagrammatic expression given in Fig. 7 for a visual illustration. We note that S̃(1) is a Hermitian
operator. Using Lemma 2, we can bound V1 as

V1 ≤ Var
[

Tr
(
S [ρ̂(1) ⊗ ρ⊗3

AB]
)]

= Var
[
Tr
(S̃(1)ρ̂(1))

]
≤ Tr[(S̃(1))2]2N . (C50)

From Fig. 7(b), we can further expand the trace term Tr[(S̃(1))2] by performing the appropriate diagrammatic tensor
contractions. We can then explicitly write it as

Tr[(S̃(1))2] = Tr(Õ(6)ρ⊗6
AB), with Õ(6) = S

(A)
1,2 ⊗ S

(A)
3,6 ⊗ S

(A)
4,5 ⊗ S

(B)
1,4 ⊗ S

(B)
2,3 ⊗ S

(B)
5,6 . (C51)

We now use Hölder’s inequality for matrices (|Tr(AB)| ≤ ‖A‖1‖B‖∞, where ‖ · ‖1 and ‖ · ‖∞ denote the trace and
operator norm, and also define, for completeness, for a matrix C, |C| =

√
C†C and the Schatten p-norm of C:

‖C‖p = [Tr(|C|p)]1/p ). Now we can relate this upper bound to a product of matrix norms that is easier to parse:
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( )

( )( )

(a) (b)

FIG. 7. The graphical representation for the case k = 1. (a) A diagrammatic expression of Tr
(
S [ρ̂(1) ⊗ ρ

⊗(3)
AB

])
, from which it is

easily seen that the expression is invariant with respect to any position of the shadow ρ̂(1). (b) The operator S̃(1) in Eq. (C49) (marked
in the dashed rectangle) that acts on ρ̂(1).

Tr
(
(S̃(1))2) ≤ ∣∣Tr

(
Õ(6)ρ⊗6

AB

)∣∣ ≤ ‖Õ(6)‖∞‖ρ⊗6
AB‖1 = 1 × 1 = 1, (C52)

because the sixfold tensor product ρ⊗6
AB of a quantum state is again a quantum state that is normalized in trace norm

(‖ρ⊗6
AB‖1 = ‖ρAB‖6

1 = Tr(ρAB)
6 = 16 = 1) and Õ(6) is a tensor product of swap operators and is therefore unitary.

The unitary operators U, in particular, obey ‖U‖∞ = 1. Thus, we obtain the following streamlined bound on V1:

V1 ≤ 2N ≤ 3N . (C53)

The final inequality (2N ≤ 3N ) is very loose but considerably simplifies the final stage, where we put all our bounds
together.

(b) For k = 2, the variance term contains combinations of two distinct Pauli shadows ρ̂(1) = ρ̂
(1)
A ⊗ ρ̂

(1)
B and ρ̂(2) =

ρ̂
(2)
A ⊗ ρ̂

(2)
B , as well as two density matrices ρAB. From all possible permutations, we need to consider three families

of permutations that give different contributions to Eq. (C29), with each family containing the same number of
permutations:

(1) If π
[
ρ̂(1) ⊗ ρ̂(2) ⊗ ρAB ⊗ ρAB

]
π† = ρ̂(1) ⊗ ρ̂(2) ⊗ ρAB ⊗ ρAB or ρAB ⊗ ρAB ⊗ ρ̂(1) ⊗ ρ̂(2), or with the indices

1 and 2 exchanged on the right-hand sides, then [cf. Fig. 8(a)]

Tr
[
S π[ρ̂(1) ⊗ ρ̂(2) ⊗ ρAB ⊗ ρAB

]
π†
]

= Tr
[S̃(2)AA′(ρ̂

(1)
A ⊗ ρ̂

(2)
A′ )
]

Tr[ρ̂(1)B ρ̂
(2)
B ], (C54)

where S̃(2)AA′ = TrB[SAA′ ρAB SAA′ ρAB]. The variance contribution V(1)2 given by this set of permutations can be
bound as

V(1)2 ≤ E

[
Tr
[S̃(2)AA′(ρ̂

(1)
A ⊗ ρ̂

(2)
A′ )
]2 Tr[ρ̂(1)B ρ̂

(2)
B ]2

]
. (C55)

To see this, we first use Lemma 1 to bound the original term as

E

[
Tr
[S̃(2)AA′(ρ̂

(1)
A ⊗ ρ̂

(2)
A′ )
]2 Tr[ρ̂(1)B ρ̂

(2)
B ]2
]

≤ E

[
Tr
[S̃(2)AA′(ρ̂

(1)
A ⊗ ρ̂

(2)
A′ )
]2 ×

NB∏
i=1

(
521{Bi = B′

i} +
(1

2

)2
1{Bi 	= B′

i}
)]

.

(C56)
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As the Pauli basis chosen for subsystem B is independent with respect to the shadows in subsystem A, we can
factorize the expectation value further:

E

[
Tr
[S̃(2)AA′(ρ̂

(1)
A ⊗ ρ̂

(2)
A′ )
]2 ×

NB∏
i=1

(
521{Bi = B′

i} +
(1

2

)2
1{Bi 	= B′

i}
)]

= E

[
Tr
[S̃(2)AA′(ρ̂

(1)
A ⊗ ρ̂

(2)
A′ )
]2]× E

[ NB∏
i=1

(
521{Bi = B′

i} +
(1

2

)2
1{Bi 	= B′

i}
)]

. (C57)

Now, the first expectation term can be bound by reinterpreting ρ̂(1)A ⊗ ρ̂
(2)
A as a classical shadow in a 22NA-

dimensional Hilbert space and applying Lemma 2. The second expectation value is bounded directly by Lemma
1. Combining both upper bounds then produces

V(1)2 ≤ Tr
[
(S̃(2)AA′)

2]22NA 8.5NB . (C58)

Noting that the operator S̃(2)AA′ is Hermitian and rewriting it as Tr
(
(S̃(2)AA′)2

) = Tr(Sρ⊗4
AB), where S is a unitary

operator, we can again apply Hölder’s inequality for matrices to obtain

Tr
(
(S̃(2)AA′)

2) = Tr(Sρ⊗4
AB) ≤ ‖S‖∞‖ρ⊗4

AB‖1 = 1 × 1 = 1. (C59)

Thus, the final bound on V(1)2 can be written as

V(1)2 ≤ 22NA 8.5NB . (C60)

(2) If π
[
ρ̂(1) ⊗ ρ̂(2) ⊗ ρAB ⊗ ρAB

]
π† = ρ̂(1) ⊗ ρAB ⊗ ρAB ⊗ ρ̂(2) or ρAB ⊗ ρ̂(1) ⊗ ρ̂(2) ⊗ ρAB, or with the indices

1 and 2 exchanged on the right-hand sides, we obtain [cf. Fig. 8(b)]

Tr
[
S π[ρ̂(1) ⊗ ρ̂(2) ⊗ ρAB ⊗ ρAB

]
π†
]

= Tr
[S̃(2)BB′(ρ̂

(1)
B ⊗ ρ̂

(2)
B′ )
]

Tr[ρ̂(1)A ρ̂
(2)
A ], (C61)

where S̃(2)BB′ = TrA[SBB′ ρAB SBB′ ρAB]. This expression is similar to the previous one, with the roles of A and
B exchanged. By following the same thread of arguments as in the previous case, we can express the final
bound as

V(2)2 := Var
[
Tr
[
Sπ[ρ̂(1) ⊗ ρ̂(2) ⊗ ρAB ⊗ ρAB

]
π†
]]

≤ 22NB 8.5NA . (C62)

(3) If π
[
ρ̂(1) ⊗ ρ̂(2) ⊗ ρAB ⊗ ρAB

]
π† = ρ̂(1) ⊗ ρAB ⊗ ρ̂(2) ⊗ ρAB or ρAB ⊗ ρ̂(1) ⊗ ρAB ⊗ ρ̂(2), or with the indices

1 and 2 exchanged on the right-hand sides, then [cf. Fig. 8(c)]

Tr
[
S π[ρ̂(1) ⊗ ρ̂(2) ⊗ ρAB ⊗ ρAB

]
π†
]

= Tr
[
(ρ̂
(1)
A ⊗ ρ̂

(2)
B )ρAB

]
Tr
[
(ρ̂
(2)
A ⊗ ρ̂

(1)
B )ρAB

]
. (C63)

Directly using Lemma 4, it then follows in this third case that

V(3)2 := Var
[
Tr
[
O(4)π

[
ρ̂(1) ⊗ ρ̂(2) ⊗ ρAB ⊗ ρAB

]
π†
]]

≤ Tr(ρ2
AB)

2 22N ≤ 22N , (C64)

because Tr
(
ρ2

AB

)
denotes the purity of ρAB, which can never exceed 1.

Combining the above three cases and incorporating them into Eq. (C29), we finally obtain

V2 ≤ 1
3

(
V(1)2 + V(2)2 + V(3)2

)
≤ 1

3

(
22NA 8.5NB + 22NB 8.5NA + 22N

)
≤ 8.5N ≤ 32N . (C65)

Again, the last inequality (8.5N ≤ 32N ) is rather loose but simplifies putting all the bounds together in the end.
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FIG. 8. The diagrammatic expression of the relevant terms for k = 2: (a) Tr[S (ρ̂(1) ⊗ ρ̂(2) ⊗ ρ⊗2
AB)] = Tr

[S̃(2)AA′(ρ̂
(1)
A ⊗

ρ̂
(2)
A′ )
]

Tr[ρ̂(1)B ρ̂
(2)
B ] as in Eq. (C54), (b) Tr[S(ρ̂(1) ⊗ ρ⊗2

AB ⊗ ρ̂(2))] = Tr
[S̃(2)BB′(ρ̂

(1)
B ⊗ ρ̂

(2)
B′ )
]

Tr[ρ̂(1)A ρ̂
(2)
A ] as in Eq. (C61), and (c)

Tr[S (ρ̂(1) ⊗ ρAB ⊗ ρ̂(2) ⊗ ρAB)] = Tr
[
(ρ̂
(1)
A ⊗ ρ̂

(2)
B )ρAB

]
Tr
[
(ρ̂
(2)
A ⊗ ρ̂

(1)
B )ρAB

]
as in Eq. (C63).

(c) For k = 3, V3 contains 3 distinct shadows ρ̂(1) = ρ̂
(1)
A ⊗ ρ̂

(1)
B , ρ̂(2) = ρ̂

(2)
A ⊗ ρ̂

(2)
B , ρ̂(3) = ρ̂

(3)
A ⊗ ρ̂

(3)
B and a single

density matrix ρAB. We note that regardless of π , we always obtain the same expression up to permuting the
indices of the shadows for the traces in Eq. (C29). Thus, considering the term for π = I in Eq. (C29) is enough.
This choice produces

Tr
[
S [ρ̂(1) ⊗ ρ̂(2) ⊗ ρ̂(3) ⊗ ρAB

]] = Tr[ρ̂(2)A ρ̂
(3)
A ] Tr[ρ̂(1)B ρ̂

(2)
B ] Tr[(ρ̂(1)A ⊗ ρ̂

(3)
B )ρAB], (C66)

cf. Fig. 9(a). The corresponding variance term can be bounded as

V3 ≤ E

[
Tr[ρ̂(2)A ρ̂

(3)
A ]2 Tr[ρ̂(1)B ρ̂

(2)
B ]2Tr[(ρ̂(1)A ⊗ ρ̂

(3)
B )ρAB]2

]
. (C67)

To see this, we first use Lemma 1 twice to write

V3 ≤ E

[ NA∏
i=1

(
521{Bi = B′

i} +
(1

2

)2
1{Bi 	= B′

i}
) NB∏

i=1

(
521{Bi = B′

i} +
(1

2

)2
1{Bi 	= B′

i}
)

Tr[(ρ̂(1)A ⊗ ρ̂
(3)
B )ρAB]2

]

(C68)

As in the previous case of k = 2, the measurement bases of subsystems A and B are chosen independent from every-
thing else (including each other). We can use this statistical independence to factorize the remaining expectation
values and bound V3 by the following expression:

E

[ NA∏
i=1

(
521{Bi = B′

i} +
(1

2

)2
1{Bi 	= B′

i}
)]

E

[ NB∏
j =1

(
521{Bj = B′

j } +
(1

2

)2
1{Bj 	= B′

j }
)]

E

[
Tr[(ρ̂(1)A ⊗ ρ̂

(3)
B )ρAB]2

]
.

(C69)

Now, with Lemma 1, we bound the first two expectation terms by 8.5NA and 8.5NB , respectively. The third term can
be controlled using Lemma 2. This finally results in

V3 ≤ 8.5NA 8.5NB Tr(ρ2
AB)2

N ≤ 33N , (C70)

where we once more use the fact that the purity obeys Tr(ρ2
AB) ≤ 1.
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FIG. 9. Tensor diagrams for the case k = 3. (a) A graphical representation for the term in Eq. (C66). (b) A representation for the
term for k = 4 shadows as in Eq. (C71).

(d) For k = 4, the variance term V4 is composed of four distinct shadows ρ̂(1), ρ̂(2), ρ̂(3) and ρ̂(4). Considering the term
for π = I in Eq. (C29), we obtain

Tr
[
S [ρ̂(1) ⊗ ρ̂(2) ⊗ ρ̂(3) ⊗ ρ̂(4)

]] = Tr[ρ̂(2)A ρ̂
(3)
A ] Tr[ρ̂(1)A ρ̂

(4)
A ] Tr[ρ̂(1)B ρ̂

(2)
B ] Tr[ρ̂(3)B ρ̂

(4)
B ], (C71)

cf. Fig. 9(b). For other permutations π , we obtain the same kinds of expressions, up to permuting the indices of the
shadows (which does not affect the overall expectation value). We can bound this term by

V4 ≤ E

[
Tr[ρ̂(2)A ρ̂

(3)
A ]2 Tr[ρ̂(1)A ρ̂

(4)
A ]2Tr[ρ̂(1)B ρ̂

(2)
B ]2 Tr[ρ̂(3)B ρ̂

(4)
B ]2

]
. (C72)

Indeed, each trace term in the above expectation can be controlled using Lemma 1. Noting that each measurement
basis on subsystem A is sampled independent from the ones in B (and each other) for the four shadows concerned,
we can factorize the above expectation value and obtain

V4 ≤ E

[ NA∏
i=1

(
521{Bi = B′

i} +
(1

2

)2
1{Bi 	= B′

i}
)]2

E

[ NB∏
j =1

(
521{Bj = B′

j } +
(1

2

)2
1{Bj 	= B′

j }
)]2

(C73)

≤ 8.52NA 8.52NB ≤ 34N . (C74)

We have now put all the pieces together to combine the results from the above case studies to obtain a compact expression
for the variance of X̂ (4)

4 . More precisely, we use the following loose bound for each k: Vk ≤ 3kN . Using Eq. (C47), we
obtain

Var[X̂ (4)
4 ] ≤

4∑
k=1

(
4
k

)
4k

M k Vk ≤
4∑

k=1

(
4
k

)
4k 3kN

M k =
(

1 + 4
3N

M

)4

− 1. (C75)

Chebyshev’s inequality in Eq. (C20) helps us to provide a sample complexity for this estimator.

Proposition 8: Let ρAB be a bipartite quantum state on N = NA + NB qubits and suppose that we wish to estimate the non-
linear function X4 = Tr(Sρ⊗4

AB), with S = S
(A)
1,4 ⊗ S

(A)
2,3 ⊗ S

(B)
1,2 ⊗ S

(B)
3,4 , using the batch-shadow estimator X̃ (4)

4 constructed
from Pauli shadows. Then, for ε, δ > 0, a total of

M ≥ 4
3N

(1 + ε2δ)
1
4 − 1

� 16
3N

ε2δ
(C76)

measurements suffices to ensure that Pr[|X̃ (4)
4 − X4| ≥ ε] ≤ δ.

010318-33



ANIKET RATH et al. PRX QUANTUM 4, 010318 (2023)

102 103

M

10−1

100

E

n = 4
n = 8

n = 16
n = M

102 103

M

10−1

100

E

n = 4
n = 8

n = 16
n = M

(a) (b)

FIG. 10. The error scaling as a function of M , (a) for Pauli shadows and (b) for Haar shadows, showing the scaling of the average
statistical error E as a function of the number of measurements M for the functional X̃ (n′)

4 calculated on a four-qubit GHZ state for
different values of n′. The black line marks the value of M up to which we can simulate X̃ (M)

4 . The dashed black lines highlight the
different error scalings ∝ 1/M and 1/

√
M .

This measurement cost scales (at worst) as 3N in system size N and provides a scaling of M ∝ 3N/
√
ε for any given

value of ε. Although the above measurement bound is loose, this scaling still offers an exponential improvement over the
best-known scaling O(4N/

√
ε) for the U-statistics estimate of X4 in the case of Pauli shadow tomography in Ref. [65].

These improvements on the complexity bounds are achieved by exploiting the rich structure of Pauli-basis measurements
to produce powerful auxiliary statements, most notably Lemmas 1 and 3. At the present stage, these auxiliary results
are only valid for Pauli shadows and do not yet cover Haar shadows. We leave an extension of these arguments, and by
extension Proposition 8, as an interesting topic for future work.

It is interesting to point out that the measurement-complexity bound X4 is always comparable to the measurement-
complexity bound for X2 (purity). Moving from a second-order function to a fourth-order function does not seem to incur
a large penalty in measurement complexity.

We equally note that, in the limit of M → ∞, the dominant contribution to the variance is given by the linear term
(k = 1), which scales ∝ 2N/M as given by Eq. (C53). Then, in this limit, it holds that the measurement bound scales as
2N/ε2δ.

5. Numerical investigations

In this section, we would like to devote ourselves to supporting our analytical findings with numerical simulation of
the protocol. We would mainly like to study error scalings and the performance of the batch-shadow estimator X̃ n′

4 by
using random Pauli and Haar-random shadows in the regime where M � n′ and compare it to the standard U-statistics
estimator X̂n. We consider a four-qubit Greenberger-Horne-Zeilinger (GHZ) state and numerically simulate the protocol
by applying M Haar-random (CUE) unitaries u followed by fixed-basis measurements to construct Haar-random shadows
(fixing NM = 1). We also construct numerically M Pauli shadows by choosing N random Pauli bases for each shadow. We
calculate the average statistical error E = |X̃ n′

4 − X4|/X4 for different values of n′ and M by simulating the randomized-
measurement protocol 200 times. This is plotted in Fig. 10 for Pauli and Haar shadows, respectively. We make two
important observations:

(a) The error scaling behavior of Pauli shadows, which involves sampling from a fixed set of three measurement
settings, is not very different compared to that of the Haar shadows, which uses infinitely many measurement
settings.

(b) The batch-shadow estimator X̃ (n′)
4 with n′ ∼ 10 has very close performance to that of the U-statistics estimator.

In general, this translates into a huge run-time gain in terms of data treatment (O(104) compared to O(M 4)) and
allows us to process the quantities of interest for a larger set of measurement data. We clearly observe a limitation in
postprocessing the U-statistics estimator (n′ = M ) for a modest system size of N = 4 qubits. This constraint starts
to be extremely prominent when the system size N increases. This is due to the fact that M scales exponentially
with N , as shown in the previous section.
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APPENDIX D: EXPERIMENTAL PLATFORM AND THEORETICAL MODELING

The experimental platform in Ref. [7] is realized with trapped 40Ca+ atoms, each one encoding a single qubit. Coupling
all ions off resonantly with a laser beam subjects the ions to realizing the long-range Ising model in the presence of a
transverse field, the effective Hamiltonian of which can be written as

H = �

∑
i<j

Jij σ
x
i σ

x
j + �B

∑
i

σi, (D1)

where i, j = 1, . . . , N and N is the total system size. To model the experiment using numerical simulations, we approx-
imate the interaction matrix Jij as a power law Jij = J0/|i − j |α , where the values of J0 and α depend on the specifics
of each experimental realization. For the experiments conducted with strings of 10 ions, α = 1.24 and J0 = 420 s−1.
For those with 20 ions, α = 1.01 and J0 = 370 s−1. The effective magnetic field B is considered to be much larger
than the interaction term (B � 22J0) such that terms that would break the conservation of the total magnetization, i.e.,
σ+

i σ
+
j + h.c., are energetically suppressed. The effects of decoherence on the system are taken into account considering

the time evolution subject to local spin flips and spin-excitation loss. The full-system dynamics are described accord-
ing to a Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master equation, the 2N local jump operators of which are
written as Ci = √

γxσ
x
i (spin flip) and Ci+L = √

γ−σ−
i (excitation loss), i = 1, . . . , L, with rates γx and γm. Further-

more, the experimentally prepared state is not pure. As such, it can be written as the following mixed-product state
ρ0 =⊗i (pi |↑〉 〈↑| + (1 − pi) |↓〉 〈↓|), with pi ≈ 0.004 for i even and pi ≈ 0.995 for i odd.

In the experiment, local depolarizing noise is acting during the application of the local random unitary. We model it as

ρ(t̄) → (1 − pDPN )ρ(t̄)+ pDP

∑
i

Tri[ρ(t̄)] ⊗ Ii

2
, (D2)

where pDP ≈ 0.02 and t̄ denotes the time at which the measurement is performed.
In the case of the 20-ion experiment, the numerical simulations are done using tensor-network algorithms. For the

unitary part of the dynamics, we approximate the interaction matrix Jij as a sum of three exponentially decaying terms,
which can efficiently be represented as MPOs. To treat the decoherence, we use quantum trajectories [129], applying the
quantum jumps Ci to the state approximated as an MPS with bond dimension 128. The latter is evolved according to the
time-dependent variational principle (TDVP) [130]. We average our results on 1500 trajectories in total.

APPENDIX E: BATCH SHADOWS TO EXTRACT RÉNYI 2-OE AND ITS SYMMETRY RESOLUTION

We use the batch-shadow estimator to access the Rényi 2-OE and its symmetry resolution from experimental data. The
estimator of Rényi 2-OE S̃(2) constructed using n′ batches can be explicitly written following Eq. (16), as

S̃(2) = − log
X̃ (n′)

4(
X̃ (n′)

2

)2 = − log
1
4!

(n′
4

)−1∑
b1 	=···	=b4

Tr
[
S⊗4

i=1 ρ̃
(bi)
]

(
1
2!

(n′
2

)−1∑
b1 	=b2

Tr
[
S
(AB)
1,2

⊗2
i=1 ρ̃

(bi)
])2 . (E1)

To estimate the Rényi 2-OE from the experimental data as shown in the main text, we use the simple estimator with
n′ = 4. Alternatively, the symmetry resolution for the Rényi 2-OE can be expressed as

S(2)q = − log
Tr
([
�qTrB(|ρAB〉 〈ρAB|)�q

]2)

p(q)2 Tr(ρ2
AB)

2
= − log

Tr
([
�qTrB(|ρAB〉 〈ρAB|)�q

]2)

Tr
(
�qTrB(|ρAB〉 〈ρAB|))2

, (E2)

where �q is the projector onto the eigenspace of the symmetry sector q for system A and p(q) =
Tr
(
�qTrB(|ρAB〉 〈ρAB|))/Tr(ρ2

AB) are the probabilities of being in the charge sector q expressed in terms of a fraction
of two second-order functions. As E[ρ̃(bi)] = ρAB for all batch shadows, we can obtain a batch estimator of the symmetry-
resolved Rényi 2-OE by replacing each vectorized density matrix by a distinct batch shadow. First, we can express
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the estimator of the populations p̃(q) as

p̃(q) =
1
2!

(n′
2

)−1∑
b1 	=b2

Tr
(
�qTrB(

∣∣ρ̃(b1)
〉 〈
ρ̃(b2)

∣∣))

X̃ (n′)
2

. (E3)

We can now explicitly write the estimator S̃(2)q of SR Rényi 2-OE as

S̃(2)q = − log
1
4!

(n′
4

)−1∑
b1 	=···	=b4

Tr
(
�qTrB

( ∣∣ρ̃(b1)
〉 〈
ρ̃(b2)

∣∣ )�qTrB
( ∣∣ρ̃(b3)

〉 〈
ρ̃(b4)

∣∣ ))

(
1
2!

(n′
2

)−1∑
b1 	=b2

Tr
(
�qTrB(

∣∣ρ̃(b1)
〉 〈
ρ̃(b2)

∣∣))
)2 . (E4)

The SR Rényi 2-OE are extracted from the experimental data by taking n′ = 16.
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